ACCEPTED VERSION

Lee J. Arnold, Martina Demuro, Nigel A. Spooner, Gavin J. Prideaux, Matthew C. McDowell, Aaron B. Camens, Elizabeth H. Reed, Josep María Parés, Juan Luis Arsuaga, José María Bermúdez de Castro, Eudald Carbonell

Single-grain TT-OSL bleaching characteristics: insights from modern analogues and OSL dating comparisons

Quaternary Geochronology, 2019; 49:45-51

© 2018 Elsevier B.V. All rights reserved.

This manuscript version is made available under the CC-BY-NC-ND 4.0 license <u>http://creativecommons.org/licenses/by-nc-nd/4.0/</u>

Final publication at http://dx.doi.org/10.1016/j.quageo.2018.01.004

PERMISSIONS

https://www.elsevier.com/about/our-business/policies/sharing

Accepted Manuscript

Authors can share their accepted manuscript:

Immediately

- via their non-commercial personal homepage or blog
- by updating a preprint in arXiv or RePEc with the accepted manuscript
- via their research institute or institutional repository for internal institutional uses or as part of an invitation-only research collaboration work-group
- directly by providing copies to their students or to research collaborators for their personal use
- for private scholarly sharing as part of an invitation-only work group on <u>commercial sites with</u> <u>which Elsevier has an agreement</u>

After the embargo period

- via non-commercial hosting platforms such as their institutional repository
- via commercial sites with which Elsevier has an agreement

In all cases <u>accepted manuscripts</u> should:

- link to the formal publication via its DOI
- bear a CC-BY-NC-ND license this is easy to do
- if aggregated with other manuscripts, for example in a repository or other site, be shared in alignment with our <u>hosting policy</u>
- not be added to or enhanced in any way to appear more like, or to substitute for, the published journal article

24 March 2021

1	Single-grain TT-OSL bleaching characteristics: Insights from modern
2	analogues and OSL dating comparisons
3	
4	Lee J. Arnold ^{1*} , Martina Demuro ¹ , Nigel A. Spooner ² , Gavin J. Prideaux ³ , Matthew C.
5	McDowell ³ , Aaron B. Camens ³ , Elizabeth H. Reed ⁴ , Josep María Parés ⁵ , Juan Luis Arsuaga
6	^{6,7} , José María Bermúdez de Castro ⁵ , Eudald Carbonell ⁸ .
7	
8	¹ School of Earth and Environmental Sciences, Institute for Photonics and Advanced Sensing (IPAS), and Environment
9	Institute, University of Adelaide, North Terrace Campus, Adelaide SA 5005, Australia.
10	² Defence Science and Technology Group, Third Avenue, Edinburgh, SA, 5111, Australia.
11	³ College of Science and Engineering, Flinders University of South Australia, Bedford Park, SA 5042, Australia
12	⁴ School of Earth and Environmental Sciences, and Environment Institute, University of Adelaide, North Terrace Campus,
13	Adelaide SA 5005, Australia.
14	⁵ Centro Nacional de Investigación sobre la Evolución Humana, CENIEH, Paseo Sierra de Atapuerca 3, 09002 Burgos, Spain.
15	⁶ Centro Mixto Universidad Complutense e Instituto de Salud Carlos III de Evolución y Comportamiento Humanos,
16	Monforte de Lemos 3-5, Pabellón 14, 28029 Madrid, Spain.
17	⁷ Departamento de Paleontología, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, 28040 Madrid,
18	Spain.
19	⁸ Institut de Paleoecologia Humana i Evolució Social, Área de Prehistória, U. Rovira i Virgili, Plaça Imperial Tarraco 1,
20	E-43005 Tarragona, Spain
21	* Corresponding author. E-mail address: lee.arnold@adelaide.edu.au
22	
23	Keywords
24	Luminescence dating; thermally transferred optically stimulated luminescence (TT-OSL); single-
25	grain; modern analogues; Spain; Australia.
26	
27	Abstract
28	Previous assessments of thermally transferred optically stimulated luminescence (TT-OSL) signal
29	resetting in natural sedimentary settings have been based on relatively limited numbers of

observations, and have been conducted primarily at the multi-grain scale of equivalent dose (D_e) 30 analysis. In this study, we undertake a series of single-grain TT-OSL bleaching assessments on 31 nineteen modern and geological dating samples from different sedimentary environments. Daylight 32 33 bleaching experiments performed over several weeks confirm that single-grain TT-OSL signals are optically reset at relatively slow, and potentially variable, rates. Single-grain TT-OSL residual doses 34 range between 0 and 24 Gy for thirteen modern samples, with >50% of these samples yielding 35 weighted mean De values of 0 Gy at 2o. Single-grain OSL and TT-OSL dating comparisons 36 performed on well-bleached and heterogeneously bleached late Pleistocene samples from Kangaroo 37 Island, South Australia, yield consistent replicate age estimates. Our results reveal that (i) single-grain 38 39 TT-OSL residuals can potentially be reduced down to insignificant levels when compared with the natural dose range of interest for most TT-OSL dating applications; (ii) the slow bleaching properties 40 of TT-OSL signals may not necessarily limit their dating applicability to certain depositional 41 environments; and (iii) non-trivial differences may be observed between single-grain and multi-grain 42 TT-OSL bleaching residuals in some modern samples. Collectively, these findings suggest that 43 single-grain TT-OSL dating may offer advantages over multi-grain TT-OSL dating in certain 44 complex depositional environments. 45

46

47 **1. Introduction**

The favourable dose saturation properties of thermally transferred optically stimulated luminescence 48 (TT-OSL) signals offer potential for establishing extended-range luminescence chronologies that 49 exceed the traditional upper age limits of quartz OSL dating (e.g., Wang et al., 2006; Duller and 50 Wintle, 2012; Arnold et al., 2015). However, TT-OSL signals have been shown to be optically reset 51 at a considerably slower rate than conventional OSL signals (e.g., Duval et al 2017), meaning there 52 is greater potential for insufficient signal resetting and associated TT-OSL age overestimation in any 53 dating study. TT-OSL bleaching characteristics have been assessed using several approaches in the 54 recent literature. Daylight bleaching experiments performed on a small number of samples have 55

shown that several weeks or months of natural sunlight exposure are typically required to deplete TT-56 OSL signals to within 10% of background (e.g., Jacobs et al., 2011; Arnold et al., 2013; Demuro et 57 al., 2015). However, similar sized TT-OSL signal reductions have been observed over much shorter 58 59 (<1 hour) daylight exposure times for some samples (Athanassas and Zacharias, 2010). TT-OSL depletion rates on the order of multiple days have also been reported from several solar simulator 60 bleaching studies (e.g., Tsukamoto et al., 2008; Hernandez et al., 2012; Brown and Forman, 2012; 61 Duval et al., 2017), albeit using different experimental conditions and simulated daylight intensities. 62 In spite of these generally slow optical bleaching rates, equivalent dose (De) assessments performed 63 on modern and very young samples suggest that adequate TT-OSL signal resetting down to 64 sufficiently low levels is possible in some sedimentary environments. Multi-grain residual De values 65 of 5-19 Gy have been reported for several modern aeolian sediments from Eurasia and South Africa 66 (see Duller and Wintle, 2012). Arnold et al. (2014) reported a similarly sized multi-grain D_e of 7.3 \pm 67 0.8 Gy for a modern slopewash and aeolian deposit from north-central Spain, while multi-grain 68 residual De values of several tens of Gy have been obtained for coastal and lacustrine shoreline 69 70 deposits from South Africa and Australia (Jacobs et al., 2011; Fu et al., 2017). In contrast, very large multi-grain TT-OSL residual doses of 250-300 Gy have been reported for modern suspended 71 sediments and overbank deposits from the Yellow River (Hu et al., 2010), potentially cautioning 72 73 against the suitability of TT-OSL dating in turbid and UV-depleted fluvial settings.

74

While these various TT-OSL bleaching assessments have proved insightful, they are based on a relatively modest number of observations (n = <20 samples) and further work is needed to better characterise TT-OSL signal resetting across a broader range of natural contexts using complementary types of experimental procedures. Additionally, all existing assessments of TT-OSL bleaching characteristics, with the exception of one study (Fu et al., 2017), have been performed at the multigrain scale of D_e analysis. It remains unclear, therefore, whether TT-OSL residual doses reported in existing modern analogue studies partly reflect averaging effects arising from simultaneously

measuring grains with different bleaching histories, signal compositions or TT-OSL source trap 82 properties. For samples with inherently bright signal intensities, single-grain TT-OSL dating offers 83 the potential to evaluate, or even circumvent, any potential averaging effects. Single-grain TT-OSL 84 85 has recently been applied at several independently dated archaeological sites from Spain and Australia (e.g., Demuro et al., 2014; Arnold et al., 2015; Hamm et al., 2016). These single-grain studies have 86 87 also revealed that multi-grain TT-OSL signals may be dominated by grains with unfavourable TT-88 OSL behaviours (e.g., Arnold and Demuro, 2015) and that apparent multi-grain TT-OSL residual 89 doses of several tens of Gy may result from the inclusion of grain types that are routinely rejected by single-grain quality assurance criteria (Fu et al., 2017). Such complications require further 90 91 examination, and additional single-grain bleaching assessments are needed to better characterise TT-OSL signal resetting at the most fundamental scale of De analysis. 92

93

The aims of the present study are threefold: (i) To examine the TT-OSL bleaching characteristics of 94 quartz samples from a range of depositional environments using three complementary approaches; 95 namely, daylight bleaching experiments, examination of modern sample De datasets, and comparisons 96 of replicate TT-OSL and OSL ages for geological dating samples. The first two of these approaches 97 permit examination of TT-OSL resetting properties under controlled bleaching conditions and in 98 99 analogous natural depositional contexts, while the latter favours assessments of bleaching histories that are directly relatable to individual dating samples; (ii) To assess whether the bleaching properties 100 of TT-OSL signals limit their dating applicability to certain depositional settings, environmental 101 conditions or age ranges; (iii) To compare TT-OSL residual doses and bleaching trends at different 102 scales of De analysis. 103

104

105 2. Sample details and experimental procedures

This study incorporates nineteen samples collected from a diverse range of depositional environments
 across Spain and Australia (Fig. S1). These two geographic regions have been targeted for their

generally bright single-grain quartz TT-OSL signal characteristics (e.g., Arnold et al., 2015; Hamm 108 et al., 2016), while individual sites within these regions have been selected to encompass a variety of 109 natural bleaching conditions. Thirteen samples were collected from actively accumulating, or very 110 111 recently accumulated, surface sediment deposits that were expected to yield burial doses close to, or consistent with, 0 Gy (assuming adequate signal bleaching during transportation). These samples 112 represent modern analogues for associated archaeological, palaeontological and palaeoenvironmental 113 dating samples being studied as part of recent or ongoing TT-OSL dating projects (e.g., Arnold et al., 114 2014; Demuro et al., 2014; Fu et al., 2017). Two shallow cave infill samples from the middle 115 Pleistocene palaeoanthropological sites of Galería and Sima del Elefante, Atapuerca, (ATG10-3, 116 117 ATE10-13) have been chosen for the daylight bleaching experiments, owing to their relatively high and comparable mean burial doses, and uniformly bleached single-grain TT-OSL De distributions 118 (e.g., Demuro et al., 2014; Arnold et al., 2015). Single-grain TT-OSL and OSL dating comparisons 119 were performed on four late Pleistocene samples from southern Kangaroo Island that exhibit different 120 types of OSL D_e distributions, and that lie within typically routine OSL dating ranges (mean D_e values 121 = 17-103 Gy). Two of these samples (KHC-KI5, KI14-5) were collected from relatively deep 122 exogenous infill deposits preserved within Kelly Hill Cave (McDowell et al., 2013), and located ~25 123 m from the nearest palaeoentrance (Arnold et al., in prep). A third sample (KI14-12) was collected 124 125 from a proximal (shallow) exogenous infill deposit preserved immediately beneath a former external opening of the same cave system. The fourth sample (KI14-1) was derived from a well-bedded coastal 126 aeolianite deposit (Bridgewater Formation) found at the Boar Beach trace fossil site (Camens et al., 127 2017). 128

129

To achieve the main study aims, we have chosen to focus on single-grain TT-OSL and OSL analyses,
which enable in depth assessments of bleaching adequacy in the absence of potential grain averaging
effects. The details of the TT-OSL and OSL dating procedures employed in this study, including the
quality assurance criteria used to eliminate unreliable grains, are provided in Arnold and Demuro

(2015), Arnold et al. (2016) and the Supporting Information (Fig. S2-3; Table S1-3). De values were
determined for individual quartz grains using the single-aliquot regenerative-dose (SAR) procedures
shown in Table S1. Table S3 summarises the environmental dose rates for the Kangaroo Island
dating samples, calculated using a combination of *in situ* field gamma-ray spectrometry (Arnold et
al., 2012) and low-level beta counting (Bøtter-Jensen and Mejdahl, 1988).

