Abstract

High frequency combustion instabilities in liquid propellant rocket engines are spontaneously occurring pressure fluctuations that are coupled with unsteady combustion processes. Under the right conditions the unsteady fluctuations can grow to a point where they affect the operation of the combustion chamber. The cause of combustion instabilities, including which processes are responsible and under what conditions they arise, are not yet fully understood. The ability to predict and prevent combustion instabilities during the design of new combustion chambers, through better understanding, would dramatically reduce the uncertainty and risk in the development of new engines.

An experimental combustor, designated BKH, is used to conduct high frequency combustion instability experiments. BKH operates with liquid oxygen and gaseous hydrogen propellants at supercritical conditions analogous to real rocket engines. The chamber features an acoustic excitation system that imposes an acoustic disturbance representative of a high frequency instability upon a cluster of five coaxial injection elements in the center of the chamber. The response of the elements to the imposed acoustic disturbance is observed using high speed optical diagnostics.

The main aim of this project is to develop methods for predicting the flame response to high frequency acoustic forcing representative of combustion instability phenomena. BKH is employed as an experimental and numerical test case for investigating the flame response. Modelling and complementary data analysis methods are developed and applied to model the chamber flow field, identify and predict the excited acoustic disturbance, identify the flame response using optical data, and to predict the flame response numerically.

The BKH experiments are first characterised by modelling the chamber numerically and determining the local acoustic disturbance acting upon the flame. A steady state chamber model with supercritical oxygen-hydrogen combustion was computed using a specialised CFD code. The model results indicate the secondary injection in BKH has a strong influence on the resulting flame distribution.

A method for reconstructing the acoustic field from dynamic pressure sensor data was developed to determine the local acoustic disturbance acting upon the combustion zone over a range of excitation frequencies. A low-order acoustic modelling approach is also shown to predict the resonant mode frequencies and the evolution of the acoustic field.

The flame response to the imposed acoustic disturbance is identified by analysing optical data from BKH experiments and unsteady CFD modelling. Multi-variable dynamic mode decomposition (DMD) analysis is used to isolate the flame response to the imposed acoustic disturbance in shadowgraph and OH* imaging data. Wave-like structures propagating along the surface of the liquid oxygen (LOx) jet and a phase difference of 45° between acoustic pressure and observed intensity fluctuations were identified.

An unsteady model of an injection element subjected to representative acoustic forcing is used to predict the flame response for a range of excitation amplitudes. Velocity ratio fluctuations caused by acoustic coupling with the oxidiser post in a pressure antinode are identified. The trend of exponential decay of the length of the LOx core with increasing transverse acoustic amplitude excitation is reproduced numerically and the flattening and flapping motion of the flame was further investigated using the numerical results.
Declaration of Originality

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Scott K. Beinke
20th April 2017
Acknowledgements

First and foremost I would like to thank my supervisors, Prof Bassam Dally, Prof Michael Oschwald, and Dr Justin Hardi, for granting me the opportunity to pursue my PhD project through the University of Adelaide and in cooperation with the DLR. I thank you for the guidance, knowledge, and experience you have provided me over the duration of this project. I also cannot express the gratitude I have for your continued support and understanding that allowed me to see this project through to its completion.

I would like to acknowledge the financial support provided by the University of Adelaide School of Mechanical Engineering, and the Sir Ross and Sir Keith Smith fund. This funding allowed me to travel to and work at the DLR facilities in Germany, and I am very grateful for the many opportunities it has granted and the many friends I have made while interacting with the European space and scientific research community.

I would like to thank the DLR Institute of Space Propulsion for the financial support and resources for my project, and Dmitry Suslov and the P8 test facility team for their assistance conducting experimental campaigns. I would also like to acknowledge the invaluable assistance from Joachim Sender, Michaela Hanke, Melanie Schmidt, and Isabell Böhringer that allowed me to navigate the many technical and bureaucratic hurdles during my time at the DLR.

