“Crop-to-wild gene flow” - a case study of NEWEST transgenes’ escape into wild rice (*Oryza longistaminata*) in Ghana

By

Gavers Kwasi Oppong

A thesis submitted for the partial fulfilment of the requirements of the Master of Biotechnology (Plant Biotechnology)

The University of Adelaide

Faculty of Sciences

School of Agriculture, Food & Wine

Waite Campus

2016
Table of Content

- Declaration ... ii
- Preface .. v
- Manuscript .. vi
- 1. Introduction ... 1
- 2 Materials and Methods .. 4
 - 2.1 Study area and plant materials .. 4
 - 2.2 Wild rice distribution in Ghana ... 4
 - 2.3 Assessing the effects of nitrogen, water and salt availability on the weediness of wild rice ... 5
 - 2.4 Hand hybridization .. 6
 - 2.5 Sampling of wild rice for gene flow studies .. 7
 - 2.5.1 DNA extraction and quantification ... 8
 - 2.5.2 PCR amplification using SSR markers .. 8
 - 2.6 Gene flow determination and statistical analysis ... 9
 - 2.6.1 Data score .. 9
 - 2.6.2 Gene flow frequency determination under natural field conditions and population structure ... 10
 - 2.6.3 Analysis of variance .. 11
- 3. Results .. 11
 - 3.1 Wild rice distribution in Ghana ... 11
 - 3.2 Effects of nitrogen availability on wild rice ... 13
 - 3.2.1 Plant height and culm length .. 13
 - 3.2.2 Panicle and tiller number .. 14
 - 3.2 Number of fertile and sterile seeds ... 14
 - 3.2. Total Biomass .. 14
 - 3.2.5 Chlorophyll content .. 15
 - 3.3 Effects of water availability on wild rice ... 17
 - 3.3.1 Plant height and culm length .. 17
 - 3.3.2 Panicle and tiller number .. 17
 - 3.3.3 Number of fertile and sterile seeds ... 17
 - 3.3.4 Total plant biomass .. 18
 - 3.3.5 Chlorophyll content .. 18
 - 3.4 Effects of salt (NaCl) availability on wild rice ... 20
 - 3.4.1 Plant height .. 20
3.4.2 Survivability ... 20
3.4.3 Total plant biomass .. 20
3.4.4 Chlorophyll content .. 21
3.5 Hand hybridization experiment 22
3.6 Gene flow frequency under natural field condition and genetic structure 23
3.6.1 Genetic differentiation among the wild rice populations 25
4. Discussion .. 27
5. Conclusion ... 32
Acknowledgement ... 33
References ... 35
Appendix ... 46
DNA extraction protocol .. 46
Supplementary information .. 48
Abstract

Background: To boost local rice production in Ghana, to meet demand, there are plans to introduce transgenic rice. Confined Field Trials (CFTs) of rice lines transformed for Nitrogen-Use Efficiency, Water-Use efficiency and Salt Tolerance ("NEWEST" rice), are on-going. NEWEST rice is multi-stacked with genes that make the plant better utilize available nitrogen, water and bind to excess salt in the soil which restore saline soils over time. Perceived ecological risk such as gene flow to wild species is associated with the release of transgenic crops. In Ghana the presence of the wild rice (Oryza longistaminata) has been reported. It is important to know whether NEWEST transgenes will escape to wild rice through gene flow, and the consequences on the weediness of wild rice in the case of NEWEST transgenes escape to the wild rice.

Methodology/key findings: In a survey of wild rice distribution in Ghana, we observed infestation of O. longistaminata in cultivated rice. The availability of nitrogen, water and salt was experimentally manipulated to determine their effect on the weediness of wild rice (O. longistaminata). The wild plants had a better growth with more access to water and nitrogen and were severely inhibited by salinity (p<0.05). Hand hybridization between cultivated rice and O. longistaminata was confirmed in this study with a success rate of 20 %. Gene flow frequency under field conditions was performed using 6 highly polymorphic SSR markers. We observed moderate gene flow under field conditions with an average of 10.17 migrants per generation.
Significance/conclusion: NEWEST genes may have the potential to increase the weediness of *O. longistaminata* if incorporated. Gene flow between NEWEST and wild rice can occur, which may lead to improved tolerance in wild rice. Mitigation strategies should be put in place before NEWEST rice is introduced to prevent the risk of transgene escape.