Guo, Xiao-Hui; Thomas, Anthony William

Direct CP violation in charmed hadron decays via ρ-ω mixing

© 2000 American Physical Society

PERMISSIONS

http://publish.aps.org/authors/transfer-of-copyright-agreement

“The author(s), and in the case of a Work Made For Hire, as defined in the U.S. Copyright Act, 17 U.S.C. §101, the employer named [below], shall have the following rights (the “Author Rights”):

[...]

3. The right to use all or part of the Article, including the APS-prepared version without revision or modification, on the author(s)’ web home page or employer’s website and to make copies of all or part of the Article, including the APS-prepared version without revision or modification, for the author(s)’ and/or the employer’s use for educational or research purposes.”

27th March 2013

http://hdl.handle.net/2440/11179
Direct \(CP \) violation in charmed hadron decays via \(\rho-\omega \) mixing

X.-H. Guo*

Department of Physics and Mathematical Physics, and Special Research Center for the Subatomic Structure of Matter, University of Adelaide, Adelaide, SA 5005, Australia and Institute of High Energy Physics, Academia Sinica, Beijing 100039, China

A. W. Thomas†

Department of Physics and Mathematical Physics, and Special Research Center for the Subatomic Structure of Matter, University of Adelaide, Adelaide, SA 5005, Australia

(Received 12 July 1999; published 10 May 2000)

We study the possibility of obtaining large direct \(CP \) violation in the charmed hadron decays \(D^+ \rightarrow \rho^+\rho^0(\omega) \rightarrow \rho^+\pi^+\pi^- \), \(D^+ \rightarrow \pi^+\rho^0(\omega) \rightarrow \pi^+\pi^+\pi^- \), \(D^0 \rightarrow \phi\rho^0(\omega) \rightarrow \phi\pi^+\pi^- \), \(D^0 \rightarrow \eta\rho^0(\omega) \rightarrow \eta\pi^+\pi^- \), \(D^0 \rightarrow \eta'\rho^0(\omega) \rightarrow \eta'\pi^+\pi^- \), \(D^0 \rightarrow \pi^0\rho^0(\omega) \rightarrow \pi^0\pi^+\pi^- \), and \(\Lambda_c \rightarrow \rho^0(\omega) \rightarrow \rho^+\pi^- \) via \(\rho-\omega \) mixing. The analysis is carried out in the factorization approach. The \(CP \) violation parameter depends on the effective parameter \(N_c \) which is relevant to the hadronization dynamics of each decay channel and should be determined by experiment. It is found that for fixed \(N_c \) the \(CP \) violation parameter reaches its maximum value when the invariant mass of the \(\pi^+\pi^- \) pair is in the vicinity of the \(\omega \) resonance. For most of the parameter space explored the \(CP \) violating asymmetry is of order \(10^{-2} \). However, over a small range, \(1.98 \lesssim N_c \lesssim 1.99 \), \(1.95 \lesssim N_c \lesssim 2.02 \), the asymmetries for \(D^0 \rightarrow \pi^0\rho^0(\omega) \rightarrow \pi^0\pi^+\pi^- \) and \(\Lambda_c \rightarrow \rho^0(\omega) \rightarrow \rho^+\pi^- \) (respectively) can exceed \(1\% \), at the cost of a small branching ratio. We also estimate the decay branching ratios for \(D^0 \rightarrow \pi^0\rho^0 \) and \(\Lambda_c \rightarrow \rho^0 \) for these values of \(N_c \), which should be tested by future experimental data.

PACS number(s): 11.30.Er, 12.39.-x, 13.20.Fc, 14.20.Lq

I. INTRODUCTION

Although \(CP \) violation has been known in the neutral kaon system for more than three decades its dynamical origin still remains an open problem. In addition to the kaon system, the study of \(CP \) violation in heavy quark systems has been a subject of intense interest and is important in understanding whether the standard model provides a correct description of this phenomenon through the Cabibbo-Kobayashi-Maskawa (CKM) matrix. Actually there have been many theoretical studies in the area of \(CP \) violation in \(b \)-flavored and charm systems and some experimental projects have been proposed [1].

Recent studies of direct \(CP \) violation in the \(B \) meson system [2] have suggested that large \(CP \)-violating asymmetries should be observed in forthcoming experiments. However, in the charm sector, \(CP \) violation is usually predicted to be small. A rough estimate of \(CP \) violation in charmed systems gives an asymmetry parameter which is typically smaller than \(10^{-3} \) due to the suppression of the CKM matrix elements [3]. By introducing large final-state-interaction phases provided by nearby resonances, Buccella et al. predicted larger \(CP \) violation, namely, a few times \(10^{-3} \) [4]. On the other hand, experimental measurements in some decay channels are consistent with zero asymmetry [5].

Direct \(CP \) violation occurs through the interference of two amplitudes with different weak and strong phases. The weak phase difference is determined by the CKM matrix elements and the strong phase is usually very uncertain. In Refs. [6,7], the authors studied direct \(CP \) violation in hadronic \(B \) decays through the interference of tree and penguin diagrams, where \(\rho-\omega \) mixing was used to obtain a large strong phase (as required for large \(CP \) violation). This mechanism was also applied to the hadronic decays of the heavy baryon, \(\Lambda_b \), where even larger \(CP \) violation may be possible [8]. In the present paper we will investigate direct \(CP \) violation in the hadronic decays of charmed hadrons, involving the same mechanism, with the aim of finding channels which may exhibit large \(CP \) asymmetry.

Since we are considering direct \(CP \) violation, we have to consider hadronic matrix elements for both tree and penguin diagrams which are controlled by the effects of nonperturbative QCD and hence are uncertain. In our discussions we will use the factorization approximation so that one of the currents in the nonleptonic decay Hamiltonian is factorized out and generates a meson. Thus the decay amplitude of the two body nonleptonic decay becomes the product of two matrix elements, one related to the decay constant of the factorized meson and the other to the weak transition matrix element between two hadrons. There have been some discussions of the plausibility of factorization [9,10], and this approach may be a good approximation in energetic decays. In some recent work corrections to the factorization approximation have also been considered by introducing some phenomenological nonfactorizable parameters which depend on the specific decay channels and should be determined by experimental data [11–14].

The effective Hamiltonian for the \(\Delta S=1 \), weak, nonleptonic decays has been discussed in detail in Refs. [15,16], where the Wilson coefficients for the tree and penguin operators were obtained to the next-to-leading order QCD and QED corrections by calculating the \(10 \times 10 \), two-loop,
anomalous dimension matrix. The dependence of the Wilson coefficients on renormalization scheme, gauge and infra-red cutoff was also discussed. The formalism can be extended to the charmed hadron nonleptonic decays in a straightforward way.

The remainder of this paper is organized as follows. In Sec. II we calculate the six Wilson coefficients of tree and QCD penguin operators to the next-to-leading order QCD corrections by applying the results of Refs. [15,16]. Then in Sec. III we give the formalism for the CP-violating asymmetry in charmed hadron nonleptonic decays and show numerical results. Finally, Sec. IV is reserved for a summary and some discussion.

II. THE EFFECTIVE HAMILTONIAN FOR NONLEPTONIC CHARMED HADRON DECAYS

In order to calculate direct CP violation in nonleptonic, charmed hadron decays we use the following effective weak Hamiltonian, which is Cabibbo first-forbidden, based on the operator product expansion:

\[H_{\Delta C=1} = \sum_{q=d,s} V_{u q} V^*_{c q} \left(c_1 O_1^q + c_2 O_2^q \right) - V_{u b} V^*_{c b} \sum_{i=3}^6 c_i O_i \]

(1)

Here \(c_i (i=1, \ldots, 6) \) are the Wilson coefficients and the operators \(O_i \) have the following expressions:

\[O_1^q = \bar{u}_a \gamma_\mu (1 - \gamma_5) q_\beta \bar{g}_\beta \gamma^\mu (1 - \gamma_5) c_a, \]

\[O_2^q = \bar{u}_a \gamma_\mu (1 - \gamma_5) q_\beta \bar{g}_\beta \gamma^\mu (1 - \gamma_5) c, \]

\[O_3 = \bar{u} \gamma_\mu (1 - \gamma_5) \sum_q \bar{q}' \gamma^\mu (1 - \gamma_5) q', \]

\[O_4 = \bar{u}_a \gamma_\mu (1 - \gamma_5) \sum_q \bar{q}'_\beta \gamma^\mu (1 - \gamma_5) q'_a, \]

\[O_5 = \bar{u}_a \gamma_\mu (1 - \gamma_5) \sum_q \bar{q}'_\beta \gamma^\mu (1 + \gamma_5) q'_a, \]

\[O_6 = \bar{u}_a \gamma_\mu (1 - \gamma_5) \sum_q \bar{q}'_\beta \gamma^\mu (1 + \gamma_5) q'_a, \]

(2)

where \(\alpha \) and \(\beta \) are color indices, and \(q' = u, \ d, \ s \) in Eq. (2). \(O_1 \) and \(O_2 \) are the tree operators, while \(O_3 - O_6 \) are QCD penguin operators. In the Hamiltonian we have omitted the operators associated with electroweak penguin diagrams.

