The Contribution of Complexity Theory in Resolving Energy Losses in Electrical Smart Grid Systems:
A Case Study of Electricity Supply and Use in Regional New South Wales – Australia

Thesis submitted by
Ashraf Salem Zaghwan

Master of Applied Project Management Project Systems (Adelaide University 2013)
Marine Chief Engineer Competence Certificate (Tripoli Academy of Maritime Studies 2006)
Marine Second/Chief Engineer Combined Certificate (Tripoli Academy of Maritime Studies 1999)
Marine Third Engineer Competence Certificate (Tripoli Academy of Maritime Studies 1995)
Bachelor of Marine Engineering, (Tripoli Academy of Maritime Studies 1995)

The University of Adelaide
Faculty of the Professions
Entrepreneurship, Commercialisation and Innovation Centre (ECIC)

Principle Supervisor: Professor Vernon Ireland
Associate Supervisor: Doctor Barry Elsey
Associate Supervisor: Professor Frank Schultmann

A thesis submitted in fulfilment of the requirements for the degree
Doctor of Philosophy
August 2017
Table of Contents

Statement of Originality .. 16
Acknowledgements ... 17
Abstract ... 18

A Case Study of Electricity Supply and Use in Regional New South Wales – Australia ... 20

Chapter 1 ... 21

Introduction .. 21

Acronyms .. 22

Chapter Outline .. 22

1.1 Focus of the thesis .. 23

1.2 Background of the Research .. 24

1.3 Why Are Electricity Prices Increasing? ... 25

1.4 The Research Problem ... 31

1.5 Research Questions, Hypothesis, and Objectives 36

1.6 Research hypothesis .. 37

1.7 Objectives ... 39

1.8 Rationale of the Research .. 39

1.9 Contribution to Knowledge .. 41

1.10 Methodology ... 41

1.11 Outline of the Thesis ... 43

1.12 Key Assumptions and Limitations .. 45

1.13 Summary .. 46

Chapter 2 ... 49

Research Method ... 49

Acronyms .. 50

Lessons Learned from Chapter One .. 51

Chapter outline ... 51

2.1 Research Purpose .. 52

2.2 Data Collection .. 54

 2.2.1 Defining Industrial Issues & Opportunities 55

 2.2.2 Prioritize an Issue & Opportunity for Gathering Data 55

 2.2.3 Plan Methods & Approaches for Collecting Data 55
3.5 Resources of Power Generation in Australia 108
3.6 Generation Investments in Australia 111
3.7 Transmission and Distribution 113
3.8 Network Losses of Energy 115
3.9 Electricity Generation vis-a-vis Electricity Demand 118
3.10 The Influence of Consumers on Electricity Costs & Prices 120
3.11 Energy Losses Factors & Electricity Market Rules 121
3.12 Regulatory Power & Policy Instruments 121
3.13 The Volatility of Electricity Prices 126
3.14 The Generators Dispatch Cycle 127
3.15 Electricity in New South Wales 130
3.16 Types of Electricity Tariffs 133
3.17 Electricity Retailers 139
3.18 Conclusion 142