139

140 **3. TT-OSL daylight bleaching tests**

To investigate the effects of controlled daylight exposure on single-grain TT-OSL De datasets, we 141 bleached subsets of prepared quartz grains from samples ATG10-3 and ATE10-13 for 42 days on a 142 143 south-facing exterior window ledge in Burgos, Spain. The original (unbleached) De datasets for these two samples exhibit relatively low overdispersion of 23-27%, and the majority of individual De 144 estimates are consistent with single dose populations centred on central age model (CAM) D_e values 145 of 540-572 Gy (Fig. 1a-b). The unlogged D_e dataset exhibit multiplicative D_e uncertainty properties 146 (Fig. S4), and are normally distributed (ATG10-3) or slightly positively skewed (ATE10-13) 147 148 according to the criterion outlined by Bailey and Arnold (2006) (Table S4).

149

After 6 weeks of daylight exposure, the weighted mean (CAM) De values for both samples were 150 reduced by ~90% (Fig. 1c-d; Table S4). These depletion rates are consistent with that obtained for a 151 multi-grain TT-OSL sample by Demuro et al. (2015) under analogous experimental conditions. 152 Though both samples retain weighted mean (unlogged CAM; CAM_{UL}) residual De values of 54-65 153 Gy, complete resetting of burial doses is possible for a significant proportion of the measured grains 154 in each sample. Between 38 and 52% of the daylight-bleached grains have De values consistent with 155 0 Gy at 2σ after 42 days of daylight exposure (**Table S4**). The De distributions are also characterised 156 by higher overdispersion values of 49-57% and significantly enhanced positive skewness, and 157 therefore appear to resemble heterogeneously bleached single-grain De datasets (e.g., Olley et al., 158 2004; Arnold et al., 2009). 159

It is difficult to determine whether these heterogeneous De distribution characteristics reflect genuine 161 inter-grain differences in TT-OSL signal depletion rates or whether they are a reflection of pre-162 163 existing inter-grain differences in natural De values prior to bleaching. The former interpretation may be supported by published evidence suggesting that (i) TT-OSL signals are composites of multiple 164 signal components with different detrapping probabilities (e.g., Tsukamoto et al., 2008; Brown and 165 Forman, 2012; Demuro et al., 2015), and that (ii) inter-grain differences in TT-OSL behaviours (e.g., 166 source traps and signal stabilities) are common in at least some samples (e.g., Arnold and Demuro, 167 2015; Duval et al., 2017; Bartz et al., this volume). Further support comes from Table S4, which 168 shows that the higher overdispersion and enhanced skewness of the daylight-bleached datasets cannot 169 be recreated by simply scaling the original De datasets by the average depletion rates measured in the 170 bleaching experiments (0.11 ± 0.01 for ATG10-3 and 0.11 ± 0.01 for ATE10-13). It is also possible, 171 however, that some of the enhanced overdispersion in the daylight-bleached De datasets may be 172 caused by the increasing influence of intrinsic sources of De scatter over low dose ranges (e.g., 173 174 different responses of individual grains to the SAR conditions). Fig. S4 shows that the daylight-175 bleached De datasets exhibit distinctly different De uncertainty properties in comparison to the natural De datasets (additive rather than multiplicative De uncertainty relationships), reflecting the dominance 176 177 of different types of experimental De scatter over low dose ranges.

178

179 4. Modern analogue D_e datasets

Ten of the thirteen modern samples yielded weighted mean (CAM_{UL}) single-grain OSL D_e values equivalent to 0 Gy at 2σ . Twelve of these samples also have OSL CAM_{UL} D_e values of <0.5 Gy and >80% of their measured grain populations yielded modern D_e values at 2σ (**Fig. 2-3**, **S5**, **Table S5**). These OSL datasets confirm that the collected samples are genuinely modern and have experienced at least several minutes of relatively homogenous daylight exposure prior to their recent deposition. The single-grain TT-OSL results for the modern samples are similarly encouraging, especially given

the slower bleaching rates and non-zero Gy mean residual doses observed in the daylight bleaching 186 experiments. Seven of the thirteen modern samples yield TT-OSL CAM_{UL} De values equal to 0 Gy 187 at 2 σ (**Table S5**). The majority of samples have TT-OSL CAM_{UL} D_e values <5 Gy; only three samples 188 189 (LE14-MA1, CG12-M2 and FC15-MA1) have higher CAMUL De values of 5-25 Gy (Fig. 2). The weighted mean residual D_e for all thirteen samples is 3.8 ± 1.4 Gy for the TT-OSL datasets, compared 190 191 to 0.01 ± 0.01 Gy for the OSL datasets. The SG TT-OSL₂₉₀ protocol, which is designed to maximise 192 TT-OSL contributions from higher temperature source traps (Arnold and Demuro, 2015), yields CAMUL De residuals that are statistically indistinguishable from their corresponding OSL and TT-193 OSL D_e values at 2σ (**Table S5**, **Fig. 2**). Although only applied to four samples, the TT-OSL₂₉₀ signal 194 195 therefore appears to be bleachable down to relatively low residual doses in some natural depositional contexts. 196

197

The TT-OSL D_e distribution characteristics and weighted mean residual D_e values vary significantly 198 between sites from the same depositional setting (Fig 2-3), highlighting that it may not be appropriate 199 to generalise about TT-OSL bleaching adequacy on the basis of depositional context alone. The 200 single-grain TT-OSL De distributions of all samples contain minor populations of high De values 201 when compared with their OSL counterparts (Fig. 3, Fig. S5). In some cases, the TT-OSL datasets 202 exhibit more pronounced asymmetric tails of high De values (Fig. 3c) and CAMUL overdispersion 203 values of several Gy. However, all of the single-grain TT-OSL datasets contain significant 204 populations (61-95%) of 'modern' grains that yield 0 Gy De values at 25; Table S5, Fig. 7). For ten 205 of the samples, the proportion of modern grains observed in the TT-OSL datasets are similar to (i.e., 206 within 10% of) the proportions of modern grains recorded in the corresponding OSL datasets. 207

208

The modern analogue 'synthetic aliquot' D_e datasets (equivalent to multi-grain aliquots containing 100-grains) reveal several interesting trends (**Fig. 2**, **Table S6**). The sample-averaged synthetic aliquot OSL residual D_e is 0.67 ± 0.35 Gy for the thirteen samples, which is consistent with the

sample-averaged single-grain OSL residual of 0.01 ± 0.01 Gy at 2σ . By contrast, the sample-averaged 212 synthetic aliquot TT-OSL residual D_e (19.9 ± 4.3 Gy) exceeds its single-grain counterpart by a factor 213 of five to six. Additionally, only one of the modern samples (ELC16-MA1) has a synthetic aliquot 214 215 TT-OSL De value equal to 0 Gy at 2 σ . The synthetic aliquot TT-OSL De values obtained in this study (0.3-63 Gy) overlap with multi-grain TT-OSL residual values reported elsewhere for modern 216 217 analogues (e.g., Jacobs et al., 2011, Duller and Wintle, 2012; Arnold et al., 2014). For our datasets, comparisons undertaken at different scales of De analysis suggests that the systematically larger 218 multi-grain TT-OSL residuals primarily arise from the inclusion of grain types that are rejected by 219 the single-grain quality assurance criteria. There appears to be noticeable inter-sample variability in 220 221 the types of rejected grains that exert strong multi-grain averaging effects, as might be expected for such a geographically diverse sample dataset. For instance, the presence of rejected grains with very 222 slowly decaying TT-OSL signals appears to chiefly influence the multi-grain D_e results of samples 223 CG12-M2 and LE14-MA1 (see also Tsukamoto et al., 2008; Demuro et al., 2015). For many of the 224 other samples (e.g., FC16-MA1, ATD14-MA1, FM12-1), grains displaying anomalous dose-response 225 226 properties or unsuitable recycling ratios appear to exert non-neutral effects on the final multi-grain De values. 227

228

229 5. Single-grain TT-OSL and OSL dating comparisons

The four Late Pleistocene dating samples from Kangaroo Island display different types of single-230 grain OSL D_e distributions (Fig. 4, Table S3), and therefore provide useful datasets for evaluating 231 TT-OSL bleaching suitability across a range of dating contexts. Sample KI14-12, collected close to 232 a cave palaeoentrance, yielded homogenous OSL and TT-OSL De datasets (Fig. 4a) with low 233 overdispersion values of 17-19%, and indistinguishable CAM OSL and TT-OSL ages of 54.2-55.0 234 ka (Table S3). The consistency of these results supports the applicability of TT-OSL at this locality, 235 and suggest that the Kelly Hill Cave infill deposits were exposed to prolonged daylight prior to 236 237 entering the karst system.

Samples KHC-KI5 and KI14-5, collected from a deeper chamber within the same cave system, 239 exhibit more heterogeneous OSL De distributions, higher overdispersion values of 30-37%, and their 240 241 D_e datasets are better represented by the minimum age model (MAM) according to the maximum log likelihood criterion of Arnold et al. (2009) (Fig. 4b-c, Table S3). These complex De characteristics 242 are interpreted as reflecting the entrainment of grains from pre-existing cave sediments during the 243 transportation of predominantly well-bleached, externally derived sediments through the closed cave 244 system (Arnold et al., in prep). The TT-OSL De datasets of these heterogeneously bleached samples 245 exhibit pronounced residual De populations and higher overdispersion values than their OSL 246 247 counterparts. In spite of their seemingly complicated depositional history, consistent TT-OSL and OSL ages of 16.1-18.2 ka and 67.3-67.7 ka were obtained for samples KHC-KI5 and KI14-5, 248 249 respectively, using the MAM.

250

The OSL De dataset of sample KI14-1, collected from the Boar Beach fossil dune sequence, is 251 252 characterised by low-to-moderate overdispersion and is well represented by the CAM according to 253 its maximum log likelihood score (Fig. 4d, Table S3). The corresponding TT-OSL De dataset of KI14-1 exhibits moderate overdispersion of 42% and a more noticeable tail of high D_e values, which 254 255 could suggest that daylight exposure was not long enough to completely reset the TT-OSL signal of all grains prior to deposition. Though the MAM-4 is statistically favoured over the CAM for this 256 dataset, the TT-OSL ages obtained using both age models (115.2 \pm 7.9 ka and 138.2 \pm 9.3 ka, 257 respectively) are consistent with the corresponding OSL age of 137.4 ± 8.5 ka at 2σ (CAM data not 258 259 shown in Table S3).

