PUBLISHED VERSION

Jan-Yves Ruzicka, Faridah Abu Bakar, Christoffer Hoeck, Rohul Adnan, Campbell McNicoll, Tim Kemmitt, Bruce C. Cowie, Gregory F. Metha, Gunther G. Andersson, and Vladimir B. Golovko

Toward control of gold cluster aggregation on TiO$_2$ via surface treatments

© 2015 American Chemical Society. This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.

Published version http://dx.doi.org/10.1021/acs.jpcc.5b07732

PERMISSIONS

http://pubs.acs.org/page/policy/authorchoice/index.html

ACS AuthorChoice facilitates unrestricted Web access to the final published article, the Version of Record, for a one-time fixed payment. This program allows you to post copies of the final published article on your personal website and institutional repositories.

http://pubs.acs.org/page/policy/authorchoice_termsofuse.html

ACS grants You non-exclusive and nontransferable permission to access and use this ACS article subject to the terms and conditions set forth in this Agreement.

2. PERMITTED USES

a. For non-commercial research and education purposes only, You may access, download, copy, display and redistribute articles as well as adapt, translate, text and data mine content contained in articles, subject to the following conditions:

i. The authors’ moral right to the integrity of their work under the Berne Convention (Article 6bis) is not compromised.

ii. Where content in the article is identified as belonging to a third party, it is your responsibility to ensure that any reuse complies with copyright policies of the owner.

iii. Copyright notices or the display of unique Digital Object Identifiers (DOI’s), ACS or journal logos, bibliographic (e.g. authors, journal, article title, volume, issue, page numbers) or other references to ACS journal titles, web links, and any other journal-specific “branding” or notices that are included in the article or that are provided by the ACS with instructions that such should accompany its display, should not be removed or tampered with in any way. The display of ACS AuthorChoice or ACS Editors’ Choice articles on non-ACS websites must be accompanied by prominently displayed links to the definitive published versions of those articles on the ACS website.

iv. Any adaptations for non-commercial purposes must prominently link to the definitive published version on the ACS website and prominently display the statement: “This is an unofficial adaptation of an article that appeared in an ACS publication. ACS has not endorsed the content of this adaptation or the context of its use.”

v. Any translations for non-commercial purposes, for which a prior translation agreement with ACS has not been established, must prominently link to the definitive published version on the ACS website and prominently display the statement: “This is an unofficial translation of an article that appeared in an ACS publication. ACS has not endorsed the content of this translation or the context of its use.”

b. Each time You distribute this ACS article or an adaptation, ACS offers to the recipient a license to this ACS article on the same terms and conditions as the license granted to You under this License.

9 July 2018

http://hdl.handle.net/2440/113330
Toward Control of Gold Cluster Aggregation on TiO2 via Surface Treatments

Jan-Yves Ruzicka,† Faridah Abu Bakar,‡,∥ Christoﬀ er Hoeck,†,.§ Rohul Adnan,‡,‖ Campbell McNicol,†,⊥ Tim Kemmitt,‡,∥ Bruce C. Cowie,§ Gregory F. Metha,*○ Gunther G. Andersson,*◆ and Vladimir B. Golovko*†,‡,∥

†Department of Chemistry, University of Canterbury, Christchurch 8041, New Zealand
‡Univestiti Tun Hussein Onn Malaysia, Batu Pahat 86400, Malaysia
§University of Copenhagen, Copenhagen, Denmark
∥Chemistry Department, University of Malaya, Kuala Lumpur 50603, Malaysia
‖Callaghan Innovation, Lower Hutt 5040, New Zealand
¶MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
○Australian Synchrotron, Clayton, VIC 3168, Australia
◆Department of Chemistry, University of Adelaide, Adelaide, South Australia 5005, Australia

Supporting Information

ABSTRACT: Well-deﬁned Au–TiO2 materials were synthesized by deposition of triphenylphosphine-protected Au9 clusters on TiO2 (Aeroxide P-25), pre-treated in eight different ways and subsequently exposed to two post-treatments. X-ray photoelectron spectroscopy and UV–vis diﬀuse reﬂectance spectroscopy studies showed that in most cases the PPh3 ligand shell was removed upon deposition even before post-treatment, coinciding with some cluster aggregation. However, clusters deposited on TiO2 treated using H2SO4 and H2O2 showed remarkable resistance to aggregation, even after high-temperature calcination, while clusters on H2-treated TiO2 showed the greatest resistance to aggregation under ozonolysis.

INTRODUCTION

It is well-known that the properties of metal oxide surfaces can be modiﬁed by the deposition of Au clusters.1−4 Pure metal clusters can be generated and deposited from the gas phase as size-selected clusters, while ligand-protected, chemically synthesized clusters could be deposited either through electrospray ionization5 or from the liquid phase (solutions) by using dip-, drop-, or spin-coating techniques.6−9 Liquid-phase chemical synthesis of metal clusters allows for excellent control over particle composition and size, while oﬀering beneﬁts of the large-scale production diﬃcult to achieve by gas-phase techniques.6,8 However, stabilizing ligands must be used to control particle growth, prevent aggregation, and ensure solubility in the reaction media. Once the ligand-stabilized clusters are deposited on a support, the ligands can be removed via heating, facilitating the direct contact of the cluster core with the substrate.6,9,10 Thermal (calcination)6,9−12 and oxidative (ozonolysis)12,13 treatments are often used to remove stabilizing ligands and also help anchor the particles to the support6,9,10,12,13 minimizing cluster sintering during catalysis. Avoiding the latter is critical since properties of clusters are known to be size speciﬁc1,14,15 and thus will change upon aggregation. It has generally been found that ozonolysis is superior to thermal treatment for ligand removal, yielding materials with increased resistance to further sintering.13,16 However, it has been shown that both calcination and ozonolysis treatments result in some degree of cluster aggregation due to the relatively weak gold–oxide interaction.16

