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Abstract We give an explicit description of the full asymptotic expansion of the Schwartz
kernel of the complex powers of m-Laplace type operators L on compact Riemannian mani-
folds in terms of Riesz distributions. The constant term in this asymptotic expansion turns out
to be given by the local zeta function of L . In particular, the constant term in the asymptotic
expansion of the Green’s function L−1 is often called the mass of L , which (in case that L is
the Yamabe operator) is an important invariant, namely a positive multiple of the ADMmass
of a certain asymptotically flat manifold constructed out of the given data. We show that for
general conformally invariant m-Laplace operators L (including the GJMS operators), this
mass is a conformal invariant in the case that the dimension of M is odd and that ker L = 0,
and we give a precise description of the failure of the conformal invariance in the case that
these conditions are not satisfied.

Keywords Laplace type operator · Elliptic operator · Green’s function · Zeta function ·
Heat kernel · Conformal geometry · Positive mass

1 Introduction

Let (M, g) be a compact Riemannian manifold of dimension n and let L be a self-adjoint
m-Laplace type operator, acting on sections of a metric vector bundle V over M . By this
we mean that L is a differential operator of order 2m such that the principal symbol of L
equals the principal symbol of (∇∗∇)m for some (hence any) connection on M . Examples of
higher-order operators which are of this type are the GJMS operators, which play a prominent
role in conformal geometry (see Example 6.5 below and the references given there).

For s ∈ C, denote by L−s the complex powers of L , defined via functional calculus. If
ker L �= 0, then we take these powers on the orthogonal complement of its kernel. We show
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in the case that n
2 − ms /∈ Z, the Schwarz kernel of L−s has an asymptotic expansion near

the diagonal in D ′(M × M) of the form

L−s(x, y) ∼
∞∑

j=0

�L
j (x, y)

(
s − 1 + j

m
j
m

)
I2ms+2 j (x, y), (1.1)

where �L
j (x, y) are the heat kernel coefficients (coming from the Minakshisundaram-Pleijel

short-time asymptotic expansion of the heat kernel) and the Iα areRiesz distributions, a certain
one-parameter family of distributions depending meromorphically on α ∈ C. Unfortunately,
the family Iα has simple poles at the values α = n + 2k for k ∈ N0, so that the expansion
(1.1) does not make sense in the case that n

2 −ms ∈ Z. However, it turns out that in this case,
we obtain an asymptotic expansion for L−s(x, y) if for each j such that 2ms+2 j = n+2k,
we take the finite part of Iα(x, y) at α = n + 2k instead of I2ms+2 j (x, y).

The Riesz distributions Iα(x, y) are continuous functions near the diagonal if Re(α) > n
with Iα(x, x) = 0. Hence, we obtain that if in (1.1), we only take the sum up to j = 	 n

2 −ms
,
the difference of the two sides is a continuous function near the diagonal and can be evaluated
there. We refer to this value as the constant term in the asymptotic expansion of L−s(x, y).
It turns out that in the case that n

2 − ms /∈ Z, the constant term is given by the local zeta
function of L at x ,

⎡

⎣L−s(x, y) −
	 n
2 −ms
∑

j=0

�L
j (x, y)

(
s − 1 + j

m
j
m

)
I2ms+2 j (x, y)

⎤

⎦

y=x

= ζL(s, x) (1.2)

Again, in the case that n
2 − ms ∈ Z, both sides have a simple pole at the relevant value, and

the equality continues to hold if we take the finite part on both sides.
For s = 1 in the above, the constant term in the asymptotic expansion of the Green’s

function L−1(x, y) of L at x is called the mass of L at x , denoted bym(x, L) [18]. By (1.2),
this constant term is a value of the local zeta function,

m(x, L) = ζL(1, x) (1.3)

in the case that n is odd or that m > n
2 . If n is even and m ≤ n

2 , the mass instead equals the
finite part of the zeta function at s = 1,

m(x, L) = f.p.s=1ζL(s, x). (1.4)

The mass is particularly interesting for conformally covariant differential operators. One
reason is that it is related to the positive mass conjecture, which is still unsolved to this day,
to the author’s knowledge (for a more detailed exposition, see Sect. 6 below). Formulas (1.3),
respectively, (1.4) recognizem(x, Lg) as a local zeta value and therefore potentially allow the
use of techniques from spectral geometry to investigate its properties, as well as the theory
of heat kernels, via the Mellin transform formula for the zeta function.

