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Abstract

Novel materials offer opportunities to develop new types of fertilizers which could potentially
increase efficiency of nutrient use in agriculture. Slow-release fertilizers can be more effective than
traditional nutrient sources and simultaneously reduce negative impacts of nutrients to the
environment. Using low-cost, abundant natural material, graphite rock, a functionalized graphene
oxide (GO)/iron (GO-Fe) composite was synthetised and examined as a new carrier of phosphate ions
in order to improve nutrient delivery to plants. The morphology of the composite was examined with
scanning electron microscopy (SEM) and X-ray diffraction (XRD) was used to determine the
presence of crystal phases. The composite was also characterized with thermogravimetric analysis
(TGA) and Fourier transform infrared spectroscopy (FTIR). We found that the presence of ferric ions
was responsible for attachment of phosphate ions onto the GO-Fe composite, providing a loading
capacity of 48 mg P/g. The Kkinetics of P release were examined using a column perfusion test while P
diffusion in three different types of soils was examined using a visualization technique and chemical
analysis. Compared with commercial monoammonium phosphate (MAP) fertilizer, application of
GO-Fe composite loaded with phosphate (GO-Fe-P) resulted in slower release of P, thus reducing the
possibility for leaching or runoff of soluble P to surface and groundwaters.

1. Introduction

The application of the fertilizers, as an essential part of agriculture, is responsible for approximately
half of the world’s crop production increment each year. However, this is still far away from efficient
(Reetz, 2016). Inefficiency in fertilizer usage in agriculture results in introduction of ammonium and
nitrogen into soil and water and ammonia to air (Socolow, 1999). Increased input of P is responsible
for eutrophication of ground waters, rivers, lakes and costal marine systems which is recognised as a
serious threat to biodiversity and other aquatic ecosystem functions (Huang et al., 2017). When
soluble fertilizers are added into soils a series of reactions can occur, such as exchange/adsorption,
complexation, precipitation and dissolution, with soil constituents (e.g. Fe-oxides, clay and major ions
such as calcium) that influence its fate and bioavailability (e.g. retention, lability and fixation) (Chien
et al., 2009; McLaughlin et al., 2011). Numerous studies have shown that only 5 to 30% of the soluble
P applied to soils can be recovered from the first crop leaving 70 to 95% as potential residual P that
remains non-bio available or that plants may access in subsequent growing seasons (Barrow, 1976;
Bolland and Gilkes, 1998). For this reason there has been much interest in the development of slow-
or controlled release fertilizers, which can minimise off-site losses and improve agronomic efficiency
of fertilizer use (Shaviv, 2001; Shaviv and Mikkelsen, 1993).



The improvement of P fertilizer efficiency in terms of nutrient release and crop uptake is a new global
goal and engineering challenge (M. A. Sutton, 2013). One novel approach to this challenge involves
the coating of water soluble P with a water insoluble layer, creating a physical barrier that will slow
the rate of P release and reduce P leaching or runoff. A number of natural and synthetic polymers
have been examined such as starch (Jin et al., 2013; Zhong et al., 2013), cellulose (Tomaszewska et
al., 2002; Wu and Liu, 2008a), chitosan (Wu and Liu, 2008b), P(acrylic acid co-acrylamide)/kaolin
(Liang et al., 2007), and polydopamine-graft-poly(N-isopropylacrylamide) (M.A. Sutton, 2013). The
potential for improvement of fertilizer formulations using nanomaterials (NM) has also been explored.
Rather than creating a physical barrier around the fertilizer, the concept to use NMs as carriers for
nutrients was taken from the pharmaceutical industry to achieve slow and controlled release (Chen et
al., 2004; DeRosa et al., 2010). Although application of NMs or coating of existing commercial
fertilizers has shown promising results, in order for these materials to be widely used they need to be
cost competitive, appropriate for farm application (e.g. use existing infrastructure and resources) and
environmentally safe.

