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Abstract

In many computer vision applications, the task of robustly estimating the set of parameters of

a geometric model is a fundamental problem. Despite the longstanding research efforts on robust

model fitting, there remains significant scope for investigation. For a large number of geometric

estimation tasks in computer vision, maximum consensus is the most popular robust fitting

criterion. This thesis makes several contributions in the algorithms for consensus maximization.

Randomized hypothesize-and-verify algorithms are arguably the most widely used class of

techniques for robust estimation thanks to their simplicity. Though efficient, these randomized

heuristic methods do not guarantee finding good maximum consensus estimates. To improve the

randomize algorithms, guided sampling approaches have been developed. These methods take

advantage of additional domain information, such as descriptor matching scores, to guide the

sampling process. Subsets of the data that are more likely to result in good estimates are priori-

tized for consideration. However, these guided sampling approaches are ineffective when good

domain information is not available. This thesis tackles this shortcoming by proposing a new

guided sampling algorithm, which is based on the class of LP-type problems and Monte Carlo

Tree Search (MCTS). The proposed algorithm relies on a fundamental geometric arrangement

of the data to guide the sampling process. Specifically, we take advantage of the underlying tree

structure of the maximum consensus problem and apply MCTS to efficiently search the tree.

Empirical results show that the new guided sampling strategy outperforms traditional random-

ized methods.

Consensus maximization also plays a key role in robust point set registration. A special case

is the registration of deformable shapes. If the surfaces have the same intrinsic shapes, their

deformations can be described accurately by a conformal model. The uniformization theorem

allows the shapes to be conformally mapped onto a canonical domain, wherein the shapes can be

aligned using a Möbius transformation. The problem of correspondence-free Möbius alignment

of two sets of noisy and partially overlapping point sets can be tackled as a maximum consensus

problem. Solving for the Möbius transformation can be approached by randomized voting-type

methods which offers no guarantee of optimality. Local methods such as Iterative Closest Point

can be applied, but with the assumption that a good initialization is given or these techniques

may converge to a bad local minima. When a globally optimal solution is required, the literature

has so far considered only brute-force search. This thesis contributes a new branch-and-bound

algorithm that solves for the globally optimal Möbius transformation much more efficiently.

So far, the consensus maximization problems are approached mainly by randomized algo-

rithms, which are efficient but offer no analytical convergence guarantee. On the other hand,

there exist exact algorithms that can solve the problem up to global optimality. The global meth-

ods, however, are intractable in general due to the NP-hardness of the consensus maximization.



vi

To fill the gap between the two extremes, this thesis contributes two novel deterministic algo-

rithms to approximately optimize the maximum consensus criterion. The first method is based

on non-smooth penalization supported by a Frank-Wolfe-style optimization scheme, and an-

other algorithm is based on Alternating Direction Method of Multipliers (ADMM). Both of the

proposed methods are capable of handling the non-linear geometric residuals commonly used in

computer vision. As will be demonstrated, our proposed methods consistently outperform other

heuristics and approximate methods.
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generated by applying a random Möbius transformation toM then added with
noise and outliers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.5 Results for synthetic data. Columns represent experiments for different values
of N1. Rows represent measurements of Qbnb (defined in (4.1)), Qmv (defined
in 4.4.1) and runtime (in seconds). Note that the runtime is quoted in log10 scale.
ICP2 is explained in 4.4.2. GM is only feasible for N1 = 20. . . . . . . . . . . 66

4.6 Correspondences found by MS for three pairs of teeth. . . . . . . . . . . . . . 66
4.7 Correspondences found by MS between three pairs of face . . . . . . . . . . . 67
4.8 Correspondences found by MS for Human09 - Human11 . . . . . . . . . . . . 72
4.9 Correspondences found by MS for Orangutan 505958 - Orangutan 50960 . . . 73
4.10 Correspondences found by MS for V01 - V02 . . . . . . . . . . . . . . . . . . 73
4.11 Correspondences found by MS for Bonobo 38018 - Bonobo 38019 . . . . . . . 74
4.12 Correspondences found by MS for x03-x04 . . . . . . . . . . . . . . . . . . . 75
4.13 Correspondences found by MS for F0015 FE01WH - F0015 FE02WH . . . . . 76
4.14 Correspondences found by MS for F0049 SU01WH - F0049 SU03WH . . . . 77
4.15 Correspondences found by MS for M0015 HA02WH - M0015 HA04WH . . . 78
4.16 Correspondences found by MS for M0040 SA02WH - M0040 SA04WH . . . 79
4.17 Correspondences found by MS for F0036 AN02AE - F0036 AN02AE . . . . . 80
4.18 Computing range limits for solving rotation angle . . . . . . . . . . . . . . . . 82
4.19 Illustration of C1: rjR,1 ≤

√
|bk|2 − ε2 ≤ rjR,2 . . . . . . . . . . . . . . . . . 84

4.20 Illustration of C2.1: Outline of Ok
ε intersects with either the inner or outer ring

of the annulus Ωj
R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.21 Illustration of C2.2: Outline of Ok
ε intersects with both the inner or outer ring of

the annulus Ωj
R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.1 2D analogy of balanced (top) and unbalanced (bottom) data generated in our
experiments. The results of RANSAC, least squares, and our method initialized
with the former two methods are shown. Observe that least squares is heavily
biased under unbalanced data, but EP is able to recover from the bad initialization.103

5.2 Results for linear regression (d = 8 dimensions). (a)(b) Balanced data; (c)(d)
Unbalanced data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.3 Qualitative results of EP on (a) fundamental matrix estimation, (b) homography
estimation, and (c) affinity estimation. Green and red lines represent detected
inliers and outliers. For clarity, only 100 inliers/outliers are plotted. See supp
material for more results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.4 Qualitative results for Fundamental Matrix Estimation . . . . . . . . . . . . . 110
5.5 Qualitative results for Homography Estimation . . . . . . . . . . . . . . . . . 111
5.6 Qualitative results for Affinity Estimation . . . . . . . . . . . . . . . . . . . . 111

6.1 (a) Sample point set {pj , qj}Nj=1. (b) A plot of Ψ(θ) in R2 based on the sample
point set. Each unique color represents a specific consensus value. Regions
corresponding to the maximum consensus value are indicated in yellow. . . . . 120



List of Figures xvi

6.2 Two-dimensional analogy of balanced (top) and unbalanced (bottom) data gen-
erated in our experiments. The results of RANSAC, least squares, and our
method initialized with the former two methods are shown. Observe that least
squares is heavily biased under unbalanced data, but EP is able to recover from
the bad initialization. (For clarity, the results of AM variants are not plotted as
they are very close to EP-RS and EP-LSQ) . . . . . . . . . . . . . . . . . . . 138

6.3 Results for linear regression (d = 8 dimensions). (a)(b) Balanced data; (c)(d)
Unbalanced data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.4 Qualitative results of local refinement methods on (a,b,c) fundamental matrix
estimation, (d,e,f) linearized homography estimation (g,h,i) homography esti-
mation with geometric distance, and (j,k,l) affinity estimation. Green and red
lines represent detected inliers and outliers. For clarity, only 100 inliers/outliers
are plotted. See the supplementary material for more qualititave results. . . . . 143

6.5 Qualitative results of EP-RS on triangulation. . . . . . . . . . . . . . . . . . . 145



Publications

This thesis is in part result of the work presented in the following papers:

• Huu Le, Tat-Jun Chin and David Suter: Conformal Surface Alignment With Optimal

Mobius Search. In Computer Vision and Pattern Recognition (CVPR) 2016.

• Huu Le, Tat-Jun Chin and David Suter: An Exact Penalty Method for Locally Convergent

Maximum Consensus. In Computer Vision and Pattern Recognition (CVPR) 2017.

• Huu Le, Tat-Jun Chin and David Suter: RATSAC-Random Tree Sampling for Consensus

Maximization. In Digital Image Computing: Techniques and Applications (DICTA) 2017

- (Oral presentation) - Winner of the DSTG award

• Huu Le, Tat-Jun Chin, Anders Eriksson and David Suter: Deterministic Approximate

Methods for Maximum Consensus Robust Fitting. Submitted to IEEE Transactions on

Pattern Analysis and Machine Intelligence (TPAMI) - arxiv: https://arxiv.org/abs/1710.10003





To my parents.

xix





Chapter 1

Introduction

The goal of computer vision research is to build algorithms that enable machines to see and

understand the world at the level of a human. This task, however, is immensely difficult due

to many factors. Among them, the noise and outliers in the measurements obtained from im-

perfect data acquisition devices and preprocessing algorithms are major factors that can impede

the performance of a computer vision algorithm. Therefore, the task of removing outliers and

selecting the most relevant subset of data for further processing is one of the most important

research topics in computer vision; this task is the focus of this thesis.

Given a set of measurements (observations), the goal of robust model fitting is to estimate

a model that is consistent with as many of the relevant data points – so called the inliers – as

possible. If the dataset contains no outliers, traditional least squares estimation is usually suf-

ficient. For outlier-contaminated data, however, a robust estimator must be employed so that

the final results are not affected by the outliers. To demonstrate the importance of robust es-

timators, consider the simple application of two-view image stitching. The input data consists

of two overlapping images – see Fig. 1.1. Assuming that the poses of the two cameras differ

by only a rotation, the images can be aligned by a homography transformation. As prepro-

cessing, SIFT [64] feature points on each image are extracted and a set of putative matches

between the images are produced. Fig. 1.1a plots this initial set of correspondences. As can be

observed, SIFT matching invariably makes mistakes; the green lines indicate correct matches

while wrong pairs are plotted in red. The incorrect matches behave as outliers to the estimation

of the homography. Fig. 1.1b shows the stitching result using the least squares estimate of the

homography, while Fig. 1.1c shows the stitching result obtained by employing a robust estima-

tor (RANSAC [31]). Observe that that the estimate returned by least squares is much worse than

the RANSAC estimate.

Another example problem that requires the use of robust model fitting is three-dimensional

(3D) shape registration. In such applications, the input data is commonly represented in the

1
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(a) Initial correspondences obtained from SIFT matching. Green lines indicate
correct matches (inliers) while red lines indicate wrong matches (outliers).

(b) Stitching result obtained by applying
least squares estimation on the initial cor-
respondences.

(c) Stitching result obtained by using a
robust estimator (RANSAC).

FIGURE 1.1: Example of two-view image stitching.

form of 3D point clouds, which are usually acquired from depth sensors or a 3D reconstruction

algorithm. A preprocessing algorithm may be applied to extract the keypoints for each input

shape to reduce the size of the point clouds. The goal of the point cloud registration problem

is to estimate a transformation that best aligns the two point sets. In the case of rigid shapes,

the transformation consists of a rotation matrix and a translation vector. For non-rigid shapes,

the transformation could be a conformal mapping. Unlike the homography estimation example

discussed above, putative correspondences are not normally used in 3D point cloud registration,

since 3D keypoint matching methods are much less accurate. The transformation, therefore,

needs to be jointly estimated with the set of correspondences. In practice, the input shapes may

only partially overlap. Therefore, the input data contains outliers and a robust estimator needs

to be used. An example of rigid 3D point cloud registration is shown in Fig. 1.2 and Fig. 1.3

shows the registration of two faces, which are examples of non-rigid shapes.
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FIGURE 1.2: Registration of two 3D rigid shapes. Left: Two partially overlapping point clouds
with arbitrary poses. Right: Point clouds aligned using a rigid transformation estimated by a
robust estimation algorithm. Note that the putative correspondence are not available in advance.
Points that have no corresponding matches are the outliers in this case.

FIGURE 1.3: Example of non-rigid alignment of two faces. Left: Initial poses of the two input
faces. Right: Registration result using a robust estimation algorithm. Similar to the rigid case,
the putative correspondences are not available beforehand. Note that due to non-overlapping,
not all points have corresponding matches, which generates outliers for the data.

1.1 Maximum consensus

In computer vision, consensus maximization is a robust fitting framework that has been used

extensively. Given a set of measurements, the maximum consensus approach aims to estimate

a model θ that is consistent with as many of the measurements as possible, where consistency

is up to a pre-defined error threshold. Mathematically, this can be summarized by the following

optimization problem
max

θ,I∈P(N)
|I|

subject to ri(θ) ≤ ε ∀i ∈ I,
(1.1)
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where ri(θ) is the residual function for the i-th observation with respect to the model estimate

θ, N is the number of measurements and P(N) is the powerset (the set of all subsets) of the

measurement index set {1, 2, . . . , N}. The parameter ε is the pre-defined inlier threshold which

decides whether a measurement is inlying with respect to the estimate θ. The set of measure-

ments, the residual functions ri(θ) and the inlier threshold ε depend on the application. In the

following, specific instances of problem (1.1) are listed.

Robust Linear Fitting: Given a set of measurements {ai, bi}Ni=1 where ai ∈ Rd and bi ∈ R,

the model that needs to be estimated is a hyperplane θ ∈ Rd. In the context of (1.1), the robust

linear fitting problem can be written as

max
θ,I∈P(N)

|I|

subject to |aTi θ − bi| ≤ ε ∀i ∈ I.
(1.2)

Consider an example of a robust line fitting, which is shown in Fig. 1.4. Given a set of points

{xi, yi}Ni=1 on the two-dimensional plane, the goal is to estimate the line represented by the

equation y = mx + c (m and c are the parameters) that agrees with as many of the points as

possible. With ai = [xi 1]T , bi = yi and θ = [m c]T , the robust line fitting problem can be

put in the form of (1.2). Fig. 1.4 plots the fitting results obtained from a robust fitting algorithm

(RANSAC) and the least squares estimator. The blue points are the inliers and the red points are

the outliers with respect to the RANSAC solution. Observe that the outliers have greatly biased

the least squares estimate, while RANSAC was able to return a solution that better describes the

underlying structure. In computer vision, robust linear regression plays a major role because it

-1 -0.5 0 0.5 1

-1

0

1

2

3

FIGURE 1.4: Example of a 2D line fitting problem. Blue points are the inliers and red points
are the outliers. The estimate returned by RANSAC was not affected by the outliers, while the
least squares estimate was biased by the outliers and was not able to fit the underlying structure.

is often employed in many estimation tasks.
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Robust Homography Estimation: From the set of correspondences {ui,vi}Ni=1 (obtained

from automatic feature dectection and matching – see Fig. 1.1) the task is to estimate a 3 × 3

homography matrix θ. With the residual function defined to be the transfer error, the problem

can be written as consensus maximization as follows

max
θ,I∈P(N)

|I|,

subject to
∥∥∥∥vi − θ1:2ūi

θ3ūi

∥∥∥∥ ≤ ε ∀i ∈ I, (1.3)

where θ1:2 and θ3 are respectively the first two rows and the third row of the homography matrix,

ūi = [uT 1]T and ‖.‖ is the Euclidean norm in R2. The residual function in (1.3) measures the

Euclidean distance between a point in the first view and its correspondence in the second view

after the transformation θ is applied, while the inlier threshold ε specifies the acceptance error

(in pixels) for a pair of corresponding feature to be counted as inlier. The task of estimating

a homography between two or multiple views is a curcial step in the larger pipeline of many

computer vision applications such as image stitching, 3D reconstruction, and structure from

motion.

Robust point set alignment: Given two point sets M = {mi}N1
i=1 and B = {bj}N2

j=1, where

mi ∈ R3 and bj ∈ R3 are three-dimensional points, the task is to find a mapping Φ : R3 → R3

that best aligns the two point sets M and B. In the context of consensus maximization, this

problem can be formulated as

max
Φ,I∈P(N1)

|I|

subject to ∃bj ∈ B, ‖Φ(mi)− bj‖ ≤ ε ∀i ∈ I.
(1.4)

where ‖.‖ is the Euclidean norm. Note that in this problem, M and B are two separate sets and

their putative correspondences are not available beforehand. Therefore, in order for a point mi

to be counted as inlier, there must exist a point bj ∈ B such that the distance between Φ(mi)

and bj (measured by the residual function ‖Φ(mi)−bj‖) is not greater than the error threshold

ε. Typically, Φ is chosen from a specific class of transformations suitable for the problem at

hand.

In the case of rigid transformation, Φ consists of a rotation matrix R ∈ SO(3) and a transla-

tion vector t ∈ R3

Φ(mi|R, t) = Rmi + t. (1.5)

If the shape undergoes a non-rigid transformation, the function Φ must be chosen to take into

account the deformations of the shape. For many biological objects, the conformal mapping,

which transfers the shapes onto some canonical domains such as the hyperbolic discs or spheres,

is commonly used as a pre-processing technique. In the special case of isometric surfaces, their
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conformal maps can be related by a Möbius transformation, which can be defined as

ΦM (mi|z, θ) = eiθ
mi − z

1−miz̄
, (1.6)

where mi and z are complex numbers corresponding to points on the hyperbolic disc D, z̄ de-

notes the complex conjugate of z and θ ∈ [−π;π]. By substituting ΦM for Φ in (1.4), the

problem of robust non-rigid shape alignment can be casted as an instance of consensus maxi-

mization which can be performed on the cannonical domain. Fig. 1.5 shows an example of a

face alignment problem using conformal mapping, where the faces are mapped onto the hyper-

bolic discs and aligned by estimating the Möbius transformation ΦM . More details on shape

registration using conformal mapping are discussed in Chapter 4.

FIGURE 1.5: Illustration non-rigid shape alignment using conformal mapping. Two partially
overlapping input shapes S1 and S2 are mapped onto hyperbolic discs using the two mapping
functions Φ1 and Φ2 respectively, before robustly estimating the Möbius transformation ΦM .

1.2 Why is maximum consensus hard?

The consensus maximization problem is computationally challenging due to the combinatorial

nature of the problem. It has been established that this problem is NP-hard [19]. To solve the

problem exactly, some form of exhaustive searching is inevitably required. Despite extensive

efforts devoted to solving this problem globally, obtaining the globally optimal maximum con-

sensus solution is not fast in most of the real life applications due to the large number of the mea-

surements and high dimensionality. In practice, this problem is approached mostly by the class

of randomized hypothesize-and-verify methods due to their simplicity and their ability to pro-

vide usually acceptable results. The following section briefly reviews the popular approaches,
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both approximate and exact, for the consensus maximization and describes their strengths and

weaknesses.

1.3 Previous works

1.3.1 Approximate methods

1.3.1.1 Random Sample Consensus (RANSAC) and its variants

RANSAC [31] (RANdom SAmpling Consensus) is arguably one of the most widely used al-

gorithms for consensus maximization. This method works by randomly sampling and fitting

the model onto the minimal subsets, where a minimal subset is defined as the subset of data

that contains the minimum of number data points required to estimate a model. For each fitted

model, the number of inliers of the hypothesis is recorded. The sampling and verfication pro-

cess is repeated until the probabilistic stopping criterion is satisfied. Finally, the model with the

largest consensus size is returned. The idea behind RANSAC is that if one samples a sufficiently

large number of minimal subsets, it is likely that a minimal subset with all inliers will be chosen,

and the hypothesis of that subset provides a good estimate.

Despite its simplicity, RANSAC performs quite well in many applications. The popularity of

RANSAC had inspired multiple variants. Most variants aim to achieve a higher quality solution

and/or lower execution time. Among the RANSAC variants, LO-RANSAC (Locally Optimized

RANSAC) [23, 56] is a notable example that aims to locally optimize the solution of RANSAC.

Based on the observation that an uncontaminated minimal subset produces a hypotheis model

that is close to the optimal solution, LO-RANSAC samples larger-than-minimal subsets, where

the samples are drawn from the current best-so-far inlier set. This procedure is embedded into

RANSAC’s iterations and is triggered when RANSAC solution is updated. The method has

been shown to achive good improvements over the original RANSAC algorithm.

Several RANSAC variants [22][84] use additional domain information to guide the sampling

process, particularly in two-view geometry problems where the data are correspondences associ-

ated with matching scores. Correspondences with higher scores are favored for selection, under

the assumption that they are more likely to lead to good hypotheses. Empirical results demon-

strated that these guided sampling strategies achieved substantial improvements over standard

RANSAC.

There exist fundamental shortcomings in the random sampling. Primarily, its randomized na-

ture offers no guarantee on finding good estimates. Moreover, different runs may give different

results. LO-RANSAC also suffers the same weakness as the inner sampling routine also employ
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randomized trial-and-error procedure instead of a deterministic search to improve the estimate.

For guided sampling methods that require additional domain knowledge, they are ineffective on

problem settings where useful/accurate domain knowledge is not available.

1.3.1.2 Methods employing convex optimization

Besides the class of randomized methods, approximate methods such as `1 approximation [74]

have been developed to tackle the consensus maximization problem. This algorithm works by

first reformulating the consensus maximization problem into an outlier minimization problem,

where the outlier count is represented by the `0 norm of the slack variables (more details are

discussed in Sec 2.3.2.1). To make the problem amenable to convex optimization, the objective

function is relaxed by minimizing the `1 norm of the slack variables instead. In the context of

linear regression, this relaxation results in an instance of linear programming (LP), which can

be solved efficiently using mature LP algorithms.

Based on the observation that the maximum residual of all the data points that belong to

any consensus set I is less than or equal to the inlier threshold ε, an algorithm based on `∞
minimization can be constructed to solve the maximum consensus problem approximately [79].

The `∞ minimization estimates the model that minimizes the maximum residuals (more details

in Sec 2.1.2). The idea behind the outlier removal algorithm is to recursively solve the `∞
fitting problem and remove the data whose residuals equal the minimax value. The algorithm is

stopped when the minimax value is not greater than the inlier threshold ε. Sec. 2.3.2.2 provides

deeper discussion on this algorithm.

In general, the approximate methods based on convex optimization work well in moderately

difficult instances, i.e., low outlier rate and/or the outliers are uniformly distributed. In the later

chapters, it will be demonstrated that these methods may fail on many practical datasets.

1.3.2 Exact methods

1.3.2.1 Mixed Iteger Program (MIP)

The maximum consensus problem is a special case of maximum feasible subsystem (MaxFS)

problem [20]. Therefore, consensus maximization can be solved up to global optimality by

converting it into an instance of mixed integer program (MIP). If the constraints are linear, it

becomes a special case of mixed integer linear program (MILP) – more details are discussed

in Section 2.4.1. The MIP re-formulation enables consensus maximization to be tackled by

popular off-the-shelf solvers (Gurobi or IBM’s CPLEX, etc.). In practice, as the problem is also

intractable in general, solving MIPs exactly is computationally expensive.
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Most state-of-the-art MIP solvers employ branch-and-bound (BnB), which is a global opti-

mization technique that are frequently used to solve non-convex optimization problems [45], to

search for the optimal solution. In computer vision, it has also been used extensively for the

robust geometric matching problems [34, 75, 33]. BnB works by dividing the search space into

smaller subdomains. For each subdomain, a bounding function is evaluated to decide whether

that particular subdomain is pruned or further divided. The effectiveness of a BnB algorithm

relies on the tighness of the bounding function. Branch-and-bound has exponential complexity

in the worst case, thus renders it impractical for many real-time applications. More details on

the mechanism behind BnB are discussed in Sec. 2.4.3.

1.3.2.2 Tree search

An interesting property of the maximum consensus problem is its underlying tree structure. By

formulating consensus maximization as an instance of tree search, many works have proposed

different tree traversal strategies. The standard bread-first-search approach was investigated

in [67]. This strategy was then improved by introducing a heuristics and employ the A* search

strategy [18], which significantly speed up the time needed to reach the optimal solution. How-

ever, these algorithms are still far from practical for problems with large input as it may take

exceptionally long time for the algorithm to finish, especially for problems in high dimension-

ality.

1.4 Motivations and contributions

Despite longstanding research efforts in consensus maximization, there remain many avenues

for research. The specific contributions of this thesis are summarized as follows:

• The first contribution of this thesis is a novel tree sampling algorithm to solve the max-

imum consensus problem. State-of-the-art guided sampling techniques require domain

information such as keypoint matching scores, thus they cannot be easily extended. Tak-

ing advantage of the fact that the maximum consensus problem can be formulated as an

instance of tree search, a randomized algorithm based on the Monte Carlo Tree Search

(MTCS) is proposed. This method is a guided sampling strategy that makes use of the

underlying geometric structure to accelerate the search. It is emperically demonstrated

that the method outperforms traditional RANSAC and its variants.

• The second contribution of this thesis is a novel globally optimal algorithm for estimating

Möbius transformations to robustly align surfaces with topological discs. As discussed

previously, this enables the robust estimation of conformal maps. Current algorithms
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for estimating Möbius transformations often cannot provide satisfactory alignment or are

computationally too costly. Unlike previous methods, the proposed algorithm determinis-

tically calculates the best transformation, without requiring good initializations. Further,

the proposed algorithm is also much faster than previous techniques in practice.

• The third contribution of this thesis is to propose deterministic approximate algorithms for

maximum consensus estimation. The proposed algorithms represent a new class of max-

imum consensus solvers, that sit between randomized and globally optimal approaches.

One of the proposed algorithm is based on the non-smooth penalty method with a Frank-

Wolfe style optimization scheme, the other is based on the Alternating Direction Method

of Multipliers (ADMM). Both algorithms solve convex subproblems to efficiently com-

pute the update step. It can be demonstrated that the algorithms can greatly improve a

rough initial estimate, such as those obtained using least squares or a randomized maxi-

mum consensus heuristic.

1.5 Thesis outline

The rest of this thesis is structured as follows:

• Chapter 2 summaries the fundamental theory behind the maximum consensus problem,

including the special case of robust non-rigid correspondence problem. Chapter 2 also

reivews some of the previous works and discusses the theoretical and practical gaps that

will be filled by the works developed in the following chapters of this thesis.

• Chapter 3 describes the random tree sampling algorithm (RATSAC) for maximum con-

sensus.

• Chapter 4 describes the novel algorithm for optimal Möbius alignment.

• Chapter 5 and Chapter 6 describes the deterministics local refinement algorithms.

• Chapter 7 provides concluding remarks and discusses future work.



Chapter 2

Model fitting - the background

This chapter discusses the background of robust model fitting and the maximum consensus prob-

lem, and surveys in detail a number of commonly used algorithms and optimization techniques.

The outline of this chapter is as follows:

• Section 2.1 discusses non-robust estimation, including least squares estimation, `∞ esti-

mation, and the algorithms to solve these problems.

• Section 2.2 provides an overview of robust model fitting, with particular attention on the

maximum consensus problem, which is the target problem of this thesis.

• The remaining sections review existing methods to solve the maximum consensus prob-

lem.

2.1 Non-robust estimation

2.1.1 Least squares estimation

As the name “least squares” suggests, in least squares estimation problem, the parameters are

estimated by minimizing the sum of the squared residuals. Least squares estimation is usually

sufficient if the dataset contains no outliers. If there are outliers, however, the least squares

estimate will be heavily biased – see Fig. 1.4. Mathematically speaking, the model θ is obtained

by solving

min
θ

N∑
i=1

r2
i (θ), (2.1)

where N is the number of data points and ri(θ) is the residual of discrepancy between the i−th

measurement and its expected values with respect to the model parameter θ.

11
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2.1.1.1 Linear least squares

When the observations can be expressed linearly in terms of the parameters θ ∈ Rd, each

residual function ri(θ) is a linear function of the form

ri(θ) = xTi θ − yi, (2.2)

where the set {xi, yi}Ni=1 (with xi ∈ Rd and yi ∈ R) contains the measurements. Let X =

[x1,x2, . . . ,xN ]T , Y = [y1, y2, . . . , yn]T and denote by F the objective function of (2.1), i.e.,

F =
∑N

i=1 r
2
i (θ). With linear residual (2.2), problem (2.1) can be expressed in matrix form as

min
θ
‖Xθ −Y‖2. (2.3)

As (2.3) is a convex quadratic program, its global solution θ∗ of must satisfy the first-order

optimality condition:
∇F
∇θ

(θ∗) = 0, (2.4)

which is equivalent to

2XTXθ − 2XTY = 0. (2.5)

From (2.5), the solution θ∗ of (2.3) can be computed in closed form as

θ∗ = (XTX)−1XTY. (2.6)

Fig. 2.1 shows the example of linear least squares on a line fitting problem for datasets with and

without outliers.

2.1.1.2 Nonlinear least squares

On the other hand, if the residual functions are not linear, the problem becomes nonlinear least

squares. Usually, the associated optimization problem becomes non-convex, and solving non-

linear least squares globally is intractable in general. In practice, non-linear least squares are

tackled by non-linear optimization approaches such as Gauss-Newton or Levenberg-Marquardt.

These methods, however, require good initializations to prevent them from converging to bad

local minima.

2.1.1.3 Iterative Closest Point (ICP)

For many geometric matching problems problems where putative correspondences are not avail-

able in advance, for example, the shape correspondence problems discussed above, iterative
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FIGURE 2.1: Example of linear least squares for a line fitting problem. (a) Least squares fit for
a set of 2D points without outliers. (b) When five points are corrupted and become the outliers,
the least squares estimate is biased by these outliers (plotted in red) and can no longer represent
the underlying structure.

closest points (ICP) is frequently employed to jointly estimate the transformation and the corre-

spondences. At its core, ICP can be viewed as solving a least squares problem since it minimizes

the sum of the squared Euclidean distances between matching points

min
Φ

N1∑
i=1

‖Φ(mi)− bj‖2, (2.7)

where Φ is the transformation that needs to be estimated, mi is a point on the source surface and

bj is the point on the target surface that is closest to the transformed mi. ICP works by alter-

nating between two steps: point-wise correspondence assignment and geometric transformation

estimation. At each iteration, every single point on the source surface is associated with its near-

est neighbor on the target surface to form a pair of correspondence. Then, a transformation is

estimated by minimizing the sum of squares of the Euclidean distances between the correspon-

dences. The process is repeated until the algorithm converges, i.e., no more improvements can

be made. It is a well-known fact that ICP requires good initialization for it to work properly

as the method may easily converge to a bad alignment with a poor starting point. Moreover, as

a least squares approach, ICP is easily biased by outliers. Here, outliers are points that do not

have correct match due to non-overlapping. Fig. 2.2 shows examples of registering two point

sets using ICP. Observe that with good initialization (Fig. 2.2a), ICP provides good alignment

(Fig. 2.2b), while with bad initialization (Fig. 2.2c), ICP converges to a poor solution (Fig. 2.2d).



Chapter 2. Model fitting - the background 14

(a) (b)

(c) (d)

FIGURE 2.2: Example of ICP for two partially overlapping point clouds (bunny). Top row:
Point clouds differ by a small transformation (a), ICP can provide relatively good alignment
(b). Bottom row: Point clouds differ by a large transformation (c), ICP converged to a poor
alignment (d).

