Biological Cell Resonators

by

Dr. Jonathan Michael MacGillivray Hall, FRSA

Supervisors:
Prof. Tanya M. Monro
Assoc. Prof. Shahraam Afshar V.
Dr. Alexandre François

A thesis submitted to the degree of Doctor of Philosophy

in the
Faculty of Sciences
School of Physical Sciences

August 2017
Legal disclaimer: A digital copy of this thesis retaining copyright protection has been placed on the Cornell University arXiv, under the non-exclusive distribution licence.

When citing this work, use: http://arxiv.org/abs/1709.02534

Academic website: http://drjonathanmhallfrsa.wordpress.com
Declaration of Authorship

I, Jonathan Michael MacGillivray Hall, certify that this work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

I acknowledge the support I have received for my research through the provision of an Australian Government Research Training Program Scholarship.

Signed:

Date: 21 August 2017
Modern sensing technologies developed within the field of photonics incorporate a number of optical and acoustic phenomena. One such effect that has become a focal point in biosensing is whispering gallery modes. These modes occur within optical cavities that exhibit a degree of symmetry, and are thus able to support resonating waves. This thesis develops the theory of resonances, exploring under what conditions a micro or nanoscale device can sustain these resonances, and for which physical criteria the resonance conditions deteriorate. The study is then extended to consider the biological cell. The discovery of a biological cell resonator, in which modes are definitively sustained without artificial assistance, represents the culmination of this thesis.

The properties of resonators and their emitted energy spectra are studied within the general framework of the Finite Difference Time Domain method, requiring supercomputing resources to probe the transient behaviour and interactions among the electromagnetic fields. The formal theory of Mie scattering is extended to develop a cutting-edge, computationally efficient model for general, multilayer microspheres, which represents a valuable achievement for the scientific community in its own right. The model unifies the approaches in the field of mathematical modelling to express the energy spectrum in a single encompassing equation, which is then applied in a range of contexts.
The gulf between modelling and biological resonators is bridged by an in-depth study of the physical characteristics of a range of biological cells, and the selection criteria for viable resonator candidates are developed through a number of detailed feasibility studies. The bovine embryo is consequently selected as the optimal choice.

The scientific advancements contained within each chapter, including the improved models, the selection criteria and the experimental techniques developed, are integrated together to perform the principal measurements of the spectra within a biological cell. Evidence is established for the ability of a bovine embryo to sustain whispering gallery modes. This is a significant finding covering extensive research ground, since it is the first such measurement world-wide. The ability of a cell to sustain modes on its own represents a conceptually elegant paradigm for new technologies involving on-site cell interrogation and reporting of the status and health of a biological cell in the future. The methodological and technological developments contained within this interdisciplinary thesis thus become a vital asset for the future realisation of autonomous biological cell sensors.
Acknowledgments

In this thesis lies a significant œuvre of work across multiple disciplines, including all the inherent logistical challenges of such a task. I would like to formally acknowledge my supervisors for their respective roles in this project: Prof. Tanya Monro, through the Australian Research Council Georgina Sweet Laureate Fellowship which supported the Laureate Scholarship, Assoc. Prof. Shahraam Afshar Vahid, and Dr. Alexandre François.

The unending positivity of Prof. Mark Hutchinson must be mentioned, along with the dedicated professional staff of the Centre for Nanoscale BioPhotonics, especially Ms. Melodee Trebilcock, both of whom I was able to turn to when the management psychology of such diverse interdisciplinary research led inevitably to conflicting procedural expectations.

My friends and colleagues, Dr. Tess Reynolds and Dr. Matthew Henderson, were also always supportive. I wish to thank Mr. Steven Amos for his help during all the hours I spent over at the School of Chemical Engineering, and for teaching me the chemistry and practices required to mix my own media, and also Dr. Nicolas Riesen for conversations about measurement apparatus. My thanks also go to Dr. Wenle Weng, who assisted me in the clear measurement and identification of whispering gallery modes early in the experimental portion of the project.

For all my friends in the OSA and SPIE Adelaide University Chapters, the IONS-KOALA 2014 International Conference organisation committee members, and the wonderful experiences we shared together to pull off the best conference in the series.

Interstate, the moral support I received for the supercomputing portion of the thesis from Prof. Andrew Greentree and my friend and colleague Dr. Daniel Drumm (RMIT) should not be understated. In addition, the directional insights of Prof. Ewa Goldys (Macquarie University) have helped keep my research priorities focused.

The resources from eResearch SA, and The National Computational Infrastructure (NCI) Facility (ANU) were vital in the completion of the early modelling inves-
I wish to thank The University of Adelaide, Adelaide Enterprise, and The University of South Australia, as many people came forward to assist me at different phases of the project. I thank the Robinson Research Institute in reproductive health for their time and resources, including the assistance and understanding of my friend Mr. Avishkar Saini.