A number of groups have suggested and explored the use of surface pre-treatments to prevent gold cluster aggregation. Hidalgo et al. have demonstrated that sulfuric acid pre-treatment of TiO2 leads to the fixation of sulfate groups on the particle surface, resulting in a much stronger support–nanoparticle interaction.17 Veith et al. have reported that pre-treatment of TiO2 with both acid and base may help prevent gold nanoparticle aggregation,18 so the modiﬁcation of the TiO2 surface by H+ in the case of sulfuric acid pre-treatment may also play a role in improving the metal–support interaction. In addition, further studies have shown that hydroxylation of the TiO2 surface results in a drastic
improvement in gold cluster catalytic activity while negligibly affecting aggregation.19 Zhong et al. showed that the addition of Sn2+ to the surface of titanium dioxide improved the dispersion of Pd, Pt, Au, and Ag nanoparticles, as well as mixed-metal nanoparticles composed of these elements.20 Similar systems prepared in the absence of tin experienced aggregation, and it was proposed that strong bonding between tin-hydroxyl chelates and metal clusters was responsible for the high dispersion. Matthey et al. have explored the nucleation of small (<20 atoms) gold clusters on oxidized, reduced, and hydrated TiO2 surfaces.21 The authors found that the gold–oxide bond is strongest in the case of an oxidized support, while hydrated TiO2 surfaces readily allowed aggregation to larger gold particles. This behavior of ultrasmall clusters is in stark contrast to that of larger (∼1.5 nm) gold nanoparticles, which aggregate readily on an oxidized support,22 especially at higher temperatures.23

While the reports mentioned above demonstrate the importance of surface pre-treatment, they are not suited to direct comparison due to the variations in individual approaches toward material fabrication. To our knowledge there has been no comprehensive comparative report on the effect of support pre-treatments on the gold−support interaction. Ideally, one would aim to focus on the effect of support pre-treatment only, but in order to do so it is important to eliminate interference caused by other factors (e.g., type of support, cluster synthesis method) to isolate the effect of pre-treatment methods.

In this report, the effects of a number of pre-treatments on the deposition and activation of atomically precise gold clusters were investigated. We have selected a number of pre-treatment methods (discussed above) that have been proven to affect gold cluster aggregation on metal oxide supports.17−21 These pre-treatment methods were applied to the commercially available Aeroxide P-25 TiO2 support (a NIST standard, widely available, and a popular support material in the research community).24 These pre-treated materials were subsequently used as supports for the [Au9(PPh3)8](NO3)3 cluster (hereafter referred to as Au9), and the resultant materials were subjected to two post-deposition treatments: calcination and ozonolysis. Detailed investigation of these materials is carried out using synchrotron X-ray photoelectron spectroscopy (XPS).6,9 UV−vis diffuse reflectance spectroscopy (UV−vis DRS) was used to give a detailed picture of gold particle aggregation on the support surface via the appearance of the surface plasmon resonance band for particles larger than 2.5 nm.25,26 Using these techniques in conjunction, we demonstrate the effects of pre-treatment on the behavior of the Au9 clusters during deposition and activation. By using the exact same support material for each pre-treatment, we eliminate any interference due to variability in nature of the support. The use of P-25 as a support allows the results of this report to be widely applicable, benefiting numerous researchers working in the area by providing a comprehensive reference point.

This report builds on our recent studies on a series of atomically precise clusters deposited and activated on titania, in which we have demonstrated the use of synchrotron XPS for the characterization of cluster-containing materials and also shown a correlation between each clusters' electronic properties and their size.6,9 Our earlier studies have also highlighted the important role support pre-treatment plays in the aggregation of gold clusters. Here, by using atomically precise Au9 clusters as a probe sensitive to aggregation, we have been able to focus on exactly how various pre-treatment methods of the same, popular support affect nanoparticle aggregation, both during cluster deposition and upon post-deposition treatments. The fundamental study reported herein is therefore intended to act as a foundation for further studies on the applications of these materials.25−27 In the proceeding sections we present X-ray photoelectron spectroscopy (XPS) measurements of the gold core, the triphenylphosphine periphery, and the titanium dioxide support, respectively. Following this, we present results of the UV−vis DRS spectroscopy investigations of these (and related) materials, which support the conclusions obtained from XPS data.

EXPERIMENTAL SECTION

Gold clusters were deposited on Aeroxide P-25 (Degussa) titanium dioxide in the following manner (Figure 1):

1. Titanium dioxide was treated using a number of methods, as outlined in the experimental section. Untreated support was also used for comparison. Treatment of the support at this stage will herein be referred to as “pre-treatment”.
2. Atomically precise Au9 clusters were deposited on the titanium dioxide support following a previously reported protocol.6
3. Following deposition, Au−TiO2 systems were treated using either ozonolysis or calcination and were analyzed in comparison to untreated materials. Treatment at this stage will be referred to as “post-treatment”.

Materials in this report will be denoted “(pre-treatment)−TiO2−(post-treatment)” e.g. O3/UV−TiO2−Δ indicates that the support was ozonolysed under UV prior to gold cluster deposition and subjected to calcination after the deposition.

Materials. The AuPPh3(NO3) gold cluster precursor was synthesized from 99.99% pure gold following a procedure described previously.6 P25−TiO2 “Aeroxide” was supplied by Evonik Degussa GmbH. This titania material is a mixture of particles with 80:20 ratio of anatase and rutile phases, with a quoted average particle size of 30 nm and surface area of 50 m2 g−1. Sodium borohydride (synthetic grade, Merck), potassium...
hydroxide (≥85%, Merck), hydrogen peroxide (50% w/w solution, Jasol), sulfuric acid (99%, Orica Chemnet), and tin chloride hydrate (≥98%, Sigma-Aldrich) were used as received.

\[\text{[Au}_x\text{PPh}_3\text{]}_\text{y}[\text{NO}_3]_\text{z} \] Cluster Synthesis. Au clusters were synthesized by a method described by Wen et al.²⁹ and used extensively by our group.⁵⁻⁹ Briefly, a solution of NaBH₄ (0.072 g, 1.92 mmol) in ethanol (92 mL) was added to a solution of AuPPh₃NO₃ (4.000 g, 7.6 mmol) in ethanol (160 mL). After stirring for 2 h, the solution became deep red and was filtered to remove impurities. The filtrate was dried under reduced pressure and the resultant solid dissolved in CH₃Cl₂ (20 mL) and filtered through a sintered glass funnel. Solvent was once again removed under reduced pressure, and the resultant black precipitate was washed with THF (4 × 50 mL) and then hexanes (3 × 50 mL). The precipitate was crystallized from methanol solution by slow diffusion of diethyl ether at 4 °C over approximately 5 days.

