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The strong isospin-breaking correctifhy,, which appears in estimates of the standard model value for the
directC P-violating ratioe’/ €, is evaluated to next-to-leading ord®LO) in the chiral expansion using chiral
perturbation theory. The relevant linear combinations of the unknown RIFodd weak low-energy con-
stants(LEC’s) which, in combination with one-loop and strong LEC contributions, are required for a complete
determination at this order, are estimated using two different models. It is found that, to NL60.08
+0.05, significantly reduced from the “standard” value, 0#25.08, employed in recent analyses. The po-
tentially significant numerical impact of this decrease on standard model predictiog’d épassociated with
the decreased cancellation between gluonic penguin and electroweak penguin contributions, is also discussed.
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I. INTRODUCTION with

The recent improved experimental results for the ratio of
direct to indirectC P-violation parameters'/ e, obtained by PUA=23 yi(Q)o(1- 0y,
both the KTEV and NA48 Collaboratiori4,2], have spurred
on continuing efforts to reduce the theoretical uncertainties
in our expectations for the value @&f'/e in the standard p@2)— — 2 yi(Qi), )
model. While short-distance effects are under conttioé
Wilson coefficients of the effective weak Hamiltonian being

known to two-loop ordgr([3], there remains significant un- where w=1/22, they; are the parts of the Wilson coeffi-
certainty in the theoretical calculation of the long-distancecients associated with the top qudead hence, through the
K—aa hadronic matrix elements. These have been esticorresponding Cabibbo-Kobayashi-Maska(@KM) matrix
mated using a number of techniques and models in Refglements, with diredE P violation], and the subscripts 0 and
[4-10Q) (for recent reviews, see Refd1,12). 2 denote the isospin of ther final state. Note that we have
An important ingredient in the calculation of the hadronic dropped overall factors in Eq1) in order to highlight the
matrix elements is the inclusion of isospin-breakii) ef-  dependence of),. In typical analyses one finds a signifi-
fects. Strong isospin breaking arising from the up/downcant cancellation between thel = 1/2 andAl=3/2 contri-
quark mass differencegm=my—m,, induces aAl=3/2  puytions, and therefore a nontrivial sensitivity @,
contribution to theK—>7T7T matrix elements of the glUOﬂiC The IB correction ‘Q'Sh is obtained as follows. Wrmng

pengum operatorQg,* which, in the isospin limit, is pure the isospin decomposition of th€°— 7 decay amplitudes
=1/2. This “leakage” of octet Al =1/2) strength into gs

the A1=3/2 component of th&°— 77 decay amplitudes

has the effect of reducing the magnitude of @g contribu- 1 >

tion to €’/ e which one obtains in the isospin-conserviig) Ago= \ﬁAoei $o_ \/:Azei b2,
limit. This is conventionally represented by a multiplicative 3 3
factor 1— Q¢ applied to theA | = 1/2 matrix element. Explic-

itly, one writes[3] A \/IA o 1 N @
+-= § 0 % 2 )

€ (12)_ p(3/2)

— ~[PI=PE] () _ :
€ whereA, andA, are, respectively, thén general complex-
valued Al=1/2 andAl=3/2 amplitudes, andg;= 5" are

the usualr— 7 scattering phases$); is given by the ratio

*Email address: wolfe@niobe.iucf.indiana.edu
TEmail address: maltman@fewbody.phys.yorku.ca Im A
We employ throughout the paper the notation of RR&f.for the st:—2

four-quark operators of the effective weak Hamiltonian. wlImA,

4

0556-2821/2000/63)/0140089)/$15.00 63014008-1 ©2000 The American Physical Society



where §A, is the octet leakage contribution to tid = 3/2

CARL E. WOLFE AND KIM MALTMAN PHYSICAL REVIEW D 63014008
amplitude, andw=(ReA,/ReAy)=1/22.2 (reflecting the
Al1=1/2 rule enhancemertt