Carbon materials are one of the mostly used materials for agricultural and environmental application
(Mauter and Elimelech, 2008). The fact that they are cost effective, environmental friendly and
possess desirable physical-chemical properties makes them ideal material for industrial scale
application. Biochar, a class of carbonaceous material, typically produced by the pyrolysis of biomass,
and its composites were recently investigated for P capture and recovery from waste water (Chen et
al., 2017; Marshall et al., 2017). Since discovery in 2004 (Novoselov et al., 2004) a newly emerging
carbon material, graphene (GN) has attracted significant attention for a broad range of applications
including use as energy-related materials (Kuhn and Gorji, 2016), drug delivery systems (Kiew et al.,
2016), sensors (Liu et al., 2012; Xu et al., 2017), and membranes (Jiang et al., 2016). So far, GN and
its oxidised form, graphene oxide (GO), having a range of reactive oxygen functional groups and a
high specific surface, have been confirmed by many studies as non-toxic and biocompatible materials
(Liu et al., 2013; Novoselov et al., 2012). Based on their very high surface area (2600 m?/g) and
unique 2-d structure, graphene-based products provide an ideal platform for nutrient loading and
investigation of the potential of this new material in slow-release fertilizer manufacture. Following
model of biochar, there is an increasing number of studies which are trying to use the advantages that
GN/GO composites offer for the sorption of a broad range of elements including heavy metals,
organic molecules, drugs and gases (Li et al., 2015; Santhosh et al., 2016). Recently several studies
have shown that GN/GO composites have the potential to be used for controlling P pollution (Luo et
al., 2016; Tran et al., 2015). These studies were interested in the removal of P from water and did not
examine the potential of these materials to release sorbed P to supply an essential macronutrient in
agriculture.

The aim of our work was to examine usage of low-cost and abundant graphite rock as a raw material
for obtaining slow release fertilizer. By a well-established synthetic procedure graphite rock can be
exfoliated into GO, material with high surface area and variety of oxygen functional groups on the
surface which can serve as a good base for chemical modification to retain macro- and micronutrients.
Initially phosphate (PO4*) was used as a model anion and the ability of GO to provide a slow-release
platform for P was assessed. A schematic diagram of the proposed concept is presented in Figure 1.
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Fig. 1. Schematic diagram of the synthesis procedure of the GO-Fe-P composite.

To improve the loading capacity of P on the surface of GO sheets we selected Fe(lll) ions based on
their affinity for PO,*. Using simple procedures, a GO-Fe composite was synthetised and
characterised. After loading of P onto the surface of the GO-Fe composite, the kinetics of P release
were examined using column perfusion and soil diffusion methods and compared with MAP as a
commercially available P fertilizer.

2. Material and methods

2.1. Graphene oxide (GO) preparation

Natural graphite rock (Eyre Peninsula, South Australia) was sourced from a local mine and
milled into a fine powder using a benchtop ring mill (Rocklabs, NZ). The GO sheets were
prepared using a modified Hammer method (Kabiri et al., 2015; Marcano et al., 2010). Briefly, a 9
: 1 mixture of concentrated sulphuric acid and phosphoric acid (240:27 mL) was cooled to 4 °C.
Under stirring at room temperature the cooled acid mixture was added slowly to the graphite powder
(2 g) and potassium permanganate (12 g), then heated to 50 °C for about 12 h, forming a thick paste.
The reaction was cooled to room temperature and poured onto ice (300 ml) with hydrogen peroxide (2
ml). The mixture was first washed with distilled water twice, then with hydrochloric acid (32 %) and
finally twice with ethanol. For each successive wash, the product was centrifuged at 2950 g for 1 h to
remove the product from the supernatant. The light brown GO obtained was vacuum dried overnight
at 45 °C.

2.2.GO-Fe(l11) composite preparation

Approximately 500 mg of GO was ultrasonicated in 500 mL of deionised water (Milli-Q,
Millipore) to obtain a homogenous dispersion. Then, an appropriate mass of FeCls was
dissolved in a minimum amount of deionised water and slowly added to the GO, under
vigorous mixing, in order to provide a 1:1 (m/m) GO : Fe ratio. The mixture was stirred for 1
h and then centrifuged at 2950g (Thermo Scientific Sorval, H-6000B rotor) for 30 minutes.
After centrifugation the supernatant was removed and the GO-Fe composite residue was dried
in an oven at 50° C overnight.