The Wilson coefficients \(c_i (i=1, \ldots, 6) \) are calculable in perturbation theory by using the renormalization group. The solution has the following form:

\[C(\mu) = U(\mu, m_W) C(m_W), \]

(3)

where \(U(\mu, m_W) \) describes the QCD evolution which sums the logarithms \([\alpha_s(m_W^2/\mu^2)]^n \) (leading-log approximation) and \(\alpha_s(m_W^2/\mu^2)]^n \) (next-to-leading order). In Refs. [15,16] it was shown that \(U(m_1, m_2) \) can be written as

\[U(m_1, m_2) = \left(1 + \frac{\alpha_s(m_1)}{4\pi} J \right) U^0(m_1, m_2) \left(1 - \frac{\alpha_s(m_2)}{4\pi} J \right), \]

(4)

where \(U^0(m_1, m_2) \) is the evolution matrix in the leading-log approximation and the matrix \(J \) summarizes the next-to-leading order corrections to this evolution.

The evolution matrices \(U^0(m_1, m_2) \) and \(J \) can be obtained by calculating the appropriate one- and two-loop diagrams, respectively. The initial conditions \(C(m_1) \) are determined by matching the full theory and the effective theory at the scale \(m_W \). At the scale \(m_c \) the Wilson coefficients are given by

\[C(m_c) = U_{c5} U_{b5} U_{b6} C(m_w), \]

(5)

where \(U_{f(m_1, m_2)} \) is the evolution matrix from \(m_2 \) to \(m_1 \) with \(f \) active flavors and \(M_{m_f} \) is the quark-threshold matching matrix at \(m_f \). Since the strong interaction is independent of quark flavors, the matrices \(U_{c5}, U_{b5}, U_{b6}, \) and \(M_{m_b} \) are the same as those in \(b \) decays. Hence, using the expressions for \(U^0(m_1, m_2) \), \(J \) and \(M_{m_b} \) given in Refs. [15,16], we can obtain \(C(m_c) \).

In general, the Wilson coefficients depend on the renormalization scheme. The scheme-independent Wilson coefficients \(\bar{C}(\mu) \) are introduced by the following equation:

\[\bar{C}(\mu) = \left(1 + \frac{\alpha_s}{4\pi} R^* \right) C(\mu), \]

(6)

where \(R \) is the renormalization matrix associated with the four-quark operators \(O_i (i=1, \ldots, 6) \) in Eq. (2), at the scale \(m_W \). The scheme-independent Wilson coefficients have been used in the literature [4,17,18]. However, since \(R \) depends on the infrared regulator [15], \(\bar{C}(\mu) \) also carries such a dependence. In the present paper we have chosen to use the scheme-independent Wilson coefficients.

From Eqs. (5),(6) and the expressions for the matrices \(U_{c5}, U_{b5}, U_{b6} \), and \(R \) in Refs. [15,16] we obtain the following scheme-independent Wilson coefficients for \(c \) decays at the scale \(m_c = 1.35 \text{ GeV} \):

\[\tilde{c}_1 = -0.6941, \quad \tilde{c}_2 = 1.3777, \quad \tilde{c}_3 = 0.0652, \]

\[\tilde{c}_4 = -0.0627, \quad \tilde{c}_5 = 0.0206, \quad \tilde{c}_6 = -0.1355. \]

(7)

In obtaining Eq. (7) we have taken \(\alpha_s(m_Z) = 0.118 \) which leads to \(\Lambda_{QCD}^{(5)} = 0.226 \text{ GeV} \) and \(\Lambda_{QCD}^{(4)} = 0.329 \text{ GeV} \). To be consistent, the matrix elements of the operators \(O_i \) should also be renormalized to the one-loop order since we are working to the next-to-leading order for the Wilson coefficients. This results in effective Wilson coefficients \(c_i' \), which satisfy the constraint

\[c_i'(m_c)(O_i(m_c)) = c_i'(O_i)_{\text{tree}}, \]

(8)

where \((O_i(m_c)) \) are the matrix elements, renormalized to the one-loop order. The relations between \(c_i' \) and \(c_i \) read [17,18]
\(c'_1 = \bar{c}_1, \quad c'_2 = \bar{c}_2, \quad c'_3 = \bar{c}_3 - P_f 3,\)
\[
\begin{aligned}
c'_4 &= \bar{c}_4 + P_s, \quad c'_5 = \bar{c}_5 - P_f 3, \quad c'_6 = \bar{c}_6 + P_s,
\end{aligned}
\]
where
\[
P_s = [\alpha_s(m_c)/8\pi][10/9 + G(m,m_c,q^2)]c_2.
\]

\[
G(m,m_c,q^2) = \int_0^1 dx x(1-x)\ln \frac{m^2 - x(1-x)q^2}{m_c^2}.
\]

Here \(q^2\) is the momentum transfer of the gluon in the penguin diagram and \(m\) is the mass of the quark in the loop of the penguin diagram. \(^*\) \(G(m,m_c,q^2)\) has the following explicit expression [19]:

\[
\text{Re } G = \frac{2}{3} \left[\frac{m^2}{m_c^2} - \frac{5}{3} \frac{m_c^2}{q^2} + \left(1 + \frac{2m^2}{q^2} \right) \right]
\]

\[
\times \sqrt{1 - \frac{4}{q^2} \ln \frac{m^2}{q^2}} \frac{1 + \sqrt{1 - 4q^2/m^2}}{1 - \sqrt{1 - 4q^2/m^2}}.
\]

\[
\text{Im } G = -\frac{2}{3} \pi \left(1 + \frac{2m^2}{q^2} \right) \sqrt{1 - \frac{4m^2}{q^2}}.
\]

Based on simple arguments at the quark level, the value of \(q^2\) is chosen in the range \(0.3 < q^2/m_c^2 < 0.5\) [6,7]. From Eqs. (7), (9), and (10) we can obtain numerical values of \(c'_i\).

When \(q^2/m_c^2 = 0.3\),

\[
c'_1 = -0.6941, \quad c'_2 = 1.3777,\]
\[
c'_3 = 0.07226 + 0.01472i, \quad c'_4 = -0.08388 - 0.04417i,\]
\[
c'_5 = 0.02766 + 0.01472i, \quad c'_6 = -0.1567 - 0.04417i,
\]
and when \(q^2/m_c^2 = 0.5\),

\[
c'_1 = -0.6941, \quad c'_2 = 1.3777,\]
\[
c'_3 = 0.06926 + 0.01483i, \quad c'_4 = -0.07488 - 0.04448i,
\]
\[
c'_5 = 0.02466 + 0.01483i, \quad c'_6 = -0.1477 - 0.04448i.
\]

In calculating the matrix elements of the Hamiltonian (1), we can then simply use the effective Wilson coefficients in Eqs. (11)-(12) to multiply the tree-level matrix elements of the operators \(O_i (i = 1, \ldots , 6)\).

III. CP Violation in Charmed Hadron Decays

A. Formalism for CP violation in charmed hadron decays

The formalism for CP violation in \(B\) and \(\Lambda_b\) hadronic decays [6-8] can be generalized to the case of charmed hadrons in a straightforward manner. Let \(H_c\) denote a charmed hadron which could be \(D^\pm, D^0,\) or \(\Lambda_c\). The amplitude \(A\) for the decay \(H_c \rightarrow f\pi^+\pi^-\) \((f \text{ is a decay product})\) is

\[
A = \langle \pi^+ \pi^- f | H^T | H_c \rangle + \langle \pi^+ \pi^- f | H^B | H_c \rangle,
\]

where \(H^T\) and \(H^B\) are the Hamiltonians for the tree and penguin operators, respectively.

