Investigation and Analysis of Decentralised Multilevel Modular Integrated Converters in Small Scale Grid-Tied PV Systems

A Thesis Submitted for the Degree of Doctor of Philosophy

By

David Matthew Scholten
Submitted: March 2017

Principal Supervisor:
Associate Professor Nesimi Ertugrul

Co-Supervisor:
Associate Professor Wen Soong
I dedicate this thesis to Yuli Chen.
Table of Contents

I. Abstract.. VII

II. Statement of Originality .. VIII

III. Acknowledgements ... IX

IV. Publications .. X

V. List of Figures ... XI

VI. List of Tables ... XVIII

VII. Abbreviations & Acronyms ... XIX

VIII. Symbols ... XX

1 Introduction... 1

1.1 PV System Basics .. 1

1.2 PV Maximum Power Point .. 4

1.3 Grid Requirements .. 7

1.4 The Grid-Tied Inverter .. 10

1.5 Residential Inverter System Topologies ... 12

1.6 Cascaded Decentralisation and Multilevel Operation ... 17

1.7 Research Gap and Objective .. 19

1.8 Original Contributions .. 20

1.9 Thesis Structure ... 21

2 Analysis and Design of the Cascaded MIC ... 22

2.1 The Practical Decentralisation Concepts .. 23

2.1.1 MPPT of MICs .. 23

2.1.2 Practical MIC Installation Issues .. 25

2.2 Sizing the Decentralised Cascaded System .. 26

2.2.1 MOSFET Conduction Efficiency ... 27

2.2.2 The Viability of a Film Capacitor DC-Link ... 28

2.2.3 Switching Frequency Reduction ... 30

2.2.4 Partial Shading Resilience ... 31

2.2.5 DC-Link Voltage Gain Requirements .. 32

2.2.6 Total Installation Fault Tolerance ... 33

2.2.7 Final System Size Selection ... 34

2.3 Filter Analysis .. 38

2.3.1 Grid-Tied Inverter Filters ... 38
2.3.2 Analysis of Decentralised Grid-Tied Cascaded Filters .. 39
2.4 MIC Prototype Design ... 44
 2.4.1 H-Bridge Power Module Circuit Design ... 44
 2.4.2 H-Bridge Power Module PCB Layout .. 46
 2.4.3 μController Interface, Communications and Software ... 48
 2.4.4 Prototype System Implementation ... 51
2.5 Summary of Results .. 53
3 Comparative Analysis of Parallel and Decentralised 2-Cascaded MICs 55
 3.1 Introduction ... 56
 3.1.1 Background .. 56
 3.1.2 Comparison Assumptions & Parameters ... 57
 3.1.3 Comparison Hardware ... 58
 3.1.4 Comparison Software .. 59
 3.2 Comparison of Parallel/Cascaded Filter Design ... 61
 3.2.1 Filter Inductor Selection ... 61
 3.2.2 Switching Frequency and Filter Conduction Losses ... 63
 3.3 Comparison of Parallel and Decentralised 2-Cascaded Operation 65
 3.3.1 Transient Comparison ... 65
 3.3.2 Harmonic Current Comparison ... 67
 3.3.3 Switching Frequency .. 69
 3.3.4 Efficiency and Losses ... 71
 3.4 Intrinsic Decentralised and Cascaded Multilevel Limitations 74
 3.4.1 Zero Crossing Error ... 74
 3.4.2 Minimum Power Sharing Ratio .. 78
 3.5 Summary of Findings ... 82
4 Implementation and Analysis of the 4-MIC System MPPT .. 84
 4.1 Hybrid Global and Local Waveform Fundamentals ... 85
 4.2 MPPT Principle of Operation .. 87
 4.2.1 Global Control ... 89
 4.2.2 The Allocation of Power .. 90
 4.2.3 Local Control .. 92
 4.3 Prototype System Implementation ... 95
 4.4 Fundamental Limits of Partial Shading ... 100
I. Abstract

This research focuses on the analysis of multilevel voltage interleaving for decentralised cascaded micro inverters in small scale photovoltaic (PV) grid tied applications. These decentralised cascaded micro inverters, otherwise known and modular integrated converters (MICs), have previously been implemented both with multilevel voltage interleaving (requires fast and reliable communications for PV power tracking) and without (requires no communications). The approach proposed by this research utilises a hybrid of both multilevel and non-multilevel switching, which reduces the communications requirement down to less than one system-wide update per second (whilst still allowing for a reduced filter size and lower switching frequency). In addition to the benefits of multilevel switching, the cascaded topology does not require a high gain DC-DC boost stage and maintains the ability to track the power of each PV panel independently.