I would also like to acknowledge the CFD expertise and support from the DLR Institute of Aerodynamics and Flow Technology. In particular the guidance and technical support from Sebastian Karl, Daniel Banuti, and Volker Hannemann. I would also like to thank Klaus Hannemann, Bernd Wagner, and the DLR ProTAU project for supporting my PhD research.

Thanks also to Matthew Wierman, for providing instruction on the application of the DMD method, and to Hideto Kawashima, for his initial work on the acoustic field reconstruction.

For the many good times and distractions that allowed me to survive my PhD I must also thank the Wohnheimers: Michael Wohlhüter, Michele and Anna Negri, Cristiano Bombardieri, Michael Börner, Dirk Schneider, Wolfgang Armbruster, Sarah Dommers, and many others. Thank you for the many unique and memorable experiences I will take away from my time in Germany.

I would also like to thank my colleagues from the HF group, Stefan Gröning and Samuel Webster. I truly value your support and friendship and the good fortune that allowed us to conduct our PhD research together.

I must especially thank my supervisor who paved the way for me to follow him to Germany, Dr Justin Hardi. I am still very grateful for the opportunity to work with you and learn from your example. I am even more grateful to you and your family, Katharina and Kai Hardi, for your unending support and for the great times we shared in both Marbach and Möckmühl.

Finally, my deepest thanks go to my parents and Kara Jerman, without whose love and support this would not have been possible.
Disclaimer

Research undertaken for this report has been assisted with a grant from the Sir Ross and Sir Keith Smith Fund (Smith Fund) (www.smithfund.org.au). The support is acknowledged and greatly appreciated. The Smith Fund by providing funding for this project does not verify the accuracy of any findings or any representations contained in it. Any reliance on the findings in any written report or information provided to you should be based solely on your own assessment and conclusions. The Smith fund does not accept any responsibility or liability from any person, company or entity that may have relied on any written report or representations contained in this report if that person, company or entity suffers any loss (financial or otherwise) as a result.
Contents

List of Figures i
List of Tables iv
Glossary vi

1 Introduction 1
 1.1 Aim .. 2
 1.2 Thesis Structure ... 3

2 Background 5
 2.1 The Oxygen-Hydrogen Propellant Combination 5
 2.1.1 Injection and Supercritical Conditions 6
 2.2 Combustion Chamber Processes 8
 2.2.1 Injection ... 8
 2.2.2 Atomisation ... 9
 2.2.3 Vaporisation .. 9
 2.2.4 Mixing .. 9
 2.2.5 Combustion ... 10
 2.3 Combustion Instabilities 10
 2.3.1 Combustion Instabilities Research History 12
 2.3.2 Theoretical background 13
 2.3.3 Influence of Injection Parameters 15
 2.4 Acoustics in Combustion Chambers 18
 2.4.1 Acoustic Modes .. 18
 2.4.2 Complex Acoustic Notation 20
 2.4.3 Acoustic Damping and Boundary Conditions 21
 2.5 Combustion Instability Experiments 22
 2.5.1 Externally Excited Experiments 23
 2.5.2 Naturally Excited Experiments 26
 2.6 BKH .. 28
 2.6.1 Description ... 29
 2.6.2 Instrumentation ... 31
 2.6.3 Optical Diagnostics 33
 2.6.4 Test Sequences ... 36
 2.7 Combustion Instability Modelling 37
 2.7.1 FEM Based Models 38
 2.7.2 LEE Models .. 40
 2.7.3 CFD Models .. 40
 2.8 Research Gaps and Objectives 45
 2.8.1 Thesis Objectives 45
3 Steady-state Modelling

