The Cerebrovascular Response to Metastatic Melanoma and Clostridium perfringens Type D Epsilon Toxin

Kimberley Mander
BHlthSc (Hons)
BPsychSci

Discipline of Anatomy and Pathology
School of Medicine
The University of Adelaide

A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy
Dedication

For Peter John & Patricia May Mander
Declaration

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree. I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968. I acknowledge that copyright of published works contained within this thesis resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

I acknowledge the support I have received for my research through the provision of an Australian Government Research Training Program Scholarship.

Kimberley Anne Mander

Date
Table of Contents

Dedication ii
Declaration iii
Table of Contents iv
Publications and Presentations xii
Acknowledgments xiv
Abbreviations xvi
Figures and Tables xviii
Thesis Format xxi
Abstract xxii
General Introduction 2
 1.1 Background 2
 1.1.1 The vascular system in health and disease 2
 1.1.2 Endothelial injury 5
 1.1.3 Special features of the cerebral vasculature 6
 1.2 Blood–Brain-Barrier 8
 1.2.1 Cerebral endothelial cells 9
 1.2.2 Cerebral Endothelial Tight Junction Proteins 10
 1.2.3 Transport across the blood-brain barrier 13
 1.2.4 Cellular Transcytosis 16
 1.2.5 Transcytosis in the Brain 17
 1.3 Caveolae 18
 1.3.1 Structure and Function of Caveolae 21
 1.3.2 Caveolae and cancer 23
 1.4 Pathobiology 24
 1.4.1 The Metastatic Process 25
 1.4.2 Dissemination 27
 1.4.3 Colonisation 29
1.4.4 Tumour associated angiogenesis and barrier permeability 30

1.5 Modeling Cerebrovascular Response to Metastatic Melanoma 33

1.5.1 In-Vitro Blood-Brain Barrier Model 34

1.5.2 In-Vivo models 36

1.6 Conclusion and Aims 36

Chapter 2: Materials and Methods 39

2.1 General 39

2.2 Experimental Procedures 39

2.2.1 Human Tissue 39

2.2.2 In Vitro Experiments: Cell Culture 40

2.2.3 A-375-MA1 Human Melanoma Cell line 41

2.2.4 Labelling A-375-MA1 for transmigration assay 41

2.2.5 Blood-Brain Barrier hCMEC/D3 cell line 42

2.2.6 Transwell Assay 42

2.2.7 Permeability Assay 44

2.2.8 In vitro immunofluorescence and immunohistochemistry 45

2.2.9 Transmission electron microscopy 46

2.2.10 Cell Viability Assessment 47

2.2.11 Western Blotting 48

2.2.12 Substance P ELISA 49

2.3 Epsilon toxin (ETX) 49

2.4 Animal Care 50

2.4.1 Anaesthesia 51

2.4.2 In Vivo Experiment 51

2.4.3 Intraperitoneal ETX inoculation 53

2.4.4 Tissue Processing 54
Chapter 3: Vascular Patterns in Human Cerebral Metastatic Melanomas

3.1 Background

3.2 Introduction
 3.2.1 Malignant Melanoma
 3.2.2 Cerebral Vasculature & Malignancy

3.3 Materials and Methods
 3.3.1 Experimental Design
 3.3.2 Histological Analysis
 3.3.3 Statistical Analysis

3.4 Results
 3.4.1 Melanoma Classification
 3.4.2 Blood vessel morphology
 3.4.3 Cerebral metastatic melanoma have decreased BBB claudin-5 expression

3.5 Discussion

3.6 Conclusion

Chapter 4: Role of Caveolin-1 and NK-1R in Human Cerebral Metastatic Melanoma

4.1 Background

4.2 Introduction

4.3 Experimental Design
 4.3.1 Immunohistological Analysis
 4.3.2 Statistical Analysis

4.4 Results
 4.4.1 Cerebral metastatic melanoma-associated blood vessels have marked reduction in CAV-1 immunopositivity
 4.4.2 Cerebral metastatic melanocytes overexpress CAV-1
4.4.3 Cerebral metastatic melanoma have decreased BBB NK-1R expression

4.5 Discussion

4.6 Conclusion

Chapter 5: Characterisation of \textit{in-vitro} Blood-Brain Barrier Model

5.1 Background

5.2 Introduction

5.3 Materials and Methods

5.3.1 Experimental Design

5.3.2 Transendothelial Electrical Resistance

5.3.3 Statistical Analysis

5.4 Results

5.4.1 hCMEC/D3 cells \textit{in vitro} maintain morphological characteristics of cerebral microvascular endothelial cells found in normal brain tissue.