Chapter 4 144

Relevant Complexity Concepts 144

Lessons Learned from Chapters One, Two & Three 146
Chapter outline 146
4.1 Introduction 147
4.2 Complexity Theory 147
4.3 Managing Complexity 148
4.4 Tiny Initiated Events (TIEs) & Extreme Events 151
4.5 End-Users, TIEs, & Electrical Smart Grid Systems 153
4.6 Consumers’ Emergence Demand of Electricity 156
4.7 The Philosophy of Emergence 158
4.8 Emergence in A Complex System 158
4.9 Emergent Self-Organization 161
4.10 Emergence is a naturalistic phenomenon 162
4.11 The novelty of emergent properties 163
4.12 Emergence Enabling Systematic Properties 164
4.13 Are Complex Systems Hierarchically Organised 165
4.14 Emergence is a synchronic determination 166
7.6.3 Matlab Code used for Data Import 263
7.6.4 DATA MERGING 263
7.6.5 Matlab Code Used For Data Merging 264
7.7 Analysis Results: Data of General Consumption (GC) for the Year 2010/11 264
7.9 Analysis Results: Comparing Actual Demand with TOU for the Year 2010/11 266
7.10 Conclusion 270
7.11 Stage Two of Analysis 273
7.12 Designing a Home’s Sustainable Model 274
7.13 Objective function 276
7.14 Solar Panel constraints 277
7.15 Load and Grid power constraints 278
7.16 Storage units constraints 278
7.17 Power distribution network in Australia 278
7.18 About the Data 278
7.19 Various sources of power Generation 279
7.20 How the Power is Consumed 279
7.21 Python v3.0 279
7.22 Packages for the analysis of data 279
 7.22.2 Numpy 280
 7.22.3 Pandas 280
 7.22.4 Plotly 280
 7.22.5 Cufflinks 280
 7.22.6 pickle 280
 7.22.7 gzip 280
7.23 Calculate the Cost of Energy Losses incurred by each Home 281
7.24 Importing the “CSV” Data 282
7.25 Pre-processing the raw data 282
7.26 Calculate Demands & losses of Electricity 282
7.27 Analysis for 300 residential homes (Python Programming Software) 286
7.28 Eenergey Demand for 300 Residential Homes (47 million data) 287
7.29 Energy Losses-Analysis Results for 300 Homes 288
7.30 Cost Benefit Analysis (CBA) 295
7.30.1 Problems/Opportunities 295
7.30.2 Solution indication

7.30.3 Feasibility

- 7.30.4 Accounting Rate of Return (ARR)
- 7.30.5 Project Pay Back Period (PP)
- 7.30.6 Cost of Capital/CPAM (Capital Pricing Asset Model)
- 7.30.7 Equity Required Rate
- 7.30.8 Profit Estimate/DCF Technique

- 7.30.9 Net Present Value (NPV)
- 7.30.10 Internal Rate of Return (IRR)
- 7.30.11 Discount Cash Flow (DCF)
- 7.30.12 Return on total assets ratio (ROA)

7.31 Future Continue Analysis for Proposing Smart Devices at Homes

7.31.1 Autoregressive Integrated Moving Average Model (ARIMA)

‘Autocorrelation (AC)’

‘Partial Autocorrelation Function (PACF)’

7.31.2 Time Series Forecasting

Chapter Eight

Summary

Lessons Learned from Chapters 1, 2, 3, 4, 5, 6 & 7

Chapter Outline

8.1 Introduction

8.2 Logical Basis for this Study

8.3 Synthesis of findings through the research questions

8.4 Contribution to Theory

8.5 Contribution to Practice

8.6 Summing Up of the Research Hypothesis

8.7 Limitation of the study

8.8 Directions for Future Research

References

Appendix 1

- Comparison Shoulder Weekdays of TOU: (9:00am-5:00am) & (8:00pm-10pm) with the Actual Consumption of Houses (2012/13)