3.1 CFD Solver: The DLR TAU code

3.1.1 Governing Equations

3.1.2 Laminar Transport Coefficients

3.1.3 Finite-rate Chemistry Model

3.1.4 Kinetic Scheme

3.1.5 Turbulent Combustion Modelling

3.1.6 Real Gas Capability

3.2 CFD Model Description

3.2.1 Operating Point Definition

3.2.2 Numerical Domain and Boundary Conditions

3.2.3 Mesh

3.3 Numerical Results

3.3.1 Flow field

3.3.2 Flame Zone

3.3.3 Comparison with Experimental Optical Data

3.3.4 Wall Temperature Distribution

3.4 Discussion

3.5 Summary

4 Acoustic Analyses and Modelling

4.1 Experimental Data Analysis

4.1.1 Dynamic Pressure Sensor Data

4.1.2 Calculation of Acoustic Amplitude and Phase

4.1.3 Acoustic Field Reconstruction Method

4.1.4 Acoustic Field Reconstruction Results

4.1.5 Calculation of the Local Acoustic Disturbance

4.2 Acoustic Modelling

4.2.1 Numerical Method

4.2.2 Model Description

4.2.3 Results of Eigenfrequency Calculation

4.2.4 Results of Modal Analysis Calculations

4.2.5 Predicted Local Acoustic Disturbance

4.3 Summary

5 Optical Data Analyses

5.1 BKH Optical Data

5.1.1 1L Mode Optical Data

5.1.2 1T Mode Optical Data

5.2 DMD analysis

5.2.1 DMD method

5.2.2 DMD Results

5.3 Flame Response Analyses

5.3.1 Multi-variable DMD method

5.3.2 Flame Response Results

5.4 Summary

6 Excitation Modelling

6.1 Numerical Method

6.1.1 Domain and Boundary Conditions

6.1.2 Excitation Method

6.1.3 Mesh
List of Figures

2.1.1 PT-diagram showing path of propellant injection. 8
2.4.1 Acoustic mode orientation for a cylindrical geometry 19
2.4.2 Acoustic modes of a rectangular volume 20
2.4.3 Acoustic fluctuations for different complex Amplitudes. 21
2.6.1 Concept diagram of the BKH combustion Chamber. 29
2.6.2 BKH volume with key dimensions. 30
2.6.3 BKH primary injection elements with key dimensions. 30
2.6.4 BKH hardware. ... 31
2.6.5 BKH volume with injection manifolds. 31
2.6.6 BKH combustor volume with dynamic pressure sensors. 32
2.6.7 BKH optical diagnostics setup. 33
2.6.8 Visualisation of line-of-sight access in BKH. 33
2.6.9 Shadowgraph images with different back-lighting sources and filters. . 35
2.6.10 Emission spectrum from a LOx/H2 sub-scale combustor. 35
2.6.11 Spectrogram of dynamic pressure sensor data. 37
2.7.1 Hierarchy of combustion instability models. 38
3.1.1 Illustration of Species Mixing Models 53
3.2.1 Domain used for steady-state chamber model. 57
3.2.2 Mesh used for steady-state chamber model. 58
3.3.1 Pressure distribution with density isosurfaces showing position of LOx core. 59
3.3.2 Streamline plots showing chamber temperature distribution. 60
3.3.3 OH mass fraction distribution of steady-state chamber model. 61
3.3.4 Heat release distribution of steady-state chamber model. 61
3.3.5 Isometric view of mirrored density distribution in center of chamber. 62
3.3.6 Vertical and horizontal density and OH distributions. 62
3.3.7 OH and density distributions downstream from injection plane. ... 63
3.3.8 Shadowgraph images from an unexcited 60 bar ROF 6 BKH experiment. 65
3.3.9 Post-processed results for comparison with shadowgraph images. .. 65
3.3.10 OH* images from an unexcited 60 bar ROF 6 BKH experiment 66
3.3.11 Post-processed results for comparison with OH* images. 66
3.3.12 Modelled wall temperature distribution. 69
3.3.13 Temperature distribution and discolouration of BKH faceplate. ... 69
3.3.14 Side wall temperature distribution. 70
3.3.15 Discolouration of dummy window after BKH test campaign. 70
4.1.1 Dynamic pressure sensor positions in BKH. 74
4.1.2 Unexcited BKH dynamic pressure sensor data. 75
4.1.3 BKH dynamic pressure sensor data during 1L mode excitation. ... 76
4.1.4 BKH dynamic pressure sensor data during 1T mode excitation. ... 76
4.1.5 Raw data and RMS results versus test time from a BKH hot flow experiment 78
4.1.6 Amplitude and phase of sensor data versus excitation frequency. .. 79
4.1.7 Reconstructed acoustic field from BKH dynamic pressure sensor data . . . 82
4.1.8 Reconstructed acoustic field from BKH dynamic pressure sensor data . . . 83
4.1.9 Reconstructed acoustic field at the 1L mode peak response frequency. . . 84
4.1.10 Reconstructed acoustic field at the 1T mode peak response frequency. . . 84
4.1.11 Amplitude of acoustic disturbance in the center of the BKH window region. 85
4.2.1 Domain and mesh used for chamber acoustic model. 88
4.2.2 Acoustic property distributions from the steady state chamber model. . . 90
4.2.3 Centerplane 1L eigenmode distributions 91
4.2.4 Centerplane 1T eigenmode distributions 91
4.2.5 Centerplane 1L1T eigenmode distributions 91
4.2.6 1L eigenmode distributions at the center of the BKH chamber 92
4.2.7 1T eigenmode distributions 50 mm from the BKH injection plane. 92
4.2.8 Comparison of predicted and experimental 1L mode pressure distributions 93
4.2.9 Comparison of predicted and experimental 1T mode pressure distributions 93
4.2.10 Amplitude and phase versus excitation frequency from modal analysis . . 94
4.2.11 Acoustic field predicted by the frequency domain modal analysis 96
4.2.12 Acoustic field predicted by the frequency domain modal analysis 97
4.2.13 Amplitude of acoustic disturbance in the center of the BKH window region. 98