5.4.2 Cultured hCMEC/D3 cells retain expression of key endothelial markers

5.4.3 Cultured hCMEC/D3 cells express key membrane receptors and transport channels

5.4.4 hCMEC/D3 Barrier Function

5.4.5 Transmission electron microscopy images of hCMEC/D3 cells grown on permeable transwell membrane

5.5 Discussion

5.6 Conclusions

Chapter 6: The Effects of Targeted Caveolae and NK1 Antagonist Treatment on Tumour Cells transmigration \textit{In Vitro}.

6.1 Background

6.2 Introduction

6.3 Methods

6.3.1 Experimental Design
6.3.2 Statistical Analysis 145

6.4 Results 146

6.4.1 Substance P secretion by human melanoma cell line A375-M1 146

6.4.2 Treatment with Filipin III and NK-1R antagonists at high concentration reduce hCMEC/D3 and A375-M1 cell viability in vitro 147

6.4.3 Transmigration Assay Characterisation 149

6.4.4 Treatment efforts failed to reduce A375-M1 melanocyte transmigration across hCMEC/D3 in vitro barrier. 152

6.4.5 Pre-treatment with substance P increased melanocyte transmigration capability at 5 hr. 153

6.4.6 Migrated A375-M1 melanocytes showed conserved phenotypical properties at 24 hrs. 155

6.5 Discussion 155

6.6 Conclusion 159

Chapter 7: Characterisation of the Intra-carotid Inoculation Model of Secondary CNS Metastases. 162

7.1 Background 162

7.2 Introduction 163

7.3 Materials and Methods 164

7.3.1 Experimental Design 165

7.3.2 Histological Analysis 165

7.3.3 Clinical Assessment 166

7.4 Results 166

7.4.1 Pilot study determined 10^6 A375-M1 cell density is optimal for intra-carotid tumour inoculation. 166

7.4.2 Histopathology 168

7.5 Discussion 169
Chapter 8: Part B. The Role of the microvasculature in Clostridium perfringens type D epsilon toxin (ETX) neurotoxicity 174

8.1 Background 174

8.2 Introduction 175

8.3 Conclusion 188

Chapter 9: The Effect of Clostridium perfringens type D epsilon toxin (ETX) on cerebral microvasculature endothelial cells in vitro 190

9.1 Introduction 190

9.2 Materials and Methods 191

 9.2.1 Experimental Design 191
 9.2.2 Epsilon toxin (ETX) 191
 9.2.3 Morphologic studies 191
 9.2.4 Cell viability 191

9.3 Results 192

 9.3.1 Human microvascular endothelial cells are susceptible to ETX-induced cytotoxicity. 192
 9.3.2 Human microvascular endothelial cells undergo pyknosis and organelle swelling following ETX exposure 195

9.4 Discussion 197

9.5 Conclusion 200

Chapter 10: Characterisation of ETX-induced microvascular endothelial damage and attendant increased vascular permeability in vivo 202

10.1 Background 202

10.2 Introduction 202

10.3 Materials and methods 204

 10.3.1 Experimental Design 204
 10.3.2 Immunochemical analysis 205
Chapter 11: Retinal microvascular damage produced by Clostridium perfringens type D epsilon toxin 216

11.1 Introduction 216

11.2 Materials and methods 218
 11.2.1 Experimental Design 218
 11.2.2 Transmission Electron Microscopy 218

11.3 Results 219
 11.3.1 Albumin Extravasation 219

11.4 Discussion 224

11.5 Conclusion 225

Chapter 12 Concluding Discussion 229

ADDENDUM 236

13.1 Scanning electron microscopy (SEM) of human brain microvascular endothelial cells in vitro exposed to Clostridium perfringens type D epsilon toxin 236