Themain result of this article, however, is for conformally covariant differential operators;
themass is a pointwise conformal invariant in odd dimensions. Namely, if Lg is a self-adjoint,
conformally invariant m-Laplace type operator (which is made precise in Sect. 6 below and
includes the case that L is the Yamabe operator, the Paneitz–Branson operator or, more
generally a GJMS operator), then if n is odd or m > n

2 , the mass satisfies the transformation
law

m(x, Lh) = e(2m−n) f (x)m(x, Lg)
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if h = e2 f g for a smooth function f and Lg , Lh are the operators corresponding to the
metrics indicated by the subscript. In particular, m(x, Lg)V

p
g , p = n−2m

n , (where Vg is the
Riemannian volume density corresponding to g) defines a density of weight n − 2m, which
depends only on the conformal class of g.

Since m(x, L) = ζL(1, x) in the above situation, this result fits nicely into the previ-
ously known results about conformally invariant zeta values: It is well known that in even
dimensions, the value of the global zeta function at zero ζg(0) is a conformal invariant (in
the sense that the value only depends on the conformal structure), while in odd dimensions,
its derivative ζ ′

g(0) is conformally invariant, provided that ker L = 0 [5,29]. Furthermore,
again in even dimensions, the residue of the local zeta function ζg(s, x) at s = 1 is a point-
wise conformal invariant, which transforms as a density of weight 2m−n under a conformal
change [28,29]. Theorem 6.6 completes this picture, by stating that in odd dimensions (where
ζg(s, x) has no pole at s = 1), the value of the zeta function itself is conformally covariant,
with the same transformation law as the residue in even dimensions. Notice also that in even
dimensions, the invariants ζg(0) and ress=1 ζg(s, x) are given in terms of local data, i.e.,
curvature and the coefficients of L , while the odd-dimensional invariants ζ ′

g(0) and ζg(1, x)
are global invariants, depending on the geometry in a non-local fashion.

The existence of the conformally covariant section m(1, Lg) = ζg(1, x) is a very strange
phenomenon: It is a pointwise yet global invariant. For example, if L is a GJMS operator, it
is zero on odd-dimensional round spheres (see Theorem 6.9), but if x is a point in an odd-
dimensional Riemannian manifold (M, g) a neighborhood of which is isometric to a region
in the round sphere Sn , the mass m(x, Lg) still need not to be zero. And in fact, it often is
not, as suitable versions of the positive mass theorem imply.

In Sects. 2 and 3, we discuss the Riesz distributions Iα as well as the heat kernel of �m

in Euclidean space. In each case, we discuss how to transplant the relevant distributions
to the manifolds. In Sect. 4, we introduce the relevant concepts of global analysis, to set
notation: general m-Laplace type operators L on compact Riemannian manifolds, as well
as their complex powers, the Minakshisundaram-Pleijel asymptotic expansion of their heat
kernel and the corresponding local zeta function. In Sect. 5, we then show that the Schwartz
kernel L−s has asymptotic expansions of the claimed form (see Theorems 5.1 and 5.4). Then
in Sect. 6, we turn to conformally covariant m-Laplace type operators and give a further
discussion of Theorem 6.6, the positive mass conjecture and related questions. Finally, in
Sect. 7, we give a proof of the main theorem, Theorem 6.6 by calculating the variation of
ζg(1, x) under a conformal change (see Theorem 7.1), which also yields information on the
case that n is even or that ker L �= 0, which shows that indeed we do not obtain a conformal
invariant in this case.