5.1.1 Images from a test without acoustic excitation 103
5.1.2 Images from Test A 1L-mode excitation 103
5.1.3 Images from Test C 1L-mode excitation 104
5.1.4 Images from Test A 1T-mode excitation 104
5.1.5 Images from Test B 1T-mode excitation 105
5.2.1 Test B 1T-mode DMD mode magnitude versus frequency plot 109
5.2.2 Test A 1L-mode DMD mode magnitude versus frequency plot 110
5.2.3 Spatial DMD mode of Test A 1L-mode shadowgraph sample 110
5.2.4 Spatial DMD mode of Test A 1L-mode OH* sample 110
5.2.5 Spatial DMD mode of Test C 1L-mode shadowgraph sample 111
5.2.6 Spatial DMD mode of Test C 1L-mode shadowgraph sample overtone . . . 111
5.2.7 Reconstructions of Test C 1L-mode shadowgraph sample from DMD modes . 111
5.2.8 Test A 1T DMD mode magnitudes versus frequency plots 113
5.2.9 Spatial DMD mode of Test A 1T-mode shadowgraph sample 113
5.2.10 Spatial DMD mode of Test A 1T-mode shadowgraph sample overtone . . . 113
5.2.11 Reconstructions of Test A 1T-mode shadowgraph sample from DMD modes . 113
5.2.12 Spatial DMD mode of Test A 1T-mode OH* sample 115
5.2.13 Spatial DMD mode of Test A 1T-mode OH* sample overtone 115
5.2.14 Reconstructions of Test A 1T-mode shadowgraph sample from DMD modes . 115
5.2.15 Spatial DMD mode of Test B 1T-mode shadowgraph sample 116
5.2.16 Spatial DMD mode of Test B 1T-mode shadowgraph sample overtone . . . 116
5.2.17 Near injector region of Test B 1T-mode shadowgraph spatial mode . . . 116
5.2.18 Reconstructions of Test B 1T-mode near injector region from DMD modes . 116
5.2.19 Spatial DMD mode of Test B 1T-mode OH* sample 117
5.2.20 Spatial DMD mode of Test B 1T-mode OH* sample overtone 117
5.3.1 Application of multi-variable DMD method to BKH experimental data . . 118
5.3.2 Original and reconstructed sensor data during 1L-mode excitation 120
5.3.3 Original and reconstructed sensor data during 1T-mode excitation 120
5.3.4 Reconstructed acoustic field during Test A 1L-mode sample 122
5.3.5 Acoustic pressure distribution in window during Test A 1L-mode sample . . 122
5.3.6 Flame response distribution for Test A 1L-mode Shadowgraph sample . . . 122
5.3.7 Flame response distribution for Test A 1L-mode OH* sample 123
5.3.8 Reconstructed acoustic field during Test C 1L-mode sample 124
5.3.9 Acoustic pressure distribution in window during Test C 1L-mode sample. 124
5.3.10 Flame response distribution for Test C 1L-mode Shadowgraph sample. . . 124
5.3.11 Reconstructed acoustic field during Test A 1T-mode sample. 125
5.3.12 Acoustic pressure distribution in window during Test A 1T-mode sample. 125
5.3.13 Flame response distribution for Test A 1T-mode Shadowgraph sample. . . 125
5.3.14 Flame response distribution for Test A 1T-mode OH* sample. 126
5.3.15 Overtone mode response from Test A 1T-mode OH* sample. 126
5.3.16 Reconstructed acoustic field during Test B 1T-mode sample. 127
5.3.17 Acoustic pressure distribution in window during Test B 1T-mode sample. 127
5.3.18 Flame response distribution for Test B 1T-mode shadowgraph sample. . . 128
5.3.19 Flame response distribution for Test B 1T-mode OH* sample. 129
5.3.20 DMD mode phase about central injector for Test B 1T-mode samples. . . 129