260

261 **6. Discussion and conclusions**

The results of this study provide several useful insights into TT-OSL dating bleaching characteristics at different scales of D_e analysis. Daylight bleaching tests confirm that ~6 weeks of exposure may be

needed to reduce sample-averaged single-grain TT-OSL residuals to within 10% of background; 264 though complete signal resetting is possible for up to 50% of individually measured grains over the 265 same time period. The CAM_{UL} residual doses (-0.1–23.9 Gy) obtained across a range of modern 266 267 environments are noteworthy given these relatively slow daylight bleaching rates. The favourable modern analogue bleaching results imply prolonged surface residence times at the sites considered 268 269 here. Alternatively, the sediment samples may have experienced progressive attenuation of residual 270 signals prior to final deposition via multiple cycles of erosion, transportation and re-deposition (see Stokes, 1992). 271

272

273 Importantly, the modern analogue residual doses observed in this study are relatively low in comparison to the natural dose range of interest for typical TT-OSL dating applications. Residual De 274 values on the order of 10^{-1} - 10^{1} Gy are unlikely to compromise single-grain TT-OSL applicability 275 beyond existing uncertainties in most middle or early Pleistocene dating studies. These unbleached 276 TT-OSL residuals may give rise to more significant systematic age offsets when dating Holocene or 277 278 late Pleistocene samples, particularly at the multi-grain scale of analysis. However, the low singlegrain residuals obtained for many of the modern samples, and the consistent OSL and TT-OSL ages 279 observed for the Kangaroo Island samples, suggest potential for reliable TT-OSL dating over shorter 280 281 timescales at some sites.

282

Our various bleaching assessments suggest that single-grain TT-OSL dating suitability is not necessarily limited to certain depositional environments, as is sometimes assumed. Significant variation exists in the magnitudes of modern residual doses recorded both within and between different sedimentary settings (**Fig. 2**). The consistency of comparative OSL and TT-OSL ages from Kangaroo Island also supports the applicability of single-grain TT-OSL dating in some relatively complex sedimentary contexts, as long as appropriate statistical age models are considered. Though these findings are promising, our empirical datasets are relatively limited, and there remains a need

11

to undertake site-specific bleaching assessments in any TT-OSL dating study; especially those 290 conducted in high-latitude settings and depositional environments not covered by our modern 291 analogue dataset. A potentially useful approach for assessing bleaching adequacy might involve 292 293 comparisons of ages or De values obtained with multiple luminescence signals that bleach at different rates. Such assessments have been widely used in post-IR IRSL studies (e.g., Murray et al., 2012), 294 295 with parity in ages or De values being used to support adequate resetting of the slower bleaching 296 signal, all things being equal. The results of our comparative TT-OSL and OSL dating study support those of Demuro et al. (2015; this volume), and suggest that such differential bleaching assessments 297 could provide useful insights into single-grain TT-OSL suitability in routine dating applications. 298

299

Our modern analogue D_e datasets, together with those reported by Gliganic et al. (2017), provide 300 useful constraints on the amount of overdispersion observed in well-bleached modern or very young 301 samples from a diverse range of settings. Well-bleached modern samples, with CAMUL De values of 302 0 Gy at 2σ , yield unlogged overdispersion values of 0.12 ± 0.05 Gy for single-grain OSL datasets and 303 1.4 ± 0.5 Gy for single-grain TT-OSL datasets (Fig. S6a-b, Table S6). In the absence of site-specific 304 constraints on underlying overdispersion, these average values might provide useful first order 305 approximations for the σ_b parameter of the unlogged minimum age model (MAM_{UL}) and finite 306 mixture model (FMM_{UL}); which should be specified in Gy when analysing heterogeneously bleached 307 or mixed single-grain datasets containing 0 Gy or negative De values. When applying the 308 conventional (logged) MAM and FMM, it may also be worthwhile considering the typical single-309 grain TT-OSL overdispersion values reported so far for well-bleached and unmixed geological (non-310 modern) samples. These published D_e datasets yield a mean overdispersion value of $21 \pm 2\%$ (Table 311 **S7**, **Fig. S6c**), which is consistent with that reported for 'ideal' single-grain OSL samples $(20 \pm 1\%)$; 312 Arnold and Roberts, 2009). 313

314

Finally, our results show that significant differences may be observed between single-grain and multi-315 grain TT-OSL bleaching residuals for some modern samples. Assessment of multi-grain TT-OSL 316 bleaching characteristics may be complicated by averaging effects of unsuitable grain types that are 317 318 routinely rejected in single-grain analysis, paralleling observations reported in some OSL dating studies (e.g., Demuro et al., 2013; Arnold et al., 2013). These results also reinforce the findings of 319 Arnold and Demuro (2015), which showed that the summed (multi-grain) TT-OSL characteristics of 320 samples may not necessarily be representative of TT-OSL-producing grains that are individually 321 considered suitable for dating. 322

323

324 Acknowledgements

Financial support for this research was provided by Australian research Council (ARC) Future Fellowship project FT130100195, Discovery Early Career Researcher Award DE160100743, grant CGL2010-16821 from the Ministerio de Economía y Competitividad de España, and Marie Curie International Reintegration Grant PIRG08-GA-2010-276810. We thank the Sierra de Atapuerca research team (EIA) and the Junta de Castilla y León for site access, and scientific and logistic support. We also thank members of the Australian Speleological Federation for facilitating access to the Nullarbor cave sites.

332

333 Figure captions

334

Figure 1 Natural and daylight-bleached single-grain TT-OSL De distributions for samples ATG10-3 335 and ATE10-13 from Atapuerca, Spain. Daylight bleaching experiments were conducted on 336 monolayers of prepared quartz grains during July-August in Burgos, Spain (N 42° 21' 00" W 03° 42' 337 24", 860 m.a.s.l.). The daylight-bleached grains were agitated every few days to ensure homogenous 338 exposure of all grain surfaces during the 42 day bleaching period. The dark grey bands are centred 339 on the weighted mean D_e values, which have been calculated using the CAM for the natural D_e 340 datasets and the CAM_{UL} for the daylight-bleached D_e datasets. The light grey bands in plots (c) and 341 (d) are centred on the target residual dose of 0 Gy. Radial plots (c) and (d) have been plotted using a 342 modified log transformation of $z = log(D_e + a)$ (Galbraith and Roberts, 2012), to more easily 343 accommodate both the large and small (negative and near zero Gy) De values observed in these 344 datasets. The standard errors of these modified log transformed datasets are given relative to $D_e + a$. 345 where a = 20 Gy for the daylight-bleached datasets of ATG10-3 and a = 30 Gy for the daylight-346 bleached dataset of ATE10-13. 347

Figure 2 (a) Single-grain TT-OSL, TT-OSL₂₉₀ and OSL CAM_{UL} D_e values obtained for the modern analogue samples. (b) Synthetic aliquot TT-OSL, TT-OSL₂₉₀ and OSL CAM_{UL} D_e values obtained for the modern analogue samples. Synthetic aliquot D_e values were obtained by summing the signals of all accepted and rejected grains types on each single-grain disc (equivalent to multi-grain aliquots containing 100-grains each). The dashed horizontal lines mark the expected D_e value (0 Gy) for these samples.

355

Figure 3 Representative modified log transformed radial plots showing single-grain TT-OSL and OSL D_e distributions for the modern analogue samples. See Figure 1 caption for details of the plotting procedure. An *a* offset value of 30 Gy was used to create plots (a) and (c). An *a* offset value of 40 Gy was used to create plot (b). The radial plots are centred on the expected D_e value of 0 Gy for each sample, while the light grey and dark grey bands are centred on the TT-OSL and OSL CAM_{UL} D_e values of each sample, respectively.

Figure 4 Paired single-grain TT-OSL and OSL D_e distributions for the Kangaroo Island dating samples, shown as radial plots. Each radial plot is centred on the TT-OSL CAM D_e value. The light grey and dark grey bands are centred on the TT-OSL and OSL D_e values used to calculate the final ages of each sample (see Table S3 for details).

367 368

384

388

392

362

369 **References**

Arnold, L.J., Roberts, R.G. 2009. Stochastic modelling of multi-grain equivalent dose (De)
distributions: Implications for OSL dating of sediment mixtures. Quaternary Geochronology 4, 204230.

Arnold, L.J., Demuro, M., 2015. Insights into TT-OSL signal stability from single-grain analyses of
known-age deposits at Atapuerca, Spain. Quaternary Geochronology 30, 472-478.

Arnold, L.J., Roberts, R.G. Galbraith, R.F., DeLong, S.B. 2009. A revised burial dose estimation
procedure for optical dating of young and modern-age sediments. Quaternary Geochronology 4, 306325.

Arnold, L.J., Duval, M., Falguères, C., Bahain, J.-J., Demuro, M. 2012. Portable gamma spectrometry
with cerium-doped lanthanum bromide scintillators: Suitability assessments for luminescence and
electron spin resonance dating applications. Radiation Measurements 47, 6-18.

Arnold, L.J., Demuro, M., Navazo Ruiz, M., Benito-Calvo, A., Pérez-González, A., 2013. OSL dating
of the Middle Palaeolithic Hotel California site, Sierra de Atapuerca, north-central Spain. Boreas 42,
285–305.

Arnold, L.J., Demuro, M., Parés, J.M., Arsuaga, J.L., Aranburu, A., Bermúdez de Castro, J.M.,
Carbonell, E., 2014. Luminescence dating and palaeomagnetic age constraint on hominins from Sima
de los Huesos, Atapuerca, Spain. Journal of Human Evolution 67, 85-107.

Arnold, L.J., Demuro, M., Parés, J.M., Pérez-González, A., Arsuaga, J.L., Bermúdez de Castro, J.M.,
Carbonell, E., 2015. Evaluating the suitability of extended-range luminescence dating techniques
over Early and Middle Pleistocene timescales: Published datasets and case studies from Atapuerca,
Spain. Quaternary International 389, 167-190.

Arnold, L.J., Duval, M., Demuro, M., Spooner, N.A., Santonja, M., Pérez-González, A., 2016. OSL
dating of individual quartz 'supergrains' from the Ancient Middle Palaeolithic site of Cuesta de la
Bajada, Spain. Quaternary Geochronology 36, 78-101.

- 401
 402 Athanassas, C., Zacharias, N., 2010. Recuperated-OSL dating of quartz from Aegean (South Greece)
 403 raised Pleistocene marine sediments: current results. Quaternary Geochronology 5, 65-75.
- Bailey, R.M., and Arnold, L.J. 2006. Statistical modelling of single grain quartz De distributions and
 an assessment of procedures for estimating burial dose. Quaternary Science Reviews 25, 2475-2502.
- 407
 408 Bartz, M., Arnold, L.J., Demuro, M., Duval, M., King, G.E., Rixhon, G., Álvarez Posada, C., Parés,
 409 J.M., Brückner, H., Quartz luminescence dating (multi-grain OSL and single-grain TT-OSL)
 410 confirms a Calabrian chronostratigraphy for the Lower Moulouya River deposits (NE Morocco).
 411 Quaternary geochronology, submitted (this volume).
- 412