2 Riesz distributions

The material on Riesz distributions reviewed in this section is classical and well known, and
we repeat it for convenience of the reader and to set notation. For proofs, refer to [25, Ch. I.1]
or [33, Ch. V.1].

Let V be an n-dimensional Euclidean vector space, n ≥ 2. For α ∈ C with Re(α) > 0
and α �= n + 2m, m ∈ N0, the Riesz Potentials are defined by

Iα(v) := C(α, n)|v|α−n, where C(α, n) := �
( n−α

2

)

2απ
n
2 �
(

α
2

) .
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Note that the coefficient function C(α, n), viewed as a meromorphic function in α, has
simple poles at the numbers α = n + 2m, m ∈ N0, so that Iα also has simple poles there.
Since for any α as above, the Iα are locally integrable functions; they can be considered as
distributions on V , by setting

Iα[ϕ] :=
∫

V
Iα(v)ϕ(v)dv

for test functions ϕ ∈ D(V ). As such, they satisfy the recursion relation

�Iα = Iα−2 (2.1)

whenever Re(α) > 2, α /∈ n + 2N0. This is easiest to verify by Fourier transform, once
one calculates that for α < n, we have F [Iα](ξ) = |ξ |−α (here we used the convention for
Fourier transform as, e.g., in [32]). In fact, (2.1), which is valid only for α not equal to one
of the singularities n, n + 2, . . . , has the more general form

�f.p.Iα = f.p.Iα−2, (2.2)

where f.p.Iα denotes the finite part of Iα at α, i.e., the constant term in the Laurent expansion
around the point α (which is just equal to Iα in case that α is not a pole). Formula (2.2) is
then valid for all α with Re(α) > 2.

The relations (2.1), respectively, (2.2) allow to extend Iα to all of C as a meromorphic
family of distributions (meaning that for any ϕ ∈ D(V ), Iα[ϕ] is a meromorphic function
defined on all ofC), by defining for parametersαwithRe(α) ≤ 0 and test functionsϕ ∈ D(V )

Iα[ϕ] := Iα+2k[�kϕ], (2.3)

where k ∈ N is any number such that Re(α) + 2k > 0 and such that α + 2k �= n + 2m for
some m ∈ N0. We will call these distributions Riesz distributions. Because of the recursion
formula (2.1), this does not depend on the choice of k. We then have

I0 = δ0, (2.4)

the delta distribution at zero, as again is easy to see from the Fourier transform.

Remark 2.1 Using the residue formulas for the Gamma function, one finds the residue of Iα
at α = n + 2k, k ∈ N0, to be

resα=n+2k Iα = (−1)k

k!22k−1(4π)
n
2 �
( n+2k

2

) |v|2k . (2.5)

Note that this is a smooth function since one takes an even power of |v|.
Remark 2.2 The finite parts of Iα at the values α = n+ 2k involve logarithms. For example,
we have

f.p.α=n Iα(v) = ψ
( n
2

)− γ + 2 log(2) − 2 log(|v|)
(4π)

n
2 �
( n
2

) , (2.6)

where γ is the Euler–Mascheroni constant and ψ = �′/� is the digamma function.

We now define the Riesz distributions for a compact Riemannian manifold M . These will
be distributions on M 
� M , the set of points (x, y) ∈ M × M such that there exists a
unique minimizing geodesic parameterized by [0, 1] connecting x to y. This is an open and
dense set of full measure in M × M . Let U be the open set of vectors (x, v) ∈ T M such
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that (x, expx (tv)) ∈ M 
� M for each t ∈ [0, 1]. Then, the Riemannian exponential map
exp : U −→ M 
� M is a diffeomorphism.