6.1.1 Domain used for 2D axisymmetric single injector computations. 132
6.1.2 Domain used for 3D single injector computations. 134
6.1.3 Mesh used for 2D axisymmetric acoustic pressure excitation. 137
6.1.4 3D mesh used for transverse acoustic velocity excitation computations. . . 138
6.2.1 Steady-state pressure distribution for axisymmetric model. 139
6.2.2 Steady-state distributions along axisymmetry axis. 140
6.2.3 Steady-state distributions for axisymmetric model. 140
6.2.4 OH and heat release distributions near injection plane. 141
6.2.5 Pressure fluctuations along axisymmetry axis versus time. 142
6.2.6 Property distributions along axisymmetry axis at different phases. 143
6.2.7 Density distribution in chamber volume at different phases. 144
6.2.8 OH distribution in chamber volume at different phases. 144
6.2.9 Comparison of pressure, heat release, and injection velocity fluctuations. . 145
6.2.10 Heat release distribution at different phases. 145
6.2.11 Heat release distributions near injection plane at different phases. 146
6.2.12 Density distributions from pressure excitation with different amplitudes. . 147
6.2.13 Reconstructed images of Test C shadowgraph 1L sample using DMD modes.148
6.2.14 Density distribution at same location Test C 1L shadowgraph images. . . 148
6.2.15 Acoustic and volume-integrated values versus time. 149
6.3.1 Steady-state solution distributions for the 3D numerical domain. 151
6.3.2 Resulting disturbance during transverse velocity forcing versus time. . . 152
6.3.3 Resulting disturbance distributions during transverse velocity excitation. . 153
6.3.4 Deformation of the LOx core as transverse acoustic excitation is imposed. 154
6.3.5 Speed of sound distributions with and without acoustic excitation. 155
6.3.6 Motion of the fully retracted oxygen core. 156
6.3.7 Property distributions fluctuations once the core has fully retracted. . . . 157
6.3.8 Mass fraction distributions at different axial coordinates. 158
6.3.9 Pressure fluctuations around the injector at the injection plane. 159
6.3.10 Heat release rate fluctuations as transverse acoustic excitation is imposed. 160
6.3.11 Pressure, velocity, and integrated heat release fluctuations versus time. . 161
6.3.12 Comparison of LOx core length versus transverse mode amplitude. . . . 162
6.3.13 Comparison of LOx core surface fluctuations. 162
6.3.14 DMD mode phase about central injector for Test B 1T-mode samples. . . 163
6.3.15 Density isosurfaces at different phase angles. 164
6.3.16 OH mass fraction iso-surfaces at different phase angles. 165
List of Tables