The relative magnitude and phases of these two diagrams are defined as follows:

\[
A = \langle \pi^+ \pi^- f | H^T | H_c \rangle [1 + r e^{i\delta} e^{i\phi}],
\]

\[
\bar{A} = \langle \pi^+ \pi^- f | H^B | H_c \rangle [1 + r e^{i\delta} e^{-i\phi}],
\]

where \(\delta\) and \(\phi\) are strong and weak phases, respectively. \(\phi\) arises from the CP-violating phase in the CKM matrix, and it is \(\arg[V_{ub}V_{cb}^*/(V_{us}V_{cs}^*)]\) for the \(c \rightarrow q\) transition \((q = d\) or \(s)\). The parameter \(r\) is defined as

\[
r = \frac{\langle \pi^+ \pi^- f | H^T | H_c \rangle}{\langle \pi^+ \pi^- f | H^B | H_c \rangle}.
\]

The CP-violating asymmetry, \(a\), can be written as

\[
a = \frac{|A|^2 - |\bar{A}|^2}{|A|^2 + |\bar{A}|^2} = \frac{-2r \sin \delta \sin \phi}{1 + 2r \cos \delta \cos \phi + r^2}.
\]

It can be seen from Eq. (16) that both weak and strong phases are needed to produce CP violation. Since in \(r\) there is strong suppression from the ratio of the CKM matrix elements, \([V_{ub}V_{cb}^*/(V_{us}V_{cs}^*)]\), which is of the order \(10^{-3}\) [3] for both \(q = d\) and \(q = s\) this suppression is \(0.62 \times 10^{-3}\), see Eqs. (32) and (43) in Sec. III B, usually the CP violation in charmed hadron decays is predicted to be small.

The weak phase \(\phi\) for a specific physical process is fixed. In order to obtain possible large CP violation, we need some mechanism to produce either large \(\sin \delta\) or large \(r\). \(\rho - \omega\) mixing has the dual advantages that the strong phase difference is large (passing through 90° at the \(\rho\) resonance) and well known. In this scenario one has [7,8]

\[
\langle \pi^+ \pi^- f | H^T | H_c \rangle = \frac{g_\rho}{s_\rho s_\omega} \lim_{\rho \omega \to 0} \bar{t}_\rho + \frac{g_\mu}{s_\rho} t_\rho,
\]

\[
\langle \pi^+ \pi^- f | H^B | H_c \rangle = g_\rho (t_\rho - \lim_{\rho \omega \to 0} \bar{t}_\rho + \frac{g_\mu}{s_\rho} t_\rho).
\]
\[\langle \pi^+ \pi^- f | H | H_c \rangle = \frac{g_{\rho}}{s_{\rho} s_{\omega}} \tilde{\Pi}_{\rho \omega} p_{\rho} p_{\omega} + \frac{g_{\rho}}{s_{\rho} s_{\omega}} p_{\rho}, \]

(18)

where \(t_{\rho} (V = \rho \text{ or } \omega) \) is the tree and \(p_{\rho} \) is the penguin amplitude for producing a vector meson by \(H_c \rightarrow fV \). \(g_{\rho} \) is the coupling for \(|\rho^0\rangle \rightarrow |\pi^+\pi^-\rangle \); \(\tilde{\Pi}_{\rho \omega} \) is the effective \(\rho \omega \) mixing amplitude and \(s_{\rho}^{-1} \) is from the propagator of \(V \), \(s_{\rho} = s_{\rho} = m_{\rho}^2 + i m_{\rho} \Gamma_{\rho} \), with \(s \) being the invariant mass of the \(\pi^+ \pi^- \) pair. The numerical values for the \(\rho \omega \) mixing parameter are \([7,20,21]\) Re \(\tilde{\Pi}_{\rho \omega} (m_{\rho}^2) = -3500 \pm 300 \text{ MeV}^2 \), Im \(\tilde{\Pi}_{\rho \omega} (m_{\rho}^2) = -300 \pm 300 \text{ MeV}^2 \). The direct coupling \(\omega \rightarrow \pi^+ \pi^- \) is effectively absorbed into \(\tilde{\Pi}_{\rho \omega} \) [21].

Defining

\[\frac{p_{\omega}}{t_{\rho}} = r' e^{i(\delta_\rho + \phi)}, \quad \frac{t_{\omega}}{t_{\rho}} = e^{i\delta_\rho}, \quad \frac{p_{\rho}}{p_{\omega}} = e^{i\delta_\rho}, \]

(19)

where \(\delta_\rho, \delta_\rho, \text{ and } \delta_\rho \) are strong phases, one has the following expression for \(r \) and \(s \),

\[r e^{i\delta_\rho} = r' e^{i\delta_\rho} \tilde{S}_{\rho \omega} \tilde{S}_{\rho \omega} + s e^{i\delta_\rho} s_{\rho \omega}, \]

(20)

It will be shown that in the factorization approach, for all the decay processes \(H_c \rightarrow f \pi^+ \pi^- \) we are considering, \(e^{i\delta_\rho} \) is real (see Sec. III B for details). Therefore, we let

\[\alpha e^{i\delta_\rho} = g, \]

(21)

where \(g \) is a real parameter. Letting

\[\beta e^{i\delta_\rho} = b + ci, \quad r e^{i\delta_\rho} = d + ei, \]

(22)

and using Eq. (20), we obtain the following result when \(\sqrt{s} \rightarrow m_{\omega} \):

\[r e^{i\delta_\rho} = \frac{C + Di}{(s - m_{\omega}^2 + g \text{ Re } \tilde{\Pi}_{\rho \omega}^2 + (g \text{ Im } \tilde{\Pi}_{\rho \omega} + m_{\omega} \Gamma_{\omega})^2)}, \]

(23)

where

\[C = (s - m_{\omega}^2 + g \text{ Re } \tilde{\Pi}_{\rho \omega})[d(\text{Re } \tilde{\Pi}_{\rho \omega} b(s - m_{\omega}^2) - c m_{\omega} \Gamma_{\omega})] \]

\[- e(\text{Im } \tilde{\Pi}_{\rho \omega} + b m_{\omega} \Gamma_{\omega} + c(s - m_{\omega}^2)) \]

\[+ (g \text{ Im } \tilde{\Pi}_{\rho \omega} + m_{\omega} \Gamma_{\omega})[e(\text{Re } \tilde{\Pi}_{\rho \omega} b(s - m_{\omega}^2) - c m_{\omega} \Gamma_{\omega})] \]

\[+ d(\text{Im } \tilde{\Pi}_{\rho \omega} + b m_{\omega} \Gamma_{\omega} + c(s - m_{\omega}^2))], \]

\[D = (s - m_{\omega}^2 + g \text{ Re } \tilde{\Pi}_{\rho \omega})[e(\text{Re } \tilde{\Pi}_{\rho \omega} b(s - m_{\omega}^2) - c m_{\omega} \Gamma_{\omega})] \]

\[+ d(\text{Im } \tilde{\Pi}_{\rho \omega} + b m_{\omega} \Gamma_{\omega} + c(s - m_{\omega}^2))] \]

\[- (g \text{ Im } \tilde{\Pi}_{\rho \omega} + m_{\omega} \Gamma_{\omega})[d(\text{Re } \tilde{\Pi}_{\rho \omega} b(s - m_{\omega}^2) - c m_{\omega} \Gamma_{\omega}) \]

\[- c m_{\omega} \Gamma_{\omega}) - e(\text{Im } \tilde{\Pi}_{\rho \omega} + b m_{\omega} \Gamma_{\omega} + c(s - m_{\omega}^2))]. \]

(24)

The weak phase comes from \([V_{ub} V_{cd}^\ast/(V_{uc} V_{cd}^\ast)] \). If the operators \(O_1^d, O_2^d \) contribute to the decay processes we have

\[\sin \phi_{\rho} = \frac{\eta}{\sqrt{(\rho + A^2 \lambda^4 (\rho^2 + \eta^2))^2 + \eta^2}}, \]

(25)

\[\cos \phi_{\rho} = - \frac{\rho + A^2 \lambda^4 (\rho^2 + \eta^2)}{\sqrt{(\rho + A^2 \lambda^4 (\rho^2 + \eta^2))^2 + \eta^2}}, \]

while if \(O_1^d \) and \(O_2^d \) contribute, we have

\[\sin \phi_{\rho} = - \frac{\eta}{\sqrt{\rho^2 + \eta^2}}, \]

(26)

\[\cos \phi_{\rho} = \frac{\rho}{\sqrt{\rho^2 + \eta^2}}, \]

where we have used the Wolfenstein parametrization [22] for the CKM matrix elements. In order to obtain \(r \sin \delta, r \cos \delta, \) and \(r \) we need to calculate \(\alpha e^{i\delta_\rho}, \beta e^{i\delta_\rho}, \) and \(r' e^{i\delta_\rho}. \) This will be done in the next subsection.