Appendix 2
List of Figures

FIGURE 1.1 EMPOWERED CONSUMERS (PEAK ENERGY 2016) .. 23
FIGURE 1.2: AVERAGE CONSUMPTION - ELECTRICITY PRICE INDEX (PEAK ENERGY 2016) 26
FIGURE 1.3: BUREAU OF RESOURCES & ENERGY ECONOMICS (NATIONAL ELECTRICITY MARKET 2016) .. 27
FIGURE 1.4: NEM DEMAND, CAPACITY & FORECAST DEMAND (AUSTRALIAN ENERGY REGULATOR 2016) .. 28
FIGURE 1.5: AVERAGE NSW HOUSEHOLD IN SUMMER/WINTER (AUSTRALIAN ENERGY REGULATOR 2016) .. 29
FIGURE 1.6: THE LOSSES (KW.HR) OF ELECTRIC POWER TRANSMISSION AND DISTRIBUTION IN AUSTRALIA (WORLD NUCLEAR ASSOCIATION 2016) ... 30
FIGURE 1.7: THE UTILITY SHIFT TO ENERGY SOLUTION PROVISION (PEAK ENERGY 2016) 35
FIGURE 1.8: HOME LOAD MODERATING (COMBINED BY THE AUTHOR) ERROR! BOOKMARK NOT DEFINED.
FIGURE 1.9: OVERVIEW OF THE RESEARCH THESIS .. 47
FIGURE 2.1: FLUKE 1730/US THREE-PHASE ENERGY LOGGER ... 56
FIGURE 2.2: POWER MATE LITE DIGITAL LOGGER (REDUCTION REVOLUTION 2017) 57
FIGURE 2.3: POWER SHARING RECORDER (REDUCTION REVOLUTION 2017) 57
FIGURE 2.4: SOLAR & STORAGE BATTERY TO PRESERVE THE HOME CONSUMPTION WITHIN AVERAGE CAPACITY ... 65
FIGURE 2.5: RESEARCH PARADIGM .. 67
FIGURE 2.6: OVERVIEW OF THE RESEARCH METHOD CHAPTER ... 69
FIGURE 2.7: CATEGORIES OF RESEARCH DESIGN .. 73
FIGURE 2.8: FLOW CHART OF THE ANALYSIS PLAN ... 75
FIGURE 2.9: YIN MODEL OF CASE STUDY TYPOLOGY (MILLIOT, E 2014) 79
FIGURE 2.10: CLASSIFICATORY PRINCIPLE OF CASE STUDY TYPOLOGY TO DERIVE RESEARCH METHOD (MILLIOT, E 2014) ... 84
TABLE 2.15: SUSTAINABLE MODEL CHARACTERISTICS .. 85
FIGURE 2.11: DEMAND OF ELECTRICITY EXAMPLE ONE ... 89
FIGURE 2.12: DEMAND OF ELECTRICITY EXAMPLE TWO ... 90
FIGURE 2.13: RESEARCH TIMELINE .. 97
FIGURE 3.1 THE MAIN DIVISIONS OF ELECTRICAL SUPPLY SYSTEM UP TO END-USERS (ERNST & YOUNG 2016) .. 104
FIGURE 3.2: ELECTRICITY MARKET FROM GENERATORS TO END-USERS (NICHOLAS TAN 2011, P. 3) ... 105
FIGURE 3.3: GROSS DOMESTIC PRODUCT (GDP) & AUSTRALIA POPULATION 1960 TO 2015 (THE WORLD BANK 2016) .. 106
FIGURE 3.4: HOUSEHOLD CUSTOMERS’ ELECTRICITY PRICE INDEX (AUSTRALIAN GOVERNMENT FACT SHEET 4 2016) ... 107
FIGURE 3.5: THE FINANCIAL PERFORMANCE OF AUSTRALIAN ELECTRICITY BUSINESSES IN NSW (PSM, A. T. W. 2015, P. 8) ... 108
FIGURE 3.6: ANNUAL GROWTH OF AUSTRALIAN ELECTRICITY GENERATION (DEPARTMENT OF INDUSTRY INNOVATION & SCIENCE 2016) ... 109
FIGURE 3.7: GENERATION CAPACITY REMOVED/EXPECTED TO BE REMOVED FROM THE MARKET (2011 – 2023) (STATE OF THE ENERGY MARKET 2015) ... 112
FIGURE 3.8: AUSTRALIAN ELECTRICITY GENERATION: FUEL-MIX & RENEWABLE (CULL, M. 2016) 113
Figure 7.2: Processes of Data Preparation: Processing & Exploration for Data Mining & Data Analysis (Data Preparator 2017) ... 261
Figure 7.3: Energy Consumption over Time per Each Consumer .. 265
Figure 7.4: Half Hourly Demand per Consumer (Zoom 1 & 2) .. 265
Figure 7.5: Half Hourly Consumption per Each Consumer (Zoom 3) ... 265
Figure 7.6: Consumers Behaviour within Peak Times of TOU .. 268
Figure 7.7: Peak Times of Pie Chart & Histogram .. 268
Figure 7.8: Consumers behavior at off-peak of TOU – Weekdays ... 269
Figure 7.9: Off-Peak Weekdays (9:00AM-5:00AM) & (8:00PM-10PM) ... 269
Figure 7.10: Consumers behavior at Shoulder TOU ... 270
