Evaluation of the effects of AtCIPK16 expression on the salt tolerance of barley and wheat

Emily Laurina Thoday-Kennedy

A thesis submitted for the degree of
Master of Philosophy
School of Agriculture, Food and Wine
Faculty of Sciences

THE UNIVERSITY of ADELAIDE
May 2016
Table of Contents

Table of Contents .. i
List of Figures ... iii
List of Tables ... v
List of Abbreviations ... vi
Abstract ... x
Declaration .. xi
Acknowledgments .. xii
Chapter 1: Literature review ... 1
 1.1 A global problem .. 1
 1.2 Salinity .. 1
 1.2.1 Salt-affected soils ... 1
 1.2.2 Global salinity ... 2
 1.3 How salt affects plants .. 3
 1.3.1 Sodium toxicity ... 4
 1.4 Salt tolerance mechanisms .. 4
 1.4.1 Osmotic tolerance .. 4
 1.4.2 Ionic tolerance ... 4
 1.5 CBLs and CIPKs .. 6
 1.5.1 Ca^{2+} signalling in plants ... 6
 1.5.2 Calcineurin B-like proteins (CBLs) .. 7
 1.5.3 Calcineurin B-like Interacting Proteins Kinases (CIPKs) ... 8
 1.6 AtCIPK16 ... 11
 1.6.1 Arabidopsis thaliana Calcineurin B-like Interacting Protein Kinase 16 12
 1.6.2 Other CIPK16s ... 14
 1.7 Research Aims ... 15
Chapter 2: Evaluation of 35S:AtCIPK16 Golden Promise barley lines under field conditions in 2013 & 2014 .. 16
 2.1 Introduction ... 16
 2.2 Materials and Methods ... 17
 2.2.1 Environmental characterisation of field trial site .. 17
 2.2.2 Plant material .. 18
 2.2.3 Field trial of transgenic barley ... 18
 2.2.4 DNA extraction and genotyping analysis ... 20
 2.2.5 Soil analysis of field trial plots ... 21
 2.2.6 Ion analysis of leaf tissue ... 21
 2.3 Results .. 22
 2.3.1 Environmental characterisation of field trial site .. 22
 2.3.2 Transgenic AtCIPK16 barley show variations in plant growth 23
 2.3.3 Transgenic AtCIPK16 expressing barley lines show possible Na^{+} exclusion 25
 2.3.4 Expression of AtCIPK16 in barley does not improve yield 27
 2.4 Discussion ... 30
 2.4.1 Transgenic AtCIPK16 barley has increased Na^{+} and Cl^{-} exclusion 30
 2.4.2 Na^{+} and Cl^{-} exclusion does not translate to improved biomass or yield in transgenic AtCIPK16 lines ... 31
 2.4.3 Variation in results between years linked to environmental factors 33
 2.5 Conclusions & Future directions .. 35
Chapter 3: Characterisation of Ubi:AtCIPK16 wheat lines in hydroponic experiments ... 36
 3.1 Introduction ... 36
 3.2 Materials and Methods ... 37
Chapter 4: Determination of whether the presence/absence of TATA-box in the AtCIPK16 promoter is responsible for the AtCIPK16 expression differences observed between Arabidopsis ecotypes

4.1 Introduction ... 61
4.2 Materials and Methods .. 63
 4.2.1 Analysis of promoter regions to identify mutation sites 63
 4.2.2 Introducing point mutations by PCR mutagenesis 63
 4.2.3 Restriction digest and DNA ligation reactions 66
 4.2.4 Generation of amplicon C – pCR8 Gateway® vectors 66
 4.2.5 Further steps needed to transform final destination vectors into Arabidopsis 67
4.3 Results ... 69
 4.3.1 Analysis of AtCIPK16 promoters to introduce point mutations and design primers 69
 4.3.2. Successful creation of amplicons A, B and C containing the desired point mutation for both alleles .. 72
 4.3.3 Creation of pCR8 vector with full AtCIPK16 promoter with point mutation 73
4.4 Discussion .. 77
 4.4.1 Difficulties in plasmid construction 77
4.5 Future work .. 78

Chapter 5: General Discussion .. 80
5.1 Review of thesis aims... 80
5.2 Summary of main findings ... 81
5.3 Implications of thesis findings ... 82
 5.3.1 Benefits of AtCIPK16 expression in barley and wheat may depend on environment 82
 5.3.2 Role of CIPK16 in salt tolerance 83
 5.3.3 Is exclusion the best mechanism to pursue in these crops? 84
5.4 Future Research .. 85
 5.4.1 GM field trials of transgenic AtCIPK16 barley in Australia 85
 5.4.2 Further characterisation of transgenic AtCIPK16 wheat lines 87
 5.4.3 What is the AtCIPK16 network pathway in wheat and barley? 88
 5.4.4 AtCIPK16 expression: which promoter to use? 90
5.5 Concluding Remarks ... 91