2.1.2 `∞ estimation

Another popoular non-robust estimation approach is `∞ estimation, i.e., to minimize the largest

residuals. Mathematically, this is the optimization problem:

min
θ

max
i
ri(θ), (2.8)

The problem (2.8) is also referred to as the “minimax” problem. The appeal of `∞ optimization

lies in the fact that it pocesses one single minimum, which is also the global minimum as long

as ri(θ) is quasi-convex. This is illustrated in Fig 2.3 for a sample problem in one dimension,

where ri(θ) are the quasiconvex functions.

In computer vision, the advantage of `∞ estimation makes it more favorable than the tradi-

tional least squares method since a variety of geometric estimation problems have quasiconvex
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residuals. There have been much efforts in developing globally optimal algorithms for the `∞
problem [41, 49, 50, 60].

FIGURE 2.3: Example of a `∞ estimation problem for four quasiconvex residuals in one di-
mension. θ∗ (plotted in red) is the only local minimum, which is also the global solution of the
problem.

Consider the equivalent formulation for problem 2.8

min
θ,γ

γ,

subject to ri(θ) ≤ γ, ∀i = 1 . . . N.

(2.9)

Intuitively, by solving (2.9), one obtains the minimum γ ∈ R such that all the residuals are not

greater than γ, which means the maximum residual is minimized.

Bisection is a simple approach to solve the `∞ estimation problem. Based on formula-

tion (2.9), one can successively bisect (halve) γ to find the smallest γ such that all the constraints

are satisfied. For each candidate γ̂, the algorithm requires solving the feasibility problem

Find θ

subject to ri(θ) ≤ γ̂ ∀i
(2.10)

If the residual functions are quasiconvex, solving the feasibility problem ammounts to solving a

convex feasibility problem, which can be done efficiently by several solvers.

Although the `∞ estimation problem can be solved efficiently up to global optimality, like

least squares, it is still heavily affected by the outliers. Fig.2.4 illustrates a line fitting problem

with `∞ estimation and how the result is affected by the outliers.
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FIGURE 2.4: Plot of `∞ estimate versus a robust estimate (RANSAC) for a robust line fitting
problem. Blue points are the inliers and red points are the outliers with respect to the RANSAC
estimate. Note that similar to the least squares estimate, `∞ is also serverly biased by the
outliers.

2.2 Robust model fitting techniques

2.2.1 M-estimation

M-estimation [46] is an established method in statistics which was later adopted for the task of

robust estimation in computer vision. Instead of minimizing the sum of squared residuals, the

M-estimate is obtained by minimizing the sum of a set of ρ functions defined over the residuals

min
θ

∑
i

ρ(ri(θ)). (2.11)

M-estimators generalize maximum likelihood estimators (including least squares estimator).

Note that when ρ(x) = x2, (2.11) is identical to (2.1) and the problem becomes least squares

estimation. To be outlier-robust, the ρ function should have certain characteristics [5]. Among

them, the class of redescending M-estimator has a high degree of robustness. The following are

examples of some robust ρ functions

• `1
ρ(x) = |x| (2.12)
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FIGURE 2.5: Plot of different robust loss functions for M-estimator.

• Huber

ρ(x) =

x2 for |x| < b

2b|x| − b2 otherwise.
(2.13)

• Cauchy

ρ(x) = b2log(1 + x2/b2) (2.14)

Refer to Fig. 2.5 for the plots of the ρ functions listed above. Note that some of the functions

require additional parameters (e.g. b) that define the shape of the functions. Depending on the

choice of ρ and the characteristics of the residuals, solving (2.11) can be difficult due to its non-

convexity. Therefore, M-estimators can be computed using standard optimization algorithms,

assuming that good initializations are provided.

Iteratively Reweighted Least Squares (IRLS) is commonly used for M-estimation. IRLS

works by successively update θ by solving the weighted least squares problem, where the

weights at the t-th iteration is computed as

wi(θ
t) =

ρ′(ri(θ
t))

2ri(θt)
. (2.15)

where θt denotes the value of θ at the t-th iteration.

With the weights (2.15), the weighted least squares problem to update θ is

θt+1 ← arg min
θ

∑
i

wi(θ
t) ri(θ) (2.16)

If the robust loss function ρ satisfies some conditions [5], it is proved that the sequence of IRLS

iterates converges to the set of critical points of (2.11).
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FIGURE 2.6: An example of robust line fitting using M-estimator (with Huber loss function).
Unlike least squares, by using a robust loss function, M-estimator is able to return an unbiased
estimate which is very close to RANSAC solution.

Figure 2.6 shows the fitting results produced by a m-estimator with Huber loss function. It

can be seen that M-estimator is not as affected by the outliers as the least squares.

2.2.2 Least Median of Squares

The Least Median of Squares (LMS) is a robust estimator initially proposed by Rousseeuw [77]

that seeks to find an estimate θ that is the solution of:

min
θ

med (ri(θ))2 (2.17)

It has been established in [77] that there always exists a solution to (2.17). LMS has high

breakdown point of 0.5, which means that it can handle up to 50% of outliers without producing

a biased result.

Unfortunately, the non-smooth median operator makes LMS difficult to be solved, as the

gradient information cannot be used to perform iterative updates. Consequently, the optimal

LMS estimator can only be obtained by bruteforce search over all possible subsets of data or by

employing combinatorial optimization techniques. It has been proven in [53] that for a set of N

data points in Rd, the LMS problem (2.17) has
(d+bn−1

2
c

d

)
local minima.

As enumerating through all the local minima to solve the problem globally is computationally

intractable in general, several randomized or heuristics approaches have been proposed to obtain

suboptimal solutions [70, 83]. Most of the randomized algorithms proposed to solve LMS have

strong connections with RANSAC, which will be discussed in Section 2.3.1.1.
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2.2.3 Consensus maximization

Consider a generalization of the least median of squares where we minimize the k-th largest

residual. This yields a robust estimate if there are k inliers in the data. Mathematically, this

generalized form of least median of squares is defined as

min
θ

max
i

(ri(θ))k, (2.18)

where (ri(θ))k gives the k-th largest residual. This problem remains intractable.

In practice, one may not know in advance the number of true outliers. An alternative way

to achieve robustness is to allow only a maximum error for the inliers. This gives rise to the

maximum consensus problem
max
θ

|I|,

subject to ri(θ) ≤ ε,
(2.19)

where we maximize instead the consensus or the number of inliers with threshold ε of the can-

didate model θ.

Although maximum consensus is NP-hard, it is commonly used in computer vision because

the inlier threshold can be guessed from the application context. For example, in homography

estimation, a good estimate requires the transfer errors of the inliers to be within a few pixels.

In several computer vision applications, the residuals are often written in the fractional form

ri(θ) =
‖aTi θ + bi‖
cTi θ + di

, s.t. cTi θ + di > 0, (2.20)

which admits the pseudo-convex property.

2.3 Approximate algorithms for consensus maximization

2.3.1 Randomized Methods

Due to the the intractability of maximum consensus, many practitioners employ the randomized

methods to approximately solve the problem. This section introduces the well-known RANSAC

algorithm, and several of its variants.



Chapter 2. Model fitting - the background 20

2.3.1.1 RANSAC

RAndom Sample Consensus is one of the most commonly used methods for consensus maxi-

mization. RANSAC works by repeatedly sampling a minimal subset then fitting the model onto

the subset. The number of data points that are consistent with the hypothesis is measured for

each sample. Fig. 2.7 illustrates three main steps in RANSAC’s sampling process. Finally, the

model with the largest consensus size is returned. The sampling process stops after a fix number

of iterations or when a stopping criterion is satisfied.

(a) (b) (c)

FIGURE 2.7: Illustration of the RANSAC algorithm for fitting a line in 2D. Given a set of
points (a), RANSAC randomly samples minimal subsets of two points then fits a model on
each subset (b). The model with the largest consensus size is returned (c).

The stopping criterion is computed based on the inlier ratio in the dataset. Let θ ∈ Rd and

the proportion of inliers in the set X of measurements be η. Let S denote the sampled minimal

subset, hence |S| = d. As S is sampled uniformly from X , the probability of S containing

all inliers is ηd. Consequently, the probability that S contains at least one outlier is 1 − ηd.

Therefore, after T iterations, the probability that none of the minimal samples contains all inliers

is (1− ηd)T .

Let ρ be the confidence such that after T minimal subsets have been sampled, at least one of

them contains all inliers. Therefore,

1− ρ = (1− ηd)T , (2.21)

and T can be solved as

T =

⌈
log(1− ρ)

log(1− ηd)

⌉
(2.22)

In practice, the inlier ratio is unknown as a priori. A commonly used technique to circumvent

this issue is to incrementally update T based on the largest estimated conesensus size. The

RANSAC method can be summarized by Algorithm 2.1.



Chapter 2. Model fitting - the background 21

Algorithm 2.1 RANSAC [31]

Require: Data X = {xi}Ni=1, inlier threshold ε, size of minimal subset d, maximum number of
iterations M , confident probability ρ
Initialize I∗ ← ∅
t← 0.
while t ≤M do
t← t+ 1
S ← Randomly sample d data points from X
θ ← Fit a model onto S
I ← {i|ri(θ) ≤ ε}
if |I| > |I∗| then
I∗ ← I
θ∗ ← θ
Update T (stopping criterion).
if t ≥ T then

Break
end if

end if
end while
return I∗, θ∗.

The iterations required by RANSAC increases exponentially as the ratio of outliers increases.

See Figure 2.8 for an illustration. The runtime of RANSAC also increases with the dimension-
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FIGURE 2.8: Number of iterations required by RANSAC versus the outlier rate as predicted
with (2.22) with the succesfull probability ρ = 0.99 for minimal subsets of size d = 8.

ality of the problem d, which is illustrated in Figure 2.9. This demonstrates that RANSAC is

ineffective on highly-contaminated data and/or high dimensional problems.

2.3.1.2 Locally Optimal RANSAC (LO-RANSAC)
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FIGURE 2.9: Number of iterations required by RANSAC versus the size of minimal subset as
predicted with (2.22) with the succesfull probability ρ = 0.99 and outlier rate of ρ = 50%

(a) (b)

FIGURE 2.10: Illustration of LO-RANSAC algorithm. When the RANSAC solution is updated
(left), the inner sampling loop is triggered (right). The inner sampling loop can sample larger-
than-minimal subsets.

LO-RANSAC [23, 56] refines the RANSAC estimate by embedding an inner sampling loop

into the RANSAC iterations. This is based on the assumption that the estimates from outlier-free

minimal subsets are close to the optimal solution. The inner sampling process is triggered when

the consensus set is updated by RANSAC. The samples for the inner loop is drawn from the

current best-so-far inlier set. This gives LO-RANSAC the advantage of sampling larger-than-

minimal subsets. It has been observed that LO-RANSAC gives considerable improvements

over RANSAC. Figure 2.10 demonstrates the idea behind the LO-RANSAC algorithm and the

method can be summarized in Algorithm 2.2.

2.3.1.3 Guided Sampling

Guided MLESAC (G-MLE) RANSAC samples minimal subsets uniformly from the data since

all the measurements are treated equally. However, in two-view geometry problems inlier prior

are often available. For instance, the feature correspondences provided by SIFT is associated
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Algorithm 2.2 LO-RANSAC [23]

Require: Data X = {xi}Ni=1, inlier threshold ε, minimal subset size d, maximum number of
iterations M , confident probability ρ, inner sampling iterations ML, size of inner samples
dL (dL ≥ d).

1: I∗ ← ∅
2: t← 0.
3: while t ≤M do
4: t← t+ 1
5: S ← Randomly sample d data points from X
6: θ ← Fit a model onto S
7: I ← {i|ri(θ) ≤ ε}
8: if |I| > |I∗| then
9: I∗ ← I

10: θ∗ ← θ
11: for tL = 1, 2, · · · ,ML do
12: SL ← Randomly sample dL data points from I∗
13: θL ← Fit a model onto SL
14: IL ← {i|ri(θL) ≤ ε}
15: if |IL| > |I∗| then
16: I∗ ← IL
17: θ∗ ← θL
18: end if
19: end for
20: Update T (stopping criterion).
21: if t ≥ T then
22: Break
23: end if
24: end if
25: end while
26: return I∗, θ∗.

with matching scores. These matching scores can be utilized to prioritize data that are more

likely to be inliers – this is the key idea behind Guided MLESAC [84]. The score of each data

point is converted into its inlier probability, then a weighted sampling method is applied over the

whole dataset in order to select the minimal subsets. As the algorithm progresses, the chance of

sampling the inlier-only minimal subset is increased.

Progressive Sample Consensus (PROSAC) Similar to G-MLE, PROSAC [22] also utilizes

the matching scores for selecting subsets. This method sorts the matching scores, then uses the

sorted scores to sample the subsets from a progressively larger set of tentative correspondences,

prioritizing data with higher scores. The set of tentative correspondences is gradually expanded

after each iteration, thus PROSAC eventually converges to the standard random sampling.
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2.3.2 Deterministic Approximate Methods

Besides the class of randomized methods, deterministic approximation algorithms have also

been proposed previously. In the moderately difficult settings, these methods can provide decent

solutions. In this section, we review two representative alogrithms, namely the `1 approximation

method and the `∞ outlier removal method.

2.3.2.1 `1 approximation

The maximum consensus problem can be equivalently formulated as minimizing the number of

outliers. Let s = [s1, . . . sN ]T be the vector of slack variables where si corresponds to the i-th

constraint. Consider the outlier minimization formulation for consensus maximization:

min
s,θ

‖s‖0

subject to ri(θ) ≤ ε+ si ∀i
(2.23)

where ‖.‖0 denotes the `0 norm which counts the number of non-zero elements. The intuition

behind (2.23) is that if the data point i is an inlier with respect to the estimate θ, then constraint

ri(θ) ≤ ε holds and si can be set to zero. Otherwise, si must be assigned with a positive value

to satisfy the constraint ri(θ) ≤ ε+ si. Since the problem (2.23) aims to minimize the non-zero

elements of the slack vector, it is equivalently minimizing the number of outliers.

Unsurprisingly, the `0 norm minimization problem (2.23) is also intractable. The problem

can be simplified by relaxing the `0 norm to `1 norm

min
s,θ

‖s‖1

subject to ri(θ) ≤ ε+ si ∀i.
(2.24)

If the residuals are convex, (2.24) becomes a convex problem which can be solved efficiently

using many convex solvers. In the case of linear fitting, ri(θ) are linear functions, hence (2.24)

reduces to a linear program (LP). For some computer vision applications, the residuals can be

linearised, thus making the `1 approximation algorithm an interesting alternative technique for

consensus maximization [74]. In later chapters, it will be shown that `1 approximation fails for

highly-contaminated data and/or the outliers are not uniformly distributed.

2.3.2.2 `∞ outlier removal

Although the minimax problem can be solved efficiently (see Section 2.1.2), it is still easily

biased by outliers, especially in cases where the data is unbalanced – see Figure 2.4. Ideally,
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the outliers should be removed before conducting `∞ fit on the set of inliers. Based on the

above idea, one can conduct recursive `∞ estimation by removing the data with the largest

residuals [79]. This approach may not work for general residual functions. Fortunately, if the

resiudals ri are strictly quasiconvex, it has been shown that removing outliers by discarding the

set of measurements with largest residual is a valid approach. Indeed, one can prove that the set

of measurements with the largest residuals must contain at least one outlier [79].

Observed, however, that if the contraints with the largest residuals are removed and the fit is

performed again with the remaining set, one would get a smaller minimax value. If this process

is repeated until the minimax value is not greater than the threshold ε, the final solution is a fit

θ̂ that is consistent with all the remaining data. Fig. 2.11 shows an example of a line fitting

problem where the detailed execution steps of the `∞ outlier removal algorithm are plotted.

One drawback of this method is that during the outlier removal process, genuine inlers may

also be discarded. This heuristics strategy works well in practice if the inliers concentrate at the

center of the dataset. In case of unbalanced data, the consensus size returned may be very low

and the estiamate if very far from the correct one.

2.4 Exact Algorithms

2.4.1 Mixed Integer Linear Programming (MILP)

In the context of linear regression, one common strategy for solving consensus maximization

problem globally is to convert it into an instance of MILP, which can then be tackled by any

off-the-shelf solvers. Formally, consider the re-formulation of the maximum consensus problem

for robust linear regression:

min
θ,z

∑
i

zi

subject to |xTi θ − yi| ≤ ε+ ziM,

zi ∈ {0, 1},

(2.25)

where z = {zi}Ni=1 are the indicator variables and M is a large positive number. This method

is referred to as “big M” method, as M must be big enough to compensate the inconsistent

constraints. Intuitively, if the i-th data point is an inlier with respect to an estimate θ, the

constraint |xiθ− yi| ≤ ε is satisfied, thus the indicator zi can be set to zero. Otherwise, zi must

be “turned on” (zi = 1) to satisfy the constraint. Solving (2.25) is equivalent to minimizing the

number of outliers. The guidelines for choosing values of M can be found in [20]. Note that

since each absolute value constraint is equivalent to two linear constraints, (2.25) is an instance
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FIGURE 2.11: Example of a line fitting problem using `∞ outlier removal approximation.
(a) `∞ fit on the whole dataset, points with largest residual are plotted in red. (b) (c) The
data points with largest residuals are removed and the `∞ fit is recursively executed on the
remaining data. Note that in (c), two genuine inliers were removed. (d) The algorithm stops
when the maximum residual of the `∞ fit is not greater than the inler threshold ε and the the
final estimate is returned.

of MILP. Given the optimal solution z∗ of (2.25), the best inlier set can be obtained by:

I∗ = {xi, yi|z∗i = 0}.

In the optimization literature, solving a MILP is also intractable in general. Usually, the solvers

must conduct some form of branch-and-bound search to solve for the optimal solution. It is a

well-known fact that the worst-case complexity of branch-and-bound is exponential. Therefore,

converting the problem into an MILP does not make the problem any easier, even with the

state-of-the-art solvers.

2.4.2 Tree Search

As previously discussed, due to the combinatorial nature of consensus maximization, it can only

solved globally by conducting some forms of exaustive search. Therefore, many works on exact

methods for the problem have proposed different techniques to boost up the search process.
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FIGURE 2.12: Illustration of the concept of basis for a line fitting problem. Red circle: level-0
basis. Green circle: level-3 basis. The blue solid line is the `∞ estimation for all the points,
which is identical to the `∞ fit for the level-0 basis. There are 3 points that vioate the estimate
corresponding to the level-3 basis.

Among the proposed methods in the literature, using tree search is a promising approach [67].

The benefit of the tree formulation is that one can apply common tree traversal techniques to

solve the maxium consensus problem. The tree search formulation is made amenable by the

theory of the LP-type problems [78], which will be introduced briefly in the following.

Definition 2.1. (LP-type problem) Given a finite set of constraints S and a function f : 2S →
O where O is an linearly ordered set. The pair (S, f) is called an LP-type problem if f is

monotone and local, i.e., for any P ⊆ Q ⊆ S

• (Monotinicity) f(P) ≤ f(Q) ≤ f(S), and

• (Locality) If f(P) = f(Q) > −∞ and f(Q ∪ {h}) > f(Q) for any constraint h ∈ S ,

then f(P ∪ {h}) > f(P).

Definition 2.2. (Basis) A basis BX of a setX is a subset ofX such that f(X\bi) < f(X ) ∀bi ∈
BX .

Definition 2.3. (Violation, Level, Coverage) For a given basis B, a constraint h ∈ S violates

B if f(B ∪ {h}) > f(B). The violation set V (B) is the set of all constraints that violate B. The

cardinality of V (B) is called the level l(B) of B. The set S\V (B) is called the coverage C(B)

of B

Definition 2.4. (Combinatorial dimension) The maximum cardinality of any basis of S is

defined as the combinatorial dimension of the LP-type problem (S, f).

Definition 2.5. (Feasible basis) A basis B is feasible if f(B) ≤ ε

The LP-type problems are considered to be the generalizations of linear programming (LP)

problem [78] and have strong connection to the `∞ estimation problem discussed in Sec. 2.1.2.
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FIGURE 2.13: Tree structure of the quasiconvex problems in one dimension. fi(θ are the
quasi-convex functions. Red dots indicate local minima of different levels. It can be seen from
the tree that a node from level k can be reached from a node of level k − 1

Particularly, it has been established that the minimax of a set of quasiconvex residuals is an LP-

type problem [27]. Therefore, by letting f(X ) in Definition 2.1 to be the objective function (the

minimax value) of the `∞ estimation problem for the dataX , solving the `∞ problem amounts to

finding the level-0 basis for the dataset. Fig. 2.12 illustrates the level-0 basis and a level-3 basis

for a line fitting problem. Observe that the `∞ fit for the whole point set is identical to the `∞
fit for the level-0 basis. Note that the combinatorial dimension of problems with quasi-convex

residuals is d+ 1, given that θ ∈ Rd [67].

Let I∗ be the best inlier subset of the maximum consensus problem and B∗ be the basis of

I∗. The problem reduces to finding B∗, which is the basis at the lowest level (shallowest node)

that is feasible (i.e., f(B∗) ≤ ε). Based on the reduction theorem [60], the optimal solution can

be found by enumerating all subsets of size at most (d + 1). However, this is impractical for

problems in high dimensions with large number of constraints. It has been established in the

literature [67] that this problem can be solved more efficiently without exhaustive enumeration

of the bases, which can be made possible by the following theorem.

Theorem 2.6. Every basis of level k can be reached from a basis of level k − 1.

Refer to [67] for the proof of Theorem (3.7). This theorem enables the formulation of the tree

structure for solving consensus maximization by associating each node of the tree with a basis

according its level. A node of level k posesses child nodes of level k+1. The maximum number

of children of each node is therefore the combinatorial dimension of the problem. Fig. 2.13

illustrates the concept of a tree for a problem in one dimension.
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As the tree is formulated, different tree traversal techniques can be used to search the tree.

The traditional BFS technique was proposed in [67]. Recently, the use of A* [18] has shown

great improvements in search for the optimal solution. However, even the state-of-the-art exact

algorithms are still far from practical for real-life problems with high dimensions and large

number of measurements.

2.4.3 Branch and Bound

For many difficult non-convex optimization problems, if a globally optimal solution is desired,

branch-and-bound is a commonly used algorithm. This method works by successively parition-

ing the search domain into smaller subdomains. For each subdomain, a bounding function is

evaluated. Based on the associated value of the bounding function, the algorithm can decide

whether the subdomain is pruned or further partitioned. Without loss of generality, consider the

optimization problem over the domain S

max
x∈S

f(x), (2.26)

where f(x) can be a non-convex function. Let f(x̂) be the best-so-far objective value of the

problem obtained during the search process. For a subdomain D ⊆ S, let g(D) denotes its

bounding function. The function g(D) is constructed in such a way that it can be evaluated

efficiently and the following condition must be satisfied:

g(D) ≥ f(x) ∀x ∈ D (2.27)

Clearly, if g(D) ≤ f(x̂), the subdomain D contains no values of x that can improve the solution,

FIGURE 2.14: Illustration of branch and bound for a problem in one dimension. The current
best-so-far solution is f(x̂). The function g(Di) is the (upper) bounding function for the parti-
tion Di. The partitions D1 and D5 are pruned because g(D1) < f(x̂) and g(D5) < f(x̂), while
D2, D3 and D4 are kept for further partitioning since their upper bound values are greater than
f(x̂).
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thus D can safely be pruned. Otherwise, the subdomain D is then continued to be further parti-

tioned. If a subdomain D ⊆ S is selected to be partitioned, it will be divided into n subdomains

D1,D2, . . .Dn such that

D1 ∪ D2 ∪ · · · ∪ Dn = D, (2.28)

and

Di ∩ Dj = ∅ ∀i, j ∈ {1, 2, . . . , n} (2.29)

The branch and bound algorithm stops when the search space can no longer be partitioned (the

smallest size of a partition is defined up to a precision γ), and the best-so-far solution is returned

as the global optimum. The complexity of the algorithm is exponential. Fig. 2.14 illustrates the

mechanism behind branch and bound for a one dimentional optimization problem.

2.5 Preprocessing technique - guaranteed outlier removal

Although the `∞ outlier removal algorithm discussed in 2.3.2.2 can be applied if the data is not

heavily biased, there are still chances that genuine inliers are removed during the process. Thus,

before a data instance is discarded, it must be tested whether it is a true outliers. An algorithm

to efficiently identify true outliers was developed in [17]. The algorithm begins with the MILP

formulation for the maximum consensus problem (2.25) and rewrite it as a nested problem

min
k=1,..,N

βk (2.30)

where βk is defined as the optimal value of the following subproblem:

min
θ,z

∑
i 6=k

zi

subject to |xTi − yi| ≤ ε+ ziM,

zi ∈ {0, 1},

|xTk θ − yk| ≤ ε.

(2.31)

Intuitively, the objective of each subproblem (2.31) is the minimum number of data points that

need to be removed to result in a consistent subset such that the data point k must not be re-

moved. Assume that we are given the lower bound value αk and a suboptimal solution θ̂, ẑ

to (2.31) such that αk ≤ βk and
∑

i ẑi ≥
∑

i z
∗
i (with z∗ is the optimal solution to (2.31)).

Dentote ‖ẑ‖1 by û. Then, it can be proven that if αk > û, the data point {xk, yk} is a true

outlier [17].

This outlier removal algorithm can be used as a pre-processing step to remove points that are

guaranteed to be true outliers with respect to the optimal solution. With a proper choice of points
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to remove, it can significantly boost the runtime for optimal solvers. Certainly, if every points

in the data is tested and outliers are removed, one come up with the optimal solution for the

original problem. However, this approach may not be faster than other state-of-the-art solvers

as each test requires the execution of the MILP solver.
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3.1 Introduction

Many applications in computer vision require the estimation of a model that best fits a set of

observations. While closed-form solutions exist, they are highly vulnerable to outliers. Take

least squares estimation as an example, the presence of only one erroneous outlier can dras-

tically drive the estimation away form the actual solution. M-estimation algorithms [46] and

other robust estimators were then developed to implicitly discard the outliers during the opti-

mization process. Such estimators, however, are still subjected to the non-convexity of the cost

function and thus hard to be solved optimally. RANSAC [31] and its variants, which belong

to the class of randomized methods, are arguably the most widely used approaches due to their

simplicity and the ability to provide decent results with resonable execution time. Leveraging

from the random sampling scheme of RANSAC, considerable efforts have been devoted to im-

proving its efficiency either by modifying the sampling strategy or changing the cost function.

LO-RANSAC [23] (and its improvement [56]), for instance, performs a local optimization pro-

cedure every time RANSAC’s solution is updated, which is done by iteratively executing the

inner sampling steps with larger-than-minimal subsets then re-estimate the model with iterative

re-weighted least squares (IRLS). MLESAC [85] combines the sampling strategy with the max-

imum likelihood framework to solve the problem. In the class of guided sampling using point

priors, PROSAC [22] and Guided-MLESAC [84] utilize the feature matching scores to prioritize

samples that are more likely to result in a good solution. The drawback of these guided sampling

strategies lies in the fact that they rely heavily on the priors provided by the feature extractors,

which may not be readily available in some applications.

In parallel to the class of randomized methods, it is also desirable to develop methods that can

solve the problem globally. In this area, there has been some remarkable advances recently [18,

59, 72, 96]. However, solving the maximum consensus up to global optimality is by no mean

an easy task as this problem is computationally intractable in general. Meanwhile, the solution

provided by the randomized methods are quite unpredictable and still far from optimal.

To mitigate the gap between speed and accuracy, we propose an entirely new guided sam-

pling strategy that can take advantage of the geometric information embedded in the problem.

Our method works under the framework of the LP-type problems and Monte Carlo Tree Search.

Unlike other guided sampling schemes such as PROSAC [22] or Guided-MLESAC [84], in-

lier priors are not required in our method, even though they can still be utilized to improve the

results. During the sampling process, outliers are implicitly removed by the algorithm, which as-

sists the later iterations in finding a good solution much easier. Empirical experiments show that

our algorithm outperforms other state-of-the-art methods and can approach optimal solutions.

We name our algorithm RATSAC1 (RAndom Tree SAmple Consensus).
1Coincidentally, the acronym “RATSAC” has been used in another work [76] published 10 years ago that also

tackled the robust estimation problem. Our approach, however, is different from the approach used by the authors in
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3.2 Problem definition

Given a set of N observations X = {xi}Ni=1 and an inlier threshold ε, the goal of consensus

maximization is to find a parameter vector θ ∈ Rd that is consistent with the largest subset of

measurements. In other words, one wishes to select the best subset I∗ ⊆ X that contains the

maximum number of consistent constraints (or “inliers”). The problem can be mathematically

formulated as:
max
θ,I⊆X

|I|

subject to ri(θ) ≤ ε ∀i ∈ I
(3.1)

where {ri(θ)}Ni=1 are the residual functions that determine the estimation errors with respect to

the transformation θ. Throughout this work, we focus on the quasi-convex residual functions,

particularly, those in the form of:

ri(θ) =
‖Aiθ + bi‖p
ciθ + di

with ciθ + di > 0 (3.2)

where Ai ∈ R2×d, b ∈ R2, ci ∈ Rd and di ∈ R. The notation ‖.‖p denotes the `p norm

(p = 1, 2 and∞ are commonly used).

Quasi-convex residual is quite popular in many geometry estimation problems. In practice, the

set of observations {xi}, the inlier threshold ε and the residual functions {ri(θ)} are problem-

specific. A few examples are listed below.

• Linear regression: In this type of problem, an observation is given as a point ai ∈ Rd

and a scalar bi: xi = [aTi bi]
T . The estimate is a hyper-plane θ ∈ Rd with the residual

function defined as

ri(θ) = |aTi θ − bi| (3.3)

Besides such straightforward applications as line and plane fitting, robust linear regression

is commonly employed for several other geometric problems in computer vision. In fun-

damental matrix estimation, for instance, the set of epipolar constraints can be linearized

to form a linear regression problem. The parameter θ that needs to be estimated is a 3× 3

fundamental matrix and ε defines the algebraic error threshold for the inliers.

• Homography Estimation: Each data point xi is an initial match xi = {ui;vi} where ui is

a 2D image point in one view and vi is the corresponding match in the other view. These

initial matches are provided by some feature extractors. The estimation θ ∈ R9 is a 3× 3

[76]. Since we are not comparing our algorithm against [76], we think that it would be interesting to contribute to
the robust estimation toolbox another “RATSAC” algorithm.
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homography matrix and the residual function ri(θ) is defined as the transfer error:

ri(θ) =
‖(θ1:2 − viθ3)ũi‖p

θ3ũi
(3.4)

where θj is the j-th row of the homography matrix and ũi = [uT 1]T .

• Trianguation: An observation in a triangulation problem is an image point xi in the i-

th view together with its corresponding camera matrix Pi. The estimate θ is the point

in 3D that corresponds to the image point xi. The residual function for triangulation is

determined by the reprojection error

ri(θ) =
‖(Pi

1:2 − xiP
i
3)θ′‖p

Pi
3θ
′ (3.5)

where θ′ = [θT 1]T , Pi
k is the k-th row of the camera matrix associated with the i-th

view.