2.3.Loading of P onto the GO-Fe(lll) composite

For loading of P onto the GO-Fe composite, potassium dihydrogen phosphate (KH.PO,) salt
was used as a source of soluble P. The GO-Fe composite suspended in deionised water at a
concentration of 1 mg/mL was ultrasonicated for 1 h and then KH2PO, salt was added, under
vigorous stirring in order to achieve a final concentration of 150 mg P/L. The dispersion was
mixed for 24 h and then centrifuged at 29509 for 1 hour. After centrifugation the supernatant
was removed and the GO-Fe composite loaded with phosphate (GO-Fe-P) dried in an oven at



50° C overnight. The dried composite was homogenized using a mortar and pestle and pressed
into 40 mg pellets using a desktop pill presser (TDP 5, LFA Machines Oxford Ltd, UK).

2.4.Characterisation of GO and GO-Fe(lll) composite

The morphology of the GO and GO-Fe(l11) composite samples were examined via scanning electron
microscopy (Model Quanta 450, FEI, USA). Thermal decomposition of samples was performed under
air using a thermogravimetric analyser ( Q500, TA Instruments, USA) heating from room temperature
to 1000 °C at a rate of 10 °C/min. X-ray diffraction (Model Miniflex 600, Rigaku, Japan)
measurements were performed from 26 = 5°-80° at a scan rate of 5°/min. Fourier-transform infrared
analysis (Nicolet 6700 Thermo Fisher) was used to identify functional groups in materials by
scanning in the range of 500-4000 cm in transmission mode.

2.5.Total P concentration in GO-Fe-P granules

The total concentration of P in the soil and GO-Fe-P granules was determined using an open
vessel concentrated acid digestion procedure (3.75: 1.25: 1 mL of concentrated HCIl: HNOs:
HCIO,4). The soil/granules (~0.2 g) were added into glass tube with 6 ml of mixture of
concentrated acids and digested on a heating block at 140 °C for 6 h. After digestion, samples
were filtered using 0.45 um syringe filters (Sartorius) and analysed for total P concentrations
using inductively coupled plasma-optical emission spectroscopy (ICP-OES) (Spectro, Kleve,
Germany).

2.6.Dissolution kinetics of P from MAP and GO-Fe-P composite fertilizers

Dissolution kinetics for P from GO-Fe-P and MAP, as a reference soluble P source, were
conducted using a slightly modified method of Milani et al. (2012). Fertiliser granules with a
total mass of 20 mg of P for GO-Fe-P and MAP were placed into polypropylene columns (150
mmx15 mm) between acid-washed glass wool. A 10 mM CaCl; solution (pH 6) was
introduced from the bottom of the columns using a peristatic pump with a constant flow rate of
10 mL/h. A fraction collector (SuperFracTM, Pharmacia, UK) was used to collect the
solutions from the top of the columns every hour for 48 h. The solution pH of all collected
fractions was measured using a pH meter (Orion 3 Star, Thermo Scientific, UK). The total P
concentrations in each fraction were determined using ICP-OES. All treatments were carried
out in duplicate.

2.7.Diffusion of P from fertilizer granules in soils

Table 1. Selected physical and chemical properties for soils.

) Organic C CaCOs CEC Feox Alox Total P
Soils pH (H20) Clay (%)
(%) (%) (cmolc/kg) (mg/kg) (mg/kg) (mg/kg)
Ngarkat 6.8 0.67 <05 3.1 3.2 454 144 2
Black
) 8.5 1.6 <05 16.4 18.1 557 1269 57
Point
Monarto
Highland 7.9 1.0 <05 8.2 8.3 351 535 148
Rd

The diffusion of P from GO-Fe-P and MAP fertilizer granules was examined in the three type of soils
with different physical-chemical characteristics, Ngarkat (N), Black Point (BP) and Monarto Highland
Road (MHR). The soils were collected from the top 10 cm of the soil profile from agricultural
regions in South Australia, air dried, and sieved to <2 mm before use. Soil pH was measured in 1: 5



soil/water extract (Rayment, 1992). Soil organic carbon and CaCQOj3; content were measured following
the procedures described by Rayment and Higginson (1992). The cation exchange capacity (CEC)
was determined by the ammonium acetate method at pH 7.0 (Rayment, 1992). The oxalate-extractable
Al and Fe concentration was determined according to Rayment and Higginson (1992).