On a personal level, I thank my friends for their support and understanding, especially Ian Kennedy, for all the conversations we had. I also thank the Burnside Symphony Orchestra and Haydn Chamber Orchestra for doing without me by the end of the project. The ongoing interest I keep to heart with Prof. Derek Leinweber, Elder Prof. Anthony Thomas and the CSSM, and the perpetual Visiting Research Associate status they granted me early in the project to continue integrating my research skills across multiple sub-fields was greatly valued. Finally, and most importantly, I acknowledge my family for unending support through all the complex phases of the project for whom any thanks I could bring to bear would be inadequate.
Contents

Declaration of Authorship i

Abstract iii

Acknowledgments v

List of Figures xi

List of Tables xiii

Prologue 1

Overview .. 1
Vision .. 3
Aims .. 5
Roadmap of the thesis 6

1 Introduction 9

1.1 Whispering gallery modes 10
1.2 Microresonator architecture 13
1.2.1 Passive resonators 14
1.2.2 Active resonators 15
1.3 Biosensing ... 17
1.4 Formulation of the project 19
1.5 Structure .. 20

2 Spherical Sensors 23

2.1 Microsphere sensor technology 23
2.2 Analytic models for spherical resonators 25
2.2.1 Johnson model for WGM mode positions in microspheres 26
2.2.2 Chew model for the power emitted from active microspheres 29
2.2.3 Quality factor and loss 32
2.2.4 Free spectral range 40
2.3 A customisable FDTD-based toolkit 41
2.3.1 Establishing the resonator geometry 45
2.3.2 Introducing the spectrum .. 46
2.3.3 Connection to Mie scattering 56
2.3.4 Angular distribution of the modes 56
2.4 Introducing layered spheres and microbubbles 60

3 Fluorescent Microbubbles as Cell Analogues 63
 3.1 Microbubbles as an emerging sensing platform 64
 3.2 Simulating fluorescent microbubble resonators 65
 3.2.1 Uniform dipole coatings as an analogue for fluorescence . 66
 3.2.2 Customising the fluorescent emitter density in FDTD . . 69
 3.2.3 Understanding the mode behaviour of microbubbles 73
 3.3 Fluorescent silica microbubble case study 73
 3.3.1 Free spectral ranges and Q-factors 80
 3.3.2 Critical values of geometric parameters for sustaining WGMs 81
 3.4 Non-destructive determination of the geometry 85
 3.5 Microbubbles as a prelude to biological cells 90

4 A Unified Model for Active Multilayer Resonators 93
 4.1 Motivation for a unified description 94
 4.2 Defining the multilayer model 95
 4.2.1 Geometry ... 96
 4.2.2 Transfer matrix method 99
 4.3 Simulation recipes ... 107
 4.3.1 Structural resonances 109
 4.3.2 Scattered power .. 110
 4.4 Demonstration of a coated microsphere including dispersion . 114
 4.5 Broader capacity of the model 117

5 The Search for a Cell ... 121
 5.1 Outline of the challenge 122
 5.2 Resonator assessment methods and tools 123
 5.3 Selection criteria ... 130
 5.4 Candidate cells ... 137
 5.5 Oocyte and embryo structure 148
 5.5.1 Size and topology 152
 5.5.2 Glycoprotein refractive index 153
 5.5.3 Surface properties 155
 5.5.4 Surrounding media 156
 5.5.5 Autofluorescence 156
 5.5.6 Absorptive properties 158
 5.6 Selecting a viable cell 158
 5.7 Sample preparation ... 160
6 Whispering Gallery Modes in an Embryo

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Embryos as resonators</td>
<td>164</td>
</tr>
<tr>
<td>6.2 Experimental methodology</td>
<td>165</td>
</tr>
<tr>
<td>6.2.1 Prism coupler method</td>
<td>165</td>
</tr>
<tr>
<td>6.2.2 Fibre taper method</td>
<td>168</td>
</tr>
<tr>
<td>6.2.3 Fluorescence methods</td>
<td>170</td>
</tr>
<tr>
<td>6.2.4 ICSI dye injection and co-culturing method</td>
<td>172</td>
</tr>
<tr>
<td>6.2.5 Quantum dot coating method</td>
<td>174</td>
</tr>
<tr>
<td>6.2.6 Polyelectrolyte layers and crosslinking for quantum dots</td>
<td>176</td>
</tr>
<tr>
<td>6.3 Modelling predictions</td>
<td>177</td>
</tr>
<tr>
<td>6.4 Experimental results</td>
<td>183</td>
</tr>
<tr>
<td>6.4.1 Test case: the silica microsphere</td>
<td>183</td>
</tr>
<tr>
<td>6.4.2 Passive interrogation of modes in embryos</td>
<td>189</td>
</tr>
<tr>
<td>6.4.3 Active interrogation of modes in embryos</td>
<td>199</td>
</tr>
<tr>
<td>6.5 Conclusions from the experiments</td>
<td>206</td>
</tr>
</tbody>
</table>

