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Abstract—A novel, high sensitivity Sagnac-interferometer biosensor based on exposed core 

microstructured optical fiber (ECF) has been designed and implemented in this paper. The exposed core fiber 

has noncircular symmetry and thus exhibits birefringence and can form a sensing element within a Sagnac 

loop interferometer. The exposed-core fiber design provides direct access to the evanescent field, allowing 

the measurement of bulk refractive index (RI) with a sensitivity of up to -3,137 nm/RIU while maintaining 

the fiber’s robustness. The sensor can also detect the localized refractive index changes at the fiber core’s 

surface as the result of a biological binding event. We demonstrate the use of this sensor for label-free sensing 

of biological molecules by immobilizing biotin onto the fiber core as the probe to capture the target molecule 

streptavidin. 

Keywords: biosensor, Sagnac-interferometer, refractive index measurement, exposed-core 

microstructured optical fiber. 

1. Introduction

Bio-sensing is important for many applications in public health research, environmental science,

biological engineering, disease diagnosis and pharmaceutical research. Biosensors have been developed 

based on a wide variety of techniques, including electrochemical conductance [1], use of 

nanowires/nanotubes [2, 3] , optical ring resonators [4, 5], fluorescence [6-8] and fiber-optic sensors [9-20]. 

Among them, fiber-optic biosensors have recently been extensively investigated due to their bio-

compatibility, small size, high measurement resolution, high stability, ability to operate remotely and in harsh 

conditions, and immunity to electromagnetic interference. Various methods for creating fiber-optic 

biosensors have been reported, such as using fiber Bragg-gratings [9-11], long period fiber gratings [12-15], 

tilted fiber Bragg gratings [16], Fabry–Perot interferometers [17, 18], Mach–Zehnder interferometers [19, 

20], micro-fiber Sagnac interferometers [21], and surface plasmon resonance [22-25].  

The majority of these biosensors are based on the refractive index (RI) change induced by a molecular 

binding event on the sensor surface, which is directly related to the sample concentration. Therefore, a 

primary goal for sensor development is to increase the sensitivity to refractive index changes. Fiber Bragg 

gratings and long period gratings [9-15] are commonly implemented, but these sensors suffer low sensitivity 

and complicated device fabrication processes. Likewise, interferometric devices such as Fabry–Perot 

interferometers (FPIs) [17, 18] and Mach–Zehnder interferometers [19] typically have low refractive index 

sensitivity without post-processing such as tapering and etching, which can compromise the mechanical 

strength and the robustness of the fiber. Surface plasmon resonance (SPR) is a technique that boasts high 

sensitivity, but relies on the use of metal films that suffer instability issues and high loss in an optical fiber 

configuration [22-25]. An alternative high refractive index sensitivity fiber-optic sensor is based on micro-
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fiber Sagnac interferometers, which can reach sensitivities as high as 12,500 nm/RIU [26] and have been 

demonstrated as effective biosensors [21]. However, they are based on tapered fibers that can easily be 

damaged due to their thin, micron-scaled, diameters [21, 26]. 

Exposed-core microstructured optical fibers (ECFs) offer high sensitivity via direct access to the 

evanescent field, but in a robust configuration that can be practically handled [19]. In this paper we exploit 

the noncircular symmetry, thus birefringence, of the ECF by implementing it in a Sagnac interferometer for 

biological sensing. Since the birefringence of ECF is highly sensitive to external materials through the 

evanescent field of the guided light, the Sagnac interferometer has a higher sensitivity to external RI than the 

Mach-Zehnder interferometer configuration.   

2. Operating principle  

2.1 Exposed-core fiber Sagnac interferometer: configuration 

Fig. 1 shows a schematic diagram of the proposed Sagnac interferometer based on the ECF. Light from 

a broad-band source is split into clockwise and counterclockwise beams via a 3 dB coupler as it enters the 

loop. A net phase difference is accumulated as the two polarization states propagate through the length of the 

birefringent ECF, leading to interference when the two beams are recombined at the coupler, which is then 

measured on an optical spectrum analyzer (OSA). 