Figure 7.11: Shoulder Weekdays Pie Chart & Histogram (9:00AM-5:00AM) 270
Figure 7.12: Demand Trend .. 272
Figure 7.13: The Actual Trend of Electricity Consumption of 300 Residential Homes in NSW .. 273
Figure 7.14: Peak & Off-Peak Demands for 300 Consumers for 3 Years 285
Figure 7.15: Demand Analysis of Financial Years 2010/11/12 for Home/Customer Numbers 1 ... 287
Figure 7.16: Energy Losses occurred during the Years 2010/11/12 for Home Numbers 1, 288
Figure 7.17: Energy Losses occurred during the Years 2010/11/12 for Home Numbers 50289
Figure 7.18: Energy Losses occurred during the Years 2010/11/12 for Home Numbers 100 ... 289
Figure 7.19: Energy Losses occurred during the Years 2010/11/12 for Home Numbers 200 ... 290
Figure 7.20: Energy Losses occurred during the Years 2010/11/12 for Home Numbers 250 ... 290
Figure 7.21: Energy Losses occurred during the Years 2010/11/12 for Home Numbers 300 ... 291
Figure 7.22: Average Cost of Energy Losses per Year Incurred by Each Residential Home .. 291
Figure 7.23: Electricity Industry Performance Measures (Australian Bureau of Statistics 2017) ... 295
Figure 7.24: Net Present Value & Internal Rate of Return .. 307
Figure 7.25: Time series plots for the Power Consumption of Consumer 1 for the Year 2010-2011 ... 311
Figure 7.26: Time series plots for the Power Consumption of Consumer 1 for the Year 2010-2011 ... 313
Figure 7.27: ARIMA Model Fit Results for a Residential Home .. 315
Figure 8.1: The Comparison of Peak & Off-Peak Phenomena for Three Years 322
Figure 8.2: The Sequence of Occurrence of Peak & Off-Peak Phenomena by Single Homes ... 325
Figure 8.3: Theoretical Market Plant Mix and Spot Prices in NSW ... 328
Figure 8.4: Home Load Moderating .. 332
Figure 9.1: Actual Consumers Behavior during the Peak of TOU Tariff 403
Figure 9.2: Consumers Behavior at Peak TOU – Weekdays ... 403
Figure 9.3: Consumers Behavior at Average/Shoulder TOU – Weekdays 403
Figure 9.4: Consumers Behavior at Average/Shoulder TOU – Weekdays 404
Figure 9.5: Consumers Behavior at Off-Peak TOU ... 404
FIGURE 9.6: CONSUMERS BEHAVIOR AT OFF-PEAK TOU – WEEKDAYS PIE CHART & HISTOGRAM (10:00PM-12AM) .. 404
FIGURE 9.7: CONSUMERS BEHAVIOR AT OFF-PEAK WEEKDAYS PIE CHART & HISTOGRAM (12:00AM-7AM) .. 405
FIGURE 9.8: ACTUAL CONSUMERS BEHAVIOR DURING THE PEAK OF TOU TARIFF 405
FIGURE 9.9: CONSUMERS BEHAVIOR AT PEAK TOU – WEEKDAYS ... 405
FIGURE 9.10: CONSUMERS BEHAVIOR AT SHOULDER TOU – WEEKDAYS ... 406
FIGURE 9.11: SHOULDER WEEKDAYS PIE CHART & HISTOGRAM (9:00AM-5:00AM) 406
FIGURE 9.12: SHOULDER WEEKDAYS PIE CHART & HISTOGRAM (8:00PM-10PM) 406
FIGURE 9.14: OFF-PEAK WEEKDAYS PIE CHART & HISTOGRAM (10:00PM-12AM) 407
FIGURE 9.15: OFF-PEAK WEEKDAYS PIE CHART & HISTOGRAM (12:00AM-7AM) 407
FIGURE 10.1: DEMAND ANALYSIS OF FINANCIAL YEARS 2010/11/12 FOR HOME NO. 50 408
FIGURE 10.2: DEMAND ANALYSIS OF FINANCIAL YEARS 2010/11/12 FOR HOME NO. 100 408
FIGURE 10.3: DEMAND ANALYSIS OF FINANCIAL YEARS 2010/11/12 FOR HOME NO. 200 409
FIGURE 10.4: DEMAND ANALYSIS OF FINANCIAL YEARS 2010/11/12 FOR HOME NO. 300 410
FIGURE 10.5: DEMAND ANALYSIS OF FINANCIAL YEARS 2010/11/12 FOR HOME NO. 250 410
List of Tables

