

Guidance for time efficient path following of underactuated differential thrust AUVs

Xue Jin

The University of Adelaide South Australia 5005 Australia

A thesis submitted in fulfilment of the requirements for the degree of Master of Philosophy in Engineering on the 15th April 2016.

Summary

Autonomous Underwater Vehicles (AUVs) are relatively new underwater devices developed to execute missions in water without human operators. The advancements made in AUV technology have significant implications for a wide range of underwater applications. Guidance and control of AUVs plays an important role in many applications, and it is a challenging research topic, not only because of the significant nonlinearities and couplings in the AUV's dynamics, but the under-actuation found in typical AUVs.

This thesis presents new work contributing to time efficient path following of under-actuated AUVs. Different from the conventional finmanoeuvred AUVs, the prototype vehicle considered in this thesis is a differential thrust manoeuvred AUV devoid of fins or rudders. Such a manoeuvring feature makes the vehicle very agile, but brings challenges in guidance and control.

A model of the prototype AUV is constructed based on the vehicle dynamics and manoeuvring features. In order to achieve time efficient path following, the AUV should operate at its motion limits. To derive the motion limits, a Monte Carlo analysis is conducted using the AUV model, which provides a numerical solution to derive the maximum admissible motion of the vehicle with respect to the curvatures along given paths. Thus, a curvature-based guidance system is developed. The strategy alters the AUV path following speed according to the path curvature, hence increasing the overall time efficiency. The effectiveness of the proposed method is demonstrated through simulations of the AUV following a range of different paths.

Declarations

The work presented in this thesis contains no material which has been accepted for the award of any other degree of diploma in any university or other tertiary institution. To the best of the author's knowledge and belief, this work contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of the thesis to be made available on the web, via the University's digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Xue Jin

– iv

Acknowledgements

First and foremost, I would like to thank my supervisors, Dr Steven Grainger and Professor Ben Cazzolato for their support and guidance. This thesis would never have been completed without their effort. I would also like to thank Associate Professor Colin Kestell for his time and input to this project. Not only the knowledge but also the experience I gained is an invaluable asset in my life.

In addition, I am grateful to all the staff in the School of Mechanical Engineering. In particular, I would like to express my gratitude to the head of school, Associate Professor Anthony Zander for his continuous support. Also I would like to thank Dr Lei Chen, Mr Gareth Bridges, Dr Zebb Prime and Dr Zhaofeng Tian for their advice on my study, and Miss Alison Jan-Hunter for her help in my thesis editing, as well as all the staff from the workshop who have assisted me with the experiments.

For all my friends and school mates, I will always remember and be thankful for their encouragement and help. In particular, I would like to thank Sophie Chen, Lancy Xie, Chenxi Li, Dr Boying Ding, Zahra Bagheri, Shi Zhao, Xiao Chen, Nikan Rostamzdeh and Erwin Hamminga, who have motivated and supported me during my difficult times. I would also like to thank my partner, Dr Tao Zhu, for his endless encouragement, understanding and support during this long journey.

Finally, I would like to thank my parents, Xiaoying Chu and Wenxi Jin, for their unconditional love and trust. In every stage of my life, they have supported me in every way that a daughter can expect.

Contents

Sur	nma	ryi	
Dec	lara	tionsiii	
Ack	nov	vledgmentsv	
Con	ten	ts vii	
List	of f	iguresx	
List	of t	ablesxiv	
Nor	nen	claturexvi	
1	Int	itroduction	
1.	1	Background and motivation1	
1.	2	Scope of this work	
1.	3	Thesis outline	
1.	4	Publication7	
2	Lit	erature review	
2.	1	Under-actuated AUV fundamentals9	
2.	2	Review of AUV modelling12	
2.	3	Guidance and control fundamentals14	
2.	4	Review of AUV guidance techniques16	

	2.5 Summary and research objectives			. 24	
3		Αl	JV n	nodelling	. 26
	3	.1	Mo	delling of the prototype AUV	. 26
		3.1	.1	AUV kinematics model	. 26
		3.1	.2	AUV dynamics model	.30
		3.1	.3	Propulsion system dynamics	. 35
	3	.2	Co	mplete AUV model	.40
		3.2	.1	Three degree-of-freedom model for planar motion	.41
		3.2	2	Simulink model	.42
	3	.3	Mo	del verification	.45
		3.3	.1	Estimation and verification of hydrodynamic coefficients	.45
		3.3	.2	Simulations	.48
	3	.4	Sur	nmary	. 55
4		Αl	JV n	notion analysis	. 57
	4	.1	Pro	blem description	. 57
	4	.2	An	alytical analysis	. 57
	4	.3	Nu	merical analysis	. 62
		4.3	.1	Monte Carlo method	. 62
		4.3	.2	Monte Carlo analysis of the AUV model	.63
		4.3	.3	Results and analysis	. 68
	4	.4	Sur	nmary	.72
5		Gu	iidar	nce and control system	.73
	5	.1	An	overview of the motion control system	.73
	5	.2	Ac	curvature-based guidance method	.74
		5.2	.1	Guidance method - traversing law	.75

