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The strong isospin-breaking correction for the gluonic penguin contribution to e8Õe at next-to-
leading order in the chiral expansion
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Department of Mathematics and Statistics, York University, 4700 Keele St., Toronto, Ontario, Canada M3J 1P3
and Special Research Centre for the Subatomic Structure of Matter, University of Adelaide, Australia 5005

~Received 27 July 2000; published 5 December 2000!

The strong isospin-breaking correctionVst , which appears in estimates of the standard model value for the
directCP-violating ratioe8/e, is evaluated to next-to-leading order~NLO! in the chiral expansion using chiral
perturbation theory. The relevant linear combinations of the unknown NLOCP-odd weak low-energy con-
stants~LEC’s! which, in combination with one-loop and strong LEC contributions, are required for a complete
determination at this order, are estimated using two different models. It is found that, to NLO,Vst50.08
60.05, significantly reduced from the ‘‘standard’’ value, 0.2560.08, employed in recent analyses. The po-
tentially significant numerical impact of this decrease on standard model predictions fore8/e, associated with
the decreased cancellation between gluonic penguin and electroweak penguin contributions, is also discussed.
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I. INTRODUCTION

The recent improved experimental results for the ratio
direct to indirectCP-violation parameters,e8/e, obtained by
both the KTEV and NA48 Collaborations@1,2#, have spurred
on continuing efforts to reduce the theoretical uncertain
in our expectations for the value ofe8/e in the standard
model. While short-distance effects are under control~the
Wilson coefficients of the effective weak Hamiltonian bei
known to two-loop order! @3#, there remains significant un
certainty in the theoretical calculation of the long-distan
K→pp hadronic matrix elements. These have been e
mated using a number of techniques and models in R
@4–10# ~for recent reviews, see Refs.@11,12#!.

An important ingredient in the calculation of the hadron
matrix elements is the inclusion of isospin-breaking~IB! ef-
fects. Strong isospin breaking arising from the up/do
quark mass difference,dm[md2mu , induces aDI 53/2
contribution to theK→pp matrix elements of the gluonic
penguin operator,Q6,1 which, in the isospin limit, is pure
DI 51/2. This ‘‘leakage’’ of octet (DI 51/2) strength into
the DI 53/2 component of theK0→pp decay amplitudes
has the effect of reducing the magnitude of theQ6 contribu-
tion to e8/e which one obtains in the isospin-conserving~IC!
limit. This is conventionally represented by a multiplicativ
factor 12Vst applied to theDI 51/2 matrix element. Explic-
itly, one writes@3#

e8

e
;@P(1/2)2P(3/2)# ~1!

*Email address: wolfe@niobe.iucf.indiana.edu
†Email address: maltman@fewbody.phys.yorku.ca
1We employ throughout the paper the notation of Ref.@3# for the

four-quark operators of the effective weak Hamiltonian.
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P(1/2)5( yi^Qi&0~12Vst!,

P(3/2)5
1

v ( yi^Qi&2 , ~2!

where v.1/22, theyi are the parts of the Wilson coeffi
cients associated with the top quark@and hence, through the
corresponding Cabibbo-Kobayashi-Maskawa~CKM! matrix
elements, with directCP violation#, and the subscripts 0 an
2 denote the isospin of thepp final state. Note that we hav
dropped overall factors in Eq.~1! in order to highlight the
dependence onVst . In typical analyses one finds a signifi
cant cancellation between theDI 51/2 andDI 53/2 contri-
butions, and therefore a nontrivial sensitivity toVst .

The IB correction,Vst , is obtained as follows. Writing
the isospin decomposition of theK0→pp decay amplitudes
as

A005A1

3
A0eif02A2

3
A2eif2,

A125A1

3
A0eif01

1

A6
A2eif2, ~3!

whereA0 andA2 are, respectively, the~in general complex-
valued! DI 51/2 andDI 53/2 amplitudes, andf i5d i

pp are
the usualp2p scattering phases,Vst is given by the ratio

Vst5
Im dA2

v Im A0
~4!
©2000 The American Physical Society08-1
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wheredA2 is the octet leakage contribution to theDI 53/2
amplitude, andv5(ReA2 /ReA0).1/22.2 ~reflecting the
DI 51/2 rule enhancement!.2

The possibility that the octet leakage contribution to t
matrix element ofQ6 induced bydmÞ0 and electric charge
differences could have a significant impact on estimates
e8/e was first discussed in Refs.@13,14#. At leading order
~LO! in the chiral expansion, the leakage contribution toA2

is saturated byp0-h mixing and the kinematic effect pro
duced by theK0-K6 mass splitting and the momentum
dependence of the LO weak vertices. This leads to the w
known LO valueVst50.13. The difference between this L
value and the conventional value employed in recent an
ses ofe8/e, Vst50.2560.08 @14#, results from an estimate
of those next-to-leading order~NLO! effects mediated by the
h8 through theK→ph8 transition andp-h8 mixing, which
effects would be expected to be dominant in the largeNc