B. CP violation in \(H_c \rightarrow f \pi^+ \pi^- \)

In the following we will calculate the \(CP \)-violating asymmetries in \(H_c \rightarrow f \pi^+ \pi^- \). In the factorization approximation \(\rho^0(\omega) \) is generated by one current which has the proper quantum numbers in the Hamiltonian in Eq. (1). In the following we will consider the decay processes \(D^+ \rightarrow \rho^0 \rho^0(\omega) \rightarrow \rho^+ \pi^+ \pi^-, \) \(D^+ \rightarrow \pi^+ \rho^0(\omega) \rightarrow \pi^+ \pi^+ \pi^-, \) \(D^0 \rightarrow \pi^0 \rho^0(\omega) \rightarrow \pi^0 \pi^+ \pi^-, \) \(D^0 \rightarrow \eta \rho^0(\omega) \rightarrow \eta \pi^+ \pi^-, \) \(D^0 \rightarrow \eta' \rho^0(\omega) \rightarrow \eta' \pi^+ \pi^-, \) \(D^0 \rightarrow \pi^0 \rho^0(\omega) \rightarrow \pi^0 \pi^+ \pi^-, \) \(D^0 \rightarrow \eta' \rho^0(\omega) \rightarrow \eta' \pi^+ \pi^-, \) \(D^0 \rightarrow \pi^0 \rho^0(\omega) \rightarrow \pi^0 \pi^+ \pi^-, \) \(D^0 \rightarrow \eta' \rho^0(\omega) \rightarrow \eta' \pi^+ \pi^- \), and \(\Lambda_c \rightarrow pp^0(\omega) \rightarrow pp^0(\omega) \rightarrow pp^0(\omega) \rightarrow pp^0(\omega) \rightarrow \pi^+ \pi^+ \pi^- \), individually.

(1) \(D^+ \rightarrow \rho^0 V(\omega = \rho \text{ or } \omega) \). First we consider \(D^+ \rightarrow \rho^0 \rho^0(\omega) \). After factorization, the contribution to \(t_{\rho}^p \) (the superscript denotes the decay product \(f \) in \(H_c \rightarrow f \pi^+ \pi^- \)) from the tree level operator \(O^d_1 \) is

\[\langle \rho^+ \rho^0 | O^d_1 | D^+ \rangle = \langle \rho^0 \rangle (\bar{d} d)(0) \langle \rho^+ | (\bar{u} c) | D^+ \rangle = T_1, \]

(27)

where \(\langle \bar{d} d \rangle \) and \(\langle \bar{u} c \rangle \) denote the V-A currents. If we ignore isospin violating effects, then the matrix element of \(O^d_2 \) is the same as that of \(O^d_1 \). After adding the contributions from Fierz transformation of \(O^d_1 \) and \(O^d_2 \) we have

\[t_{\rho}^p = (c_1 + c_2)(1 + 1/N_c) T_1, \]

(28)

where we have omitted the CKM matrix elements in the expression of \(t_{\rho}^p \). Since in Eq. (28) we have neglected the color-octet contribution, which is nonfactorizable and difficult to calculate, \(N_c \) should be treated as an effective parameter which depends on the hadronization dynamics of different decay channels. In the same way we find that \(t_{\omega}^p = - t_{\rho}^p \), so that, from Eq. (19), we have
(\alpha e^{i\delta_0})^{p^+} = 1. \quad (29)

The penguin operator contributions, $p_{\rho^+}^{p^+}$ and $p_{\rho}^{p^+}$, can be evaluated in the same way with the aid of the Fierz identities. From Eq. (19) we have

$$ \beta e^{i\delta_0})^{p^+} = 0 \quad (30)$$

and

$$ (r' e^{i\delta_0})^{p^+} = 2\left(\frac{c_1' + c_3'}{1 + \frac{1}{N_c}} + \frac{c_1' + c_3'}{1 + \frac{1}{N_c}}\right) \left| V_{ud} V_{cd}^*\right|^2, \quad (31)$$

where

$$ \frac{V_{ub} V_{cb}^*}{V_{us} V_{cs}^*} = \frac{A^2 \sqrt{\lambda^4 - \rho^2 + \eta^2}}{(1 + A^2 \rho^4 + \lambda^2 \rho^2 + \lambda^2 \eta^2)}, \quad (32)$$

(2) $\Lambda_c \rightarrow pV$. Next we consider $\Lambda_c \rightarrow p\rho^0(\omega)$. Defining

$$ \langle p^0 | O_1^p | \Lambda_c \rangle = \langle p^0 | (\bar{d}d) | 0 \rangle \langle p | (\bar{u}c)| \Lambda_c \rangle = T_2, \quad (33)$$

we have

$$ t_\rho^p = \left(c_1' + \frac{1}{N_c} c_2' \right) T_2. \quad (34)$$

After evaluating t_ρ^p and the penguin diagram contributions we obtain the following results:

$$ (\alpha e^{i\delta_0})^{p^+} = -1, \quad (35)$$

$$ (\beta e^{i\delta_0})^{p^+} = \frac{c_3' + \frac{1}{N_c} c_6'}{2 + \frac{1}{N_c} c_3' + 2 \left(\frac{1}{N_c} c_3' + \frac{1}{N_c} c_6' \right)}, \quad (36)$$

$$ (r' e^{i\delta_0})^{p^+} = \frac{c_3' + \frac{1}{N_c} c_6'}{2 + \frac{1}{N_c} c_3' + 2 \left(\frac{1}{N_c} c_3' + \frac{1}{N_c} c_6' \right)} \left| V_{ub} V_{cb}^*\right|^2 \left| V_{us} V_{cs}^*\right|^2 \left| V_{ud} V_{cd}^*\right|^2, \quad (37)$$

(3) $D^0 \rightarrow \phi V$. For the decay channel $D^0 \rightarrow \phi \rho^0(\omega) \rightarrow \phi \pi^+ \pi^-\pi^-$ the operators O_1^ϕ and O_2^ϕ contribute to the decay matrix elements. If we define

$$ \langle p^0 | \phi | O_1^\phi | D^0 \rangle = \langle \phi | (\bar{s}s) | 0 \rangle \langle p^0 | (\bar{u}c)| D^0 \rangle = T_3, \quad (38)$$

we have

$$ t_\rho^\phi = \left(c_1' + \frac{1}{N_c} c_2' \right) T_3, \quad (39)$$

and

$$ (\alpha e^{i\delta_0})^{\phi^+} = 1, \quad (40)$$

$$ (\beta e^{i\delta_0})^{\phi^+} = 1, \quad (41)$$

$$ (r' e^{i\delta_0})^{\phi^+} = \frac{c_3' + \frac{1}{N_c} c_6'}{c_1' + \frac{1}{N_c} c_2'} \left| V_{ub} V_{cb}^*\right|^2 \left| V_{us} V_{cs}^*\right|^2, \quad (42)$$

where

$$ \left| \frac{V_{ub} V_{cb}^*}{V_{us} V_{cs}^*} \right| = \frac{A^2 \sqrt{\lambda^4 - \rho^2 + \eta^2}}{1 - \lambda^2/2 \rho^2}. \quad (43)$$

(4) $D^0 \rightarrow \eta(\eta') V$. For the decay channels $D^0 \rightarrow \eta \rho^0(\omega) \rightarrow \eta \pi^+ \pi^-\pi^-$ and $D^0 \rightarrow \eta' \rho^0(\omega) \rightarrow \eta' \pi^+ \pi^-\pi^-$, things become a little complicated. It is known that η and η' have both $\bar{u}u + \bar{d}d$ and $\bar{s}s$ components. The decay constants, $f_{\eta(\eta')}$, and $f_{\eta(\eta')}$, defined as

$$ \langle 0 | \bar{u} \gamma_\mu \gamma_5 u | \eta(\eta') \rangle = i f_{\eta(\eta')} \rho_\mu, \quad (44)$$

$$ \langle 0 | \bar{s} \gamma_\mu \gamma_5 s | \eta(\eta') \rangle = i f_{\eta(\eta')} \rho_\mu, \quad (45)$$

are different. After straightforward derivations we have

$$ (\alpha e^{i\delta_0})^{\eta(\eta')} = 1, \quad (45)$$

$$ (\beta e^{i\delta_0})^{\eta(\eta')} = 1, \quad (46)$$

$$ (r' e^{i\delta_0})^{\eta(\eta')} = \frac{\frac{2f_{\eta(\eta')}}{f_{\eta(\eta')}^2} f_{\eta(\eta')} - f_{\eta(\eta')}^*}{f_{\eta(\eta')}^2 + f_{\eta(\eta')}^*} \left| V_{ub} V_{cb}^*\right|^2 \left| V_{us} V_{cs}^*\right|^2, \quad (47)$$

In the derivations of Eqs. (45)–(47) we have made the approximation that $V_{ub} V_{cb}^* V_{us} V_{cs}^* = -V_{ub} V_{cb}^* V_{us} V_{cs}^*$. It is noted that the minus signs associated with c_5' and c_6' in Eq. (47) arise because $\eta(\eta')$ are pseudoscalar mesons. Since the imaginary part of $c_5'(c_6')$ is the same as that of $c_1'(c_2')$, $\delta_{q'}$ is zero. This leads to the strong phase, δ, being zero, in combination with Eqs. (45), (46).