13.2 Materials and methods 236
 13.2.1 In vitro cell culture 236
 13.2.2 Epsilon Toxin (ETX) 236
 13.2.3 Scanning Electron Microscopy 237

13.3 Results 237

13.4 Discussion 246

Appendix 248

14.1 Mechanisms of new blood vessel formation in brain tumours 248

14.2 Clinical Diagnosis 279
14.3 Histological Descriptions 279
14.4 Clinical Record Sheet 286
14.5 Reference List 287
Publications and Presentations

Publications

Wardill HR, **Mander KA**, Van Sebille YZ, Gibson RJ, Logan RM, Bowen JM, Sonis ST (2016) Cytokine-mediated blood brain barrier disruption as a conduit for cancer/chemotherapy-associated neurotoxicity and cognitive dysfunction. *International Journal of Cancer*.

transgenic (B6C3-Tg(APPswe, PSEN1dE9)85Dbo/Mmjax) mouse model of Alzheimer’s disease. Journal of Comparative Pathology

Abstracts/Presentations

Acknowledgments

This PhD project was made possible by the support and expertise of a number of people, and it is with sincere gratitude that I take the opportunity to formally acknowledge and thank them for their contribution.

To my primary supervisor Professor Robert Vink, thank you for the opportunity to undertake this PhD and for the introduction to research as an honours student in your laboratory.

To my co-supervisors, Dr Emma Thornton and Dr Elizabeth Harford-Wright for their unwavering support, encouragement and optimism. This project certainly would not have been possible without your patience and dedication, particularly during the dark days of troubleshooting the world of cell culture. I thank you both for your valuable guidance and treasured friendship.

To Dr John Finnie, not only are you a diligent and curious pathologist, but also a delightful person. Thank you for taking an interest and adopting a student, for the indispensible wisdom, teaching and motivation you have provided, and above all else, your friendship.

In addition, I would like to thank Dr Fiona Bright. It has been an absolute privilege to share this experience with you. Thank you for the countless ‘wine & whines’, the international skype dates, book club recommendations, and infinite selfless carpooling. You’re the right kind to be stuck in the trenches with.

Dr Viythia Katharesan, for always being the voice of reason and my moral compass.
Additionally, I would like to thank the members of the IMVS Centre for Neurological Diseases;

- Sofie, Kathryn and Teresa for their time, attention and technical expertise. It was a pleasure to share lab space and conversation with these wonderful women.
- Professor Peter Blumberg, for many thought-provoking meetings and neuropathological expertise.
- The one and only, Jim Manavis. Need I say more?

I would also like to acknowledge the assistance, advice and support of fellow members of the lab and research groups;

Associate Professor Corinna Van Den Heuvel, Dr Renée Turner, Dr Frances Corrigan, Dr Anna Leonard, Dr Joshua Burton and Josh Woenig.

Wilhelm Lab (Hungarian Academy of Sciences), in particular, Dr Imola Wilhelm and Dr Csilla Fazakas for a wonderful learning experience in Szeged.

Dr Sanam Mustafa, Dr Karlea Kremer and Dr Hannah Wardil.

To my incredible family and friends, I am eternally grateful for your belief and support. Thank you for your tolerance and eagerness, but most importantly, thank you for knowing when not to ask, “how’s it all going”.

To my brilliant mother, who unwittingly imparted resilience and courage.

To Dad, for teaching me the value of curiosity.