limit. In the framework of the conventional low-energy e
fective theory employed in this paper~that involving only the
p, K andh degrees of freedom, in which theh8 and other
higher resonances have been integrated out!, such effects
correspond to contributions to the NLO weak low-ener
constants~LEC’s! ~to be discussed below!, although use of
phenomenological values for the octet-singlet mixing an
also effectively incorporates NLOh8-mediated contributions
proportional to the renormalized strong LEC,L7

r , of Gasser
and Leutwyler@15#. As has been recently pointed out, how
ever, other NLO contributions might also be important. A
example is that discussed in Ref.@16#. If one considers the
effect of NLO strong dressing on the external legs inK
→pp, there is a large NLOh8-induced contribution~pro-
portional to L7

r ) associated with treatingp0-h mixing at
NLO. This mixing contribution, however, always occurs
the fixed combination 3L7

r 1L8
r ~see, for example, the ex

pressions for the angles,û1 andû2, describing NLO mixing,
given in Ref.@17#!. As pointed out in Ref.@16#, there is a
strong numerical cancellation between theh8-induced L7

r

and the scalar-resonance-inducedL8
r contributions, clearly

demonstrating the importance of including NLO contrib
tions other than those induced by theh8. The effect of this
cancellation was found, in Ref.@16#, to lower Vst to 0.16
60.03~thus increasing the standard model prediction ofe8/e
by about 21% @16#!. The possibility of additional non-
h8-induced NLO contributions toVst was also recently ex
plored in Ref.@18#. The focus of this work was on IB con
tributions associated with NLO weak LEC’s, and the nume
cal results suggest the possibility of very large correction
Vst associated with scalar meson exchange. However, a
discuss below, the results of Ref.@18# suffer from important
technical shortcomings which make them numerically un
liable. The significance of the possible reduction in the va
of Vst suggested by Refs.@16,18# is obvious from Eqs.~1!
and ~2!.

2We follow standard phase conventions in whichA0 and A2 are
real in the absence ofCP-violation.
01400
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Chiral perturbation theory~ChPT! provides a natural
framework for the calculation ofVst since it ensures that al
contributions of a given chiral order may be obtained in
computationally straightforward manner. The complete se
NLO contributions is a sum of NLO strong LEC, one-loo
and NLO weak LEC contributions, each of which is sep
rately renormalization-scale-dependent, divergent, and th
fore unphysical. The sum of these contributions is, howev
necessarily finite and scale-independent. The cancellatio
both divergences and scale-dependence in the final re
provides a highly nontrivial check of the explicit calcula
tions. The set of Feynman graphs to be evaluated is show
Fig. 1, where Fig. 1~a! represents the LO, Fig. 1~c! the NLO
strong LEC, Figs. 1~b! and 1~d!–1~g! the one-loop, and Fig
1~h! the NLO weak LEC contributions, respectively. In Re
@16# only the NLO contributions associated with extern
line dressing@Figs. 1~b,c!# were considered, while Ref.@18#
examined only the contribution of Fig. 1~h!.

In Refs.@19,20# it was shown that, in theCP-even sector,
the inclusion of one-loop isospin-breaking corrections inK
→pp decay amplitudes acts todecreasethe magnitude of
the octet leakage contribution to theDI 53/2 amplitude. This
decrease ensures that theDI 51/2 rule enhancement obtaine
in an IC analysis is accurate to better than 10%. In
present paper we obtain a complete NLO@O(p2dm)# deter-
mination ofVst in ChPT, and show that the same qualitati
situation holds in theCP-odd sector. This means, accordin
to Eq. ~4!, that one should expect a further reduction ofVst
beyond that associated with the NLO strong mixing effe
studied in Ref.@16#. The absence of reliable values for th
CP-odd weak LEC’s isthe crucial stumbling block on the
way to an accurate numerical result forVst at NLO, the NLO
strong LEC and loop corrections being, as we will see belo
well-determined. In the present work we appeal to two mo
els ~the weak deformation model, and the chiral qua
model! of the contribution of the gluonic penguin operato
Q6, to theCP-odd weak LEC’s in order to probe the prob

FIG. 1. Feynman diagrams forK→pp up toO(p4) in the chi-
ral expansion. Closed circles representO(p2) strong vertices, open
circles O(p4) strong vertices, closed boxesO(p2) weak vertices,
and open boxesO(p4) weak vertices. No one-line weak tadpole
occur because, in the weak effective Lagrangian employed,
have already been rotated away.~b! and~c! should be understood to
represent collectively the strong dressing on all the external lin
8-2
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able scale of the model-dependence in our estimates ofVst .
It is important to emphasize that, while the estimates of
weak LEC contributions toVst are model-dependent, th
one-loop and strong LEC contributions~discussed below!
are, though scale-dependent, model-independent. As we
see, the combination of these model-independent NLO c
tributions is, at typical hadronic scales, rather large, a
negative, suggesting a significant reduction ofVst as com-
pared to the conventional value.

The rest of the paper is organized as follows: In the n
section we briefly review the chiral Lagrangian approach
the calculation of nonleptonic kaon decay amplitudes a
discuss the models employed for the relevant NLO we
LEC combinations. In Sec. III we present our numerical
sults forVst . The impact of our findings on theoretical es
mates for the value ofe8/e in the standard model are dis
cussed and conclusions are presented in Sec. IV.

