Novel approaches to the pathophysiology of late-life depression

By

Dr Harris A Eyre

MBBS with Honours, James Cook University, 2011

Fulbright Scholar, UCLA, 2014/2015

PhD Candidate in the Discipline of Psychiatry

Submitted to the Faculty of Health Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy

University of Adelaide

2016

Faculty of Health Sciences
This dissertation is written by

Dr Harris A Eyre

This dissertation was supported by:

Primary supervisor: Professor Bernhard Baune, MD, PhD, Chair and Professor of Psychiatry, Discipline of Psychiatry, University of Adelaide

External co-supervisor: Assistant Professor David Merrill, MD, PhD, Department of Geriatric Psychiatry, UCLA

External co-supervisor: Professor Helen Lavretsky, MD, MS, Professor-in-Residence, Department of Geriatric Psychiatry, UCLA
Abstract

Novel approaches to the pathophysiology of late-life depression

Harris A Eyre, MBBS (Hons.), Fulbright (UCLA)

University of Adelaide, 2015

The growing impact of under-recognised and under-treated late-life depression (LLD) stands to negatively affect our societies within the context of an ageing world. LLD is a complex disorder where past studies have explored a narrow set of characteristics in isolation (e.g. clinical, neuropsychological, brain imaging, genomics and proteomics). These isolated analyses have yielded useful findings, and continue to do so, however they are limited given the neurobiological mechanisms of LLD are complex and involve interplay between many brain systems, and can manifest in various investigative modalities. Fortunately, there are novel methods for advancing mental health research. In this dissertation, a variety of novel approaches are used to develop a more comprehensive understanding of the pathophysiology of LLD. This is achieved by exploring discreet studies of peripheral biomarkers (i.e. immunology and genomics), as well as neuroimaging biomarkers (i.e. functional and molecular imaging), and contextualising them against each other. Novel applications of these principles and research tools including machine learning may yield more effective diagnostic, treatment and preventive options for LLD.
Thesis declaration

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and, where applicable, any partner institution responsible for the joint award of this degree.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.
Table of Contents

Abstract 3
Thesis Declaration 4
List of Tables 7
List of Figures 8
List of Abbreviations 9
1.0 Introduction 14
1.1 Specific studies 17
1.2 Outline of chapters 19
2.0 Introduction and overview of the pathophysiology of late-life depression 21
2.1 Diagnosis and definition of late-life depression 21
2.2 Population ageing projected to increase the prevalence and burden of late-life depression 22
2.3 Burden, prevalence and incidence of late-life depression 23
2.4 Risk factors for late-life depression 24
2.5 Clinical staging in late-life depression 25
2.6 Depression as a risk factor for dementia 26
2.7 Reviewing the pathophysiology of late-life depression 26
3.0 Peripheral biomarkers and their role in understanding the pathophysiology of late-life depression 30
3.1 Reviewing the role of inflammation in the pathophysiology of late-life depression. 30
3.1.1 The effect of inflammation on neurotransmission 30
3.1.2 The effect of inflammation on the hypothalamo-pituitary-adrenal axis 31
3.1.3 The effect of inflammation on neurogenesis 31
3.1.4 The effect of inflammation on amyloid and tau deposition 32
3.1.5 Limitations of the inflammatory hypothesis of depression 32
3.2 Introduction to the role of chemokines in the pathophysiology of depression. 33
3.3 A meta-analysis on the role of chemokines in the pathophysiology of depression. 36
3.3.1 Statement of authorship 37
3.3.2 Abstract 41
3.3.3 Aims and rationale 42
3.3.4 Methods and materials 42
3.3.5 Results 46
3.3.6 Discussion 60
3.3.7 Conclusion 65
3.3.8 Conflict of interest declaration 66
3.3.9 Acknowledgements 66
3.4 Genomic predictors of remission to antidepressant treatment in geriatric depression using genome-wide expression analyses: a pilot study 67
3.4.1 Statement of authorship 68
3.4.2 Abstract 71
3.4.3 Introduction 72
3.4.4 Aim and rationale 73
List of tables

Table 1: Quality assessment of studies included in the meta-analysis
Table 2: Sociodemographic characteristics of MCP-1 concentrations in depression
Table 3: Clinical characteristics of MCP-1 concentrations in depression
Table 4: Sociodemographic characteristics of IL-8 concentrations in depression
Table 5: Clinical characteristics of IL-8 concentrations in depression
Table 6: Comparison of clinical and socio demographic factors at baseline
Table 7: Gene ontology outputs from DAVID analysis for biologically significant functions of relevant early remitters
Table 8: Microarray genomic regulation differences between non-remitter and early remitter groups at baseline
Table 9: Demographic and clinic characteristics for depression and healthy control subjects
Table 10: Clinical and demographic characteristics at baseline
List of figures