	5.2	2.2	Guidance method – convergence law	79
5	.3	Mc	otion controllers design	82
	5.3	3.1	PID controller fundamentals	82
	5.3	3.2	Motion controllers	83
6	Gı	uidar	nce based path following	86
6	.1	Pat	th following of an arbitrary path	86
6	.2	Pat	th following of a lawn mower path	101
	6.2	2.1	Error analysis	102
	6.2	2.2	Time efficiency analysis	104
6	.3	Sui	mmary	107
7	Co	onclu	isions and future work	108
7.1 Conclusions			108	
7	.2	Fut	ture work	110
References112				
Appendix A Wind tunnel test				
Appendix B Simulink model				
Ap	pen	dix (C Thruster specifications	133
Appendix D Path continuity134				
Appendix E Publications				

List of figures

Figure 1.1: Underwater vehicles categorization (Based on Christ and
Wernli, 2007)
Figure 1.2: CURV II ROV (Christ and Wernli, 2007)
Figure 1.3: ROV undertaking tasks (Oceaneering, 2013)
Figure 1.4: REMUS 100 AUV (WHOI, 2009)
Figure 1.5: AUVs conducting underwater scanning (Sanz et al., 2010)4
Figure 1.6: Rendered CAD model of the prototype AUV5
Figure 2.1: A detailed view of the main control surfaces and propeller.
(Wadoo and Kachroo, 2011)9
Figure 2.2: Possible resultant paths when conventional fin-manoeuvred
AUVs follow a path with a sharp corner10
Figure 2.3: Micro ROV – VideoRay Pro III (Wang, 2007)11
Figure 2.4: Frontal view of the prototype AUV11
Figure 2.5: Block diagram of a Guidance, Navigation and Control (GNC)
system
Figure 2.6: Diagram of waypoints along a path17
Figure 2.7: Schematic of the LOS guidance principle
Figure 2.8: Free body diagram of a tyre during a turn
Figure 2.9: Architecture of the motion control system with speed adaption
algorithm
Figure 2.10: Diagram of a guidance system for path following23

Figure 3.1: The G-frame $\{G\}$, the B-frame $\{B\}$ and the SF-frame $\{SF\}$ 27
Figure 3.2: Hydrostatic moment in roll
Figure 3.3: Hydrostatic moment in pitch
Figure 3.4: Illustration of the angle of attack, sideslip angle, lift and drag
on the AUV
Figure 3.5: Rotational resistance effects on the AUV
Figure 3.6: Schematic of the front view of the prototype AUV
Figure 3.7: Modified differential thrust system configuration
Figure 3.8: Schematic of a typical thruster
Figure 3.9: Block diagram of the AUV system with thruster control loop.
Figure 3.10: Block diagram of the 3DOF Simulink model44
Figure 3.11: The drag coefficients derived by the theoretical formulae are
compared with data from the wind tunnel test
Figure 3.12: Curve fitting of lift coefficients based on the wind tunnel test.
Figure 3.13: The velocity evolution during acceleration with full thrust.
Figure 3.14: The angular velocity evolution during rotational acceleration.
Figure 3.15: Resultant paths in the three simulations
Figure 3.16: Resultant path and the AUV orientation in Simulation 352
Figure 3.17: The evolution of the AUV orientation along the resultant path
in Simulation 353
Figure 3.18: AUV response in simulation 3 within 15 seconds54
Figure 4.1: Schematic of an AUV traversing along a planar path58
Figure 4.2: Schematic of the relationship between the sideslip angle, the
course angle and the AUV heading angle60
Figure 4.3: The Monte Carlo method63
Figure 4.4: Histogram of the transition time in the Monte Carlo analysis.

Figure 4.5: Schematic of an AUV traversing on a given path on the XY-
plane
Figure 4.6: Histogram of thrust values chosen for the two thrusters and
the total thrust for the Monte Carlo analysis
Figure 4.7: Monte Carlo simulations on the AUV model67
Figure 4.8: Scatter plot of the sideslip angle with respect to radius of
curvature
Figure 4.9: Scatter plot of the speed with respect to radius of curvature.
Figure 4.10: Comparison of the speeds when one of the thrusters is at its
limit with the results of Monte Carlo simulations70
Figure 5.1: Block diagram of the AUV guidance system73
Figure 5.2: Block diagram of the guidance in a complete motion control
system
Figure 5.3: Schematic of a path76
Figure 5.4: Radius of curvature, speed limit and sideslip angle of each
section along the path based on Monte Carlo analysis77
Figure 5.5: Course angle and heading angle along the given path78
Figure 5.6: Typical examples of AUV converging to arc and straight line.
Figure 5.7: Diagram of relative positions of the path to the AUV and sign
of the deviation
Figure 5.8: Block diagram of a closed loop PID controller
Figure 5.9: Block diagram of the speed and heading controllers
Figure 6.1: An arbitrary path to be followed by the AUV
Figure 6.2: System response to step speed commands
Figure 6.3: Thrusters response to step speed command
Figure 6.4: System response to step heading angle command
Figure 6.5: Thrusters behavior for the rotational motion
Figure 6.6: An arbitrary reference pathand the actual path following
trajectory