415

419

427

432

437

441

- Bøtter-Jensen, L., Mejdahl, M., 1988. Assessment of beta dose-rate using a GM multicounter system.
 Nuclear Tracks and Radiation Measurements 14, 187-191.
- Brown, N.D., Forman, S.L., 2012. Evaluating a SAR TT-OSL protocol for dating fine-grained quartz
 within Late Pleistocene loess deposits in the Missouri and Mississippi river valleys, United States.
 Quaternary Geochronology 12, 87-97.
- Camens, A.B., Carey, S.P., Arnold, L.J., 2017. Vertebrate trace fossils from the Late Pleistocene of
 Kangaroo Island, South Australia. Ichnos: An International Journal for Plant and Animal Traces 0, 120. DOI 10.1080/10420940.2017.1337633.
- 423
 424 Demuro, M., Arnold, L.J., Froese, D.G., Roberts, R.G., 2013. OSL dating of loess deposits bracketing
 425 Sheep Creek tephra beds, northwest Canada: Dim and problematic single-grain OSL characteristics
 426 and their effect on multi-grain age estimates. Quatern. Geochronol. 15, 67–87.
- Demuro, M., Arnold, L.J., Parés, J.M., Pérez-González, A., Ortega, A.I., Arsuaga, J.L., Bermúdez de
 Castro, J.M., Carbonell, E., 2014. New luminescence ages for the Galería Complex archaeological
 site: Resolving chronological uncertainties on the Acheulean record of the Sierra de Atapuerca,
 northern Spain. PLOS ONE 9, e110169.
- Demuro, M., Arnold, L.J., Parés, J.M., Sala, R., 2015. Extended-range luminescence chronologies
 suggest potentially complex bone accumulation histories at the Early-to-Middle Pleistocene
 palaeontological site of Huéscar-1 (Guadix-Baza basin, Spain). Quaternary International 389, 191212.
- Demuro, M., Arnold, L.J., Aranburu, A., Gómez-Olivencia, A., Arsuaga, J.L., Single-grain OSL
 dating of the Middle Palaeolithic site of Galería de las Estatuas, Atapuerca (Burgos, Spain).
 Quaternary geochronology, submitted (this volume).
- 442 Duller, G.A.T., Wintle, A.G., 2012. A review of the thermally transferred optically stimulated
 443 luminescence signal from quartz for dating sediments. Quaternary Geochronology 7, 6-20.
 444
- Duval, M., Arnold, L., V. Guilarte, M. Demuro, M. Santonja and A. Pérez-Gonzalez., 2017. Electron
 Spin Resonance dating of optically bleached quartz grains from the Middle Palaeolithic site of Cuesta
 de la Bajada (Spain) using the multiple centres approach. Quaternary Geochronology 37, 82-96.
- Fu, X., Cohen, T.J., Arnold, L.J., 2017. Extending the record of lacustrine phases beyond the last
 interglacial for Lake Eyre in central Australia using luminescence dating. Quaternary Science
 Reviews 162, 88-110.
- 452

- Galbraith, R.F., Roberts, R.G., 2012. Statistical aspects of equivalent dose and error calculation and
 display in OSL dating: an overview and some recommendations. Quaternary Geochronology 11, 127.
- 456
- Gliganic, L.A., Cohen, T.J., Meyer, M., Molenaar, A., 2017. Variations in luminescence properties
 of quartz and feldspar from modern fluvial sediments in three rivers. Quaternary Geochronology 41,
 70-82.
- 460
- Hamm, G., Mitchell, P., Arnold, L.J., Prideaux, G.J., Questiaux, D., Spooner, N.A., Levchenko, V.A.,
 Foley, E.C., Worthy, T.H., Stephenson, B., Coulthard, V., Coulthard, C., Wilton, S., Johnston, D.,
 2016. Cultural innovation and megafauna interaction in the early settlement of arid Australia. Nature
 539, 280-283.
- 465
- Hernandez, M., Mauz, B., Mercier, N., Shen, Z., 2012. Evaluating the efficiency of TT-OSL SAR
 protocols. Radiation Measurements 47, 669-673.
- Hu, G., Zhang, J.-F., Qiu, W.-L., Zhou, L.P., 2010. Residual OSL signals in modern fluvial sediments
 from the Yellow River (HuangHe) and the implications for dating young sediments. Quaternary
 Geochronology 5, 187-193.
- 472

476

485

488

491

495

468

- Jacobs, Z., Roberts, R.G., Lachlan, T.J., Karkanas, P., Marean, C.W., Roberts, D.L., 2011.
 Development of the SAR TT-OSL procedure for dating Middle Pleistocene dune and shallow marine
 deposits along the southern Cape coast of South Africa. Quaternary Geochronology 6, 491-513.
- McDowell, M.C., Bestland, E.A., Bertuch, F., Ayliffe, L.K., Hellstrom, J.C., Jacobsen, G.E.,
 Prideaux, G., 2013. Chronology, stratigraphy and palaeoenvironmental interpretation of a Late
 Pleistocene to mid-Holocene cave accumulation on Kangaroo Island, South Australia. Boreas 42,
 974-994.
- 481
 482 Murray, A.S., Thomsen, K.J., Masuda, N., Buylaert, J.P., Jain, M., 2012. Identifying well-bleached
 483 quartz using the different bleaching rates of quartz and feldspar luminescence signals. Radiation
 484 Measurements 47, 688-695.
- Olley, J.M., Pietsch, T., Roberts, R.G., 2004. Optical dating of Holocene sediments from a variety of
 geomorphic settings using single grains of quartz. Geomorphology 60, 337-358.
- 489 Stokes, S., 1992. Optical dating of young (modern) sediments using quartz: Results from a selection
 490 of depositional environments. Quaternary Science Reviews 11, 153-159.
- Tsukamoto, S., Duller, G.A.T., Wintle, A.G., 2008. Characteristics of thermally transferred optically
 stimulated luminescence (TT-OSL) in quartz and its potential for dating sediments. Radiation
 Measurements 43, 1204-1218.
- Wang, X.L., Wintle, A.G., Lu, Y.C., 2006. Thermally transferred luminescence in fine-grained quartz
 from Chinese loess: basic observations. Radiation Measurements 41, 649-658.

Figure 1

Figure 2

Figure 3

Figure 4

Supplementary Information Arnold et al – Single-grain TT-OSL bleaching characteristics: Insights from modern analogues and OSL dating comparisons.

Single-grain TT-OSL and OSL dating protocols

The optical dating samples from Kangaroo Island (KI14-1, KI14-5, KI14-12, KHC-KI5) and Atapuerca (ATE10-13, ATG10-3) were collected by hammering PVC tubes into cleaned exposure faces, or by carefully extracting loose, unexposed sediment at night using filtered head torches. The Kangaroo Island samples were chosen for the single-grain OSL and TT-OSL dating comparison study because they displayed different types of single-grain OSL D_e distributions and because their natural D_e datasets lay within routine OSL dating ranges (mean D_e values = 17-103 Gy). Though single-grain TT-OSL dating is likely to offer few advantages over conventional single-grain OSL dating for such Late Pleistocene deposits, the Kangaroo Island samples are considered to be well-suited for this study as they permit comparative OSL assessments of TT-OSL bleaching adequacy in the absence of any potential OSL dose saturation effects.

The thirteen modern analogue samples were collected from the uppermost few cm of each surface deposit using a cleaned hand trowel or narrow PVC tube. These modern analogue samples represent contemporary or very recent (i.e., less than a few years old) transportation loads of depositional systems that are being dated as part of associated archaeological, palaeontological and palaeoenvironmental TT-OSL studies (e.g., Arnold et al., 2014, 2015, in prep; Demuro et al., 2014; Fu et al., 2017; Camens et al., 2017). In the case of the modern fluvial samples (AR10-MA, LC14-MA1, FR15-MA, FC16-MA1), the timing of the most recent depositional event is known to be <<10 vears from oral and historical records, geomorphic mapping and satellite imagery. Aerial photography was also used to confirm that the surface lacustrine sediment sample from the southern margin of Lake Eyre North (LE14-MA1) was deposited during the well-documented 2010 flooding event, which occurred four years prior to sample collection. The five modern analogue samples collected adjacent to cave fossil site entrances (ATD14-MA1, ATG14-MA1, ELC16-MA1, LB14-MA1) and open-air fossil sites (BG16-MA1) comprise a mixture of slopewash and aeolian deposits. To ensure, as much as possible, that the sediments collected from these sites had been deposited within the last few years, we consulted with excavation teams that repeatedly visited the sites. We also specifically targeted actively accumulating surficial deposits that remained unvegetated and that had retained their original, undisturbed surface bedding features. The two littoral sediment samples (FM12-1, CG12-M2) were collected from modern beach foreshore deposits found within the current inter-tidal zone, and are thus considered to be contemporary in age. Collectively, the calculated burial doses of all thirteen modern or very recently deposited samples should, therefore, be consistent with, or very close to, an expected value of 0 Gy; assuming they have experienced adequate signal resetting prior to the most recent deposition cycle.

TT-OSL and OSL measurements were made on the 90-125, 180-250 or 212-250 μ m quartz fractions using Risø TL-DA-20 readers equipped with blue LED units (470±20 nm, maximum power of 34 to 84 mW cm⁻²), an array of infrared LEDs (peak emission 875 nm, maximum power of 130 to 151 mW cm⁻²), and a 10 mW Nd:YVO4 single-grain laser attachment emitting at 532 nm (maximum power of ~50 W cm⁻²) (Thomsen et al., 2008). Ultraviolet OSL and TT-OSL signals were detected using EMI 9235QA photomultiplier tubes, fitted with 7.5 mm-thick Hoya U-340 filters. Samples were irradiated with mounted ⁹⁰Sr/⁹⁰Y beta sources that had been calibrated to administer known doses to multi-grain aliquots and single-grain discs. For single-grain measurements, spatial variations in beta dose rates across the disc plane were taken into account by undertaking hole-specific calibrations using gamma-irradiated quartz (Hansen et al., 2015).

Single-grain D_e estimates were measured using the single-aliquot regenerative dose (SAR) protocols shown in **Table S1a-c**. The single-grain TT-OSL SAR protocol (**Table S1a**) is based on the simplified multi-grain aliquot approach proposed by Stevens et al. (2009), and makes use of a TT-

OSL test dose (step 11) to correct for sensitivity change. It also includes four preheats of 260 °C for 10 s in each SAR cycle, and two high temperature OSL treatments (steps 6 and 12) to prevent TT-OSL signal carry over from previous regenerative dose (L_x) and test dose (T_x) measurement steps. The modified single-grain TT-OSL SAR protocol (TT-OSL290) shown in Table S1b uses a preheat of 290°C for 10 s, which is designed to favour TT-OSL production from higher temperature source traps. For consistency, all four preheat treatments (PH₁ to PH₄) were kept the same to mirror the original TT-OSL SAR De measurement protocol. This protocol was tested by Arnold and Demuro (2015) as a means of isolating (or maximising) TT-OSL contributions from higher temperature source traps for grains that display thermally unstable TT-OSL signals. It has been applied to a sub-set of the modern analogue samples to assess whether the TT-OSL290 signal from higher temperature source traps is readily bleachable in natural depositional contexts. The single-grain OSL SAR protocols adopted in this study make use of different preheat combinations for each sampling site, as detailed in Table S1c. The optimum preheat combination for each sample has been determined from sitespecific dose-recovery tests (e.g., Arnold et al., 2012a, 2013, in prep, Fu et al., 2017; Camens et al., 2017), and corresponds to the conditions that yielded measured-to-given dose ratios consistent with unity at 2σ .

Single-grain D_e measurements were made using standard single-grain aluminium discs drilled with an array of 300 µm x 300 µm holes. Single-grain OSL measurements were made on either 180-250 or 212-250 µm quartz fractions, with the exception of samples SH12-5A and CG12-M2. These two samples contained insufficient fine sand yields, and so it was necessary to measure their 90-125 µm quartz fractions. It is expected that ~18 grains were placed in each grain-hole position of the standardsized single-grain discs when measuring these 90-125 µm fractions (Arnold et al., 2012a). Singlegrain TT-OSL measurements were made on equivalent grain-size fractions for each sample, with the exception of ATD14-MA1 and ATG14-MA1. Arnold et al. (2014) and Demuro et al (2014) have shown that the Atapuerca infill deposits contain relatively small proportions of TT-OSL-producing quartz grains. We have therefore chosen to measure the 90-125 µm fractions of these two samples to enhance the number of usable grains per disc while minimising any 'pseudo' single-grain averaging effects, following the findings of Demuro et al. (2013).