Figure 1: Study selection and inclusion process for meta-analyses

Figure 2: Forest plot showing individual and combined effect size estimates and 95% confidence intervals for all trials in the analysis for monocyte chemoattractant protein-1

Figure 3: Forest plot showing individual and combined effect size estimates and 95% confidence intervals for all trials in the analysis for interleukin-8

Figure 4: Change in gene expression in early remitters versus non-remitters

Figure 5: Default Mode Network engagement in a cross-sectional study of late-life depression as compared to control

Figure 6: Visual network engagement in a cross-sectional study of late-life depression as compared to control

Figure 7: Auditory network engagement in a cross-sectional study of late-life depression as compared to control

Figure 8: Superior parietal and occipital network engagement in a cross-sectional study of late-life depression as compared to control

Figure 9: Associations between amyloid and tau binding in the anterior cingulate cortex and apathy
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-(1-{6-[2-[^{18}F]fluoroethyl}(methyl)-amino]-2-naphthyl}ethylidene)malononitrile ([^{18}F]FDDNP)</td>
<td>Alzheimer’s disease (AD)</td>
</tr>
<tr>
<td>Amyloid β (Aβ)</td>
<td>Anterior cingulate cortex (ACC)</td>
</tr>
<tr>
<td>Apathy Evaluation Scale (AES)</td>
<td>Beck Depression Inventory (BDI)</td>
</tr>
<tr>
<td>Blood brain barrier (BBB)</td>
<td>Body mass index (BMI)</td>
</tr>
<tr>
<td>cAMP responsive element binding protein (CREB)</td>
<td>Central nervous system (CNS)</td>
</tr>
<tr>
<td>Cerebrospinal fluid (CSF)</td>
<td>Chronic traumatic encephalopathy (CTE)</td>
</tr>
<tr>
<td>Citalopram (CIT)</td>
<td>Clinical Global Impression (CGI)</td>
</tr>
<tr>
<td>Cognitive control network (CCN)</td>
<td>Connor-Davidson Resilience Scale (CD-RISC)</td>
</tr>
<tr>
<td>C-reactive protein (CRP)</td>
<td>Cumulative Illness Rating Scale-Geriatric (CIRS-G)</td>
</tr>
<tr>
<td>Cytometric bead array (CBA)</td>
<td>Database for Annotation, Visualization and Integrated Discovery (DAVID)</td>
</tr>
<tr>
<td>Default Mode Network (DMN)</td>
<td>Diagnostic and Statistical Manual (DSM)</td>
</tr>
<tr>
<td>Diffusion tensor imaging (DTI)</td>
<td>Dopamine (DA)</td>
</tr>
<tr>
<td>Dorsal anterior cingulate cortex (dACC)</td>
<td>Dorsolateral prefrontal cortex (DLPFC)</td>
</tr>
<tr>
<td>Echo-planar imaging (EPI)</td>
<td>Effect size (ES)</td>
</tr>
<tr>
<td>Electrocardiogram (ECG)</td>
<td>Enzyme-linked immunosorbent assay (ELISA)</td>
</tr>
<tr>
<td>FMRIB Software Library (FSL)</td>
<td>Fractional anisotropy (FA)</td>
</tr>
<tr>
<td>Geriatric Depression Scale (GDS)</td>
<td>Global burden of disease (GBD)</td>
</tr>
<tr>
<td>Glucocorticoid receptor (GR)</td>
<td>Hamilton Anxiety Scale (HAS or HAM-A)</td>
</tr>
<tr>
<td>Hamilton Depression Rating Scale (HDRS or HAM-D)</td>
<td>Hypothalamus-pituitary-adrenal (HPA)</td>
</tr>
<tr>
<td>Hypoxia-inducible factors (HIF)</td>
<td>Independent components analysis (ICA)</td>
</tr>
<tr>
<td>Indoleamine 2,3 dioxygenase (IDO)</td>
<td>Induced pluripotent stem cells (iPS)</td>
</tr>
<tr>
<td>Institutional Review Board (IRB)</td>
<td></td>
</tr>
</tbody>
</table>
Interferon (IFN)
Interferon γ-induced protein (IP)
Interleukin (IL)
International Classification of Diseases (ICD)
Janus kinase (JNK)
Late-life depression (LLD)
Macrophage inflammatory protein (MIP)
Macrophages migration inhibitory factor (MIF)
Major depressive disorder (MDD)
Major histocompatibility complex, class II, DR β 5 (HLA-DRB5)
Medial prefrontal cortex (mPFC)
Medial temporal lobe (MTL)
Medical Outcomes Study Short Form 36-Item Health Survey (SF-36)
Methylphenidate (MPH)
Mild cognitive impairment (MCI)
Mini-Mental State Examination (MMSE)
Mitogen-activated protein kinase (MAPK)
Monocyte chemotactic protein (MCP)
Montgomery-Asberg Depression Rating Scale (MADRS)
Multivariate Exploratory Linear Decomposition into Independent Components (MELODIC)
Neural stem cells (NSCs)
Neurofibrillary tangles (NFTs)
Noradrenaline (NA)
Nuclear factor-κB (NF-κB)
Nucleus accumbens (NAcc)
Peripheral blood mononuclear cells (PBMC)
Pittsburgh Compound B (PiB)
Positron emission tomography (PET)
Posterior cingulate cortex (PCC)
Posterior superior temporal sulcus (pSTS)
Preferred reporting items for systematic reviews and meta-analyses (PRISMA)
Reactive oxygen species (ROS)
Regions of interest (ROIs)
Relative distribution volume (DVR)
Relative risk (RR)
Resting-state functional magnetic resonance imaging (rs-fMRI)
Selective serotonin reuptake inhibitors (SSRIs)
Selenium binding protein 1 (SELENBP1)
Serotonin (5-HT)
Serotonin noradrenaline reuptake inhibitors (SNRIs)
Sialic acid binding immunoglobulin-like lectin, pseudogene 3 (SIGLECP3)
Signal transducer and activator of transcription (STAT)
<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMA- and MAD-related protein 7 (SMAD 7)</td>
<td>TGFβ activated kinase-1 (TAK-1)</td>
</tr>
<tr>
<td>Standard deviation (SD)</td>
<td>T-helper (T<sub>h</sub>)</td>
</tr>
<tr>
<td>Statistical parametric mapping (SPM)</td>
<td>Tumour necrosis factor (TNF)</td>
</tr>
<tr>
<td>Stress-activated protein kinase (SAPK)</td>
<td>Tumour, node, metastasis (TNM)</td>
</tr>
<tr>
<td></td>
<td>Udvalg for Kliniske Undersogelser (UKU)</td>
</tr>
<tr>
<td></td>
<td>Uncinated fasciculus (UF)</td>
</tr>
<tr>
<td></td>
<td>White matter lesions or hyperintensities (WMH)</td>
</tr>
<tr>
<td></td>
<td>World Health Organization (WHO)</td>
</tr>
<tr>
<td></td>
<td>Years lived with disability (YLD)</td>
</tr>
</tbody>
</table>
PREFACE