Chapter 6: Appendices ... 93
Appendix 1 ... 93
Appendix 2 ... 103
Appendix 3 ... 108
References ... 109
List of Figures

Figure 1.1: Map showing the regions of Australia affected or potentially affected by transient (yellow) and dryland (red) salinity...3
Figure 1.2: General structure of a calcineurin B-like protein (CBL)...7
Figure 1.3: Overall structure of a CIPK showing the N-terminus serine/threonine kinase domain, with the activation loop (horizontal lines) and the C-terminus regulatory domain...9
Figure 1.4: Sequence alignment of the region of interest of the AtCIPK16 promoter and gene........13
Figure 2.1: EM38 map of the field trial site in Kunjin, WA (83 m length × 32 m wide) showing the apparent electrical conductivity (ECa)...17
Figure 2.2: Average rainfall (mm) and maximum temperature (°C) at Corrigin, Western Australia for the year 2013 and 2014..23
Figure 2.3: Electrophoresis gel showing presence of the native HvVRT2 gene and the AtCIPK16 transgene in extracted gDNA from wildtype, null segregant and three AtCIPK16 expressing barley lines grown at Kunjin, WA..23
Figure 2.4: Digital images of wildtype and transgenic AtCIPK16 expressing barley plots displaying the range of plant densities in both low and high salt trial sites at Kunjin, Western Australia in 2014..24
Figure 2.5: Shoot biomass and tiller number of wildtype, null segregant and transgenic AtCIPK16 expressing barley grown at Kunjin, Western Australia...25
Figure 2.6: Na+, K+ and Cl- concentration and Na+/K+ ratio of wildtype, null segregant and transgenic AtCIPK16 barley grown at Kunjin, WA..26
Figure 2.7: Grain yield per plants parameters of wildtype and transgenic AtCIPK16 expressing barley grown at Kunjin, Western Australia...28
Figure 2.8: Grain yield per plot for wildtype and transgenic AtCIPK16 expressing barley lines grown at Kunjin, Western Australia...29
Figure 3.1: Electrophoresis gel showing representative results of genotyping and expression for null segregants and three transgenic AtCIPK16 wheat lines...42
Figure 3.2: Photographs of null segregant and three transgenic AtCIPK16 wheat lines at 24 days grown in 80 L flood-drain hydroponic systems under different salt treatments..43
Figure 3.3: Whole plant biomass measurements and tiller number of null segregant and three transgenic AtCIPK16 wheat lines grown in hydroponic experiments...45
Figure 3.4: Relative salt tolerance of null segregant and three transgenic AtCIPK16 wheat lines grown under hydroponic experiments...46
Figure 3.5: Leaf Na+ and Cl− concentration of null segregant and three transgenic AtCIPK16 wheat lines grown in hydroponic experiments...48
Figure 3.6: Leaf K+ concentration of null segregant and three transgenic AtCIPK16 wheat lines grown in hydroponic experiments...49
Figure 3.7: Root Na+, Cl− and K+ concentration of null segregant and three transgenic AtCIPK16 wheat lines grown in hydroponic experiments...51
Figure 4.1: Flow diagram outlining the methods undertaken to perform site directed mutagenesis by PCR on a reporter construct plasmid...65
Figure 4.2: Sequence of the region of the AtCIPK16 promoter in the pCR8 vector and the primers involved in the site directed mutagenesis...71
Figure 4.3: Electrophoresis gel and chromatograph with sequence alignment of amplicons A and B from both Shahdara and Bay-0 alleles containing the desired point mutations...72
Figure 4.4: Electrophoresis gel and chromatograph with sequence alignment of amplicon C from both Shahdara and Bay-0 alleles containing the desired point mutations .. 73
Figure 4.5: Electrophoresis gel of failed double restriction enzyme digest of Bay-0 and Shahdara amplicon Cs. .. 73
Figure 4.6: Electrophoresis gel and chromatograph with sequence alignment of amplicon C in pCR8 vector for both Shahdara and Bay-0 alleles containing the desired point mutations 75
Figure 4.7: Electrophoresis gels of double restriction enzyme digests and results of gel purification of bands excised from the gel of amplicon Cs in pCR8 vectors and original promoters in pCR8... .76
List of Tables