7 Future Directions: Towards a Biolaser Sensor

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Glycerol-based index sensitivity measurement</td>
<td>210</td>
</tr>
<tr>
<td>7.2 Zona pellucida annealing procedures</td>
<td>213</td>
</tr>
<tr>
<td>7.3 Use of lasing to enhance detection of resonances</td>
<td>214</td>
</tr>
<tr>
<td>7.4 Genetic modification</td>
<td>215</td>
</tr>
<tr>
<td>7.5 Living resonators</td>
<td>216</td>
</tr>
<tr>
<td>7.6 Cells as sensors</td>
<td>217</td>
</tr>
</tbody>
</table>

8 Conclusion

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 Summary</td>
<td>219</td>
</tr>
<tr>
<td>8.2 Methodological evaluation and final analysis</td>
<td>220</td>
</tr>
<tr>
<td>8.2.1 Concluding statement</td>
<td>223</td>
</tr>
</tbody>
</table>

Epilogue

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Novel sensing technologies and beyond</td>
<td>225</td>
</tr>
</tbody>
</table>

A Vector Spherical Harmonics

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.1 Notation</td>
<td>229</td>
</tr>
<tr>
<td>A.2 Properties</td>
<td>231</td>
</tr>
</tbody>
</table>

B Multilayer Examples

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.1 Scattered power in the outermost region</td>
<td>233</td>
</tr>
<tr>
<td>B.2 Single dipole embedded in a layer</td>
<td>235</td>
</tr>
<tr>
<td>B.3 Deriving an active layer case</td>
<td>238</td>
</tr>
</tbody>
</table>
C Transfer Matrix Method Verification

C.1 Chew model for an unlayered microsphere 244
 C.1.1 Single dipole in the outermost region 244
 C.1.2 Single dipole in the innermost region 245
 C.1.3 Active inner regions .. 247
C.2 Johnson model for an unlayered microsphere 248
C.3 Teraoka-Arnold model for a microsphere with a single layer 250
C.4 Yariv model of scattering for concentric resonators 253
C.5 Algorithm scaling behaviour .. 254

D Chemical Compositions of Media .. 257

D.1 Standard non-selective yeast media (YEPD) 257
D.2 MLA algal media ... 258
D.3 Eudorina-Pandorina geometric analysis 260
D.4 Paraffin formaldehyde (PFA) oocyte fixing method 262
 D.4.1 Phosphate-buffered saline (PBS) media 262
 D.4.2 MOPS-buffered wash and bovine serum albumin (BSA) handling media .. 263
D.5 Chemical annealing – Acidified Tyrode’s Solution 264

E Lists of Publications .. 265

E.1 Peer-reviewed published journal articles 265
E.2 Published conference proceedings ... 267
E.3 Press releases ... 267
E.4 Code produced as part of this thesis 268
E.5 Conferences and workshops organised 268
E.6 Conferences and workshops participated 269
E.7 Journals – acting as reviewer ... 271
E.8 Grants and funding .. 272
E.9 Recognition and presentations .. 273
E.10 Appended publications pertaining to this thesis 273

Bibliography ... 275
List of Figures

1 Prologue: In the search for a biological resonator, the bovine oocyte is presented as the most viable candidate. 4
1.1 Whispering gallery modes are illustrated in a microsphere resonator. 11
1.2 The spherical polar coordinates and their mode numbers are illustrated. 12
1.3 An example glass microbubble is excited via a fibre taper. 15
1.4 Murine embryos exhibiting autofluorescence under confocal laser microscopy are shown. 20

2.1 The Yee cell of the Finite-Difference Time-Domain method is shown. 44
2.2 The flux collection from a simulated microsphere resonator is shown. 46
2.3 The convergence of the power spectrum in FDTD is explored. 49
2.4 The impact of the flux collection time on the spectrum is examined. 50
2.5 The dipole orientation is shown to affect energy coupling to the modes. 52
2.6 The effect of the dipole orientation is shown in a medium of water. 53
2.7 FDTD simulations are verified by the Chew model. 57
2.8 Spatial distributions of the modes are contrasted. 59
2.9 Spectra for different flux collection regions are compared. 61