The possibility that the octet leakage contribution to the
matrix element ofQg induced byém+ 0 and electric charge @ (b) ©
differences could have a significant impact on estimates of
€'/e was first discussed in Reffl13,14. At leading order
(LO) in the chiral expansion, the leakage contributiorAto
is saturated byr%-» mixing and the kinematic effect pro-
duced by theK®K* mass splitting and the momentum- (d © ®
dependence of the LO weak vertices. This leads to the well-
known LO valueQ)4=0.13. The difference between this LO
value and the conventional value employed in recent analy-
ses ofe'/e, 14=0.25+0.08[14], results from an estimate (g)\ ™
of those next-to-leading ordéNLO) effects mediated by the
7' through theK— 7%’ transition andr-»’ mixing, which FIG. 1. Feynman diagrams fé¢— w7 up to O(p?) in the chi-
effects would be expected to be dominant in the laXge- ral expansion. Closed circles represéi{p?) strong vertices, open
limit. In the framework of the conventional low-energy ef- circles O(p*) strong vertices, closed box€3(p®) weak vertices,
fective theory employed in this papéhat involving only the ~ and open boxe€)(p*) weak vertices. No one-line weak tadpoles
m, K and 7 degrees of freedom, in which th¢’ and other ~ Occur because, in the weak effective Lagrangian employed, they
higher resonances have been integrated, @iich effects have already begn rotated awéy). and(c} should be understood.to
correspond to contributions to the NLO weak Iow-energyrepresem collectively the strong dressing on all the external lines.
constant§LEC’s) (to be discussed belgwalthough use of Chiral perturbation theory(ChPT) provides a natural
phenomenological values for the octet-singlet mixing angléramework for the calculation df)g; since it ensures that all
also effectively incorporates NL@' -mediated contributions contributions of a given chiral order may be obtained in a
proportional to the renormalized strong LEC;, of Gasser ~computationally straightforward manner. The complete set of
and Leutwyler[15]. As has been recently pointed out, how- NLO contributions is a sum of NLO strong LEC, one-loop,
ever, other NLO contributions might also be important. An@nd NLO weak LEC contributions, each of which is sepa-
example is that discussed in REL6]. If one considers the ately renormalization-scale-dependent, divergent, and there-
effect of NLO strong dressing on the exiemal legstn B2/ PRIRERL T S0 oL Eees, S o celation of
T there |rs a Iargg NLOy .-|nducec.j coptrlbut_lqr(pro- both diver)g/]ences and scale—degendence in the final result
portional toL7) associated with treatingr™-» mixing at  ,,ides a highly nontrivial check of the explicit calcula-
NLO. This mixing contribution, however, always occurs in tions. The set of Feynman graphs to be evaluated is shown in
the fixed combination B7+Lg (see, for example, the ex- Fig. 1, where Fig. (a) represents the LO, Fig(d) the NLO
pressions for the angleéi and bz, describing NLO mixing, strong LEC, Figs. (b) and Xd)—-1(g) the one-loop, and Fig.
given in Ref.[17]). As pointed out in Ref[16], there is a  1(h) the NLO weak LEC contributions, respectively. In Ref.

strong numerical cancellation between thé-inducedL’,  [16] only the NLO contributions associated with external
and the scalar-resonance-inducell contributions, clearly !ine dressindFigs. 1b,0] were considered, while Ref18]

demonstrating the importance of including NLO contribu- €@mined only the contribution of Fig(H.

tions other than those induced by thé. The effect of this thelqnig:i.gigézf%ggv-liisr}g;vsn mi;{’relglz?n@ Pc-g;/rggtisoencégiﬁ
cancellation was found, in Ref16], to lower Qg to 0.16 b b 9

+0.03(thus increasing the standard model predictior’dt —mm decay amplitudes acts wecreasethe magnitude of

N~ " the octet leakage contribution to thé = 3/2 amplitude. This
b¥ _about 21%[16)). The_ possibility of additional non-  4ocrease ensures that the= 1/2 rule enhancement obtained
7'-induced NLO contributions (65, was also recently €x- i, a5 |C analysis is accurate to better than 10%. In the
pl_oreq in Ref.[ls]. The_ focus of this work was on IB CON- hresent paper we obtain a complete NLO(p26m)] deter-
tributions associated with NLO weak LEC'’s, and the numeri-mination of(), in ChPT, and show that the same qualitative
cal results suggest the possibility of very large corrections Q;yation holds in thec P-odd sector. This means, according
Qst associated with scalar meson exchange. quever, as wg Eq. (4), that one should expect a further reduction(kf,
discuss below, the results of R¢L8] suffer from important oy onq that associated with the NLO strong mixing effects

technical shortcomings which make them numerically unrexygied in Ref[16]. The absence of reliable values for the

liable. The significance of the possible reduction in the valug- p_oqq weak LEC's isthe crucial stumbling block on the
of Q. suggested by Ref$16,18 is obvious from Eqs(1)  \ay to an accurate numerical result fot, at NLO, the NLO

and(2). strong LEC and loop corrections being, as we will see below,
well-determined. In the present work we appeal to two mod-
els (the weak deformation model, and the chiral quark
2We follow standard phase conventions in whigh andA, are  mode) of the contribution of the gluonic penguin operator,
real in the absence @& P-violation. Qs. to theCP-odd weak LEC's in order to probe the prob-
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able scale of the model-dependence in our estimatékpf ~ where the operators which contribute to e~ =7 ampli-

It is important to emphasize that, while the estimates of theudes correspond toi={5,6,...,13 and i={1,...5,
weak LEC contributions td)g; are model-dependent, the 10,...,15,32...,4Q in Egs.(6) and (7) respectively. In
one-loop and strong LEC contribution{discussed below quoting our results below, we will employ the notation of
are, though scale-dependent, model-independent. As we wiltg. (6), and hence work with the operator basis given by
see, the combination of these model-independent NLO con-

tributions is, at typical hadronic scales, rather large, and Os(\)=TrAT{S,L,L*}]
negative, suggesting a significant reduction(hf; as com-
pared to the conventional value. OG()\i)=Tr[)\iLM]Tr[SLﬂ]