The decay constants $f_{\eta(\eta')}$ and $f_{\eta(\eta')}$ were calculated phenomenologically in Ref. [23], based on the assumption that the decay constants in the quark flavor basis follow the pattern of particle state mixing. It was found that
\(f_\eta^u = 78 \text{ MeV}, \quad f_\eta^u = -112 \text{ MeV}, \quad f_\eta^d = 63 \text{ MeV}, \)
\(f_\eta^d = 137 \text{ MeV}. \)

(5) \(D \to \pi V. \) For the decay process \(D^+ \to \pi^+ \rho^0(\omega) \to \pi^+ \pi^+ \pi^- \), two kinds of matrix element products are involved after factorization, i.e.,
\[
\langle \rho^0(\omega)|[d\bar{d}]|0\rangle \langle \pi^+|[(\bar{u}c)]|D^+\rangle
\]
and
\[
\langle \pi^+|[(\bar{u}d)]|0\rangle \langle \rho^0(\omega)|[(\bar{d}c)]|D^+\rangle.
\]

These two quantities cannot be related to each other by symmetry. Therefore, we have to evaluate them in some phenomenological quark models and hence more uncertainties are involved. Similarly for \(D^0 \to \pi^0 \rho^0(\omega) \to \pi^0 \pi^+ \pi^- \) we have to evaluate \(\langle \rho^0(\omega)|[d\bar{d}]|0\rangle \langle \pi^0|[(\bar{u}c)]|D^0\rangle \) and \(\langle \pi^0|[(\bar{u}d)]|0\rangle \langle \rho^0(\omega)|[(\bar{d}c)]|D^0\rangle \) separately.

The matrix elements for \(D \to X \) and \(D \to X^* \) (\(X \) and \(X^* \) denote pseudoscalar and vector mesons, respectively) can be decomposed as [24]
\[
\langle X|J_\mu|D\rangle = \left(p_D + p_X - \frac{m^2_D - m^2_X}{k^2} \right) F_1(k^2)
\]
\[
+ \frac{m^2_D - m^2_X}{k^2} k_\mu F_0(k^2),
\]
(49)

\[
\langle X^*|J_\mu|D\rangle = \frac{2}{m_D + m_X^*} \epsilon_{\mu\nu\rho\sigma} \epsilon^{*\nu\rho} p_D^\rho p_X^\sigma V(k^2)
\]
\[
+ i \left[\epsilon^{*\nu}(m_D + m_X^*) A_1(k^2) - \frac{\epsilon \cdot k}{m_D + m_X^*} \right]
\]
\[
	imes (p_D + p_X^*) \mu A_2(k^2) - \frac{\epsilon \cdot k}{k^2} 2 m_X^* k_\mu A_3(k^2)
\]
\[
+ \frac{\epsilon \cdot k}{k^2} 2 m_X^* k_\mu A_0(k^2),
\]
(50)

where \(J_\mu \) is the weak current, \(k = p_D - p_X(\omega) \), and \(\epsilon_\mu \) is the polarization vector of \(X^* \). The form factors satisfy the relations \(F_1(0) = F_0(0) \), \(A_3(0) = A_0(0) \) and \(A_3(k^2) = [(m_D + m_X^*)/2 m_X^*] A_1(k^2) - [(m_D - m_X^*)/2 m_X^*] A_2(k^2) \).

Using the decomposition in Eqs. (49), (50), we have for \(D^+ \to \pi^+ \rho^0(\omega) \),
\[
\tau^\pi = - \sqrt{2 m_D} \tilde{\tau}_\rho \left[c_1 + \frac{1}{N_c} c_2 \right] f_\rho F_1(m_\rho^2)
\]
\[
+ \left[c'_1 + \frac{1}{N_c} c'_2 \right] f_\pi A_0(m_\pi^2),
\]
(51)

where \(f_\rho \) and \(f_\pi \) are the decay constants of the \(\rho \) and \(\pi \), respectively, and \(\tilde{\tau}_\rho \) is the three momentum of the \(\rho \).

It can be shown that \(\tau^\pi = - \tau^\rho \). After calculating the penguin operator contributions, we have
\[
(\alpha e^{i\delta_\alpha})^\pi = -1,
\]
(52)
\[
(\beta e^{i\delta_\beta})^\pi = \frac{\left[f_\rho F_1(m_\rho^2) - f_\pi A_0(m_\pi^2) \right]}{2 m^2_\rho f_\pi A_0(m_\pi^2)} \left(c'_4 + \frac{1}{N_c} c'_5 \right) - \frac{2 m^2_\rho f_\pi A_0(m_\pi^2)}{(m_c + m_\pi)(m_\pi^2 + m_d)} \left(c'_6 + \frac{1}{N_c} c'_7 \right),
\]
(53)
\[
(r e^{i\delta_\gamma})^\pi = \frac{x}{N_c} \left[f_\rho F_1(m_\rho^2) + f_\pi A_0(m_\pi^2) \right] c_1 + \frac{1}{N_c} f_\rho F_1(m_\rho^2) + f_\pi A_0(m_\pi^2) c_2,
\]
(54)
where \(x \) is defined as
\[
x = \left[2 f_\rho F_1(m_\rho^2) + \frac{f_\rho F_1(m_\rho^2) + f_\pi A_0(m_\pi^2)}{N_c} \right] c_3 + \left[2 f_\rho F_1(m_\rho^2) + f_\pi A_0(m_\pi^2) \right] c_4
\]
\[
+ \left[\frac{m^2_\rho f_\pi A_0(m_\pi^2)}{N_c (m_c + m_\pi)(m_\pi^2 + m_d)} \right] c_5 + 2 \left[\frac{m^2_\rho f_\pi A_0(m_\pi^2)}{N_c (m_c + m_\pi)(m_\pi^2 + m_d)} \right] c_6.
\]
(55)

We can consider the process \(D^0 \to \pi^0 \rho^0(\omega) \to \pi^0 \pi^+ \pi^- \) in the same way. We find
\[
(\alpha e^{i\delta_\alpha})^0 = - \frac{f_\rho F_1(m_\rho^2)}{f_\rho F_1(m_\rho^2) + f_\pi A_0(m_\pi^2)},
\]
(56)
In Eqs. (52)–(58) the form factors $F_1(m^2)$ and $A_0(m^2)$ depend on the inner structure of the hadrons. Under the nearest pole dominance assumption, the k^2 dependence of these form factors are

\[F_1(k^2) = \frac{h_1}{1-k^2/m_1^2}, \quad A_0(k^2) = \frac{h_0}{1-k^2/m_0^2}, \quad (59) \]

where $m_1 = 2.01$ GeV and $m_0 = 1.87$ GeV [24] and h_1 and h_0 are given by the overlap integrals of the hadronic wave functions of D and $X(X^*)$ [24,25].

Having obtained the expressions for $\alpha e^{i\delta_a}$, $\beta e^{i\delta_B}$, and $r e^{i\delta_R}$, for different decay processes, we may substitute them into Eq. (23) to obtain $(r \sin \delta)$ and $(r \cos \delta)$ for each channel. Then, in combination with with Eqs. (25) and (26), the CP-violating asymmetries a can be obtained from Eq. (16).

C. Numerical results

In the numerical calculations, we have several parameters: q^2, N_c, and the CKM matrix elements in the Wolfenstein parametrization. As mentioned in Sec. II, the value of q^2 is conventionally chosen to be in the range $0.3 < q^2/m_0 < 0.5$. For the CKM matrix elements, which should be determined from experiment, we use $\lambda = 0.221$, $\eta = 0.34$ and $\rho = -0.12$ as in Ref. [8].

The value of the effective N_c should also be determined by experiment. Since the hadronization information is included in N_c, the value of N_c may be different for different decay channels. Furthermore, since the color-octet contribution associated with each operator in the Hamiltonian (1) can vary, the effective N_c in the Fierz transformation for each operator may be different. In general, nonfactorizable effects can be absorbed into the effective parameters a_{α}^{eff} after the Fierz transformation

\[a_{\alpha}^{\text{eff}} = c_1' + \frac{1}{(N_c)_i} c_2' - 1, \quad a_{\alpha}^{\text{eff}} = c_1'' + \frac{1}{(N_c)_i} c_2'' \quad (i = 1, 2, 3), \quad (60) \]

where

\[\frac{1}{(N_c)_i} = \frac{1}{3} + \xi_i \quad (i = 1, \ldots, 6), \quad (61) \]

with ξ_i being the nonfactorizable effects, which may be different for each operator. However, since we do not have enough information about the operator dependence of ξ_i, we assume ξ_i is universal for each operator [13] and hence for each operator we use the same effective $N_c \equiv \langle N_c \rangle$.