It was found that the optimal number of MICs for a cascaded system should be between 4 and 8 and that such a system should utilise a 1st order inductive filter. Prototype MICs were developed and a comparison was made between a parallel and 2-MIC cascaded system that found an increase in both the efficiency (94.8% to 95.9%) and the total harmonic distortion (THD) (4.8% to 5.2%) for the cascaded system. Additionally, a grid zero-crossing detection error of just 4° in the cascaded system generated enough harmonics to exceed allowable THD limits. The implemented 4-MIC decentralised cascaded system utilised a round robin greedy sorting algorithm to sort power blocks for PV multilevel power tracking with an allocation error generally below 2%. Accounting for typical solar irradiance transient conditions and harmonic standards, it was found that a communications update rate of 0.7Hz is required. Additionally, it was found that grid-tied cascaded MICs have fundamental power sharing ratio limitations that restrict the maximum shading of one MIC to 74% in the 4-MIC system.
II. Statement of Originality

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

I acknowledge the support I have received for my research through the provision of an Australian Government Research Training Program Scholarship.

Signed: David Scholten

Date: 26/03/17
III. Acknowledgements

I would like to acknowledge the support of my primary supervisor, Nesimi Ertugrul, for the direction and confidence that he provides when I am in doubt. Similar, I would like to thank my secondary supervisor, Wen Soong, for providing time for technical assistance with my prototype and its underlying theory. I would also like to acknowledge the support of the Adelaide University ECMS workshop staff for their patient support. Finally and most importantly, I would like to thank my parents, my sister and wife, Yuli Chen, for putting up with my perpetual “I’m almost finished writing!” response to their questions.
IV. Publications

Pending Publications:

V. List of Figures

Fig 1-1. The functional components of a modern grid-tied inverter system. ..1

Fig 1-2. The PV p-n junction (a) and its implementation as a PV cell (b), a module (c) and as an array (d). ..2

Fig 1-3. Stand-alone (a) and grid-tied (b) inverters systems. See Fig 1-1 for details on (b).3

Fig 1-4. The IV characteristic curve (a) and the single diode equivalent electrical model (b) for a photovoltaic cell...4

Fig 1-5. The IV characteristic curves for different solar irradiances (a), temperatures (b) and the power curves for different solar irradiances (c) and temperatures (d). Generated from a characterised single diode PV model for the Soltech 250W Panel (1Soltech 1STH-250-WH).5

Fig 1-6. The periodic “Perturb and Observe” (P&O) algorithm flow diagram for a grid-tied inverter..6

Fig 1-7. Series connected PV modules with extreme-case bypass diodes (a) and the typical IV characteristics of series connected PV modules with moderate non-uniform shading (b).7

Fig 1-8. The grid-tied inverter with its competing PV and grid requirements.10

Fig 1-9. The four primary power stages of a grid-tied inverter...11

Fig 1-10. The five fundamental inverter systems suited for MPPT in residential installations.14

Fig 1-11. Standard PV single-phase centralised cascaded inverter system...16

Fig 1-12. Principle waveforms of 2-MIC multilevel system. Voltages are seen in blue and current in red for the (a) total system output, (b) first MIC output and (c) second MIC output. See Fig. 6-10 for a 4-MIC simulation..18

Fig. 2-1. The decentralised cascaded multilevel MIC inverter system. ...22

Fig. 2-2. Wiring of a single MIC for installation into a decentralised cascaded multilevel system. 25

Fig. 2-3. The wiring configuration of a termination lug to allow for multiple parallel cascaded systems on the same linking cable..26