Sensitivity-corrected dose-response curves were constructed using the first 0.17 s of each TT-OSL or OSL stimulation after subtracting a mean background count obtained from the last 0.25 s of the TT-OSL or OSL signal. The single-grain TT-OSL dose-response curves are generally characterised by continued signal growth at high doses $(10^2 - 10^3 \text{ Gy})$ and are typically well-represented by a single saturating exponential function (e.g., Fig. S2). The suitability of the single-grain TT-OSL SAR protocols have been assessed at the various study sites using dose-recovery tests. In all cases the measured-to-given dose ratios are consistent with unity at 2σ , supporting the general applicability of the TT-OSL SAR protocols. Further details of these TT-OSL dose-recovery test results can be found in related publications (e.g., Arnold et al., 2013, 2014, 2015, in prep; Demuro et al., 2014; Arnold and Demuro, 2015, Fu et al., 2017), and will be expanded upon in forthcoming site-specific studies. Representative examples of TT-OSL and OSL dose-recovery test results obtained for the dating comparison samples are shown in Fig. S3. A 40 Gy OSL dose-recovery test applied to 200 artificially bleached quartz grains of sample KHC-KI5 (bleached using 2 x 1000 s blue diode stimulation at 30 °C with a 10,000 s intervening pause) yielded an accurate measured-to-given dose ratio of 0.97 ± 0.03 with an overdispersion of $12 \pm 4\%$ (Fig. S3a). The TT-OSL dose-recovery test for KI14-12 (Fig. S3b) was performed on a batch of 200 unbleached grains owing to the longer exposure times needed to bleach natural TT-OSL signals down to low residual levels for all grains (see main text Section 3). A known (35 Gy) laboratory dose of similar magnitude to the expected De was added on top of the natural signal for these grains. The recovered dose was then calculated by subtracting the weighted mean natural D_e of sample KI14-12 (35.8 ± 1.4 Gy) from the weighted mean D_e of these unbleached and dosed grains (71.4 \pm 4.1 Gy). This approach yielded a net (i.e., natural-subtracted) recovered-togiven ratio of 1.02 ± 0.06 and an overdispersion value of $21 \pm 6\%$ for the unbleached and dosed batch of grains.

Single-grain TT-OSL and OSL De estimates were only included in the final age calculations if they satisfied a series of standard quality assurance criteria (Table S2). Individual De estimates were rejected from further consideration if they exhibited one or more of the following properties: (i) weak TT-OSL or OSL signals (i.e., the net intensity of the natural test-dose signal, T_n, was less than three times the standard deviation of the late-light background signal); (ii) poor recycling ratios (i.e., the ratios of sensitivity-corrected luminescence response (L_x/T_x) for two identical regenerative doses were not consistent with unity at 2σ). In the case of the late Pleistocene dating samples from Kangaroo Island, the recycling ratio test was performed using both a low-dose and high-dose regenerative dose cycle (e.g., Arnold et al., 2016); (iii) high levels of signal recuperation (i.e., the sensitivity-corrected luminescence response of the 0 Gy regenerative-dose point amounted to >5% of the sensitivitycorrected natural signal response (L_n/T_n) at 2σ for geological dating samples or >0.1 Gy at 2σ for the modern analogue samples); (iv) anomalous dose-response curves (i.e., those displaying a zero or negative response with increasing dose) or dose-response curves displaying very scattered L_x/T_x values (i.e., those that could not be successfully fitted with the Monte Carlo procedure and, hence, did not yield finite D_e values and uncertainty ranges); (v) saturated or non-intersecting natural signals (i.e., L_n/T_n values equal to, or greater than, the I_{max} saturation limit of the dose-response curve at 2σ); (vi) extrapolated natural signals (i.e. L_n/T_n values lying more than 2σ beyond the L_x/T_x value of the largest regenerative-dose administered in the SAR procedure); (vii) contamination by feldspar grains or inclusions (i.e., the ratio of the L_x/T_x values obtained from two identical regenerative doses measured with and without prior IR stimulation (OSL IR depletion ratio; Duller, 2003) was less than unity at 2σ). For TT-OSL D_e estimation, criterion (vii) (feldspar contamination) was checked by measuring the OSL IR depletion ratio separately and in the standard manner for single-grain OSL measurements, i.e., by measuring two conventional single-grain OSL SAR cycles (as opposed to two single-grain TT-OSL SAR cycles) with and without IR stimulation.

The OSL, TT-OSL and TT-OSL₂₉₀ grain classification statistics obtained for each sample after applying these quality assurance criteria are summarised in **Table S2**. In the case of samples LE14-MA1 and CG12-M2, a further 21 and 17 grains, respectively (1-2% of the total measured D_e values), were eliminated from the accepted single-grain TT-OSL D_e datasets because they exhibited very slow signal decay rates (i.e., their T_x signals did not reach background after 2 s of laser stimulation). Grains displaying such slow-dominated signals may not fulfil basic SAR suitability requirements (Wintle and Murray, 2006), and have been shown to be associated with thermally unstable signals, experimentally sensitised components or unreliable TT-OSL D_e estimates in several samples (e.g., Tsukamoto et al., 2008; Brown and Forman, 2012; Arnold and Demuro, 2015; Demuro et al., 2015; Bartz et al., submitted).

Individual D_e estimates are presented with their 1σ error ranges, which are derived from three sources of uncertainty: (i) a random uncertainty term arising from photon counting statistics for each TT-OSL measurement, calculated using Eq. 3 of Galbraith (2002); (ii) an empirically determined instrument reproducibility uncertainty of either 1.6%, 1.8%, 1.9% or 2.5% for each single-grain measurement (calculated for the specific Risø reader used for each sample using the approach outlined in Jacobs et al., 2006); and (iii) a dose-response curve fitting uncertainty determined using 1000 iterations of the Monte Carlo method described by Duller (2007) and implemented in Analyst.

Tables S3 summarise the environmental dose rate data for the Kangaroo Island dating samples. External gamma and beta dose rates have been calculated using a combination of *in situ* field gamma-ray spectrometry (Arnold et al., 2012b) and low-level beta counting of dried and homogenised, bulk sediments collected directly from the sampling positions (Bøtter-Jensen and Mejdahl, 1988). Cosmic-ray dose rate contributions were calculated using the equations of Prescott and Hutton (1994) after

taking into consideration site altitude, geomagnetic latitude, and density, thickness and geometry of sediment and bedrock overburden. The beta, gamma and cosmic-ray dose rates have been corrected for long-term sediment moisture contents (Aitken, 1985), which are taken to be equivalent to the present-day measured water contents (Camens et al., 2017). A relative uncertainty of 25% (Kelly Hill Caves) and 20% (Boar Beach) has been assigned to the long-term moisture estimates to accommodate any minor variations in hydrologic conditions during burial. Dosimetry measurements were not made for the thirteen modern analogue samples because their age is already known to be less than a few years old, and the primary interest of this study was to determine the comparative magnitudes of TT-OSL and OSL residual De estimates in different types of depositional settings. We were also keen to avoid any time-dependent complications that might arise from calculating dose rates in progressively changing, near-surface dosimetric environments (Madsen and Murray, 2009).

References

Aitken, M.J., 1985. Thermoluminescence Dating. Academic Press, London, 359 p.

Arnold, L.J., Demuro, M., 2015. Insights into TT-OSL signal stability from single-grain analyses of known-age deposits at Atapuerca, Spain. Quaternary Geochronology 30, 472-478.

Arnold, L.J., Bailey, R.M., Tucker, G.E., 2007. Statistical treatment of fluvial dose distributions from southern Colorado arroyo deposits. Quaternary Geochronology 2, 162–167.

Arnold, L.J., Roberts, R.G. Galbraith, R.F., DeLong, S.B. 2009. A revised burial dose estimation procedure for optical dating of young and modern-age sediments. Quaternary Geochronology 4, 306-325.

Arnold, L.J., Demuro, M., Navazo Ruiz, M., 2012a. Empirical insights into multi-grain averaging effects from 'pseudo' single-grain OSL measurements. Radiation Measurements 47, 652–658.

Arnold, L.J., Duval, M., Falguères, C., Bahain, J.-J., Demuro, M. 2012b. Portable gamma spectrometry with cerium-doped lanthanum bromide scintillators: Suitability assessments for luminescence and electron spin resonance dating applications. Radiation Measurements 47, 6-18.

Arnold, L.J., Demuro, M., Navazo Ruiz, M., Benito-Calvo, A., Pérez-González, A., 2013. OSL dating of the Middle Palaeolithic Hotel California site, Sierra de Atapuerca, north-central Spain. Boreas 42, 285–305.

Arnold, L.J., Demuro, M., Parés, J.M., Arsuaga, J.L., Aranburu, A., Bermúdez de Castro, J.M., Carbonell, E., 2014. Luminescence dating and palaeomagnetic age constraint on hominins from Sima de los Huesos, Atapuerca, Spain. Journal of Human Evolution 67, 85-107.

Arnold, L.J., Demuro, M., Parés, J.M., Pérez-González, A., Arsuaga, J.L., Bermúdez de Castro, J.M., Carbonell, E., 2015. Evaluating the suitability of extended-range luminescence dating techniques over Early and Middle Pleistocene timescales: Published datasets and case studies from Atapuerca, Spain. Quaternary International 389, 167-190.

Arnold, L.J., Duval, M., Demuro, M., Spooner, N.A., Santonja, M., Pérez-González, A., 2016. OSL dating of individual quartz 'supergrains' from the Ancient Middle Palaeolithic site of Cuesta de la Bajada, Spain. Quaternary Geochronology 36, 78-101.

Bailey, R.M., and Arnold, L.J. 2006. Statistical modelling of single grain quartz De distributions and an assessment of procedures for estimating burial dose. Quaternary Science Reviews 25, 2475-2502.

Bartz, M., Arnold, L.J., Demuro, M., Duval, M., Klasen, N., King, G.E., Álvarez Posada, C., Parés, J.M., Rixhon, G., Brückner, H., Quartz luminescence dating (multiple-grain OSL and single-grain TT-OSL) confirms an early Pleistocene chronostratigraphy for the Lower Moulouya River (NE Morocco). Quaternary geochronology, submitted (this volume).

Bøtter-Jensen, L., Mejdahl, M., 1988. Assessment of beta dose-rate using a GM multicounter system. Nuclear Tracks and Radiation Measurements 14, 187-191.

Brown, N.D., Forman, S.L., 2012. Evaluating a SAR TT-OSL protocol for dating fine-grained quartz within Late Pleistocene loess deposits in the Missouri and Mississippi river valleys, United States. Quaternary Geochronology 12, 87-97.

Camens, A.B., Carey, S.P., Arnold, L.J., 2017. Vertebrate trace fossils from the Late Pleistocene of Kangaroo Island, South Australia. Ichnos: An International Journal for Plant and Animal Traces 0, 1-20. DOI 10.1080/10420940.2017.1337633.

Demuro, M., Arnold, L.J., Froese, D.G., Roberts, R.G., 2013. OSL dating of loess deposits bracketing Sheep Creek tephra beds, northwest Canada: Dim and problematic single-grain OSL characteristics and their effect on multi-grain age estimates. Quatern. Geochronol. 15, 67–87.

Demuro, M., Arnold, L.J., Parés, J.M., Pérez-González, A., Ortega, A.I., Arsuaga, J.L., Bermúdez de Castro, J.M., Carbonell, E., 2014. New luminescence ages for the Galería Complex archaeological site: Resolving chronological uncertainties on the Acheulean record of the Sierra de Atapuerca, northern Spain. PLOS ONE 9, e110169.

Demuro, M., Arnold, L.J., Aranburu, A., Gómez-Olivencia, A., Arsuaga, J.L., Single-grain OSL dating of the Middle Palaeolithic site of Galería de las Estatuas, Atapuerca (Burgos, Spain). Quaternary geochronology, submitted (this volume).

Duller, G.A.T., 2003. Distinguishing quartz and feldspar in single grain luminescence measurements. Radiation Measurements 37, 161–165.

Duller, G.A.T., 2007. Assessing the error on equivalent dose estimates derived from single aliquot regenerative dose measurements. Ancient TL 25, 15–24.

Fu, X., Cohen, T.J., Arnold, L.J., 2017. Extending the record of lacustrine phases beyond the last interglacial for Lake Eyre in central Australia using luminescence dating. Quaternary Science Reviews 162, 88-110.