The rest of the paper is organized as follows: In the next
section we briefly review the chiral Lagrangian approach to O7(N*)=TrHA=S]TrL,L*]
the calculation of nonleptonic kaon decay amplitudes and
discuss the models employed for the relevant NLO weak Og(A ") =TI A"L,L#]TIS]
LEC combinations. In Sec. Il we present our numerical re-
sults forQ,. The impact of our findings on theoretical esti- Og(N ") =TI \"{P,L,L*}]
mates for the value o&'/e in the standard model are dis-
cussed and conclusions are presented in Sec. IV. O A 5) =TI A *S?]

Il. CP-ODD K°— 7z DECAY AMPLITUDES IN CHIRAL O (A7) =TIA=S]TI[ S]

PERTURBATION THEORY
O\ ") =TI\ "P?]
The diagrams which have to be calculated to obtain the
K— mm decay amplitudes to NLO are, as noted above, those O AN ) =TI\ *P]TI[P] (8
given in Fig. 1. We now briefly review the ingredients
needed for these calculations, referring the reader to Refyhere LM:iUT&MU’ S=x"U+UTy and P=i(x'U
[19-21] for the technical details. The low-energy represen-—yTy), with x=2BoM, (whereM is the quark mass ma-
tation of the nonleptonic weak interactions is obtained fromrix). Note that in Eq(6) the weak LEC'’s are expressed as
the effective chiral Lagrangianfy,, which was written to  products of factors, /F2 and N, . The latter will, hence-
LO in Ref.[22], and up to NLO in Ref[23] (or, in equiva-  forth, be referred to as reduc&P-odd NLO weak LEC's.
lent reduced forms, in Ref$24,25)). (In the CP-odd case, (As we will see below, this reduced form has certain advan-
the gluonic penguin operator, which is the focus of thegages for estimates d,.)
present work, and which, together with the electroweak pen- The remaining ingredient needed in order to calculate the

guin operator, dominates /¢ in the standard model, is pure giagrams of Fig. 1 is the strong chiral Lagrangian. We use
octet; we, therefore, need only the octet component5@f)  the standard form of Gasser and Leutwyler given fy
We work with a form of the effective weak chiral Lagrangian =L@+ W+ ... where the superscripts indicate the chi-

in which the weak mass term appearing at [Z2] has been 5| order and, in the absence of external fields, one[hk
rotated away23]. The LO(second order in the chiral count-

ing) part of the octet Lagrangiad, {7)s, , is thus given, in the o F . F? . .

absence of external fields, (g2] Lg'= 5Tl U0 ]+ ,-TxU +Ux'], (9
2) _ ~* + T

whereU =exp(i\ - 7/F), with 2 the usual octet of pseudo- +L,Tra,Ua,UT Tr[9*Ug"UT]

scalar fields, andF is the pion decay constant in the chiral

mp T vyt
limit. The superscriptst label theCP-even and odd cases TLaTrlo,U%Ud,Ua"U]

respectively, withh © = \g and)\‘=_>\7. c, thus represents +L,4Tr[9,Ud"U T xUT+ U]
the LO CP-odd octet weak coupling strength. it + +
The NLO octet weak effective chiral Lagrangian is simi- +LsTr{9,Ud*U (U T+ Ux')]
larly given by either{ 24] FLg(Tr xUT+UX )2
I +LATxUT=Ux )2+ LgTr xyUTyUT
['\(/3()8):_22 N Oi(A5), ©) ot t
Foi=1 +Ux"Ux"T+H,Trixx'], (10
or [23,25 where{L;}, F and By are the usual strong LEC's, in the
’ notation of Ref.[15]. Recall that, when using dimensional
48 regularization, the NLO LEC's{L;}, are formally divergent
£ _ EZO,(\ ) 7) and have a Laurent expansiondn-4 (whered is the space-
e e T time dimensioi of the form
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Li=D\+LI+ L_(—l)(d —4)+ ... (12) TABLE I. Model estimates of the NLO weak LEC combinations
! ! appearing in Eq(Al) for the WDM andyQM as described in the
where text (with r,=m?/m2).
1 ( XOM (x1079) WDM (X 1073)
N=s55—|| 3| +tye—1-In(4m)|. (12
32m2|\d—4) " E ( Ri—r.K; -4.024 -0.673
: Jo—r 35 -3.571 0.673
The {L{} are the usual scale-dependent renormalized verls Ml

sions of thel; [15], for which we employ the values found in
Ref.[26], while the{I';} are constant coefficientfrequently Trieste group in Refs[8—10] for which all the necessary

called scaling rcoefﬂmenEvll)mch govern the scale depen- jnqedients required to calculate the NLO weak LEC contri-
dence of thel{. The {L; ~} contribute first to physical ptions to ImA, and ImsA, are readily available, and the
observables at next-to-next-to-leadifsixth) order(NNLO),  «gcqjar saturation model” of Ref.18], which combines the
through one-loop graphs involving a single NLO vertex pro-gaciorization approximation with the assumption of scalar
portional toL; and, as such, are on a similar footing as themeson exchange saturation of the relevant strong LEC's.
LEC's present inC$). [The NLO weak LEC's{N;}, in The weak deformation model of RdR4] proceeds from
Eq. (6), of course, have a similar expansipn. the observation that the LO weak chiral Lagrangian of Eq.