Table 2.1: Fertilisers applied during 2013 and 2014 field at Kunjin, WA. ...19
Table 2.2: Herbicides, fungicides and insecticides applied during 2013 and 2014 field trials at Kunjin, WA. ...19
Table 3.1: Components and final concentrations in 80 L hydroponic systems of the standard ACPFG growth solution..38
Table 3.2: Details of gene specific primers and PCR conditions used for the amplification of gDNA and/or cDNA from leaf tissue samples of null segregant and three independent AtCIPK16 transgenic wheat lines...41
Table 3.3: Comparison of mean results for biomass and leaf ion concentration for each sibling transgenic line grown in all three hydroponic experiments to the respective null segregants in the same experiment..52
Table 3.4: Comparison of mean results for root ion concentration for each sibling transgenic line grown in all three hydroponic experiments to the respective null segregants in the same experiment ...52
Table 4.1: Description of primers designed for site directed mutagenesis of the AtCIPK16 promoter by PCR and details of the amplicons created...70
List of Abbreviations

% percentage
number
× times
°C degrees Celsius
® registered trademark
⁻¹ per
⁻ve negative
⁺ve positive
µL microliter(s)
µmoles micromole(s)
µS microSiemens
3’ three prime, of nucleic acid sequence
35S promoter of cauliflower mosaic virus 35S
3D three dimensional
5’ five prime, of nucleic acid sequence
aa amino acid
ABA abscisic acid
ABARES Australian Bureau of Agricultural and Resource Economics and Sciences
ACPFG Australian Centre for Plant Functional Genomics
AGRF Australian Genome Research Facility
Agrobacterium Agrobacterium tumefaciens
AKT Arabidopsis potassium transporter
At Arabidopsis thaliana
ANOVA analysis of variance
AVP1 Arabidopsis vacuolar pyrophosphatase
Bay-0 Arabidopsis ecotype Bayreuth-0
BLAST basic local alignment search tool
bp base pairs, of nucleic acid
C-terminal carboxyl (COOH)-terminal, of protein
Ca²⁺ calcium ion
CaCl₂ calcium chloride
CaM calmodulin
CaSO₄ calcium sulphate
Cat. No. catalogue number
CBL calcineurin B-like protein
cDNA complimentary deoxyribonucleic acid
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDPK</td>
<td>calcium-dependent protein kinase</td>
</tr>
<tr>
<td>CIMMYT</td>
<td>International Maize and Wheat Improvement Centre (Centro Internacional de Mejoramiento de Maíz y Trigo)</td>
</tr>
<tr>
<td>CIPK</td>
<td>calcineurin B-like (CBL) interacting protein kinase</td>
</tr>
<tr>
<td>Cl⁻</td>
<td>chloride ion</td>
</tr>
<tr>
<td>cm</td>
<td>centimetre</td>
</tr>
<tr>
<td>CML</td>
<td>calmodulin-like protein</td>
</tr>
<tr>
<td>CO₂</td>
<td>carbon dioxide</td>
</tr>
<tr>
<td>Col-0</td>
<td>Arabidopsis ecotype Columbia-0</td>
</tr>
<tr>
<td>CRCSLM</td>
<td>Cooperative Research Centre for Soil & Land Management</td>
</tr>
<tr>
<td>CRISPR/Cas</td>
<td>clustered regularly interspersed short palindromic repeats/CRISPR-associated</td>
</tr>
<tr>
<td>cv.</td>
<td>cultivar</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>dNTPs</td>
<td>deoxynucleotide triphosphates</td>
</tr>
<tr>
<td>DREB</td>
<td>dehydration-responsive element-binding</td>
</tr>
<tr>
<td>dS</td>
<td>deciSiemens</td>
</tr>
<tr>
<td>DTT</td>
<td>dithiothreitol</td>
</tr>
<tr>
<td>DW</td>
<td>dry weight</td>
</tr>
<tr>
<td>E. coli</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>EC</td>
<td>electrical conductivity</td>
</tr>
<tr>
<td>EC<sub>1:5</sub></td>
<td>electrical conductivity of a 1:5 soil to water solution</td>
</tr>
<tr>
<td>EC<sub>a</sub></td>
<td>apparent electrical conductivity</td>
</tr>
<tr>
<td>EC<sub>e</sub></td>