Figure 6.7: Histogram of deviations during path following of the arbitrary
path93
Figure 6.8: Deviations during path following on the arbitrary path93
Figure 6.9: Reference heading angle of the AUV during path following.
Figure 6.10: Heading response of the AUV during path following96
Figure 6.11: Speed response of the AUV during path following
Figure 6.12: Total thrust and differential thrust during path following. 99
Figure 6.13: Thrusts of two thrusters during path following
Figure 6.14: Diagram of a typical lawn mower path102
Figure 6.15: Comparison between the actual path and the reference path
in the simulation103
Figure 6.16: Histogram of the deviation during path following of the lawn
mower path with $R = 5$ m
Figure 6.17: Real time deviation of the AUV during path following on the
lawn104
Figure 6.18: Simulated speed response of the AUV path following using
two guidance methods105
Figure A.1: KC wind tunnel (based on Pavloudis et al., 2012)125
Figure A.2: The testing rig set up (based on Pavloudis et al., 2012)126
Figure B.1: Guidance and control system
Figure B.2: Lift and drag calculation130
Figure B.3: AUV kinematics and the state space model
Figure B.4: Steady state criterion in Monte Carlo Analysis
Figure D.1: Geometric continuity (based on Haugen, 2010)134
Figure D.2: Three path modifications for lawn mower paths with different
curvatures using clothoids (based on Haugen, 2010)135

List of tables

Table 3.1: AUV motions in G-frame
Table 3.2: AUV motions in B-frame and their description
Table 3.3: Actuation schemes of the differential thrust system in surge,
pitch and yaw motion
Table 3.4: Lookup table of the apparent mass factor (Evans, 2003) 46
Table 3.5: Simulation scenarios and the corresponding thruster setting 48
Table 3.6: Thruster set up and resultant thrust and differential thrust51
Table 4.1: Dynamics equations for translation and rotation
Table 4.2: Thrusters setting
Table 4.3: The maximum differential thrust for given total thrust71
Table 4.4: Examples of the actuation saturation
Table 6.1: Segments of the arbitrary path plotted in Figure 6.1
Table 6.2: Gains of the speed and heading controllers
Table 6.3: Starting and ending time for each section of the path during
path following94
Table 6.4: Time taken for traversing distance of 452.4 m using the
proposed guidance and constant speed guidance
Table 6.5: Traversing distance of the AUV in 150 seconds using the
proposed guidance and constant speed guidance
Table 6.6: Time taken for traversing a path of 247.1 m using the proposed
guidance and constant speed guidance106

Table A.1: Air and seawater properties (based on Pavloudis et al., 2012)
Table A.2: Air and water speed for the same Reynolds number
Table C.1: Thruster specifications (SeaBotix Inc., 2016)133

Nomenclature

AUV	Autonomous Underwater Vehicle
DOF	Degree of Freedom
CoG	Centre of Gravity
СоВ	Centre of Buoyancy
G-frame $\{G\}$	Global frame
B-frame { <i>B</i> }	Body frame
SF-frame { <i>SF</i> }	Serret-Frenet frame
$\begin{bmatrix} x & y & z \end{bmatrix}$ α	AUV position w.r.t. X, Y and Z - axis in G-frame Angle of attack
β	Sideslip angle
ψ	AUV heading angle
χ	Course angle
[AUV orientation angle w.r.t. X, Y and Z-axis in G-frame
$\begin{bmatrix} p & q & r \end{bmatrix}$	Angular velocity w.r.t. X, Y and Z – axis in B-frame (roll, pitch and yaw)
$[\dot{x} \dot{y} \dot{z}]$	Velocity w.r.t. X, Y and Z - axis in G-frame
$\begin{bmatrix} u & v & w \end{bmatrix}$	Velocity w.r.t. X, Y and Z - axis in B-frame
V	Total velocity
R	Radius of curvature
R _e	Reynolds number
C_D	Drag coefficient

C_L	Lift coefficient
D	Drag force
L	Lift force
C _r	Yaw resistance coefficient
$\begin{bmatrix} M_x & M_y & M_z \end{bmatrix}$	Moments using differential thrust
$\begin{bmatrix} M_p & M_q & M_r \end{bmatrix}$	Rolling, pitching and yawing drag moment
m	Mass
ρ	Fluid density
$\begin{bmatrix} I_{xx} & I_{yy} & I_{zz} \end{bmatrix}$	Moment of inertia vector
Т	Total (collective) thrust
ΔT	Differential thrust
$oldsymbol{e}_p$	Deviation vector
Δ	Lookahead distance
K _P	Proportional gain of a PI controller
K_I	Integral gain of a PI controller
k _e	Modulation factor of the steering rate for
	convergence
MCA	Monte Carlo Analysis
GNC	Guidance, Navigation and Control
LOS	Line of sight
LTA	Line to arc transition
ATL	Arc to line transition