 
Fig. 1 Schematic diagram of the proposed sensing system. 

Ignoring any insertion losses of the Sagnac loop, the transmission ratio of optical intensity injected into 

the Sagnac interferometer in terms of phase difference can be described as, 

 = 1 cos / 2T    ,                                    (1) 

where 2 ( , ) /LB n     is the phase difference,  is the operating wavelength, and L is the length of 

the ECF used. B(λ,n) is the birefringence of the ECF, which is a function of external RI (n) and wavelength 

(λ). The interference spectrum minima, λmin, occur when phase matching conditions are satisfied: 

min

2 ( , )
2

B n L
m

 



 ,                                     (2) 
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where m is an integer. Eq. (2) shows how the positions of the interference spectrum minima change with 

birefringence. 

2.2 Birefringence of the exposed-core microstructured optical fiber  

Fig. 2 shows a cross-sectional image of the ECF, which is a special type of microstructured optical fiber 

whose suspended core is exposed to the surrounding medium on one side [27]. The open side causes an 

asymmetry in the fiber core, which creates a birefringence. This becomes pronounced when the fiber is 

immersed in a liquid (for example, for sensing), as the refractive index profile becomes particularly 

asymmetric. 

 

Fig. 2. Scanning electron microscope (SEM) image of the exposed-core microstructured optical fiber. 

In order to understand the birefringence properties of the ECF, the structure was investigated using a 

finite-element method (COMSOL v5.2). Fig. 3 (a) shows the geometry of the fiber used for the simulation, 

where blue refers to the air, grey refers to the silica glass core and green refers to either air or liquid on the 

exposed side of the fiber. In this simulation, the exposed side of the ECF has been set as water because this 

is more relevant to sensing. Fig. 3 (b) and Fig. 3 (c) are the simulated electric field intensity distributions for 

the x-polarized and y-polarized fundamental modes.  

The birefringence B can be expressed as follows: 

x yB n n  ,                                    (3) 

where, nx and ny are the effective refractive indices of the x-polarized and y-polarized modes. It can been 

seen from Fig. 3 (b) and Fig. 3 (c) that there are a phase birefringence of 57.42 10x yB n n     at 1300 nm 

in the ECF. 1300 nm is the center wavelength in our experiment spectrum. This phase birefringence will thus 

allow the optical fiber to be used within a Sagnac interferometer configuration as the two polarization modes 

will lead to two different optical path lengths.  

 

Fig. 3 (a) Geometry of the theoretical model used for simulation, blue is air, grey is silica and green is exposed to the 
external environment, (b) and (c) are the simulated electric field intensity distributions of the x-polarized and y-

polarized fundamental modes, respectively, where the exposed side is water. 
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2.3 Modelling of RI sensitivity 

To determine the potential sensitivity of the ECF to bulk RI when used in a Sagnac interferometer 

configuration, we varied the refractive index of the sensing-liquid filled in the exposed side of Fig. 3 (a). The 

birefringence of the ECF when the external refractive index changes is shown in Fig. 4 (a). It can be seen 

that increasing the refractive index leads to an increase in birefringence. This can be understood by 

considering that the two polarization modes have different proportions of propagating optical fields in the 

open core section. They will thus have different relative sensitivities to external refractive index, leading to 

the shifts of the transmission Sagnac spectra, which was generated by a 20 cm ECF Sagnac interferometer, 

as shown in Fig. 4 (b). The theoretical bulk RI sensitivity of the sensor is -2,592 nm/RIU. 

 

Fig. 4 (a) Phase birefringence, B, with different bulk RI dependence on wavelength λ, (b) the simulated transmission 

Sagnac spectra with different external bulk RI. 