And to my best friend, Julia, for everything else.
<table>
<thead>
<tr>
<th>Abbreviations</th>
<th>Full Forms</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABC</td>
<td>ATP-Binding Cassette</td>
</tr>
<tr>
<td>AMT</td>
<td>Absorptive-Mediated Transport</td>
</tr>
<tr>
<td>AQP4</td>
<td>Aquaporin-4</td>
</tr>
<tr>
<td>BBB</td>
<td>Blood-Brain Barrier</td>
</tr>
<tr>
<td>CAV-1</td>
<td>Caveolin-1</td>
</tr>
<tr>
<td>CNS</td>
<td>Central Nervous System</td>
</tr>
<tr>
<td>CSF</td>
<td>Cerebrospinal Fluid</td>
</tr>
<tr>
<td>Da</td>
<td>Dalton</td>
</tr>
<tr>
<td>DAB</td>
<td>3,3'-diaminobenzidine</td>
</tr>
<tr>
<td>DAPI</td>
<td>4',6-diamidino-2-phenylindole</td>
</tr>
<tr>
<td>EBA</td>
<td>Endothelial Barrier Antigen</td>
</tr>
<tr>
<td>EC</td>
<td>Endothelial Cell</td>
</tr>
<tr>
<td>ECM</td>
<td>Extracellular Matrix</td>
</tr>
<tr>
<td>EEL</td>
<td>External Elastic Lamina</td>
</tr>
<tr>
<td>EGFR</td>
<td>Epithelial Growth Factor Receptor</td>
</tr>
<tr>
<td>EGM</td>
<td>EndoGRO-MV Complete Media</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme-Linked Immunosorbent Assay</td>
</tr>
<tr>
<td>ETX</td>
<td>Clostridium perfringens type D</td>
</tr>
<tr>
<td>GBM</td>
<td>Glioblastoma Multiforme</td>
</tr>
<tr>
<td>GLUT1</td>
<td>Glucose Transporter 1</td>
</tr>
<tr>
<td>hCMEC/D3</td>
<td>Human Cerebral Microvascular Endothelial Cells</td>
</tr>
<tr>
<td>HER2</td>
<td>Human Epidermal Growth Factor Receptor 2</td>
</tr>
<tr>
<td>HIF</td>
<td>Hypoxia Inducible Factor</td>
</tr>
<tr>
<td>ICAM-1</td>
<td>Intercellular Adhesion Molecule-1</td>
</tr>
<tr>
<td>ICP</td>
<td>Intracranial Pressure</td>
</tr>
<tr>
<td>IEL</td>
<td>Internal Elastic Lamina</td>
</tr>
<tr>
<td>IL-1</td>
<td>Interleukin-1</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilodalton</td>
</tr>
<tr>
<td>MTT</td>
<td>3-[(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide</td>
</tr>
<tr>
<td>MRI</td>
<td>Magnetic Resonance Imaging</td>
</tr>
<tr>
<td>NBF</td>
<td>Neutral Buffered Formalin</td>
</tr>
<tr>
<td>NHS</td>
<td>Normal Horse Serum</td>
</tr>
<tr>
<td>NK-1R</td>
<td>Tachykinin Receptor 1</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>NSCLC</td>
<td>Non-Small Cell Lung Carcinoma</td>
</tr>
<tr>
<td>PAS</td>
<td>Periodic Acid-Schiff</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate Buffer Solution</td>
</tr>
<tr>
<td>PECAM-1</td>
<td>Platelet Endothelial Cell Adhesion Molecule-1</td>
</tr>
<tr>
<td>PET</td>
<td>Positron Emission Tomography</td>
</tr>
<tr>
<td>Pgp</td>
<td>P-Glycoprotein</td>
</tr>
<tr>
<td>rh</td>
<td>Recombinant Human</td>
</tr>
<tr>
<td>RMT</td>
<td>Receptor-Mediated Transport</td>
</tr>
<tr>
<td>SP</td>
<td>Substance P</td>
</tr>
<tr>
<td>TBS</td>
<td>Tris-Buffered Saline</td>
</tr>
<tr>
<td>TEER</td>
<td>Transendothelial Electrical Resistance</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission Electron Microscope</td>
</tr>
<tr>
<td>TJ</td>
<td>Tight Junction</td>
</tr>
<tr>
<td>VAM-1</td>
<td>Vascular Cell Adhesion Molecule-1</td>
</tr>
<tr>
<td>VEGF</td>
<td>Vascular Endothelial Growth Factor</td>
</tr>
<tr>
<td>ZO-1</td>
<td>Zona Occludens</td>
</tr>
</tbody>
</table>
Figures and Tables