The formal difference between thi®— 77 vertices ex- (5 can be generated from the LO strong chiral Lagrangian of
tracted from Eq.(5) using\* and A~ is the switchc;  Eq. (9) by a simple “topological deformation.” The model
—ic, . This is also, therefore, the only difference betweenhypothesis is that this same deformation can be used to gen-
the corresponding LGCP-even andCP-odd decay ampli- erate the entire\S=1 chiral Lagrangian. The WDM thus
tudes. Since the NLO strong LEC and one-loop contributiongrovides no information about the LO weak LEC values,
to these amplitudes involve a single LO weak vertex, onébut gives explicit expressions for the reduced NLO weak
readily sees, from Fig. 1, that the substitutop—ic, also  LEC'’s, N, in terms of the NLO strong LEC'd4,; . For the
converts theC P-even version of these contributions into the NLO weak LEC's relevant t& — 7 we have|[24]
correspondingCP-odd version. The substitutiore, N;"
—ic, N, , similarly accomplishes th€ P-even— CP-odd
conversion of the weak LEC contributions, Fighll If one
considers theatio of the NLO contributions to the LO con-
tributions, therefore, the only difference betwe€iP-even [Ng Jwom=4L4+2L5. (13
andCP-odd cases for th&°— 77 amplitudes is the differ-
ence in the numerical values and physical interpretation oAll other NLO weak LEC’s appearing in Ed6) vanish in
the renormalized reduced weak LECN; . Thus, for ex- the WDM. Since, in these relations, the divergent parts of the
ample, the contributions to @A, arising from the diagrams {L;} do not generate the correct divergent parts of{tig},
of Figs. 1b)-1(g) are immediately obtained from the first one must interpret Eq13) as applying to theenormalized
row of Table Il of Ref.[19] by multiplying the entries by versions of the LEC’s. Moreover, since the scaling of the
ic, . The formal contributions from th€ P-odd NLO weak weak LEC'’s is not correctly given by that of the strong
LEC's,[AplwiLec and[ A, ]wec, arising from Fig. th) are  LEC'’s, Eq.(13) can be taken to hold only at a single scale,
given in the Appendix in terms of thid;” of Eq. (6). Unlike ~ which is assumed to be a typical hadronic scalg, Assum-
the case of th€ P-even sector, where linear combinations of ing resonance dominance suggesgts-m,. Note also that,
octet NLO weak LEC’s corresponding to isospin-conservingbecause of the scale dependence of the weak LEC'’s, even
contributions were fit to the availabl— 77 and K though, in the WDM, the remainind{; vanish at the as-
— g data in Ref[27], both theC P-odd isospin-breaking sumed matching scale;,, they are nonzero at other scales.
and isospin-conserving NLO weak LEC combinations areNumerical values for the IC and IB combinations of NLO
unknown. As there is not sufficient data available to performweak LEC's relevant t&°— 74 in the WDM can be found
fits analogous to those in tl@P-even sector, it is necessary in the last column of Table I, where we have used conven-
to resort to models to estimate the weak LEC contributionstional values for the renormalized strong LECLs, and L

In general the numerical value of the isospin-conservingat . =m, taken from Ref[26].
combination of NLO weak LEC’s, which appears in In another approach, the hadronic matrix elements of the
[Aolwiec [Eq. (A1) of the Appendiy, can be determined four-quark operators relevant for nonleptonic kaon decay
from the expressions for the hadronic matrix elements ahave been estimated in thgQM by the Trieste group
NLO (for which many calculations exjstHowever the IB  [8—10]. In particular, expressions for the gluonic penguin
combination which appears [9A;]w ec cannot be so de- contribution to the LO weak LEC's were obtained in the
termined. In what follows we consider three models whichsecond of Refs[10], and preliminary estimates of the con-
could be used to estimate the NLO weak LEC contribution taribution to NLO weak LEC's were given in Ref8]. As
Q. These are the weak deformation mo@&IDM) of Ref.  pointed out by the authors of Rdi8], however, the latter
[24] from which direct NLO weak LEC estimates are avail- expressions contain errors and are not to be (i28H We
able, the chiral quark modejyQM) as implemented by the have used the updated results of R&f], which give the

[Ng]WDMZ - _[Ng]WDMz _[N;]WDMZ —Ls
2
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contributions ofQg to Ay to NLO, to extract theCP-odd  whereCg is the Wilson coefficient accompanyir@ in the
weak LEC combination which enters W. To obtain the expressions for the effective weak HamiltonfaAt NLO,