It has been established that (3.4) and (3.5) are quasi-convex, while (3.3) is convex which

also satisfies the quasi-convex requirements. The interested readers are referred to [51] for more

details about quasi-convex functions and several other applications that can be solved by our

framework.

3.3 Background

Before proceeding, we introduce some definitions and problems that will be used later through-

out the paper. Note that an “observation” (or “measurement”) can sometimes be regarded to as

“constraint” and these terms can be used interchangeably.

Definition 3.1. (`∞ estimation problem) Given a set of observations X , the `∞ problem finds

the estimate θ that minimize the maximum residual. Let f(X ) be the solution of this problem.

Then f(X ) is written as:

f(X ) = min
θ

max
i=1:|X |

ri(θ) (3.6)

Recently, the `∞ estimation problem (which is also referred to as the “minimax” problem) for

quasi-convex residuals has been explored extensively in computer vision research. The attraction

of (3.6) lies in the fact that it has one single local minimum, which is therefore also the global

minimum. Multiple methods to obtain the `∞ estimate have been introduced in the literature[60,

51, 27]. Interestingly, the `∞ framework has a strong relationship with the class of LP-type

problems and can be solved by searching through the subsets of size at most (d + 1) [60]. As
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will be shown in the following sections, the problem (3.6) is the sub-problem for consensus

maximization in our algorithm.

Definition 3.2. (LP-type problem) Given a finite set of constraints S and a function f : 2S →
O where O is an linearly ordered set. The pair (S, f) is called an LP-type problem if f is

monotone and local, i.e. for any P ⊆ Q ⊆ S ,

• (Monotinicity) f(P) ≤ f(Q) ≤ f(S), and

• (Locality) If f(P) = f(Q) > −∞ and f(Q ∪ {h}) > f(Q) for any constraint h ∈ S ,

then f(P ∪ {h}) > f(P).

Definition 3.3. (Basis) A basis BX of a set X is a subset of X such that such that f(X\bi) <
f(X ) ∀bi ∈ BX .

A basis BX can also be defined as the minimal subset of X such that f(BX ) = f(X ). For

a non-degenerate configuration, each subset X ′ ⊆ X has a unique basis. In this work, we

assume that all problems are non-degenerate, as degenerated cases can be tackled by applying

infinitesimal perturbations [58].

Definition 3.4. (Violation, Level, Coverage) For a given basis B, a constraint h ∈ S violates

B if f(B ∪ {h}) > f(B). The violation set V (B) is the set of all constraints that violate B. The

cardinality of V (B) is called the level l(B) of B. The set S\V (B) is called the coverage C(B)

of B.

Intuitively, the violation set of a basis B ⊆ X contains constraints that have residuals greater

than f(B). For the optimal solution B∗, f(B∗) ≤ ε, the coverage C(B∗) is the optimal inlier set

I∗ and the violation set contains all the outliers with respect to the optimal estimate θ∗.

Definition 3.5. (Combinatorial dimension) The maximum cardinality of any basis of S is

defined as the combinatorial dimension of the LP-type problem (S, f). The combinatorial di-

mension of all quasi-convex problems is (d+ 1), given that θ ∈ Rd.

3.4 Maximum consensus as tree search

3.4.1 Outlier removal

It is a well-known fact that L∞ optimization is still vulnerable to outliers. Starting from the

initial fit for the whole set of constraints, the outliers must be removed in other to get to the

optimal solution. In the context of robust estimation, there have been several proposals to re-

move outliers optimally or heuristically. One trivial way is to iteratively perform fitting then
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remove measurements that induce the largest residuals until the cost function is not greater than

a given threshold ε [79]. However, this approach may end up removing genuine inliers. The

authors in [17] introduced a method which can guarantee to identify the actual outliers. Yet, in

order for all true outliers to be discarded by this method, there must be a sequence mixed integer

programming problems to be solved in order to test every single data point. Consequently, for

highly contaminated data, the approach of removing true outliers will not give any advantage

over solving the original problem.

3.4.2 Tree structure

Let I∗ be the best inlier subset of the problem and B∗ be the basic of I∗. The problem reduces

to finding B∗, which is the basic at the lowest level (shallowest node) with f(B∗) ≤ ε. Based

on the reduction theorem [60], one can just enumerate all subsets of size at most (d + 1) to

find the best solution. However, this is impractical for problems in high dimensions with large

number of constraints. It has been established in the literature that this problem can be solved

more efficiently without exhaustive enumeration of the basics.

Definition 3.6. A basic B is feasible if f(B) ≤ ε

Theorem 3.7. Every basic of level k can be reached from a basic of level k− 1. (Refer to [67]

for the proof of this Theorem)

Theorem (3.7) advocates the formulation of the tree structure for solving consensus maxi-

mization by associating each node of the tree with a basic (denote BN as the basic associated

with node N). A node of level k posesses child nodes of level k + 1. The number of children

of each node is therefore the combinatorial dimension of the problem. Figure 1a illustrates the

concept of a tree for a problem in one dimension.

Given the tree structure, many popular tree traversal techniques can be applied to solve the

problem. Starting from level 0 basic (root node), Matousek [67] conducts the breath-first-search

to find the shallowest node that is feasible. [18] uses A* to improve the search by defining a

heuristic function that assists the search process to prioritize the promising paths. This approach

has gained sigificant speed improvement compared with traditional breath-first-search.

Unfortunately, all the globally optimal methods are still inferior to randomized approaches

as it takes a huge amount of time to explore the basics which is impractical in real-time applica-

tions. On the other hand, if all minimal subsets are enumerated by brute-force, one still can not

guarantee to find the optimal solution. This leads to the large gap between the current RANSAC

variants and the globally optimal solutions, thus the RANSAC results are still far from optimal

for data with high outlier rate.
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FIGURE 3.1: Left: Illustration of a simple tree for a problem in one dimension. Node 0 is the
root node (node of level 0); Node 0 and 1 are fully expanded while node 2, 3, 4 are not. Node
4 is a feasible node; Middle: Illustration of a default policy starting at node 4. The child nodes
are selected randomly until feasible basic is reached, the coverage of this feasible node is the
reward for node 4. Right: Illustration of back propagation (BP) process. The reward of node 4
after the default policy step is updated through its parent node all the way to the root node.

From the tree structure, it is obvious that in order to solve the problem globally, one must tra-

verse from the top of the tree in a breath-first-search manner. The traditional RANSAC method

lacks this intuition, where it samples can be anywhere in the tree. In addtion, the samples gen-

erated by current random sampling approaches are independent from each other and the outlier

rate at each iteration kept unchanged. In the next section, we show how these weaknesses can

be tackled using Monte-Carlo Tree Search. It will also be demonstrated that by using our pro-

posed sampling approaches, the uniform sampling nature of RANSAC is converted to a guided

sampling strategy that utilizes the geometric information of the maximum consensus problem.

3.5 Monte Carlo Tree Search

As solving the problem exactly is intractable in general, we seek the suboptimal solution to the

problem in a randomized approach. Taking advantage of the tree structure developed in the

previous section, we introduce a new algorithm based on the foundation of Monte Carlo Tree

Search (MCTS). MCTS has gained considerable attentions recently due to its success in solving

various combinatorial search problems whose exact solutions are hard to find. This technique

is used extensively to solve decision problems by taking random samples in the decision space

and incrementally build the tree according to the sampling results. Using MCTS for searching

on a tree problem can be considered as successively applying the Multi-Arm Bandit problem [8]

for each node until a feasible node is reached. More details about the theory behind this method

and a complete review of its applications can be found in [15].

We introduce some definitions to make it convenient for further discussions.

Definition 3.8. (Feasible node) A node N on the search tree is called a feasible node if its

associated basic BN is feasible.
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Definition 3.9. (Full expansion) If the number of children of a node is equal to its combinatorial

dimension, it is called a fully expanded node.

Definition 3.10. (Reward) The reward (RN) of a node N is defined as the cardinality of C(BN)

if BN is feasible and 0 otherwise.

Apprarently, the maximum number of children that a node posesses is equivalent to the com-

binatorial dimension of the problem. Therefore, it can no longer be expanded if this number

reaches d+ 1.

To simplify the algorithm, we compute reward based on the cost function of the maximum

consensus problem. However, this can be extended to other types of cost function, for instance

the likelihood used in MLESAC [85]

Starting from the root node, at each stage of the search process, the tree is gradually built by

adding new leaf nodes. Each node N added to the tree is associated with a total back propagated

reward QN which is the result of a random simulation process (discussed below). Note that by

definition 3.10, if a node is infeasible, it reward RN is 0, but its total back propagated reward

QN may be greater than 0. The tree continues to grow until a feasible node is added to the tree.

The whole process is repeated until a predefined budget (time, number of iterations) is met.

At each stage, MCTS algorithm executes three main procedures:

• Tree policy (TP): (Algo. (3.2)) starting from a given parent node N, Tree Policy decides

which nodes among its children to descend. In case the node is not fully expanded, a

random child of this added to this node. Otherwise, the child node Nk with the largest

Upper Confident Bound (UCB) is selected, where UCB is defined as:

U(Nk, Cp) =
QNk

V (Nk)
+ Cp

√
2 lnV (N)

V (Nk)
(3.7)

where QN is the total reward for node N, V (N) denotes the number of times node N has

been visited during the search process and Cp is a positive constant which can be tuned

based on applications.

• Default Policy (DP): (Algo. (3.3)) This procedure is used to as a simulation process to

estimate the reward for particular node. From the newly added node, the DP randomly

descend down until a terminal node is reached. See Figure 1b for an illustration.

• Back Propagation (BP): (Algo. (3.4)) After the DP process, a reward RN of a child node

N is recursively updated to its parent node all the way to the root node. This process is

depicted in Figure 1c.
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The UCB defined in (3.7) is designed to balance between exploration and exploitation and is

one of the most commonly used algorithm in MCTS. There exist a number of other algorithms

which and can also be applied to our framework. See [15] for more details.

3.6 Main Algorithm

The main random tree search process is described in Algorithm (3.1). Initially, the minimax

problem is solved for the whole constraint set to generate the root node. The search process

starts at the root node then gradually build the tree by sucessively adding nodes and descend

down the tree until a feasible node is reached. This process can be repeated until a pre-defined

number of iterations or run time limit is satisfied.

Algorithm 3.1 RATSAC - Random Tree Search
Require: Set of constraints X , max iter

1: Initialize tree with root node N0

2: BN0 ← BX
3: N← N0

4: while N is not feasbile do
5: iter← 0
6: while iter < max iter do
7: Nt ← TP (N) /*Tree Policy - Algo. (3.2)*/
8: Rt ← DP (Nt) /*Default Policy - Algo. (3.3)*/
9: BP (Nt,Rt) /*Back Propagate - Algo (3.4)*/

10: iter← iter + 1
11: end while
12: CN ← set of current children of node N
13: N← arg maxNk∈CN

U(Nk, 0) /*U in (3.7) */
14: end while
15: return N.

3.7 Speeding up the search process

Fast descend algorithm for basic update

At a specific node, adding a child node is equivalent to removing one constraint (which

belongs to the basic) and perform minimax estimation for the remaining coverage set.

One advantage of our algorithm is that the samples are close to each other (a new node is

always a result of basic update from its parent node). Therefore, the fit of the parent node can be

used as the initialization to compute minimax for the child node. For linear regression problem,

we employ the descend algorithm [16, Chapter 2] to peform basic update. For problems with
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Algorithm 3.2 TP -Tree Policy

Require: Node N, Cp
1: while N is not feasbile do
2: CN ← set of current children of node N
3: if N is not fully expanded then
4: for x ∈ BN do
5: B′ ← basic of [C(BN)\{x}]
6: Create node Nk with BNk

← B′
7: if Nk /∈ CN then
8: Add Nk as a child of N
9: return Nk

10: end if
11: end for
12: else
13: N← arg maxNk∈CN

U(Nk, Cp) /*U in (3.7) */
14: end if
15: end while
16: return N.

Algorithm 3.3 DP - Default Policy

Require: Node N
1: while N is not feasbile do
2: Pick random x ∈ BN
3: B′ ← basic of [C(BN)\{x}]
4: Create new node Nk with BNk

← B′
5: N← Nk

6: end while
7: return RN.

Algorithm 3.4 BP - Back Propagation

Require: Node N, reward R
1: while N 6= NULL do
2: V (N)← V (N) + 1
3: QN ← QN +R
4: N← parent(N)
5: end while
6: return

quasi-convex residuals, following [17], if p = 1 or p =∞, each quasi-convex constraint can be

converted into 4 linear contraints.

Early termination When a new basic B is computed for a new node during Tree Policy of

Default Policy, the fitting result θ(B) can be used to compute the set of inliers for problem (3.1)

and the inlier set with largest cardinality I ′ is kept. During the execution of the algorithm, a

node N can stop descending down if the size its coverage is less than the current maximum

number of inlier.
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Initialization with `∞ outlier removal For data with high outlier rate, some heuristic algo-

rithms can be applied to the data to remove bad outliers before executing RATSAC. Instead of

initializing RATSAC with the `∞ estimation of the whole point set, the `∞ outlier removal [74]

can be executed first with ε′ = κε (with κ > 1). The inliers of the `∞ estimation with the inlier

threshold ε′ is then used to initialize RATSAC. This heuristic strategy aims to remove the bad

outliers which then helps RATSAC to reach a good solution faster.
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FIGURE 3.2: Histogram of consensus size and runtime for RANSAC (top row), LO-RANSAC
(middle row) and RATSAC (bottom row). RATSAC outperformed RANSAC and LO-
RANSAC throughout three different datasets with three outlier rates: ρ = 5 (fist column),
ρ = 15 (middle column) and ρ = 25 (last column).

3.8 Results

The proposed algorithm (RATSAC) is tested on multiple geometric estimation problems with

synthetic data as well as real data. Our method is compared against other common randomized

algorithms, i.e RANSAC and its variants. In addition, some approximation algorithms are also

compared. Following is the detailed list of the methods in our experiments:

• RANSAC: We use the stopping criterion of ρ = 0.99. To have a fair comparison, if

RANSAC stops earlier than our method and the solution quality is worse than RATSAC,

we increase the number of iterations to make them have approximately the same runtime.
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FIGURE 3.3: Experiment result for linear regression problem with N = 500 in d = 8 dimen-
sions
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FIGURE 3.4: Experiment result for line fitting problem with N = 100 data points and d = 2

• LO-RANSAC [56]: The numer of inner sampling is set to 20, with every sample is a

larger-than-minimal subset with the size of 2 times the size of the minimal subset. Like

RANSAC, the stopping criterion was set to ρ = 0.99 throughout all experiments.

• `∞ outlier removal: Starting from the minimax solution for the whole point set, the points

with largest residuals are removed until the minimax of the remaining set is less than ε.

• L1 approximation [74]: The maximum consensus problem is relaxed to a linear program-

ming problem by introducing a slack variable for each constraint then minimize the `1
norm of the slack variables.

• For experiments with real data where the matching score is provided, we also compare

the results with PROSAC [22].

All algorithms were implemented in C++ and run on a Ubuntu machine with 2.6GHz and 16GB

of memory. We used Eigen library for all least squares and matrix computation. The source

code will be made available.

3.8.1 Linear estimation

Synthetic data
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RANSAC LO-RANSAC PROSAC `1 Approx. `∞ Approx. RATSAC
|I| time (s) |I| time (s) |I| time (s) |I| time (s) |I| time (s) |I| time (s)

House (N = 556) 503 0.54 528 7.81 460 0.51 526 1.13 530 0.07 536 1.92
Merton (N = 590) 541 0.54 581 9.21 561 0.53 585 1.33 581 0.03 586 0.57
Corridor (N = 407) 393 2.53 399 7.36 391 2.67 400 0.56 395 0.03 402 0.49
Aerial (N = 490) 417 2.97 438 9.69 434 2.86 433 0.82 438 0.07 439 2.02
Hertford (N = 350) 208 0.18 301 2.87 208 0.18 305 0.32 309 0.03 315 1.42
Building 04 (N = 641) 301 2.2 405 5.72 391 0.86 503 1.74 493 0.15 512 5.78
Building 22 (N = 502) 454 0.5 490 11.7 456 0.49 485 0.86 482 0.06 490 0.96
Building 36 (N = 651) 393 0.93 557 12.48 505 0.87 554 1.98 555 0.17 560 5.3

TABLE 3.1: Linearised fundamental matrix estimation results

RANSAC LO-RANSAC PROSAC `1 Approx. `∞ Approx. RATSAC
|I| time (s) |I| time (s) |I| time (s) |I| time (s) |I| time (s) |I| time (s)

University (N = 439) 312 1.0637 316 1.5794 332 1.1089 424 2.4993 425 0.080098 429 3.8519
Christ Church (N = 557) 492 2.6862 496 3.4523 542 2.7042 551 4.5258 543 0.037116 554 1.5526
Valbonne (N = 564) 334 2.6953 400 3.47 376 2.6378 433 4.8323 439 0.11894 449 3.822
Kapel (N = 449) 379 2.0808 392 2.6879 427 2.1101 431 2.5271 420 0.039989 436 6.0877
Invalides (N = 558) 482 2.5777 486 3.301 536 2.6052 546 4.5822 534 0.080517 548 5.8247
Union House (N = 591) 529 2.7286 551 3.6647 577 2.8466 586 5.1478 582 0.05316 586 2.8279
Classic Wing (N = 425) 398 4.0278 398 4.4749 419 4.0072 419 2.2213 418 0.039907 423 0.94494
Bonython (N = 507) 314 13.7554 310 14.474 343 14.8534 368 3.8895 355 0.15836 380 27.1775
Elder Hall (N = 406) 300 10.0547 311 11.3671 298 11.0896 318 2.016 327 0.088636 339 25.0695
Building 39 (N = 647) 526 3.1862 536 4.0644 607 3.2283 617 6.2035 616 0.078224 622 9.6927
Building 64 (N = 427) 368 2.1269 333 2.7182 402 2.1672 406 2.2919 405 0.047785 411 6.2971
Building 10 (N = 597) 394 3.4209 451 4.0832 462 2.9921 487 5.0714 492 0.15813 501 28.1173

TABLE 3.2: Homography etimation results

The synthetic data for linear estimation experiment was obtained by randomly generating a

set of N data points xi ∈ Rd and an estimate θ ∈ Rd. Then, the vector y is generated by setting

yi = xTi θ+ni where ni is drawn from a Gaussian distributionN (0, σin). The purpose of adding

ni to each yi is to simulate noise. Outliers were then added by randomly picking a subset O of

ρ%N data points and purturbe yi with yi = yi + oi where oi were drawn from N (0, σout).

First, our method is compared against two other commonly used randomized methods, namely

RANSAC and LORANSAC in terms of solution quality and runtimes. The data was generated

with N = 100 data points and d = 8 dimensions. We set ρ = 5 and execute each method 50

times then plot the histograms of consensus size and runtime. This experiment was repeated

with two more values of ρ = 15 and ρ = 25. Figure 3.2 shows the histograms of these ex-

periments. As expected, LO-RANSAC significantly improved the RANSAC results. RATSAC

outperforms RANSAC and LO-RANSAC in terms of solution quality . In the setting with low

outlier rates(ρ = 5), RATSAC takes slightly longer time than RANSAC. As the outlier rate

increases, however, RATSAC achieved the best solution quality with shorter runtime than both

of its two competitors.

We generated another dataset with N = 500 and d = 8. This time, the experiment was run

with ρ = 0 to ρ = 45 with the step size of 3. We add `∞ outlier removal method [74] to our

comparison list. Figure (3.3) plots the consensus size and runtime (in log scale). It can be seen

that RATSAC consistently outperforms other methods in term of solution quality. RANSAC and
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(a) Aerial (b) Corridor

(c) Merton (d) Ball Hall

(e) Union House (f) University Library

FIGURE 3.5: Qualitative results for fundamental matrix estimation (top row) and homography
estimation (bottom row)

other methods are unstable in the environment with high number of outliers. `∞ can perform

quite well at the at the beginning and were able to achieve solutions that are close to RATSAC,

but this method failed to sustain its performance as the number of outliers increased. This result

demonstrates that RATSAC can find the right path in the tree to descend and was able to reach

the right solution faster than other competitors.

Line fitting To compare our method with globally optimal solution, we repeated the experiment

above for a line fitting problem with 100 points in 2D. Besides the methods mentioned in the pre-

vious experiment, we also execute ASTAR search algorithm [18], which is an exact algorithm.

Results are shown in figure (3.4). The number of inliers that RATSAC attains is quite close to

the optimal solution while run time is much faster than LO-RANSAC. This demonstrates that

RATSAC is a promising method for solving maximum consensus problem.

Fundamental matrix estimation
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We selected 5 image pairs from the common VGG dataset: House, Corridor, Church, Hert-

ford, Wadham and 5 pairs from the Zurich building dataset. The VLFeat [87] toolbox was

employed for feature extraction to get around 300 to 700 correspondences for each image pair.

The matching scores provided by VLFeat were also used as priors for PROSAC.

The epipolar constraints are linearized following [42, Chapter 11] and the fundamental ma-

trices using the same set of methods. The same set of methods for linear regression experi-

ment was executed for fundamental matrix estimation. Table (3.1) shows the results. RATSAC

achived the highest number of inliers, especially much better compared with RANSAC.

3.8.2 Quasiconvex constraints

Homography Estimation

We applied the same feature extration method used in fundamental matrix estimation ex-

periment for 5 image pairs from the VGG dataset: University Library, Christ Church, Val-

bonne, Kapel, Invaides; 3 pairs from the AdelaideRMF2 dataset: Union House, Classic Wing,

Bonython, Elder Hall and 3 other pairs from the Zurich building dataset. The residual func-

tion (3.4) is used to compute 2D homography transfer error for the pairs using all the methods.

The results are summarised in Table (3.2). Similar to the fundamental matrix experiment, RAT-

SAC was able to achive highest solution quality, with small increase in runtime compared to

other methods.

3.9 Conclusions

We introduced a new sampling strategy for maximum consensus set problem. Unlike RANSAC

and its variants, our method utilize the geometric information of the problem to search on a

tree. The information from the previous samples are then used to guide the following search.

Therefore, the algorithm can be regarded as a guided sampling without inlier priors. Empiri-

cal experiments have shown that our method outperforms other randomized and approximation

methods and can perform well with highly contaminated data.

2https://cs.adelaide.edu.au/ hwong/doku.php?id=data
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Conformal Surface Alignment with
Optimal Möbius Search

The work contained in this chapter has been published as the following paper:

Huu Le, Tat-Jun Chin and David Suter: Conformal Surface Alignment With Optimal Mobius

Search. In Computer Vision and Pattern Recognition (CVPR) 2016

The published paper is available at: http://ieeexplore.ieee.org/document/7780644/
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4.1 Introduction

Given two 3D shapes, the problem of shape correspondence is to find a meaningful relation (or

mapping) between the elements of the shapes [86]. Solving such a problem is fundamental to

many vision and graphics applications, such as object recognition, 3D shape retrieval, shape

morphing and attribute transfer - to name a few. A plethora of variants also exist for the general

problem, where the variants differ based on the type of input data (point cloud, mesh, etc.), type

of alignment function, partial or full overlap, whether pre-identified landmarks are available,

etc.

Within the broad literature on shape correspondence, our work belongs to the class of con-

formal geometric methods [92]. A conformal mapping preserves angles locally, and is thus

insensitive to surface deformations [88]. It has been observed that object instances with the

same intrinsic shape (e.g., faces with different expressions [88], deformable 2D shapes [14],

brains between different individuals [35]) can be aligned well conformally.

The uniformization theorem [9] states that all surfaces that are topological spheres or discs

can be conformally embedded to a canonical 2D domain, e.g., a unit sphere, a hyperbolic disc.

In Fig. 4.1, these embeddings are represented by ΦM̃ and ΦB̃ for respectively two surfaces M̃
and B̃. The embedded surfaces can be aligned conformally by a Möbius transformation f . The

direct mapping between the surfaces can then be composed as Φ−1
B̃ ◦ f ◦ ΦM̃. Note that in

practice, discrete analogues of the mappings are used.

FIGURE 4.1: Example of conformal mapping for surface alignment

Conformal shape correspondence thus amounts to finding ΦM̃, ΦB̃ and f . Many authors first

calculate the embeddings ΦM̃ and ΦB̃ in a “flattening” step, before estimating f , e.g., [37, 35,

62, 12, 61, 52]. Various methods have been devised for flattening [7, 47, 36, 37, 81]. In this

paper, we focus on the second step, i.e., Möbius alignment.

A class of existing methods for Möbius alignment are correspondence-based. Correspon-

dences between the surfaces can be obtained by identifying landmarks (meaningful locations

such as corners of eyes or tips of noses) or matching salient keypoints [37, 35, 88, 12, 65].
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Given a sufficient number of correspondences, a Möbius transformation can be directly esti-

mated [62]. The effectiveness of correspondence-based methods hinges on the veracity of the

correspondences and their coverage of the surfaces.

Correspondence-free techniques as we consider in this paper must directly estimate the

Möbius transformation, and implicitly the surface correspondence. Current methods include

randomized search [62], iterative closest points (ICP) [10], gradient-based local optimization [52],

brute force enumeration [61], and graph matching [94]. While not affected by inaccurate or

insufficient pre-identified correspondences, these methods suffer, however, from other weak-

nesses; namely, no guarantee of success [62], dependence on good initialisation [10, 52], and

very high computational cost [61, 94].

Contributions We propose a novel globally optimal algorithm for correspondence-free Möbius

alignment. We focus on surfaces that are topological discs, i.e., f acts on the hyperbolic disc.

Based on branch-and-bound (BnB) [44], our algorithm guarantees global optimality, thus ob-

viating the need for good initializations. Further, our method is also much more efficient than

previous techniques. Note that there have been previous usages of BnB for point set alignment,

but these are mostly for the rigid case [13, 71, 39].

Conformally aligning surfaces that are topological discs has many practical applications, e.g.,

facial expression analysis [88], shape similarity analysis [61], and brain mapping [48]. Our work

thus presents a useful tool to the very important area of computational conformal geometry [38].

4.1.1 Correspondence-free Möbius alignment

4.1.2 Objective function

In practice the surfaces are discrete and noisy, thus we must search for the f that is the “best” in

some sense. LetM = {mj}N1
j=1 and B = {bk}N2

k=1 be the set of points after flattening. Recall

that the points lie in D and are expressed as complex numbers. We adopt the objective function

of [13], originally for rigid registration, to our case:

Q(z, θ) =
∑
j

max
k

I (|f(mj |z, θ)− bk| ≤ ε) . (4.1)

Here, |x| denotes the magnitude of a complex number, ε is a matching threshold, and I(·) is an

indicator function that returns 1 if the input statement is true, and 0 otherwise. The constant

threshold ε can be changed to εj to make it point specific and dependent on scaling effects of the

flattening on mj .
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In words, (4.1) evaluates the number of points that are aligned under f(x|z, θ). The inner

max checks if there is a point in B that matches mj — thus, a priori identified correspondences

are not assumed. Further, a match is declared only if the distance between the points is within

ε — thus, it is not expected that each point inM has a valid match in B. This is crucial if the

surfaces only partially overlap. Note that this objective function does not guarantee one-to-one

matching, but that does not hurt the accuracy of the applications we tested.

4.1.3 Problem definition

Using (4.1), the Möbius search problem is defined as

q∗ = max
z,θ

Q(z, θ), (4.2)

which equates to finding the Möbius transformation that aligns as many points fromM with B
as possible. The problem can be re-expressed as

u∗ = max
z

U(z), (4.3)

U(z) = max
θ

∑
j

max
k

I (|f(mj |z, θ)− bk| ≤ ε) . (4.4)

The purpose of this rearrangement is to exploit the fact that, given z, finding θ can be done very

efficiently (Sec. 4.2), such that solving for θ can seen as “evaluating” U(z). This enables the

formulation of a BnB algorithm (Sec. 6.3.2) that optimizes z explicitly and θ implicitly.

(a) (b)

FIGURE 4.2: (a) Intersection of Ωjz with Okε . (b) Illustration of problem (4.10) .
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4.2 Solving for rotation angle

Defining m′j = h(mj |z), (4.4) can be rewritten as

U(z) = max
θ

∑
j

max
k

I
(∣∣∣eiθm′j − bk

∣∣∣ ≤ ε) . (4.5)

Recall that eiθ specifies (via Euler’s equation) a rotation of the complex plane C about the origin.

Define

Ωj
z = {eiθm′j | θ ∈ [−π, π]} (4.6)

as the circle resulting from rotating m′j by 2π radians, and

Ok
ε = {x | x ∈ C, |x− bk| ≤ ε}. (4.7)

as the disc centered at bk of radius ε; see Fig. 4.2a.

Let [αjkz,1, α
jk
z,2] be the range of angles θ, such that rotating m′j with any θ from the range will

cause the point to fall into Ok
ε . Intuitively, any θ ∈ [αjkz,1, α

jk
z,2] will yield

I(|eiθm′j − bk| ≤ ε) = 1. (4.8)

The range limits αjkz,1 and αjkz,2 can be obtained in closed form via circle-to-circle intersec-

tions [1], see Fig. 4.2a. In the case where Ok
ε does not intersect Ωj

z, the range is empty, im-

plying that no θ can cause m′j to match bk. For details of calculating the range limits, see the

supplementary material.

For each m′j , let the set of angular ranges be

Sjz =
{

[αjkz,1, α
jk
z,2]
}N2

k=1
. (4.9)

Note that overlapping ranges in Sjz are merged, while ranges that extend beyond [−π, π] are

“wrapped around”; see Fig. 4.2b. Function (4.5) can then be re-expressed as

U(z) = max
θ

∑
j

max
[α1,α2]∈Sjz

I(θ ∈ [α1, α2]). (4.10)

In words, evaluating U(z) amounts to finding the θ that intersects as many as possible the

angular ranges across Sjz, j = 1, . . . , N1; see Fig. 4.2b. Such a problem can be solved exactly

and efficiently in O(N logN) [24, Chapter 10]; see the supplementary material for the detailed

algorithm.
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(a) (b)

FIGURE 4.3: (a) Uncertainty area with bounding parameters. (b) Intersection of the annulus
ΩjR with Okε .

4.3 Main algorithm

The idea of BnB is to recursively partition and prune the search space until the globally optimal

solution is found. In the context of maximizing U (4.3), the search space is the hyperbolic disc D
(as mentioned in Sec. 4.1.3, the search for θ is done implicitly). The main “design choices” are

how to partition D, and how to construct an upper bounding function Û for pruning subregions

of D. Algorithm 4.2 summarizes our algorithm, and details are provided in the following.