Figure 1.1: Schematic depiction of cerebrovascular specialisation of the BBB. 9
Figure 1.2: Schematic depicting tight junction and adherens junction complex. 11
Figure 1.3: Routes of transport across the BBB. 14
Figure 1.4: Morphological appearance of caveolae structure. 20
Figure 1.5: Caveolae mediated transcytosis. 21
Figure 1.6: Metastatic cascade. 26
Figure 1.7: Stages of extravasation. 29
Figure 1.8: Transmigration assay. 35
Figure 2.1: Transparent PET hanging permeable support membrane. 43
Figure 2.2: Intracarotid artery surgery. 53
Figure 2.3: Animal handling for intraperitoneal injection. 54
Figure 3.1: Metastatic pigmented malignant melanoma. 58
Figure 3.2: Semi-quantitative grading system representative images. 70
Figure 3.3: Melanoma subtypes H&E. 75
Figure 3.4: Normal Morphology. 76
Figure 3.5: Microvessels in cerebral metastatic melanoma. 77
Figure 3.6: Cerebral metastatic melanoma microvessel angioectasia and telangiectasis. 78
Figure 3.7: Cerebral metastatic melanoma ateriolar-sized blood vessels. 79
Figure 3.8: Cerebral metastatic melanoma ectatic venules. 80
Figure 3.9: Cerebral metastatic melanoma blood vessels with markedly tortuous lumina. 82
Figure 3.10: Melanocyte aggregation and infiltration of blood vessels. 84
Figure 3.11: Perivascular cuffing/vasculitis. 85
Figure 3.12: Thrombosis. 86
Figure 3.13: Intra-tumoural haemorrhage. 87
Figure 3.14: Blood vessel invasion by melanoma. 87
Figure 3.15: Intratumoural vessels demonstrate decreased claudin-5 immunoreactivity. 89
Figure 3.16: Glioma. 90
Figure 3.17: Glioblastoma Multiforme (GBM). 91
Figure 4.1: Representative images of SP immunoreactivity in human control tissue. 106
Figure 4.2: Semi-quantitative grading system representative images of melanocyte staining. 107
Figure 4.3: Immunohistochemical analysis of CAV-1. 108
Figure 4.4: Intratumoural vessels of cerebral metastatic melanoma demonstrate reduced Caveolin-1 immunopositivity. 110
Figure 4.5: Intratumoural vessels and melanocytes of cerebral metastatic melanoma are positive for NK-1R. 112
Figure 4.6: Metastatic melanocytes demonstrate NK-1R immunopositivity. 113
Figure 4.7: Immunohistochemical analysis of NK-1R. 113
Figure 4.8: Substance P immunoreactivity 114
Figure 5.1: Permeable transwell support apparatus. 123
Figure 5.2: hCMEC/D3 human microvascular endothelial cells in vitro. 126
Figure 5.3: Immunofluorescent staining of hCMEC/D3 cells in culture. 127
Figure 5.4: Western Blot results demonstrating NK-1R and CAV-1 expression in confluent hCMEC/D3. 127
Figure 5.5: Transendothelial electrical resistance (TEER) development over 7 days in hCMEC/D3 cell line. 128
Figure 5.6: Tacer permeability of hCMEC/D3 transwell monolayer. 130
Figure 5.7: Transmission electron microscopy of hCMEC/D3 in experimental culture conditions. 133
Figure 6.1: Substance P secretion ELISA. 146
Figure 6.2: Treatment effects on hCMEC/D3 cell viability. 148
Figure 6.3: Treatment effects on A375-M1 cell viability. 149
Figure 6.4: Transmission electron microscopy images of the hCMEC/D3 transwell system for the investigation of A375-M1 migration. 152
Figure 6.5: A375-M1 melanocyte transmigration across the hCMEC/D3 transwell system at 5 hrs. 154
Figure 6.6: Treated transmigrated A375-M1 cells show no morphological alterations when compared to control tumour cells (inset). 155
Figure 7.1: Intracarotid A375-M1 injection. 168
Figure 8.1: ETX-intoxicated sheep. 179
Figure 8.2: Bilaterally symmetrical necrotic foci (arrows). 181
Figure 8.3: Bilaterally symmetrical and haemorrhagic necrotic foci (arrows). 181
Figure 8.4: Perivascular desposition of abundant extravasated proteinaceous material (P). 186
Figure 8.5: TEM of an ETX-injured capillary. 186
Figure 8.6: ETX-induced severe vasogenic cerebral oedema. 187
Figure 9.1: Untreated hCMEC/D3 cells. 192
Figure 9.2: ETX-treated hCMEC/D3 cells. 193
Figure 9.3: ETX-treated hCMEC/D3 cells. 194
Figure 9.4: Effect of ETX on cell viability. 194
Figure 9.5: TEM image of untreated hCMEC/D3 cells. 196
Figure 9.6: TEM image of ETX-treated hCMEC/D3 cells. 197
Figure 10.1: ETX expose increases blood-brain barrier permeability to albumin. 207
Figure 10.2: ETX damaged microvascular endothelium. 208
Figure 10.3: Perivascular pooling of strongly immunostained albumin, with less intense staining of the surrounding neuropil. 209
Figure 10.4: AQP4 immunoeexpression. 210
Figure 10.5: EBA immunoreactivity in an EXT-treated brain. 212
Figure 11.1: Non-treated control retina, all layers are compact, there is no discernible albumin extravasation, and microvessels are inconspicuous. 220
Figure 11.2: In an ETX-treated retina, there is diffuse albumin immunopositivity, microvessels are prominent (arrows) due to strong and diffuse mural albumin immunoreactivity, and there is nuclear pyknosis in the inner nuclear layer (arrow). 220
Figure 11.3: ETX-Exposed capillary endothelium. 224
Figure 13.1: Scanning Electron Microscopy Images. 241
Figure 13.2: ETX exposed hCMEC/D3 cells. 246
Thesis Format