Gold clusters were stored at 4 °C in the dark prior to deposition.

Titanium Dioxide Pre-treatment. P-25 titanium dioxide was pre-treated in a number of ways, as described below. Unless otherwise stated, following treatment all samples were washed three times with Milli-Q water and once with ethanol and dried under reduced pressure.

Potassium Hydroxide Wash. KOH aqueous solution (2 M) was added dropwise to a mixture of P-25 (1.000 g) and Milli-Q water (90 mL) until the pH reached 10. The mixture was stirred at 60 °C for 2 h. The product was removed by centrifugation.¹⁷

Sonication in Hydrogen Peroxide. P-25 (1.000 g) was added to H₂O₂ solution (10 mL, 50% w/w) and sonicated (Elmasonic S30) for 30 min at 30 °C. Sample was recovered by centrifugation and washed with distilled water and ethanol before being dried at room temperature under vacuum.

Calcination under Hydrogen. P-25 (1.000 g) was placed in a quartz boat in a sealed tube furnace (MTI OTF-1200X). The system was purged with argon (MKS 647C multigas flow controller, Ar flow rate 1.7 cm³·s⁻¹) and heated to 450 °C. At this point, hydrogen was added to the argon flow (H₂ flow rate 1.7 cm³·s⁻¹). Gas flow was maintained for 3 h, after which the hydrogen flow was stopped and the sample allowed to cool to room temperature under argon flow. The sample was not washed prior to cluster deposition.

Calcination under Static Air. P-25 (1.000 g) was placed in a quartz boat in a tube furnace, left open to the atmosphere. The sample was heated to 400 °C for 2 h. The sample was not washed prior to cluster deposition.

Ozone/UV Treatment. P-25 (1.000 g) was placed in a quartz tube and stirred under ozone flow (produced using a Yanco Industries OL100DS generator) and UV exposure (provided by a 500 W Ushio UXL-500D-O broad-spectrum Xe lamp) for 2 h. The sample was not washed prior to cluster deposition. The ozone concentration was 129 mg L⁻¹ and kept constant for all ozone-treated samples.

Sulfuric Acid Wash. P-25 (1.000 g) was added to sulfuric acid solution (10 mL, 1 M) and stirred for 5 h. Sample was recovered by centrifugation and washed with distilled water followed by methanol before being dried at 100 °C for 16 hours under vacuum.

Tin Chloride Wash. Tin chloride solution ([Sn] = 26.4 mM) was formed by adding SnCl₂ 2H₂O (1.19 g) to HCl (200 mL, 0.02 M). P-25 (1.000 g) was dispersed in Milli-Q water (200 mL) before being added to the tin chloride solution. The pale yellow suspension was stirred for 10 min, removed from the tin chloride solution by centrifugation, and washed with HCl solution (1 M) five times to remove SnClO₃ (insoluble at pH 7) formed on its surface.

Gold Cluster Deposition. Gold clusters were deposited on pre-treated P-25 titanium dioxide supports to give a 0.17% metal loading (by mass of Au). In a typical preparation, 1.000 g of titania was dispersed in CH₃Cl₂ (20 mL) with stirring. Au₉ clusters (3.9 mg) were dissolved in CH₃Cl₂ (5 mL) and added to the suspension, and the mixture was stirred for 1 h. Following this, the solvent was removed under reduced pressure. Au–TiO₂ products were stored and processed in the absence of light, as exposure to light has previously been shown to encourage cluster aggregation.¹⁸

Portions of each material were then treated using one of the two different post-deposition treatments (see Figure 1).

Ozonolysis. An amount of 200 mg of sample was stirred under constant ozone flow (Yanco Industries OL100DS) for 90 min, before being washed twice with ethanol and dried under vacuum.

Calcination. An amount of 100 mg of sample was heated in a Schlenk tube to 200 °C under vacuum with stirring for 1 h.

In both cases, care was taken to prevent exposure to light during these post-treatments.

Characterization. X-ray photoelectron spectroscopy (XPS) was performed at the Australian Synchrotron (soft X-ray beamline)³⁰ using a SPECS Phoibos 150 hemispherical electron analyzer. XPS measurements were performed with an excitation energy of 625 eV and a pass energy of 20 eV. In the XP spectra, all binding energies are referenced to the main carbon peak at 285 eV. The background was fitted using a combination Shirley background/polynomial function. Peaks were fit using pseudo-Voigt peaks fixed at 30% Cauchy (Lorentz) character and 70% Gaussian character. Due to the low gold cluster loading, gold and phosphorus XP spectra were measured ten times and averaged to remove noise and check that no beam-induced aggregation occurred, while other signals of interest were measured twice and averaged. No samples required major correction of the binding energies, indicative of little or no charging of samples.

UV–visible diffuse reflectance spectroscopy (UV–vis DRS) was performed using an Agilent Cary 4000 UV–vis spectrometer with diffuse reflectance sphere. Band gaps were calculated from a modified Kubelka–Munk plot, assuming a direct transition (see Supporting Information, Figure S1 for a typical plot). Background under SPR peaks was approximated using a quadratic function. Peaks were fitted with Gaussian functions and parameters determined by nonlinear least-squares fitting. Peak intensity was measured as the area under the curve. The values of full width at half-maximum (fwhm) for these peaks were systematically approximately 110 nm, with a standard deviation of 17 nm.

RESULTS AND DISCUSSION

We have used electron and optical spectroscopy to analyze the Au₉ clusters deposited on P-25. In the following sections we first briefly review the theory behind XPS binding energy shifts before presenting analysis of Au 4f, P 2p, and Ti 2p XPS data. Following this, we present the analysis of UV–vis DRS data, before finally linking these findings together to form a coherent picture of gold cluster aggregation and ligand removal.

X-ray Photoelectron Spectroscopy. Details of XPS survey scans are available in the Supporting Information.
Unless otherwise noted, peak intensities are reported as a fraction of the titanium 2p total peak intensity. Uncertainty in peak position was qualitatively determined by comparing calculated signals with experimental data. Uncertainty in peak intensity was qualitatively determined from the difference between calculated and experimental data, as a proportion of the total signal.