4.3.1 Partitioning the hyperbolic disc

Algorithm 4.2 is initialized by enclosing D with the tightest bounding square (a subset of the

complex plane C). The square is recursively divided into four equal sub-squares (Line 13). In

each sub-square S, we attempt to update our current best solution (Line 11), or to prune S using

the bounding function Û (Line 15). A sub-square S that cannot be pruned is inserted into a

priority queueQ for further processing. Note that since we actually partition the unit square that

encompasses D, a square S may lie outside of D. Thus if S ∩ D = ∅, S is discarded (Line 5).

The above partitioning and pruning steps effectively explores the space D. Intuitively, a tighter

bounding function Û(S) will prune more aggressively, thus leading to fewer iterations. In the

following, we describe our bounding function.

4.3.2 Bounding function

Given a square region S, we must derive an upper bounding function Û(S) that satisfies

Û(S) ≥ max
z∈S

U(z) (4.11)

to enable pruning in Algorithm 4.2.
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Algorithm 4.1 Möbius Search
Require: Point setsM,B ⊆ D, threshold ε

1: Q ← empty priority queue, S← tightest bounding square of D, u∗ ← 0, z∗ ← null
2: Insert S into Q with priority Û(S)
3: while Q is not empty do
4: Obtain a square S with the highest priority from Q
5: if S ∩ D 6= ∅ then
6: z0 ← center point of S
7: if U(z0) = u∗ then
8: z∗ ← z0

9: return u∗

10: else if U(z0) > u∗ then
11: z∗ ← z0, u∗ ← U(z0)
12: end if
13: Subdivide S into four squares {Sl}4l=1

14: for all l = 1, . . . , 4 do
15: if Û(Sl) > u∗ then
16: Insert Sl into Q with priority Û(Sl)
17: end if
18: end for
19: end if
20: end while
21: return u∗ and z∗; obtain θ∗ solving U(z∗) (4.10).

We begin by seeking to bound the region

Mj
S = {h(mj |z) | z ∈ S} (4.12)

arising from the uncertainty of z ∈ S for each mj . For simplicity, we approach this via the

tightest bounding disc R of S instead; see Fig. 4.3a. Clearly, since S ⊆ R, then Mj
R is a bound

over Mj
S. Now, Mj

R can itself be bounded within a “wedge” Wj
R defined by 4 parameters: the

bounding radii

rjR,1 = min
z∈R
|h(mj |z)|, rjR,2 = max

z∈R
|h(mj |z)|, (4.13)

and the bounding angles

θjR,1 = min
z∈R

∠h(mj |z), θjR,2 = max
z∈R

∠h(mj |z); (4.14)

see Fig. 4.3a. Hence, to bound the region Mj
S, we determine Wj

R that is defined by the four

parameters above.



Chapter 4. Conformal Surface Alignment with Optimal Möbius Search 61

Bounding radii Based on standard identities of complex numbers [2], we observe the sym-

metry

|h(mj |z)| =
∣∣∣∣ mj − z

1−mj z̄

∣∣∣∣ =
|mj − z|
|1−mj z̄|

(4.15)

=
|−(mj − z)|
|1−mj z̄|

=
|z−mj |
|1− zm̄j |

= |h(z|mj)|.

The bounding radii (4.13) can thus also be obtained as

rjR,1 = min
z∈R
|h(z|mj)|, rjR,2 = max

z∈R
|h(z|mj)|. (4.16)

Let the center and radius of R be cR and rR. The range of h(z|mj) for all z ∈ R is defined

as

NjR = {h(z|mj) | z ∈ R}. (4.17)

Now, it is known that, if R is a disc, NjR is also a disc [68, Chapter 3]. Further, the center and

radius of NjR are

cNjR
=

γ −mj

1− m̄jγ
, (4.18)

rNjR
=

∣∣∣∣cNjR − cR + rR −mj

1− m̄j(cR + rR)

∣∣∣∣ , (4.19)

where γ = cR − r2
R/(−1/m̄j + cR). (4.20)

Note that the region Mj
R, obtained by reversing the role of z and mj in (4.17), is not a disc in

general.

The bounding radii (4.16) can then be calculated as

rjR,1 = |cNjR | − rNjR , rjR,2 = |cNjR |+ rNjR
(4.21)

in closed form, where we offset the former to 0 if negative, and clamp the latter to 1 if greater

than 1.

Bounding angles Manipulating h(mj |z) again by

h(mj |z) =
(mj − z)(1−mj z̄)

(1−mj z̄)(1−mj z̄)
=

(mj − z)(1− m̄jz)

|(1−mj z̄)|2
,

we can express h(mj |z) as a multiplication and scaling of two complex numbers. Using the

identity

ab = |a||b|ei(∠a+∠b) ∀a,b ∈ C, (4.22)
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of complex numbers [2], we can surmise that

∠h(mj |z) = ∠(mj − z) + ∠(1− m̄jz). (4.23)

Define the regions

AjR = {mj − z | z ∈ R}, BjR = {1− m̄jz | z ∈ R}.

Clearly AjR a disc; obtained by reflecting disc R and translating the result by mj . Its center and

radius are respectively

cAjR
= −cR + mj , rAjR

= rR. (4.24)

Since multiplying two complex numbers serves to multiply their respective magnitudes (4.22),

multiplying R with m̄i expands the disc by a factor of |mj |. Thus BjR is also a disc with center

and radius respectively

cBjR
= −m̄jcR + 1, rBjR

= |mj |rR. (4.25)

The bounding angles (4.14) can then be calculated as

θjR,1 = min
a∈AjR,b∈B

j
R

∠a + ∠b, (4.26)

θjR,2 = max
a∈AjR,b∈B

j
R

∠a + ∠b. (4.27)

These values can be obtained in closed form, since the angular ranges of AjR and BjR are known.

Bound calculation Given the wedge Wj
R, we are now ready to compute the upper bound (4.11).

Our strategy here is a generalization of the technique in Sec. 4.2.

First, generalizing (4.6), we define the annulus

Ωj
R = {eiθx | x ∈Wj

R, θ ∈ [−π, π]} (4.28)

obtained by rotating the wedge Wj
R by 2π radians; see Fig. 4.3b. Continuing the idea in Sec. 4.2,

for each pair (j, k), we obtain the angular range [αjkR,1, α
jk
R,2], that bounds the rotation angle θ

that allows a point from Wj
R to “touch” Ok

ε ; see Fig. 4.3b for an intuitive example. The range

limits can also be obtained in closed form; for brevity, we leave the details in the supplementary

material.
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Of course, if Ok
ε does not intersect with Ωj

R, then the range is empty. This implies that

f(mj |z, θ) cannot match with bk under all z ∈ S and θ ∈ [−π, π].

Define now SjR to be the set of angular intervals

SjR = {[αjkR,1, α
jk
R,2]}N2

k=1. (4.29)

Again, overlapping and out-of-bound ranges are preprocessed as in Sec. 4.2. The upper bound

is evaluated as

Û(S) = max
θ

∑
j

max
[α1,α2]∈SjR

I(θ ∈ [α1, α2]), (4.30)

which again can be solved exactly and efficiently as a line intersection problem; cf. (4.10).

4.3.3 Algorithm convergence

Here, we establish the proofs required [44] to guarantee that Algorithm 4.2 converges to the

globally optimal result.

Lemma 4.1. Û(S) obtained according to (4.30) satisfies (4.11).

Proof. By design, the relationship

Mj
S ⊆Mj

R ⊆Wj
R (4.31)

always holds. Thus, the annulus Ωj
R bounds the location of f(mj |z, θ) for all z ∈ S and θ ∈

[−π, π]. The angular intervals SjR are also optimistic since they are constructed by aligning Wj
R

with Ok
ε for all k. This establishes that Û(S) cannot underestimate U(z) for all z ∈ S.

Lemma 4.2. As S collapses to a single point z,

Û(S) = U(z). (4.32)

Proof. If S is a single point z, then Mj
S, defined in (4.12), equates to the singleton set {h(mj |z)}.

Since R is the tightest bounding disc of S, Mj
R also equates to Mj

S. Now, based on defini-

tions (4.13) and (4.14), Wj
R also collapses to a single point {h(mj |z)}, thus yielding Mj

S =

Mj
R = Wj

R.

The annulus Ωj
R thus becomes the circle Ωj

z, and the angular ranges SjR and Sjz are equal.

Thus, Û(S) as defined in (4.30) reduces to U(z) as defined in (4.10).
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(a) (b)

(c) (d) (e)

FIGURE 4.4: Steps for generating synthetic data: (a) car-01 shape; (b) conformal map of (a);
(c) centers of circles in (b); (d)M being sub-sampled from (c); (e) B was generated by applying
a random Möbius transformation toM then added with noise and outliers.

4.4 Results

We benchmarked the performance of our algorithm (Möbius Search, henceforth represented as

MS) against the previous methods surveyed in Sec. 4.1.1, namely

• Möbius voting (MV) [62]. We used the code provided by the authors [3]. However, since in

this paper we focus on aligning surfaces that are topological discs (f is 3DOF), we modified

the code such that a random sample consists of two randomly chosen correspondences.

• Brute force method (BF). Following [61], we implemented BF as follows: all possible pair-

ings betweenM and B are considered. Each pairing is sufficient to estimate z. For each z, θ

is enumerated across a sufficiently fine grid along [−π, π] to find the best combination.

• Iterative closest points (ICP). The original method of [10] was modified as alluded in [62] for

Möbius alignment.

• Graph matching (GM) [94]. We used the implementation of [57] for graph matching. Since

our paper focuses on the 3DOF Möbius transform f , we included up to binary energies only

in the cost function. Note, however, that this does not significantly simplify the problem,

since graph matching is intractable even for binary graphs [4].
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Although we did not compare against the gradient descent method of [52], as a locally conver-

gent method, we expect its performance to be similar to ICP. Also, GM is only feasible for small

input sizes N1, N2. In our experiments, GM was run with N1, N2 ≤ 20 (in [94], input sizes of

at most 15 was tested for the true graph matching part).

All experiments were run on a standard PC with 3.5GHz processor and 8GB of main memory.

Due to page limits, only representative results can be shown here; see the supplementary material

for more results.

4.4.1 Comparison metrics

Given a pair of conformally flattened surfacesM and B, each method above was executed to

estimate f . Apart from recording the runtime, we also obtained the following quality measures

of the estimated f :

• Qbnb: the value of (4.1) for f .

• Qmv: the number of mutually closest pairs under f , where (j, k) is a mutually closest pair if

bk is the nearest neighbor of f(mj) among B and vice versa.

Note that Qmv is as defined and used in [62, 61] for assessing deformation errors of Möbius

alignment.

Where ground truth correspondences {mt,bt}Tt=1 (from landmarks etc.) were available, we

used them to calculate the following quality metric:

• Qtruth: the number of ground truth correspondences that are mutually closest pairs under f .

4.4.2 Synthetic data experiment

The purpose of this experiment is to evaluate the performance and accuracy of the methods

under controlled settings. The steps to generate input point sets M and B are summarized in

Fig. 4.4: first, a 2D shape from the MPEG7 dataset [54] (specifically, car-01) was chosen and

conformally mapped to D using the circle packing technique [82]. A number of N1 points

were then randomly sampled to produce the set M. A random Möbius transformation f was

generated (by randomly choosing z and θ) and applied onM to yield the set B. Gaussian noise

of σ = 0.01 was afflicted on B to increase realism. Further, to simulate outliers and partially

overlapping data, ρ% of points on bothM and B were randomly chosen and re-sampled to lie

uniformly in D. In our experiment, we used N1 = {100, 50, 20} and ρ = {0, 25, 50}. For MS

and (4.1), ε =0.01 was used. Again, note that GM is only feasible for N1 = 20.
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75

50

37

25

FIGURE 4.5: Results for synthetic data. Columns represent experiments for different values
of N1. Rows represent measurements of Qbnb (defined in (4.1)), Qmv (defined in 4.4.1) and
runtime (in seconds). Note that the runtime is quoted in log10 scale. ICP2 is explained in 4.4.2.
GM is only feasible for N1 = 20.

(a) Human 01 (b) Human 04 (c) Chimp.
51376

(d) Chimp.51379 (e) Gorilla
167335

(f) Gorilla 167336

FIGURE 4.6: Correspondences found by MS for three pairs of teeth.
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(a) Happy 01 (b) Happy 04 (c) Digust 01 (d) Dis-
gust
02

(e) Sad 01 (f) Sad 02

FIGURE 4.7: Correspondences found by MS between three pairs of face

Fig. 4.5 shows the results. It can be seen that MS always achieved the theoretical maximum

(1− ρ)N1 of the objective function (4.1). In the presence of low oulier rates (ρ is 0% or 25%),

the estimated f of MS, MV, BF and GM were of similar quality. When the outlier percentage ρ

was 50%, however, only MS could produce good (in fact, optimal) results. Note that in Fig. 4.5

the quality of ICP was much lower than the others due to the lack of good initializations

To accommodate ICP, the experiment was repeated by producing a “milder” randomized

Möbius transformation that relatesM to B, specifically by choosing the parameters such that

|z| ≤ 0.1 (close to the center of D) and θ ≤ 10◦. The results for this repeated experiment

were displayed as ICP2 in Fig. 4.5. It can easily be seen that with good initialization, ICP gave

acceptable quality when there were no outliers - however, the quality degraded rapidly as the

outlier rate increased. Interestingly, the runtime of MS increased marginally when the true f

was close to the identity mapping - possibly because as the true z is closer to the center of D, a

deeper search must be conducted to before a good suboptimal solution z0 is retrieved to enable

effective pruning.

In terms of runtime, MS and MV could terminate well within 1 minute, though MS occasion-

ally took longer than MV. Note that MS provides guaranteed global optimality, unlike MV. The
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runtime for BF, as anticipated, was too long to be practical, e.g., more than 3 hours forN = 100.

To view the actual numerical values of the results above, see the supplementary material.

4.4.3 Conformal teeth alignment experiment

We followed the experiment by Boyer et al. [12] to perform surface alignment on 3D scans of

teeth. While the original aim of Boyer et al. was shape comparison, here, we focus on the

alignment step. In our experiment, we chose three pairs of teeth originally used in [61], specif-

ically, Human01 and Human04, Chimpanzee51376 and Chimpanzee51379, and Gorilla167335

and Gorilla16736. The meshes of the teeth were flattened to D using the program of Lipman et

al. [61]. On the flattened surfaces, we also conducted the sampling process of [62, 12] to create

the point setsM and B. Specifically, N1 and N2 points (N1, N2 = {100, 50, 20}) were chosen

using the farthest point sampling (FPS) algorithm [25]. Note that 13 ground truth correspon-

dences {mt,bt}13
t=1 (manually annotated landmarks) were available per problem instance, thus

Qtruth value could be obtained for each method.

Table 4.2 summarizes the quantitative results, while Fig. 4.6 shows qualitative results for MS.

As expected, due to the global optimality guarantees, MS returned the solution with the highest

Qbnb value. Also, MS demonstrated typically superior accuracy in terms of Qtruth, as compared

to BF and MV. However, when the input size was small (N1, N2 = 20), none of the methods

were able to obtain satisfactory Qtruth values. This was due to the overly impoverished structural

information after excessive sampling. Due to the lack of good initializations (the intialized

state ofM and B depends on the implementation of the conformal flattening procedure), ICP

generally could not find good estimates of f , and it was able to align about half of the ground

truth correspondences. While GM was feasible onN1, N2 = 20, it is apparent that the estimated

f was far from ideal due to the overly sparse input data.

In terms of runtime, all the methods except BF were able to terminate in about or less than 1

minute.

4.4.4 Conformal face alignment experiment

The previous experiment was repeated for conformal face alignment, following [93]. While the

previous works aimed at applications such as facial expression recognition, in our experiment,

we focused on the task of Möbius alignment. From a practical standpoint, our MS algorithm

can be used to automatically and deterministically find landmark correspondences, which is a

crucial step in facial processing applications [93].

Again, following the previous works, we used data from the BU-3DFE face dataset [91],

specifically, we chose three pairs of faces with the same expression but at different degrees:
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N1, N2 Methods Qbnb Qmv Qtruth Time (sec)

H
um

an
01

H
um

an
04

100

MS 40 80 13 45.056
BF 30 84 13 10185.000
MV 35 81 13 29.160
ICP 22 76 6 0.027

50

MS 8 38 13 8.780
BF 3 41 12 629.000
MV 3 39 5 6.891
ICP 4 37 6 0.009

20

MS 11 18 11 0.809
BF 6 18 8 17.265
MV 11 18 12 0.408
GM 5 11 3 26.280
ICP 3 16 7 0.005

G
or

ill
a1

67
33

5

G
or

ill
a1

67
33

6

100

MS 68 83 12 12.370
BF 66 81 12 10659.000
MV 61 80 12 5.651
ICP 8 78 6 0.052

50

MS 26 39 6 3.234
BF 22 38 5 634.000
MV 24 39 6 5.970
ICP 1 36 7 0.005

20

MS 11 16 5 0.180
MV 10 15 4 0.347
BF 10 16 6 17.208
GM 8 10 1 77.513
ICP 0 14 6 0.001

C
hi

m
pa

nz
ee

51
37

6

C
hi

m
pa

nz
ee

51
37

9

100

MS 54 82 12 26.913
BF 52 85 12 10365.000
MV 47 84 12 28.045
ICP 22 48 1 0.027

50

MS 25 42 13 1.774
BF 19 42 8 691.000
MV 20 38 8 3.684
ICP 7 22 3 0.005

20

MS 13 15 0 0.857
BF 7 17 4 17.056
MV 7 12 2 0.260
GM 6 10 0 47.236
ICP 4 9 1 0.068

TABLE 4.1: Results from conformally aligning three pairs of teeth. In each problem instance,
the best quality measure and runtime obtained among all the methods are bolded. MS: Möbius
Search, MV: Möbius voting, BF: brute force, GM: graph matching. See Sec. 4.4.1 for defini-
tions of the quality measures.
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N1, N2 Methods Qbnb Qmv Qtruth Time (sec)
F0

00
1

D
I0

1W
H

F3
D

F0
00

1
D

I0
2W

H
F3

D
100

MS 75 81 13 1.999
BF 71 85 13 10656.000
MV 74 66 7 2.853
ICP 46 61 1 0.021

50

MS 22 37 13 1.792
BF 19 41 13 635.000
MV 18 40 13 1.870
ICP 12 26 1 0.005

20

MS 10 15 9 0.220
BF 6 14 8 17.241
MV 6 14 7 0.278
GM 8 16 9 45.059
ICP 3 11 0 0.003

M
00

44
H

A
01

IN
F3

D

M
00

44
H

A
04

IN
F3

D

100

MS 53 83 13 15.768
BF 34 84 13 10269.000
MV 40 80 12 28.648
ICP 18 61 1 0.022

50

MS 27 42 13 4.109
BF 25 44 13 641.041
MV 23 44 13 1.549
ICP 3 32 1 0.010

20

MS 16 19 13 0.373
BF 14 19 13 17.544
MV 16 19 13 0.286
GM 7 12 9 55.105
ICP 11 14 0 0.002

M
00

21
SA

01
W

H
F3

D

M
00

21
SA

02
W

H
F3

D

100

MS 45 85 13 15.081
BF 42 88 13 9695.200
MV 28 56 0 56.793
ICP 32 63 0 0.028

50

MS 24 45 13 14.474
BF 23 46 13 623.966
MV 3 19 4 1.526
ICP 3 34 0 0.006

20

MS 14 14 13 0.231
BF 14 15 13 17.445
MV 14 14 13 0.140
GM 4 13 9 69.509
ICP 5 12 0 0.006

TABLE 4.2: Results from conformally aligning three pairs of faces. In each problem instance,
the best quality measure and runtime obtained among all the methods are bolded. MS: Möbius
Search, MV: Möbius voting, BF: brute force, GM: graph matching. See Sec. 4.4.1 for defini-
tions of the quality measures.
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Happy 01-Happy 04, Disgust 01-Disgust 02, Sad 01 - Sad 02. The same steps as in Sec. 4.4.3

were used for flattening and subsampling; see Fig. 4.7 for the resulting data. For this dataset,

since the ground truth landmarks were not available, we manually annotated 13 landmarks on

the faces to create ground truth correspondences. Table 4.2 summarizes the quantitative results,

while Fig. 4.7 illustrates qualitative results of MS. It can be seen that MS generally outperformed

the other methods in terms of both accuracy and runtime.

4.5 Conclusions and future work

We proposed a novel approach for conformal surface alignment with guaranteed global opti-

mum. Our experiments showed that this algorithm is much more efficient than state-of-the-art

techniques for conformally aligning topological disc surfaces.

This work opens up a new direction for further research on global optimization methods in

the field of computational conformal geometry. One notable expansion which can be studied in

the future is 6DOF Möbius search for genus zero surfaces with spherical topology.
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4.6 Supplementary Materials

In Sec. 4.6.1 and 4.6.2, we provide more results on real data obtained by Möbius Search(MS)

and the competitors: Möbius voting (MS), brute force (BF), graph matching (GM) and ICP. In

Sec. A.3, we display the numerical values used to plot the bar charts in Fig. 4 (synthetic data

results) of the main paper.

4.6.1 Conformal Teeth Alignment

We chose 5 pairs of teeth and repeat the experiments described in Sec. 5.3 in the main paper. For

each pair, we show the qualitative results followed by a table displaying the quantitative results.

4.6.1.1 Human09 - Human11

(a) (b)

FIGURE 4.8: Correspondences found by MS for Human09 - Human11

N1, N2 Methods Qbnb Qmv Qtruth Time (sec)

Human09 Human11

100

MS 40 81 13 38.87866

BF 32 81 6 10569.651

MV 24 60 3 11.18483

ICP 19 73 7 0.01788

50

MS 25 43 13 3.16331

BF 22 45 13 647.391

MV 19 30 2 2.17476

ICP 16 42 12 0.00811

20

MS 9 16 13 0.36952

BF 1 17 8 17.19584

MV 3 12 3 0.40676

GM 2 12 1 39.456

ICP 1 16 10 0.00191

TABLE 4.3: Results for conformal alignment of Human09 and Human11
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4.6.1.2 Orangutan 505958 - Orangutan 50960

(a) (b)

FIGURE 4.9: Correspondences found by MS for Orangutan 505958 - Orangutan 50960

N1, N2 Methods Qbnb Qmv Qtruth Time (sec)

Orangutan50958 Orangutan50960

100

MS 40 76 7 35.966

BF 29 78 12 10049.000

MV 26 61 2 11.283

ICP 18 46 1 0.022

50

MS 20 34 3 2.808

BF 15 37 12 649.365

MV 11 32 1 2.925

ICP 8 32 1 0.008

20

MS 9 12 2 0.297

BF 2 17 4 16.886

MV 3 11 1 0.541

GM 2 16 7 52.207

ICP 3 10 2 0.002

TABLE 4.4: Results for conformal alignment of Orangutan 505958 and Orangutan 50960

4.6.1.3 V01 - V02

(a) (b)

FIGURE 4.10: Correspondences found by MS for V01 - V02
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N1, N2 Methods Qbnb Qmv Qtruth Time (sec)

V01 V02

100

MS 34 81 15 14.691
BF 25 78 12 10011.000
MV 14 51 3 2.818
ICP 21 67 0 0.023

50

MS 16 44 13 2.816
BF 7 44 12 639.578
MV 5 32 6 3.639
ICP 8 38 0 0.006

20

MS 8 19 15 0.524
BF 4 19 14 17.039
MV 0 14 5 1.211
GM 3 7 1 59.338
ICP 6 15 1 0.002

TABLE 4.5: Results for conformal alignment of V01 and V02

4.6.1.4 Bonobo 38018 - Bonobo 38019

(a) (b)

FIGURE 4.11: Correspondences found by MS for Bonobo 38018 - Bonobo 38019

N1, N2 Methods Qbnb Qmv Qtruth Time (sec)

Bonobo 38018 Bonobo38019

100

MS 70 62 10 10.971

BF 45 68 0 10025.551

MV 60 58 6 11.342

ICP 28 27 1 0.020

50

MS 17 33 5 6.509

BF 7 34 5 633.254

MV 1 29 2 6.602

ICP 2 28 2 0.028

20

MS 5 13 2 0.624

BF 0 15 6 17.550

MV 2 8 0 0.993

GM 5 7 2 0.001

ICP 3 10 2 0.002

TABLE 4.6: Results for conformal alignment of Bonobo38018 and Bonobo38019
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4.6.1.5 x03 - x04

(a) (b)

FIGURE 4.12: Correspondences found by MS for x03-x04

N1, N2 Methods Qbnb Qmv Qtruth Time (sec)

x03 x04

100

MS 16 78 14 30.074

BF 3 78 14 10903.700

MV 7 66 0 42.472

ICP 5 73 2 0.021

50

MS 21 43 16 4.207

BF 16 43 15 621.235

MV 12 27 2 2.181

ICP 9 34 2 0.005

20

MS 8 15 13 0.638

BF 3 16 0 18.320

MV 2 13 1 0.336

GM 0 14 0 52.530

ICP 3 17 4 0.002

TABLE 4.7: Results for conformal alignment of x03 and x04

4.6.2 Conformal Face Alignment

Similar to 4.6.1, the experiments are repeated for 5 more pairs of face.
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4.6.2.1 F0015 FE01WH - F0015 FE02WH

(a) (b)

FIGURE 4.13: Correspondences found by MS for F0015 FE01WH - F0015 FE02WH

N1, N2 Methods Qbnb Qmv Qtruth Time (sec)

F0015 FE01WH F0015 FE02WH

100

MS 54 82 13 15.661

BF 42 84 13 9982.935

MV 36 28 1 16.914

ICP 30 58 0 0.083

50

MS 24 40 13 4.088

BF 12 41 1 612.245

MV 7 35 11 1.495

ICP 10 29 0 0.005

20

MS 14 17 13 0.710

BF 10 18 11 16.798

MV 2 10 6 0.138

GM 12 18 12 44.208

ICP 4 13 0 0.004

TABLE 4.8: Results for conformal alignment of F0015 FE01WH - F0015 FE02WH
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4.6.2.2 F0049 SU01WH - F0049 SU03WH

(a) (b)

FIGURE 4.14: Correspondences found by MS for F0049 SU01WH - F0049 SU03WH

N1, N2 Methods Qbnb Qmv Qtruth Time (sec)

F0049 SU01WH F0049 SU03WH

100

MS 51 84 13 15.581

BF 46 85 13 10011.218

MV 38 24 0 28.224

ICP 36 67 0 0.023

50

MS 29 44 13 4.249

BF 23 47 13 635.322

MV 15 8 1 2.232

ICP 7 33 0 0.007

20

MS 13 19 13 0.378

BF 12 19 13 16.992

MV 3 7 2 0.693

GM 2 16 8 66.848

ICP 2 14 0 0.003

TABLE 4.9: Results for conformal alignment of F0049 SU01WH and F0049 SU03WH
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4.6.2.3 M0015 HA02WH - M0015 HA04WH

(a) (b)

FIGURE 4.15: Correspondences found by MS for M0015 HA02WH - M0015 HA04WH

N1, N2 Methods Qbnb Qmv Qtruth Time (sec)

M0015 HA02WH M0015 HA04WH

100

MS 34 80 13 16.143

BF 28 84 13 11992.847

MV 24 26 1 6.527

ICP 21 79 12 0.045

50

MS 17 42 13 10.316

BF 11 44 13 648.235

MV 6 11 2 1.506

ICP 10 38 13 0.026

20

MS 10 15 13 0.523

BF 1 17 5 18.740

MV 3 15 13 0.326

GM 3 14 8 86.483

ICP 6 15 13 0.019

TABLE 4.10: Results for conformal alignment of M0015 HA02WH and M0015 HA04WH
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4.6.2.4 M0040 SA02WH - M0040 SA04WH

(a) (b)

FIGURE 4.16: Correspondences found by MS for M0040 SA02WH - M0040 SA04WH

N1, N2 Methods Qbnb Qmv Qtruth Time (sec)

M0040 SA02WH M0040 SA04WH

100

MS 38 84 12 14.568

BF 30 85 13 10985.872

MV 23 11 1 14.105

ICP 18 79 11 0.232

50

MS 17 43 12 14.977

BF 14 45 13 629.110

MV 4 17 2 0.767

ICP 1 42 10 0.009

20

MS 12 18 13 0.914

BF 4 19 12 16.956

MV 2 17 12 0.137

GM 3 17 13 29.429

ICP 3 16 12 0.002

TABLE 4.11: Results for conformal alignment of M0040 SA02WH and M0040 SA04WH
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4.6.2.5 F0036 AN02AE - F0036 AN02AE

(a) (b)

FIGURE 4.17: Correspondences found by MS for F0036 AN02AE - F0036 AN02AE

N1, N2 Methods Qbnb Qmv Qtruth Time (sec)

F0036 AN02AE F0036 AN04AE

100

MS 24 77 11 54.420

BF 19 84 0 10565.549

MV 10 43 1 2.822

ICP 8 68 1 0.024

50

MS 19 40 6 4.336

BF 14 42 11 631.845

MV 8 8 1 1.484

ICP 12 37 1 0.007

20

MS 10 15 13 0.526

BF 1 17 1 16.937

MV 2 9 2 0.187

GM 1 14 11 36.986

ICP 0 14 1 0.002

TABLE 4.12: Results for conformal alignment of F0036 AN02AE and F0036 AN02AE
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4.6.3 Numerical results for synthetic data

N1 ρ (%) Methods Qbnb Qmv Time(sec)

100

0

MS 100 71 0.385

MV 100 71 2.557

BF 100 71 11304.600

ICP 4 40 0.028
ICP2 77 83 0.033

25

MS 75 59 1.130

MV 75 59 11.435

BF 75 59 11404.700

ICP 5 40 0.021
ICP2 48 72 0.025

50

MS 50 45 2.569

MV 0 51 14.141

BF 0 49 10121.000

ICP 4 46 0.052

ICP2 3 60 0.030

TABLE 4.13: Numerical results for synthetic data with N1 = 100

N1 ρ (%) Methods Qbnb Qmv Time(sec)

50

0

MS 50 42 0.072

MV 50 42 0.815

BF 50 42 618.759

ICP 2 14 0.010

ICP2 21 42 0.008

25

MS 37 36 3.339

MV 37 36 0.755

BF 37 36 642.490

ICP 1 19 0.021

ICP2 1 36 0.010

50

MS 25 25 23.175

MV 6 6 0.728

BF 4 4 643.603

ICP 0 24 0.021

ICP2 4 29 0.008

TABLE 4.14: Numerical results for synthetic data with N1 = 50
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N1 ρ (%) Methods Qbnb Qmv Time(sec)

20

0

MS 20 19 0.15343
MV 20 19 0.1365
BF 20 19 17.07308
ICP 1 8 0.00664
ICP2 14 19 0.00808
GM 20 19 29.281

25

MS 15 14 0.16772
MV 15 14 0.1965
BF 15 14 16.86983
ICP 1 7 0.01413
ICP2 1 9 0.00213
GM 15 14 24.4612

50

MS 10 11 0.38881
MV 1 11 0.3723
BF 0 13 17.02
ICP 0 10 0.01533
ICP2 0 13 0.00182
GM 0 4 37.9

TABLE 4.15: Numerical results for synthetic data with N1 = 20

4.6.4 Calculating range limit

4.6.4.1 Range limit for solving rotation angle

FIGURE 4.18: Computing range limits for solving rotation angle

This section explains how the range limit [αjkz,1, α
jk
z,2] defined in section 3 can be derived.