In each fiber TxM of the tangent bundle, we have the Riesz distributions introduced above.
They fit together to give distributions I T M

α on T M , which can be restricted to the open set
U to give distributions IUα ∈ D ′(U ). Now we define the Riesz distributions Iα = I Mα ∈
D ′(M 
� M) by

Iα[ϕ] := IUα [ j · exp∗ ϕ], (2.7)

for test functions ϕ ∈ D(M 
� M), where for (x, v) ∈ U ,

j (x, v) = det
(
d expx |v

)

denotes the Jacobian determinant of the exponential map. As before, if Re(α) > 0 and
α �= n + 2k, k ∈ N0, Iα is a locally integrable function on M 
� M and the Jacobian factor
in (2.7) ensures that in this case,

Iα(x, y) = C(α, n) d(x, y)α−n, (2.8)

where d(x, y) is the Riemannian distance function.

3 The m-heat equation

Again, let V be an n-dimensional Euclidean vector space. For m ∈ N, consider the m-heat
equation ( ∂

∂t
+ �m

)
u(t, v) = 0,

where � is the Laplace operator on V . The corresponding fundamental solution emt (defined
as the Schwartz kernel of the heat semigroup e−t�m

) can be easily found using the Fourier
transform, here denoted by F ; it is given by

emt (v) = F−1[e−t |ξ |2m ](v) = (2π)−n
∫

V
ei〈v,ξ〉−t |ξ |2mdξ. (3.1)

In the same way as in Sect. 2 for the Riesz distributions, we define emt (x, y) on the set
M 
� M of a Riemannian manifold M , which again makes sense since emt (v) is spherically
symmetric. In this case, emt is a smooth function on M 
� M ; we call emt the Euclidean
m-heat kernel.

If m = 1, then the Fourier transform can easily be computed to be given by

e1t (v) = (4π t)−
n
2 e− |v|2

4t .

For larger m, no elementary formula is available. The value of emt (v) at zero, however,
can be computed as follows.

Lemma 3.1 For any t > 0 and all v ∈ V , we have

emt (v) ≤ emt (0) = �
( n
2m

)

m (4π)
n
2 �
( n
2

) t−
n
2m .

Proof Clearly

|emt (v)| ≤ (2π)−n
∫

V

∣∣ei〈v,ξ〉−t |ξ |2m ∣∣dξ = (2π)−n
∫

V
e−t |ξ |2mdξ = emt (0).
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Using the spherical symmetry of emt (v), we obtain

ev
t (0) = (2π)−nvol(Sn−1)

∫ ∞

0
e−tr2mrn−1dr.

Substituting u = tr2m gives

ev
t (0) = t−

n
2m

vol(Sn−1)

2m(2π)n

∫ ∞

0
e−uu

n
2m −1du.

Using the well-known formula vol(Sn−1) = 2π
n
2 /�

( n
2

)
and the definition of the gamma

function, we obtain the result. ��

The following proposition connects emt to the Riesz distributions defined above and is
essential for what follows.

Proposition 3.2 For m ∈ N and α ∈ C with Re(α) > 0, define

Em,α[ϕ] := 1

�(α)

∫ 1

0
(emt , ϕ)L2 tα−1dt, ϕ ∈ D(V ).

(1) The function α �→ Em,α extends uniquely to an entire holomorphic function with values
in D ′(V ).

(2) The difference
�m,α := Em,α − I2mα

is smooth for every α ∈ C, α �= n + 2k, and f.pα=n+2k�m,α is smooth as well.
(3) The function α �→ �m,α is meromorphic on all of C as a family of distributions with

values in E (V ) = C∞(V ), meaning that for every compactly supported distribution
ϕ ∈ E ′(V ), the complex-valued function α �→ �m,α[ϕ] is meromorphic in the usual
sense.

(4) We have

(�m,α)(0) = (�m,α)[δ0] = �
( n
2m

)

(4π)n/2�
( n
2

)
�(α)

1

mα − n
2

. (3.2)

as an equality of meromorphic functions.

Remark 3.3 Clearly, since Em,α is holomorphic, �m,α has the same poles as −I2mα , where
the poles of the latter are given in (2.5). Notice that by Remark 2.1, the residues of I2mα at
α = n + 2k, k ∈ N0, are multiples of |v|2k ; hence, they vanish when evaluated at zero if
k ≥ 1. This explains why (�m,α)(0) has no poles at n + 2k, k ≥ 1, even though �m,α has.