3.1 The structure of the shell resonator is illustrated. 67
3.2 Spectra are compared for different numbers of dipole sources. 70
3.3 The effect of the flux collection region on the spectrum is examined. 72
3.4 The geometric parameters for microbubble spectra are modified. 74
3.5 The density of silica microbubbles is measured experimentally. 76
3.6 The experimental setup for measuring spectra is illustrated. 77
3.7 The measured spectrum from a dye-coated microbubble is shown. 78
3.8 The behaviours of simulated microbubble spectra are explored. 79
3.9 Contour plots are shown for the free spectral ranges and Q-factors. 82
3.10 The critical shell thickness for microbubble spectra is determined. 84
3.11 The free spectral range is fitted to obtain the geometric parameters. 87
3.12 The fitted FDTD spectrum is compared to the measured spectrum. 88

4.1 The active multilayer resonator geometry is illustrated. 97
4.2 PMMA-coated microspheres are simulated using multilayer model. 115
4.3 The sensitivity of coated microspheres is simulated for $d = 10$ nm. 116
4.4 The sensitivity of coated microspheres is simulated for $d = 50$ nm. 118
5.1 Spectra are shown for a range of diameters and index contrasts. . . . 131
5.2 The limiting diameters for mode detection are explored for proteins. 133
5.3 A range of cells is examined using the selection criteria. 139
5.4 The absorbance spectra of yeast show dominance from DNA. 141
5.5 Examples of the geometries formed by Eudorina-Pandorina algae. . 144
5.6 Absorbance spectra for Eudorina-Pandorina algae. 145
5.7 A diagram of the mammalian oocyte. 149
5.8 A diagram of the molecular structure of a glycoprotein. 151
5.9 Microscope images of bovine embryos shown to scale. 153
5.10 Microscope images of murine embryos shown to scale. 154
5.11 The relative autofluorescence spectra of murine oocytes and the Eu-
 dorina-Pandorina algae are compared. 159
5.12 Bovine presumptive zygotes in a droplet of medium on a prism coupler. 162

6.1 The experimental setup for the prism coupler method is illustrated. . 167
6.2 Images of the prism coupler and the phase-matching condition. . . 168
6.3 The experimental setup for the taper method is illustrated. 171
6.4 The ICSI procedure in progress on an embryo. 174
6.5 A bovine embryo undergoing ICSI is shown. 175
6.6 Simulated examples of WGM spectra for bovine embryos. 179
6.7 The limiting zona refractive indices for mode detection are explored
 for bovine embryos. 182
6.8 Silica glass microspheres are fabricated and tested. 185
6.9 A WGM signal obtained from the transmitted light from a silica
 glass microsphere using the prism coupler method. 186
6.10 Zoomed-in signal for a silica microsphere in water. 187
6.11 Signal for a microsphere in an equal MOPS+BSA/water solution. . . 190
6.12 The prism coupler is altered to accommodate mounting embryos. . . 191
6.13 Images of an embryo trapping laser light using the prism coupler. . 192
6.14 Scattered and transmitted WGM spectra from an embryo. 194
6.15 Image of a fibre taper suspended above an embryo in solution. . . . 197
6.16 Images of an embryo exposed to a fibre taper. 198
6.17 Transmitted signals from an embryo using the fibre taper method. . 199
6.18 Quantum dot coated bovine embryo using polyelectrolyte cross-linking. 200
6.19 Comparison of free space and taper collection for coated embryos. . 202
6.20 Background subtraction and signal processing for coated embryos. . 203
6.21 Quenching of WGMs in an embryo by adding a droplet of glycerol. 205

7.1 The refractive index sensitivity measurement apparatus is shown. . . 212

C.1 The multilayer model convergences to the Chew model for \(N = 1 \). . 249
C.2 The multilayer model is verified by the Teraoka-Arnold model. 252
C.3 The execution times of the multilayer model are examined. 255

D.1 Image of Eudorina-Pandorina algae - assessing geometric properties. 260
List of Tables

2.1 The computational requirements of FDTD simulations are summarised. 43
2.2 The Q-factors and positions are shown for prominent spectral peaks. 55
3.1 The free spectral ranges of simulated microbubbles are compared. . 81
3.2 The best fit results for microbubble parameters are summarised. . . 86
3.3 The free spectral ranges from simulation and experiment are compared. 90
3.4 The Q-factors from simulation and experiment are compared. . . . 90
6.1 Rutile prism coupler angles for a range of resonator refractive indices. 169
7.1 The refractive index shift expected for a range of concentrations of glycerol solution. 212
D.1 An analysis of the geometric properties of a sample of Eudorina-Pandorina algae. 261