2.1 Specific impulse for chemical rocket engines. 6
2.2 Critical properties of oxygen and hydrogen. 7
2.3 Chamber pressures of engines using oxygen-hydrogen propellants. 7
2.1 Comparison of different combustion instability experiments. 23

3.1 Propellant flow rates and properties defining the modelled operating point. 55
3.2 Calculated values for the modelled operating point 55

4.1 BKH resonant and peak response frequencies. 76
4.1 Comparison of predicted and experimental resonant mode frequencies. 90

5.1 Summary of analysed optical datasets. 102

6.1 Comparison of acoustic pressure excitation results. 146
6.1 Comparison of transverse acoustic excitation results. 160

A.1 7 step oxygen-hydrogen scheme published by Gaffney et al. [28]. 189
A.1 Functions F_n of the MBWR equation of state 190
A.2 Coefficients G_i of the MBWR equation of state for oxygen 190
Glossary

Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>α, β</td>
<td>Stoichiometric coefficients</td>
</tr>
<tr>
<td>a</td>
<td>Speed of sound</td>
</tr>
<tr>
<td>c</td>
<td>Speed of light</td>
</tr>
<tr>
<td>D</td>
<td>Diffusion coefficient</td>
</tr>
<tr>
<td>D_0</td>
<td>Diameter</td>
</tr>
<tr>
<td>f</td>
<td>Frequency</td>
</tr>
<tr>
<td>γ</td>
<td>Ratio of specific heats</td>
</tr>
<tr>
<td>H</td>
<td>Height</td>
</tr>
<tr>
<td>h</td>
<td>Planck constant</td>
</tr>
<tr>
<td>I</td>
<td>Image intensity</td>
</tr>
<tr>
<td>I_n</td>
<td>Identity matrix</td>
</tr>
<tr>
<td>J</td>
<td>Momentum ratio</td>
</tr>
<tr>
<td>Kn</td>
<td>Knudsen Number</td>
</tr>
<tr>
<td>κ</td>
<td>Thermal conductivity</td>
</tr>
<tr>
<td>k_b</td>
<td>Boltzmann constant</td>
</tr>
<tr>
<td>λ</td>
<td>Wavelength</td>
</tr>
<tr>
<td>L</td>
<td>Length</td>
</tr>
<tr>
<td>\dot{m}</td>
<td>Mass flow rate</td>
</tr>
<tr>
<td>N</td>
<td>Response factor</td>
</tr>
<tr>
<td>n</td>
<td>Amplification factor</td>
</tr>
<tr>
<td>p, P</td>
<td>Pressure</td>
</tr>
<tr>
<td>P_v</td>
<td>Viscous stress tensor</td>
</tr>
<tr>
<td>q, Q</td>
<td>Heat release</td>
</tr>
<tr>
<td>q_d</td>
<td>Dipole source term</td>
</tr>
<tr>
<td>Re</td>
<td>Reynolds number</td>
</tr>
<tr>
<td>ρ</td>
<td>Density</td>
</tr>
<tr>
<td>R</td>
<td>Reflection coefficient</td>
</tr>
<tr>
<td>R_0</td>
<td>Radius</td>
</tr>
<tr>
<td>σ</td>
<td>Surface tension</td>
</tr>
<tr>
<td>Sc</td>
<td>Schmidt number</td>
</tr>
<tr>
<td>St</td>
<td>Strouhal number</td>
</tr>
<tr>
<td>T</td>
<td>Temperature</td>
</tr>
<tr>
<td>t</td>
<td>Time</td>
</tr>
<tr>
<td>T_s</td>
<td>Period</td>
</tr>
<tr>
<td>τ</td>
<td>Time delay factor</td>
</tr>
<tr>
<td>v, V</td>
<td>Velocity</td>
</tr>
<tr>
<td>VR</td>
<td>Velocity ratio</td>
</tr>
<tr>
<td>μ</td>
<td>Viscosity</td>
</tr>
<tr>
<td>V</td>
<td>Volume</td>
</tr>
<tr>
<td>We</td>
<td>Aerodynamic Weber number</td>
</tr>
<tr>
<td>We_L</td>
<td>Weber number</td>
</tr>
<tr>
<td>ω</td>
<td>Angular frequency</td>
</tr>
<tr>
<td>Z</td>
<td>Acoustic impedance</td>
</tr>
<tr>
<td>z</td>
<td>Specific acoustic impedance</td>
</tr>
</tbody>
</table>