Proof Step 1.We show that Em,α extends to an entire family of distributions. To this end, we
first verify that Em,α is a well-defined distribution for each α with Re(α) > 0. To this end,
calculate for ϕ ∈ D(V )

∣∣(emt , ϕ)L2

∣∣ =
∣∣∣∣
∫

V
F−1[ϕ](ξ)e−t |ξ |2mdξ

∣∣∣∣ ≤
∫

V

∣∣F−1[ϕ](ξ)
∣∣dξ = ∥∥F−1[ϕ]∥∥L1 .

Hence
∣∣Em,α[ϕ]∣∣ ≤

∫ 1

0

∣∣(emt , ϕ)L2

∣∣tα−1dt ≤ ∥∥F−1[ϕ]∥∥L1

1

α
,
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which shows that the Em,α are well-defined distributions for Re(α) > 0. To see that Em,α

extends meromorphically to all of C, notice that for Re(α) > 1, we have

Em,α[�mϕ] = − 1

�(α)

∫ 1

0

(
(emt )

′
, ϕ
)
L2 t

α−1dt = − 1

�(α)
(em1 , ϕ)L2 + Em,α−1.

Hence, the distributions Em,α satisfy the recurrence relation

Em,α−1 = �mEm,α + 1

�(α)
em1 , (3.3)

which can be used to holomorphically extend Em,α to all of C, as done with the Riesz
distributions above.

Step 2.We show (2) and (3) for 0 < 2mRe(α) < n. Then for ϕ ∈ D(V ),

�(α)Em,α[ϕ] =
∫ 1

0

(
F−1[e−t |ξ |2m ], ϕ)L2 t

α−1dt

=
∫ 1

0

(
e−t |ξ |2m ,F−1[ϕ])L2 t

α−1dt

=
∫

V

(∫ 1

0
e−t |ξ |2m tα−1dt

)
F−1[ϕ](ξ)dξ

=
∫

V

(∫ |ξ |2m

0
e−uuα−1dt

)
|ξ |−2mαF−1[ϕ](ξ)dξ

=
∫

V

(
�(α) − �(α, |ξ |2m)

)|ξ |−2mαF−1[ϕ](ξ)dξ

= �(α)I2mα[ϕ] −
∫

V
�(α, |ξ |2m)|ξ |−2mαF−1[ϕ](ξ)dξ,

where we used that F−1[|ξ |−2mα] = I2mα and the definition

�(α, x) :=
∫ ∞

x
e−uuα−1du

of the incomplete gamma function. Note that the use of Fubini in the third step is justified
because by the assumption on α, the singularity of the integrand at ξ = 0 is locally integrable.

If χ ∈ D(V ) is a cutoff function with χ ≡ 1 on B1(0) and χ ≡ 0 on V \ B2(0), we have

�(α, |ξ |2m)|ξ |−2mα = χ(ξ)�(α, |ξ |2m)|ξ |−2mα + (
1 − χ(ξ)

)
�(α, |ξ |2m)|ξ |−2mα

where the first summand is in L1(V ) ∩ E ′(V ) and the second summand is in S (V ), the
Schwartz space, because�(α, |ξ |2m) decays exponentially at infinity together with its deriva-
tives (provided Re(α) > 0). Hence, the Fourier transform

�m,α = − 1

�(α)
F−1

[
�(α, |ξ |2m)|ξ |−2mα

]

is smooth. It is furthermore clear that �m,α is holomorphic in α as an E (V )-valued function,
as one can exchange differentiation and integration freely for 0 < 2mRe(α) < n.