TABLE 2.1: RESEARCH REPORT PURPOSE AND CLASSIFICATIONS (VITUG 2014) .. 53
TABLE 2.2: TIME OF USE TARIFF (ToU) (NETWORK TARIFF 2015) .. 60
TABLE 2.3: INFLUENCE OF CONSUMPTION LEVELS ON AVERAGE PRICES OF ELECTRICITY (AEMC 2014) ... 60
TABLE 2.4: NSW COST OF LOAD DURING PEAK, SHOULD/AV/AVERAGE & OFF-PeAK (INTELLIGENT ENERGY SYSTEM 2004) ... 61
TABLE 2.5: AVERAGE ANNUAL GROWTH OF TRADITIONAL & RENEWABLE POWER GENERATION (DEPARTMENT OF INDUSTRY & SCIENCE 2016) .. 62
TABLE 2.7: RESEARCH CLASSIFICATION .. 72
TABLE 2.8: RESEARCH METHODOLOGY (PICARD, M & VELAUTHAM, I 2014) .. 77
TABLE 2.9: MULTIPLE CASE STUDIES OF RESIDENTIAL HOUSES (WELCH C., PIEKKARI R., PLAKOYIANNAKI E., PAAVILAINE -MÄNTYMÄK E. 2011) ... 80
TABLE 2.10: METHODS OF THEORISING FROM CASE STUDIES (MILLIOT 2014) ... 81
TABLE 2.11: INDUCTIVE, DEDUCTIVE & ABDUCTIVE APPROACHES (MILLIOT, E 2014) 81
TABLE 2.12: EPSEMTOLOGICAL ONTOLOGY APPROACHES (YIN 2014) ... 83
TABLE 2.13: EPSEMTOLOGICAL PROJECTS APPROACHES (YIN 2014) ... 83
TABLE 2.14: RESEARCH PROFILE OF NOMINATED CASE STUDY (YIN 2014) .. 83
TABLE 2.15: SUSTAINABLE MODEL CHARACTERISTICS .. 85
TABLE 2.16: DATE COLLECTED AND USED FOR CALCULATION ... 94
TABLE 2.17: HOUSEHOL DENUMER & SIZE IN NSW (AUSTRALIAN BUREAU OF STATISTICS 2017) ... 96
TABLE 2.18: SAMPLE SIZE OF RESIDENTIAL HOUSES .. 96
TABLE 3.1: AVERAGE ANNUAL GROWTH OF TRADITIONAL & RENEWABLE POWER GENERATION (DEPARTMENT OF INDUSTRY & SCIENCE 2016) .. 110
TABLE 3.2: THEORETICAL EFFECT OF LRET & GENERATOR RETIREMENTS ON WHOLESALE OF ELECTRICITY MARKET (AEMC 2015); (AEMC 2016) .. 111
TABLE 3.3: ELECTRICITY NETWORK BUSINESS IN AUSTRALIA (ENERGEIA IN CONSULTATION 2013) .. 115
TABLE 3.4: INFLUENCE OF CONSUMPTION LEVELS ON AVERAGE ELECTRICITY PRICE (AEMC 2014, P. 79) .. 130
TABLE 3.5: SELLING THE ASSETS OF GENERATION (MCUSHIN, S & SEETO, A 2012) 133
TABLE 4.1: TINY INITIATED EVENTS (TIES) IN AN ELECTRICAL SMART GRID SYSTEM USES WHICH GENERATE POWER BY SOLAR & WIND, SUPPORT BY BATTERIES (COMBINED BY THE AUTHOR) 152
TABLE 5.1: TIME OF USE TARIFF (ToU) (INTELLIGENT ENERGY SYSTEM 2004) ... 200
TABLE 5.2: NSW COST OF LOAD DURING PEAK, SHOULD & OFF-PeAK TIMES (INTELLIGENT ENERGY SYSTEM (IES) 2004) .. 209
TABLE 5.4: ANNUAL CONSUMPTION OF ELECTRICITY VS. AVERAGE MARKET OFFER $/C/KWH (AEMC 2014, P. 79) .. 209
TABLE 5.5: INCENTIVE FOR ELECTRICITY CONSERVATION FOR RESIDENTIAL CONSUMERS (RANDOLPH, B & TROY 2007, p. 50) .. 211
TABLE 7.1: THE RATE OF ELECTRICITY CONSUMPTION ‘PEAK’, ‘AVERAGE’ & ‘OFF-PeAK’ AT HOMES LEVEL ... 260
TABLE 7.2: TIME OF USE TARIFF (ToU) .. 266
TABLE 7.3: TOTAL ANALYSIS RESULTS .. 271
TABLE 7.5: SOLAR CAPACITY REQUIRED IN HOMES TO MITIGATE PEAK & OFF-PeAK PHENOMENA ... 293
TABLE 7.6: ANNUAL FINANCIAL LOSSES FOR 300 HOUSES ... 294
Statement of Originality

