Constraints on the timing and physical conditions of shale detachment faulting using natural examples

Rowan Hansberry

Geology and Geophysics
School of Physical Sciences
The University of Adelaide

October 2015
Table of Contents

Abstract v
Declaration vii
Journal articles viii
Statements of authorship ix
Acknowledgements xvi

Chapter 1 – Introduction

Project overview and background geology 3
Thesis outlines 9
References 13

Chapter 2 – Complex structure of an upper-level shale detachment zone:

Khao Khwang fold and thrust belt, Central Thailand

Introduction 19
Geological setting of Central Thailand 21
Detailed geology of the Eagle Thrust, Siam City Cement Quarry 23
 Structure of the Sap Bon Formation
 Proximal domain 29
 Complex three-dimensional faulting
 Intermediate domain 31
 Distal domain 31
Discussion 32
 Complex three-dimensional structures
 Deformational mechanisms
Conclusions 36
References 37

Chapter 3 - Syn-deformation temperature and fossil fluid pathways along an exhumed detachment zone, Khao Khwang Fold-Thrust Belt, Thailand

Introduction 41
Geological setting 43
 General framework
 Study area
Methods 45
 Sampling
 Illite crystallinity
 Vitrinite reflectance
 Carbon and oxygen stable isotopes
 Total organic carbon content
Results 54
Chapter 4 – Strain and competency contrasts in shale detachment zones: An Examination of the relationship between finite strain and illite crystallinity

Introduction
Geological setting
Methods
Results
Discussion
Conclusions
References

Chapter 5 – K-Ar illite age constraints on the formation of a shale detachment zone

Introduction
Geological setting
Sampling and methods
Scanning electron microscope petrography 98
X-ray diffraction analysis 98
Stable isotopes analysis 99
K-Ar dating 100
Results 101
SEM petrography 101
Mineralogical characterisation of clay fractions by X-ray diffraction 101
Stable isotopes 101
K-Ar dating 102
Discussion 102
Geochronological constraints on the study area 105
Conclusions 106
References 107

Chapter 6 – Conclusions 113
Implications for the understanding of the nature of shale detachment zones 115
the history of the Khao Khwang Fold-Thrust Belt 115

Supplementary Data 115
Appendix A 117
Appendix B 127
Appendix C 143
Appendix D 165
Appendix E 171
Appendix F 175
Appendix G 179
Appendix H 193
A detachment can be defined as a horizon or zone, centimetres to kilometres in thickness, which mechanically decouples deforming rocks or sediments from underlying, non-deforming sequences. Detachment zones accommodate thin-skinned deformation in fold and thrust belts across a variety of tectonic settings. Fold-thrust belts exhibit considerable variation in structural styles and vergence direction depending on the type (salt, overpressured shale, low-angle faults) and characteristics (thickness, strength, dip and dip direction) of the detachment horizon(s). Shale detachments have been previously described as largely ductile in their mechanism of deformation, however, increasing resolution of seismic imaging and understanding of these zones suggest brittle deformation may have a significant role in their internal behaviour and the deformation of overlying fold and thrust belts. Despite the critical influence on the structural style of fold and thrust belts, the precise nature by which detachments control deformation in FTBs is poorly constrained. Dependence on seismic imaging and other indirect or low-resolution study methods has resulted from the lack of outcropping shale detachment zones for detailed study. This study presents an investigation of the structural style and deformatio
nal mechanisms of a newly described shale detachment zone in the Khao Khwang Fold and Thrust Belt in Central Thailand, which is an exceptionally well-exposed shale detachment in the Sap Bon Formation shales. This is integrated with new data and structural interpretation from the Chrystalls Beach Complex (accretionary wedge) in southern Otago, New Zealand, and the Osen Røa thrust sheet (collisional) in the Norwegian Caledonides for comparison with results from the larger study in the Khao Khwang FTB.

Detailed field mapping and construction of cross-sections through the detachment zone reveals the deformatio
nal style and brittle nature of deformation. In the Sap Bon Formation detachment zone, cross-sections were sub-divided into structu
ral domains based on the style and complexity of deformation. In particular, the ‘proximal domain’ located directly above the Eagle Thrust exhibited the most heavily deformed shales, and is interpreted to be acting as a detachment zone. The proximal domain is deformed in a continuous vs. discontinuous deformatio
nal style where the distribution of contrasting competency domains has governed the distribution of deformatio
nal mechanisms. Weak phases (incompetent domains composed of fine-grained shales) have localised strain and host shear-zone like faults which form an anastomosing network through the detachment zone. These shear zones characterise a three-dimensionally complex fault system in the proximal domain, surrounding three-dimensional lenses of competent rock. Extreme structural heterogeneity occurs both in-section and laterally through the proximal domain.