Subscripts

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>∞</td>
<td>Free stream properties</td>
</tr>
<tr>
<td>cr</td>
<td>Critical properties</td>
</tr>
<tr>
<td>CC</td>
<td>Combustion chamber properties</td>
</tr>
<tr>
<td>f</td>
<td>Fuel</td>
</tr>
<tr>
<td>ox</td>
<td>Oxidizer</td>
</tr>
<tr>
<td>LOx</td>
<td>Liquid oxygen</td>
</tr>
<tr>
<td>$conv$</td>
<td>Convection</td>
</tr>
<tr>
<td>G</td>
<td>Gas</td>
</tr>
<tr>
<td>L</td>
<td>Liquid</td>
</tr>
<tr>
<td>R</td>
<td>Real part</td>
</tr>
<tr>
<td>I</td>
<td>Imaginary part</td>
</tr>
<tr>
<td>lam</td>
<td>Laminar</td>
</tr>
<tr>
<td>T</td>
<td>Turbulent</td>
</tr>
<tr>
<td>$BPRMS$</td>
<td>Band-passed RMS result</td>
</tr>
<tr>
<td>RMS</td>
<td>Root Mean Squared result</td>
</tr>
</tbody>
</table>
Superscripts

\(a' \) Perturbation or oscillating value
\(\hat{a} \) Complex valued property
\(\bar{a} \) Mean property
\(a'' \) Forward reaction coefficient
\(a^b \) Backward reaction coefficient

Acronyms

AFRL Air Force Research Laboratory
AVBP LES solver jointly developed by Cerfacs, IFPEN, and EM2C
AVSP Acoustic solver developed by Cerfacs
BKD Combustion chamber (German: Brennkammer) ‘D’, operated by DLR
BKH Combustion chamber (German: Brennkammer) ‘H’, operated by DLR
BPRMS Band-passed Root Mean Squared
CAA Computational Aero Acoustics
CEA Chemical Equilibrium Analysis
CFD Computational Fluid Dynamics
CVRC Continuously Variable Research Combustor, operated by Purdue University
CRC Common Research Chamber, operated by DLR
DLR German Aerospace Center (Deutsches Zentrum für Luft und Raumfahrt)
DMD Dynamic Mode Decomposition
DNS Direct Numerical Simulation
EM2C Energetics and combustion lab at CentraleSupélec
FEM Finite Element Methods
FFT Fast Fourier Transform
FTF Flame Transfer Function
HF High Frequency
IFPEN French public-sector research, innovation and training center
JAXA Japanese Aerospace Exploration Agency
LEE Linearised Euler Equations
LES Large Eddy Simulation
LE-7A Mitsubishi LE-7(A) rocket engine
LF Low Frequency
LOx Liquid Oxygen
MIC Multiple-Injector Combustor, operated by ONERA
ONERA French national aerospace research center
P European Test Facility for Cryogenic Rocket Propulsion
PCCDYN Dynamic pressure sensors installed in BKH
POD Proper Orthogonal Decomposition
RANS Reynolds Averaged Navier Stokes
RMS Root Mean Squared
ROF Ratio of Oxidizer to Fuel mass flow rate
SSME Space Shuttle Main Engine
TAU CFD solver developed by the DLR
TIC Transverse Instability Combustor, operated by Purdue University
TUM Technical University of Munich (Technische Universität München)
URANS Unsteady Reynolds Averaged Navier Stokes
VHAM Very High Amplitude Modulator, operated by ONERA