II. CP-ODD K0\pp DECAY AMPLITUDES IN CHIRAL
PERTURBATION THEORY

The diagrams which have to be calculated to obtain
K→pp decay amplitudes to NLO are, as noted above, th
given in Fig. 1. We now briefly review the ingredien
needed for these calculations, referring the reader to
@19–21# for the technical details. The low-energy represe
tation of the nonleptonic weak interactions is obtained fr
the effective chiral Lagrangian,LW , which was written to
LO in Ref. @22#, and up to NLO in Ref.@23# ~or, in equiva-
lent reduced forms, in Refs.@24,25#!. ~In the CP-odd case,
the gluonic penguin operator, which is the focus of t
present work, and which, together with the electroweak p
guin operator, dominatese8/e in the standard model, is pur
octet; we, therefore, need only the octet components ofLW .)
We work with a form of the effective weak chiral Lagrangia
in which the weak mass term appearing at LO@22# has been
rotated away@23#. The LO~second order in the chiral coun
ing! part of the octet Lagrangian,L W(8)

(2) , is thus given, in the
absence of external fields, by@22#

LW(8)
(2) 5c2

6Tr@l6]mU†]mU# ~5!

whereU5exp(il•p/F), with pa the usual octet of pseudo
scalar fields, andF is the pion decay constant in the chir
limit. The superscripts6 label theCP-even and odd case
respectively, withl15l6 andl25l7 . c2

2 thus represents
the LO CP-odd octet weak coupling strength.

The NLO octet weak effective chiral Lagrangian is sim
larly given by either@24#

LW(8)
(4) 5

c2
6

Fp
2 (

i 51

37

Ni
6Oi~l6!, ~6!

or @23,25#

LW(8)
(4) 5(

i 51

48

Ei
6Õi~l6! ~7!
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where the operators which contribute to theK→pp ampli-
tudes correspond toi 5$5,6, . . . ,13% and i 5$1, . . . 5,
10, . . .,15,32, . . . ,40% in Eqs. ~6! and ~7! respectively. In
quoting our results below, we will employ the notation
Eq. ~6!, and hence work with the operator basis given by

O5~l6!5Tr@l6$S,LmLm%#

O6~l6!5Tr@l6Lm#Tr@SLm#

O7~l6!5Tr@l6S#Tr@LmLm#

O8~l6!5Tr@l6LmLm#Tr@S#

O9~l6!5Tr@l6$P,LmLm%#

O10~l6!5Tr@l6S2#

O11~l6!5Tr@l6S#Tr@S#

O12~l6!5Tr@l6P2#

O13~l6!5Tr@l6P#Tr@P# ~8!

where Lm5 iU†]mU, S5x†U1U†x and P5 i(x†U
2U†x), with x52B0Mq ~whereMq is the quark mass ma
trix!. Note that in Eq.~6! the weak LEC’s are expressed a
products of factorsc2

2/Fp
2 and Ni

2 . The latter will, hence-
forth, be referred to as reducedCP-odd NLO weak LEC’s.
~As we will see below, this reduced form has certain adv
tages for estimates ofVst .)

The remaining ingredient needed in order to calculate
diagrams of Fig. 1 is the strong chiral Lagrangian. We u
the standard form of Gasser and Leutwyler given byLS

5L S
(2)1L S

(4)1•••, where the superscripts indicate the ch
ral order and, in the absence of external fields, one has@15#

L S
(2)5

F2

4
Tr@]mU]mU†#1

F2

4
Tr@xU†1Ux†#, ~9!

L S
(4)5L1~Tr@]mU]mU†# !2

1L2Tr@]mU]nU†# Tr@]mU]nU†#

1L3Tr@]mU]mU†]nU]nU†#

1L4Tr@]mU]mU†# Tr@xU†1Ux†#

1L5Tr@]mU]mU†~xU†1Ux†!#

1L6~Tr@xU†1Ux†# !2

1L7~Tr@xU†2Ux†# !21L8Tr@xU†xU†

1Ux†Ux†#1H2Tr@xx†#, ~10!

where $Li%, F and B0 are the usual strong LEC’s, in th
notation of Ref.@15#. Recall that, when using dimension
regularization, the NLO LEC’s,$Li%, are formally divergent
and have a Laurent expansion ind24 ~whered is the space-
time dimension! of the form
8-3
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Li5G il1Li
r1Li

(21)~d24!1 . . . ~11!

where

l5
1

32p2 F S 2

d24D1gE212 ln~4p!G . ~12!