Analysis of the geochemistry of the Sap Bon Formation detachment zone through use of illite crystallinity, carbon and oxygen stable isotopes, vitrinite reflectance, and total organic carbon content analyses reveals a peak deformatio
nal temperature of between 160-220 °C. Higher illite crystallinity is observed in the continuously deformed incompetent domains, and is found to be directly linked to the finite strain. Finite strain throughout the Sap Bon Formation detachment zone (and the two comparison field areas) is shown to exhibit a strong correlation to KI(CIS) values, suggesting strain rate may play have a key influence in the development of illite crystallinity, as well as the prograde transformation of clay minerals.

Carbon and oxygen stable isotope mapping across the structural cross sections reveals fluid flow pathways through the evolution of the complex fault zone which constitutes the Sap Bon Formation detachment zone. Results indicate the basal Eagle Thrust, as well as other large faults constituted the primary source of permeability during orogenesis, once rock-matrix permeability had been lost. Oxygen stable isotope values from calcite mineralisation along these major structures are frequently as negative as -16.00 δ18O, indicating relatively hotter precipitating fluid temperatures that the background value of calcite mineralisation in the Sap Bon Formation (~10-12 δ18O). Burial > diagenetic > pre thrust deformation > orogenic association of carbon and oxygen stable isotope results and clay mineralogy provide a conceptual model for the development of the Sap Bon Formation through burial and into the formation of the detachment zone. The timing of this evolution is constrained by K-Ar illite age determinations, with burial occurring no later than 262±5.4 Ma, while faulting related to the onset of orogenesis began by 230±4.6 Ma, with deformation continuing as late as 208±4.1 Ma.
I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any other university of tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint award of this degree.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that the copyright of published works contained within this thesis resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available online, via the University of Adelaide’s digital research repository, the Library Search, and also through search engines, unless permission has been granted by the University of Adelaide to restrict access for a period of time.

Rowan Hansberry

Statement of Authorship

<table>
<thead>
<tr>
<th>Title of Paper</th>
<th>Complex Structure of an upper-level shale detachment zone: Khao Khwang fold and thrust belt, Central Thailand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Publication Status</td>
<td>![Published][1] Accepted for Publication</td>
</tr>
</tbody>
</table>

Principal Author

<table>
<thead>
<tr>
<th>Name of Principal Author (Candidate)</th>
<th>Rowan Hansberry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contribution to the Paper</td>
<td>Completed fieldwork, collected and interpreted data, collected, prepared and analysed samples wrote manuscript, acted as corresponding author.</td>
</tr>
<tr>
<td>Overall percentage (%)</td>
<td>80</td>
</tr>
<tr>
<td>Signature</td>
<td>Date 15/10/15</td>
</tr>
</tbody>
</table>

Co-Author Contributions

By signing the Statement of Authorship, each author certifies that:

i. the candidate’s stated contribution to the publication is accurate (as detailed above);

ii. permission is granted for the candidate in include the publication in the thesis; and

iii. the sum of all co-author contributions is equal to 100% less the candidate’s stated contribution.

<table>
<thead>
<tr>
<th>Name of Co-Author</th>
<th>Alan Collins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contribution to the Paper</td>
<td>Supervised fieldwork, aided in collection of data and samples, helped with data interpretation and manuscript revision.</td>
</tr>
<tr>
<td>Signature</td>
<td>Date 15/10/15</td>
</tr>
</tbody>
</table>

[1]: #
<table>
<thead>
<tr>
<th>Name of Co-Author</th>
<th>Contribution to the Paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rosalind King</td>
<td>Supervised fieldwork, aided in collection of data and samples, helped with data interpretation and manuscript revision.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Signature</td>
<td>Date 15/10/15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name of Co-Author</th>
<th>Contribution to the Paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Christopher Morey</td>
<td>Supervised fieldwork, aided in collection of data, helped with data interpretation and manuscript revision.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Signature</td>
<td>Date 28/08/2015</td>
</tr>
</tbody>
</table>
Statement of Authorship

<table>
<thead>
<tr>
<th>Title of Paper</th>
<th>Syn-Deformation Temperature and Fossil Fluid Pathways along an Exhumed Detachment Zone, Khao Khwang Fold-Thrust Belt, Thailand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Publication Status</td>
<td>Published</td>
</tr>
</tbody>
</table>

Principal Author

<table>
<thead>
<tr>
<th>Name of Principal Author (Candidate)</th>
<th>Rowan Hansberry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contribution to the Paper</td>
<td>Completed fieldwork, collected and interpreted data, collected, prepared and analysed samples wrote manuscript, acted as corresponding author.</td>
</tr>
<tr>
<td>Overall percentage (%)</td>
<td>80</td>
</tr>
<tr>
<td>Signature</td>
<td>Date 15/10/15</td>
</tr>
</tbody>
</table>

Co-Author Contributions

By signing the Statement of Authorship, each author certifies that:

i. the candidate’s stated contribution to the publication is accurate (as detailed above);

ii. permission is granted for the candidate in include the publication in the thesis; and

iii. the sum of all co-author contributions is equal to 100% less the candidate’s stated contribution.