Effects of Pre- and Post-deposition Treatment on Au XPS. The binding energy of Au cluster 4f electrons observed in the XP spectra is influenced by two effects: the initial state effect and the final state effect. Both effects were described in detail by Borman et al. Briefly, the initial state effect can also be referred to as chemical shift and reflects the oxidation state or the charge state of the atom from which the electron is emitted. The final state effect reflects the de-excitation process of the atom excited by the absorption of the X-ray photon. An atom that exists within a finite structure (such as a metal cluster) cannot relax to the ground state in the same way as an atom that exists within the bulk of the same material. The confined structure also cannot screen the hole created through the emission of the electron as efficiently as the respective bulk material. The relaxation energy is different in both cases. The atom in a finite structure stays longer in the charged state, which shifts observed binding energy of emitted electrons to higher values. The final state effect therefore results in a continuous shift as a function of the cluster size. It is important to note that initial and final state effects are difficult to separate because they both result in a shift in binding energy. However, the final state effect also shows a broadening in the fwhm with decreasing size of the cluster, and this phenomenon can potentially be used to identify the nature of the peak shift.

The chemical state of the Au cluster may be affected by the interaction of the Au cluster with the titania substrate. This interaction depends on the nature of the support surface at the site of adsorption (for example, a Au cluster adsorbed onto a defect site will interact differently to one adsorbed onto a defect-free area) and can result in electron transfer to or from the gold particle. The interaction of the Au cluster with the metal oxide substrate could also influence the geometrical structure of the cluster.

For Au–TiO₂ materials, gold–titania interactions will lead to an increase in the binding energy of the Au 4f peak as the titania support acts to withdraw electron density from the Au clusters. The final state effect, a result of the cluster size, is generally most prevalent for ultrasmall clusters. This effect can be seen by comparing the Au 4f XPS electron binding energies for Au₉ and Au₁₁ (∼85 eV) with that of Au₁₁₁ (84.6 eV). This effect has also been known to result in a fwhm increase as particle size decreases due to the reduced screening of the hole created through the emission of the electron. For a fuller treatment of initial- and final-state effects on Au cluster XPS binding energies, we direct the reader to the work of Borman et al. and our previous papers.

It should be noted that these studies were performed in vacuo, and as such the observations reported may differ somewhat from those for particles studied under atmospheric conditions. Herranz et al. have observed that Au–TiO₂ materials studied by ambient pressure XPS exhibit an upshift in Au 4f peak binding energy of ∼0.3–0.4 eV when compared to the same measurements performed in vacuo. This change was attributed to the effect of oxidizing gases; it is anticipated that the imposition of vacuum conditions should not change the structural or electronic properties of gold clusters beyond those overall changes observed by Herranz et al.

Gold clusters were analyzed by XPS, with data normalized and corrected as detailed above. Full gold peak data (intensity and position) are given in Figure 2 (tabulated data are available in the Supporting Information, Table S1; fitting of typical Au XP spectra are available in the Supporting Information, Figures S6–7). The uncertainty in determining peak position is estimated to be approximately 0.1 eV. Some smaller peaks, however, exhibit a larger uncertainty, estimated to be approximately 0.3 eV. This holds for SnCl₂–TiO₂–Δ, None–TiO₂–O₂, H₂(O)–TiO₂–O₂, and H₂(Δ)–TiO₂–Δ. This larger uncertainty of the peak position does not appreciably affect the interpretation of the following results.

It was observed that Au 4f½ XPS peaks could be broadly divided into two categories: “high binding-energy peaks” (HBP), with a binding energy around 84.5–85.5 eV, and “low binding-energy peaks” (LBP), with a binding energy around 84 eV. Au HBPs are attributed to small discrete gold particles (which may interact with the titania substrate), while Au LBPs are attributed to large (>2 nm) aggregates, whose size results in the emergence of both metallic properties (i.e., a bulklike Au signal in XPS) and a distinct surface plasmon resonance band. Peaks with intermediate binding energies (84–84.5 eV) can be attributed to the small aggregates of clusters. It is also important to note that agglomeration of clusters affects the intensity of the Au signal. Due to the limited electron mean free path, electrons emitted from larger particles will be attenuated more than those emitted from small clusters. The absence of peaks at E_B ≥ 85.5 eV indicates the absence (within the

Figure 2. Summary of gold XPS data (binding energy and intensity). Intensity is normalized so that peak heights for different samples are comparable. Post-treatment is indicated by bar shading (see key).
without pre-treatment of support (None−TiO₂), gold clusters aggregate upon either heating or ozonolysis. These results strongly mirror our previous findings.⁵⁷ None−TiO₂−Δ shows a very low-intensity HBP around 85.3 eV, approximately 0.5 eV higher than for None−TiO₂−None. The low intensity peak can be attributed to discrete clusters showing interaction with the titania substrate.⁵⁸ There is no HBP peak in the case of None−TiO₂−O₃, which indicates complete aggregation of gold clusters for this post-treatment.

Both elevated-temperature pre-treatments (under H₂ and static air) result in a significant decrease in HBP binding energy compared to clusters on untreated TiO₂. Radnik et al. have shown that hydrogen post-treatment of Au−TiO₂ can lower Au 4f electron binding energy.⁵⁵ While a similar effect may be postulated for H₂-pre-treated materials, the downward shift observed here may also partly be the result of enhanced cluster-support effects. For both H₂(Δ)−TiO₂ and O₂(Δ)−TiO₂ post-deposition treatments result in the growth of a Au LBP and the shift of the HBP to higher binding energies. This shift in HBP is indicative of considerable cluster depredosion and oxidation (i.e., support interaction). Of note, H₂(Δ)−TiO₂−O₃ is the only ozonolyzed sample to show a Au HBP, suggesting that hydrogen pre-treatment is effective toward immobilization of Au clusters. O₂(Δ)−TiO₂−O₃ appears somewhat resistant toward aggregation as well: the Au LBP has a binding energy approximately 0.4 eV higher than for O₂(Δ)−TiO₂−Δ, indicative of reduced aggregation. It should be noted that the effects observed above are expected to vary based on the particular temperature used in heating the sample: in the results presented here we have specifically avoided exploring the effect of altering the temperature for any given pre-treatment.

