The Structure of Clifford Algebra

A thesis presented
by
Gregory Paul Wilmot B.Sc.(Hons.)
for the degree of Master of Science.

Department of Physics and Mathematical Physics
University of Adelaide

March 1988
Abstract

This thesis presents an analysis of the general structure of the Clifford algebra while seeking to understand the geometrical content of an arbitrary Clifford element.

By extending the Lie algebra to the entire algebra using the anticommutator, the properties of any Clifford algebra may be concisely summarized in four identities. This formulation may be used to analyse the general structure of Clifford algebra but it is found that the symmetry properties are not consistent with the geometrical content. The extension of the graded Lie algebra to the entire algebra generates a geometrical algebra which simplifies the analysis of the structure of Clifford algebra. This produces a direct proof of the fundamental theorem which relates the Clifford and Grassmann algebras via the Pfaffian.

Using the Pfaffian an operator on the tensor algebra is defined to generate the explicit coset structure of the Clifford quotient of the tensor algebra. The associativity property of this tensor representation of Clifford algebra leads to a Pfaffian expansion analogous to the Laplace expansion of a determinant. Further, the explicit statement of the algebra norm provides a proof for the Hadamard theorem.
Signed Statement

This thesis contains no material which has been accepted for the award of any other degree or diploma in any University, and to the best of the candidate's knowledge and belief, the thesis contains no material previously published or written by any other person, except where due reference is made in the text of the thesis.

G. P. Wilmot
Acknowledgements

The author wishes to thank Dr. L. R. Dodd for kindling an interest in Clifford algebras and for his support throughout the research and preparation of this thesis. The invaluable suggestions and encouragement of Professor J. S. R. Chisholm and Dr. M. G. Eastwood is sincerely appreciated. Also the assistance of a Commonwealth Postgraduate Scholarship is gratefully acknowledged.
Table of Contents

1. Introduction. .. 1
2. Properties of the Clifford Algebra. 4
3. Gradation of the Clifford Algebra. 12
4. Fundamental Theorem of Clifford Algebra. 22
5. The Tensor and Exterior Algebras. 31
6. The Tensor Representation of Clifford Algebra. 36
7. The Associativity Property. 43

Bibliography ... 54