Fig. 2-4. A decentralised cascaded multilevel 2-MIC system based on Fig. 2-2 and Fig. 2-3, which can easily be repeated to parallel more cascaded systems on the same linking cable.26

Fig. 2-5. The ratio of the on-state resistance to the square of the breakdown voltage for commercially available MOSFETs. Based on the best MOSFET (<$5USD) for each voltage category that contained at least 60 different stocked items (element14, November, 2016).28
Fig. 2-6. The cost of commercially available film DC-link capacitors (3.75J energy storage) as a function of the DC-link voltage for 200W cascaded MICs with 98% PV power utilisation (8.5% ripple voltage). Each “capacitor” may be made up of multiple paralleled capacitors. Based on the single unit price of film capacitors listed on element14, December, 2016 ... 30

Fig. 2-7. The relative switching frequency of a multilevel cascaded inverter system compared with a centralised (non-multilevel) inverter equivalent. ... 31

Fig. 2-8. First order (a), second order (b) and third order (c) low pass filters for grid-tied inverters. ... 38

Fig. 2-9. A decentralised 3rd order cascaded 4-MIC system. The impedance looking into one filter from the output of another can be described by the Zth. The grid impedance is described by Zg. . 40

Fig. 2-10. A decentralised 3rd order cascaded 4-MIC system from the point of view of the H-bridge “D”. Other H-bridges and the grid are now seen as the series impedances described by Fig. 2-9 . 41

Fig. 2-11. The harmonic grid current generated by an H-bridge supplying 1Vrms to the system described by equation (2-5) for ‘n’ sized decentralised cascaded filters. .. 43

Fig. 2-12. A complete breakdown of the primary functionality of the H-bridge power module prototype. See appendix 6.2.1 for further details. .. 45

Fig. 2-13. The H-bridge power module PCB layout in the Altium Summer 09 environment. 46

Fig. 2-14. The H-bridge power module PCB functional overlay (top) and the populated PCB (bottom). Note that the PV current measurement was implemented separately as a late addition. . 47

Fig. 2-15. A breakdown of the functionality of the 3.3V to 5V converter utilised to interface the 3.3V SAM3X8E µcontroller with the 5V H-bridge power module. (See Fig. 6-17 for the complete circuit diagram). ... 48

Fig. 2-16. An image of the final implementation of the 3.3V to 5V converters of Fig. 2-15. 49

Fig. 2-17. Overview of the final prototype system as implemented in the lab. Red lines indicate the flow of power, green lines are for control and yellow lines are for lab measurements. 52

Fig. 2-18. The 4-MIC system seen in the “cascaded MICs” block of Fig. 2-17. Top: The four MIC power stages. Bottom: Serially linked master/slave controllers.. 52

Fig. 3-1. The 2-MIC multilevel decentralised cascaded system with built in local switching control (a detailed diagram of the H-bridge can be seen in Fig. 2-12) ... 55

Fig. 3-2. The prototype hardware implementation of the comparison MICs. For this comparison old versions of the 3.3V to 5V µcontroller boards were used. .. 59

Fig. 3-3. Hysteresis band based current control for a traditional grid-synchronised inverter 60
Fig. 3-4. An example case of the California Energy Commission (CEC) weighted efficiency calculation. This metric weighs the efficiencies at different input power levels.

Fig. 3-5. The simulated CEC efficiency of the parallel and 2-cascaded MICs as a function of the per-MIC output filtering energy storage.

Fig. 3-6. The simulated CEC switching frequency of the parallel and 2-cascaded MICs as a function of the per-MIC output filtering energy storage.

Fig. 3-7. The simulated CEC (partial) loss breakdown of the parallel and 2-cascaded MICs as a function of the per-MIC output filtering energy storage. Not all losses are shown (i.e. PV diode).

Fig. 3-8. The transient comparison (simulation and measured) for the parallel MIC system, with the variable values specified in Table 3-1.

Fig. 3-9. The transient comparison (simulation and measured) for the decentralised 2-cascaded MIC system (Fig. 3-1), with the variable values specified in Table 3-1.

Fig. 3-10. The harmonic currents of the parallel and decentralised 2-cascaded systems (relative to the rated harmonic current limit) as a function of the output power. 1p.u. = 0.372Arms.