Pre-treatment of titania support with tin (SnCl₂−TiO₂) appears to have little effect on the nature of deposited Au clusters. SnCl₂−TiO₂−None shows a small peak at ~84.4 eV, which may be due to gold−tin interactions on the support surface. Gold−tin interactions would also explain the relatively high binding energy (~487 vs 485 eV for metallic tin) of observed Sn 3d XPS peaks (Supporting Information, Figure S2). The Au XPS peak at 84.4 eV disappears upon post-treatments, as does the Sn peak, indicative of the loss of all Sn and all Au-bound Sn. Peak positions and intensities after post-deposition treatment look very similar to those observed for None−TiO₂, suggesting that tin deposition does very little to affect gold cluster aggregation during post-treatments. The one exception is the LBP upon ozonolysis, which is somewhat more intense for SnCl₂−TiO₂ than for None−TiO₂.

Support pre-treatment by O₂/UV does not drastically affect gold aggregation in the case of “as-deposited” samples. However, Au XPS peaks for both calcined and ozonolyzed samples appear at higher binding energy and with higher relative intensity than their None−TiO₂ counterparts. This suggests that ozonolysis pre-treatment is effective at limiting the extent of gold cluster aggregation. While hydrogen peroxide pre-treatment results in the appearance of a pronounced Au LBP in the “as-deposited” case (cf. untreated TiO₂), this material retains its HBP after calcination. This suggests H₂O₂ pre-treatment improves gold cluster resistance to aggregation during this post-treatment.

Pre-treatment by KOH washing results in a decrease in the binding energy of the Au HBP for the “as-deposited” sample (cf. None−TiO₂). However, the presence of electron-rich surface TiOH groups is likely to lower the binding energy of deposited Au clusters.⁵⁵ A Au LBP is observed for KOH−TiO₂−None, indicating that KOH treatment encourages gold particle aggregation for this particular system, contrary to expectations based on previous reports.²⁵ Overall, this pre-treatment method does not seem to offer a significant advantage in controlling the aggregation of clusters according to the XPS observations of post-treated samples.

Finally, pre-treatment with H₂SO₄ gives rise to a remarkably intense HBP (the most intense HBP peak observed in this report). The Au XPS peak binding energy is comparable to that of the pure, intact cluster in its solid-state microcrystalline powder form,⁶ indicating that the clusters deposited on H₂SO₄−TiO₂ remain intact. Calcination shifts this HBP to a higher binding energy, which is attributed to ligand removal and partial oxidation of the cluster which may be due to a better interaction with the oxide support. A relatively low-intensity LBP is also observed for the calcined sample, indicative of a small population of aggregates. Nonetheless it is noteworthy that the intensity of the HBP of H₂SO₄−TiO₂−Δ is the highest in the series, indicating that support pre-treatment by washing in sulfuric acid is the best approach for preventing aggregation of clusters during calcination. However, ozonolysis post-treatment results in more extensive aggregation, as evidenced by the disappearance of the HBP and the concomitant appearance of an LBP. The high relative intensity of the LBP suggests that these aggregates are still relatively small (albeit already metallic), as a high proportion of Au atoms remains detectable by XPS (compared with other samples in the series).

3.1.2. Effects of Pre- and Post-deposition Treatments on P XPS. The positions of the P 2p XPS are shown in Table 1. The

Table 1. Summary of Phosphorus XPSa

<table>
<thead>
<tr>
<th>pre-treatment</th>
<th>post-treatment</th>
<th>EB [eV] LBP</th>
<th>EB [eV] HBP</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>None</td>
<td>134.3</td>
<td></td>
</tr>
<tr>
<td>H₂(Δ)</td>
<td>None</td>
<td>133.9</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>Heat</td>
<td>134.1</td>
<td></td>
</tr>
<tr>
<td>H₂SO₄</td>
<td>None</td>
<td>133.7</td>
<td></td>
</tr>
<tr>
<td>Heat</td>
<td>133.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SnCl₂</td>
<td>None</td>
<td>133.9</td>
<td></td>
</tr>
<tr>
<td>O₂/UV</td>
<td>None</td>
<td>133.7</td>
<td></td>
</tr>
<tr>
<td>O₂/UV</td>
<td>Heat</td>
<td>133.7</td>
<td></td>
</tr>
<tr>
<td>H₂O₂</td>
<td>None</td>
<td>131.3</td>
<td></td>
</tr>
<tr>
<td>O₂/UV</td>
<td>Heat</td>
<td>134.1</td>
<td></td>
</tr>
<tr>
<td>KOH</td>
<td>None</td>
<td>133.9</td>
<td></td>
</tr>
<tr>
<td>O₂/UV</td>
<td>Heat</td>
<td>133.6</td>
<td></td>
</tr>
<tr>
<td>H₂SO₄</td>
<td>None</td>
<td>133.3</td>
<td></td>
</tr>
<tr>
<td>O₂/UV</td>
<td>Heat</td>
<td>133.1</td>
<td></td>
</tr>
<tr>
<td>O₂/UV</td>
<td>O₂</td>
<td>133.7</td>
<td></td>
</tr>
<tr>
<td>O₂/UV</td>
<td>O₂</td>
<td>134.3</td>
<td></td>
</tr>
</tbody>
</table>

Peak positions only are shown because the intensity of P was found to depend on the time samples were exposed to vacuum. Binding energies are given to within ±0.2 eV.
The presence of the P 2p XPS peak with binding energy of 131−132 eV for H2SO4 and H2O2-pre-treated TiO2 suggests that these post-treatment techniques discourage the removal of triphenylphosphine from the cluster core upon deposition. P 2p XPS peaks were observed at 133−134 eV for all samples, which is attributed to oxidized phosphorus most likely bound to the titania surface after detaching from the Au cluster core.36

It is believed that the processes of aggregation and ligand removal upon deposition of the cluster onto the substrate are concurrent: this has been observed previously in XPS studies of phosphine-protected gold clusters deposited on titanium dioxide.6,9 Of particular note, our studies show that gold clusters deposited on untreated commercial P-25 undergo ligand removal and aggregation even without specific post-deposition treatment, confirming reproducibility of our previous findings.9

Effects of Pre- and Post-deposition Treatments on Ti-XPS. Relative intensities for all Ti populations are tabulated in the Supporting Information, Table S2, with typical fittings shown in the Supporting Information, Figures S8−9. In all cases, the Ti 2p region displayed two distinct peaks at ~459.2 and ~457.6 eV, which correspond to Ti4+ and Ti3+, respectively.35 Ti3+ ions in TiO2 have been known to extend the TiO2 surface.39 Ozonolysis, on the other hand, only causes a minor drop in Ti3+ population, possibly due to a milder temperature regime during this post-treatment.