The $Li
r% are the usual scale-dependent renormalized

sions of theLi @15#, for which we employ the values found i
Ref. @26#, while the$G i% are constant coefficients~frequently
called scaling coefficients! which govern the scale depen
dence of theLi

r . The $Li
(21)% contribute first to physica

observables at next-to-next-to-leading~sixth! order~NNLO!,
through one-loop graphs involving a single NLO vertex p
portional toLi and, as such, are on a similar footing as t
LEC’s present inL S

(6) . @The NLO weak LEC’s,$Ni
6%, in

Eq. ~6!, of course, have a similar expansion.#
The formal difference between theK0→pp vertices ex-

tracted from Eq.~5! using l1 and l2 is the switchc2
1

→ ic2
2 . This is also, therefore, the only difference betwe

the corresponding LOCP-even andCP-odd decay ampli-
tudes. Since the NLO strong LEC and one-loop contributio
to these amplitudes involve a single LO weak vertex, o
readily sees, from Fig. 1, that the substitutionc2

1→ ic2
2 also

converts theCP-even version of these contributions into th
correspondingCP-odd version. The substitutionc2

1Ni
1

→ ic2
2Ni

2 , similarly accomplishes theCP-even→ CP-odd
conversion of the weak LEC contributions, Fig. 1~h!. If one
considers theratio of the NLO contributions to the LO con
tributions, therefore, the only difference betweenCP-even
andCP-odd cases for theK0→pp amplitudes is the differ-
ence in the numerical values and physical interpretation
the renormalized reduced weak LEC’s,Ni

r . Thus, for ex-
ample, the contributions to ImdA2 arising from the diagrams
of Figs. 1~b!–1~g! are immediately obtained from the firs
row of Table II of Ref.@19# by multiplying the entries by
ic2

2 . The formal contributions from theCP-odd NLO weak
LEC’s, @A0#WLEC and@dA2#WLEC, arising from Fig. 1~h! are
given in the Appendix in terms of theNi

2 of Eq. ~6!. Unlike
the case of theCP-even sector, where linear combinations
octet NLO weak LEC’s corresponding to isospin-conserv
contributions were fit to the availableK→pp and K
→ppp data in Ref.@27#, both theCP-odd isospin-breaking
and isospin-conserving NLO weak LEC combinations a
unknown. As there is not sufficient data available to perfo
fits analogous to those in theCP-even sector, it is necessar
to resort to models to estimate the weak LEC contributio

In general the numerical value of the isospin-conserv
combination of NLO weak LEC’s, which appears
@A0#WLEC @Eq. ~A1! of the Appendix#, can be determined
from the expressions for the hadronic matrix elements
NLO ~for which many calculations exist!. However the IB
combination which appears in@dA2#WLEC cannot be so de
termined. In what follows we consider three models wh
could be used to estimate the NLO weak LEC contribution
Vst . These are the weak deformation model~WDM! of Ref.
@24# from which direct NLO weak LEC estimates are ava
able, the chiral quark model (xQM) as implemented by the
01400
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Trieste group in Refs.@8–10# for which all the necessary
ingredients required to calculate the NLO weak LEC con
butions to ImA0 and ImdA2 are readily available, and th
‘‘scalar saturation model’’ of Ref.@18#, which combines the
factorization approximation with the assumption of sca
meson exchange saturation of the relevant strong LEC’s

The weak deformation model of Ref.@24# proceeds from
the observation that the LO weak chiral Lagrangian of E
~5! can be generated from the LO strong chiral Lagrangian
Eq. ~9! by a simple ‘‘topological deformation.’’ The mode
hypothesis is that this same deformation can be used to
erate the entireDS51 chiral Lagrangian. The WDM thus
provides no information about the LO weak LEC values,c6,
but gives explicit expressions for the reduced NLO we
LEC’s, Ni

6 , in terms of the NLO strong LEC’s,Li . For the
NLO weak LEC’s relevant toK→pp we have@24#

@N5
2#WDM52

3

2
@N6

2#WDM52@N7
2#WDM52L5

@N8
2#WDM54L412L5 . ~13!

All other NLO weak LEC’s appearing in Eq.~6! vanish in
the WDM. Since, in these relations, the divergent parts of
$Li% do not generate the correct divergent parts of the$Ni

2%,
one must interpret Eq.~13! as applying to therenormalized
versions of the LEC’s. Moreover, since the scaling of t
weak LEC’s is not correctly given by that of the stron
LEC’s, Eq. ~13! can be taken to hold only at a single sca
which is assumed to be a typical hadronic scale,mh . Assum-
ing resonance dominance suggestsmh;mr . Note also that,
because of the scale dependence of the weak LEC’s, e
though, in the WDM, the remainingNi

r vanish at the as-
sumed matching scalemh , they are nonzero at other scale
Numerical values for the IC and IB combinations of NL
weak LEC’s relevant toK0→pp in the WDM can be found
in the last column of Table I, where we have used conv
tional values for the renormalized strong LEC’s,L4

r andL5
r

at m5mr taken from Ref.@26#.
In another approach, the hadronic matrix elements of

four-quark operators relevant for nonleptonic kaon dec
have been estimated in thexQM by the Trieste group
@8–10#. In particular, expressions for the gluonic pengu
contribution to the LO weak LEC’s were obtained in th
second of Refs.@10#, and preliminary estimates of the con
tribution to NLO weak LEC’s were given in Ref.@8#. As
pointed out by the authors of Ref.@8#, however, the latter
expressions contain errors and are not to be used@28#. We
have used the updated results of Ref.@9#, which give the

TABLE I. Model estimates of the NLO weak LEC combination
appearing in Eq.~A1! for the WDM andxQM as described in the
text ~with r p5mp

2 /mK
2 ).

xQM (31023) WDM ( 31023)