IB combination of NLO weak LEC’s enteringA,, we have  having dropped the seagull contributions associated with the
calculated the matrix elemefitr* 7°|Qq|K*)=(1/3/2)8A;  second derivative of &) with respect to the sources, one is
in the YQM using the formalism described in RéB], to-  |eft with two types of terms, those involving a product of two
gether with the corrected results for the basic ingredientgerivatives ofc ), and those involving a product of one
required to compute such matrix elements in the model givelya iy ative ofz ) and one oft ©). Let us denote the result-

there. The model parameters which enter these estimates gge. " i itions to the factorization approximation for the
the constituent quark madd, the vacuum quark condensate, Wonreduce)jNLO weak LEC's.E. , (as employed in Ref

and the gluon condensate. These parameters were co ~ hi )
strained to reproduce th®l = 1/2 Rule in theCP-even sec- 18] by [Ei ] and[E; ], respectively. The authors of Ref.

tor in Ref.[9] using a matching scald,=0.8 GeV (the [18] then emplqumodel in which the relevaetormalized
scale at which the scale-dependence of the chiral loops arf@urth order and sixth order strong LEC’s are assumed to be
that of the short-distance expressions is roughly matched ifaturated by scalar resonance exchange. There is, however, a
the mode). The fitted parameters have the valuds=0.2  problem with the approach of Rgf18], associated with the
+0.02 GeV, <a0|>=(—0-240ff8 GeV)®, and (aGG/w)  [Ei ]1 contributions. To understand the origin of this prob-
=(0.334:0.004 GeVj. The resulting values for the NLO lem, consider, for example, the results of Egj7) of Ref.

weak LEC combinations are presented in the first column of18], translated into our notation:

Table I. Numerical estimates for the NLO weak LEC contri-

butions to ImA, and ImJ&A, are presented in the next sec- Gy

tion. [E11i=[E3 J1=[—Es J1=—=VysVudm Ce(32BY)L3.
The third approach to estimating tkdP-odd weak LEC’s V2

is that of Ref.[18]. In this reference, one begins with the (15

“factorization approximation” forQg,* in which the low-

energy representation @ is assumed to be given by the As noted abovel g has a Laurent expansion of the form
product of the low-energy representations of the scalar dergiven by Eq.(11). Note, first, that this means that the con-
sities of which the unrenormalized operator is formally atributions[E; ], of Eq. (15) begin atO[ 1/(d—4)?], in con-
product. Since the low-energy representation of each suchast to the actuak; , whose Laurent expansions begin at
density is obtained by taking the derivative 6§ x,x'],  O[1/(d—4)]. While one might plausibly ignore this discrep-
with respect to the appropriate componengar x* (treated  ancy, arguing that only the finite parts of the expressions at
here as external sourggd.5], the model version of the low- some hadronic scale are to be used in any case, a related
energy representation d@s becomes the product of two problem remains, even for the finite parts. Explicitly, the fact
such derivatives. This product can be organized by chiraghat both factors ofg in Eq. (15) contain a 1/d—4) term
order. The LO tern{second order in chirzal countibzgarises means that the finite part &f2 is not[L5]?, as assumed in
from the product of the derivatives af§? and &), and  Ret. [18], but rather] LL() 1%+ 5/(38472)LS (), where
leads to the conventional factorization approximation forype explicit value ofl'g, given in Ref.[15] has been used.

Cz Since, as explained above, the ¥ are on the same footing
as the sixth order strong LEC's which entgE; ],, the

G . a -
c2‘=—fvusvudlm Co(16B3F23L5) (14)  model expressions of Ref18] for the sum[E; ];+[E; ]»
\/E are numerically incomplete. The model, moreover, provides

no means of estimating thel "%, making it impossible to
correct this defect. In view of this problem, we conclude that,

3The factorization approximation becomes exact in the limit ofat present, it is not possible to estimate the NLO weak CP-
largeN, . In this limit, takingQg for example, if one renormalizes odd LEC’s using the factorization approximation.
the two densities of whicl®g is a formal product, then one will Given the problem just discussed with the numerical esti-
also have renormalized the four-quark opera@gr For two such  mates of Ref[18], we restrict our attention to the WDM and
renormalized densitied(x) andJ’(y), atdifferentpointsx,y, one  yQM in obtaining estimates for the NLO weak LEC contri-
can straightforwardly construct the low-energy representation of th@utions to ImA, and Im&A,. The resulting values fof);
productJ(x)J’(y) using standard methods. In general, of course,will be given in the next section. Since th@M is a micro-
the low-energy representation of such a produatassimply the  gcopic model, and the WDM is not, we will take the value of
product of the low-energy representations of the individual densi-QSt obtained using the former model as our central value,
ties, but also contains seagull terms. It turns out thatderthe 534 yse the deviation from this central value of the result
NLO part of this representation, which is the part investigated byobtained using the WDM as minimal measure of the theo-
the authors of Ref.18], does indeed contains seagulls. Since these
diverge asx—vy, it is necessary to interpret the factorization ap-
proximation as corresponding to an approximate low-energy repre-
sentation ofQg obtained by dropping the seagull terms in the low- 4n ChPT,c, is finite, and scale-independent, wheréasis di-
energy representation &ifm,_,J(x)J'(y), i.e., to one obtained by vergent. To make sense of this relation one, therefore, usually as-
taking simply the product of the low-energy representations of thesumes that s is to be replaced by its renormalized valug(u),
two densities. evaluated at some typical hadronic scale wy, .
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retical uncertainty in our prediction fdig; associated with
the model dependence of the weak NLO LEC's.