Pre-treatment of support at elevated temperature under both hydrogen (reducing) and static air (oxidizing) conditions resulted in reduced Ti3+ populations, as has previously been reported (and as was seen for calcination of P-25 under vacuum above). This is likely to be due to thermal reordering and the removal of surface defect sites that could lead to the formation of Ti3+ centers.39 The effect of calcination post-treatment on these samples is varied. The Ti3+ population observed for H2(Δ)−TiO2−Δ is similar to that of None−TiO2−Δ, but it appears that static air pre-treatment produces a support with Ti3+ population, which is resistant to removal during calcination. Post-treatment by ozonolysis has little to no effect on the Ti3+ populations of these samples.

Oxidolysis and hydrogen peroxide pre-treatments were both used in an attempt to form oxide or peroxo species on the surface of the support.47 Oxidolysis pre-treatment resulted in a decrease in the support Ti3+ population which was not regenerated by either calcination or ozonolysis post-deposition treatments. Moreover, ozonolysis post-treatment served only to further decrease the Ti3+ population. It is likely that O3 being a strong oxidizing agent, is able to oxidize a significant proportion of surface Ti3+ sites, thus reducing the overall population. Following O3/UV pre-treatment, calcination has little effect on the Ti3+ population of the material. This finding suggests that those Ti3+ sites oxidized by predeposition ozonolysis treatment are the same sites that would be removed upon calcination. H2O2 pre-treatment resulted in a Ti3+ population comparable to O3/UV−TiO2, and post-deposition calcination again had little effect on the Ti3+ population, suggesting that both H2O2 and O3/UV pre-treatment methods alter the TiO2 surface in a similar manner. While further ozonolysis on O3/UV−TiO2 results in a drop in Ti3+ population, H2O2−TiO2−O3 exhibits an appreciably larger Ti3+ population than H2O2−TiO2−None.

Acid and base treatments vary considerably in both the effect on the initial Ti3+ populations (in samples which did not undergo post-treatments) and the changes in the Ti3+ populations upon post-deposition treatments. H2SO4−TiO2 exhibits a remarkably low Ti3+ population, but post-treatment by calcination and ozonolysis both result in considerable recovery. Of note, H2SO4−TiO2−O3 shows a considerably higher Ti3+ population than its nonpost-treated analogue, a trend mirrored by H2O2−TiO2 as discussed above. KOH−TiO2 however, has a much higher initial Ti3+ content which drops significantly upon either post-treatment.

Figure 3. Effect of predeposition and post-deposition treatment method on the percentage of Ti observed in the Ti3+ state. SnCl2−TiO2−None shows no evidence of Ti3+. Error bars indicate 95% C.I.
SnCl₂-pre-treated materials exhibited a third Ti 2p peak at ∼460.1 eV (Supporting Information, Figure S9). Upon ozonolysis, the Sn XPS peak (Supporting Information, Figure S2) greatly decreases in intensity, and the additional Ti peak disappears. This suggests that

1. ozonolysis was effective at removing tin from the surface of the support, and
2. this third Ti peak ($E_b \approx 460$ eV) was caused by interaction with surface-bound tin.

This Ti XPS peak observed at high binding energy is likely due to titanium–oxygen–tin atom interactions on the sample surface, in which tin centers withdraw electron density from titanium.¹³

UV–Vis DRS Analysis. All samples were subject to UV–vis diffuse reflectance spectroscopy (UV–vis DRS) analysis (see Supporting Information, Figure S3 for representative plots). TiO₂ exhibits a strong absorption band for $\lambda < 400$ nm, and the band gap of the material can be approximated from the position and shape of this band using the Kubelka–Munk plot.⁴⁴–⁴⁶ In addition, gold nanoparticles with diameter of 2 nm or greater⁴⁶,⁴⁷ exhibit a broad peak around 400–700 nm due to surface plasmon resonance.⁴⁸ The position and intensity of this peak depend on the size and shape of the gold nanoparticles, with larger particles generally giving more intense peaks at higher wavelengths.⁴⁸–⁵⁰ Peak intensity is also a function of gold concentration. Finally, individual Auₙ clusters show a much narrower peak around 480–500 nm due to their electronic structure.⁵¹

The optical absorption coefficient α of a semiconductor around the band gap can be modeled by the following equation

$$\alpha = B \frac{(h\nu - E_g)^m}{h\nu}$$

where B is a constant; $h\nu$ is the energy of the incident radiation; E_g is the energy of the band gap; and m is a constant set to 1 for direct transitions.⁴⁵ By plotting $(h\nu\alpha)^2$ against $h\nu$ it is possible to find the direct band gap, as when $h\nu = E_g$, $\alpha = 0$. Using this method (a typical graph is shown in Figure S1), direct band gap energies were determined for all samples as well as P-25 (Figure 4).

P-25, being ca. 80% anatase, has a band gap of approximately 3.2 eV.⁵² Au–TiO₂ samples all show a significantly smaller band gap than pure P-25: this may be due to the influence of Au nanoparticles, but it may also be due to the effect of the treatments.⁵⁰ The effect of gold nanoparticle deposition on P-25 can be observed by comparing the band gaps for P-25 and None–TiO₂–None. The band gap diminishes by ca. 0.1 eV upon deposition of the Au clusters. It is observed that while calcination further reduces the band gap of materials ozonolysis either has no effect (H₂O₂–TiO₂, KOH–TiO₂, O₂(Δ)–TiO₂) or widens the band gap (SnCl₂–TiO₂, O₂/UV–TiO₂). There are two exceptions to this: H₂(Δ)–TiO₂ and H₂SO₄–TiO₂ both show slight band gap narrowing upon ozonolysis. Observed changes in the bandgap of titania upon pre- and post-treatment may affect the electronic interactions between the Au species and the substrate.⁵⁰

H₂SO₄–TiO₂ materials systematically exhibit the smallest band gaps of the studied materials. This is apparently not due to the lack of Au cluster aggregation, as H₂O₂–TiO₂ (which according to XPS studies above is resistant to aggregation) has a band gap comparable to other samples that exhibited greater aggregation. It may be that the anchoring of sulfate species at the surface enhances visible-light photocatalytic activity, as has been previously reported in the literature.⁵³,⁵⁴ Upon calcination, the band gap of H₂SO₄–TiO₂ narrows considerably (from 2.99 to 2.87 eV).