There are many, many people to thank in the completion of this PhD dissertation, which has taken me from tropical Townsville, to Adelaide, Los Angeles and finally Melbourne.

Firstly, I would like to thank Professor Bernhard T Baune for his support and mentorship not only during this PhD period, but also since the initiation of my engagement in research some 7 years ago. Prof Baune has supported me tirelessly through my development as a medical student, researcher, intern and now psychiatry registrar. During this time, I have developed not only as a researcher and clinician but also on a personal level. If it was not for his ongoing support, I may not have made it this far. It is through Prof Baune’s work in psychiatric neuroscience that I have found tremendous meaning – the complexities of the brain, the importance of high quality science, and the benefits of a rich convergence or transdisciplinary approach to enquiry. Prof Baune has been supportive in enabling me to pursue my interests in travelling to the United States of America on a Fulbright Scholarship, as well as my settling back in Melbourne, Australia. This kind of unwavering support is very rare as I have asked a lot through this unique research career, and I will be forever grateful.

Following, I would like to thank Prof Helen Lavretsky for her generosity in supporting my Fulbright Scholar period at the UCLA Division of Geriatric Psychiatry with her research group. My goal was to spend 12 months living the USA working with world class experts in a variety of fields. I certainly found this in spades within Prof Lavretsky’s group. This period at UCLA and in California has spurred me on in my career to continue exploring novel pathways of ‘adding
value’ to patient care. Through Prof Lavretsky’s group, I have particularly taken stock of innovations in positive psychiatry, as well as evidence generation in novel fields (e.g. integrative psychiatry). This has been fascinating and enriching to observe, and in small part, contribute to.

Also, I would like to thank A/Prof David Merrill for his support through the articulation of the convergence psychiatry concept, which has developed through much iteration. A/Prof David Merrill has been supportive in helping me understand convergence psychiatry as it applies to research, as well as clinical medicine. A/Prof Merrill and I have many years of interesting work ahead of us.

To all collaborators, I am most grateful. From collaborators within the Discipline of Psychiatry at the University of Adelaide to those from Prof Lavretsky’s research group and the Brain Mapping Centre at UCLA.

Particular thanks also goes to the Australia-America Fulbright Commission who supported my travel and living in Los Angeles for 12 months. This period of time was life changing and enriching, with tremendous exposure to new scientific fields, the Californian bioentrepreneurial scene, many new friends and collaborators.