Fig. 3-11. The per-MIC switching frequencies of the parallel and decentralised 2-cascaded systems as a function of the output power.

Fig. 3-12. The efficiencies of the parallel and decentralised 2-cascaded systems as a function of the output power.

Fig. 3-13. Calculated per-MIC loss breakdown of the parallel and decentralised 2-cascaded MICs. The MICs are operating at (a) 200W (100%) output power and (b) 60W (30%) output power. Total measured loss results are also shown for each case (red lines).

Fig. 3-14. The measured transient zero crossing error behaviour in the 2-cascaded system showing an increasing current error (a-c) and the final resultant system voltage (d). All plots use the 2-cascaded filter value selected in Fig. 3-5 (248uH per-MIC). Normal behaviour can be seen in Fig. 3-9.

Fig. 3-15. The introduced harmonic current in the decentralised 2-cascaded system as a function of the relative zero-crossing errors between the two MICs operating at the rated current. Filter values are all stated on a per-MIC basis. 1p.u. = 0.372Arms. Calculations are based on (3-8).

Fig. 3-16. The measured transient behaviour of the 2-cascaded system at (a and b) and beyond (c and d) the limit of voltage sharing. 248uH per-MIC (68.6µJ/W).

Fig. 3-17. The measured introduced harmonic current of the 2-cascaded system as a function of the “additional percentage” below the voltage power sharing limit (i.e. below 57.8% from Fig. 3-16a). 248uH per-MIC. 1p.u. = 0.372Arms. C/D are the operating points of Fig. 3-16c/d.
Fig. 3-18. Effect of a shaded MIC on the unshaded MIC for multiple “system-total-DC-link” to “grid-voltage-peak” ratios for the 2-cascaded system. A/C/D refers to Fig. 3-16a/c/d. 81

Fig. 4-1. The proposed 4-MIC multilevel decentralised cascaded system. A controller is built into each MIC for local switching control. ... 84

Fig. 4-2. Operating regions and blocks of the 4 MIC cascaded system across one cycle. 86

Fig. 4-3. The simulated voltage (a) and current (b) of the 4 MIC cascaded system across one cycle (see Fig. 4-2). .. 87

Fig. 4-4. An example simulated block distribution for the 4-MIC cascaded system of Table 4-1, but with a reduced current output (6.72Arms) to give a total system power of 740W. (a) shows the where MICs A-D are allocated and the power magnitudes associated with each block, (b) shows the simulated total system voltage and (c-d) shows the individual MIC voltage waveforms. 89

Fig. 4-5. An example of how the round-robin greedy algorithm sorts power blocks and allocates them to individual MICs for an imaginary case. During each sweep of the MICs (A-D) a power block is allocated. This is repeated (i-v) until power targets are met. .. 92

Fig. 4-6. The control diagram of the internal operations of the decentralised multilevel cascaded system performing MPPT. ... 94

Fig. 4-7. The prototype (Table 4-1) decentralised system operating in multilevel-only mode (a), shared-only mode (b) and the proposed hybrid mode (c). These three modes correspond to central shared region widths of 0° (a), 180° (b) and 63° (c). ... 98

Fig. 4-8. A step-by-step walkthrough of the global and local MPPT as the power of MIC A is reduced from 200W to 140W in the prototype system (Table 4-1 specifications). 100

Fig. 4-9. For a single shaded MIC, the critical region can be defined as the region in which the shaded MIC must continuously produce at least some voltage in order for the entire cascaded system to exceed the instantaneous grid voltage... 102

Fig. 4-10. As more MICs are shaded the minimum critical region is expanded. In addition to the requirements of the original critical region of Fig. 4-9, the second MIC must produce a necessary voltage throughout the entire expanded critical region in order for the entire cascaded system to exceed the instantaneous grid voltage. ... 102

Fig. 4-11. The calculated maximum partial shading allowed per-MIC in a group of shaded MICs. The group size of the shaded MICs is given as a proportion of the total number of system MICs. ... 105