<table>
<thead>
<tr>
<th>Name of Co-Author</th>
<th>Alan Collins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contribution to the Paper</td>
<td>Supervised fieldwork, aided in collection of data and samples, helped with data interpretation and manuscript revision.</td>
</tr>
<tr>
<td>Signature</td>
<td>Date 15/10/15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name of Co-Author</th>
<th>Rosalind King</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contribution to the Paper</td>
<td>Supervised fieldwork, aided in collection of data and samples, helped with data interpretation and manuscript revision.</td>
</tr>
<tr>
<td>Signature</td>
<td>Date 15/10/15</td>
</tr>
<tr>
<td>Name of Co-Author</td>
<td>Contribution to the Paper</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
</tr>
<tr>
<td>Christopher Morley</td>
<td>Supervised fieldwork, aided in collection of data, helped with data interpretation and manuscript revision.</td>
</tr>
<tr>
<td>John Warren</td>
<td>Provided discussion and insight in the preparation of the manuscript.</td>
</tr>
<tr>
<td>Andy P. Giże</td>
<td>Completed preparation and analysis of samples.</td>
</tr>
<tr>
<td>Stefan C. Löhr</td>
<td>Assisted in preparation and analysis of samples, helped with interpretation of results.</td>
</tr>
<tr>
<td>Tony A. Hall</td>
<td>Assisted in analysis of samples.</td>
</tr>
</tbody>
</table>
Statement of Authorship

<table>
<thead>
<tr>
<th>Title of Paper</th>
<th>Strain and Competency Contrasts in Shale Detachment Zones: An Examination of the Relationship between Finite Strain and Illite Crystallinity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Publication Status</td>
<td>Published</td>
</tr>
</tbody>
</table>

Principal Author

<table>
<thead>
<tr>
<th>Name of Principal Author (Candidate)</th>
<th>Rowan Hansberry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contribution to the Paper</td>
<td>Completed fieldwork, collected and interpreted data, collected, prepared and analysed samples wrote manuscript, acted as corresponding author.</td>
</tr>
<tr>
<td>Overall percentage (%)</td>
<td>80</td>
</tr>
<tr>
<td>Signature</td>
<td>Date 15/10/15</td>
</tr>
</tbody>
</table>

Co-Author Contributions

By signing the Statement of Authorship, each author certifies that:

i. the candidate’s stated contribution to the publication is accurate (as detailed above);

ii. permission is granted for the candidate to include the publication in the thesis; and

iii. the sum of all co-author contributions is equal to 100% less the candidate’s stated contribution.

<table>
<thead>
<tr>
<th>Name of Co-Author</th>
<th>Alan Collins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contribution to the Paper</td>
<td>Supervised fieldwork, aided in collection of data and samples, helped with data interpretation and manuscript revision.</td>
</tr>
<tr>
<td>Signature</td>
<td>Date 15/10/15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name of Co-Author</th>
<th>Rosalind King</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contribution to the Paper</td>
<td>Supervised fieldwork, aided in collection of data and samples, helped with data interpretation and manuscript revision.</td>
</tr>
<tr>
<td>Signature</td>
<td>Date 15/10/15</td>
</tr>
<tr>
<td>Name of Co-Author</td>
<td>Contribution to the Paper</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
</tr>
<tr>
<td>Christopher Morley</td>
<td>Supervised fieldwork, aided in collection of data, helped with data interpretation and manuscript revision.</td>
</tr>
<tr>
<td></td>
<td>Date 28/08/2015</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name of Co-Author</th>
<th>Contribution to the Paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stefan C. Lohr</td>
<td>Assisted in preparation and analysis of samples, helped with interpretation of results.</td>
</tr>
<tr>
<td></td>
<td>Date 28/09/2015</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name of Co-Author</th>
<th>Contribution to the Paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tony A. Hall</td>
<td>Assisted in analysis of samples.</td>
</tr>
<tr>
<td></td>
<td>Date 19/10/15</td>
</tr>
</tbody>
</table>
Statement of Authorship

<table>
<thead>
<tr>
<th>Title of Paper</th>
<th>K-Ar illite age constraints on the formation of a shale detachment zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Publication Status</td>
<td>Published (x)</td>
</tr>
</tbody>
</table>