In the numerical calculations, it is found that for a fixed N_c there is a maximum point, a_{max}, for the CP violating parameter a, when the invariant mass of the $\pi^+ \pi^-$ pair is in the vicinity of the ω resonance. We have calculated a_{max} in the range $N_c > 0$ for different decay channels. In the calculations we use the following two sets of form factors [24].

Set 1: $h_1 = 0.69$, $h_{A_0} = 0.67$, $h_V = 1.23$,

\[h_{A_1} = 0.78, \quad h_{A_2} = 0.92; \]

Set 2: $h_1 = 0.78$, $h_{A_0} = 0.77$, $h_V = 1.55$,

\[h_{A_1} = 0.98, \quad h_{A_2} = 1.27. \]

The above two sets of parameters correspond to taking the average transverse momentum of the constituents in the meson to be 400 or 500 MeV, respectively [24]. The k^2 dependence of $A_1(k^2)$, $A_2(k^2)$, and $V(k^2)$ are the same as in Eq. (59).

The numerical results show that for $D^+ \rightarrow \rho^+ \rho^0(\omega) \rightarrow \rho^- \pi^+ \pi^-$, in the whole range $N_c > 0$, we have $a_{\text{max}} \leq 3 \times 10^{-4}$, which is small. For $D^0 \rightarrow \eta \rho^0(\omega) \rightarrow \eta \pi^+ \pi^-$ and $D^0 \rightarrow \eta' \rho^0(\omega) \rightarrow \eta' \pi^+ \pi^-$, from Eqs. (45)–(47) it can be seen that the strong phase δ is zero. Therefore, we do not have CP violation in these decays in our approach. However, for other processes there is a small range of N_c in which we may have large $a_{\text{max}} (\geq 1\%)$.

For $D^0 \rightarrow \phi \rho^0(\omega) \rightarrow \phi \pi^+ \pi^-$, the range of N_c for $a_{\text{max}} \geq 1\%$ is $1.98 \leq N_c \leq 1.99$, while for $\Lambda_c \rightarrow p \rho^0(\omega) \rightarrow p \pi^+ \pi^-$ the range is $1.95 \leq N_c \leq 2.02$. For $D^+ \rightarrow p^0(\omega) \rightarrow p^+ \pi^+ \pi^-$ we find that for the first set of form factors when $N_c \geq 56$, $a_{\text{max}} \geq 1\%$, while for the second set of form factors when $N_c \geq 136$, $a_{\text{max}} \geq 1\%$, in the range $0.3 < q^2/m_0^2 < 0.5$. For $D^0 \rightarrow \pi^0 \rho^0(\omega) \rightarrow \pi^0 \pi^+ \pi^-$ we find that when $1.98 \leq N_c \leq 1.99$ we have $a_{\text{max}} \geq 1\%$ in the range $0.3 < q^2/m_0^2 < 0.5$ for both sets of form factors.

The above ranges for N_c were obtained by the requirement that we have large CP violation in this range. However, whether N_c can be in this range should be determined by the experimental data for the branching ratio of each decay channel. Usually the decay rate for $D^{\pm} \rightarrow f_{\pi}^{\pm}$ is determined primarily by the tree operators, O_1 and O_2, which are related to t_{π}. In fact, the reason why we can find large CP
violation in some range of N_c, is that in this range $t^{(f)}_p$ becomes small enough so that r', and hence r, becomes large [see Eqs. (19), (20)]. However, if $t^{(f)}_p$ is too small the decay rate it yields for $D \to f\rho^0$ may be smaller than the experimental data. In such a case, the range of N_c in which we could have large CP violation will be excluded by the data.

The decay widths for nonleptonic decays of the D meson can be calculated straightforwardly in the quark model of Refs. [24,25]. Since we are considering the range for N_c in which $t^{(f)}_p$ is small, we have to take into account the penguin contributions $p^{(f)}_g$ as well when we calculate the decay widths. In the calculations of the decay width for $D^0 \to \phi\rho^0$ we use $f_\phi = 237$ MeV. We find that for the first set of form factors the branching ratio is smaller than 2.3×10^{-8} and for the second set the branching ratio is smaller than 3.6×10^{-8} in the range $1.98 \leq N_c \leq 1.99$. The dependence of the branching ratio on q^2/m_c^2 is negligible. These branching ratios are much smaller than the experimental data ($6 \pm 3) \times 10^{-4}$ [26] which corresponds to $1.31 \leq N_c \leq 1.53$ ($1.41 \leq N_c \leq 1.60$) for the first (second) set of form factors. Similarly, when $N_c \geq 56$ the branching ratio for $D^+ \to \pi^+\rho^0$ is smaller than 1.0×10^{-5}, while the experimental data is $(1.05 \pm 0.31) \times 10^{-3}$ [26] corresponding to $2.1 \leq N_c \leq 2.9$ ($2.5 \leq N_c \leq 3.4$) for the first (second) set of form factors. Therefore, we cannot have large CP violation in $D^0 \to \phi\rho^0(\omega) \to \phi\pi^+\pi^-$ and $D^+ \to \pi^+\rho^0(\omega) \to \pi^+\pi^+\pi^-$. However, for the decay processes $D^0 \to \pi^0\rho^0$ and $\Lambda_c \to \rho\rho^0$ there are no experimental data at present [26]. Therefore, there is still a possibility that N_c could be in the range required for large CP violation for $D^0 \to \pi^0\rho^0(\omega) \to \pi^0\pi^+\pi^-$ or $\Lambda_c \to \rho\rho^0(\omega) \to \rho\pi^+\pi^-$. In Fig. 1 we plot $\ln|a_{\max}|$ over the range $1 \leq N_c \leq 3$ for these two processes, with $q^2/m_c^2 = 0.3$ and the first set of form factors for $D^0 \to \pi^0\rho^0(\omega) \to \pi^0\pi^+\pi^-$. In fact, the difference between the results for $q^2/m_c^2 = 0.3$ and 0.5, and for the first and second set of form factors for $D^0 \to \pi^0\rho^0(\omega) \to \pi^0\pi^+\pi^-$, are small. This can be seen more clearly from Tables IV and V.

The decay width for $D^0 \to \pi^0\rho^0$ is calculated in the same way and we find that for the first set of form factors the branching ratio is $1.4(1.7) \times 10^{-8}$, while for the second set the branching ratio is $1.8(2.1) \times 10^{-8}$ for $N_c = 1.98(1.99)$. This prediction is almost independent of q^2/m_c^2.

The branching ratio for $\Lambda_c \to \rho\rho^0$ can be calculated with the same method as that in Ref. [8], where we worked in the heavy quark limit $m_c \to \infty$ and used the diquark model hadronic wave functions for both the heavy baryon, Λ_c, and the proton, p. As in the neutron case, in the diquark model the Clebsch-Gordan coefficient of the $u[ud]$ component ($[ud]$)

TABLE I. Values of $Br(D^+ \to \pi^+\rho^0)$ with the first (second) set of form factors and a_{\max} for $D^+ \to \rho^0(\omega) \to \rho^+\pi^-\pi^-$, with $q^2/m_c^2 = 0.3(0.5)$.

<table>
<thead>
<tr>
<th>N_c</th>
<th>$Br(D^+ \to \pi^+\rho^0)$</th>
<th>a_{\max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>$6.3(9.6) \times 10^{-2}$</td>
<td>$2.0(1.8) \times 10^{-4}$</td>
</tr>
<tr>
<td>1.0</td>
<td>$2.5(3.8) \times 10^{-2}$</td>
<td>$1.4(1.3) \times 10^{-4}$</td>
</tr>
<tr>
<td>1.5</td>
<td>$1.6(2.5) \times 10^{-2}$</td>
<td>$1.1(0.96) \times 10^{-4}$</td>
</tr>
<tr>
<td>2.0</td>
<td>$1.3(1.9) \times 10^{-2}$</td>
<td>$8.7(7.7) \times 10^{-5}$</td>
</tr>
<tr>
<td>3.0</td>
<td>$0.95(1.5) \times 10^{-2}$</td>
<td>$6.1(5.3) \times 10^{-5}$</td>
</tr>
</tbody>
</table>

TABLE II. Values of $Br(D^0 \to \phi\rho^0)$ and a_{\max} for $D^0 \to \phi\rho^0(\omega) \to \phi\pi^+\pi^-$, with $q^2/m_c^2 = 0.3(0.5)$.