Fig. 4-12. The commanded MIC power levels (a) and their measured responses (b), followed by the total commanded/measured power (c) and the resultant total utilisation of commanded power (d). ... 106
Fig. 4-13. The calculated & measured maximum partial shading allowed per-MIC in a group of shaded MICs for the 4-MIC prototype system of Fig. 4-1/Table 3-1. ...108

Fig. 4-14. A 50-harmonic (plus fundamental) Fourier series approximation of the system waveform undergoing a large change in power due to an insufficient global update rate (increasing the THD). ..111

Fig. 4-15. The calculated peak harmonic current waveforms generated by local MPPT as a function of the shared region width and the power change between global updates. Where 1W p.u. is the total system power and 1A p.u. is the allowed harmonic current (5% of rated current). See Fig. 4-18 for similar measured MPPT waveforms from the prototype system..112

Fig. 4-16. Calculated effect of the shared region width on the switching frequency per-MIC, where ‘n’ is the number of MICs in the system. 1Hz p.u. is equivalent to the switching frequency of an ‘n’ sized system operating without any multilevel interleaving (i.e. shared region width = 180°).114

Fig. 4-17. The peak harmonic current (to the 50th harmonic) generated by local MPPT as a function of the shared region width and the power change between global updates. Plots (a) and (b) are calculated and (c) is measured over a restricted range. 1W p.u. is the total system power and 1A p.u. is the allowed harmonic current (5% of rated current). Specifications according to Table 3-1. ..115

Fig. 4-18. The measured peak harmonic current waveforms generated by local MPPT as a function of the shared region width and the power change between global updates. Where 1W p.u. is the total system power and 1A p.u. is the allowed harmonic current (5% of rated current).117

Fig. 6-1. The complete cascaded H-bridge MIC system in the Simulink environment. Each primary block represents one of the 4 MICs. ..125

Fig. 6-2. A close up of one of the 4 Simulink MIC simulation blocks. ..126

Fig. 6-3. Inside one of the Simulink MIC Simulation blocks. The two blocks seen are the “Arduino Block” (left - Representing the µController operations) and the “H-Bridge Module” block (right – Representing the power stage of the MIC). ...126

Fig. 6-4. A view of the contents of the “H-Bridge Module” block..127

Fig. 6-5. A view of the contents of the “Arduino” block. Seen are the blocks responsible for the reference current generation (top left), plotting generation (top right) and the overall control of the MIC (bottom right)...127

Fig. 6-6. A view inside the block responsible for the generation of the plotted waveforms (i.e. current voltage, total harmonic distortion, etc.). ..128

Fig. 6-7. A view inside the block responsible for the reference current generation. This block generates a grid synchronised sinusoidal waveform that is equivalent to the desired current waveform. ..128
Fig. 6-8. A view inside the block responsible for the general control of the MIC. This block is responsible for hysteresis control, multilevel mode select and generally selecting which transistor to turn on/off in the “H-Bridge Module” according to current reference and power requirements. This block also contains another block called the “Logic Block”, responsible for final transistor selection. ... 129

Fig. 6-9. The inside view of the “Logic Block”, which takes information regarding an increase/decrease requirement for the current and then used digital logic to find the combinations of transistors required to achieve the desired change in current. ... 129

Fig. 6-10. An example of the simulation in operation. From top to bottom: The grid voltage, grid current, system total voltage and the output voltage of MICs 1-4. ... 130

Fig. 6-11. The final output stage of the H-bridge module. Zeners are used to help protect the MOSFET gates from over voltage conditions. DC-link capacitors and MOSFET snubbers not shown. ... 134

Fig. 6-12. A close up of one of the MOSFET gate driving circuits (a half bridge driver). The IR2110 drivers are not isolated and so opto-couplers must be used. ... 135

Fig. 6-13. A close up of one of the pairs of dead time logic blocks. The capacitor takes longer to charge during the transition to the on state than to the off state. The diode on the right serves to prevent both comparators (open collector) from being low at the same time. ... 135

Fig. 6-14. A close up of the DC-link over voltage protection relay control circuit. If the specified voltage (R divider) is exceeded for more than the specified time (RC filter), then the op-amp output will latch high and keep the output relay off until logic power is removed from the circuit....... 136