Let θjkz be the intersection angle between Ωj
z and Ok

ε as depicted in Fig. 4.18. This angle can

be evaluated easily using circle to circle intersection.

Define βjkz,1 and βjkz,2 to be the limiting angles of the intersection arc, which can be determined

by:

βjkz,1 = ∠bk −
θjkz
2

(4.33)
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and

βjkz,2 = ∠bk +
θjkz
2

(4.34)

As can easily be seen, the formula for the range limit [αjkz,1, α
jk
z,2] will be:

αjkz,1 = βjkz,1 − ∠m′j (4.35)

and

αjkz,2 = βjkz,2 − ∠m′j (4.36)

4.6.4.2 Range limit for computing upper bound

This section details the steps to compute the range limit [αjkR,1, α
jk
R,1] defined in bound calculation

part in section 4.2 (cf. the main paper).

Let θjkR be the intersection angle between Ωj
R and the disk Ok

ε . The way to compute this angle

depends on the relative position between bk and the annulus Ωj
R plus the value of ε. Specifically,

C1 If rjR,1 ≤
√
|bk|2 − ε2 ≤ rjR,2 (Fig. 4.19): θjkR is the angle between two tangent lines

starting from the center of the Ok
ε disk. Mathematically,

θjkR = 2 ∗ arcsin
ε

|bk|
(4.37)

C2 If
√
|bk|2 − ε2 < rjR,1 or

√
|bk|2 − ε2 > rjR,2. There are two possibilities:

C2.1 The outline of Ok
ε intersects with either the inner or the outer ring of Ωj

R: θjkR is

computed using circle to circle intersection (Fig. 4.20)

C2.2 The outline of Ok
ε intersects with both the inner and the outer ring of Ωj

R: θjkR is

determined by the ring that has larger intersection angle with Ok
ε using circle to

circle intersection (Fig. 4.21)

Similar to 4.6.4.1, define βjkR,1 and βjkR,2 to be the limiting angles of the intersection area

βjkR,1 = ∠bk −
θjkR
2

(4.38)

and

βjkR,2 = ∠bk +
θjkR
2

(4.39)

Finally, the range limit can be computed as:

αjkR,1 = βjkR,1 − θ
j
R,2 (4.40)
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and

αjkR,2 = βjkR,2 − θ
j
R,1 (4.41)

FIGURE 4.19: Illustration of C1: rjR,1 ≤
√
|bk|2 − ε2 ≤ rjR,2

(a) Outline of Okε intersects with

the outer ring of ΩjR

(b) Outline of Okε intersects with

the inner ring of ΩjR

FIGURE 4.20: Illustration of C2.1: Outline of Okε intersects with either the inner or outer ring
of the annulus ΩjR

(a) θjkR is determined by intersec-

tion between the outline of Okε with

the inner ring

(b) θjkR is determined by intersection

between the outline of Okε with the

outer ring

FIGURE 4.21: Illustration of C2.2: Outline of Okε intersects with both the inner or outer ring
of the annulus ΩjR

4.6.5 Solving for rotation angle

Algorithm 1 in this document gives the method for solving problem (12) in Sec. 3 of the main

paper, i.e., finding the rotation angle that intersects the highest number of angular ranges Sjz =
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{
[αjkz,1, α

jk
z,2]
}N2

k=1
.

This algorithm runs very efficiently inO(N logN) time. See Chapter 10 of [M. De Berg, M.

Van Kreveld, M. Overmars, and O. C. Schwarzkopf. Computational geometry. Springer, 2000]

if more details are required.

Algorithm 4.2 Interval Stabbing

Require: Set of angular ranges
{
Sjz =

{
[αjkz,1, α

jk
z,2]
}N2

k=1

}N1

j=1

Set S ← empty set; θ∗ ← null; U(z)← 0; l← 0

for all j = 1 . . . N1 do
for all angular intervals [αjkz,1, α

jk
z,2] in Sjz do

l← l + 1

sl.a← αjkz,1

sl.f ← 1

Insert sl into S
l← l + 1

sl.a← αjkz,2

sl.f ← −1

Insert sl into S
end for

end for
Sort all elements sl ∈ S by sl.a in ascending order→ S′

c← 0

for all sl ∈ S′ do
c← c+ sl.f

if c > U(z) then
θ∗ ← sl.a

U(z)← c

end if
end for
return θ∗ and U(z).
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5.1 Introduction

Robust model fitting lies at the core of computer vision, due to the need of many fundamental

tasks to deal with real-life data that are noisy and contaminated with outliers. To conduct robust

model fitting, a robust fitting criterion is optimized w.r.t. a set of input measurements. Arguably

the most popular robust criterion is maximum consensus, which aims to find the model that is

consistent with the largest number of inliers, i.e., has the highest consensus.

Due to the critical importance of maximum consensus estimation, considerable effort has

been put into devising algorithms for optimizing the criterion. A large amount of work occurred

within the framework of hypothesize-and-verify methods, i.e., RANSAC [31] and its variants.

Broadly speaking, these methods operate by fitting the model onto randomly sampled minimal

subsets of the data, and returning the candidate with the largest inlier set. Improvements to the

basic algorithm include guided sampling and speeding up the model verification step [21].

An important innovation is locally optimized RANSAC (LO-RANSAC) [23, 56]. As the

name suggests, the objective of the method is to locally optimize RANSAC estimates. This is

achieved by embedding in RANSAC an inner hypothesize-and-verify routine, which is triggered

whenever the solution is updated in the outer loop. Different from the main RANSAC algorithm,

the inner subroutine generates hypotheses from larger-than-minimal subsets sampled from the

inlier set of the incumbent solution, in the hope of driving it towards an improved result.

Though efficient, there are fundamental shortcomings in the hypothesize-and-verify heuris-

tic. Primarily, it does not give analytical assurances of the quality of its solutions. This weakness

manifests in LO-RANSAC in that the algorithm does not strictly guarantee local convergence.

The randomized nature of the heuristic also means that different runs may give unpredictably

different results, which makes it non-ideal for tasks that require high repeatability.

More recently, there is a growing number of globally optimal algorithms for consensus maxi-

mization [73, 96, 26, 59, 18]. The fundamental intractability of maximum consensus estimation,

however, means that the global optimum can only be found by searching. Indeed, the previous

techniques respectively conduct branch-and-bound search [96, 59], tree search [18], or exhaus-

tive search [73, 26]. Thus, global algorithms are practical only on problems with a small number

of measurements and/or models of low dimensionality.

So far, what is sorely missing in the literature is an algorithm that lies in the middle ground

between the above two extremes. Specifically, a maximum consensus algorithm that is deter-

ministic and locally convergent would add significantly to the robust fitting toolbox of computer

vision.

In this paper, we contribute such an algorithm. We reformulate consensus maximization with

linear complementary constraints, then define a penalized version of the problem. We prove that,
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under easily achievable conditions, the penalty problem is equivalent to the original problem,

in the sense that they have the same optima (local and global). We then develop a Frank-Wolfe

algorithm to deterministically solve maximum consensus up to local optimality. Overall, our

method executes a sequence of linear programs (LP), which enables it to be efficient on realistic

inputs (hundreds to thousands of measurements). Further, our algorithm is naturally capable of

handling the non-linear geometric residuals commonly used in computer vision [49, 51]. As will

be demonstrated, our method typically achieves better results than RANSAC and LO-RANSAC,

while incurring only marginally higher runtimes.

The above properties make our algorithm an excellent alternative to RANSAC and its vari-

ants, which are currently dominant in the field. Matlab code and demo program for our method

are provided in the supplementary material.

5.1.1 M-estimators and IRLS

More broadly in statistics, M-estimators [46] is an established robust statistical method. The

M-estimate is obtained by minimizing the sum of a set of ρ functions defined over the residuals,

where ρ (e.g., the Huber norm) is responsible for discounting the effects of outliers. The primary

technique for the minimization is iteratively reweighted least squares (IRLS). At each iteration

of IRLS, a weighted least squares problem is solved, where the weights are computed based on

the previous estimate. Provided that ρ satisfies certain properties [95, 5], IRLS will converge to

a minimum. This unfortunately precludes consensus maximization, since the corresponding ρ

(a symmetric step function) is not positive definite and differentiable everywhere.

Arguably, one can simply choose a robust ρ that works with IRLS and dispense with maxi-

mum consensus. However, another vital requirement for IRLS to be feasible is that the weighted

least squares problem is efficiently solvable. This unfortunately is not the case for many of the

geometric distances used in computer vision [49, 51, 40].

The above limitations with IRLS suggest that locally convergent algorithms for robust fit-

ting remains an open problem, and that our proposed algorithm should represent a significant

contribution towards this direction.

5.2 Problem definition

We develop our algorithm in the context of fitting linear models, before extending to models

with geometric residuals in Sec. 5.4.2. The goal of maximum consensus is to find the model,
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parametrized by vector θ ∈ Rd, that is consistent with as many of the input data as possible, i.e.,

max
θ∈Rd, I∈P(N)

|I|

subject to |xTj θ − yj | ≤ ε ∀j ∈ I,
(5.1)

where {xj , yj}Nj=1 is a set of N measurements for the linear model, ε is the inlier threshold, and

P(N) is the power set (the set of all subsets) of the index set {1, 2, . . . , N}.

Expressing each constraint of the form |xTj θ − yj | ≤ ε equivalently using the two linear

constraints

xTj θ − yj ≤ ε, −xTj θ + yj ≤ ε, (5.2)

and collecting the data into the matrices

A =
[
x1,−x1, . . . ,xN ,−xN

]
, (5.3)

b =
[
ε+ y1, ε− y1, . . . , ε+ yN , ε− yN

]T
, (5.4)

where A ∈ Rd×M , b ∈ RM and M = 2N , we can rewrite (5.1) equivalently as

max
θ∈Rd, I∈P(M)

|I|

subject to aTi θ − bi ≤ 0 ∀i ∈ I,
(5.5)

where ai is the i-th column of A and bi is the i-th element of b. Problems (5.1) and (5.5) are

equivalent in the sense that they have the same maximizer, though the maximum objective value

of (5.5) is twice that of (5.1) since for any θ, at least one of the constraints in (5.2) are satisfied.

Henceforth, we will be developing our maximum consensus algorithm based on (5.5) as our

target problem.
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5.2.1 Complementarity constraints

Introducing indicator variables u ∈ {0, 1}M and slack variables s ∈ RM , we reformulate (5.5)

equivalently as an outlier count minimization problem

min
u∈{0,1}M , s∈RM , θ∈Rd

∑
i

ui (5.6a)

subject to si − aTi θ + bi ≥ 0, (5.6b)

ui(si − aTi θ + bi) = 0, (5.6c)

si(1− ui) = 0, (5.6d)

si ≥ 0. (5.6e)

Intuitively, si must be non-zero if the i-th datum is an outlier w.r.t. θ; in this case, ui must

be set to 1 to satisfy (5.6d). In turn, (5.6c) forces the quantity (si − aTi θ + bi) to be zero.

Conversely, if the i-th datum is an inlier w.r.t. θ, then si is zero, ui is zero and (si − aTi θ + bi)

is non-zero. Observe, therefore, that (5.6c) and (5.6d) implement complementarity between ui
and (si − aTi θ + bi).

Note also that, due to the objective function and the condition (5.6d), the indicator variables

can be relaxed without impacting the optimum, leading to the equivalent problem

min
u,s∈RM , θ∈Rd

∑
i

ui (5.7a)

subject to si − aTi θ + bi ≥ 0, (5.7b)

ui(si − aTi θ + bi) = 0, (5.7c)

si(1− ui) = 0, (5.7d)

1− ui ≥ 0, (5.7e)

si, ui ≥ 0. (5.7f)

This, however, does not make (5.7) tractable to solve exactly, since (5.7c) and (5.7d) are bilinear

in the unknowns.

To re-express (5.7) using only positive variables, define

v =

[
θ + γ1

γ

]
, ci =

[
aTi −aTi 1

]T
, (5.8)
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where both are real vectors of length (d + 1). Problem (5.7) can then be reformulated equiva-

lently as

min
u,s∈RM , v∈Rd+1

∑
i

ui

subject to si − cTi v + bi ≥ 0,

ui(si − cTi v + bi) = 0,

si(1− ui) = 0,

1− ui ≥ 0,

si, ui, vi ≥ 0.

(5.9)

Given a solution û, ŝ and v̂ to (5.9), the corresponding solution θ̂ to (5.7) can be obtained by

simply subtracting the last element of v̂ from its first-d elements.

5.3 Penalty method

Incorporating the equality constraints in (5.9) into the cost function as a penalty term, we obtain

the penalty problem

min
u,s,v

∑
i

ui + α
[
ui(si − cTi v + bi) + si(1− ui)

]
s.t. si − cTi v + bi ≥ 0,

1− ui ≥ 0,

si, ui, vi ≥ 0.

(5.10)

The constant α ≥ 0 is called the penalty parameter. Intuitively, the penalty term discourages

solutions that violate the complementarity constraints, and the strength of the penalization is

controlled by α.

Henceforth, to reduce clutter, we sometimes use

z =
[
uT sT vT

]T
. (5.11)

In addition, the cost function in (5.10) is rewritten as

P (z | α) = F (z) + αQ(z), (5.12)
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where F (z) = ‖u‖1 and

Q(z) =
∑
i

ui(si − cTi v + bi) + si(1− ui) (5.13)

=
∑
i

si − ui(cTi v − bi). (5.14)

In particular, Q(z) is called the complementarity residual.

In Sec. 5.3.3, we will investigate the conditions under which solving (5.10) is equivalent

to solving (5.9), and devise an algorithm in Sec. 5.4 to exploit the equivalence for consensus

maximization. First, in the next two subsections, we discuss solving the penalty problem (5.10)

for a given α.

5.3.1 Necessary optimality conditions

Although P (z | α) is quadratic, problem (5.10) is non-convex. However, it can be shown

that (5.10) has a vertex solution, i.e., is an extreme point of the convex set

P = {z ∈ R2M+d+1 |Mz + q ≥ 0, z ≥ 0}, (5.15)

where

M =

[
0 I −C
−I 0 0

]
,

C =
[
c1 c2 . . . cM

]T
,

q =
[
bT 1T

]T
;

(5.16)

(here and henceforth, to minimize clutter we do not define the sizes of I, 0 and 1, but the sizes

can be worked out based on the context). To begin, observe that the minima of (5.10) obey the
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KKT conditions [69, Chap. 12]

uT (−αCv + αb + 1 + λG) = 0,

sT (α1− λH) = 0,

vT (−αCTu + CTλH) = 0,

(λH)T (s−Cv + b) = 0,

(λG)T (1− u) = 0,

s−Cv + b ≥ 0,

1− u ≥ 0,

λH,λG ,u,v, s ≥ 0,

(5.17)

where λH = [λH1 . . . λHM ]T and λG = [λG1 . . . λGM ]T are the Lagrange multipliers for the first

two types of constraints in (5.10); see supplementary material for details.

By rearranging, the KKT conditions (5.17) can be summarized by the following relations

M′z′ + q′ ≥ 0, z′ ≥ 0, (z′)T (M′z′ + q′) = 0, (5.18)

where

z′ =
[
zT (λH)T (λG)T

]T
,

M′ =



0 0 −αC 0 I

0 0 0 −I 0

−αCT 0 0 CT 0

0 I −C 0 0

−I 0 0 0 0


,

q′ =
[
(αb + 1)T α1T 0T bT 1T

]T
.

(5.19)

Finding a feasible z′ for (5.18) is an instance of a linear complementarity problem (LCP) [66].

Define the convex set

P ′ = {z′ ∈ R4M+d+1 |M′z′ + q′ ≥ 0, z′ ≥ 0}. (5.20)

We invoke the following result from [66, Lemma 2].

Theorem 5.1. If the LCP defined by the constraints (5.18) has a solution, then it has a solution

at a vertex of P ′.

Theorem 5.1 implies that the KKT points of (5.10) (including the solutions of the problem)

occur at the vertices of P ′. This also implies that (5.10) has a vertex solution, viz.:
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Theorem 5.2. For any vertex

z′v = [zTv (λHv )T (λGv )T )]T (5.21)

of P ′, zv is a vertex of P .

Proof. If z′v is a vertex of P ′, then, there is a diagonal matrix E such that

M′Ez′v + q′ − γ ′ = 0, (5.22)

where Ei,i = 1 if the i-th column of M′ appears in the basic solution corresponding to vertex

z′v, and Ei,i = 0 otherwise (the non-negative vector γ ′ contains the values of additional slack

variables to convert the constraints in P ′ into standard form). Let M′J be the last-2M rows of

M′. Then,

M′JEz′v +
[
bT 1T

]T
− γ ′J = 0, (5.23)

where γ ′J is the last-2M elements of γ ′. Note that, since the right-most 2M × 2M submatrix of

M′J is a zero matrix (see (5.19)), then

M′JEKzv +
[
bT 1T

]T
− γ ′J = 0, (5.24)

where EK is the first-(2M +d+ 1) columns of E. Since M′JEK = M, then (5.24) implies that

zv is a vertex of P .

5.3.2 Frank-Wolfe algorithm

Theorem 5.2 suggests an approach to solve (5.10) by searching for a vertex solution. Further,

note that for a fixed u, (5.10) reduces to an LP. Conversely, for fixed s and v, (5.10) is also an LP.

This advocates alternating between optimizing subsets of the variables using LPs. Algorithm 5.1

summarizes the method, which is in fact a special case of the Frank-Wolfe method [32] for non-

convex quadratic minimization.

Theorem 5.3. In a finite number of steps, Algorithm 5.1 converges to a KKT point of (5.10).

Proof. The set of constraints P can be decoupled into the two disjoint subsets

P = P1 × P2, (5.25)

where P1 involves only s and v, and P2 is the complement of P1. With u fixed in Line 5, the

LP converges to a vertex of P1. Similarly, with s and v fixed in Line 6, the LP converges to
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Algorithm 5.1 Frank-Wolfe method for (5.10).

Require: Data {ci, bi}Mi=1, penalty value α, initial solution u(0), v(0), s(0), threshold δ.
1: P (0) ← P (u(0), s(0),v(0) | α).
2: t← 0.
3: while true do
4: t← t+ 1.
5: s(t),v(t) ← arg mins,v P (u(t−1), s,v | α) s.t. P .
6: u(t) ← arg minu P (u, s(t),v(t) | α) s.t. P .
7: P (t) ← P (u(t), s(t),v(t) | α).
8: if |P (t−1) − P (t)| ≤ δ then
9: Break.

10: end if
11: end while
12: return u(t),v(t), s(t).

a vertex in P2. Each intermediate solution u(t),v(t), s(t) is thus a vertex of P or a KKT point

of (5.10). Since each LP must reduce or maintain P (z | α) which is bounded below, the process

terminates in finite steps.

Analysis of update steps A closer look reveals the LP in Line 5 (Algorithm 5.1) to be

min
s,v

∑
i

si − ui(cTi v − bi)

s.t. si − cTi v + bi ≥ 0,

si, vi ≥ 0,

(LP1)

and the LP in Line 6 (Algorithm 5.1) to be

min
u

∑
i

ui
[
1− α(cTi v − bi)

]
s.t. 0 ≤ ui ≤ 1.

(LP2)

Observe that LP2 can be solved in closed form and it also drives u to integrality: if [1−α(cTi v−
bi)] ≤ 0, set ui = 1, else, set ui = 0. Further, LP1 can be seen as “weighted” `1-norm

minimization, with u being the weights. Intuitively, therefore, Algorithm 5.1 alternates between

residual minimization (LP1) and inlier-outlier dichotomization (LP2).

5.3.3 Exactness of penalization

The penalty problem (5.10) is an instance of a non-smooth exact penalty method [69, Sec. 17.2].

Observe thatQ(z) is the `1-norm of the LHS of the equality constraints in (5.9). The exactness of

the penalization is exhibited in the following theorems (rephrased in the context of our problem).
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Theorem 5.4 (based on Theorem 17.3 in [69]). If z∗ is a local solution of the original prob-

lem (5.9), then, there exists α∗ > 0 such that for all α ≥ α∗, z∗ is also a local minimizer of

P (z | α) subject to constraints P .

Intuitively, the theorem states that there is a sufficiently large α for problem (5.10), such that

any small movement away from z∗ will be penalized strongly enough by αQ(z) to immediately

negate any potential reduction to F (z) enabled by violating the complementarity constraints. A

follow-up theorem will prove more useful for our aims.

Theorem 5.5 (based on Theorem 17.4 in [69]). Let ẑ be a KKT point of the penalized prob-

lem (5.10) for α greater than α∗. Then, Q(ẑ) = 0, and ẑ is also a KKT point of (5.9).

A “one shot” approach that sets α to a very large value and solves a single instance of (5.10)

is unlikely to be successful, however, since we cannot globally solve the penalty problem. In the

next section, we describe a more practical approach that uses an increasing sequence of α.

5.4 Main algorithm

Based on the above results, we propose our main algorithm for solving the maximum consensus

problem (5.9); see Algorithm 5.2. Our method solves (5.10) using Algorithm 5.1 for succes-

sively larger α, where the solution ẑ for a particular α is used to initialize Algorithm 5.1 for the

next larger α. The sequence terminates when the complementarity residual Q(z) vanishes. As

long as each ẑ is a KKT point of the associated penalty problem (5.10), which we can provably

achieve thanks to Theorem 6.3, Theorem 5.5 guarantees that Algorithm 5.2 will converge to a

solution for (5.9) that satisfies the first-order necessary conditions for optimality.

Algorithm 5.2 Main algorithm for solving (5.9).

Require: Data {ci, bi}Mi=1, initial model parameter θ, initial penalty value α, increment rate κ,
threshold δ.

1: v←
[
(θ + |minj(θj)|1)T |minj(θj)|

]T .
2: u← I(Cv − b > 0).
3: s← u� (Cv − b).
4: while true do
5: u, s,v← FW ({ci, bi}Mi=1, α,u, s,v). /*Algo. 5.1.*/
6: if Q(z) ≤ δ then
7: Break.
8: end if
9: α← κ · α.

10: end while
11: return u, s,v.
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It is worthwhile to note that typical non-smooth penalty functions cannot be easily minimized

(e.g., no gradient information). In our case, however, we exploited the special property of (5.10)

(Sec. 5.3.1) to enable efficient minimization.

5.4.1 Initialization

Algorithm 5.2 requires the initialization of u, s and v. For consensus maximization, it is more

natural to initialize the model parameters θ, which in turn gives values to v, s and u. In our

work, we initialize θ as the least squares solution, or by executing RANSAC (Sec. 5.5 will

compare the results of these two different initialization methods).

Other required inputs are the initial penalty parameter α and the increment rate κ. These

values affect the convergence speed of Algorithm 5.2. To avoid bad minima, we set α and κ

conservatively, e.g., α ∈ [1, 10], κ ∈ [1, 5]. As we will demonstrate in Sec. 5.5, these settings

enable Algorithm 5.2 to find very good solutions at competitive runtimes.

5.4.2 Handling geometric distances

For most applications in computer vision, the residual function used for geometric model fitting

is non-linear. It has been shown [49, 73, 6], however, that many geometric residuals have the

following generalized fractional form

‖Gθ + h‖p
rTθ + q

with rTθ + q > 0, (5.26)

where ‖ · ‖p is the p-norm, and G ∈ R2×d, h ∈ R2, r ∈ Rd, q ∈ R1 are constants derived

from the input data. For example, the reprojection error in triangulation and transfer error in

homography estimation can be coded in the form (5.26). The associated maximum consensus

problem is

max
θ∈Rd, I∈P(N)

|I|

subject to ‖Gjθ + hj‖p ≤ ε(rTj θ + qj) ∀j ∈ I,
(5.27)

where the denominator of (5.26) can be moved to the RHS since ε is non-negative (see [49] for

details). We show that for p = 1, our method can be easily adapted to solve (5.27) up to local

optimality1. Define

Gj =

[
gTj,1

gTj,2

]
hj =

[
hj,1

hj,2

]
. (5.28)

1Note that, in the presence of outliers, the residuals are no longer i.i.d. Normal. Thus, the 1-norm is equally valid
as the 2-norm for robust fitting.
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Now, for p = 1, the constraint in (5.27) becomes

∣∣gTj,1θ + hj,1
∣∣+
∣∣gTj,2θ + hj,2

∣∣ ≤ ε(rTj θ + qj), (5.29)

which in turn can be equivalently implemented using four linear constraints (see [6] for details).

We can then manipulate (5.27) into the form (5.5), and the rest of our theory and algorithms will

be immediately applicable.

5.5 Results

We tested our method (Algorithm 5.2, henceforth abbreviated as EP) on common parameter

estimation problems. We compared EP against the following well-known methods:

• RANSAC (RS) [31]: We used confidence ρ = 0.99 for the stopping criterion in all the exper-

iments. On each data instance, RANSAC was executed 10 times and the average consensus

size and runtime were reported.

• LO-RANSAC (LORS) [23]: The maximum number of iterations for the inner sampling over

the updated consensus set was set to 100.

• Improved LO-RANSAC (LORS1) [56]: As proposed, the local refinement will only be run

if the new consensus size is higher than a pre-defined threshold (set to 10% of the data size

in our experiments).

• `1 approximation (`1) [74]: This method is equivalent to introducing slack variables to prob-

lem (5.5) and minimizing the `1-norm of the slack variables to yield an approximate solution

to maximum consensus.

• `∞ outlier removal (l∞) [79]: Again, in the context of (5.5), slack variables are introduced

and the maximum slack value is minimized. Data with the largest slack value are removed,

and the process of repeated until the largest slack value is not greater than zero.

• For the experiments with image data where keypoint matching scores are available as inlier

priors, we executed two state-of-the-art RANSAC variants: PROSAC (PS) [22] and Guided

MLESAC (GMLE) [84].

All the methods and experiments were implemented in MATLAB and run on a standard desktop

machine with 3.5 GHz processor and 8 GB of RAM. For EP, `1 and `∞, Gurobi was employed

as the LP solver.
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5.5.1 Linear models

Linear regression with synthetic data We generated N = 500 points {xj , yj}Nj=1 in R9

following a linear trend y = xTθ, where θ ∈ R8 and xj ∈ [−1, 1]8 were randomly sampled.

Each yj was perturbed by Gaussian noise with standard deviation of σin = 0.1. To simulate

outliers, pout% of yj’s were randomly selected and corrupted. To test the ability of EP to deal

with bad initializations, two different outlier settings were considered:

• Balanced data: the yj of outliers were added with Gaussian noise of σout = 1. This evenly

distributed the outliers on both sides of the hyperplane.

• Unbalanced data: as above, but the sign of the additive noise was forced to be positive. Thus,

outliers were distributed only on one side of the hyperplane. On such data, the least squares

solution is heavily biased.

See Fig. 6.2 for a 2D analogy of these outlier settings. We tested with pout = {0, 5, 10 . . . , 60}.
The inlier threshold for maximum consensus was set to ε = 0.1.

EP was initialized respectively with RANSAC (variant EP-RS) and least squares (variant

EP-LSQ). The initial α was set to 0.5 and κ = 5 for all the runs.

-1 -0.5 0 0.5 1

-0.5

0

0.5 RS LSQ EP-RS EP-LSQ

-1 -0.5 0 0.5 1

0

 0.5

1
RS LSQ EP-RS EP-LSQ

FIGURE 5.1: 2D analogy of balanced (top) and unbalanced (bottom) data generated in our
experiments. The results of RANSAC, least squares, and our method initialized with the former
two methods are shown. Observe that least squares is heavily biased under unbalanced data,
but EP is able to recover from the bad initialization.

Fig. 6.3 shows the average consensus size at termination and runtime (in log scale) of the

methods. Note that runtime of RS and LSQ were included in the runtime of EP-RS and EP-

LSQ. It is clear that, in terms of solution quality, both variants of EP consistently outperformed

the other methods. The fact that EP-LSQ could match the quality of EP-RS on unbalanced data

attest to the ability of EP to recover from bad initializations. In terms of runtime, while both

EP variants were slightly more expensive than the RANSAC variants, as pout increased over

35%, EP-LSQ began to outperform the RANSAC variants (since EP-RS was initialized using

RANSAC, its runtime also increased with pout).

Fundamental matrix estimation Following [42, Chapter 11], the epipolar constraint is lin-

earized to enable the fundamental matrix to be estimated linearly (note that the usual geometric
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(a) Consensus size at termination (bal-
anced data).
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FIGURE 5.2: Results for linear regression (d = 8 dimensions). (a)(b) Balanced data; (c)(d)
Unbalanced data.

(a) Corridor. (b) Christ Church. (c) Trees.

FIGURE 5.3: Qualitative results of EP on (a) fundamental matrix estimation, (b) homogra-
phy estimation, and (c) affinity estimation. Green and red lines represent detected inliers and
outliers. For clarity, only 100 inliers/outliers are plotted. See supp material for more results.

distances for fundamental matrix estimation do not have the generalized fractional form (5.26),

thus linearization is essential to enable our method. Sec. 5.5.2 will describe results for model

estimation with geometric distances).

Five image pairs from the VGG data set were used: Corridor, House, Merton II, Wadham

and Aerial View I. The images were first resized before SIFT (as implemented on VLFeat [87])

was used to extract around 500 correspondences per pair. An inlier threshold of ε = 1 was used

for all image pairs. For EP, apart from initialization with RANSAC and least squares, we also

initialised it with `∞ outlier removal (variant EP-`∞). For all EP variants, the initial α was set

to 0.5 and κ = 5 for all the runs.

Table 5.1 summarizes the quantitative results for all methods. Regardless of the initializa-

tion method, EP was able to find the largest consensus set. Though the runtimes of EP were



Chapter 5. An Exact Penalty Method for Locally Convergent Maximum Consensus 105

higher, they were still in the same order of magnitude as the others. Fig. 5.3a displays a sam-

ple qualitative result for EP; for the qualitative results on the other image pairs, please see the

supplementary material.