Figure 5. Summary of UV–vis DRS surface plasmon resonance data for Au–TiO₂ samples. Pre-treatments are indicated by the color of the marker, post-treatments by its shape (see key).

H₂O₂–TiO₂, H₂(Δ)–TiO₂, O₂(Δ)–TiO₂, and KOH–TiO₂.

This correlates with XPS measurements, which show that these samples exhibit relatively intense Au LBPs (indicative of large gold aggregates) and/or Au HBP at low binding energies (which suggest that the majority of the gold is present as aggregates). It is interesting that SnCl₂–TiO₂–None displays no SPR peak, despite having a small Au LBP at ∼84.3 eV. In contrast, O₂(Δ)–TiO₂–None displays an SPR peak despite showing no Au LBP at all. One factor that may influence the presence of SPR peaks is the age of the materials. The materials studied in this report were stored at room temperature in the dark for three months between synthesis/XPS study and UV–vis DRS study, and it may be that even these conditions were enough to result in mild aggregation of clusters on support.¹⁷

Figure 4. Direct transition band gap energies for Au–TiO₂ materials, with P-25 shown for comparison. Error bars show 95% C.I.

Figure 5. Summary of UV–vis DRS surface plasmon resonance data for Au–TiO₂ samples. Pre-treatments are indicated by the color of the marker, post-treatments by its shape (see key).

H₂O₂–TiO₂, H₂(Δ)–TiO₂, O₂(Δ)–TiO₂, and KOH–TiO₂.

This correlates with XPS measurements, which show that these samples exhibit relatively intense Au LBPs (indicative of large gold aggregates) and/or Au HBP at low binding energies (which suggest that the majority of the gold is present as aggregates). It is interesting that SnCl₂–TiO₂–None displays no SPR peak, despite having a small Au LBP at ∼84.3 eV. In contrast, O₂(Δ)–TiO₂–None displays an SPR peak despite showing no Au LBP at all. One factor that may influence the presence of SPR peaks is the age of the materials. The materials studied in this report were stored at room temperature in the dark for three months between synthesis/XPS study and UV–vis DRS study, and it may be that even these conditions were enough to result in mild aggregation of clusters on support.¹⁷
In all cases, the SPR peak becomes more intense and/or shifts to a higher wavelength upon post-deposition treatments, confirming that these treatments result in cluster aggregation. The shift is generally more dramatic upon ozonolysis than calcination, with the exception of H_2SO_4–TiO_2. This trend agrees with what was observed using Au XPS: thermal pre-treatment of titania under hydrogen enables some of the Au$_9$ clusters to survive harsh, aggregation-inducing treatment with ozone. The lowest SPR peak position after calcination is observed for H_2SO_4–TiO_2 (≈548 nm), which confirms XPS findings that H_2SO_4–TiO_2 samples were resistant to aggregation during calcination.

Identifying Trends. Au and P XPS and UV–vis DRS data for each sample are summarized in Table 2. In many cases, several observations reinforce one another. For example, samples do not exhibit an SPR peak in the UV–vis DR spectra without an accompanying Au LBP (both indications that a sample contains a sizable population of large, metallic Au particles formed via aggregation of clusters).

Several materials of note will now be highlighted. H_2SO_4–TiO_2–None exhibits the least aggregation of all trialled samples. A high-intensity, high-binding energy Au XPS peak indicates that the clusters have not undergone aggregation, and this is supported by the lack of an SPR peak and the presence of a P XPS peak characteristic of ligands bound to the Au core. All these observations suggest that H_2SO_4-pre-treated TiO_2 prevents ligand removal and aggregation upon deposition, in contrast to untreated TiO_2 (which exhibits no P XPS peak typical of Au-bound ligands and has a less intense, lower-binding energy Au XPS peak). H_2SO_4 pre-treatment also inhibits cluster aggregation upon calcination: this can be seen in the low-wavelength SPR peak (indicative of limited aggregation) and the presence of a high-intensity Au HBP and P XPS ligand peak (indicative of discrete, ligand-protected Au clusters). The majority of phosphorus XPS intensity is observed at the high binding-energy peak (previously ascribed to oxidized phosphorus): this indicates that while protected Au clusters remain on the support surface a significant fraction of those discrete clusters are likely deprotected. Upon ozonolysis the Au HBP disappears, and the SPR peak shifts to higher wavelength. This indicates that ozonolysis of H_2SO_4–TiO_2 results in significant aggregation of gold clusters.

In comparison, H_2O_2–TiO_2–None shows evidence of retention of discrete clusters as indicated by only a low-wavelength SPR peak, prominent Au HBP, and a small P XPS peak typical for Au-bound ligands. Calcination results in some aggregation (as can be seen by the loss of the P XPS peak due to Au–PPh$_3$ species and the growth of an Au LBP), but the low-wavelength SPR peak suggests that clusters do not aggregate heavily. Under ozonolysis, even less aggregation occurs, as can be observed by the survival of a small P XPS peak corresponding to Au-bound ligands (although P HBP corresponding to oxidized ligands dominates P XPS) and the presence of a Au HBP. Overall we find a correlation of the shift of the SPR band maxima position and shifts in binding energy of the LBP Au-XPS peaks for all but the O_2(Δ)–TiO_2 sample.