Galbraith, R.F., 2002. A note on the variance of a background-corrected OSL count. Ancient TL 20, 49–51.

Galbraith, R.F., Roberts, R.G., Laslett, G.M., Yoshida, H., Olley, J.M., 1999. Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia: part I, experimental design and statistical models. Archaeometry 41, 339-364.

Gliganic, L.A., Cohen, T.J., Meyer, M., Molenaar, A., 2017. Variations in luminescence properties of quartz and feldspar from modern fluvial sediments in three rivers. Quaternary Geochronology 41, 70-82.

Hamm, G., Mitchell, P., Arnold, L.J., Prideaux, G.J., Questiaux, D., Spooner, N.A., Levchenko, V.A., Foley, E.C., Worthy, T.H., Stephenson, B., Coulthard, V., Coulthard, C., Wilton, S., Johnston, D.,

2016. Cultural innovation and megafauna interaction in the early settlement of arid Australia. Nature 539, 280-283.

Hansen, V., Murray, A., Buylaert, J.-P., Yeo, E.-Y., Thomsen, K., 2015. A new irradiated quartz for beta source calibration. Radiat. Meas. 81, 123-127.

Jacobs, Z., Duller, G.A.T., Wintle, A.G., 2006. Interpretation of single-grain De distributions and calculation of De. Radiation Measurements 41, 264–277.

Madsen, A.T., Murray, A.S., 2009. Optically stimulated luminescence dating of young sediments: A review. Geomorphology 109, 3-16.

Ollé, A., Vergès, J.M., Rodríguez, X.P., Cáceres, I., Angelucci, D.E., Vallverdú, J., Demuro, M., Arnold, L.J., Falguères, C., Bennàsar, M., López-García, J.M., Blain, H-A., Bañuls-Cardona, S., Burjachs, F., Expósito, I., López-Polín1, L., López-Ortega, E., 2016. The Middle Pleistocene site of La Cansaladeta (Tarragona, Spain): Stratigraphic and archaeological succession. Quaternary International 393, 137-157.

Prescott, J.R., Hutton, J.T., 1994. Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations. Radiation Measurements 23, 497–500.

Stevens, T., Buylaert, J.-P., Murray, A.S., 2009. Towards development of a broadly-applicable SAR TT-OSL dating protocol for quartz. Radiation Measurements 44, 639-645.

Thomsen, K.J., Murray, A.S., Jain, M., Bøtter-Jensen, L., 2008. Laboratory fading rates of various luminescence signals from feldspar-rich sediment extracts. Radiation Measurements 43, 1474–1486.

Tsukamoto, S., Duller, G.A.T., Wintle, A.G., 2008. Characteristics of thermally transferred optically stimulated luminescence (TT-OSL) in quartz and its potential for dating sediments. Radiation Measurements 43, 1204-1218.

Wintle, A.G., Murray, A.S., 2006. A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols. Radiation Measurements 41, 369-391.

Figure S1 Topographic map of (a) the Iberian Peninsula and (b) Australia showing the location and type of sites considered in this study (source: Google Earth image with Maps-For-Free relief Overlay; <u>http://ge-map-overlays.appspot.com/world-maps/maps-for-free-relief</u>).

Figure S2 Representative single-grain TT-OSL decay and dose-response curves. In the insets, the open circle denotes the sensitivity-corrected natural OSL signal, and filled circles denote the sensitivity-corrected regenerated OSL signals. (a) Grain from sample ATG10-3 with a typical TT-OSL signal brightness ($T_n \sim 500$ counts / 0.17 s). (b) Grain from sample KI14-12 with a typical TT-OSL signal brightness ($T_n \sim 500$ counts / 0.17 s). (c) Grain from sample BG16-MA1 with a relatively bright TT-OSL signal ($T_n \sim 1500$ counts / 0.17 s). (d) Grain from sample ATG14-MA1 with a relatively dim TT-OSL signal ($T_n \sim 250$ counts / 0.17 s).

Figure S3 Radial plots showing single-grain OSL and TT-OSL dose-recovery test results for the Kangaroo Island dating samples. (a) Recovered-to-given dose ratios obtained for an OSL dose recovery test performed on individual quartz grains of sampleKHC-KI5. The grey shaded region on the radial plot is centred on the administered dose for each grain (recovered-to-given dose ratio of 1). (b) TT-OSL dose recovery test (natural + dosed) D_e values obtained for individual quartz grains of sample KI14-12. The grey shaded region on the radial plot is centred on the radial plot is centred on the value.

Figure S4 Plots of D_e versus standard error for the (a) natural and (b) daylight-bleached single-grain TT-OSL datasets of samples ATG10-3 and ATE10-13.

Figure S5

Figure S5

Figure S5 Modified log transformed radial plots showing single-grain TT-OSL and OSL D_e distributions for the modern analogue samples. See Figure 1 caption for details of the plotting procedure. An *a* offset value of 20 Gy was used to create plot (a), and an *a* offset value of 40 Gy was used to create plots (d) and (k). All other plots were created with an *a* offset value of 30 Gy. The radial plots are centred on the expected D_e value of 0 Gy for each sample, while the light grey and dark grey bands are centred on the TT-OSL and OSL CAM_{UL} D_e values of each sample, respectively.

Figure S6 Frequency histograms showing the overdispersion values obtained for (i) well-bleached single-grain OSL modern samples (this study, Gliganic et al., 2017); (ii) well-bleached single-grain TT-OSL modern samples (this study); (iii) published well-bleached single-grain TT-OSL samples from (non-modern) geological and archaeological contexts. The overdispersion values shown in plots (a) and (b) have been calculated using the unlogged central age model (CAM_{UL}) and are given in Gy. The overdispersion values shown in plot (c) have been calculated using the logged central age model (CAM) and are given in %. The data used to create these plots are presented in **Table S6-S7**.

	Table 2a: Single-grain TT-OSL SAR D _e proto	col	Table 2a: Single-grain TT-OSL ₂₉₀ SAR D _e protocol				Table 2c: Single-grain OSL SAR D _e protocol				
Step	Treatment	Signal	Step	Treatment	Signal	Step	Treatment	Signal			
1	Dose (natural or laboratory)		1	Dose (natural or laboratory)		1	Dose (natural or laboratory)				
2	Preheat 1 (PH ₁ = 260°C for 10 s)		2	Preheat 1 (PH ₁ = 290°C for 10 s)		2	IRSL stimulation (50°C for 60 s) ^a				
3	Single-grain OSL stimulation (125°C for 2-3 s)		3	Single-grain OSL stimulation (125°C for 2-3 s)		3	Preheat 1 (variable °C for 10 s) ^b				
4	Preheat 2 (PH ₂ = 260°C for 10 s)		4	Preheat 2 (PH ₂ = 290°C for 10 s)		4	Single-grain OSL (125°C for 2 s)	Lx			
5	Single-grain TT-OSL stimulation (125°C for 2-3 s)	$L_n \text{ or } L_x$	5	Single-grain TT-OSL stimulation (125°C for 2-3 s)	$L_n \text{ or } L_x$	5	Test dose (5-10 Gy)				
6	OSL stimulation (280°C for 400 s)		6	OSL stimulation (280°C for 400 s)		6	Preheat 2 (variable °C for 10 s) ^b				
7	Test dose (100-200 Gy)		7	Test dose (100-200 Gy)		7	Single-grain OSL (125°C for 2 s)	Tx			
8	Preheat 3 (PH ₃ = 260°C for 10 s)		8	Preheat 3 (PH ₃ = 290°C for 10 s)		8	Repeat measurement cycle for different				
9	Single-grain OSL stimulation (125°C for 2-3 s)		9	Single-grain OSL stimulation (125°C for 2-3 s)			sized regenerative doses				
10	Preheat 4 (PH ₄ = 260°C for 10 s)		10	Preheat 4 (PH ₄ = 290°C for 10 s)							
11	Single-grain TT-OSL stimulation (125°C for 2-3 s)	$T_n \text{ or } T_x$	11	Single-grain TT-OSL stimulation (125°C for 2-3 s)	$T_n \text{ or } T_x$						
12	OSL stimulation (290 °C for 400 s)		12	OSL stimulation (290 °C for 400 s)							
13	Repeat measurement cycle for different sized		13	Repeat measurement cycle for different sized							
	regenerative doses			regenerative doses							

^a Step 2 is only included in the single-grain SAR procedure when measuring the OSL IR depletion ratio (Duller, 2003).

^b The following PH₁ and PH₂ combinations were used for OSL D_e measurements in this study: FM12-1, LB14-MA1, ELC16-MA1, LE14-MA1, CG12-M2 – PH₁ = 260 °C, 10 s, PH₂ = 160 °C, 10 s; FR15-MA, LC14-MA1 – PH₁ = 240 °C, 10 s, PH₂ = 160 °C, 10 s; BG16-MA1, FC16-MA1 – PH₁ = 240 °C, 10 s; AR10-MA – PH₁ = 240 °C, 10 s, PH₂ = 200 °C, 10 s; KI14-12, KI14-1, KHC-KI5, KI14-5 – PH₁ = 260 °C, 10 s, PH₂ = 200 °C, 10 s; ATG14-MA1, ATD14-MA1, SH12-5A – PH₁ = 200 °C, 10 s, PH₂ = 200 °C, 10 s; ATG14-MA1, ATD14-MA1, SH12-5A – PH₁ = 200 °C, 10 s; PH₂ = 200 °C, 10 s;

Table S1 SAR protocols used for single-grain TT-OSL, TT-OSL₂₉₀ and OSL D_e determination. For each protocol, the SAR measurement cycle was repeated for the natural dose, three to four different sized regenerative doses, a 0 Gy regenerative dose (to measure OSL signal recuperation) and a replicate of the lowest regenerative dose cycle (to assess the suitability of the test dose sensitivity correction). For some samples (see **Table S2**), the highest regenerative dose cycle of the single-grain OSL SAR protocol was also repeated to test the suitability of the test dose sensitivity correction over the high dose range of the dose-response curve. For the TT-OSL and TT-OSL₂₉₀ SAR protocols, the OSL IR depletion ratio of Duller (2003) was measured separately and used to check for the presence of feldspar contaminants. The TT-OSL₂₉₀ SAR D_e protocol used a PH₁₋₄ of 290°C for 10 s, which was chosen as corresponding with peak TT-OSL production in the study of Arnold and Demuro (2015). L_x = regenerative dose signal response; L_n = natural dose signal response; T_x = test dose signal response for a laboratory dose cycle T_n = test dose signal response for the natural dose cycle.