Step 3.We now extend these results to α ∈ C with Re(α) > 0 arbitrary. By the properties
of the Riesz distributions, we have �k(I2k ∗ ϕ) ≡ ϕ for any ϕ ∈ D(V ), where ∗ denotes
convolution. Let χ be the cutoff function from before and calculate
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F−1[ϕ] =F−1[�k{I2k ∗ ϕ}]

=F−1[�k{(χ I2k) ∗ ϕ
}]+ F−1[�k{((1 − χ)I2k

) ∗ ϕ
}]

= |ξ |2kF−1[(χ I2k) ∗ ϕ
]− F−1[([�k, χ]I2k

) ∗ ϕ
]

+ F−1[((1 − χ)(�k I2k)
) ∗ ϕ

]
.

Notice that�k I2k = δ0, which has support in zero, and since χ is supported on V \ B1(0),
we have (1 − χ)(�k I2k) ≡ 0, i.e., the third term is zero. Set

�(k)
m,α := − 1

�(α)
F−1

[
�(α, |ξ |2m)|ξ |2k−2mα

]
.

In particular �
(0)
m,k = �m,α . Then for α ∈ C with 0 < 2mRe(α) < n, we obtain by the

calculations from step 2 combined with the formula for F−1[ϕ] that

�m,α[ϕ] = �(k)
m,α

[
(χ I2k) ∗ ϕ

]− �m,α

[([�k, χ]I2k
) ∗ ϕ

]
(3.4)

for all ϕ ∈ D(V ). Since �
(k)
m,α defines a holomorphic function on 0 < 2mRe(α) < n + 2k

with values in E (V ) ⊂ D ′(V ), formula (3.4) in fact is valid on this larger strip.
Now we argue that for 0 < 2mRe(α) < n + 2k, formula (3.4) also defines a continuous

functional on compactly supported distributions ϕ ∈ E ′(V ). Indeed, the convolution map
C1 mapping ϕ to (χ I2k) ∗ ϕ is a continuous map from E ′(V ) to itself, while the convolution
map C2 mapping ϕ to ([�k , χ]I2k) ∗ ϕ is a continuous map from E ′(V ) into D(V ), as
[�k, χ]I2k ∈ D(V ) (for details on the convolution of distributions and proofs of these facts,
see [37], Chapter 27). Hence, we can write

�m,α = �(k)
m,α ◦ C1 − (Em,α − I2mα) ◦ C2.

This then defines a continuous linear functional onE ′(V )which dependsmeromorphically
on α for 0 < 2mRe(α) < n+2k. Because continuous linear functionals on E ′(V ) are exactly
the smooth functions, this shows that �m,α is a smooth function for each α with Re(α) > 0,
depending meromorphically on α in this domain. Finally, by the recursion formulas (3.3),
(2.2) for Em,α and Iα , we have

�m,α−1 = �mf.p.�m,α + 1

�(α)
em1 . (3.5)

This allows to extend the result to α with Re(α) ≤ 0.
Step 4. It remains to show (3.2). Suppose first that 0 < Re(α) < n

2m . A similar calculation
as in step 2 then shows that

1

�(α)

∫ ∞

0
(emt , ϕ)L2 tα−1dt = I2mα[ϕ]

for all ϕ ∈ D(V ), where by the assumption on α, all appearing integrals are absolutely
convergent. Hence

�m,α[ϕ] = Em,α[ϕ] − I2mα[ϕ] = − 1

�(α)

∫ ∞

1
(emt , ϕ)L2 tα−1dt.
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Let δε be any sequence in D(V ) with ‖δε‖L1 = 1 converging to δ0 (the delta distribution
at zero) in the sense of distributions. Then by dominated convergence,

�(α)�m,α(0) = − lim
ε→0

∫ ∞

1
(emt , δε)L2 tα−1dt = −

∫ ∞

1
emt (0)tα−1dt

= − �
( n
2m

)

m (4π)n/2�
( n
2

)
∫ ∞

1
tα− n

2m −1 = �
( n
2m

)

m (4π)n/2�
( n
2

) 1

α − n
2m

.