Table 2. Summary of XPS and UV–Vis DRS Data for Au–TiO$_2$ Materials

<table>
<thead>
<tr>
<th>Pre-treatment</th>
<th>Post-treatment</th>
<th>Calculation</th>
<th>Ozonolysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>DRS: No peak</td>
<td>DRS: SPR peak</td>
<td>DRS: SPR peak</td>
</tr>
<tr>
<td></td>
<td>Au XPS: HBP only</td>
<td>Au XPS: LBP only</td>
<td>Au XPS: Small LBP & HBP</td>
</tr>
<tr>
<td>H_2SO_4 (Δ)</td>
<td>DRS: SPR peak</td>
<td>DRS: SPR peak</td>
<td>DRS: SPR peak</td>
</tr>
<tr>
<td></td>
<td>Au XPS: Small LBP, low-BE HBP</td>
<td>Au XPS: Small HBP</td>
<td>Au XPS: HBP still present</td>
</tr>
<tr>
<td></td>
<td>P XPS: No Au–P peak</td>
<td>P XPS: No Au–P peak</td>
<td>P XPS: No Au–P peak</td>
</tr>
<tr>
<td>O_2 (Δ)</td>
<td>DRS: SPR peak</td>
<td>DRS: SPR peak</td>
<td>DRS: SPR peak</td>
</tr>
<tr>
<td></td>
<td>Au XPS: Small LBP only</td>
<td>Au XPS: Upshifted HBP, LBP</td>
<td>Au XPS: LBP only</td>
</tr>
<tr>
<td></td>
<td>P XPS: No Au–P peak</td>
<td>P XPS: No Au–P peak</td>
<td>P XPS: No Au–P peak</td>
</tr>
<tr>
<td>SnCl_2</td>
<td>DRS: No peak</td>
<td>DRS: SPR peak</td>
<td>DRS: SPR peak</td>
</tr>
<tr>
<td></td>
<td>Au XPS: Resembles None–TiO_2</td>
<td>Au XPS: Resembles None–TiO_2</td>
<td>Au XPS: Small HBP/LBP only</td>
</tr>
<tr>
<td></td>
<td>P XPS: No Au–P peak</td>
<td>P XPS: No Au–P peak</td>
<td>P XPS: No Au–P peak</td>
</tr>
<tr>
<td>O_2/UV</td>
<td>DRS: No peak</td>
<td>DRS: SPR peak</td>
<td>DRS: SPR peak</td>
</tr>
<tr>
<td></td>
<td>Au XPS: Strong HBP only</td>
<td>Au XPS: HBP disappears</td>
<td>Au XPS: LBP only</td>
</tr>
<tr>
<td></td>
<td>P XPS: No Au–P peak</td>
<td>P XPS: No Au–P peak</td>
<td>P XPS: No Au–P peak</td>
</tr>
<tr>
<td>H_2O_2</td>
<td>DRS: Low–λ peak</td>
<td>DRS: SPR peak</td>
<td>DRS: SPR peak</td>
</tr>
<tr>
<td></td>
<td>Au XPS: HBP and LBP present</td>
<td>Au XPS: Large HBP</td>
<td>Au XPS: HBP only</td>
</tr>
<tr>
<td></td>
<td>P XPS: Small LBP</td>
<td>P XPS: No Au–P peak</td>
<td>P XPS: Small LBP</td>
</tr>
<tr>
<td>KOH</td>
<td>DRS: High–λ peak</td>
<td>DRS: Low–λ peak</td>
<td>DRS: SPR peak</td>
</tr>
<tr>
<td></td>
<td>Au XPS: HBP, LBP present</td>
<td>Au XPS: HBP and LBP downshift</td>
<td>Au XPS: LBP only</td>
</tr>
<tr>
<td></td>
<td>P XPS: No Au–P peak</td>
<td>P XPS: No Au–P peak</td>
<td>P XPS: No Au–P peak</td>
</tr>
<tr>
<td>H_2SO_4</td>
<td>DRS: No peak</td>
<td>DRS: Low–λ peak</td>
<td>DRS: SPR peak</td>
</tr>
<tr>
<td></td>
<td>Au XPS: V. large HBP only</td>
<td>Au XPS: Large HBP, small LBP</td>
<td>Au XPS: LBP only</td>
</tr>
<tr>
<td></td>
<td>P XPS: Moderate LBP</td>
<td>P XPS: No Au–P peak</td>
<td>P XPS: No Au–P peak</td>
</tr>
</tbody>
</table>

CONCLUSION

Atomically precise gold clusters were deposited on modified Aerioxide P-25 TiO$_2$ that had been subjected to a number of popular support pre-treatments. These materials were then treated by either calcination or ozonolysis, mirroring popular ligand removal methods. By using a commercially available support material across these series, we were able to isolate the effects of pre-treatments for the first time, thus providing a widely applicable reference. Synchrotron X-ray photoelectron spectroscopy and UV–vis diffuse reflectance spectroscopy studies provided evidence of both discrete gold clusters and aggregated gold nanoparticles. In the majority of cases, ligand removal takes place upon deposition indicating that post-treatments dedicated to ligand removal are not necessary in such cases.
When compared with pristine TiO₂, it was found that H₂O(Δ), O₂(Δ), and KOH pre-treatment of the support generally encouraged gold cluster aggregation, while SnCl₂, O₂/UV, H₂O₂, and H₂SO₄ support pre-treatments helped to prevent it. Of the pre-treatment methods studied, H₂SO₄ treatment was the most effective at preventing cluster aggregation under calcination, although H₂(Δ), O₂(Δ), SnCl₂, and O₂/UV pre-treatments also show evidence of retention of the discrete clusters after calcination. H₂(Δ) pre-treatment was the only method that discouraged cluster aggregation during ozonolysis.

This study clearly demonstrates the importance of support pre-treatment for the control of metal nanoparticle aggregation and provides evidence that pre-treatment with H₂SO₄ and H₂(Δ) is the most promising means for maintenance of unaggregated clusters under calcination and ozonolysis, respectively.

ASSOCIATED CONTENT

4 Supporting Information
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpcc.5b07732.

Details on X-ray photoelectron spectroscopy and UV–vis diffuse reflectance spectroscopy results, along with typical Kubelka–Munk band gap plots (PDF)

AUTHOR INFORMATION

Corresponding Authors
*E-mail: vladimir.golovko@canterbury.ac.nz.
*E-mail: gunther.andersson@illirders.edu.au.
*E-mail: greg.metha@adelaide.edu.au.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This research was undertaken on the soft X-ray beamline at the Australian Synchrotron, Victoria, Australia, and supported by funding from the Australian Synchrotron Group and Australian Synchrotron (grant AS123/SXR/5335). The authors acknowledge the MacDiarmid Institute, the University of Canterbury, and the New Zealand Ministry of Business, Innovation and Employment (contract number: C05X1207) for funding.

REFERENCES

(27) Adnan, R. H.; Andersson, G. G.; Polson, M. I. J.; Metha, G. F.; Golovko, V. B. Factors Influencing the Catalytic Oxidation of Benzyl
Alcohol Using Supported Phosphine-Capped Gold Nanoparticles.