<table>
<thead>
<tr>
<th>N_c</th>
<th>$Br(D^0 \to \phi\rho^0)$</th>
<th>a_{\max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.31</td>
<td>9.0×10^{-4}</td>
<td>$1.2(1.3) \times 10^{-4}$</td>
</tr>
<tr>
<td>1.36</td>
<td>7.2×10^{-4}</td>
<td>$1.3(1.3) \times 10^{-4}$</td>
</tr>
<tr>
<td>1.41</td>
<td>5.7×10^{-4}</td>
<td>$1.4(1.4) \times 10^{-4}$</td>
</tr>
<tr>
<td>1.46</td>
<td>4.4×10^{-4}</td>
<td>$1.5(1.5) \times 10^{-4}$</td>
</tr>
<tr>
<td>1.53</td>
<td>3.0×10^{-4}</td>
<td>$1.6(1.6) \times 10^{-4}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N_c</th>
<th>$Br(D^0 \to \phi\rho^0)$</th>
<th>a_{\max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.41</td>
<td>8.9×10^{-4}</td>
<td>$1.4(1.4) \times 10^{-4}$</td>
</tr>
<tr>
<td>1.46</td>
<td>6.9×10^{-4}</td>
<td>$1.5(1.5) \times 10^{-4}$</td>
</tr>
<tr>
<td>1.51</td>
<td>5.3×10^{-4}</td>
<td>$1.6(1.6) \times 10^{-4}$</td>
</tr>
<tr>
<td>1.56</td>
<td>4.0×10^{-4}</td>
<td>$1.7(1.7) \times 10^{-4}$</td>
</tr>
<tr>
<td>1.60</td>
<td>3.0×10^{-4}</td>
<td>$1.8(1.8) \times 10^{-4}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N_c</th>
<th>$Br(D^0 \to \phi\rho^0)$</th>
<th>a_{\max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>1.4×10^{-3}</td>
<td>$3.0(-3.0) \times 10^{-4}$</td>
</tr>
<tr>
<td>2.5</td>
<td>9.8×10^{-4}</td>
<td>$3.9(-4.0) \times 10^{-4}$</td>
</tr>
<tr>
<td>2.9</td>
<td>7.3×10^{-4}</td>
<td>$4.9(-4.9) \times 10^{-4}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N_c</th>
<th>$Br(D^0 \to \phi\rho^0)$</th>
<th>a_{\max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>1.3×10^{-3}</td>
<td>$4.0(-4.0) \times 10^{-4}$</td>
</tr>
<tr>
<td>3.0</td>
<td>9.2×10^{-4}</td>
<td>$5.2(-5.1) \times 10^{-4}$</td>
</tr>
<tr>
<td>3.4</td>
<td>7.3×10^{-4}</td>
<td>$6.1(-6.0) \times 10^{-4}$</td>
</tr>
</tbody>
</table>
TABLE IV. Values of $\text{Br}(D^0 \rightarrow \pi^0 \rho^0)$ with the first (second) set of form factors and a_{max} for $D^0 \rightarrow \pi^0 \rho^0(\omega) \rightarrow \pi^0 \pi^+ \pi^-$, with $q^2/m_c^2 = 0.3(0.5)$.

<table>
<thead>
<tr>
<th>N_c</th>
<th>$\text{Br}(D^0 \rightarrow \pi^0 \rho^0)$</th>
<th>a_{max} (set 1)</th>
<th>a_{max} (set 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>$2.1(2.8) \times 10^{-2}$</td>
<td>$1.0(0.94) \times 10^{-4}$</td>
<td>$1.1(0.93) \times 10^{-4}$</td>
</tr>
<tr>
<td>1.0</td>
<td>$2.3(3.0) \times 10^{-3}$</td>
<td>$9.5(8.2) \times 10^{-5}$</td>
<td>$9.3(8.1) \times 10^{-5}$</td>
</tr>
<tr>
<td>1.5</td>
<td>$2.5(3.3) \times 10^{-4}$</td>
<td>$9.7(8.7) \times 10^{-5}$</td>
<td>$9.3(8.4) \times 10^{-5}$</td>
</tr>
<tr>
<td>1.9</td>
<td>$4.8(6.2) \times 10^{-5}$</td>
<td>$-7.1(-8.3) \times 10^{-4}$</td>
<td>$-7.4(-8.6) \times 10^{-4}$</td>
</tr>
<tr>
<td>1.98</td>
<td>$1.4(1.8) \times 10^{-5}$</td>
<td>$-1.4(-1.6) \times 10^{-2}$</td>
<td>$-1.5(-1.7) \times 10^{-2}$</td>
</tr>
<tr>
<td>1.99</td>
<td>$1.7(2.1) \times 10^{-5}$</td>
<td>$1.4(1.6) \times 10^{-2}$</td>
<td>$1.4(1.7) \times 10^{-2}$</td>
</tr>
<tr>
<td>2.1</td>
<td>$7.3(9.4) \times 10^{-6}$</td>
<td>$7.2(8.1) \times 10^{-4}$</td>
<td>$7.5(8.3) \times 10^{-4}$</td>
</tr>
<tr>
<td>2.5</td>
<td>$1(1.3) \times 10^{-4}$</td>
<td>$2.5(2.8) \times 10^{-4}$</td>
<td>$2.7(2.9) \times 10^{-4}$</td>
</tr>
<tr>
<td>3.0</td>
<td>$2(3.6) \times 10^{-5}$</td>
<td>$2(2.1) \times 10^{-4}$</td>
<td>$2(2.1) \times 10^{-4}$</td>
</tr>
<tr>
<td>10.0</td>
<td>$1.6(2.0) \times 10^{-3}$</td>
<td>$1.5(1.4) \times 10^{-4}$</td>
<td>$1.5(1.4) \times 10^{-4}$</td>
</tr>
</tbody>
</table>

is the scalar diquark) is also $1/\sqrt{2}$ for the proton [27]. We find that for $N_c = 1.95(2.02)$ the branching ratio for $\Lambda_c^- p\rho^0$ is almost the same for $q^2/m_c^2 = 0.3$ and $q^2/m_c^2 = 0.5$. Table I shows explicitly that, for $D^+ \rightarrow p\rho^0(\omega) \rightarrow p\pi^+\pi^-$, a_{max} is at most 10^{-4} no matter what N_c is. From Tables II and III we can see that in the region of N_c allowed by the experimental data, a_{max} is of the order 10^{-4} for $D^0 \rightarrow \phi\rho^0(\omega) \rightarrow \phi\pi^+\pi^-$ and $D^+ \rightarrow \pi^+\rho^0(\omega) \rightarrow \pi^+\pi^+\pi^-$. It can also be seen explicitly from Tables IV and V that there is a range for N_c in which a_{max} may be bigger than 1% for $D^0 \rightarrow \pi^0\rho^0(\omega) \rightarrow \pi^0\pi^+\pi^-$ and $\Lambda_c^- \rightarrow p\rho^0(\omega) \rightarrow p\pi^+\pi^-$. In Fig. 2 we plot the numerical values of the CP-violating asymmetries, a, for $D^+ \rightarrow \pi^0\rho^0(\omega) \rightarrow \pi^0\pi^+\pi^-$ with $N_c = 1.99$ and $q^2/m_c^2 = 0.3, 0.5$ (for $N_c = 1.98$ we have similar results) as a function of the invariant mass of the $\pi^+\pi^-$ pair.

TABLE V. Values of $\text{Br}(\Lambda_c^- p\rho^0(\omega) \rightarrow p\pi^+\pi^-$, with $q^2/m_c^2 = 0.3(0.5)$.