Methods RS PS GMLE LORS LORS1 `1 `∞ EP-RS EP-LSQ EP-`∞
House

N = 556
|I| 250 251 254 257 256 175 205 267 267 267

time (s) 2.12 1.60 1.09 1.33 3.41 0.2 0.06 7.62 4.79 4.96
Aerial

N = 421
|I| 267 261 266 283 283 282 277 297 297 297

time (s) 0.12 0.16 0.1 0.17 0.27 0.15 0.03 1.91 2.01 1.67
Merton
N = 590

|I| 367 344 370 377 383 408 404 451 451 451
time (s) 0.14 0.27 0.09 0.21 0.32 0.25 0.04 2.84 2.75 3.69

Wadham
N = 587

|I| 447 426 473 470 476 503 433 512 512 512
time (s) 0.05 0.08 0.04 0.12 0.15 0.2 0.04 2.99 3.29 3.06

Corridor
N = 686

|I| 263 269 263 266 265 246 264 303 303 303
time (s) 5.23 4.22 4.64 3.87 9.06 0.72 0.08 15.26 5.57 5.75

TABLE 5.1: Fundamental matrix estimation results. Legend: |I| = consensus size at termi-
nation, RS = RANSAC, PS = PROSAC, GMLE = Guided MLESAC, LORS = LO-RANSAC,
LORS1 = Improved LO-RANSAC, EP = proposed method with different initialization tech-
niques.

Methods RS PS GMLE LORS LORS1 `1 `∞ EP-RS EP-`∞

H
om

og
ra

ph
y

es
tim

at
io

n

University Library
N = 545

|I| 251 269 251 294 294 120 53 301 301
time (s) 0.73 0.62 0.69 1.90 1.89 3.10 2.49 12.76 14.49

Christ Church
N = 445

|I| 235 236 227 250 246 246 160 280 280
time (s) 0.47 0.47 0.43 1.33 1.61 1.23 2.44 10.37 12.67

Valbonne
N = 434

|I| 131 134 117 156 136 24 22 158 158
time (s) 3.17 2.39 5.76 3.04 5.80 1.36 1.27 17.20 14.84

Kapel
N = 449

|I| 163 167 130 167 168 28 161 170 170
time (s) 1.19 1.15 9.89 2.18 2.70 1.62 1.16 8.46 8.68

Invalides
N = 413

|I| 144 159 140 149 156 84 142 178 178
time (s) 1.36 0.90 1.60 2.17 2.94 1.04 0.71 10.20 9.15

A
ffi

ni
ty

es
tim

at
io

n

Bikes
N = 557

|I| 424 427 425 426 424 387 431 437 437
time (s) 6.09 6.09 5.79 6.28 11.8 1.77 1.77 15.26 9.81

Graff
N = 327

|I| 126 129 127 134 126 147 274 276 276
time (s) 3.51 3.35 3.14 4.07 6.61 0.99 0.23 5.94 2.70

Bark
N = 458

|I| 279 288 270 284 279 298 439 442 442
time (s) 4.89 4.93 4.68 5.11 9.54 1.31 0.19 10.19 5.51

Tree
N = 568

|I| 372 367 371 372 372 377 370 396 396
time (s) 5.70 6.01 5.73 6.93 11.50 4.81 0.81 15.96 11.82

Boat
N = 574

|I| 476 477 476 477 476 469 464 483 483
time (s) 6.32 6.29 6.02 7.18 12.32 4.12 1.02 14.86 9.33

TABLE 5.2: Homography and Affinity estimation results. Legend: |I| = consensus size at ter-
mination, RS = RANSAC, PS = PROSAC, GMLE = Guided MLESAC, LORS = LO-RANSAC,
LORS1 = Improved LO-RANSAC, EP = proposed method with different initialization tech-
niques.

5.5.2 Models with geometric distances

Homography estimation We estimated 2D homographies based on the transfer error using

all the methods. Five image pairs form the VGG dataset were used: University Library, Christ

Church, Valbonne, Kapel and Paris’s Invalides. The same preprocessing and correspondence

extraction method as in the fundamental matrix estimation experiment was used to produce 500
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Point 719
N = 192

Point 585
N = 153

Point 570
N = 167

Point 24
N = 155

Point 1
N = 167

|I| time |I| time |I| time |I| time |I| time
RS 102 0.26 77 0.13 47 0.14 111 0.14 94 0.15

LORS 102 1.16 77 0.60 47 0.65 111 0.71 94 0.78
LORS1 103 0.29 77 0.24 47 0.26 111 0.25 94 0.26
`1 61 0.27 20 0.17 14 0.23 60 0.13 62 0.33
`∞ 96 1.29 61 0.75 35 0.95 111 0.46 81 1.06

EP-RS 107 2.06 80 1.02 54 1.40 113 1.10 96 0.96
EP-`∞ 107 3.08 80 1.70 54 2.22 113 1.35 96 2.16

TABLE 5.3: Triangulation results. Legend: |I| = consensus size at termination, RS =
RANSAC, PS = PROSAC, GMLE = Guided MLESAC, LORS = LO-RANSAC, LORS1 =
Improved LO-RANSAC, EP = proposed method with different initialization techniques.

matches per image pair. The inlier threshold of ε = 4 pixels was used for all input data. Initial

α was set to 10 and κ = 1.5 for all EP variants.

Quantitative results are shown in Table 5.2, and a sample qualitative result for EP is shown

in Fig. 5.3b. Similar to the fundamental matrix case, the EP variants outperformed the other

methods in terms of solution quality, but were slower though its runtime was still within the

same order of magnitude. Note that EP-LSQ was not invoked here, since finding least squares

estimates based on geometric distances is intractable in general [40].

Affinity estimation The previous experiment was repeated for affinity (6 DoF affine transfor-

mation) estimation with initial α set to 0.5, κ = 5 and ε = 2 pixels. Five image pairs from

VGG’s affine image dataset were used: Bikes, Graff, Bark, Tree and Boat. Quantitative results

are given in Table 5.2, and sample qualitative result is shown in Fig. 5.3c. Similar conclusions

can be drawn.

Triangulation Coordinates of 3D points were estimated using the reprojection error under

outlier contamination. We selected five feature tracks from the NotreDame dataset [80] with

more than N = 150 views each to test our algorithm. The inlier threshold for maximum con-

sensus was set to ε = 1 pixel. α was initially set to 0.5 and κ = 1.5 for all variants of EP.

Table 5.3 shows the quantitative results. Again, the EP variants are better than the other

methods in terms of solution quality. The runtime gap was not as significant here due to the

low-dimensionality of the model (d = 3).

5.6 Conclusions

We introduced a novel locally convergent algorithm for maximum consensus, based on exact pe-

nalization of complementary constraints. In terms of solution quality, our algorithm outperforms
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other heuristic and approximate methods - this was demonstrated particularly by our method be-

ing able to improve upon the solution of RANSAC. Even when presented with bad initializations

(i.e., when using least squares to initialize on unbalanced data), our method was able to recover

and attain good solutions. Though our method can be slower, it is able to guarantee convergence

to local optimum, unlike the randomized heuristics. In fact, at high outlier rates, our method is

actually faster than the RANSAC variants, while yielding higher-quality results.

Overall, the experiments illustrate that the proposed method can serve well in settings where

slight additional runtime is a worthwhile expense for guaranteed convergence to an improved

maximum consensus solution.
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5.7 Supplementary Material

5.7.1 Derivation of KKT conditions

The penalty problem derived in the main paper:

min
u,s,v

∑
i

ui + α
[
ui(si − cTi v + bi) + si(1− ui)

]
s.t. si − cTi v + bi ≥ 0,

1− ui ≥ 0,

si, ui, vi ≥ 0.

(5.30)

Define the functions correspond to the set of constraints of the penalty problem (5.30):

Hi = si − cTi v + bi

Gi = 1− ui

Si = si

Ui = ui

Vi = vi

(5.31)

Also, define λH, λG , λS , λU , λV ∈ RM be the Larange multipliers for the constraints

in (5.30).

Derivaties of the cost function in (5.30) with respect to u, v, s respectively:

∇uP (u, s,v|α) = −αCv + αb + 1

∇sP (u, s,v|α) = α1

∇vP (u, s,v|α) = −αCTu

u, s,v is a stationary point if the KKT condition is satisfied:
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∇uP −
∑
i

λGi ∇uGi + λUi ∇uUi = 0

∇sP −
∑
i

λHi ∇sHi + λSi ∇sSi = 0

∇vP −
∑
i

λHi ∇vHi + λVi ∇vVi = 0

λHi Hi = 0

λGi Gi = 0

λSi Si = 0

λUi Ui = 0

λVi Vi = 0

si − cTi v + bi ≥ 0

1− ui ≥ 0

ui, vi, si ≥ 0

λHi , λ
G
i , λ

U
i , λ

V
i , λ

S
i ≥ 0

(5.32)

which is equivalent to:

−αCv + αb + 1 + λG − λU = 0

α1− λH − λS = 0

−αCTu + CTλH − λV = 0

λHi (si − cTi v + bi) = 0

λGi (1− ui) = 0

λVi vi = 0

λUi ui = 0

λSi si = 0

λHi , λ
G
i , λ

U
i , λ

V
i , λ

S
i ≥ 0

ui, vi, si ≥ 0

si − cTi v + bi ≥ 0

1− ui ≥ 0

(5.33)
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By rearranging and substitution, (5.33) can be reduced to

uT (−αCv + αb + 1 + λG) = 0

sT (α1− λH) = 0

vT (−αCTu + CTλH) = 0

(λH)T (s−Cv + b) = 0

(λG)T (1− u) = 0

s−Cv + b ≥ 0

1− u ≥ 0

λH,λG ,u, s,v ≥ 0

(5.34)

5.7.2 Qualitative results for real image data

(a) House (b) Merton

(c) Aerial (d) Wadham

FIGURE 5.4: Qualitative results for Fundamental Matrix Estimation
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(a) Invalides (b) Uni. Lib.

(c) Valbonne (d) Kapel

FIGURE 5.5: Qualitative results for Homography Estimation

(a) Bikes (b) Graffiti

(c) Bark (d) Boat

FIGURE 5.6: Qualitative results for Affinity Estimation
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Deterministic Approximate Methods
for Maximum Consensus Robust
Fitting
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istic Approximate Methods for Maximum Consensus Robust Fitting.

The submitted paper is available at: https://arxiv.org/abs/1710.10003

113

https://arxiv.org/abs/1710.10003




Chapter 6. Deterministic Approximate Methods for Maximum Consensus 115



Chapter 6. Deterministic Approximate Methods for Maximum Consensus 116



Chapter 6. Deterministic Approximate Methods for Maximum Consensus 117

6.1 Introduction

Robust model fitting lies at the core of computer vision, due to the need of many fundamental

tasks to deal with real-life data that are noisy and contaminated with outliers. To conduct robust

model fitting, a robust fitting criterion is optimized w.r.t. a set of input measurements. Arguably

the most popular robust criterion is maximum consensus, which aims to find the model that is

consistent with the largest number of inliers, i.e., has the highest consensus.

Due to the critical importance of maximum consensus estimation, considerable effort has

been put into devising algorithms for optimizing the criterion. A large amount of work occurred

within the framework of hypothesize-and-verify methods, i.e., RANSAC [31] and its variants.

Broadly speaking, these methods operate by fitting the model onto randomly sampled minimal

subsets of the data, and returning the candidate with the largest inlier set. Improvements to the

basic algorithm include guided sampling and speeding up the model verification step [21].

An important innovation is locally optimized RANSAC (LO-RANSAC) [23, 56]. As the

name suggests, the objective of the method is to locally optimize RANSAC estimates. This is

achieved by embedding in RANSAC an inner hypothesize-and-verify routine, which is triggered

whenever the solution is updated in the outer loop. Different from the main RANSAC algorithm,

the inner subroutine generates hypotheses from larger-than-minimal subsets sampled from the

inlier set of the incumbent solution, in the hope of driving it towards an improved result.

Though efficient, there are fundamental shortcomings in the hypothesize-and-verify heuris-

tic. Primarily, its randomized nature does not guarantee finding a good maximum consensus

estimate; different runs may also give unpredictably different results. In LO-RANSAC, this

weakness also manifests in the inner RANSAC routine, in that it is essentially a randomized

trial-and-error procedure instead of a directed search to improve the estimate.

More recently, there is a growing number of globally optimal algorithms for consensus max-

imization [73, 96, 26, 59, 18]. The fundamental intractability of maximum consensus estima-

tion, however, means that the global optimum can only be found by searching. The previous

techniques respectively conduct branch-and-bound search [96, 59], tree search [18], or enumer-

ation [73, 26]. Thus, global algorithms are practical only on problems with a small number of

measurements and/or models of low dimensionality.

So far, what is sorely missing in the literature is an algorithm that lies in the middle ground

between the above two extremes. Specifically, a maximum consensus algorithm that is approxi-

mate and deterministic, would add significantly to the robust fitting toolbox of computer vision.

In this paper, we contribute two such algorithms. Our starting point is to reformulate con-

sensus maximization with linear complementarity constraints. We then develop an algorithm
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based on non-smooth penalty method supported by a Frank-Wolfe-style optimization scheme,

and another algorithm based on the ADMM. In both algorithms, the calculation of the update

step involves executing convex subproblems, which are efficient and enable the algorithms to

handle realistic input sizes (hundreds to thousands of measurements). Further, our algorithms

are naturally capable of handling the non-linear geometric residuals commonly used in computer

vision [49, 51].

As will be demonstrated experimentally, our algorithms can significantly improve rough es-

timates obtained using an initial method, such as least squares or a fast randomized scheme such

as RANSAC. Qualitative improvements achieved by our algorithms are also greater than that of

LO-RANSAC, while incurring only marginally higher runtimes.

6.1.1 Deterministic robust fitting

M-estimators [46] are established class of robust statistical methods. The M-estimate is obtained

by minimizing the sum of a set of ρ functions defined over the residuals, where ρ (e.g., the

Huber norm) is responsible for discounting the effects of outliers. The primary technique for the

minimization is iteratively reweighted least squares (IRLS). At each iteration, a weighted least

squares problem is solved, where the weights are computed based on the previous estimate.

Provided that ρ satisfies certain properties [95, 5], IRLS will deterministically reduce the cost

until a local minimum is reached. This however precludes consensus maximization, since the

corresponding ρ (a symmetric step function) is not positive definite and differentiable. Sec. 6.2.1

will further explore the characteristics of the maximum consensus objective.

Arguably, one can simply choose a robust ρ that works with IRLS and dispense with maxi-

mum consensus. However, another vital requirement for IRLS to be feasible is that the weighted

least squares problem is efficiently solvable. This unfortunately is not the case for many of the

geometric distances used in computer vision [49, 51, 40].

The above limitations with IRLS suggest that deterministic approximate methods for robust

fitting remain an open problem, and our proposed algorithms should represent significant con-

tributions towards this direction.

6.1.2 Road map

The paper is structured as follows:

• Sec. 6.2 defines the maximum consensus problem and characterizes the solution. It then

describes the crucial reformulation with complementarity constraints.
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• Sec. 6.3 describes the non-smooth penalty method.

• Sec. 6.4 describes the ADMM-based algorithm.

• Sec. 6.5 shows the applicability of our methods to estimation problems with quasiconvex

geometric residuals.

• Sec. 6.6 demonstrates the effectiveness of our methods through a set of experiments with

synthetic and real data on common computer vision applications.

This paper is an extension of the conference version [55], which proposed only the method

based on non-smooth penalization. Sec. 6.6 of the present paper experimentally compares the

new ADMM technique with the penalty method.

6.2 Problem definition

We develop our algorithms in the context of fitting linear models, before extending to models

with geometric residuals in Sec. 6.5. Given a set of N measurements {xj , yj}Nj=1 for the linear

model parametrized by vector θ ∈ Rd, the goal of maximum consensus is to find the θ that is

consistent with as many of the input data as possible, i.e.,

max
θ∈Rd

Ψ(θ) (6.1)

where the objective function

Ψ(θ) =
N∑
j=1

I
(
|xTj θ − yj | ≤ ε

)
(6.2)

is the consensus of θ. Here, I is the indicator function, which returns 1 if its input predicate is

true, and 0 otherwise. The inlier-outlier dichotomy is achieved by comparing a residual |xTj θ−
yj | with the pre-defined threshold ε.

Expressing each inequality of the form |xTj θ − yj | ≤ ε equivalently using the two linear

constraints

xTj θ − yj ≤ ε, −xTj θ + yj ≤ ε, (6.3)

and collecting the data into the matrices

A =
[
x1,−x1, . . . ,xN ,−xN

]
,

b =
[
ε+ y1, ε− y1, . . . , ε+ yN , ε− yN

]T
,

(6.4)
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where A ∈ Rd×M , b ∈ RM and M = 2N , we can redefine consensus as

Ψ(θ) =
M∑
i=1

I
(
aTi θ − bi ≤ 0

)
, (6.5)

where ai is the i-th column of A and bi is the i-th element of b. Plugging (6.5) instead of (6.2)

into (6.1) yields an equivalent optimization problem, in the sense that both objective functions

have the same maximizers.

Henceforth, we will be developing our maximum consensus algorithm based on (6.5) as the

definition of consensus.

6.2.1 Characterizing the solution

What does Ψ look like? Consider the problem of robustly fitting a line onto a set of points

{pj , qj}Nj=1 on the plane. To apply formulation (6.1), set xj =
[
pj 1

]T
and yj = qj . The

vector θ ∈ R2 then corresponds to the slope and intercept of the line. Fig. 6.1 plots Ψ(θ)

for a sample point set {pj , qj}Nj=1. As can be readily appreciated, Ψ is a piece-wise constant

step function, owing to the thresholding and discrete counting operations in the calculation of

consensus.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(a) (b)

FIGURE 6.1: (a) Sample point set {pj , qj}Nj=1. (b) A plot of Ψ(θ) in R2 based on the sample
point set. Each unique color represents a specific consensus value. Regions corresponding to
the maximum consensus value are indicated in yellow.

We define the global or exact solution to (6.1) as the vector θ∗ such that Ψ(θ∗) ≥ Ψ(θ) for

all θ ∈ Rd. In general, θ∗ is not unique, and can only be identified by searching. Recall that a

local solution of an unconstrained optimization problem

max
θ∈Rd

f(θ) (6.6)

is a vector θ̂ such that there exists a neighborhood N ⊂ Rd of θ̂ where f(θ̂) ≥ f(θ) for

all θ ∈ N [69, Chap. 2]. By this definition, since Ψ is piece-wise constant, all θ ∈ Rd are

local solutions to (6.1). The concept of local optimality is thus not meaningful in the context of
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consensus maximization. Indeed, the lack of gradient information in Ψ complicates the usage

of standard nonlinear optimization schemes, which strive for local optimality, on problem (6.1)

(cf. IRLS).

Unlike nonlinear optmization methods or IRLS, the proposed algorithms do not depend on

the existence of gradients; instead, our algorithms solve derived convex subproblems to deter-

ministically and efficiently update an approximate solution to the maximum consensus problem.

As mentioned in the introduction, such techniques have not been considered previously in the

literature.

6.2.2 Reformulation with complementarity constraints

Introducing indicator variables u ∈ {0, 1}M and slack variables s ∈ RM , we first reformu-

late (6.1) equivalently as an outlier count minimization problem

min
u∈{0,1}M , s∈RM , θ∈Rd

∑
i

ui (6.7a)

subject to si − aTi θ + bi ≥ 0, (6.7b)

ui(si − aTi θ + bi) = 0, (6.7c)

si(1− ui) = 0, (6.7d)

si ≥ 0. (6.7e)

Intuitively, si must be non-zero if the i-th datum is an outlier w.r.t. θ; in this case, ui must

be set to 1 to satisfy (6.7d). In turn, (6.7c) forces the quantity (si − aTi θ + bi) to be zero.

Conversely, if the i-th datum is an inlier w.r.t. θ, then si is zero, ui is zero and (si − aTi θ + bi)

is non-zero. Observe, therefore, that (6.7c) and (6.7d) implement complementarity between ui
and (si − aTi θ + bi).

Note also that, due to the objective function and condition (6.7d), the indicator variables can

be relaxed without impacting the optimum, leading to the equivalent problem

min
u,s∈RM , θ∈Rd

∑
i

ui (6.8a)

subject to si − aTi θ + bi ≥ 0, (6.8b)

ui(si − aTi θ + bi) = 0, (6.8c)

si(1− ui) = 0, (6.8d)

1− ui ≥ 0, (6.8e)

si, ui ≥ 0. (6.8f)
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This, however, does not make (6.8) tractable, since (6.8c) and (6.8d) are bilinear in the un-

knowns.

To re-express (6.8) using only positive variables, define

v =

[
θ + γ1

γ

]
, ci =

[
aTi −aTi 1

]T
, (6.9)

where both are real vectors of length (d + 1). Problem (6.8) can then be reformulated equiva-

lently as

min
u,s∈RM , v∈Rd+1

∑
i

ui

subject to si − cTi v + bi ≥ 0,

ui(si − cTi v + bi) = 0,

si(1− ui) = 0,

1− ui ≥ 0,

si, ui, vi ≥ 0.

(6.10)

Given a solution û, ŝ and v̂ to (6.10), the corresponding solution θ̂ to (6.8) can be obtained by

simply subtracting the last element of v̂ from its first-d elements.

While the relaxation does not change the fundamental intractability of (6.1), that all the

variables are now continuous allows to bring a broader class of optimization techniques to bear

on the problem—as we will show next.

6.3 Non-smooth penalty method

Our first deterministic refinement algorithm is based on the technique of non-smooth penaliza-

tion [69, Sec. 17.2]. Incorporating the equality constraints in (6.10) into the cost function as a

penalty term, we obtain the penalty problem

min
u,s∈RM ,v∈Rd+1

∑
i

ui + α
[
ui(si − cTi v + bi) + si(1− ui)

]
s.t. si − cTi v + bi ≥ 0,

1− ui ≥ 0,

si, ui, vi ≥ 0.

(6.11)
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The constant α ≥ 0 is called the penalty parameter. Intuitively, the penalty term discourages

solutions that violate the complementarity constraints, and the strength of the penalization is

controlled by α. Observe also that the remaining constraints in (6.101) define a convex domain.

Henceforth, to reduce clutter, we sometimes use

z =
[
uT sT vT

]T
. (6.12)

The cost function in (6.101) can be rewritten as

P (z | α) = F (z) + αQ(z), (6.13)

where F (z) = ‖u‖1 and

Q(z) =
∑
i

ui(si − cTi v + bi) + si(1− ui) (6.14)

=
∑
i

si − ui(cTi v − bi). (6.15)

Note that each summand in Q(z) is non-negative, and the penalty term can be viewed as the

`1-norm (a non-smooth function) of the complementarity residual vector

r(z) =
[
r1(z) . . . rM (z)

]T
, (6.16)

where

ri(z) = si − ui(cTi v − bi). (6.17)

In Sec. 6.3.2, we will devise a consensus maximization algorithm based on solving a sequence

of the penalty problem (6.101) with increasing values of α. Before that, in Sec. 6.3.1, we will

discuss a method to solve the penalty problem for a given (constant) α.
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6.3.1 Solving the penalty problem

6.3.1.1 Necessary optimality conditions

Although P (z | α) is quadratic, problem (6.101) is non-convex. However, it can be shown

that (6.101) has a vertex solution, i.e., a solution that is an extreme point of the convex set

P = {z ∈ R2M+d+1 |si − cTi v + bi ≥ 0,

1− ui ≥ 0,

si, ui, vi ≥ 0,

i = 1, . . . ,M}

(6.18)

To minimize clutter, rewrite

P = {z ∈ R2M+d+1 |Mz + q ≥ 0, z ≥ 0}, (6.19)

where

M =

[
0 I −C
−I 0 0

]
,

C =
[
c1 c2 . . . cM

]T
,

q =
[
bT 1T

]T
;

(6.20)

(we do not define the sizes of I, 0 and 1, but the sizes can be worked out based on the context).

To begin, observe that the minima of (6.101) obey the KKT conditions [69, Chap. 12]

uT (−αCv + αb + 1 + λG) = 0,

sT (α1− λH) = 0,

vT (−αCTu + CTλH) = 0,

(λH)T (s−Cv + b) = 0,

(λG)T (1− u) = 0,

s−Cv + b ≥ 0,

1− u ≥ 0,

λH,λG ,u,v, s ≥ 0,

(6.21)

where λH = [λH1 . . . λHM ]T and λG = [λG1 . . . λGM ]T are the Lagrange multipliers for the first

two types of constraints in (6.101); see the supplementary material for details.
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By rearranging, the KKT conditions (6.105) can be summarized by the following relations

M′z′ + q′ ≥ 0, z′ ≥ 0, (z′)T (M′z′ + q′) = 0, (6.22)

where

z′ =
[
zT (λH)T (λG)T

]T
,

M′ =



0 0 −αC 0 I

0 0 0 −I 0

−αCT 0 0 CT 0

0 I −C 0 0

−I 0 0 0 0


,

q′ =
[
(αb + 1)T α1T 0T bT 1T

]T
.

(6.23)

Finding a feasible z′ for (6.22) is an instance of a linear complementarity problem (LCP) [66].

Define the convex set

P ′ = {z′ ∈ R4M+d+1 |M′z′ + q′ ≥ 0, z′ ≥ 0}. (6.24)

We invoke the following result from [66, Lemma 2].

Theorem 6.1. If the LCP defined by the constraints (6.22) has a solution, then it has a solution

at a vertex of P ′.

Theorem 6.1 implies that the KKT points of (6.101) (including the solutions of the problem)

occur at the vertices of P ′. This also implies that (6.101) has a vertex solution, viz.:

Theorem 6.2. For any vertex

z′v = [zTv (λHv )T (λGv )T )]T (6.25)

of P ′, zv is a vertex of P .

Proof. If z′v is a vertex of P ′, then, there is a diagonal matrix E such that

M′Ez′v + q′ − γ ′ = 0, (6.26)

where Ei,i = 1 if the i-th column of M′ appears in the basic solution corresponding to vertex

z′v, and Ei,i = 0 otherwise (the non-negative vector γ ′ contains the values of additional slack

variables to convert the constraints in P ′ into standard form). Let M′J be the last-2M rows of
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M′. Then,

M′JEz′v +
[
bT 1T

]T
− γ ′J = 0, (6.27)

where γ ′J is the last-2M elements of γ ′. Note that, since the right-most 2M × 2M submatrix of

M′J is a zero matrix (see (6.23)), then

M′JEKzv +
[
bT 1T

]T
− γ ′J = 0, (6.28)

where EK is the first-(2M +d+ 1) columns of E. Since M′JEK = M, then (6.28) implies that

zv is a vertex of P .

6.3.1.2 Frank-Wolfe algorithm

Theorem 6.2 suggests an approach to solve (6.101) by searching for a vertex solution. Further,

note that for a fixed u, (6.101) reduces to an LP. Conversely, for fixed s and v, (6.101) is also

an LP. This advocates alternating between optimizing subsets of the variables using LPs. Algo-

rithm 6.1 summarizes the method, which is in fact a special case of the Frank-Wolfe method [32]

for non-convex quadratic minimization.

Algorithm 6.1 Frank-Wolfe method for (6.101).

Require: Data {ci, bi}Mi=1, penalty value α, initial solution u(0), v(0), s(0), threshold δ.
1: P (0) ← P (u(0), s(0),v(0) | α).
2: t← 0.
3: while true do
4: t← t+ 1.
5: s(t),v(t) ← arg mins,v P (u(t−1), s,v | α) s.t. P .
6: u(t) ← arg minu P (u, s(t),v(t) | α) s.t. P .
7: P (t) ← P (u(t), s(t),v(t) | α).
8: if |P (t−1) − P (t)| ≤ δ then
9: Break.

10: end if
11: end while
12: return u(t),v(t), s(t).

Theorem 6.3. In a finite number of steps, Algorithm 6.1 converges to a KKT point of (6.101).

Proof. The set of constraints P can be decoupled into the two disjoint subsets

P = P1 × P2, (6.29)

where P1 involves only s and v, and P2 is the complement of P1. With u fixed in Line 5, the LP

converges to a vertex of P1. Similarly, with s and v fixed in Line 6, the LP converges to a vertex
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in P2. Each intermediate solution u(t),v(t), s(t) is thus a vertex of P or a KKT point of (6.101).

Since each LP must reduce or maintain P (z | α) which is bounded below, the process terminates

in finite steps.

Analysis of update steps A closer look reveals the LP in Line 5 (Algorithm 6.1) to be

min
s,v

∑
i

si − ui(cTi v − bi)

s.t. si − cTi v + bi ≥ 0,

si, vi ≥ 0,

(LP1)

and the LP in Line 6 (Algorithm 6.1) to be

min
u

∑
i

ui
[
1− α(cTi v − bi)

]
s.t. 0 ≤ ui ≤ 1.

(LP2)

Observe that LP2 can be solved in closed form and it also drives u to integrality: if [1−α(cTi v−
bi)] ≤ 0, set ui = 1, else, set ui = 0. Further, LP1 can be seen as “weighted” `1-norm

minimization, with u being the weights. Intuitively, therefore, Algorithm 6.1 alternates between

residual minimization (LP1) and inlier-outlier dichotomization (LP2).

6.3.2 Main algorithm

Intuitively, if the penalty parameter α is small, Algorithm 6.1 will pay more attention to min-

imizing
∑

i ui and less attention to ensuring that the optimized variables are feasible w.r.t. the

original problem (6.10). Conversely, if α is large, the complementarity residual Q(z) will be

reduced more aggressively, thus the optimized z tends to be “more feasible”. If α is sufficiently

large, Q(z) will be reduced to zero, and any movement to attempt to reduce
∑

i ui will not pay-

off, thus preserving the feasibility of z— Section 6.3.2.1 will formally establish this condition.

The above observations argue for a deterministic consensus maximization algorithm based

on solving (6.101) for progressively larger α’s; see Algorithm 6.2. For each α, our method

solves (6.101) using Algorithm 6.1. The solution ẑ for a particular α is then used to initialize

Algorithm 6.1 for the next larger α. The sequence terminates when the complementarity residual

Q(z) vanishes or becomes insignificant.

It is worthwhile to note that typical non-smooth penalty functions cannot be easily mini-

mized (e.g., no gradient information). In our case, however, we exploited the special property

of (6.101) (Sec. 6.3.1.1) to enable efficient minimization.
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Algorithm 6.2 Non-smooth penalty method for solving (6.10).

Require: Data {ci, bi}Mi=1, initial model parameter θ, initial penalty value α, increment rate κ,
threshold δ.

1: v←
[
(θ + |minj(θj)|1)T |minj(θj)|

]T .
2: u← I(Cv − b > 0).
3: s← u� (Cv − b).
4: while true do
5: u, s,v← FW ({ci, bi}Mi=1, α,u, s,v). /*Algo. 6.1.*/
6: if Q(z) ≤ δ then
7: Break.
8: end if
9: α← κ · α.

10: end while
11: return u, s,v.

6.3.2.1 Convergence

Theorem 6.4. If α is sufficiently large, Algorithm 6.2 converges to a point ẑ where Q(ẑ) = 0,

i.e., ẑ is a feasible solution of problem (6.10).