IIl. NUMERICAL RESULTS

The isospin-breaking correction to the gluonic penguin

operatorQg, evaluated t@(p2sm), can be written in terms
of its LO [O(ém)] value and NLO corrections as

QP[1+R,— Ryl (16)

with

V2

@_V2_© _
Qst 6w(mﬁ—mi)

7

wheremy = (myo+my+)/2. [Note that the result of Eq17)
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TABLE II. The NLO non-WLEC contributions t&}, andR, at
the renormalization scale.

m Rgnon7WLEC) R(2n0n7WLEC)
m, -0.01690 -0.2359
m, 0.4203 -0.3147

(as determined by Leutwyler in Ref29]). With these val-
ues, we have the usual res@l{?)=0.128<0.13. The NLO
non-WLEC contributions t&, andR, are given in Table II.
The results are presented at two different renormalization
scalesu=m, andu=m,, in order to display explicitly the
scale dependence of the non-WLEC contributions. When us-
ing the WDM estimate for the NLO weak LEC’s, we employ
w=m, (consistent with the expectations of resonance satu-

is unambiguous and independent of the LO weak coupling@tion, and when using thg QM estimates,u=0.8 GeV

Cc, .] The NLO correctionsR;, are given by

ImAE)NLO,ND)

NLO,ND
_Im 8AS )
- %

- SALO) 18

Im A

where the superscripfNLO,ND) indicates the sum of non-
dispersion NLO contributionginvolving NLO weak and
strong LEC’s and the nondispersive parts of loop graphs
Note that, in Eq(18), R, arises from IB effects, wheredy,

is purely isospin-conservingThe IB correction tdR, would
generate a contribution té)s, of O([ 8m]?), and thus is
beyond the scope of the present worko separate the

the matching scale employed in REJ] in obtaining fits for
the yQM parameters

It is immediately apparent that the non-WLEC contribu-
tions toRy, andR, both act to reducé€)g; as compared to its
LO value. TheR, non-WLEC contribution is weakly scale
dependent and, being “universal,” follows immediately
from the corresponding P-even results of Ref[19]. Al-
though for scaleg.~m, R""W-E9 s positive, and hence
acts to lowen,, the scale dependence, in this case, is sig-
nificantly stronger. The increase in the magnitude ofAlyn
associated with the loop contributions is what one would
expect given the attractive final state interactidgS|) in the
| =0 channel, and is analogous to tAg FSI enhancement

model-independent contributions associated with strong LEGjiscyssed previously for the P-even casd30,31,27. The

and loop effect§Figs. 1b)—1(g)] from those of the model-
dependent NLO weak LEC termiBig. 1(h)], it is convenient
to further expandy; as

Ri — Ri(non—WLEC) + Ri(WLEC) (19)

where the superscripts indicate NLO weak LEWLEC)

effect of FSI on theCP-odd amplitudes has also been re-
cently discussed in Ref§32—-34. In Refs.[32,34] it is ar-
gued that the value of I, obtained from approaches
which do not generate the final stater 1=0,2 phases for
the =0,2 K—ar7r amplitudes should be enhanced by FSI
by a factor of ~1.55, while the value of ImA, should be
suppressed by the weakly repulsive 2 FSI by a factor of

and one-loop-plus-strong-LEGnon-WLEQ contributions .
respectively. We begin our discussion with the non-wLEC ~0-92. _The nume_rlcal v_alues of the enhancement/
contributions. These are model-independent and unambigé_uppress!on are obtained using the Omnes reprgsentat[on for
ous, albeit renormalization-scale-dependent, since the nLde amplltu_de, and correspond to t_he subtract|on_pe|nt_
contributions concerned all involve exactly one we&ap?) =0, for which the ChPT representation of thg amplltude IS
vertex. The resulting overall factor @ in the non-WLEC presumed to be accurate. It should be borne in mind that the

part of the numerator of Eq18) therefore cancels with the 1=0.2 FSl, corresponding to Fig(f), are already correctly

corresponding factor in the denominator. This cancellatioHrTCIUded in our calculations, up to NLO in the chiral expan-

removes all of the short-distance uncertaintdélson coef- S'Or?' That th? :foln't:\SL ffcilr exarfnple, tpr)]rod;ce a S;gsr}'f'cam
ficients, CKM matrix elements, ejccontained inc; . In enhancement 0 0. IOToWs ‘from e Kknown en-

addition, because the LO coupling strength cancels and th%apcgment ORg in theCP-ev.en gaséZ?] and the “univer-
ey ; . Sality” of the one-loop contributions. One should also note
strong verticeg(if any) are identical for theCP-even and