<td>electrical conductivity of a soil extract</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>EF</td>
<td>elongation factor</td>
</tr>
<tr>
<td>EM</td>
<td>electromagnetic</td>
</tr>
<tr>
<td>ESP</td>
<td>exchangeable sodium percentage</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agricultural Organization of the United Nations</td>
</tr>
<tr>
<td>FISH</td>
<td>fluorescence in situ hybridization</td>
</tr>
<tr>
<td>FW</td>
<td>fresh weight</td>
</tr>
<tr>
<td>g</td>
<td>grams(s)</td>
</tr>
<tr>
<td>g</td>
<td>gravity</td>
</tr>
<tr>
<td>GC</td>
<td>guanine-cytosine, nucleic acid content</td>
</tr>
<tr>
<td>gDNA</td>
<td>genomic deoxyribonucleic acid</td>
</tr>
<tr>
<td>GFP</td>
<td>green fluorescent protein</td>
</tr>
<tr>
<td>GM</td>
<td>genetically modified</td>
</tr>
<tr>
<td>GP</td>
<td>Golden Promise</td>
</tr>
<tr>
<td>GS</td>
<td>growth stage, of plant</td>
</tr>
<tr>
<td>H⁺</td>
<td>hydrogen ion</td>
</tr>
<tr>
<td>H₂O</td>
<td>water</td>
</tr>
<tr>
<td>ha</td>
<td>hectare</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>PPC2</td>
<td>protein phosphatase 2C-type</td>
</tr>
<tr>
<td>PPI</td>
<td>protein-phosphate interaction</td>
</tr>
<tr>
<td>PVC</td>
<td>polyvinyl chloride</td>
</tr>
<tr>
<td>QTL</td>
<td>quantitative trait loci</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>ROS</td>
<td>reactive oxygen species</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>reverse transcription polymerase chain reaction</td>
</tr>
<tr>
<td>S</td>
<td>sulphur</td>
</tr>
<tr>
<td>s.e.m.</td>
<td>standard error of the mean</td>
</tr>
<tr>
<td>SDS</td>
<td>sodium dodecyl sulfate</td>
</tr>
<tr>
<td>s</td>
<td>second(s)</td>
</tr>
<tr>
<td>SnRK</td>
<td>SNF1 (sucrose non-fermenting 1)-related kinase subgroup</td>
</tr>
<tr>
<td>SOS</td>
<td>salt overly sensitive</td>
</tr>
<tr>
<td>T1</td>
<td>progeny of the primary transformant containing transgene</td>
</tr>
<tr>
<td>T2</td>
<td>progeny of T1</td>
</tr>
<tr>
<td>T3</td>
<td>progeny of T2</td>
</tr>
<tr>
<td>T4</td>
<td>progeny of T3</td>
</tr>
<tr>
<td>T5</td>
<td>progeny of T4</td>
</tr>
<tr>
<td>Ta</td>
<td>Triticum aestivum</td>
</tr>
<tr>
<td>TBP</td>
<td>TATA-box binding protein(s)</td>
</tr>
<tr>
<td>TE</td>
<td>tris-EDTA</td>
</tr>
<tr>
<td>Tm</td>
<td>melting temperature, of primers</td>
</tr>
<tr>
<td>™</td>
<td>unregistered trademark</td>
</tr>
<tr>
<td>TGS</td>
<td>transgene silencing</td>
</tr>
<tr>
<td>TSS</td>
<td>transcription start site</td>
</tr>
<tr>
<td>U</td>
<td>unit(s)</td>
</tr>
<tr>
<td>Ubi</td>
<td>promoter of maize Ubiquitin-1</td>
</tr>
<tr>
<td>UTR</td>
<td>untranslated region, of nucleic acid</td>
</tr>
<tr>
<td>UV</td>
<td>ultraviolet</td>
</tr>
<tr>
<td>v/v</td>
<td>volume per volume</td>
</tr>
<tr>
<td>WA</td>
<td>Western Australia</td>
</tr>
</tbody>
</table>
Abstract

Soil salinity is a major constraint to crop production in Australia. This has prompted the need to produce salt tolerant cereal cultivars, through the understanding of genes involved in salt tolerance mechanisms and manipulating their expression levels. Arabidopsis thaliana Calcineurin B-like Interacting Protein Kinase 16 (AtCIPK16) has been identified as a gene involved in sodium (Na\(^+\)) exclusion. Analysis of AtCIPK16 alleles from Arabidopsis ecotypes suggests variances in expression are due to differences in the promoters. Experiments in Arabidopsis, barley and wheat (preliminary) have illustrated that AtCIPK16 overexpression can enhance biomass production through increased Na\(^+\) exclusion, although its full effect in barley and wheat has yet to be properly characterised in both greenhouse and field environments.