2.4 Modelling of thin-film sensitivity 

In order to utilize an optical fiber as a selective biosensor, it is necessary that it is sensitive to binding 

events on the surface, which are effectively thin-films [4, 5, 12, 18, 19]. Therefore, we have investigated 

theoretically the sensitivity of the ECF birefringence to thin-films using the same analytical method as above 

but now with a thin-film on the exposed-core. In the simulation, RI of the thin-film was set as 1.54, which 

corresponds to a polyelectrolyte coating [18]. The results are shown in Fig. 5 (a). For a high RI thin film, 

with the thickness increasing, the effective indices of the x-polarization and y-polarization modes will 

increase. However, the rate of increase of the x-polarization mode is higher compared to the y-polarization 

mode, as shown in Fig. 5 (a). Therefore, the birefringence will first decrease and then increase with increasing 

thickness (demarcation is 104 nm). In our experiment (Sec. 3.3), a three-layer (PAH-PSS-PAH) 

polyelectrolyte coating has an estimated thickness within 15 nm [18], which is under 104 nm. Thus the 

birefringence always decreases. When the exposed side is filled with a bulk RI liquid, it can be considered 

that the “thickness” is much higher than 104 nm, thus the birefringence increases with increasing bulk 

refractive index, as was shown in Fig. 4 (a). Further, the birefringence of the ECF coated with thin-films in 

different external bulk RI is shown in Fig. 5 (b). The birefringence still increases with respect to the external 

bulk RI for the same thin-film thickness. Compared with Fig. 4 (a), it can be seen that with or without a thin-

film, the birefringence will always increase with respect to the external bulk RI.  
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Fig. 5 (a) Numerically modelled values for the effective index of the ECF with different polymer film thicknesses. 

Inset shows the corresponding birefringence. (b) The birefringence of the ECF with different external bulk RI when 

the polymer film is 5 nm, 10 nm and 15 nm. 

3. Experimental results 

3.1 Transmission spectrum of the sensor 

A section of the ECF was first cleaved (Photon Kinetics FK11-STD) with a cleaving angle of less than 

2.0o, as this is critical for good splicing. Each end of the ECF was then spliced to two single mode fibers 

(SMF28) using an arc splicer (Fujikura FSM-100P) with settings previously described in detail in [27]. 

Finally, the structure was connected with a coupler to form a Sagnac loop. Light from a broad-band light 

source (NKT Photonics SuperK Extreme) was split into clockwise and counterclockwise beams via a 3 dB 

coupler as it entered the loop. Interference spectra were then measured using an optical spectrum analyzer 

(OSA, Ando-6315E) with a resolution of 0.05 nm. Different extinction ratios were obtained by adjusting the 

polarization controller (PC), and the highest extinction ratio achieved was 20 dB, as shown in Fig. 6. The 

transmission spectra of the Sagnac interferometer with different ECF lengths are also shown in Fig. 6. When 

the ECF length was 20 cm (Fig. 6(a)), the corresponding free spectral range (FSR) was relatively wide at 230 

nm. When the ECF length was increased, the FSR became narrower, such as 145 nm for a 35 cm length (Fig. 

6(b)). It is worth mentioning that the spectra contain a higher frequency component that appears to be noise, 

but is actually the result of interference with higher order modes [19]. This does not adversely affect our 

sensor as it can be easily filtered out using Fourier techniques (see below).  

 

Fig. 6 Sagnac interference spectra with different ECF lengths in air. (a) 20 cm, (b) 35 cm. 
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3.2 Refractive index sensing  

To demonstrate refractive index sensing, the SMF-ECF-SMF structure was inserted into a rigid flow cell 

(inner diameter of approximately 650 μm), which was then filled with different RI solutions using a pump 

(LongerPump BT100-1F), as shown in Fig. 1. All experiments were performed in a temperature controlled 

lab and the flow cell was fixed onto an optical table to avoid any influence of temperature or strain. The 

spectral response of the sensor to bulk RI by immersing the ECF into different concentrations of sodium 

chloride in deionized water solutions was measured (Fig. 7 (a)). The length of ECF was 20 cm, which 

produced two transmission dips over the measured bandwidth of 200 nm. Since the Sagnac interference 

spectrum is a periodical waveform, it corresponds to a frequency in the spatial frequency domain obtained 

by applying a fast Fourier transform (FFT) to the wavelength spectrum [28, 29]. Fig. 7 (b) is the FFT spectrum 

of the first interference spectrum in Fig. 7 (a). The main peak in the FFT spectrum corresponds to the Sagnac 

interference while other lower peaks at higher frequencies represents effects such as multimode interference 

and noise. An analysis after FFT filtering reveals more detailed information, as shown in Fig. 7 (c).  