. . .that the Omnes function part of the representation of the
CP-odd cases, dl‘?grgm—by-?agra.m, the non-WLEC Contrl'amplitudes does not incorporate all of the NLO effects; some
butions to(); are “universal,” that is, they are the same for

.~ .~ NLO effects remain in the polynomial prefactor. Thus the
CP-even andC P-ond cgses. To evaluate these contngu'uonsquestion of interest to us, namely whether toenpleteset of
we use as numerical input the values.=135 MeV, mg

NLO contributions raises or lowers Ay relative to its LO
=495 MeV,m,=549 MeV, and value (i.e., whetherR, is positive or negativeis not deter-
mined solely by the character of the loop contributions; it is
perfectly possible, in principle, for the NLO LEC contribu-
tions to be sufficiently negative that the full NLO determina-

my—my

Boﬁm:
md+m

m2=5552+ 674 Me\?

(20

u
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TABLE Ill. The NLO weak counterterndiWLEC) contributions TABLE IV. The dependence o€&'/e on Qg in the standard
to the correction factors as estimated in the WDM @M. model assuming, for illustrative purposes, the central values for
Aws, mg(me), m; and ImA, as given in Refs[12]. The units of
xQM WDM €'le are 10, The values of'/e corresponding td),=0.25 are
WLEC taken from Table IIl of the second of Refd2] and the range of
Ro -0.231 -0.0331 values forBg, Bg is the same as covered by that table.
Ry/-EC 0.205 -0.0331
B Bg €'le (04=025) €'/e (Qy=0.08+0.05)
tion of Ry is negative, even in the presence of the attractivel.0 0.6 8.4 11.20.8
FSI phases. For the models we have considered, this is nat0 0.8 7.0 9.80.8
the case, and the combination of non-WLEC and WLECL1.0 1.0 55 8.20.8

contributions toR, is positive, leading to a suppression of
Qg below its LO value. It is important to note that, so long L 06 12.8 16.61.2
as one adheres to the convention of incorporating the effect3 0.8 11.3 15111
of thel =2 leakage contribution by means of a multiplicative 13 1.0 9.9 13.211
correction factor applied to the contribution to the 0 am-
plitude, there is an amplification effect at work in the gluonic
penguin contribution te’/e associated with the NLO con-
tributions to ImA,: the more NLO effectsincrease the
isospin-conserving contribution to 1Ay, the more they si-
multaneouslydecrease;. Since the contribution te'/e,
including 1B, is proportional to the product of the isospin-
conserving contribution and the factor-X),, both effects
serve to enhance th@g contribution toe'/e. IV. DISCUSSION AND CONCLUSIONS

The NLO weak LEC contributions tB, andR; are esti- ~ ag noted above, the significant cancellation between glu-
mated using the models described in the previous sectionynic nhenguin and electroweak penguin contributions means
The numerical results are displayed in Table Ill. We noteyat predictions for the value af /e in the standard model
first that the contributions t&G"*=7 and RE"=Y in the ¢4 depend rather sensitively ®h,. The exact degree of
WDM are identical, and hence cancel in the differerRe,  sensitivity, of course, depends on the relative size of these
— Ry, entering Eq(16). In the yQM, the WLEC contribu-  two dominant contributions, on which there is, as of yet, no
tions to (), are positive. Indeed the results of Tables Il andcjear theoretical concensus. In order to illustrate the impact
Il show significant cancellation between the WLEC andof the decrease of), from the conventional central value,

non-WLEC contributions in thg QM. . 0.25, to 0.080.05, let us use the rough approximation to
The total NLO correction factor, £R,— Ry which mul-  Eq. (1) discussed in Ref5]

tiplies ), resulting from the combination of WLEC and

non-WLEC contributions, is €'
?x[BS(l_Qst)_OABS] (23

duce a significant reduction @&, for any plausible choice
of hadronic scale. As such, the inclusion of the loop contri-
butions is crucial to any attempt to evalu&lg, beyond LO.
For the models considered for the weak NLO LEC's, the net
effect is to driveQ, significantly below its LO value.