K̃1
22r pK̃2

2 -4.024 -0.673

J̃3
22r pJ̃4

2 -3.571 0.673
8-4
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contributions ofQ6 to A0 to NLO, to extract theCP-odd
weak LEC combination which enters ImA0. To obtain the
IB combination of NLO weak LEC’s enteringdA2, we have
calculated the matrix element^p1p0uQ6uK1&5(A3/2)dA2
in the xQM using the formalism described in Ref.@9#, to-
gether with the corrected results for the basic ingredie
required to compute such matrix elements in the model gi
there. The model parameters which enter these estimate
the constituent quark mass,M, the vacuum quark condensat
and the gluon condensate. These parameters were
strained to reproduce theDI 51/2 Rule in theCP-even sec-
tor in Ref. @9# using a matching scaleLx50.8 GeV ~the
scale at which the scale-dependence of the chiral loops
that of the short-distance expressions is roughly matche
the model!. The fitted parameters have the valuesM50.2
60.02 GeV, ^q̄q&5(20.240210

130 GeV)3, and ^asGG/p&
5(0.33460.004 GeV)4. The resulting values for the NLO
weak LEC combinations are presented in the first column
Table I. Numerical estimates for the NLO weak LEC cont
butions to ImA0 and ImdA2 are presented in the next se
tion.

The third approach to estimating theCP-odd weak LEC’s
is that of Ref.@18#. In this reference, one begins with th
‘‘factorization approximation’’ forQ6,3 in which the low-
energy representation ofQ6 is assumed to be given by th
product of the low-energy representations of the scalar d
sities of which the unrenormalized operator is formally
product. Since the low-energy representation of each s
density is obtained by taking the derivative ofLS@x,x†#,
with respect to the appropriate component ofx or x† ~treated
here as external sources! @15#, the model version of the low
energy representation ofQ6 becomes the product of tw
such derivatives. This product can be organized by ch
order. The LO term~second order in chiral counting!, arises
from the product of the derivatives ofL S

(2) and L S
(4) , and

leads to the conventional factorization approximation
c2

2 ,

c2
25

Gf

A2
VusVudIm C6~16B0

2Fp
2 L5! ~14!

3The factorization approximation becomes exact in the limit
largeNc . In this limit, takingQ6 for example, if one renormalize
the two densities of whichQ6 is a formal product, then one wil
also have renormalized the four-quark operatorQ6. For two such
renormalized densities,J(x) andJ8(y), at differentpointsx,y, one
can straightforwardly construct the low-energy representation of
productJ(x)J8(y) using standard methods. In general, of cour
the low-energy representation of such a product isnot simply the
product of the low-energy representations of the individual de
ties, but also contains seagull terms. It turns out that, forQ6, the
NLO part of this representation, which is the part investigated
the authors of Ref.@18#, does indeed contains seagulls. Since th
diverge asx→y, it is necessary to interpret the factorization a
proximation as corresponding to an approximate low-energy re
sentation ofQ6 obtained by dropping the seagull terms in the lo
energy representation ofl imx→yJ(x)J8(y), i.e., to one obtained by
taking simply the product of the low-energy representations of
two densities.
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whereC6 is the Wilson coefficient accompanyingQ6 in the
expressions for the effective weak Hamiltonian.4 At NLO,
having dropped the seagull contributions associated with
second derivative ofL S

(8) with respect to the sources, one
left with two types of terms, those involving a product of tw
derivatives ofL S

(4) , and those involving a product of on
derivative ofL S

(2) and one ofL S
(6) . Let us denote the result

ing contributions to the factorization approximation for th
~nonreduced! NLO weak LEC’s,Ei

2 , ~as employed in Ref.
@18#! by @Ei

2#1 and@Ei
2#2, respectively. The authors of Re

@18# then employ a model in which the relevantrenormalized
fourth order and sixth order strong LEC’s are assumed to
saturated by scalar resonance exchange. There is, howev
problem with the approach of Ref.@18#, associated with the
@Ei

2#1 contributions. To understand the origin of this pro
lem, consider, for example, the results of Eq.~17! of Ref.
@18#, translated into our notation:

@E1
2#15@E3

2#15@2E5
2#15

Gf

A2
VusVudIm C6~32B0

2!L8
2 .

~15!

As noted above,L8 has a Laurent expansion of the for
given by Eq.~11!. Note, first, that this means that the co
tributions@Ei

2#1 of Eq. ~15! begin atO@1/(d24)2#, in con-
trast to the actualEi

2 , whose Laurent expansions begin
O@1/(d24)#. While one might plausibly ignore this discrep
ancy, arguing that only the finite parts of the expressions
some hadronic scale are to be used in any case, a re
problem remains, even for the finite parts. Explicitly, the fa
that both factors ofL8 in Eq. ~15! contain a 1/(d24) term
means that the finite part ofL8

2 is not @L8
r #2, as assumed in

Ref. @18#, but rather@L8
r (m)#215/(384p2)L8

(21)(m), where
the explicit value ofG8, given in Ref.@15# has been used
Since, as explained above, theLi

(21) are on the same footing
as the sixth order strong LEC’s which enter@Ei

2#2, the
model expressions of Ref.@18# for the sum@Ei

2#11@Ei
2#2

are numerically incomplete. The model, moreover, provid
no means of estimating theLi

(21) , making it impossible to
correct this defect. In view of this problem, we conclude th
at present, it is not possible to estimate the NLO weak C
odd LEC’s using the factorization approximation.