The format of my thesis includes two main themes and is arranged as follows: a general introduction, five research chapters, a second background chapter, three research chapters, a general discussion and references.

Broadly, my thesis is focused on the fundamental and important role of the cerebral vasculature in two disease processes, namely cerebral metastatic melanoma and Clostridium perfringens type D epsilon neurotoxicity. The first theme aims to characterise the extent of vascular alteration following metastatic progression in human tissue, giving rise to the first two research chapters (chapter 3 and 4). Together, these chapters form the scope of the remaining research chapters pertaining to the development of reliable in vitro and in vivo models for the study of malignant transmigration of the blood-brain barrier and targeted therapeutic approaches. This is reported in chapters 5, 6 & 7). The second theme relates to the investigation of several vascular features of the neurological disorder produced by Clostridium perfringens type D epsilon toxin (ETX), giving rise to an additional three primary research chapters (chapters 8, 9 and 10).
Abstract

The principal focus of this thesis is the cerebral vasculature and, more specifically, its fundamental and important role in two disease processes, namely cerebral metastatic melanoma and Clostridium perfringens type D epsilon neurotoxicity. Firstly, blood vessels are critical for both impeding and facilitating the penetration, colonisation, and spread of metastatic tumours such as melanomas in the brain and, secondly, the microvasculature is the major target of the potent bacterial neurotoxin, Clostridium perfringens type D epsilon toxin, which causes a severe, and frequently fatal, naturally-occurring, neurological disorder in domestic livestock and is a potential bioterrorism agent for human populations.

There are important structural and functional differences between blood vessels in the brain and other tissues and the regional distribution is inhomogeneous. These features also have consequences for patterns of disease expression, for example lodgement of tumour emboli. Moreover, the dynamic microvascular interface between blood and brain parenchyma, termed the blood-brain barrier (BBB), differs in important structural detail from capillaries elsewhere and is critical in maintaining homeostasis in the central nervous system.