Selected physical and chemical properties of the soils used are given in Table 1.The soils were
wetted to field capacity and added into Petri dishes (diameter of 5.5 cm). A GO-Fe-P pellets
containing ~6 mg P or a MAP granule containing ~8 mg P, was added into the centre of each Petri
dish, in a 5-mm deep hole that was carefully closed after the fertilizer placement. The diameter of the
GO-Fe-P composite granules was 4.12 + 0.01 mm, based on measurement of 10 pellets. MAP
fertiliser granules were sieved to obtain granules with a diameter of 2.80 - 3.35 mm. Each treatment
was performed in triplicate. The Petri dishes were incubated at 25° C, and P diffusion was visualized
at 1, 3 and 7 days and every 7 days thereafter until 56 days from the application of fertilizer according
to the method of Degryse and McLaughlin (2014). Briefly, Fe-oxide impregnated paper was exposed
to the soil surface for 5 to 30 min. The P onto the paper was coloured using a modified malachite-
green method, and the dried papers were scanned and analysed with image processing software (GNU
Image Manipulation Program, v. 2.8, Free Software Foundation, Boston, MA) to quantify the size of
the P diffusion zone in soils.

At day 56, the soils were divided into an inner section (a circle with a 9 mm radius around the
fertiliser granule) and an outer section (soil more than 9 mm away from the fertiliser granule). The
soil samples from the inner and outer sections of the circle were oven dried and homogenised
using a mortar and pestle. A 1 mM CacCl; solution was added to the soil so that a liquid: solid
ratio of 10 L K/g was obtained. The resulting suspensions were equilibrated on an end-over-
end shaker for 3 days and 5 ml of solution was sampled after centrifuging at 29509 for 30 min.
The solution was filtered over a 0.45 um filters. The filtered solutions were analysed by ICP-
OES to determine the concentration of P.

The total concentration of P in diffusion sections was determined by cold acid extraction with
3M HNOz3 in a liquid: solid ratio of 50 L/kg. The mixture of acid and soil was shaken on an
end-over-end shaker for 2 days. The amount of added P recovered in each soil section was
calculated using the following equation:

Mi = {Cr'_ - ':bg}' Iri-'rr_

Where, M; is the amount of added P(mg) recovered in each soil section; c¢i and cyy are the
concentration of P (mg/kg) in each soil section for the fertilizer treatments and unamended
soils, respectively; and Wi is the weight of dry soil in that soil section (kg).

Standard deviation and analysis of variance (ANOVA) were obtained using SigmaPlot 12.5
v002 software package. The difference between the means were evaluated using Tukey test.
The level of significance was P < 0.05.

3. Results and discussion

3.1.Physical and chemical characterisation of composite

The SEM image of a typical GO structure shows fully exfoliated GO sheets (Fig. 2a,b). Undulations
of GO sheets can be seen as a result of the lattice distortion of the original atomic structure of the GN
sheets during chemical exfoliation of graphite. With the loading of Fe(lll) there appears to be more
distinct wrinkling of GO sheets (Fig. 2d, ) which could be attributed to coordination of Fe(lll) ions
to the various oxygen-containing functional groups of GO (Dong et al., 2013). The SEM-EDX profile
of GO showed the expected presence of carbon and sulfur with O as a result of oxidation of graphite



flakes (Fig. 2c). Analysing the surface of GO-Fe, compared to GO an additional peak for Fe appears
on the EDX spectra, confirming successful attachment of Fe(l11) onto the GO surface (Fig. 2f).
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Fig. 2. SEM images of (a, b) GO, (c) SEM-EDX profile of GO, (d, e) SEM images of GO-Fe and (f)
SEM-EDX profile of GO-Fe.