Sample name	ATG10-3	ATG10-3	ATE10-13	ATE10-13	KI14-12	KI14-12	KHC-KI5	KHC-KI5	KI14-5
SAR measurement type	TT-OSL Natural	TT-OSL Daylight- bleached	TT-OSL Natural	TT-OSL Daylight- bleached	TT-OSL	OSL	TT-OSL	OSL	TT-OSL
Total measured grains	800	400	1400	1000	400	900	500	400	1000
Reason for rejecting grains from D_e analysis									
Standard SAR rejection criteria:	%	%	%	%	%	%	%	%	%
$T_n < 3\sigma$ background	65	69	70	68	30	19	58	27	48
Low-dose recycling ratio \neq 1 at $\pm 2\sigma$	5	4	4	5	13	18	7	9	7
High-dose recycling ratio \neq 1 at $\pm 2\sigma$	-	-	-	-	-	8	-	6	-
OSL-IR depletion ratios <1 at $\pm 2\sigma$	0	0	0	0	0	3	3	4	0
0 Gy L _x /T _x >5% L _n /T _n	<1	2	<1	1	<1	<1	<1	1	1
Non-intersecting grains (L_n/T_n > dose response curve saturation)	<1	0	0	0	<1	<1	<1	2	0
Saturated grains (L _n /T _n ≥ dose response curve I_{max} at ±2 σ)	<1	0	0	0	0	0	0	2	0
Extrapolated grains ($L_n/T_n > highest L_x/T_x at \pm 2\sigma$)	0	0	0	0	0	4	0	5	0
Anomalous dose response / unable to perform Monte Carlo fit	23	16	20	21	36	20	19	10	27
Sum of rejected grains (%)	95	91	94	95	80	74	88	66	83
Sum of accepted grains (%)	5	9	6	5	20	26	12	34	17

Table S2

Sample name	KI14-5	KI14-1	KI14-1	LE14-MA1	LE14-MA1	FM12-1	FM12-1	CG12-M2	CG12-M2
SAR measurement type	OSL	TT-OSL	OSL	TT-OSL	OSL	TT-OSL	OSL	TT-OSL	OSL
Total measured grains	1500	1000	1000	1200	800	500	500	2000	2000
Reason for rejecting grains from D _e analysis									
Standard SAR rejection criteria:	%	%	%	%	%	%	%	%	%
$T_n < 3\sigma$ background	27	46	39	79	60	74	40	81	77
Low-dose recycling ratio \neq 1 at $\pm 2\sigma$	24	9	10	3	9	8	9	4	6
High-dose recycling ratio \neq 1 at $\pm 2\sigma$	9	-	5	-	-	-	-	-	2
OSL-IR depletion ratios <1 at $\pm 2\sigma$	3	3	2	0	4	0	8	0	2
0 Gy L _x /T _x >5% L _n /T _n	2	0	1	2	4	<1	3	0	<1
Non-intersecting grains ($L_n/T_n >$ dose response curve saturation)	3	<1	3	0	0	0	0	0	0
Saturated grains (L _n /T _n \geq dose response curve I_{max} at $\pm 2\sigma$)	<1	0	<1	0	0	0	0	0	0
Extrapolated grains (L _n /T _n > highest L_x/T_x at ±2 σ)	6	0	3	0	0	0	0	0	0
Anomalous dose response / unable to perform Monte Carlo fit	11	25	22	10	10	9	9	11	6
Sum of rejected grains (%)	86	83	85	94	87	91	69	96	94
Sum of accepted grains (%)	14	17	15	6	13	9	31	4	6

Table S2 cont.

Sample name	SH12-5A	SH12-5A	ATD14-MA1	I ATD14-MA1	ATD14-MA	ATG14-MA1	ATG14-MA	1 ELC16-MA1	ELC16-MA1
SAR measurement type	TT-OSL	OSL	TT-OSL	TT-OSL ₂₉₀	OSL	TT-OSL	OSL	TT-OSL	TT-OSL ₂₉₀
Total measured grains	300	500	500	600	400	600	500	300	200
Reason for rejecting grains from D _e analysis									
Standard SAR rejection criteria:	%	%	%	%	%	%	%	%	%
$T_n < 3\sigma$ background	65	59	69	68	68	55	59	5	12
Low-dose recycling ratio \neq 1 at $\pm 2\sigma$	5	8	16	11	6	10	9	29	18
High-dose recycling ratio \neq 1 at $\pm 2\sigma$	-	-	-	-	-	-	-	-	-
OSL-IR depletion ratios <1 at $\pm 2\sigma$	0	5	0	0	4	0	3	0	0
0 Gy L _x /T _x >5% L _n /T _n	0	2	2	<1	1	1	3	2	7
Non-intersecting grains (L_n/T_n > dose response curve saturation)	0	0	0	0	0	0	1	0	0
Saturated grains (L _n /T _n ≥ dose response curve I_{max} at ±2 σ)	0	0	0	0	0	0	0	0	0
Extrapolated grains (L_n/T_n > highest L_x/T_x at ±2 σ)	0	0	0	0	0	0	0	0	0
Anomalous dose response / unable to perform Monte Carlo fit	16	9	4	13	7	24	11	20	22
Sum of rejected grains (%)	86	83	91	92	86	90	86	56	59
Sum of accepted grains (%)	14	17	9	8	14	10	14	44	41

Table S2 cont.

Sample name	ELC16-MA1	LB14-MA1	LB14-MA1	LB14-MA1	BG16-MA1	BG16-MA1	AR10-MA	AR10-MA	AR10-MA
SAR measurement type	OSL	TT-OSL	OSL	TT-OSL ₂₉₀	TT-OSL	OSL	TT-OSL	TT-OSL ₂₉₀	OSL
Total measured grains	400	500	500	400	1000	500	2000	1000	1600
Reason for rejecting grains from D _e analysis									
Standard SAR rejection criteria:	%	%	%	%	%	%	%	%	%
$T_n < 3\sigma$ background	20	35	11	39	66	35	82	82	71
Low-dose recycling ratio \neq 1 at $\pm 2\sigma$	9	15	26	13	6	7	5	4	6
High-dose recycling ratio \neq 1 at $\pm 2\sigma$	-	-	-	-	-	4	-	-	5
OSL-IR depletion ratios <1 at $\pm 2\sigma$	6	0	6	0	0	3	0	0	5
0 Gy L _x /T _x >5% L _n /T _n	4	2	3	3	<1	2	<1	0	<1
Non-intersecting grains ($L_n/T_n >$ dose response curve saturation)	0	0	<1	0	0	0	<1	0	0
Saturated grains (L _n /T _n ≥ dose response curve I_{max} at ±2 σ)	0	0	0	0	0	0	0	0	0
Extrapolated grains ($L_n/T_n >$ highest L_x/T_x at $\pm 2\sigma$)	0	0	0	0	0	0	0	0	0
Anomalous dose response / unable to perform Monte Carlo fit	19	18	10	25	17	20	9	11	4
Sum of rejected grains (%)	58	70	56	80	89	71	96	97	91
Sum of accepted grains (%)	42	30	44	20	11	29	4	3	9

Table S2 cont.

Sample name	FR15-MA1	FR15-MA1	LC14-MA1	LC14-MA1	FC16-MA1	FC16-MA1
SAR measurement type	OSL	TT-OSL	TT-OSL	OSL	TT-OSL	OSL
Total measured grains	500	900	1100	1000	1000	600
Reason for rejecting grains from D _e analysis						
Standard SAR rejection criteria:	%	%	%	%	%	%
$T_n < 3\sigma$ background	53	76	66	61	66	51
Low-dose recycling ratio \neq 1 at $\pm 2\sigma$	11	6	6	9	5	5
High-dose recycling ratio \neq 1 at $\pm 2\sigma$	-	-	-	-	-	2
OSL-IR depletion ratios <1 at $\pm 2\sigma$	5	0	0	7	0	3
0 Gy L _x /T _x >5% L _n /T _n	3	<1	<1	2	<1	3
Non-intersecting grains ($L_n/T_n >$ dose response curve saturation)	0	0	0	0	<1	0
Saturated grains (L _n /T _n ≥ dose response curve I_{max} at ±2 σ)	0	0	0	0	0	0
Extrapolated grains ($L_n/T_n >$ highest L_x/T_x at $\pm 2\sigma$)	0	0	0	0	0	0
Anomalous dose response / unable to perform Monte Carlo fit	8	10	18	9	17	11
Sum of rejected grains (%)	80	93	90	88	89	75
Sum of accepted grains (%)	20	7	10	12	12	25

Table S2 Single-grain TT-OSL, TT-OSL₂₉₀ and OSL classification statistics. The proportion of grains that were rejected from the final D_e estimation after applying the various SAR quality assurance criteria are shown in rows 6-14. For samples LE14-MA1 and CG12-M2, the anomalous dose response category includes 21 and 17 grains, respectively, that were eliminated from the accepted single-grain TT-OSL D_e datasets because they exhibited very slow signal decay rates (i.e., their T_x signals did not reach background after 2 s of laser stimulation).

	nple Deposit ^D		Grain	Wator	Envi	Environmental dose rate (Gy/ka)				Equivalent dose (D _e) data				Final
Sample		Deposit (Depth (m)	size (µm)	content (%) ^a	Beta dose rate	Gamma dose rate	Cosmic dose rate	Total dose rate ^b	D₀ type	Accepted/ measured	Overdis- persion (%)	Age model ^{c,d}	D₀ (Gy)
Kelly Hill	Cave sand cone ex	posure:												
KI14-12	shallow cave infill	1.25	212-250	1±1	0.29±0.02	0.29±0.01	0.05±0.01	0.65±0.03	SG OSL	237/9000	17±2	CAM	35.3±0.6	54.2±3.0
									SG TT-OSL	80/400	19±4	CAM	35.8±1.4	55.0±3.6
Kelly Hill	Cave K1-P1 excava	tion:												
KHC-KI5	deep cave infill	0.85	212-250	3±1	0.43±0.01	0.43±0.01	0.02±0.01	0.91±0.03	SG OSL	135/400	30±2	MAM-3	14.7±0.8	16.1±1.1
									SG TT-OSL	62/500	73±11	MAM-3	16.5±3.1	18.2±3.4
KI14-5	deep cave infill	1.75	212-250	6±2	0.45±0.03	0.46±0.01	0.02±0.01	0.96±0.04	SG OSL	215/1500	37±3	MAM-4	67.7±3.0	70.7±4.7
									SG TT-OSL	171/1000	51±4	MAM-4	67.3±7.1	70.2±8.1
Boar Bea	ch trace fossil site:													
KI14-1	coastal dune	10.5	212-250	5±1	0.24±0.01	0.18±0.01	0.06±0.01	0.52±0.03	SG OSL	151/1000	25±2	CAM	71.6±2.0	137.4±8.5
									SG TT-OSL	174/1000	42±3	MAM-4	60.0±2.5	115.2±7.9

^a Field water content, expressed as % of dry mass of mineral fraction, with an assigned relative uncertainty of ±25%.

^b Total dose rate includes an assumed internal dose rate of 0.03 \pm 0.01 Gy / ka.

^c The MAM D_e estimates have been calculated after adding, in quadrature, a relative error of 15% to each individual D_e measurement error based on the underlying dose overdispersion observed in the single-grain dose-recovery tests and in the 'ideal' well-bleached and unmixed sample (sample KI14-12).

^d Age model selection – The CAM was used to calculate the final SG OSL and TT-OSL D_e of KI14-12 as this sample had low overdispersion values consistent with those observed in the dose recovery datasets at 2_o; **Fig. S3**). The overdispersion value of the KI14-1 SG OSL dataset is similarly consistent with that of the well-bleached sample KI14-12 at 2_o. All other D_e datasets are interpreted as being heterogeneously bleached on the basis of their higher overdispersion values (inconsistent with KI14-12 at 2_o), complex geomorphic contexts (deep cave infill deposits) and the relatively slow bleaching rate of the TT-OSL signal (**Fig. 1**). The choice of whether to use the MAM-3 or MAM-4 has been made on statistical grounds using the maximum log likelihood score criterion outlined by Arnold et al. (2009).

^e Total uncertainty includes a systematic component of ±2% associated with laboratory beta-source calibration.

Table S3 Single-grain TT-OSL and OSL D_e summary statistics, dose rates and final ages for the Kangaroo Island samples.

Sample	Site / deposit	Grain size (μm)	D _e type	Accepted/ measured	W-skew ^a	Critical skew ^b	Overdis- persion (%)	Modern Grains (%) ^c	Age model	D₀ (Gy)	De depletion ratio ^d
ATG10-3	Galería GIIIb	90-125	Natural	43/800	0.38	±0.75	23±5	0	CAM	572±29	-
			Daylight bleached (42 days)	37/400	2.22	±0.81	49±9	38	CAMUL	65±7	0.11±0.01
			Natural (scaled by De depletion ratio)	43/800	0.33	±0.75	20±6	0	CAM	65±3	-
ATE10-13	BElefante TE19	90-125	Natural	84/1400	0.85	±0.53	27±4	0	CAM	540±21	-
			Daylight bleached (42 days)	50/500	3.21	±0.69	57±9	52	CAM_{UL}	54±6	0.10±0.01
			Natural (scaled by De depletion ratio)	84/1400	0.82	±0.53	24±4	0	CAM	54±2	-

^a Weighted skewness scores have been calculated on the original rather than log-transformed D_e values (using Eq. 14 of Bailey and Arnold, 2006) owing to presence of negative D_e values in the daylight-bleached datasets.