Fig. 6-15. A close up of the grid voltage measurement circuit. This circuit uses a single quad package op-amp to process the signal and prepare it for the isolation amplifier. Critically, a precision voltage reference is used to set the new bias point for the signal to 2.5V. ... 136

Fig. 6-16. The entire MIC H-bridge circuit schematic as seen in Altium Summer 09. 137

Fig. 6-17. The circuit schematic for the final 3.3V to 5V converter module to interface the MIC H-bridge PCB with the SAM3X8E µController board. In addition to zero-crossing detection, this circuit allows for digital signals to transition from 3.3V to 5V (µC to H-bridge) and for analogue signals to transition from 5V to 3.3V (H-bridge to µC). .. 138

Fig. 6-18. Final MIC H-bridge PCB layout from Altium Summer 09. ... 139

Fig. 6-19. 3D render of the final MIC H-bridge PCB layout. ... 139

Fig. 6-20. MIC H-bridge PCB manufactured by Seeed Studio (top side). ... 140

Fig. 6-21. MIC H-bridge PCB manufactured by Seeed Studio (bottom side). 140
Fig. 6-22. Two completed MIC H-bridge PCBs undergoing testing. ..141

Fig. 6-23. An image of the 2-MIC cascaded system undergoing parallel/cascaded comparison investigation, operating with a grid interface (i.e. grid-tied mode)...146

Fig. 6-24. A complete view of the experimental setup testing the 4-MIC decentralised MPPT algorithm. On the far left can be seen a resistive load bank (yellow box on the floor) and just to the left of the PC monitor can be seen the vertical Simulink DSPACE DAC/ADC box.146
VI. List of Tables

Table 1-1. Harmonic restrictions for a grid-tied inverter [9]... 8

Table 1-2. Summary of AS/NZS 4777.2 [9] for residential grid-tied inverters....................................... 9

Table 2-1. Voltage gain requirements for cascaded systems of different sizes with optimally matched standard PV panels based on their open circuit voltages for 110Vrms and 230Vrms grids. .. 33

Table 2-2. Weighted comparison of the six different selection factors for finding the optimal number of cascaded MICs for connection to a 230Vrms grid... 36

Table 2-3. Weighted comparison of the six different selection factors for finding the optimal number of cascaded MICs for connection to a 110Vrms grid... 37

Table 2-4. The required functional capabilities of the H-bridge power module................................. 44

Table 2-5. Logic breakdown table of the 16 pin custom parallel communications protocol................. 50

Table 3-1. Comparison of system variables for the Parallel and 2-cascaded system. 58

Table 4-1. Specifications for the proposed 4-cascaded MIC system seen in Fig. 4-1 and Fig. 2-18. .. 96

Table 6-1. The initial specifications of the H-bridge power module. Some values (such as the switching time and DC-link/snubber capacitance) have varied with the different phases of research. .. 141

Table 6-2. Some sample losses calculations and corresponding lab measurements for the H-bridge power module undergoing some basic testing with an inductive load. .. 142

Table 6-3. Full bill of materials list for the final MIC H-bridge PCB population................................. 144
VII. Abbreviations & Acronyms