0.64 (yQM)

0.27 (WDM). (where we have dropped an overall constant multiplicative

i . factor irrelevant to the present discussioklaintaining the
Taking thexyQM result as a (_:entral value, and the de_\"at'onconstraint,86> Bs, imposed by the Munich groufs,12),
of the WDM result from this central value as a minimal 4 using the valueBs=1.0+0.3 andBy=0.8+0.2 em-

measure ‘_)f the model-dependencg of our regult, we find thﬁloyed by them, we find the results shown in Table IV. The
IB correction to the gluonic penguin contribution ¢6/ e to range of values foBg, Bg covered in the Table IV is the

be same as that in Table Il of the second of Réfk2], from
0..=0.08+0.050.01 22) which the values fok’/e corresponding td)¢,=0.25 have
st ' ' also been taken. All results correspond to central values of

where the first error represents the uncertainty associatdhe input parameterd (7%, my(m.), m; and Im\. From
with the model dependence of the NLO weak LEC's, and thelable IV we see that the decrease(ly, corresponds to an
second the uncertainty in the input valueRyém. The cen- increase ire’/ e of between 21% and 63% (4011% for the

tral value in Eq.(22) is significantly lower than both the centralBg,Bg values. The increase in the magnitude &f e
conventionally-employed value, 0.29.08, and the result of is between X10 % and 5<10 4, to be compared to the
Ref.[16], 0.16+0.03. That the relative uncertainty increasescurrent experimental world average (12.3.4)xX 10" 4. The
from about 30% to 62% is a reflection of the uncertain statanagnitude of the increase will, of course, be even larger for
of our knowledge of the NLO weak LEC’s. We emphasize,models with larger values d@g.

however, that, regardless of the actual value of the weak It is useful to comment in more detail on the application
NLO LEC contributions, the model-independent one-loopof the corrections discussed above to microscopic models
and strong LEC contributions, which are unambiguous, prosuch as theyQM and the extended NJL modgf]. Such
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models allow one, in principle, to compute the correctionsthat this central value, together with, to be conservative, even
corresponding to the NLO weak LEC's self-consistentlylarger errors, be employed in future estimatesdfe in the
within the model, as was, for example, done by the Triestestandard model.

group [9] for ImA,. As pointed out in Ref[35] (in the

context of theXQM), how_ever, modifying_ the model pre_dic- ACKNOWLEDGMENTS

tions fore'/ e obtained using the conventional value(®f; is

more complicated than simply re-scaling the gluonic penguin We thank S. Bertolini and J. Eeg for clarifying the current
contribution to take into account the new value of the factorstate of theyQM calculations and pointing out the existence
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sate for the effect of the shifted value 6f; in the model

determination ofe’/e. One should, however, bear in mind APPENDIX: NLO WEAK LEC CONTRIBUTIONS

the caveat that this observation is based on the implicit as- TO K°— mrar

sumption that(); is the same in th€ P-even andC P-odd

sectors. Although this is true for the non-WLEC contribu- The octet NLO weak LEC contributions to the=0 and
tions, there is no reason to expect it to be true for the NLO =2 CP-odd K°— 77 amplitudes are given by

weak LEC contributions. In fact, since these contributions

correspond to the hadronization of very different effective c, (26 ST T
operators, it would be rather surprising to find them taking [Aolwiec= — Fz| —5 | (Mk—mMZ) (MK, —m2K5)
on the same values. Fortunately one does not need to specu- x

late idly on this question: in models such as @M it is

possible to simply compute the NLO terms corresponding to C, [ 2Bo(mg—my,) B
the weak NLO LEC contributions. Having fitted the model [5A2]WLEC:EZ J3F3 (Micdg —mzdy)
parameters in th&€ P-even sector, one would then obtain, (A1)

self-consistently, a determination pf) |\ gc for both the
CP-even andCP-odd cases. In order to make sure the de- ~_ . . .
termination of the strong IB correction &/ e is under con- vv.herfa thek; are |sosp|n-c0nser\i|rlg.NL.O weak L_EC com-
trol, it is important to separately determine the NLO weakbinations(the Cli-even analog oK is discussed in Refs.
LEC contributions to the leakage amplitudes in @B-even  [27,24)), and thel; are isospin-breaking LEC combinations
and CP-odd sectors. whose CP-even analogs are discussed in Ré¢f9,20. In
To summarize, we have presented a complete NLO calthe notation of Ref{24] these are given by
culation of the isospin-breaking correction to the gluonic
penguin operator contribution te'/e,Qg;. It is found that_ RI:[Ng,r_ZN;,r+2N§,r+N;,r]
model-independent NLO one-loop and strong LEC contribu-
tions are of the opposite sign to the LO contribution, and_
numerically large, for typical hadronic scales. CombinedKz =[—2Ng"—4N7""—Ng""+2N5"+ 4N +2N;]
with model estimates for the NLO weak LEC contributions,
we find a significant reduction of)s; as compared to the G- —[N; "+ 6N; " —2N; "~ Ng " — 4Nz
“standard” value of 0.25-0.08. Our final result is
— 8N~ 12N;5]
0=0.08+0.05 (249

(where the uncertainties associated with model-dependencé, =[2Ng "+ 6Nz "+ Ng " —2Ng"— 10N ;" — 12N;"].
andBySm have been added in quadraturéd/e recommend (A2)
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