Given the problem just discussed with the numerical e
mates of Ref.@18#, we restrict our attention to the WDM an
xQM in obtaining estimates for the NLO weak LEC contr
butions to ImA0 and ImdA2. The resulting values forVst
will be given in the next section. Since thexQM is a micro-
scopic model, and the WDM is not, we will take the value
Vst obtained using the former model as our central val
and use the deviation from this central value of the res
obtained using the WDM as aminimal measure of the theo

f

e
,

i-

y
e

e-

e

4In ChPT,c2
2 is finite, and scale-independent, whereasL5 is di-

vergent. To make sense of this relation one, therefore, usually
sumes thatL5 is to be replaced by its renormalized value,L5

r (m),
evaluated at some typical hadronic scalem5mh .
8-5
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retical uncertainty in our prediction forVst associated with
the model dependence of the weak NLO LEC’s.

III. NUMERICAL RESULTS

The isospin-breaking correction to the gluonic peng
operator,Q6, evaluated toO(p2dm), can be written in terms
of its LO @O(dm)# value and NLO corrections as

Vst
(2)@11R22R0# ~16!

with

Vst
(2)5

A2

6v

B0dm

~m̄K
2 2mp

2 !
~17!

wherem̄K5(mK01mK1)/2. @Note that the result of Eq.~17!
is unambiguous and independent of the LO weak coup
c2

2 .# The NLO corrections,Ri , are given by

R05
Im A0

(NLO,ND)

Im A0
(LO)

, R25
Im dA2

(NLO,ND)

Im dA2
(LO)

~18!

where the superscript (NLO,ND) indicates the sum of non
dispersion NLO contributions~involving NLO weak and
strong LEC’s and the nondispersive parts of loop graph!.
Note that, in Eq.~18!, R2 arises from IB effects, whereasR0
is purely isospin-conserving.„The IB correction toR0 would
generate a contribution toVst of O(@dm#2), and thus is
beyond the scope of the present work.… To separate the
model-independent contributions associated with strong L
and loop effects@Figs. 1~b!–1~g!# from those of the model-
dependent NLO weak LEC terms@Fig. 1~h!#, it is convenient
to further expandRi as

Ri5Ri
(non2WLEC)1Ri

(WLEC) ~19!

where the superscripts indicate NLO weak LEC~WLEC!
and one-loop-plus-strong-LEC~non-WLEC! contributions
respectively. We begin our discussion with the non-WLE
contributions. These are model-independent and unamb
ous, albeit renormalization-scale-dependent, since the N
contributions concerned all involve exactly one weakO(p2)
vertex. The resulting overall factor ofc2

2 in the non-WLEC
part of the numerator of Eq.~18! therefore cancels with the
corresponding factor in the denominator. This cancellat
removes all of the short-distance uncertainties~Wilson coef-
ficients, CKM matrix elements, etc.! contained inc2

2 . In
addition, because the LO coupling strength cancels and
strong vertices~if any! are identical for theCP-even and
CP-odd cases, diagram-by-diagram, the non-WLEC con
butions toVst are ‘‘universal,’’ that is, they are the same fo
CP-even andCP-odd cases. To evaluate these contributio
we use as numerical input the valuesmp5135 MeV, m̄K
5495 MeV, mh5549 MeV, and

B0dm5S md2mu

md1mu
Dmp

2 555526674 MeV2 ~20!
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~as determined by Leutwyler in Ref.@29#!. With these val-
ues, we have the usual resultVst

(2)50.128'0.13. The NLO
non-WLEC contributions toR0 andR2 are given in Table II.
The results are presented at two different renormaliza
scales,m5mh andm5mr , in order to display explicitly the
scale dependence of the non-WLEC contributions. When
ing the WDM estimate for the NLO weak LEC’s, we emplo
m5mr ~consistent with the expectations of resonance sa
ration!, and when using thexQM estimates,m50.8 GeV
~the matching scale employed in Ref.@9# in obtaining fits for
the xQM parameters!.

It is immediately apparent that the non-WLEC contrib
tions toR0 andR2 both act to reduceVst as compared to its
LO value. TheR2 non-WLEC contribution is weakly scale
dependent and, being ‘‘universal,’’ follows immediate
from the correspondingCP-even results of Ref.@19#. Al-
though for scalesm;mr R0