 
Fig. 7. (a) Spectra of the proposed platform subjected to different external bulk RI. (b) FFT spectrum of the first 

interference spectrum in Fig. 7 (a). FFT-filtered spectra (c) and wavelength shifts (d) for different concentrations of 

NaCl. 

The wavelength shift was determined from the measured spectra by using the phase change (Δψ) 

information, which was extracted through phase changes associated with the FFT peak [30]. The wavelength 

shift is then shown in Fig. 7(d) by using the expression Δλ=(FSR/2π)Δψ, where FSR is the free spectral 

range. This technique is advantageous compared to peak tracking a single fringe as it effectively makes use 
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of the entire spectral data and thus is less susceptible to noise. Converting to RI [31], the sensitivity is 

estimated to be -3,137 nm/RIU, which has a small difference with the theoretical value of -2,592 nm/RIU. 

The difference can be attributed to compounded errors associated with light source spectral stability, 

spectrum analyzer measurements, recording and importing the SEM image for the simulation, and NaCl 

concentrations. 

 

3.3 Biotin immobilization and streptavidin detection 

A new sensor was fabricated in order to demonstrate label-free sensing of biological molecules via the 

detection of streptavidin using biotin as the capturing probe. The biotin molecules were immobilized onto 

the exposed-core fiber surface to serve as the capturing probe for streptavidin, the target molecules. The 

surface-functionalization using biotin, the bio recognition molecules, was carried out using the fuzzy 

nanoassembly technique [32], which has been used in our previous work [19]. The steps are shown in Fig. 8. 

First, positively charged poly (allylamine) hydrochloride (PAH, average molecular weight of 15 kDa, 2 

mg/mL in 1 M NaCl solution, Sigma Aldrich) and negatively charged poly (sodium 4-styrene sulfonate) 

(PSS, average molecular weight of 70 kDa, 2 mg/mL in 1 M NaCl solution, Sigma Aldrich) were deposited 

on the exposed core fiber using the layer by layer deposition technique. Between each layer the sensor was 

rinsed with 1 M NaCl solution to remove unattached PAH and PSS. The last PAH layer provides amino 

groups for the immobilization of biotin (Ez-Link Sulfo-NHS-Biotin, 0.5 mg/ml in phosphate buffer solution, 

Thermo Fisher), which were freshly prepared in phosphate buffer solution (PBS buffer, standard 1X, pH = 

7.4, Sigma Aldrich). The sensor was then rinsed by PBS to remove the unbound biotin, completing the 

surface-functionalization. The steps of streptavidin detection are shown in Fig. 8 (b). First, a solution of 

streptavidin in PBS (Thermo Fisher, 0.2 mg/ml in PBS) was freshly prepared and passed through the flow 

cell. The sensor was then rinsed with PBS to remove the unbound streptavidin.  

 

Fig. 8 Detailed procedures of the (a) surface-functionalization and (b) bio-sensing.  

The FFT-filtered Sagnac interference spectra measured while different solutions were passed through the 

flow cell are shown in Fig. 9 (a). Note that the FSR of the sensor used in this experiment (Fig. 9(a)) is slightly 

different to that used for the refractive index sensing experiments (Fig. 7(a)) due to slightly different lengths 

of ECF used, L = 15 cm and L = 20 cm, respectively. However, this has little impact on the sensor accuracy 

as the FFT phase-tracking technique we have used has little dependence on noise and the FSR. To confirm 

that PAH and PSS were correctly attached to the surface of the ECF, the ECF was first deposited with the 

PAH-PSS-PAH-PSS-PAH layered configuration. In the subsequent experiments, we can know whether the 

PAH and PSS were correctly attached by tracking the spectrum change.  
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Fig. 9 (a) Filtered spectra of the proposed sensor corresponding to different coating steps and (b) the wavelength shift 

with each experiment step. 