I hereby certify this thesis and the research contained within comprises no information that has been presented and accepted for any award, including degrees at any university or institution of higher learning. This thesis to the best of my knowledge does not include information that has been published previously or has been written by any person, except where references indicates otherwise in the text.

I do hereby give consent for a copy of this thesis to be deposited in the University of Adelaide library and thereby be made available to be copied or lent but only within the provisions set forth under the copyright Act 1968. The thesis author accepts that the copyright of published information conveyed within this thesis is inherently the property of the copyright holder(s) of that information.

Furthermore, I do hereby consent to a digital copy of this thesis being made available through the web via the University of Adelaide’s digital research library catalogue. Similarly, through web based search engines, except where permission by the University of Adelaide has restricted access for a stipulated reason for any period of time.

Candidate

Date
Acknowledgements

First and foremost, I owe my gratitude to my Principal Supervisor Professor Vernon Ireland for the genuine privilege of his excellent supervision, support, direction, advice, and wisdom to complete this study satisfactorily. Without his guidance, encouragement, and instruction, this thesis would never be achieved.

My thanks must go to my Associate Supervisor Dr Barry Elsey who has shown faith in my work and supported my journey in complexity study. His constant support, patience, and encouragement is immeasurable to me and without him, this thesis could not have been done. My deep appreciation is extended to my Associate Supervisor, Professor Frank Schultmann, for being such a helpful supervisor.

My appreciation also goes to my beloved Professor Vernon Ireland and my beloved, Entrepreneurship, Commercialisation, & Innovation Centre at the University of Adelaide. Thanks for your support during my research and for providing me with a priceless chance for a PhD scholarship.

I owe a deep sense of gratitude to "Dr Graciela Corral de Zubielqui" for her keen interest in my Master’s research topic. Her prompt inspirations, timely suggestions, with kindness, dynamism and enthusiasm, have enabled me to successfully complete my Master's thesis, and win the chance of a PhD scholarship. To my beloved kids and wife ‘Thank you’. To my brothers and sisters, I love you all. My prayers and gratitude go to my parents’ spirits who have bequeathed me endless peace of mind and were always standing beside me throughout their lifetimes.

This study is dedicated to my supervisor, Professor Vernon Ireland, and to the ECIC, for their generous and endless kindness and support during my Master’s and PhD studies.
Abstract

The PhD research addresses the longstanding and unresolved global problem of energy losses from electrical smart grid systems. In particular, it focuses on the potential for a productive new role for end users of electricity at the household level. The research provides a complex systems perspective in approaching this problem, which recognises the benefits of emergence and self-organisation by homeowners in understanding and seeking to contribute to the large networked power distribution system.

A case study use of power by 300 houses in NSW, Australia, is used to address the current inconsistencies between electricity tariff policies and stakeholders, and the lack of knowledge and methodology needed to resolve the phenomena of peak and off-peak demand of electricity, which together, create unfavourable energy losses. A further issue is the inequity of financial benefits for electricity grid power suppliers, retailers and end-users.

A study of homeowners' patterns of use of grid supplied power, of a sample of home owners, over a three year period, was conducted, with usage data at 30 minute intervals. The research used mathematical programming methods, including Python programming software. The resulting calculations are used to devise a model, drawing on complexity theory, which significantly mitigates against energy losses, both to the electricity generators and distributors, and to end users, by factoring in the new element of renewable energy sources.

The contribution to knowledge is primarily the reduction of peak power usage in the grid by reducing maxima by use of home generated power through solar and wind, supplemented by individual battery systems. The research also indicates the business benefits of such an approach.

The research provides a way forward for future research and for a sustainable energy sector, with significant benefits to energy suppliers, retailers and end users at the household level.