(non2WLEC) is positive, and hence
acts to lowerVst , the scale dependence, in this case, is s
nificantly stronger. The increase in the magnitude of ImA0
associated with the loop contributions is what one wo
expect given the attractive final state interactions~FSI! in the
I 50 channel, and is analogous to theA0 FSI enhancemen
discussed previously for theCP-even case@30,31,27#. The
effect of FSI on theCP-odd amplitudes has also been r
cently discussed in Refs.@32–34#. In Refs.@32,34# it is ar-
gued that the value of ImA0 obtained from approache
which do not generate the final statepp I 50,2 phases for
the I 50,2 K→pp amplitudes should be enhanced by F
by a factor of;1.55, while the value of ImA2 should be
suppressed by the weakly repulsiveI 52 FSI by a factor of
;0.92. The numerical values of the enhanceme
suppression are obtained using the Omnes representatio
the amplitude, and correspond to the subtraction poins
50, for which the ChPT representation of the amplitude
presumed to be accurate. It should be borne in mind that
I 50,2 FSI, corresponding to Fig. 1~f!, are already correctly
included in our calculations, up to NLO in the chiral expa
sion. That theI 50 FSI, for example, produce a significa
enhancement of ImA0, follows from the known FSI en-
hancement ofA0 in theCP-even case@27# and the ‘‘univer-
sality’’ of the one-loop contributions. One should also no
that the Omnes function part of the representation of
amplitudes does not incorporate all of the NLO effects; so
NLO effects remain in the polynomial prefactor. Thus t
question of interest to us, namely whether thecompleteset of
NLO contributions raises or lowers ImA0 relative to its LO
value ~i.e., whetherR0 is positive or negative! is not deter-
mined solely by the character of the loop contributions; it
perfectly possible, in principle, for the NLO LEC contribu
tions to be sufficiently negative that the full NLO determin

TABLE II. The NLO non-WLEC contributions toR0 andR2 at
the renormalization scalem.

m R0
(non2WLEC) R2

(non2WLEC)

mh -0.01690 -0.2359
mr 0.4203 -0.3147
8-6
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tion of R0 is negative, even in the presence of the attract
FSI phases. For the models we have considered, this is
the case, and the combination of non-WLEC and WLE
contributions toR0 is positive, leading to a suppression
Vst below its LO value. It is important to note that, so lon
as one adheres to the convention of incorporating the ef
of the I 52 leakage contribution by means of a multiplicati
correction factor applied to the contribution to theI 50 am-
plitude, there is an amplification effect at work in the gluon
penguin contribution toe8/e associated with the NLO con
tributions to ImA0: the more NLO effectsincrease the
isospin-conserving contribution to ImA0, the more they si-
multaneouslydecreaseVst . Since the contribution toe8/e,
including IB, is proportional to the product of the isospi
conserving contribution and the factor 12Vst , both effects
serve to enhance theQ6 contribution toe8/e.

The NLO weak LEC contributions toR0 andR2 are esti-
mated using the models described in the previous sec
The numerical results are displayed in Table III. We no
first that the contributions toR0

(WLEC) and R2
(WLEC) in the

WDM are identical, and hence cancel in the difference,R2
2R0, entering Eq.~16!. In the xQM, the WLEC contribu-
tions toVst are positive. Indeed the results of Tables II a
III show significant cancellation between the WLEC a
non-WLEC contributions in thexQM.

The total NLO correction factor, 11R22R0 which mul-
tiplies Vst

(2) , resulting from the combination of WLEC an
non-WLEC contributions, is

11R22R05H 0.64 ~xQM!

0.27 ~WDM!.
~21!

Taking thexQM result as a central value, and the deviati
of the WDM result from this central value as a minim
measure of the model-dependence of our result, we find
IB correction to the gluonic penguin contribution toe8/e to
be

Vst50.0860.0560.01 ~22!

where the first error represents the uncertainty associ
with the model dependence of the NLO weak LEC’s, and
second the uncertainty in the input value ofB0dm. The cen-
tral value in Eq.~22! is significantly lower than both the
conventionally-employed value, 0.2560.08, and the result o
Ref. @16#, 0.1660.03. That the relative uncertainty increas
from about 30% to 62% is a reflection of the uncertain st
of our knowledge of the NLO weak LEC’s. We emphasiz
however, that, regardless of the actual value of the w
NLO LEC contributions, the model-independent one-lo
and strong LEC contributions, which are unambiguous, p

TABLE III. The NLO weak counterterm~WLEC! contributions
to the correction factors as estimated in the WDM andxQM.

xQM WDM

R0
WLEC -0.231 -0.0331

R2
WLEC 0.205 -0.0331
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duce a significant reduction ofVst for any plausible choice
of hadronic scale. As such, the inclusion of the loop con
butions is crucial to any attempt to evaluateVst beyond LO.
For the models considered for the weak NLO LEC’s, the
effect is to driveVst significantly below its LO value.

IV. DISCUSSION AND CONCLUSIONS

As noted above, the significant cancellation between g
onic penguin and electroweak penguin contributions me
that predictions for the value ofe8/e in the standard mode
can depend rather sensitively onVst . The exact degree o
sensitivity, of course, depends on the relative size of th
two dominant contributions, on which there is, as of yet,
clear theoretical concensus. In order to illustrate the imp
of the decrease ofVst from the conventional central value
0.25, to 0.0860.05, let us use the rough approximation
Eq. ~1! discussed in Ref.@5#

e8

e
}@B6~12Vst!20.4B8# ~23!

~where we have dropped an overall constant multiplicat
factor irrelevant to the present discussion!. Maintaining the
constraint,B6.B8, imposed by the Munich group@5,12#,
and using the valuesB651.060.3 andB850.860.2 em-
ployed by them, we find the results shown in Table IV. T
range of values forB6 , B8 covered in the Table IV is the
same as that in Table III of the second of Refs.@12#, from
which the values fore8/e corresponding toVst50.25 have
also been taken. All results correspond to central values
the input parametersLMS

(4) , ms(mc), mt and Iml t . From
Table IV we see that the decrease inVst corresponds to an
increase ine8/e of between 21% and 63% (40611% for the
centralB6 ,B8 values!. The increase in the magnitude ofe8/e
is between 231024 and 531024, to be compared to the
current experimental world average (19.362.4)31024. The
magnitude of the increase will, of course, be even larger
models with larger values ofB6.