The filtered spectra of the proposed sensor to different solutions, and thus different thin-film deposition 

steps, are shown in Fig. 9. Starting from water, the transmission spectrum in this case was selected as a 

reference spectrum. Next, the sensor was rinsed extensively with 1 M NaCl solution, whose bulk RI is higher 

than water, which leads to a shift to shorter wavelengths, as expected (see Fig. 4). PAH was then filled into 

the flow cell and flowed through the sensor. The bulk RI of PAH solution is higher than that of the 1M NaCl 

solution and the polymer film did not have sufficient localized RI change to counter the difference in bulk 

RI of the NaCl compared to the PAH solution, so the spectrum still shifted to shorter wavelengths. After 

rinsing with 1 M NaCl solution, the polymer film formed completely, and led to a birefringence decrease and 

wavelength increase. The thickness of the polymer film increases with the deposition of alternating layers of 

PAH and PSS leading to further shifts to longer wavelengths. The sensor was then rinsed with PBS as it is 

used as a standard biological buffer for biotin and streptavidin in our experiment. Because the bulk RI of 

PBS is lower than that of the 1M NaCl solution, while the thickness of the polymer film did not change, the 

birefringence of the ECF decreased, leading to a shift of the Sagnac spectrum to longer wavelengths.  

Afterwards, the NHS-Biotin solution was flown through the sensor. Biotin was immobilized on the 

sensor surface as the capturing probe, and the thickness of the thin-film increased leading to a shift of the 

Sagnac interference spectrum to longer wavelengths. Then, the sensor was exposed to a buffer solution 

containing streptavidin as the target molecules. The thickness of the thin-film increased when streptavidin 

was bound to the biotin immobilized on the sensor surface. Thus, a shift to longer wavelengths was recorded. 

The wavelength shift of the sensor in response to streptavidin binding was 5 nm, which is smaller than the 

response to biotin (12 nm). This is consistent with previously published evanescent field based sensing [19] 

and is attributed to a combination of higher binding density of biotin and that biotin binds relatively closer to 

the optical fiber surface. Closer molecules will have exponentially stronger interaction with the evanescent 

field, and thus induce a larger wavelength shift. 

To confirm the binding between biotin and streptavidin, a control sensor in which the biotin 

immobilization step was omitted was subjected to the same streptavidin solution. It can be seen from Fig. 10 

(a) that the wavelength shifts are similar to Fig. 9 (b) before the sensor was flown through with the biotin 

solution. However, when the sensor was exposed to the streptavidin solution, there was only a small 

wavelength change, caused by the different bulk RI of the PBS solution and the streptavidin solution. A 

comparison of the results is shown in Fig. 10 (b). The results confirm that the wavelength shift of streptavidin 

in Fig. 9 is due to the presence of the capturing probe biotin rather than bulk RI difference between PBS 

solution and streptavidin, or spurious effects such as non-specific adsorption of streptavidin to the 

polyelectrolyte surface.  
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Fig. 10 (a) The wavelength shift for each experiment step and (b) the wavelength shift when streptavidin in PBS 

buffer was flown through the sensor with (black) and without (red) biotin. 

4. Conclusion 

A novel, high sensitivity Sagnac-interferometer biosensor based on exposed-core microstructured optical 

fiber (ECF) has been designed and implemented. The proposed sensor has a high bulk refractive index 

sensitivity up to -3,137 nm/RIU and its use as a label-free biosensor has been demonstrated. While biotin and 

streptavidin were used in our work as the probe-target pair as a biosensor demonstration, the sensor can 

equally be used with other biological capturing probes for a variety of target molecules. As an optical fiber 

based platform, it has advantages of bio-compatibility, small size, high stability and low cost, yet is robust 

and simple to fabricate compared to other similar techniques, such as the use of tapered micro-fibers.  
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