The XRD pattern of GO (Fig. 3) is characterised by a diffraction peak at 26 = 10.3°, which is the
result of the lateral expansion of the stacked layers of the original GN by the incorporation of the
oxygenated functional groups (Dreyer et al., 2010). With loading of Fe(lll) ions onto the GO, a
complete loss of the diffraction peak was observed. This may have occurred because of the introduced
Fe(l11) weakened hydrogen bonding amongst the layers which resulted in loss of the layered structure
of GO (Dong et al., 2013). The lack of any other peaks in the XRD spectra of GO-Fe suggest either
attachment of Fe(l11) ions to the surface of GO is occurring without it being oxidised to iron-oxides or
there is the formation of iron-oxide clusters in smaller concentrations than the detection limit of the
diffractometer.
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Fig. 3. XRD pattern of GO and GO-Fe.



The FTIR spectra of GO (Fig. 4) showed strong adsorption bands at 1730, 1618, 1220 and 1030 cm?
corresponding to C = O, aromatic C = C, epoxy and alkoxy/alkoxide C - O stretches, respectively
(Lambert, 2011). Comparing FTIR spectra of GO with GO-Fe spectra, a decrease of the C = O
intensity (1730 cm™) as well as an increase of the carboxyl O = C - O stretch intensity (1348 cm™)
was observed. The shift of these peaks is likely due to the coordination of Fe(lll) ions to the
carboxylic group of GO (Park et al., 2008). A noticeable increase of intensity and shift of the C=C
peak from 1618 to 1606 cm™ could be attributed to the m electron interaction in the aromatic structure
of GO being transformed into cation-r interactions (Wang et al., 2014). In contrast, the peaks for
epoxy and alkoxy/alkoxide did not change after loading of Fe(lll) ions suggesting that these
functional groups were not involved in the sorption of Fe(lll) ions onto the GO surface.

Transmittance (%)

4000 3500 3000 2500 2000 1500 1000 500

Wavenumber (cm - 1)

Fig. 4. FTIR spectra of GO and GO-Fe.

In order to quantitatively determine Fe attached to the GO, we performed TGA analysis of the
synthesized composite. After heating of the GO-Fe composite from room temperature until 1000° C
in air, Fe.Os; oxide is obtained as the only product, from which we calculated the percentage of Fe
(Dong et al., 2013). The thermal decomposition profiles of GO and GO-Fe are presented in Fig. 5. All
weight lost up to 100° C could be attributed to the de-intercalation of water. Further dramatic weight
loss from 160 to 450° C was caused by the removal of labile oxygen containing functionalities and
pyrolysis of the labile oxygen functional groups (Tran et al., 2015). At 1000° C there was almost
complete transition of GO into CO and CO, while for the GO-Fe composite, the residual mass
represents stable, red coloured Fe,Os. The weight percent of Fe,O; after heating of GO-Fe in air to
1000° C was ~ 21, which corresponds to 14.7 wt % of Fe loaded onto GO.
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Fig. 5. TGA analysis of GO and GO-Fe.

After successful modification of the GO surface with Fe(lll) ions, we examined the loading capacity
of P onto the GO-Fe composite. The concentration of loaded P onto GO-Fe, measured after total
digestion of our composite with acids, was 48 + 3 mg P/g. Preliminary experiments found GO without
Fe(lll) could not adsorb P at all (data not shown), probably due to the negative charge of the GO
surface which would repel negatively charged H,PO, ions (Wang et al., 2015). Modifying the GO
surface with Fe(lIl) ions allowed loading of the GO surface with P in two ways, by decreasing the
negative surface charge of GO and by acting as active sorption sites with known high affinity towards
H2POy ions (Arai and Sparks, 2001).

3.2. Dissolution kinetics of P from MAP and GO-Fe-P composite fertilizers

The dissolution rate of P from GO-Fe-P pellets and commercially available MAP fertilizer granules
are presented in Fig. 6a, b. In the case of MAP, fast dissolution of P was found with ~ 85 % of the
total P being released in 10 h. After the initial fast release period there was a slower release phase
with ~ 4% being released in the following 38 h. By contrast, the release of P from GO-Fe-P was
slower, achieving only 9 % release in 48 h.
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Fig. 6. Kinetics of P release from MAP granules and GO-Fe-P pellets in columns: (a) cumulative
release of P (b) solution concentrations of P released over time and (c) changes in the pH of the
column eluates from MAP granules and GO-Fe-P pellets. Error bars are standard deviations (n = 2).