Proof. Let ŝ and v̂ be the solution of LP1 (for a fixed û from the previous iteration). When

updating u in LP2, for each constraint i, the possible outcomes for ui are:

• If cTi v̂ − bi ≤ 0: We say that the i-th constraint is consistent with v̂. LP2 will set ui to 0

regardless of α.

• If cTi v̂ − bi > 0: We say that the i-th constraint violates v̂. LP2 will set ui according to

ui =

0 if 1− α(cTi v̂ − bi) ≥ 0,

1 if 1− α(cTi v̂ − bi) < 0.

If α is large enough, then LP2 will set ui = 1 for all the violating constraints. Given a û that

was obtained under such a sufficiently large α in LP2, in the subsequent invocation of LP1, the

minimal cost of 0 can be obtained by maintaining the previous v̂ and setting

ŝi =

0 if ûi = 0,

cTi v̂ − bi if ûi = 1.

Recognizing that the objective function of LP1 is equal to Q(z) completes the proof.
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6.3.2.2 Initialization

Algorithm 6.2 requires the initialization of u, s and v. For consensus maximization, it is more

natural to initialize the model parameters θ, which in turn gives values to v, s and u. In our

work, we initialize θ as the least squares solution, or by executing RANSAC (Sec. 6.6 will

compare the results of these two different initialization methods).

Other required inputs are the initial penalty parameter α and the increment rate κ. These

values affect the convergence speed of Algorithm 6.2. To avoid bad minima, we set α and κ

conservatively, e.g., α ∈ [1, 10], κ ∈ [1, 5]. As we will demonstrate in Sec. 6.6, these settings

enable Algorithm 6.2 to find very good solutions at competitive runtimes.

6.4 ADMM-based algorithm

Our second technique derives from the class of proximal splitting algorithms [11]. Specifically,

we apply the ADMM to construct a deterministic approximate algorithm for our target prob-

lem (6.10). The ADMM was originally developed for convex optimization problems. However,

its use for nonconvex nonsmooth optimization has been investigated recently, with strong con-

vergence results [43, 89]. While ADMM has recently found usage in several geometric vision

problems, e.g., bundle adjustment [30, 28], triangulation [29], its application to robust fitting is

relatively unexplored.

6.4.1 ADMM formulation

The specific version of ADMM used in our work is consensus ADMM [11], where the term

“consensus” takes a different meaning1 than ours—to avoid confusion, we will simply call the

technique “ADMM”. To the original problem (6.10), where the objective function has M sum-

mands and the original variables are z = [uT sT vT ]T ∈ R2M+d+1, introduce M auxilary

parameter vectors z′1, . . . , z
′
M , where

z′i = [u′i s
′
i (v′i)

T ]T ∈ Rd+3, (6.30)

as well as the “coupling” parameter vector

zC = [sTC vTC ]T ∈ RM+d. (6.31)

1Consensus ADMM is a version commonly used for distributed optimization [11]. For brevity, we do not explore
distributed optimization in our work, though our algorithm is amenable to such a scheme.
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Then, rewrite (6.10) as

min
z,{z′i},zC

∑
i

[
u′i + IB(z′i)

]
+ IC(zC) (6.32a)

s.t. u = u′, (6.32b)

s = s′ = sC , (6.32c)

v = v′i = vC , (6.32d)

where IB is an indicator function that enforces the bilinear constraints

IB(z′i) =


0 if


u′i(s

′
i − cTi v

′
i + bi) = 0,

s′i(1− u′i) = 0,

u′i ∈ {0, 1},

∞ otherwise,

(6.33)

and IC is an indicator function that enforces zC to statisfy the convex constraints

IC(zC) =


0 if

sC −CvC + b ≥ 0,

sC ,vC ≥ 0,

∞ otherwise.

(6.34)

Note that the objective function (6.32a) is a composition of M + 1 totally separate subfunc-

tions, where each subfunction of the form u′i+IB(z′i) involves only z′i, and the final subfunction

IC(zC) involves only zC . Intuitively, the constraints (6.32b), (6.32c), and (6.32d) ensure that

the auxiliary and the original variables must converge to the same point, and hence are referred

to as “coupling constraints”. It can thus be appreciated that problem (6.32) is identical to prob-

lem (6.10), in that solving (6.32) results in the same optimum as (6.10). The benefit of the

decomposition is that the problem can be solved by iteratively solving smaller subproblems

which are convex, as we elaborate in the next subsection.

It can further be realized that the solution of the problem (6.32) does not change if the term

‖u‖2 is added to the cost function (6.32a). Thus, to aid the convergence of our proposed al-

gorithm (refer to the supplementary material for more details), the solution of (6.32) can be
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obtained by solving the following problem:

min
z,{z′i},zC

∑
i

[
u′i + IB(z′i)

]
+ IC(zC) + ‖u‖2 (6.35a)

s.t. u = u′, (6.35b)

s = s′ = sC , (6.35c)

v = v′i = vC , (6.35d)

6.4.1.1 Augmented Lagrangian

Now consider the the augmented Lagrangian of (6.35)

Lρ(z, {z′i}, zC ,λ) =
∑
i

[
u′i + IB(z′i)

]
+ IC(zC) + ‖u‖2

+ ρ(‖u′ − u + λu‖22 − ‖λu‖22)

+ ρ(‖s′ − s + λs‖22 − ‖λs‖22)

+ ρ(‖sC − s + λs
C‖22 − ‖λs

C‖22)

+ ρ(‖vC − v + λv
C‖22 − ‖λv

C‖22)

+ ρ
∑
i

(‖v′i − v + λv
i ‖22 − ‖λv

i ‖22),

(6.36)

where

u′ =
[
u′1 . . . u′M

]T
, s′ =

[
s′1 . . . s′M

]T
, (6.37)

and ρ is the penalty parameter. The vector

λ = [(λu)T (λs)T (λs
C)T (λv

C)T {(λv
i )T }Mi=1]T (6.38)

contains all the scaled dual variables associated with the constraints in (6.35). Intuitively, the

penalty parameter ρ controls the strength of the penalization of the deviation of the auxilary

variables from the original ones.

ADMM alternates between updating the auxilary variables {z′i} and zC , followed by the

original variables z, w.r.t. the augmented Lagrangian. The Lagrange multipliers λ are also

updated, following the dual variable update principle [11]. Sec. 6.4.3 will elaborate on the

overall algorithm and the associated convergence guarantee. Next in Sec. 6.4.2 we will first

examine in detail the individual update steps.
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6.4.2 Update steps

The vectors {z′i}, zC , and z are respectively updated by minimizing the augmented Lagrangian

with respect to the target vector, while keeping the other vectors fixed. Specifically, these up-

dates are

z′i ← arg min
z′i

Lρ(z, {z′i}, zC ,λ), ∀i, (6.39a)

zC ← arg min
zC

Lρ(z, {z′i}, zC ,λ), (6.39b)

z← arg min
z

Lρ(z, {z′i}, zC ,λ), (6.39c)

where, to avoid clutter, we don’t distinguish between the target vector and the other vectors on

the RHS.

After the vectors {z′i}, zC , and z are revised, the ADMM procedure updates the Lagrange

multipliers as follows

λu ← λu + u′ − u,

λs ← λs + s′ − s,

λs
C ← λs

C + sC − s,

λv
C ← λv

C + vC − v,

λv
i ← λv

i + v′i − v, ∀i.

(6.40)

Intuitively, from the way vector λ is being updated, the vector can be interpreted as the accumu-

lated shift of the auxiliary variables from the original variables [11].

In the following, we take a deeper look into the subproblems in (6.39).

6.4.2.1 Updating z′i

Due to the decomposable nature of the augmented Langrangian (6.58), the problem in (6.39a)

can be reduced to

arg min
z′i

u′i + IB(z′i) + ρ(u′i − ui + λui )2

+ ρ(s′i − si + λsi )
2 + ρ‖v′i − v + λv

i ‖22,
(6.41)
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where terms not affected by z′i have also been ignored. This can be reverted to the constrained

problem

arg min
z′i

u′i + ρ(u′i − ui + λui )2

+ ρ(s′i − si + λsi )
2 + ρ‖v′i − v + λv

i ‖22 (6.42a)

s.t. u′i(s
′
i − cTi v

′
i + bi) = 0, (6.42b)

s′i(1− u′i) = 0, (6.42c)

u′i ∈ {0, 1}. (6.42d)

Due to the complementarity constraints (6.42b) and (6.42c), and the binary restriction (6.42d)

on u′i , (6.42) can be solved by simply enumerating u′i:

• u′i = 0: Then s′i must also be 0 to satisfy all the constraints, and v′i must be assigned the

value of v − λv
i to minimize (6.42a).

• u′i = 1: To satisfy (6.42b), s′i must be equal to cTi v
′
i − bi Then problem (6.42) becomes

the unconstrained convex quadratic program (QP)

min
v′i

(cTi v
′
i − bi − si + λsi )

2 + ‖v′i − v + λv
i ‖22. (6.43)

When v′i is obtained, s′i can be computed accordingly.

The revised z′i is simply chosen as the combination of the variables that results in the smaller

objective value in (6.42). Note that the value of ρ would affect the chosen z′i.

6.4.2.2 Updating zC

Ignoring terms unrelated to zC , the problem in (6.39b) can be reexpressed as

arg min
zC

IC(zC) + ρ‖sC − s + λs
C‖22 + ρ‖vC − v + λv

C‖22. (6.44)

The above is equivalent to the convex QP

min
zC

‖sC − s + λs
C‖22 + ‖vC − v + λv

C‖22,

s.t. sC −CvC + b ≥ 0,

sC ,vC ≥ 0,

(6.45)

where the constraints in IC are now listed explicitly.
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6.4.2.3 Updating z

Again ignoring terms unrelated to the variables of interest, the problem in (6.39c) reduces to

arg min
z

ρ(‖u′ − u + λu‖22 + ‖s′ − s + λs‖22

+ ‖sC − s + λs
C‖22 + ‖vC − v + λv

C‖22
+
∑
i

‖v′i − v + λv
i ‖22) + ‖u‖2.

(6.46)

The three components u, s and v of z decouple, and in fact can be solved for easily as the “mean

vectors”
u =

ρ

ρ+ 1
(u′ + λu),

s =
1

2

(
s′ + λs + sC + λs

C

)
,

v =
1

M + 1

[
M∑
i=1

(v′i + λv
i ) + vC + λv

C

]
.

Finally, we emphasize that all the update steps above can be solved efficiently, requiring no

more than a convex QP.

6.4.3 Main algorithm

Similar to the non-smooth penalty algorithm discussed in Sec. 6.3.2, directly setting ρ to a very

large value will likely lead to a bad suboptimal result. Therefore, also applied here is a heuristic

strategy that initializes ρ to a small value then gradually increases ρ after each ADMM update

cycle. The algorithm is terminated when the variable z converges. Algorithm 6.3 summarizes

the overall procedure.

6.4.3.1 Convergence

Theorem 6.5. For a sufficiently large ρ, the ADMM update iterations in (6.39) converge to a

stationary point of the augmented Lagrangian (6.58), which is also a feasible solution of (6.10),

after a finite number of steps.

Proof. The detailed proof for this theorem can be found in the supplementary material. For

completeness, an outline of the proof is provided in this section.

Consider the (t+ 1)-th update cycle of Algorithm. 6.3. To prevent clutter, let {zi}+, z+
C , z

+

and λ+ denote the updated value of the variables while {zi}, zC , z and λ represent the variables

carried from the (t)-th iteration.
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Algorithm 6.3 ADMM-based method for solving (6.10).

Require: Data {ci, bi}Mi=1, initial model parameter θ, initial penalty value ρ, increment rate σ,
threshold δ.

1: t← 0
2: v(t) ←

[
(θ + |minj(θj)|1)T |minj(θj)|

]T .
3: u(t) ← I(Cv − b > 0).
4: s(t) ← u� (Cv − b).
5: zi

(t) = z(t) ; zC
(t) = [s(t);v(t)] ;λ(t) = 0

6: while true do
7: t← t+ 1
8: Update zi

(t) by solving (6.42) ∀ i = 1..N
9: Update zC

(t) by solving (6.45)
10: Update z(t) by solving (6.46)
11: if ‖z(t) − z(t−1)‖ ≤ δ then
12: Break.
13: end if
14: ρ(t) ← σ · ρ(t−1).
15: end while
16: return u, s,v.

During the update steps of {zi} and zC , since (6.42) and (6.45) can be solved optimally, it

follows that:

Lρ(z, {z′i}, zC ,λ) ≥ Lρ(z, {z′i}+, z+
C ,λ) (6.47)

Then, after z and λ are updated, with a sufficiently large ρ, it can be proven that:

Lρ(z, {z′i}+, z+
C ,λ) ≥ Lρ(z+, {z′i}+, z+

C ,λ
+) (6.48)

(detailed proof is provided in the supplementary material). From (6.47) and (6.48), the following

inequality holds:

Lρ(z, {z′i}, zC ,λ) ≥ Lρ(z+, {z′i}+, z+
C ,λ

+) (6.49)

given that ρ is large enough.

The inequality (6.49) states that, with a sufficiently large ρ, the augmented Lagrangian (6.58)

is monotonically nonincreasing after every ADMM update cycle. As this function is bounded

below with a sufficiently large ρ (detailed proof is given in the supplementary material), its

convergence to a point z∗ is guaranteed (see the supplementary material for details). At con-

vergence, all the constraints (6.32b), (6.32c) and (6.32d) are satisfied and z∗ is also a feasible

solution of (6.10).
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6.4.3.2 Initialization

Similar to Alg. 6.2, u, s,v can be initialized from a suboptimal solution such as RANSAC or

least squares fit. To avoid bad local minmima, the starting values of ρ are chosen to be relatively

small (0 ≤ ρ ≤ 10) with a conservative increase rate σ (1.01 ≤ σ ≤ 5). It will be demonstrated

in Section 6.6 that with this choice of the parameters, the algorithm was able to significantly

improve the solution from an intial starting point.

6.5 Handling geometric distances

For most applications in computer vision, the residual function used for geometric model fitting

is non-linear. It has been shown [49, 73, 6], however, that many geometric residuals have the

following generalized fractional form

‖Gθ + h‖p
rTθ + q

with rTθ + q > 0, (6.50)

where ‖ · ‖p is the p-norm, and G ∈ R2×d, h ∈ R2, r ∈ Rd, q ∈ R1 are constants derived

from the input data. For example, the reprojection error in triangulation and transfer error in ho-

mography fitting can be coded in the form (6.50). The associated maximum consensus problem

is

max
θ∈Rd

Ψ(θ), (6.51)

where

Ψ(θ) =
N∑
j=1

I
(
‖Gjθ + hj‖p ≤ ε(rTj θ + qj)

)
. (6.52)

In (6.52), we have moved the denominator of (6.50) to the RHS since ε is non-negative (see [49]

for details). We show that for p = 1, our method can be easily adapted to solve maximum

consensus for geometric residuals (6.51)2. Define

Gj =

[
gTj,1

gTj,2

]
hj =

[
hj,1

hj,2

]
. (6.53)

Now, for p = 1, the constraint in (6.51) becomes

∣∣gTj,1θ + hj,1
∣∣+
∣∣gTj,2θ + hj,2

∣∣ ≤ ε(rTj θ + qj), (6.54)

2Note that, in the presence of outliers, the residuals are no longer i.i.d. Normal. Thus, the 1-norm is arguably as
valid as the 2-norm for maximum consensus robust fitting.
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which in turn can be equivalently implemented using four linear constraints (see [6] for details).

We can then manipulate (6.52) into the form (6.5), and the rest of our theory and algorithms will

be immediately applicable.

6.6 Results

We tested our method (Algorithm 6.2 and Algorithm 6.3, henceforth abbreviated as EP and

ADMM, respectively) on common parameter estimation problems. We compared EP and ADMM against

the following well-known methods:

• RANSAC (RS) [31]: We used confidence ρ = 0.99 for the stopping criterion in all the exper-

iments. On each data instance, RANSAC was executed 10 times and the average consensus

size and runtime were reported.

• LO-RANSAC (LORS) [23]: The maximum number of iterations for the inner sampling over

the best consensus set was set to 100. The size of the inner sampled subsets was set to be

twice the size of the minimal subset.

• Improved LO-RANSAC (LORS1) [56]: Following [56], the inner RANSAC routine will

only be run if the new consensus size is higher than a pre-defined threshold (set to 10% of

the data size in our experiments).

• `1 approximation (`1) [74]: This method is equivalent to introducing slack variables to prob-

lem (6.2) and minimizing the `1-norm of the slack variables to yield an approximate solution

to maximum consensus.

• `∞ outlier removal (l∞) [79]: Again, in the context of (6.2), slack variables are introduced

and the maximum slack value is minimized. Data with the largest slack value are removed,

and the process of repeated until the largest slack value is not greater than zero.

• For the experiments with image data where keypoint matching scores are available as inlier

priors, we executed two state-of-the-art RANSAC variants: PROSAC (PS) [22] and Guided

MLESAC (GMLE) [84].

All the methods and experiments were implemented in MATLAB and run on a standard desktop

machine with 3.5 GHz processor and 8 GB of RAM. For EP, ADMM, `1 and `∞, Gurobi was

employed as the LP and QP solver.
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FIGURE 6.2: Two-dimensional analogy of balanced (top) and unbalanced (bottom) data gen-
erated in our experiments. The results of RANSAC, least squares, and our method initialized
with the former two methods are shown. Observe that least squares is heavily biased under
unbalanced data, but EP is able to recover from the bad initialization. (For clarity, the results
of AM variants are not plotted as they are very close to EP-RS and EP-LSQ)
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(c) Consensus size at termination (unbal-
anced data).
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(d) Runtime in seconds (log scale, unbal-
anced data).

FIGURE 6.3: Results for linear regression (d = 8 dimensions). (a)(b) Balanced data; (c)(d)
Unbalanced data.

6.6.1 Linear models

6.6.1.1 Linear regression with synthetic data

We generated N = 500 points {xj , yj}Nj=1 in R9 following a linear trend y = xTθ, where

θ ∈ R8 and xj ∈ [−1, 1]8 were randomly sampled. Each yj was perturbed by Gaussian noise

with standard deviation of σin = 0.1. To simulate outliers, pout% of yj’s were randomly selected

and corrupted. To test the ability of our methods to deal with bad initializations, two different

outlier settings were considered:

• Balanced data: the yj of outliers were added with Gaussian noise of σout = 1. This evenly

distributed the outliers on both sides of the hyperplane.
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• Unbalanced data: as above, but the sign of the additive noise was forced to be positive. Thus,

outliers were distributed only on one side of the hyperplane. On such data, the least squares

solution is heavily biased.

See Fig. 6.2 for a 2D analogy of these outlier settings. We tested with pout = {0, 5, 10 . . . , 60}.
The inlier threshold for maximum consensus was set to ε = 0.1.

Our algorithms EP and ADMM were initialized respectively with RANSAC (variants EP-RS

and ADMM-RS) and least squares (variants EP-LSQ and ADMM-LSQ). For EP variants, the

initial α was set to 0.5 and κ = 5, while initial ρ of ADMM variants was set to 0.1 and σ = 2.5

for all the runs.

Methods RS PS GMLE LORS LORS1 `1 `∞ EP-RS EP-LSQ EP-`∞ AM-RS AM-LSQ AM-`∞
House

N = 556
|I| 387 367 392 407 410 31 394 418 418 418 417 391 418

time (s) 0.05 0.08 0.04 0.2 0.25 0.02 0.03 2.05 1.99 2.14 8.35 10.13 6.62
Aerial

N = 483
|I| 360 320 353 376 377 31 357 371 371 381 368 369 380

time (s) 0.06 0.1 0.05 0.22 0.27 0.01 0.04 1.12 1.18 1.13 4.81 10.49 7.58
Merton
N = 590

|I| 499 484 500 502 502 95 501 508 508 508 508 504 511
time (s) 0.06 0.06 0.06 0.25 0.39 0.03 0.03 1.17 1.08 1.1 7.44 7.02 8.82

Wadham
N = 618

|I| 462 409 481 527 527 3 502 531 531 531 504 522 502
time (s) 0.05 0.08 0.04 0.29 0.36 0.02 0.03 1.69 1.61 1.62 6.88 16.46 6.52

Corridor
N = 684

|I| 385 376 385 394 396 31 376 389 402 402 392 392 397
time (s) 0.24 0.29 0.2 0.36 0.62 0.05 0.07 4.39 3.36 3.59 10.52 10.56 10.0

Buidling 81
N = 525

|I| 414 384 420 440 439 441 442 446 446 446 431 445 442
time (s) 0.05 0.05 0.05 0.23 0.3 0.01 0.02 1.65 1.58 1.5 15.32 8.69 2.45

Building 04
N = 394

|I| 182 182 172 194 192 32 171 197 197 197 200 122 184
time (s) 1.26 1.36 1.58 1.03 2.2 0.04 0.05 2.18 1.22 1.2 6.33 11.36 6.61

Building 23
N = 699

|I| 314 315 302 326 326 20 217 330 330 330 332 179 323
time (s) 1.45 1.44 1.96 1.24 2.61 0.02 0.11 4.17 3.06 2.89 9.97 13.85 10.02

Building 36
N = 651

|I| 397 366 381 411 410 20 353 418 418 418 409 344 391
time (s) 0.13 0.31 0.19 0.32 0.42 0.03 0.05 2.61 2.42 2.6 9.39 11.46 9.71

Building 50
N = 365

|I| 320 307 319 322 322 42 317 325 325 325 322 324 323
time (s) 0.05 0.05 0.04 0.16 0.24 0.02 0.01 0.6 0.55 0.53 3.78 4.54 3.28

TABLE 6.1: Fundamental matrix estimation results

Methods RS PS GMLE LORS LORS1 `1 `∞ EP-RS EP-LSQ EP-`∞ AM-RS AM-LSQ AM-`∞
Notre Dame 1

N = 310
|I| 270 264 269 272 272 224 217 278 278 278 280 281 281

time (s) 0.07 0.07 0.05 0.5 0.56 0.02 0.03 0.79 0.9 0.86 9.19 14.25 7.81
Notre Dame 2

N = 254
|I| 127 129 128 134 134 72 82 135 135 135 136 135 136

time (s) 0.2 0.18 0.16 0.55 0.79 0.04 0.04 2.18 2.06 1.86 15.68 9.22 12.02
Notre Dame 3

N = 521
|I| 445 446 444 445 445 394 412 447 447 447 448 448 447

time (s) 0.17 0.15 0.12 6.71 6.93 0.1 0.13 4.21 4.22 4.27 39.15 42.4 27.27
Notre Dame 4

N = 543
|I| 406 375 395 482 480 437 483 487 487 487 488 484 487

time (s) 0.06 0.06 0.05 1.09 1.15 0.04 0.03 2.4 2.43 2.23 12.41 20.23 17.85
South Building 1

N = 552
|I| 147 142 142 153 154 117 116 149 149 149 166 164 164

time (s) 0.06 0.06 0.05 0.79 0.85 0.07 0.07 11.09 11.14 8.27 26.36 38.35 35.51
South Building 2

N = 507
|I| 432 427 434 442 438 128 440 462 462 462 445 447 449

time (s) 0.06 0.06 0.05 1.57 1.62 0.05 0.03 4.77 4.72 4.69 6.6 6.41 6.27
South Buildind 3

N = 394
|I| 318 309 298 372 376 10 338 380 380 380 371 375 371

time (s) 0.07 0.07 0.05 0.56 0.8 0.08 0.05 9.35 9.27 8.88 26.94 30.54 24.58
Gerrard 1
N = 181

|I| 97 96 98 99 100 6 55 98 98 98 102 103 105
time (s) 0.17 0.18 0.19 0.24 0.42 0.02 0.03 0.96 0.81 0.83 5.21 4.58 5.09

Gerrard 2
N = 399

|I| 157 152 151 162 162 9 103 171 171 171 165 166 168
time (s) 0.62 0.7 0.66 0.72 1.33 0.07 0.05 3.25 2.81 2.74 12.26 14.47 14.42

Gerrard 3
N = 208

|I| 83 85 84 96 94 47 73 96 96 96 96 86 82
time (s) 0.24 0.25 0.19 0.3 0.53 0.02 0.02 1.27 1.01 1.03 8.15 6.87 7.63

TABLE 6.2: Linearised homography estimation results

Fig. 6.3 shows the average consensus size at termination and runtime (in log scale) of the

methods. Note that runtime of RS and LSQ were included in the runtime of EP-RS, ADMM-RS,

EP-LSQ and ADMM-LSQ, respectively. It is clear that, in terms of solution quality, the variants
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Methods RS PS GMLE LORS LORS1 `1 `∞ EP-RS EP-`∞ AM-RS AM-`∞
University Library

N = 439
|I| 236 234 231 261 257 107 36 268 268 264 266

time (s) 0.53 0.46 0.46 1.62 1.43 1.06 1.65 7.53 12.32 11.95 12.91
Christ Church

N = 439
|I| 241 234 227 253 251 245 142 283 283 278 278

time (s) 0.49 0.52 0.5 1.44 1.63 1.35 2.09 8.95 10.93 16.82 18.16
Kapel

N = 449
|I| 165 168 126 168 168 28 104 169 169 166 168

time (s) 1.18 1.11 7.87 2.31 2.68 2.7 2.07 12.44 13.32 13.17 11.61
Invalides
N = 558

|I| 161 161 148 174 174 13 126 187 187 177 176
time (s) 4.29 3.92 5.93 4.31 8.01 2.9 1.42 33.92 31.51 15.33 13.44

Union House
N = 520

|I| 213 213 199 224 230 14 65 231 231 232 208
time (s) 1.56 1.64 2.5 3.27 3.51 3.72 1.78 21.84 26.59 17.73 17.35

Old Classic Wing
N = 561

|I| 198 208 126 209 210 52 147 216 206 210 197
time (s) 1.85 1.47 20.57 3.32 3.96 2.77 1.47 19.29 31.57 17.06 17.23

Ball Hall
N = 534

|I| 235 218 220 253 253 33 70 272 205 234 115
time (s) 1.03 1.18 1.04 1.7 2.34 0.57 1.05 7.47 10.47 12.45 13.35

Building 64
N = 427

|I| 123 128 100 135 133 73 82 142 142 142 142
time (s) 3.27 2.56 10.11 3.63 5.93 1.17 0.99 22.95 21.54 15.07 14.05

Building 10
N = 425

|I| 204 223 170 223 226 176 165 229 229 226 210
time (s) 0.48 0.48 0.95 1.46 1.38 1.14 1.71 10.66 12.59 13.56 13.48

Building 15
N = 477

|I| 335 338 293 339 339 333 262 345 345 337 336
time (s) 0.53 0.52 0.49 1.39 1.65 1.64 1.17 14.39 14.56 18.31 16.08

TABLE 6.3: Homography estimation results

Methods RS PS GMLE LORS LORS1 `1 `∞ EP-RS EP-`∞ AM-RS AM-`∞
Bikes

N = 518
|I| 410 410 410 411 410 412 415 421 421 417 417

time (s) 5.94 5.86 5.6 8.23 13.42 4.52 0.97 15.21 7.76 10.42 5.65
Tree

N = 465
|I| 286 288 289 287 286 301 278 311 311 305 307

time (s) 5.94 5.86 5.6 8.23 13.42 4.52 0.97 15.21 7.76 10.42 5.65
Boat

N = 402
|I| 308 311 304 310 308 330 330 340 340 325 330

time (s) 5.61 5.63 5.31 6.62 10.91 2.46 0.88 10.34 5.59 10.12 5.05
Graff

N = 331
|I| 140 141 142 141 140 304 308 313 313 308 308

time (s) 4.95 4.7 4.32 5.91 9.34 1.39 0.39 10.82 6.26 17.18 11.7
Bark

N = 219
|I| 194 195 195 194 194 200 203 203 203 202 203

time (s) 3.01 3.06 3.41 3.42 5.61 0.32 0.32 3.86 1.17 14.21 14.49
Building 143

N = 537
|I| 94 93 91 99 94 338 331 342 342 349 347

time (s) 7.97 8.19 8.02 9.52 15.41 5.62 2.55 16.6 10.28 34.77 33.12
Building 152

N = 469
|I| 198 192 173 211 198 221 228 281 281 277 277

time (s) 6 6 5.71 7.71 11.67 3.16 1.71 12.41 7.75 28.2 24.03
Building 163

N = 617
|I| 306 308 303 307 306 402 399 437 437 431 430

time (s) 7.85 7.82 7.58 8.93 15.3 8.06 3.37 16.93 11.64 21.93 17.04
Building 170

N = 707
|I| 315 311 311 318 315 455 412 538 538 524 525

time (s) 9.48 9.46 9.25 11.65 18.72 11.24 2.18 31.66 23.73 61.65 57.71
Building 174

N = 580
|I| 339 338 339 341 339 334 312 369 369 375 374

time (s) 7.8 7.73 7.4 9.78 15.13 5.94 1.89 17.92 11.77 50.48 38.63

TABLE 6.4: Affinity estimation results

of EP and ADMM consistently outperformed the other methods. The fact that EP-LSQ could

match the quality of EP-RS on unbalanced data attest to the ability of EP to recover from bad

initializations. In terms of runtime, while both EP variants were slightly more expensive than

the RANSAC variants, as pout increased over 35%, EP-LSQ began to outperform the RANSAC

variants (since EP-RS was initialized using RANSAC, its runtime also increased with pout).

ADMM variants were also able to obtain roughly the same quality as EP-based methods, albeit

with longer runtime. This is explainable as ADMM requires solving quaratic subproblems while

only LPs are required for EP variants.
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Methods RS LORS LORS1 `1 `∞ EP-RS EP-`∞ AM-RS AM-`∞
Point 1
N = 167

|I| 95 96 95 96 81 97 97 97 96
time (s) 0.22 0.47 0.38 0.8 2.04 3.69 4.34 1.81 3.63

Point 3
N = 145

|I| 82 84 82 79 53 85 84 86 77
time (s) 0.15 0.32 0.29 0.16 1.16 1.92 2.97 2.04 2.5

Point 9
N = 135

|I| 49 51 49 30 38 52 49 52 47
time (s) 0.16 0.39 0.28 0.14 0.84 2.37 3.08 1.42 4.37

Point 15
N = 140

|I| 50 53 50 43 38 53 46 55 41
time (s) 0.15 0.36 0.27 0.24 1.14 2.63 3.52 1.4 4.16

Point 24
N = 155

|I| 110 113 110 113 111 113 113 114 114
time (s) 0.17 0.34 0.31 0.13 0.44 2.24 2.59 1.67 1.93

Point 72
N = 104

|I| 38 39 38 37 35 41 41 41 39
time (s) 0.12 0.29 0.21 0.08 0.54 1.15 1.53 1.12 1.57

Point 82
N = 118

|I| 56 58 56 55 48 59 59 60 55
time (s) 0.13 0.33 0.23 0.09 0.4 1.43 1.82 1.22 1.48

Point 192
N = 123

|I| 89 90 89 92 87 91 91 93 92
time (s) 0.14 0.27 0.26 0.09 0.39 1.15 1.41 1.27 1.51

Point 193
N = 132

|I| 113 114 113 111 113 117 117 116 117
time (s) 0.14 0.28 0.26 0.09 0.45 0.99 1.28 1.29 1.67

Point 249
N = 124

|I| 93 94 93 93 90 94 92 94 92
time (s) 0.13 0.27 0.24 0.1 0.36 1.59 1.84 1.31 1.61

TABLE 6.5: Triangulation Results

6.6.1.2 Fundamental matrix estimation (with algebraic error)

Following [42, Chapter 11], the epipolar constraint is linearized to enable the fundamental ma-

trix to be estimated linearly (note that the usual geometric distances for fundamental matrix

estimation do not have the generalized fractional form (6.50), thus linearization is essential to

enable our method. Sec. 6.6.2 will describe results for model estimation with geometric dis-

tances).