Here the integral is absolutely convergent by the assumption on α.
If nowRe(α) > n

2m , the distributions f.p.I2mα are continuous and satisfy f.p.I2mα(0) = 0.
Therefore,

f.p.�m,α(0) = Em,α − f.p.I2mα(0)︸ ︷︷ ︸
=0

= 1

�(α)

∫ 1

0
emt (0)tα−1dt

= �
( n
2m

)

m (4π)n/2�
( n
2

)
�(α)

∫ 1

0
tα− n

2m −1,

which again converges by the assumption on α. ��

4 m-Laplace type operators and their zeta functions

Let (M, g) be aRiemannianmanifold. Form ∈ N, anm-Laplace type operator is a differential
operator L of order 2m acting on sections of some metric vector bundle V over M such that
L has the principal symbol of the m-th power of a Laplace type operator. Equivalently, L is
an m-Laplace type operator if and only if L − (∇∗∇)m is a differential operator of order at
most 2m − 1 for some (hence any) connection ∇ on V .

In this section, we will introduce the complex powers, the heat kernel and the zeta function
of the operator L and discuss the relations between these.

Suppose that M is compact and that L is formally self-adjoint with respect to some fiber
metric onV . Then, L with domainC∞(M,V) is an elliptic, semibounded differential operator
and as such, it has a unique extension to an unbounded self-adjoint operator on L2(M,V).
Also, its spectrum consists of eigenvalues of finite multiplicities and its eigenfunctions are
smooth [14, Lemma 1.6.3]. Throughout, we will denote the eigenvalues by λ1 ≤ λ2 ≤
. . . (repeated with multiplicity) and let ϕ1, ϕ2, . . . a corresponding orthonormal basis of
eigenfunctions.

Since an m-Laplace type operator L is elliptic, we can form its complex powers L−s .
Unless L is positive, one has to specify here how to deal with the negative and zero spectral
part. In this paper, we adopt the convention that by definition, L−s is the operator whose
Schwartz kernel is

L−s(x, y) = e−iπs
∑

λ j<0

|λ j |−s ϕ j (x) ⊗ ϕ j (y)
∗ +

∑

λ j>0

λ−s
j φ j (x) ⊗ φ j (y)

∗,

with the sum converging in the sense of distributions (notice that the first sum is finite while
the second one is infinite). With this convention, L−1 is the inverse of L on the orthogonal
complement of ker L . For any s ∈ C, L−s is a classical pseudo-differential operator of order
−2ms (c.f. [32, Theorem 11.2]) and hence its Schwarz kernel is a smooth function away
from the diagonal (this is a fundamental property of pseudo-differential operators). Near the
diagonal, it is not smooth, but its singularity can be quite explicitly described in the form of
an asymptotic expansion, as we will see below in Sect. 5.
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The asymptotic expansion of L−s(x, y) involves the heat kernel coefficients, which we
discuss now. Let pLt (x, y) be the heat kernel of L , i.e., the Schwartz kernel of the operator
e−t L (which can, e.g., be defined using spectral calculus). The heat kernel is smooth in all
three variables on M ×M × (0,∞) and is given in terms of the spectrum of L by the formula

pLt (x, y) = �(x, y) +
∑

λ j<0

e−tλ j ϕ j (x) ⊗ ϕ j (y)
∗ +

∑

λ j>0

e−tλ j φ j (x) ⊗ φ j (y)
∗, (4.1)

where �(x, y) is the integral kernel of the projection onto the kernel of L and the series
on the right-hand side converges in C∞((0,∞) × M × M,V � V∗). It follows, e.g., from
the construction of [16, Ch. 1] or [14, Ch. 1.7] that near the diagonal, pLt (x, y) of L has a
short-time asymptotic expansion of the form

pLt (x, y) ∼ emt (x, y)
∞∑

j=0

t
j
m

�L
j (x, y)

�
(

j
m + 1

) , (4.2)

where emt is the Euclideanm-heat kernel considered in Sect. 2 and the�L
j are certain smooth

sections of V � V∗ defined on M 
� M , the set of pairs (x, y) ∈ M × M such that there is a
unique minimizing geodesic between x and y. These “correction terms” �L

j (x, y) appearing
in (4.2) are locally computable quantities, which depend on the geometry of M in a local
fashion. Precisely, the asymptotic relation (4.2) means that the difference

r Nt (x, y) := pLt (x, y) − emt (x, y)
N∑

j=0

t
j
m

�L
j (x, y)