A notable difference in P release between MAP and GO-Fe-P can be observed in solution P
concentrations (Fig. 6b). A rapid release of P from granules and pellets resulted in initial high P
concentrations in solutions, especially for MAP granules. High concentrations of P in solutions as a
result of fast release from the fertilizer can adversely affect the efficiency of applied P because of the
possible precipitation of water soluble P with ions such as Ca and Mg present in soil solutions



(Hedley and McLaughlin, 2005). Lombi et al. (2005) found that using granular MAP in a highly
alkaline calcareous soil, over 80% of applied P was located in a zone with radius of 7.5 mm from
granule, from which only 15% was isotopically exchangeable and could be considered potentially
available to plants. Low availability of P probably reflects the precipitation in the soil of water soluble
P from the MAP as mixed Ca/Mg/NH." phosphates (Lambert et al., 1979). Using the GO-Fe-P pellet
as a fertilizer, slow release and lower concentrations of P in solutions localised close to the application
point could prevent the removal of P into non-bioavilable fractions due to precipitation reactions in
alkaline calcareous soils. A decrease of pH from the MAP eluates can be related to the fast dissolution
of MAP granules (Fig. 6¢) (Hettiarachchi et al., 2010; Lehr et al., 1959). After an initial acidification
of the eluates (up to 6 h) the eluate pH converged to the initial pH value of the CaCl, solution. For the
GO-Fe-P composite, a gradual decrease of pH can be seen until 8 h, when the pH of the eluates
attained a value 4.9 and remained steady until the end of experiment. The fact that eluate pH did not
increase and reach the influent pH indicates the existence of a continuing source of H* ions in the
dissolution of the GO-Fe-P composite. It can be assumed that this source of protons is responsible for
the dissolution of Fe(lll) ions from the GO-Fe-P composite and release of P, which is further
supported by the low concentration (~10 pg/L) of Fe measured in the eluted fractions. This continuing
release of protons could be particularly beneficial in alkaline soils for minimising P precipitation close
to the granule. Furthermore, a small amount of released Fe could be beneficial for the plants grown on
soils where frequent application of lime causes Fe deficiency.

Three kinetic models, zero order (Varelas et al., 1995), first order (Mulye and Turco, 1995), and
Higuchi (Stauffer and Aharony, 1994) models (Egs 1, 2 and 3, respectively) were applied with the aim
of obtaining further insights into dissolution mechanisms of nutrient from tested fertiliser
formulations.

J"’It

e kt @

J"’Ir

e = L—exp(=kt)  (2)
Mt 1y

e kt /2 3

Where Mt and Me are amount of nutrient release in time t and at the end of experiment,
respectively, and k is rate constant of nutrient release. Dissolution of P from GO-Fe-P was best
described using first order model (Fig. S1). Fertiliser formulations that are following first order
dissolution profile are typical for porous matrices containing water soluble compound. Release of the
nutrient in this way is proportional to the amount of nutrient remaining in the interior (Mulye and
Turco, 1995). In contrast to GO-Fe-P, dissolution of MAP is described better with Higuchi model
suggesting P release as a diffusion process based on the Fick’s law (Costa and Sousa Lobo, 2001).

3.3.Diffusion of P from fertilizers granules in soils

Efficiency and long-term fate of applied fertilizer P depend on the type of soil and physical-chemical
properties of the fertilizer. Assessing nutrient release from formulations in situ in soil using the
visualization method provides a much clearer picture of the likely kinetics of nutrient release in the
environment. Visualization of P diffusion was performed in triplicate for each product in each soil and
since all replicates showed similar results (overall coefficient of variation was 6.17 %), for the sake of
clarity only one replicate per sample per day is presented (Fig. S2). Day 1 after application of MAP
we can see fast release and diffusion of P through all three soils. At Day 3 after application of MAP,
for the Ngarkat soil, P had diffused throughout the soil in the Petri dish while for the MHR soil it
required 49 days for P to diffuse to the edge of the Petri dish. Phosphorus diffusion in soil is
controlled mainly by the volume of water-filled pore space in which diffusion may occur and the
presence of compounds that can sorb H,POs, or HPO4* ions (aluminosilicate minerals, Fe/Al