Five image pairs from the VGG dataset3 (Corridor, House, Merton II, Wadham and Aerial

View I) and five image paris from the Zurich Building data set4 (Building 04, Building 23,

Building 36, Building 50 and Building 81) were used. The images were first resized before

SIFT (as implemented on VLFeat [87]) was used to extract around 500 correspondences per

pair. An inlier threshold of ε = 1 was used for all image pairs. For EP and ADMM, apart from

initialization with RANSAC and least squares, we also initialised it with `∞ outlier removal

(variants EP-`∞ and ADMM-`∞). For all EP variants, the initial α was set to 0.5 and κ = 5,

while initial ρ for all ADMM variants was set to 0.1 and σ = 2.5 for all the runs.

Table 6.1 summarizes the quantitative results for all methods. Regardless of the initialization

method, EP was able to find the largest consensus set. ADMM variants converge to approxi-

mately the same solution quality as EP while taking slightly longer runtime. Fig. 6.4 displays
3http://www.robots.ox.ac.uk/ vgg/data/
4http://www.vision.ee.ethz.ch/showroom/zubud/

http://www.vision.ee.ethz.ch/showroom/zubud/
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sample qualitative results for EP; for the qualitative results for the other image pairs, please see

the supplementary material.

6.6.1.3 Homography estimation (with algebraic error)

Following [42, Chapter 4], the homography constraints were linearized to investigate the per-

formance of our algorithms. Five image pairs form the VGG dataset: University Library,

Christ Church, Valbonne, Kapel and Paris’s Invalides; three image pairs from the AdelaideRMF

dataset [90]: Union House, Old Classic Wing, Ball Hall and three pairs from the Zurich Building

dataset: Building 64, Building 10 and Building 15 were used for this experiment. Parameters

for the EP and ADMM variants were reused from the fundamental matrix experiment. Quan-

titative results displayed in Table 6.2 show that all the EP and ADMM variants were able to

achieve the highest consensus size.

6.6.2 Models with geometric distances

6.6.2.1 Homography estimation

We estimated 2D homographies based on the transfer error using all the methods. In the context

of (6.50), the geometric residual for homography (with p = 1) is

‖(θ1:2 − viθ3)ũi‖1
θ3ũi

, (6.55)

where θ1:2 and θ3 denote the first-two rows and the last row of the homography matrix, respec-

tively. Each pair (ui,vi) represents a point match across two views, and ũi = [uT 1]T . The

data used in the linearized homography experiment was reused. The inlier threshold of ε = 4

pixels was used for all input data. Initial α was set to 10 and κ = 1.5 for all EP variants. For

ADMM variants, initial ρ was set to 0.1 and the increment rate σ was set to 1.5 for all the runs.

Quantitative results are shown in Table 6.3, and a sample qualitative result for EP is shown in

Fig. 6.4. Similar to the fundamental matrix case, the EP variants outperformed the other methods

in terms of solution quality, but were slower though its runtime was still within the same order

of magnitude. ADMM variants also attain approximately the same solution as EP with slightly

longer runtimes. Note that EP-LSQ and ADMM-LSQ were not invoked here, since finding least

squares estimates based on geometric distances is intractable in general [40].
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(a) Corridor. (b) House. (c) Merton.

(d) Union House. . (e) Building 64. (f) Building 10.

(g) Christ College Oxford. (h) Paris Invalides. (i) University Library.

(j) Trees. (k) Boat. (l) Bark.

FIGURE 6.4: Qualitative results of local refinement methods on (a,b,c) fundamental matrix
estimation, (d,e,f) linearized homography estimation (g,h,i) homography estimation with geo-
metric distance, and (j,k,l) affinity estimation. Green and red lines represent detected inliers
and outliers. For clarity, only 100 inliers/outliers are plotted. See the supplementary material
for more qualititave results.

6.6.2.2 Affinity estimation

The previous experiment was repeated for affinity (6 DoF affine transformation) estimation,

where the geometric matching error for the i-th correspondence can be written as:

‖ui − θṽi‖1, (6.56)

where each pair (ui,vi) is a correspondence across two views, θ ∈ R2×3 represents the affine

transformation, and ṽi = [vT 1]T . Initial α was set to 0.5, κ = 5 for EP variants and initial

ρ = 0.5 and σ = 2.5 for ADMM variants. The inlier threshold was set to ε = 2 pixels.

Five image pairs from VGG’s affine image dataset: Bikes, Graff, Bark, Tree, Boat and five

pairs of building from the Zurich Building Dataset: Building 143, Building 152, Building 163,
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Building 170 and Building 174 were selected for the experiment. Quantitative results are given

in Table 6.4, and sample qualitative result is shown in Fig. 6.4. Similar conclusions can be

drawn.

6.6.2.3 Triangulation

We conducted triangulation from outlier-contaminated multiple-view observations of 3D points.

For each image point xi and the camera matrix Pi ∈ R3×4, the following reprojection error with

respect to the point estimation θ was used in our experiments:

‖(Pi
1:2 − xiP

i
3)θ′‖1

Pi
3θ̃

, (6.57)

where θ̃ = [θT 1]T , Pi
1:2 denotes the first two rows of the camera matrix and Pi

3 represents its

third row. We selected five feature tracks from the NotreDame dataset [80] with more than N =

150 views each to test our algorithm. The inlier threshold for maximum consensus was set to

ε = 1 pixel. α was initially set to 0.5 and κ = 1.5 for all variants of EP. For the ADMM variants,

initial ρ was set to 0.1 and σ = 2.5. Table 6.5 shows the quantitative results. Again, the variants

of local refinement algorithms are better than the other methods in terms of solution quality. The

runtime gap was not as significant here due to the low-dimensionality of the model (d = 3).

We repeated the experiments for all 11595 feature tracks in the dataset with more than 10

views. All the methods were executed with ε = 1 pixel and the same set of parameters. Table 6.6

lists the total number of inliers and runtime for all the methods over all tested points. With

RANSAC initialization, EP-RS was able to achieve the highest total number of inliers followed

by ADMM-RS. The triangulated result is shown in Figure 6.5.

Methods Total inliers Time (minutes)
RANSAC 91888 12.10

LO-RANSAC 94387 23.09
New LORANSAC 91555 20.84
`1 approximation 40669 11.16
`∞ outlier removal 43869 45.18

EP with RANSAC intialization 99232 49.52
EP with `∞ initialization 59996 71.86

ADMM with RANSAC initialization 97453 86.14
ADMM with `∞ initialization 49760 125.74

TABLE 6.6: Total inliers and runtime of triangulation for 11595 selected points with more than
10 views
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FIGURE 6.5: Qualitative results of EP-RS on triangulation.

6.7 Conclusions

We introduced two novel deterministic approximate algorithms for maximum consensus, based

on non-smooth penalized method and ADMM. In terms of solution quality, our algorithms out-

perform other heuristic and approximate methods—this was demonstrated particularly by our

methods being able to improve upon the solution of RANSAC. Even when presented with bad

initializations (i.e., when using least squares to initialize on unbalanced data), our methods was

able to recover and attain good solutions. Though our methods can be slower, their runtimes are

still well within practical range (seconds to tens of seconds). In fact, at high outlier rates, our

methods is actually faster than the RANSAC variants, while yielding higher-quality results.

Overall, the experiments illustrate that the proposed method can serve well in settings where

slight additional runtime is a worthwhile expense for guaranteed convergence to an improved

maximum consensus solution.
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6.8 Supplementary Material

6.8.1 Convergence proof for the ADMM-based algorithm

Let β = 2ρ and γ = βλ. The augmented Lagrangian (eq. (36) in the main paper) can be

rewritten in the un-scaled ADMM form as

Lβ(z, {z′i}, zC ,γ) =
∑
i

[
u′i + IB(z′i)

]
+ IC(zC) + ‖u‖2

+ (γu)T (u′ − u) +
β

2
‖u′ − u‖22

+ (γs)T (s′ − s) +
β

2
‖s′ − s‖22

+ (γs
C)T (sC − s) +

β

2
‖sC − s‖22

+ (γv
C)T (vC − v) +

β

2
‖vC − v‖22

+
∑
i

[
(γv
i )T (v′i − v) +

β

2
‖v′i − v‖22

]
.

(6.58)

For the ease of notation, the auxiliary variables {z′i} and zC can be collected into the vector x,

where

x = [{z′Ti } zTC ]T . (6.59)

Also, define the functions h(z) and f(x) as

h(z) = ‖u‖2, (6.60)

f(x) =
∑
i

u′i. (6.61)

With the definition of x in (6.59), the coupling constraints can be written in the following form

x + Bz = 0, (6.62)

where the matrix B is defined as:

B = [{(Bi)
T } (BC)T ]T .

The matrix B is a collection of the selection sub-matrices, where each of the Bi can be defined

as

Bi ∈ R(d+3)×2M+d+1 =


01×(i−1) − 1 01×(M−i) 01×M 01×(d+1)

01×M 01×(i−1) − 1 01×(M−i) 01×(d+1)

0(d+1)×M 0(d+1)×M −I(d+1)×(d+1)

 ,
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and BC is defined as:

BC ∈ R(d+3)×M+d+1 =

0N×N 0N×(N+d+1)

0N×N − IN×(N+d+1)

 .
where 0m×n and Im×n represent a zero matrix and an identity matrix of sizem×n, respectively.

Intuitively, the matrices Bi are to select ui, si and v, and BC is to select [sT vT ]T from the

variable z. In other words,
Biz = − [ui si v

T ],

BCz = − [sT vT ].
(6.63)

Recall that since γ = βλ, the vector γ has the form of

γ =
[
{(γi)T } (γC)T

]T
.

In addition, note that with the changes of variables discussed above, the value of γ is updated at

each iteration by the equation

γ+ = γt + β(x+ + Bz+). (6.64)

Thus, the augmented Lagangian function can now be written as

Lβ(x, z,γ) = f(x) + h(z) +
∑
i

IB(z′i) + IC(zC) + γT (x + Bz) +
β

2
‖x + Bz‖2.

(6.65)

Monotonicity of the Lagrangian function Consider the (t+ 1)-th update cycle of Algorithm

2. Let xt, zt, γt denote the variables carried from the t-th iteration and x+, z+, γ+ represent

the updated variables, i.e., x(t+1), z(t+1) and γ(t+1), respectively.

As the update steps for the auxiliary variables, which involves minimizing (6.65) with respect

to x, can be solved optimally, the following inequailty holds:

Lβ(xt, zt,γt) ≥ Lβ(x+, zt,γt). (6.66)

After the original variable z and the Lagrangian multipliers γ are updated, consider the differ-

ence between the two Lagrangian functions,

DL = Lβ(x+, zt,γt)− Lβ(x+, z+,γ+). (6.67)

In the following, we will prove that with a sufficiently large β, DL ≥ 0.
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Since z+ minimizes Lβ(x+, z,γt) after the z update step, the following optimality condition

holds:

∇L(z+) = ∇h(z+) + BTγt + BTβ(x+ + Bz+) = 0. (6.68)

Due to the fact that γ+ is updated by γ+ = γt + β(x+ + Bz+), (6.68) is equivalent to

BTγ+ = −∇h(z+). (6.69)

Henceforth, let BM+1 = BC and γM+1 = γC . Then B = [{(Bi)
T }M+1

i=1 ]T and γ =

[{γi}M+1
i=1 ]T . Observe that BTγ+ can be written as the summation

BTγ+ =
M+1∑
i=1

BT
i γ

+
i . (6.70)

Combining (6.69) and (6.70) results in

BT
i γ

+
i = −∇h(z+)−

M+1∑
j=1,j 6=i

BT
j γ

+
j , ∀i = 1 . . . (M + 1). (6.71)

From (6.65) and (6.67), after some manipulations, DL can be written as

DL = h(zt)− h(z+) + (γ+)T (Bzt −Bz+) +
β

2
‖Bz+ −Bzt‖2 − 1

β
‖γ+ − γt‖2

= h(zt)− h(z+) + (γ+)T (Bzt −Bz+) +
β

2
‖Bz+ −Bzt‖2 − 1

β

M+1∑
i=1

‖γ+
i − γti‖2.

(6.72)

For each matrix Bi, let κi denotes the smallest strictly positive eigenvalue of BT
i Bi. Since

γ+
i = γti + β((z′i)

+ + Biz
+) ∈ Im(Bi), following [63, Lemma 2],

‖γ+
i − γti‖ ≤ κi‖BT

i (γ+
i − γti )‖. (6.73)

Making use of (6.71), then apply the triangle inequality,

‖BT
i (γ+

i − γi)‖ = ‖∇h(z+)−∇h(zt)−
∑
j 6=i

BT
j (γ+

j − γtj)‖

≥ |‖∇h(z+)−∇h(zt)‖ −
∑
j 6=i
‖BT

j (γ+
j − γtj)‖|.

(6.74)

It then follows that

− ‖BT
i (γ+

i − γti )‖ ≤ ‖∇h(z+)−∇h(zt)‖ −
∑
j 6=i
‖BT

j (γ+
j − γtj)‖. (6.75)
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Summing the LHS and RHS over all i = 1 . . . (M + 1),

−
∑
i

‖BT
i (γ+

i − γti )‖ ≤ (M + 1)‖∇h(z+)−∇h(zt)‖ −M
∑
i

‖BT
j (γ+

j − γtj)‖,

(M − 1)
∑
i

‖BT
i (γ+

i − γti )‖ ≤ (M + 1)‖∇h(z+)−∇h(zt)‖,

∑
i

‖BT
i (γ+

i − γti )‖ ≤ M + 1

M − 1
‖∇h(z+)−∇h(zt)‖.

(6.76)

Therefore, from (6.73),

‖γ+
i − γti‖ ≤ κi‖BT

i (γ+
i − γti )‖ ≤ κi

M + 1

M − 1
‖∇h(z+)−∇h(zt)‖ ≤ Ci‖u+ − ut‖,

(6.77)

where Ci = 2κi
M+1
M−1 . The last inequality holds due to∇h(z) = 2u.

The inequality (6.77) results in:

‖γ+
i − γti‖2 ≤ C2

i ‖u+ − ut‖2,∑
i

‖γ+
i − γti‖2 ≤

(∑
i

C2
i

)
‖u+ − ut‖2.

(6.78)

Let C =
(∑

iC
2
i

)
, we now have

‖γ+ − γt‖2 =
∑
i

‖γ+
i − γti‖2 ≤ C‖u+ − ut‖2

− 1

β
‖γ+ − γt‖2 ≥ −C

β
‖u+ − ut‖2

(6.79)

Therefore, it follows that

DL = h(zt)− h(z+) + (BTγ+)T (zt − z+) +
β

2
‖Bz+ −Bzt‖2 − 1

β
‖γ+ − γt‖2

= h(zt)− h(z+)− (∇h(z+))T (zt − z+) +
β

2
‖Bz+ −Bzt‖2 − 1

β
‖γ+ − γt‖2

≥ h(zt)− h(z+)− (∇h(z+))T (zt − z+) +
β

2
‖Bz+ −Bzt‖2 − C

β
‖z+ − zt‖2.

(6.80)

Based on Taylor expansion of the funcion h(z) around z+

h(zt) ≥ h(z+) + (∇h(z+))T (zt − z+) + (zt − z+)T∇2h(z+)(zt − z+) (6.81)

Thus,

h(zt)− h(z+)− (∇h(z+))T (zt − z+) ≥ (zt − z+)T∇2h(z+)(zt − z+)

≥ ‖u+ − ut‖2
(6.82)
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Also, note that

‖Bz+ −Bzt‖2 = ‖u+ − ut‖2 + 2‖s+ − st‖2 + (M + 1)‖s+ − st‖2 ≥ ‖u+ − ut‖2.
(6.83)

From (6.80), (6.82) and (6.83),

DL ≥
(
β

2
+ 1− C

β

)
‖u+ − ut‖2. (6.84)

Thus, with a sufficiently large β such that

β2 + 2− 2C ≥ 0, (6.85)

DL is monotonically non-increasing, i.e.,

Dt
L ≥ 0, ∀t (6.86)

Then, from (6.66) and (6.67), with DL ≥ 0, it follows that:

Lβ(x+, z+,γ+) ≥ Lβ(xt, zt,γt), ∀t. (6.87)

Boundedness of Lβ Besides the monotonicity of the Lagrangian function, we now prove that

the Lagrangian function Lβ will be lower bounded by a proper choice of β. Indeed, Lβ can be

written as

Lβ = f(xt) + h(zt) + γT (xt + Bzt) +
β

2
‖xt + Bzt‖2

= f(xt) + h(zt) +
1

β
(γt)T (γt − γ(t−1)) +

1

2β
‖γt − γ(t−1)‖2

(Cauchy inequality) ≥ f(xt) + h(zt)− 1

β
‖γt‖‖γt − γ(t−1)‖+

1

2β
‖γt − γ(t−1)‖2.

(6.88)

From (6.79), it follows that

‖γt − γ(t−1)‖2 ≤ C‖ut − u(t−1)‖2 ≤ KC, (6.89)

where K is a positive number. The last inequality holds due to the fact that ‖u+ − u‖2 is upper

bounded. Thus,

‖γt − γ(t−1)‖ ≤
√
KC. (6.90)

Denote
√
KC by C ′, (6.88) now becomes

Lβ ≥ f(x) + h(z)− C ′

β
‖γt‖+

1

2β
‖γt − γ(t−1)‖2. (6.91)
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Since f(x) =
∑

i u
′
i and h(z) = ‖u‖2, f(x) + h(z) is lower-bounded by 0. As β is allowed to

increase at each iteration of the algorithm, in order for Lβ to be lower-bounded, we would like

to select β at iteration (t+ 1)-th such that following inequality holds

−C
′

β
‖γ+‖+

1

2β
‖γ+ + γ(t)‖2 ≥ L0. (6.92)

where L0 > −∞ is a large negative value to prevent Lβ to drift to −∞ . Note that at the

iteration (t + 1)-th, the value of γ+ is not known in advance, but by applying (6.90), we have

−C ′ ≤ ‖γ+‖ − ‖γt‖ ≤ C ′, then we can bound ‖γ+‖ by writing

− ‖γ+‖ ≥ −C ′ − ‖γt‖, (6.93a)

‖γ+‖ ≥ −C ′ + ‖γt‖. (6.93b)

Let D denotes −C ′ − ‖γt‖ and E denotes −C ′ + ‖γt‖, (6.91) can be rewritten as

− C ′

β
‖γ+‖+

1

2β
‖γ+ − γt‖2 ≥ C ′

β
D +

1

2β
(‖γ+‖ − ‖γt‖)2

≥ C ′

β
D +

1

2β
(‖γ+‖2 − 2‖γ+‖‖γt‖+ ‖γt‖2)

≥ C ′

β
D +

1

2β
(E2 − 2‖γ+‖‖γt‖+ ‖γt‖2)

≥ C ′

β
D +

1

2β
(E2 − 2D‖γt‖+ ‖γt‖2)

≥ C ′D −D‖γt‖
β

.

(6.94)

In other for (6.92) to hold, the RHS of (6.94) must be greater than L0, or:

C ′D −D‖γt‖
β

≥ L0. (6.95)

Then, β must be chosen such that:

βL0 ≤ C ′D −D‖γt‖. (6.96)

Divide both sides of (6.96) by L0 (note that L0 < 0), we get the condition for β

β ≥ C ′D −D‖γt‖
L0

. (6.97)

Therefore, with a sufficiently large β such that (6.85) and (6.97) hold, the Lagrangian function

Lβ is non-increasing and bounded from below. Theferefore, it converges after a finite number

of iterations:

lim
k→∞

‖zk+1 − zk‖ = 0. (6.98)
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Also, due to (6.90)

lim
k→∞

‖γk+1 − γk‖ = 0, (6.99)

which also leads to

lim
k→∞

‖xk + Bzk‖ = 0. (6.100)

Equation (6.100) states that the auxiliary variables and the original variables converge to the

same solution. The equations (6.98), (6.99) and (6.100) then complete the proof.

6.8.2 Derivation of KKT conditions

The penalty problem derived in the main paper:

min
u,s,v

∑
i

ui + α
[
ui(si − cTi v + bi) + si(1− ui)

]
s.t. si − cTi v + bi ≥ 0,

1− ui ≥ 0,

si, ui, vi ≥ 0.

(6.101)

Define the functions correspond to the set of constraints of the penalty problem (6.101):

Hi = si − cTi v + bi

Gi = 1− ui

Si = si

Ui = ui

Vi = vi

(6.102)

Also, define λH, λG , λS , λU , λV ∈ RM be the Larange multipliers for the constraints

in (6.101).

Derivaties of the cost function in (6.101) with respect to u, v, s respectively:

∇uP (u, s,v|α) = −αCv + αb + 1

∇sP (u, s,v|α) = α1

∇vP (u, s,v|α) = −αCTu

u, s,v is a stationary point if the KKT condition is satisfied:
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∇uP −
∑
i

λGi ∇uGi + λUi ∇uUi = 0

∇sP −
∑
i

λHi ∇sHi + λSi ∇sSi = 0

∇vP −
∑
i

λHi ∇vHi + λVi ∇vVi = 0

λHi Hi = 0

λGi Gi = 0

λSi Si = 0

λUi Ui = 0

λVi Vi = 0

si − cTi v + bi ≥ 0

1− ui ≥ 0

ui, vi, si ≥ 0

λHi , λ
G
i , λ

U
i , λ

V
i , λ

S
i ≥ 0

(6.103)

which is equivalent to:

−αCv + αb + 1 + λG − λU = 0

α1− λH − λS = 0

−αCTu + CTλH − λV = 0

λHi (si − cTi v + bi) = 0

λGi (1− ui) = 0

λVi vi = 0

λUi ui = 0

λSi si = 0

λHi , λ
G
i , λ

U
i , λ

V
i , λ

S
i ≥ 0

ui, vi, si ≥ 0

si − cTi v + bi ≥ 0

1− ui ≥ 0

(6.104)

By rearranging and substitution, (6.104) can be reduced to
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uT (−αCv + αb + 1 + λG) = 0

sT (α1− λH) = 0

vT (−αCTu + CTλH) = 0

(λH)T (s−Cv + b) = 0

(λG)T (1− u) = 0

s−Cv + b ≥ 0

1− u ≥ 0

λH,λG ,u, s,v ≥ 0

(6.105)



Chapter 7

Conclusion and Future Work

Consensus maximization is an important problem that underpins a large number of computer

vision applications. This thesis contributes several algorithmic developments for the maximum

consensus problem. This chapter summarizes the contributions of this thesis (Section 7.1) and

discusses future research directions (Section 7.2)

7.1 Summary of Contributions

The contributions of this thesis can be summarized as follows

• A new guided sampling algorithm is proposed (Chapter 3) that takes advantage of the un-

derlying tree structure of consensus maximization to guide the sampling process. The new

method works under the framework of LP-type problem and Monte-Carlo Tree Search and

does not require domain knowledge. Empirical results show that the new algorithm out-

performs RANSAC and its variants for many popular robust model fitting problems in

computer vision.

• A globally optimal algorithm (based on Branch-and-Bound strategy) to estimate the Möbius

transformation is proposed in Chapter 4 to robustly align non-rigid shapes with disc topol-

ogy. The proposed method is much more efficient than existing methods for aligning

isometric shapes.

• Two deterministic approximate methods for consensus maximization were proposed. One

is based on Frank-Wolfe algorithm (Chapter 5) and another is based on ADMM algorithm

(Chapter 6). These two algorithms bridge the gap between the class of randomized meth-

ods and exact methods and can consistently upgrade an initial rough estimate to a higher

quality solution with slight increase in runtime.

155
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7.2 Future research directions

7.2.1 Integration of domain knowledge into the random tree search algorithm

Chapter 3 describes a new guided sampling scheme (RATSAC) that relies solely on the under-

lying tree structure of the consensus maximization problem. Meanwhile, based on the results of

previous guided sampling approaches such as PROSAC [22] or Guided-MLESAC [84], the use

of domain knowledge (if available) has been shown to achieve relatively good results. Thus, a

promising research topic that can be explored is to integrate the prior domain knowledge infor-

mation into RATSAC to develop a better guided sampling strategy that utilizes both the domain

knowledge and the underlying problem structure.

7.2.2 Optimal Möbius search for shapes with spherical topology

The Möbius alignment has been shown to be an effective method for the task of non-rigid iso-

metric shape alignment. Chapter 4 discusses a globally optimal algorithm to estimate a Möbius

transformation between two hyperbolic discs. So far, the proposed algorithm can only be used

to handle shapes with disc topology. On the other hand, in order to apply the conformal align-

ment approach for shapes with spherical topology, it is required that the shapes be conformally

mapped onto hyperbolic spheres. In such scenario, the Möbius search contains 6 degrees of

freedom (DoF). One of the research direction is to extend the existing Möbius search algorithm

developed in Chapter 4 to handle data on the unit spheres.

7.2.3 Improving the convergence rate for the approximate methods

Chapter 5 and Chapter 6 provide two algorithms to approximate the maximum consensus prob-

lem with provably convergence guarantee. Though efficient, their convergent rates are yet to be

carefully analyzed. Thus, the future work is to investigate their convergence rate to theoretically

validate the effectiveness of each algorithm. Furthermore, from the understanding of their con-

vergence rate, other optimization schemes can be applied to improve the solution quality and

runtime.



Bibliography

[1] http://mathworld.wolfram.com/Circle-CircleIntersection.html.

[2] http://mathworld.wolfram.com/ComplexNumber.html.

[3] https://www.cs.princeton.edu/˜vk/projects/CorrsCode/.

[4] https://en.wikipedia.org/wiki/Quadratic_assignment_problem.

[5] K. Aftab and R. Hartley. “Convergence of iteratively re-weighted least squares to robust

M-estimators”. In: 2015 IEEE Winter Conference on Applications of Computer Vision.

IEEE. 2015, pp. 480–487.

[6] S. Agarwal, N. Snavely, and S. M. Seitz. “Fast algorithms for L-inifity problems in multi-

view geometry”. In: Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE

Conference on. IEEE. 2008, pp. 1–8.

[7] S. Angenent, S. Haker, A. Tannenbaum, and R. Kikinis. “Conformal geometry and brain

flattening”. In: MICCAI. 1999.

[8] P. Auer, N. Cesa-Bianchi, and P. Fischer. “Finite-time analysis of the multiarmed bandit

problem”. In: Machine learning 47.2 (2002), pp. 235–256.

[9] L. Bers. “Uniformization, moduli and Kleinian groups”. In: Bull. London Math. Soc.

Vol. 4. 1972, pp. 257–300.

[10] P. J. Besl and N. D. MacKay. “A method for registration of 3-d shapes”. In: IEEE TPAMI

14.2 (1992), pp. 239–256.

[11] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. “Distributed optimization and

statistical learning via the alternating direction method of multipliers”. In: Foundations

and Trends R© in Machine Learning 3.1 (2011), pp. 1–122.

[12] D. Boyer, Y. Lipman, E. StClair, J. Puente, B. Patel, T. Funkhouser, J. Jernvall, and I.

Daubechies. “Algorithms to automatically quantify the geometry similarity of anatomical

surfaces”. In: Proc. Nat’l Academy of Sciences. 2011.

[13] T. Breuel. “Implementation techniques for geometric branch-and-bound matching meth-

ods”. In: CVIU 90.3 (2003), pp. 258–294.

157

http://mathworld.wolfram.com/Circle-CircleIntersection.html
http://mathworld.wolfram.com/ComplexNumber.html
https://www.cs.princeton.edu/~vk/projects/CorrsCode/
https://en.wikipedia.org/wiki/Quadratic_assignment_problem


Bibliography 158

[14] A. M. Bronstein, M. M. Bronstein, A. M. Bruckstein, and R. Kimmel. “Analysis of two-

dimensional non-rigid shapes”. In: IJCV 78.1 (2008), pp. 67–88.

[15] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling, P. Rohlfshagen, S.

Tavener, D. Perez, S. Samothrakis, and S. Colton. “A survey of monte carlo tree search

methods”. In: IEEE Transactions on Computational Intelligence and AI in games 4.1

(2012), pp. 1–43.

[16] E. Cheney. “Introduction to approximation theory. 1966”. In: Chelsea, New York ().

[17] T.-J. Chin, Y. Heng Kee, A. Eriksson, and F. Neumann. “Guaranteed outlier removal with

mixed integer linear programs”. In: Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition. 2016, pp. 5858–5866.

[18] T.-J. Chin, P. Purkait, A. Eriksson, and D. Suter. “Efficient globally optimal consensus

maximisation with tree search”. In: Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition. 2015, pp. 2413–2421.

[19] T.-J. Chin and D. Suter. “The Maximum Consensus Problem: Recent Algorithmic Ad-

vances”. In: Synthesis Lectures on Computer Vision 7.2 (2017), pp. 1–194.

[20] J. W. Chinneck. Feasibility and Infeasibility in Optimization:Algorithms and Computa-

tional Methods. Vol. 118. Springer Science & Business Media, 2007.

[21] S. Choi, T. Kim, and W. Yu. “Performance evaluation of RANSAC family”. In: British

Machine Vision Conference (BMVC). 2009.

[22] O. Chum and J. Matas. “Matching with PROSAC-progressive sample consensus”. In:

2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition

(CVPR’05). Vol. 1. IEEE. 2005, pp. 220–226.

[23] O. Chum, J. Matas, and J. Kittler. “Locally optimized RANSAC”. In: DAGM. Springer.

2003.

[24] M. De Berg, M. Van Kreveld, M. Overmars, and O. C. Schwarzkopf. Computational

geometry. Springer, 2000.

[25] Y. Eldar, M. Lindenbaum, M. Porat, and Y. Y. Zeevi. “The farthest point strategy for

progressive image sampling”. In: Image Processing, IEEE Transactions on 6.9 (1997),

pp. 1305–1315.
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