Principal Author

<table>
<thead>
<tr>
<th>Name of Principal Author (Candidate)</th>
<th>Rowan Hansberry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contribution to the Paper</td>
<td>Completed fieldwork, collected and interpreted data, collected, prepared and analysed samples wrote manuscript, acted as corresponding author.</td>
</tr>
<tr>
<td>Overall percentage (%)</td>
<td>80</td>
</tr>
<tr>
<td>Signature</td>
<td>Date 15/10/15</td>
</tr>
</tbody>
</table>

Co-Author Contributions

By signing the Statement of Authorship, each author certifies that:

i. the candidate’s stated contribution to the publication is accurate (as detailed above);

ii. permission is granted for the candidate in include the publication in the thesis; and

iii. the sum of all co-author contributions is equal to 100% less the candidate’s stated contribution.

<table>
<thead>
<tr>
<th>Name of Co-Author</th>
<th>Horst Zwingmann</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contribution to the Paper</td>
<td>Completed K-Ar analysis of samples, contributed towards manuscript completion and reviewed manuscript</td>
</tr>
<tr>
<td>Signature</td>
<td>Date 15/10/15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name of Co-Author</th>
<th>Alan Collins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contribution to the Paper</td>
<td>Supervised fieldwork, aided in collection of data and samples, helped with data interpretation and manuscript revision.</td>
</tr>
<tr>
<td>Signature</td>
<td>Date 15/10/15</td>
</tr>
<tr>
<td>Name of Co-Author</td>
<td>Contribution to the Paper</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
</tr>
<tr>
<td>Rosalind King</td>
<td>Supervised fieldwork, aided in collection of data and samples, helped with data interpretation and manuscript revision.</td>
</tr>
<tr>
<td>Signature</td>
<td>Date 15/10/15</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Christopher Money</td>
<td>Supervised fieldwork, aided in collection of data, helped with data interpretation and manuscript revision.</td>
</tr>
<tr>
<td>Signature</td>
<td>Date 28/08/2015</td>
</tr>
<tr>
<td>Stefan C. Löhr</td>
<td>Assisted in preparation and analysis of samples, helped with interpretation of results.</td>
</tr>
<tr>
<td>Signature</td>
<td>Date 28/09/2015</td>
</tr>
</tbody>
</table>
It’s done. I’d like to say a huge thank you to my two brilliant supervisors Alan Collins and Rosalind King for all their help over the last three (and a bit) years. This thesis would not have been possible without their guidance, motivation (particularly in the early stages), and encouragement. They have both had a massive hand in helping me to develop the research and writing skills necessary to reach this point.

Secondly, I’d like to thank Christopher Morley, who has essentially been an extra supervisor, organising and mentoring my field work, providing an excellent introduction to Thailand, as well as continued discussion and guidance in research directions and manuscript preparation, along with his direct contributions to the work. I’d also like to acknowledge the staff, in particular Waitat Narabolobh, of Siam City Cement Company Limited for their generous access to field sites, and assistance in moving around their quarries.

I would like to thank all of the laboratory staff and collaborators at Adelaide Microscopy, the Department of Resource Management at the University of Melbourne, The Sprigg Geobiology Centre at the University of Adelaide, CSIRO ESRE in Perth, and the Department of Geosciences at the University of Oslo. With special thanks to Stefan Löhrr for a great deal of technical assistance and discussion, Tony Hall, Russell Drysdale, Horst Zwingmann, Aoife McFadden, Ben Wade, Bjørn Larsen and Roy Gabrielsen.

I would like to thank Laurel Goodwin for a huge amount of help reviewing my first paper, and all the anonymous reviewers for helpful and constructive feedback which greatly improved the quality of my manuscripts.

I’d also like to thank my colleges and fellow PhD and honours students: Francesco and Rommy for being excellent and entertaining field work buddies to help survive blistering days in Thai quarries, Diana, Rob, Jeremy, Ben, Funny, Chris, Ouyang, and Jack for being great office mates over the last three years, and the S3 gang for making a wonderful research group and providing some memorable Christmas parties. As well as the other PhD, honours, and staff friends I’ve had along the way: Adam, Bonnie, Kat, Katherine, Lachy, Josh, Gilby, Alex, Donnelly, Morgan, Laura, Kieran, James, Romana, Stijn, Alec, John, Simon, Karin, Juraj, and all the people I’ve forgotten.

Finally, I’d like to thank my wonderful family for their love and support. My partner Georgy, the whole Falster family, my Grandparents, my Dad, and most of all, my extremely supportive Mum without whom this would not have been possible.