hydrous/oxide surfaces and Ca/Mg carbonates). From the chemical analysis of the soils (Table 1), we
can see that the amount of Fe and Al present in soils follows the trend of the speed of P diffusion
through soil, with the fastest diffusion for Ngarkat followed by MHR. For the BP soil at Day 56, P
had diffused to reach 34% of the soil area, consistent with this soil having the highest content of Al
and Fe (Fig. 7a). Results of the visualisation of P diffusion after GO-Fe-P application showed a
gradual release and diffusion of P in all soils. Diffusion of P after 56 days from the application of the
GO-Fe-P composite occupied 34, 7 and 16 % of the total soil area for Ngarkat, BP and MHR soils,
respectively (Fig. 7a).

Chemical analysis of the soil in the Petri dishes at 56 days confirmed the results from the visualization
(Fig. 7b, c), with greater diffusion of P in the Ngarkat and MHR soils and smaller distances of P
diffusion in all soils for the GO-Fe-P material compared to MAP.
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Fig. 7. (a) Radius of visualisation at 56 d after addition of MAP or GO-Fe-P granules to the soils.
Concentration of added P recovered at the distance of less or more than 9 mm from the fertilizer
application site at 56 d after fertilizer application in the Ngarkat, Black Point and Monarto Highland
Road soils from (b) CaCl; extracts and from (c) HNO;3 extracts. Phosphorus was applied in the centre
of Petri dish at the rate of 8 mg and 6 mg as MAP and GO-Fe-P, respectively. The radius of the P

—
diffusion was determined as R ;¢ = ﬂlﬂfﬁ with A as area of diffusion. Error bars are standard

deviations (n = 3). Bars with different letters are significantly different at a 5% significance level.

For the GO-Fe-P treatments, 99, 100 and 99% of CaCl,-extractable P was obtained in the inner circle
of N, BP and MHR soils, respectively (Fig. 7b). By contract P from the MAP granules diffused much
further in all three soils, although there were significant differences in diffusion between soils. The
differences in chemical-physical properties of the soils had a significantly smaller effect on the release
and diffusion of P from the GO-Fe-P composite compared to MAP treatments. The slow release of P
from the GO-Fe-P and the constant increase of the radius of diffusion with time implies a constant and
slow release of P from the composite, which would avoid precipitation of P close to the granule,
especially in calcareous soils (Degryse et al., 2016). Concentrations of Fe measured in CaCl; extracts
were below the detection limit of the ICP-OES ( < 3 ppb) although we measured a small amount of Fe
in leachates in the column release study, indicating a strong interaction of released Fe with soil.
Efficacy of the GO-Fe-P materials as P fertilizers requires validation by evaluating plant growth and P
uptake in a range of soils.

One disadvantage of the GO-Fe-P composite developed here is the relatively low P content (~5%)
compared to commercial P fertilizers, which usually contain 10-20% P — this poses constraints for
commercial use due to increased transport and application costs. Similar limitations apply to other P-
loaded carriers suggested as slow-release fertilizers e.g. layered double hydroxides which generally
have P loadings of less than 5% (w/w) (Everaert et al., 2016; Wang et al., 2016). For P-loaded
carriers, future work needs to focus on increasing the loading of P (and other macronutrients) so that
transport and spreading costs are minimized.



4. Conclusion

Starting from the low-cost and naturally abundant material, graphite, by a simple synthesis route a
novel carbonaceous material, GO-Fe, was obtained. GO-Fe composite was found to be effective in
retaining up to ~5% P on its surface and releasing P slowly to solution compared to a commercial
MAP fertilizer. Visualization and chemical analysis of P diffusion in three soils showed more than
99% of the P released from GO-Fe-P was retained in the composite or in the near vicinity of the
application site, confirming the slow release characteristics. This suggests GO-Fe-P composites as
promising carriers for P which could enable better usage of added nutrient by plants without negative
effects on the environment.
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