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Alternating Current</td>
</tr>
<tr>
<td>ADC</td>
<td>Analogue to Digital Converter</td>
</tr>
<tr>
<td>BOM</td>
<td>Bill Of Materials</td>
</tr>
<tr>
<td>CEC</td>
<td>California Energy Commission</td>
</tr>
<tr>
<td>CHB</td>
<td>Cascaded H-Bridge</td>
</tr>
<tr>
<td>DAC</td>
<td>Digital to Analogue Converter</td>
</tr>
<tr>
<td>DC</td>
<td>Direct Current</td>
</tr>
<tr>
<td>DMC</td>
<td>Decentralised Multilevel Cascaded</td>
</tr>
<tr>
<td>DIP</td>
<td>Dual In-line Package</td>
</tr>
<tr>
<td>DPP</td>
<td>Differential Power Processing</td>
</tr>
<tr>
<td>EOP</td>
<td>Ethernet Over Power</td>
</tr>
<tr>
<td>FC</td>
<td>Flying Capacitor</td>
</tr>
<tr>
<td>HF</td>
<td>High Frequency</td>
</tr>
<tr>
<td>HVDC</td>
<td>High Voltage Direct Current</td>
</tr>
<tr>
<td>IDE</td>
<td>Interactive Development Environment</td>
</tr>
<tr>
<td>IEEE</td>
<td>Institute of Electrical & Electronic Engineers</td>
</tr>
<tr>
<td>MIC</td>
<td>Modular Integrated Converter</td>
</tr>
<tr>
<td>MPP</td>
<td>Maximum Power Point</td>
</tr>
<tr>
<td>MPPT</td>
<td>Maximum Power Point Tracking</td>
</tr>
<tr>
<td>NPC</td>
<td>Neutral Point Clamped</td>
</tr>
<tr>
<td>PCB</td>
<td>Printed Circuit Board</td>
</tr>
<tr>
<td>PF</td>
<td>Power Factor</td>
</tr>
<tr>
<td>PLC</td>
<td>Power Line Communications</td>
</tr>
<tr>
<td>PV</td>
<td>Photo-Voltaic</td>
</tr>
<tr>
<td>PWM</td>
<td>Pulse Width Modulation</td>
</tr>
<tr>
<td>RMS</td>
<td>Root Mean Squared</td>
</tr>
<tr>
<td>SPWM</td>
<td>Sinusoidal Pulse Width Modulation</td>
</tr>
<tr>
<td>THD</td>
<td>Total Harmonic Distortion</td>
</tr>
</tbody>
</table>
VIII. Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Capacitance</td>
</tr>
<tr>
<td>f</td>
<td>Frequency</td>
</tr>
<tr>
<td>I_D</td>
<td>Diode Current</td>
</tr>
<tr>
<td>I_{DC}</td>
<td>Average Current (DC)</td>
</tr>
<tr>
<td>I_{MPP}</td>
<td>Maximum Power Point Current</td>
</tr>
<tr>
<td>I_{photon}</td>
<td>Photon-Influenced Current</td>
</tr>
<tr>
<td>$I_{Ripple(pp)}$</td>
<td>Peak-to-Peak Current (AC)</td>
</tr>
<tr>
<td>I_{RMS}</td>
<td>Root Mean Squared Current</td>
</tr>
<tr>
<td>I_{SC}</td>
<td>Short Circuit Current</td>
</tr>
<tr>
<td>IV</td>
<td>Current-Voltage</td>
</tr>
<tr>
<td>L</td>
<td>Inductance</td>
</tr>
<tr>
<td>P_{Avg}</td>
<td>Average Power</td>
</tr>
<tr>
<td>φ</td>
<td>Phase Angle</td>
</tr>
<tr>
<td>P_{Max}</td>
<td>Maximum Power</td>
</tr>
<tr>
<td>p-n</td>
<td>Positive-Negative</td>
</tr>
<tr>
<td>R_s</td>
<td>Series Resistance</td>
</tr>
<tr>
<td>R_{sh}</td>
<td>Shunt Resistance</td>
</tr>
<tr>
<td>V_{DC}</td>
<td>Average Voltage (DC)</td>
</tr>
<tr>
<td>V_{MPP}</td>
<td>Maximum Power Point Voltage</td>
</tr>
<tr>
<td>V_{DC}</td>
<td>Open Circuit Voltage</td>
</tr>
<tr>
<td>$V_{Ripple(pp)}$</td>
<td>Peak-to-Peak Voltage (AC)</td>
</tr>
<tr>
<td>V_{RMS}</td>
<td>Root Mean Squared Voltage</td>
</tr>
<tr>
<td>ω</td>
<td>Angular Velocity</td>
</tr>
<tr>
<td>Z_C</td>
<td>Capacitive Impedance</td>
</tr>
<tr>
<td>Z_g</td>
<td>Grid Impedance</td>
</tr>
<tr>
<td>Z_L</td>
<td>Inductive Impedance</td>
</tr>
<tr>
<td>Z_{th}</td>
<td>Thevenin’s Equivalent Impedance</td>
</tr>
</tbody>
</table>