The first focus of this project evaluated the salt tolerance of 35S:AtCIPK16 barley (cv. Golden Promise) grown under low and high salinity field conditions in 2013 and 2014 at Kunjin, Western Australia. Comparisons between years were difficult due to waterlogging of the 2013 high salt site and the increased variability in plot establishment in 2014. 35S:AtCIPK16 barley lines had varying responses to high salt conditions depending on the annual rainfall. Results showed Na\(^+\) and Cl\(^-\) exclusion in certain lines, although this correlated with decreased biomass and yield in high rainfall years. AtCIPK16 expression also increased Na\(^+\) and Cl\(^-\) exclusion in 2012 (a low rainfall year) which instead lead to increasing plant growth and yield.

The second focus of this project aimed to fully characterised the effects of the constitutive expression of Ubi:AtCIPK16 in wheat (cv. Gladius). Despite conducting three hydroponic experiments, no definitive conclusions about the effects of AtCIPK16 expression on wheat salt tolerance could be drawn. Although, one sibling transgenic line showed increased Na\(^+\) and Cl\(^-\) exclusion from both root and shoot tissue accompanied by larger biomass under 200 mM salt stress. Despite this finding several factors hinder the analysis of data including the high number of null segregants, considerable variability between siblings of the same transformation event and minimal transgene expression.

The third focus of this project aimed to investigate expression differences between two AtCIPK16 alleles from the Arabidopsis ecotypes Bay-0 and Shahdara. Since the only differences between the two alleles was a 10 base pair deletion in the Bay-0 promoter, it was hypothesised this deletion was the reason for the increased expression of AtCIPK16 in Bay-0 as it forms a TATA box (TATATAA). The aim of this project was to alter the expression of each allele by: mutating the last A to a T, removing the TATA box in Bay-0, and mutating the T after the TATA sequence to an A in Shahdara, forming a TATA box without the deletion. Through PCR mutagenesis the required point mutations were introduced into portions of the two promoter alleles, however due to technical difficulties and time constraints the point mutations were not introduced back into the full promoter constructs driving GFP. It was therefore unable to be determined if the point mutations to the TATA box would indeed affect AtCIPK16 expression.
Declaration

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

..

..

..
Acknowledgments

I would like to acknowledge and thank my supervisors Dr. Stuart Roy and Dr. Andrew Jacobs for the guidance and support they have offered throughout my Masters project. It has been an honour and a privilege to have worked with and learnt from you, and I thank you for the patience and understanding you have always shown in your encouragement of my learning.

I am also grateful to the University of Adelaide and the Australian Centre for Plant Functional Genomics (ACPFG) for providing scholarships for the duration of my degree. I would also like to thank the ACPFG and USAID for providing the resources and facilities necessary to undertake my Masters.

I am also grateful to the many people who have helped me during my experiments, especially in conducting field trials. I would like to thank Kalyx Australia (Perth, WA), particularly Dr. Peter Carlton, Mrs. Caris Smith and Mr. Peter Burgess, for their assistance in conducting the GM field trials at Kunjin, WA. I would like also like to acknowledge the work of the ACPFG barley transformation group, ACPFG wheat transformation group and Dr. Parvis Ehsanzadeh for the creation and initial characterisation of the lines used in this project.

I am grateful to for the considerable time and efforts of Ms. Jan Nield who ensured the GM field trials and GM material were compliant to all OGTR licence conditions. I would like to thank Mrs. Ursula Langridge and her glasshouse team as well as The Plant Accelerator for their assistance with the hire of PC2 glasshouses, growth chambers and hydroponic systems. I would like to once again thank my supervisor Dr. Stuart Roy for providing previous years’ field data and braving the heat in 2014 to help harvest. I am unendingly grateful to Dr. Rhiannon Schilling for her friendship as well as technical support and for the field material/data provided. Thanks also to Mr. William Heaslip and Ms. Melissa Pickering for their help in harvesting. Considerable thanks to Ms. Melissa Pickering and Ms. Jodie Kretschmer for their never-ending technical support. A final unendingly thank you to Mr. Daniel Menadue for his friendship and support in attempting to keep me sane, especially during long harvest. To all the other members of the ACPFG Salt Focus Group thank you for your advice and support.

Finally I wish to thank my family, particularly my father Paul, step-father Matthew and sister Amethyst, but especially my mother Pam, thank you for your unceasing encouragement and support in believing in me even when I could not.