^b Critical skewness scores have been calculated using Eq. 16 of Bailey and Arnold (2006). D_e distributions are considered to be significantly skewed if the weighted skewness value is greater than the corresponding critical skewness value. Critical skewness values are taken to be equivalent to twice the standard error of skewness score for single-grain D_e datasets (Bailey and Arnold, 2006; Arnold et al., 2007).

 $^{\rm c}$ Modern grains are defined as having a De value consistent with 0 Gy at $2\sigma.$

^d D_e depletion ratio = W-mean D_e of daylight bleached dataset / w-mean D_e of Natural dataset.

Table S4 Single-grain TT-OSL summary statistics for the natural and daylight-bleached D_e datasets of samples ATG10-3 and ATE10-13 from Atapuerca, Spain.

(a)			SG TT-OS	SL results	SG TT-OSI	L ₂₉₀ results	SG OSL	. results
Sample	Site	Setting	% modern grains ^a	CAM _{UL} D _e (Gy)	% modern grains ^a	CAM _{UL} D _e (Gy)	% modern grains ª	CAM _{UL} D _e (Gy)
LE14-MA1	Lake Eyre Williams Point, Australia	lacustrine	79.5	10.8 ± 2.1			96.1	-0.02±0.02
FM12-1	Fairy Meadow Beach, Australia	littoral	88.6	1.7±0.9			87.0	0.02±0.01
CG12-M2	Sitges Beach, Spain	littoral	81.9	7.3±2.1			90.6	0.46±0.16
SH12-5A	Cueva Mayor exterior, Atapuerca, Spain	slopewash / aeolian	92.7	2.3±1.3			81.0	0.18±0.07
ATD14-MA1	I Gran Dolina exterior, Atapuerca, Spain	slopewash / aeolian	95.3	0.02±0.11	84.4	0.40±0.14	100.0	-0.03±0.04
ATG14-MA1	1 Galería exterior, Atapuerca, Spain	slopewash / aeolian	91.7	1.6±0.9			94.3	0.04±0.03
ELC16-MA1	Emu Leap Cave, Nullarbor Plains, Australia	slopewash / aeolian	94.7	-0.06±0.12	94.0	0.07±0.49	88.1	-0.04±0.02
LB14-MA1	Leana's Breath Cave, Nullarbor Plains, Australia	slopewash / aeolian	79.7	4.1±0.8	74.1	8.7±1.8	70.7	3.4±0.6
BG16-MA1	Bone Gulch, Murray River, Australia	Slopewash / aeolian	91.2	2.2±0.6			94.4	-0.01±0.02
AR10-MA	Arganda, Spain	fluvial	93.2	0.02±0.18	93.8	-0.11±0.50	92.1	0.20±0.10
LC14-MA1	Lake Callabonna, Australia	fluvial	91.7	0.05±0.10			88.4	-0.01±0.03
FR15-MA	Hookina Creek, Australia	fluvial	77.4	3.2±0.9			83.2	0.02±0.01
FC16-MA1	Fishermans Cliff, Murray River, Australia	fluvial	60.9	23.9±3.4			85.9	0.02±0.01

^a Modern grains/aliquots are defined as having a D_e value consistent with 0 Gy at 2 σ . A small number of samples have higher proportions of modern grains in their TT-OSL D_e datasets than in their corresponding OSL D_e datasets (SH12-5A, ELC16-MA1, LB14-MA1). These minor differences primarily reflects the larger 2 σ uncertainty ranges of the individual TT-OSL D_e values in comparison to their OSL counterparts (see **Fig. S5**).

Table S5 (caption on next page)

o) Sample	Site	Setting	Synthetic aliquot TT-OSL CAM _{∪L} D₀ (Gy)	Synthetic aliquot TT-OSL₂₀ CAMu∟ D₀ (Gy)	Synthetic aliquot OSL CAM⊍∟ D₀ (Gy)
LE14-MA1	Lake Eyre Williams Point, Australia	lacustrine	24.7±5.8		-0.01±0.05
FM12-1	Fairy Meadow Beach, Australia	littoral	25.5±8.5		0.03±0.02
CG12-M2	Sitges Beach, Spain	littoral	38.4±4.9		0.81±0.20
SH12-5A	Cueva Mayor exterior, Atapuerca, Spain	slopewash / aeolian	6.1±2.0		0.25±0.15
ATD14-MA	1 Gran Dolina exterior, Atapuerca, Spain	slopewash / aeolian	6.6±2.8	0.94±0.81	0.04±0.04
ATG14-MA	1 Galería exterior, Atapuerca, Spain	slopewash / aeolian	15.7±7.7		26.7±3.2
ELC16-MA	1 Emu Leap Cave, Nullarbor Plains, Australia	slopewash / aeolian	0.28±0.30	0.30±0.69	-0.03±0.04
LB14-MA1	Leana's Breath Cave, Nullarbor Plains, Australia	slopewash / aeolian	20.5±4.9	31.0±8.3	14.6±3.2
BG16-MA1	Bone Gulch, Murray River, Australia	Slopewash / aeolian	3.7±1.0		0.04±0.06
AR10-MA	Arganda, Spain	fluvial	33.1±7.0	30.0±5.6	0.51±0.40
LC14-MA1	Lake Callabonna, Australia	fluvial	14.7±4.0		0.25±0.27
FR15-MA	Hookina Creek, Australia	fluvial	27.1±8.9		1.5±1.2
FC16-MA1	Fishermans Cliff, Murray River, Australia	fluvial	62.6±10.0		-0.01±0.04

Table S5 (a) Single-grain and (b) synthetic aliquot (100-grain aliquot) TT-OSL, TT-OSL290 and OSL De summary statistics for the
modern analogue samples. CAM_{UL} De values that are consistent with 0 Gy at 2σ are shown in bold.

				SG (DSL	SG TT-OSL	and TT-OSL ₂₉₀
Reference	Site	Sample	Type of deposit	CAM _{∪L} D₀ (Gy)	Overdis- persion (Gy)	CAM⊔∟ D₀ (Gy)	Overdis- persion (Gy)
This study	Lake Eyre Williams Point, Australia	LE14-MA1	lacustrine	-0.02±0.02	0.10±0.02		
	Fairy Meadow Beach, Australia	FM12-1	littoral	0.02±0.01	0.08±0.01	1.7±0.9	2.8±0.9
	Cueva Mayor exterior, Atapuerca, Spain	SH12-5A	slopewash / aeolian			2.3±1.3	3.5±1.4
	Gran Dolina exterior, Atapuerca, Spain	ATD14-MA1	slopewash / aeolian	-0.03±0.04	0.10±0.04	0.02±0.11	0±0
	Galería exterior, Atapuerca, Spain	ATG14-MA1	slopewash / aeolian	0.04±0.03	0.06±0.03	1.6±0.9	3.7±0.8
	Emu Leap Cave, Nullarbor Plains, Australia	ELC16-MA1	slopewash / aeolian	-0.04±0.02	0.24±0.02	-0.06±0.12	0.25±0.18
		ELC16-MA1	slopewash / aeolian			0.07±0.49	2.2±0.5*
	Bone Gulch, Murray River, Australia	BG16-MA1	Slopewash / aeolian	-0.01±0.02	0.16±0.01		
	Arganda, Spain	AR10-MA	fluvial	0.20±0.10	0.71±0.09	0.02±0.18	0.18±0.37
		AR10-MA	fluvial			-0.11±0.50	0±0*
	Lake Callabonna, Australia	LC14-MA1	fluvial	-0.01±0.03	0.21±0.03	0.05±0.10	0.11±0.08
	Hookina Creek, Australia	FR15-MA	fluvial	0.02±0.01	0.04±0.01		
	Fishermans Cliff, Murray River, Australia	FC16-MA1	fluvial	0.02±0.01	0.09±0.01		
Gliganic et al., 2017	Cooper Creek, Australia	CC2	fluvial	0.03±0.03	0.03±0.01		
	Cooper Creek, Australia	CC3	fluvial	-0.03±0.05	0±0		
	Wollombi Brook, Australia	WB2	fluvial	-0.04±0.03	0±0		
	Wollombi Brook, Australia	WB5	fluvial	0.01±0.03	0.01±0.01		
	Wollombi Brook, Australia	WB7	fluvial	-0.03±0.02	0.02±0.01		
			Mean		0.12		1.41
			Median 0.08				0.25
			Standard error		0.05		0.53

Table S6 Published single-grain OSL and TT-OSL overdispersion values for well-bleached modern samples with weighted mean D_e values of 0 Gy at 2 σ . These overdispersion values have all been calculated using the unlogged central age model (CAM_{UL}) of Arnold et al. (2009) and are expressed in Gy. TT-OSL overdispersion values derived using the TT-OSL₂₉₀ protocol are denoted with an asterisk.

Reference	Site	Sample	Type of deposit	SG TT-OSL and TT-OSL ₂₉₀	
				CAM D₀ (Gy)	Overdis- persion (%)
Arnold et al., 2014	Sima de los Huesos, Atapuerca, Spain	SH12-1A	Allochthonous cave infill	701±31	19±5
		SH12-2A	Allochthonous cave infill	728±27	21±4
		SH12-3A	Allochthonous cave infill	713±42	42±5
		SH12-4A	Allochthonous cave infill	767±41	22±5
Demuro et al., 2014	Galería, Atapuerca, Spain	ATG10-1	Allochthonous cave infill	511±25	22±5
		ATG10-3	Allochthonous cave infill	572±29	23±5
		AT10-2	Allochthonous cave infill	591±37	32±6
		ATG10-7	Allochthonous cave infill	601±27	31±4
		ATG10-8	Allochthonous cave infill	546±21	20±4
		ATG10-9	Allochthonous cave infill	925±71	12±11
		ATG10-10	Allochthonous cave infill	813±90	24±11
		ATZ10-4	Allochthonous cave infill	937±66	19±8
		ATG10-4	Allochthonous cave infill	957±62	12±9
Arnold and Demuro, 2015	Gran Dolina, Atapuerca, Spain	F13	Allochthonous cave infill	778±38	0±0*
Arnold et al., 2015	Sima del Elefante, Atapuerca, Spain	ATE10-11	Allochthonous cave infill	519±17	25±3
Ollé et al., 2016	La Cansaladeta, Tarragona, Spain	BO13-10	Fluvial	618±36	22±7
		BO13-8	Fluvial	580±30	20±6
		BO13-9	Fluvial	588±26	19±5
Hamm et al., 2016	Warratyi Rock Shelter, Flinders Ranges, Australia	ERS-7	Slopewash / aeolian	168±12	24±8
Fu et al., 2017	Lake Eyre Williams Point, Australia	LE14-1	lacustrine	194±12	34±6
This study	Kelly Hill Cave, Kangaroo Island, Australia	KI14-12	Allochthonous cave infill	35.8±1.4	19±4
Demuro et al., submitted	Galería de las Estatuas, Atapuerca, Spain	GE16-7	Allochthonous cave infill	161±10	21±8
Bartz et al., submitted	Lower Moulouya River, Morocco	C-L3824	Fluvial	871±72	0±0
			Mean Median		21.0
					21.0
			Standard error		2.1

Table S7 Published single-grain TT-OSL overdispersion values for geological (non-modern) samples that are reported to have been fully bleached at the time of deposition and have not been affected by post-depositional mixing. These overdispersion values have all been calculated using the central age model (CAM) of Galbraith et al. (1999). TT-OSL overdispersion values derived using the TT-OSL₂₉₀ protocol are denoted with an asterisk.