In Part A of this thesis, the different patterns of neovascularisation in archival, human melanomas metastatic to the brain were characterised, given that
acquisition of a new vascular supply is essential for these neoplasms to survive, proliferate, and disseminate. These new blood vessels are frequently structurally and functionally aberrant and those examined in the metastatic melanoma cohort herein were classified using histological and immunohistochemical techniques. It was also determined whether there was any correlation between vascular subtype and histological category of melanoma, mitotic index, extent of tumour necrosis, and intratumoural haemorrhage.

Since the substance P (SP)/NK-1 receptor (NK-1R) system plays an important role in tumour survival, proliferation, and progression, its distribution was examined immunohistochemically in these metastatic melanomas, both in tumour-associated blood vessels and melanocytes. The NK-1 receptor was expressed by most melanocytes and endothelium in a small subset of tumour blood vessels, but there was no detectable immunoreactivity of the tachykinin peptide, SP, in tumour cells or blood vessels. The distribution of caveolin-1, the main structural component of caveolae, was also examined in these melanomas. Its immunoexpression was reduced in tumour-associated blood vessels, concordant with increased neoangiogenesis, and CAV-1 was commonly expressed in melanocytes, particularly in cell membranes, reflecting its important role in both tumour progression and suppression.

Since melanomas generally metastasise via the haematogenous route and finally encounter the BBB when they reach the brain, it was decided to
examine the transendothelial migration of melanocytes using in vitro and in vivo models. In a culture system, the migration of melanocytes from a melanoma cell line across a membrane representing a “blood-brain barrier” was quantified and the manner of their passage across this endothelial barrier examined by light and electron microscopy, the ultrastructural assessment being one of the very few studies of this type conducted to date. In order to examine how melanocytes in the systemic circulation enter the brain, a melanoma cell line was injected into rat carotid arteries and the distribution of melanocytes in the brain assessed at different time intervals post-injection. Unfortunately, very few tumour cells penetrated into the brain parenchyma and this technique proved to be unsatisfactory for examining transendothelial migration of metastatic melanocytes and evaluation of drugs that might impede this process.

In Part B of this thesis, several vascular features of the neurological disorder produced by Clostridium perfringens type D epsilon toxin (ETX) were studied. In the principal, and novel, study, the aim was to determine whether ETX produced a direct and damaging effect on cerebral microvascular endothelial cells in vitro. While previous histological and ultrastructural studies suggested that the fundamental lesion in this neurotoxicity was ETX-induced microvascular injury, with subsequent BBB breakdown, increased vascular permeability and severe, generalised cerebral vasogenic oedema, the effect of ETX on brain-derived endothelial cells in culture had not been examined. The present study found, for the first time, that EXT produces a dose-
dependent cytopathic effect on cultured human brain microvascular endothelial cells, confirming the importance of microvascular endothelial damage in the pathogenesis of this neurological disorder.

In an animal model of ETX neurotoxicity using Sprague-Dawley rats, extravasation of endogenous albumin was used as a surrogate immunohistochemical marker of increased vascular permeability; loss of endothelial barrier antigen was evaluated after exposure to ETX as it is a marker of an intact BBB in this species; and the role of the major water channel protein in the brain, aquaporin-4, in the development/resolution of EXT-induced cerebral oedema was studied. Since the BBB is a prime target for ETX-induced brain damage and the blood-retinal barrier (BRB) resembles the BBB in many respects, the action of ETX on the BRB was also examined in rats using albumin immunohistochemistry to assess enhanced vascular permeability and electron microscopy to study retinal blood vessels. Retinal microvascular endothelial damage resembled that found in ETX-disrupted BBB and there was widespread retinal oedema as indicated by diffuse albumin extravasation.

Studies carried out in this thesis aimed to better characterise the cerebral microvasculature alterations and the associated mechanisms, in response to two distinct insults; metastatic melanoma, and ETX. A range of investigative modalities facilitated the detailed exploration of vascular reactions in these 2
neuropathological states and findings from this thesis will direct further research in the field of cerebrovascular pathology.