<table>
<thead>
<tr>
<th>N_c</th>
<th>$\text{Br}(\Lambda_c^- p\rho^0(\omega)$</th>
<th>a_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>$2.2(1.9) \times 10^{-4}$</td>
<td>$2.0(1.8) \times 10^{-4}$</td>
</tr>
<tr>
<td>1.0</td>
<td>$2.4(2.1) \times 10^{-5}$</td>
<td>$3.3(3.0) \times 10^{-4}$</td>
</tr>
<tr>
<td>1.5</td>
<td>$2.6(2.3) \times 10^{-6}$</td>
<td>$7.3(6.7) \times 10^{-4}$</td>
</tr>
<tr>
<td>1.9</td>
<td>$4.9(4.3) \times 10^{-8}$</td>
<td>$3.9(4.1) \times 10^{-3}$</td>
</tr>
<tr>
<td>1.95</td>
<td>$7.9(6.9) \times 10^{-9}$</td>
<td>$1.0(1.1) \times 10^{-2}$</td>
</tr>
<tr>
<td>2.0</td>
<td>$7.5(7.0) \times 10^{-9}$</td>
<td>$-1.1(-1.0) \times 10^{-2}$</td>
</tr>
<tr>
<td>2.1</td>
<td>$7.5(6.5) \times 10^{-9}$</td>
<td>$-3.4(-3.1) \times 10^{-3}$</td>
</tr>
<tr>
<td>2.5</td>
<td>$1.0(0.92) \times 10^{-6}$</td>
<td>$-8.0(-7.4) \times 10^{-4}$</td>
</tr>
<tr>
<td>3.0</td>
<td>$2.7(2.5) \times 10^{-6}$</td>
<td>$-1.4(-1.0) \times 10^{-2}$</td>
</tr>
<tr>
<td>10.0</td>
<td>$1.6(1.4) \times 10^{-4}$</td>
<td>$-1.1(-1.1) \times 10^{-4}$</td>
</tr>
</tbody>
</table>

It should be noted that in Fig. 2 we used the first set of form factors. The results for the second set change very little. In Fig. 3 we plot the results for $\Lambda_c^- p\rho^0(\omega) \rightarrow p\pi^+\pi^-$, with $N_c = 2.02$ and $q^2/m_c^2 = 0.3, 0.5$ (for $N_c = 1.95$ we have similar results). In both of these plots we find that we can have $a_{\text{max}} \approx 1\%$.

IV. SUMMARY AND DISCUSSIONS

The aim of the present work was to look for possibilities of large CP violation in charmed meson or baryon nonleptonic decays, $H_c \rightarrow f\pi^+\pi^-$. Since CP violation in the charm sector is usually estimated to be very small (less than 10^{-3}), it would be fascinating to find cases where the CP violation is large ($>1\%$). Following our previous work on CP violation in the b-quark system [7,8], we have studied direct CP violation in $D^+ \rightarrow \pi^+\rho^0(\omega) \rightarrow \pi^+\pi^+\pi^-$, $D^+ \rightarrow \pi^+\rho^0(\omega) \rightarrow \pi^+\pi^+\pi^-$, $D^0 \rightarrow \phi\rho^0(\omega) \rightarrow \phi\pi^+\pi^-$, $D^0 \rightarrow \eta\rho^0(\omega) \rightarrow \eta\pi^+\pi^-$, $D^0 \rightarrow \eta'\rho^0(\omega) \rightarrow \eta'\pi^+\pi^-$, $D^0 \rightarrow \pi^0\rho^0(\omega) \rightarrow \pi^0\pi^+\pi^-$, and $\Lambda_c^- \rightarrow p\rho^0(\omega) \rightarrow p\pi^+\pi^-$ via $\rho-\omega$ mixing.
The advantage of ρ-ω mixing is that the strong phase difference is large (passing through 90° at the ω resonance), for some fixed N_c. As a result, the CP-violating asymmetry a has a maximum a_{max} when the invariant mass of the $\pi^+\pi^-$ pair is in the vicinity of the ω resonance. It was shown that a_{max} depends strongly on the effective parameter L. Thus, the experimental measurements more difficult. Furthermore, the study of CP violation with smaller branching ratios and this will make the measurements in order to get a deeper understanding of CP violation, the branching ratios for $D^0 \rightarrow \pi^+\pi^-$, $D^0 \rightarrow \eta\eta^*(0) \rightarrow \eta\eta^+\pi^-$, and $D^0 \rightarrow \eta^*\rho^0(\omega) \rightarrow \eta^*\pi^+\pi^-$, a_{max} is small over the whole range, N_c. However, for others we found that in order to have $a_{\text{max}} \approx 1\%$, N_c should be in a particular range in which the amplitude t'_p becomes small enough so that we can have large CP violation. This is because when t'_p is small r can become large, leading to large CP violation. However, whether or not N_c can be in such a range is determined by the decay branching ratios for $H_i \rightarrow f\rho^0$.

The experimental data exclude the possibility of large CP violation in $D^+ \rightarrow \pi^+\rho^0(\omega) \rightarrow \pi^+\pi^+\pi^-$ and $D^0 \rightarrow \phi\rho^0(\omega) \rightarrow \phi\pi^+\pi^-$, however, since we do not have data for $D^0 \rightarrow \pi^0\rho^0$ and $\Lambda_c \rightarrow p\rho^0$ at present, it is still possible that we could have $a_{\text{max}} \approx 1\%$ for $D^0 \rightarrow \pi^0\rho^0(\omega) \rightarrow \pi^0\pi^+\pi^-$ and $\Lambda_c \rightarrow p\rho^0(\omega) \rightarrow p\pi^+\pi^-$ via ρ-ω mixing in some small range of N_c. We estimated that in order to have large CP violation, the branching ratios for $D^0 \rightarrow \pi^0\rho^0$ and $\Lambda_c \rightarrow p\rho^0$ should be around $10^{-9} - 10^{-8}$ ($N_c = 1.98$ or 1.99 for $D^0 \rightarrow \pi^0\rho^0$ and $N_c = 1.95$ or 2.02 for $\Lambda_c \rightarrow p\rho^0$). It will be very interesting to look for such large CP-violating asymmetries in the experiments in order to get a deeper understanding of the mechanism for CP violation. On the other hand, as explained in Sec. III C, the larger asymmetries are associated with smaller branching ratios and this will make the measurements more difficult. Furthermore, the study of CP violation in Λ_c decays may provide insight into the baryon asymmetry phenomena required for baryogenesis.

Our analysis can be extended straightforwardly to say, $\Xi'_c \rightarrow \Lambda\rho^0(\omega) \rightarrow \Lambda\pi^+\pi^-$, and also $D_s \rightarrow K^*\rho^0(\omega) \rightarrow K^*\pi^+\pi^-$, if we assume SU(3) flavor symmetry. In the calculations of CP violating asymmetry parameters we need the Wilson coefficients for the tree and penguin operators at the decay scale m_c. We calculated the six Wilson coefficients to the next-to-leading order by applying the formalism developed in Refs. [15,16] and the relevant anomalous dimension matrix elements. Since we only considered strong penguin operators, and since the strong interaction is independent of flavor, the relevant formulas in Refs. [15,16] can be applied to c decays directly. We worked with the renormalization-scheme-independent Wilson coefficients. Furthermore, to be consistent, we introduced the effective Wilson coefficients by taking into account the operator renormalization to the one-loop order.

There are some uncertainties in our calculations. While discussing direct CP violation, we have to evaluate hadronic matrix elements where nonperturbative QCD effects are involved. We have worked in the factorization approximation, which has not been justified completely up to now. It has been pointed out that this approximation may be quite reliable in energetic weak decays [9,10]. There has also been some discussion on nonfactorizable contributions. In Ref. [12] the authors introduced two phenomenological parameters, ϵ_1 and ϵ_8, which are scale dependent to parametrize nonfactorizable effects. The scale dependence of ϵ_1 and ϵ_8 cancels that of the Wilson coefficients c_1 and c_2 and it leads to a_{eff}^1 and a_{eff}^2. In Refs. [11,13], renormalization-scheme-independent coefficients are used and with the definition in Eq. (60) an effective N_c is introduced to describe nonfactorizable effects. On the other hand, Buras and Silvestrini [14] demonstrated that in the approach of Ref. [12], it is possible to find a renormalization scheme in which the nonfactorizable parameters ϵ_1 and ϵ_8 vanish at any chosen decay scale. In principle, such a scheme can be determined by experimental data. However, the present data is not accurate enough.

We can see from these investigations that more work is needed before we can judge the factorization approach. Since c decays are less energetic than b decays, we expect even more nonfactorizable effects. In the present work, as in Refs. [11,13], we introduced an effective value of N_c in Eq. (60) and assumed that it is the same for each a_{eff}^i ($i = 1, \ldots, 6$). The value of N_c should be determined by experimental data and it will, in general, depend on the decay channel, since hadronization dynamics can be different for each channel. Furthermore, its value depends on the Wilson coefficients to be used. We avoid the scheme dependence in Wilson coefficients by using the scheme independent ones. However, such coefficients do depend on infrared regulators and gauge. In principle, this dependence should be canceled by the matrix elements of the operators. Furthermore, while discussing the processes $D^+ \rightarrow \pi^+\rho^0(\omega) \rightarrow \pi^+\pi^+\pi^-$ and $D^0 \rightarrow \pi^0\rho^0(\omega) \rightarrow \pi^0\pi^+\pi^-$ we have to evaluate the matrix elements in some phenomenological quark model. All these factors may lead to some uncertainty in our numerical results.

ACKNOWLEDGMENTS

One of us (Guo) would like to thank A.J. Buras for stimulating communications. This work was supported in part by the Australian Research Council and the National Science Foundation of China.

(1994).
373 (1989).