It is useful to comment in more detail on the applicati
of the corrections discussed above to microscopic mod
such as thexQM and the extended NJL model@7#. Such

TABLE IV. The dependence ofe8/e on Vst in the standard
model assuming, for illustrative purposes, the central values
LMS , ms(mc), mt and Iml t as given in Refs.@12#. The units of
e8/e are 1024. The values ofe8/e corresponding toVst50.25 are
taken from Table III of the second of Refs.@12# and the range of
values forB6 , B8 is the same as covered by that table.

B6 B8 e8/e (Vst50.25) e8/e (Vst50.0860.05)

1.0 0.6 8.4 11.260.8
1.0 0.8 7.0 9.860.8
1.0 1.0 5.5 8.260.8

1.3 0.6 12.8 16.661.2
1.3 0.8 11.3 15.161.1
1.3 1.0 9.9 13.761.1
8-7
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CARL E. WOLFE AND KIM MALTMAN PHYSICAL REVIEW D 63 014008
models allow one, in principle, to compute the correctio
corresponding to the NLO weak LEC’s self-consisten
within the model, as was, for example, done by the Trie
group @9# for Im A0. As pointed out in Ref.@35# ~in the
context of thexQM), however, modifying the model predic
tions fore8/e obtained using the conventional value ofVst is
more complicated than simply re-scaling the gluonic peng
contribution to take into account the new value of the fac
12Vst . The reason is that the conventional value ofVst
~assumed to be the same for theCP-even andCP-odd cases!
enters also the determination of theCP-even amplitudeA2
in the model; a change inVst in the CP-even sector would
thus necessitate a re-fitting of the parameters of the mode
fact, in Ref.@35# it was noted that the re-fitting of paramete
necessitated by a shift inVst would almost entirely compen
sate for the effect of the shifted value ofVst in the model
determination ofe8/e. One should, however, bear in min
the caveat that this observation is based on the implicit
sumption thatVst is the same in theCP-even andCP-odd
sectors. Although this is true for the non-WLEC contrib
tions, there is no reason to expect it to be true for the N
weak LEC contributions. In fact, since these contributio
correspond to the hadronization of very different effect
operators, it would be rather surprising to find them tak
on the same values. Fortunately one does not need to sp
late idly on this question: in models such as thexQM it is
possible to simply compute the NLO terms corresponding
the weak NLO LEC contributions. Having fitted the mod
parameters in theCP-even sector, one would then obtai
self-consistently, a determination of@Vst#WLEC for both the
CP-even andCP-odd cases. In order to make sure the d
termination of the strong IB correction toe8/e is under con-
trol, it is important to separately determine the NLO we
LEC contributions to the leakage amplitudes in theCP-even
andCP-odd sectors.

To summarize, we have presented a complete NLO
culation of the isospin-breaking correction to the gluon
penguin operator contribution toe8/e,Vst . It is found that
model-independent NLO one-loop and strong LEC contri
tions are of the opposite sign to the LO contribution, a
numerically large, for typical hadronic scales. Combin
with model estimates for the NLO weak LEC contribution
we find a significant reduction ofVst as compared to the
‘‘standard’’ value of 0.2560.08. Our final result is

Vst50.0860.05 ~24!

~where the uncertainties associated with model-depend
andB0dm have been added in quadrature!. We recommend
.
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that this central value, together with, to be conservative, e
larger errors, be employed in future estimates ofe8/e in the
standard model.
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APPENDIX: NLO WEAK LEC CONTRIBUTIONS
TO K0\pp

The octet NLO weak LEC contributions to theI 50 and
I 52 CP-odd K0→pp amplitudes are given by

@A0#WLEC52
c2

2

F2S 2A6

F3 D ~mK
2 2mp

2 !~mK
2 K̃1

22mp
2 K̃2

2!

@dA2#WLEC5
c2

2

F2S 2B0~md2mu!

A3F3 D ~mK
2 J̃3

22mp
2 J̃4

2!

~A1!

where theK̃ i
2 are isospin-conserving NLO weak LEC com

binations~the CP-even analog ofK̃1
2 is discussed in Refs

@27,24#!, and theJ̃i
2 are isospin-breaking LEC combination

whoseCP-even analogs are discussed in Refs.@19,20#. In
the notation of Ref.@24# these are given by

K̃1
25@N5

2,r22N7
2,r12N8

2,r1N9
2,r #

K̃2
25@22N5

2,r24N7
2,r2N8

2,r12N10
2,r14N11

2,r12N12
2,r #

J̃3
25@N5

2,r16N6
2,r22N8

2,r2N9
2,r24N10

2,r

28N12
2,r212N13

2,r #

J̃4
25@2N5

2,r16N6
2,r1N8

2,r22N10
2,r210N12

2,r212N13
2,r #.

~A2!
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