�
(

j
m + 1

) (4.3)

satisfies the estimate ∣∣∇k
x∇l

yr
N
t (x, y)

∣∣ ≤ Ct
N−k−l+1

m − n
2m (4.4)

for all t ∈ [0, T ] and m, l ∈ N0, where the constant C > 0 is uniform for (x, y) in compact
subsets of M 
� M (see [16], Lemma 1.44).

For x ∈ M , the local zeta function ζL(s, x) corresponding to L is defined for s ∈ C with
Re(s) > n

2m by the formula

ζL (s, x) :=e−iπs
∑

λ j<0

|λ j |−sϕ j (x) ⊗ ϕ j (x)
∗+

∑

λ j>0

λ−s
j ϕ j (x)⊗ϕ j (x)

∗ = L−s(x, x). (4.5)

Applying the formula

λ−s = 1

�(s)

∫ ∞

0
t s−1e−λtdt,

to the spectral formula for the heat kernel (4.1), one obtains the integral representation

ζL(s, x) = 1

�(s)

∫ ∞

0
t s−1 p+

t (x, x)dVg(x) + L−s− (x, x) (4.6)

for the zeta function, where

L−s− (x, y) = e−iπs
∑

λ j<0

|λ j |−sϕ j (x) ⊗ ϕ j (y)
∗ (4.7)

is the negative spectral part of L−s and

p+
t (x, y) :=

∑

λ j>0

e−tλ j φ j (x) ⊗ φ j (y)
∗ (4.8)
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is the positive spectral part of the heat kernel (clearly, in the case that L is a positive operator,
we have p+

t = pLt ). While the representations (4.5) and (4.6) are only valid for s ∈ C with
Re(s) > n

2m (by Theorem 5.1, for such values s, the integral kernel L−s(x, y) is continuous
and hence can be evaluated on the diagonal) ζL(s, x) can be continued to a meromorphic
function on the whole complex plane.

Lemma 4.1 (Analytic continuation of zeta function) Let N ∈ N0. Then for s ∈ C with
mRe(s) > n

2 − N − 1, the local zeta function (4.5) is given by the formula

ζL(s, x) = 1

�(s)

N∑

j=0

�L
j (x, x)�

( n
2m

)

(4π)
n
2 �
( n
2

)
�
(

j
m + 1

) (
ms + j − n

2

)

+ 1

�(s)

∫ 1

0
t s−1r Nt (x, x)dt − 1

�(s)

∫ 1

0
t s−1 p≤0

t (x, x)dt

+ 1

�(s)

∫ ∞

1
t s−1 p+

t (x, x)dt + L−s− (x, x)

(4.9)

where �L
j (x, x) are the heat kernel coefficients from (4.2), r Nt (x, x) is the remainder term

from (4.3), and p≤0
t (x, x) := pLt (x, x) − p+

t (x, x) is the non-positive spectral part of the
heat kernel.

Proof First notice that (4.9) indeed makes sense in the half plane claimed by the estimate
(4.4) and the decay properties of p+

t (x, x) for t → ∞. Now split the integral in (4.6) into
two pieces, one over (0, 1] and one over [1,∞). In the first integral, write

p+
t (x, x) = emt (x, x)

N∑

j=0

t
j
m

�L
j (x, x)

�
(

j
m + 1

) + r Nt (x, x) − p≤0
t (x, x)

Multiplying the individual terms by t s−1, one integrates then over (0, 1] to obtain (4.9). In
particular, the first term (the sum over j) can be obtained using the explicit formula for
emt (x, x) from Lemma 3.1, which yields

∫ 1

0
t s−1

⎛

⎝emt (x, x)
N∑

j=0

t
j
m

�L
j (x, x)

�
(

j
m + 1

)

⎞

⎠ dt

=
N∑

j=0

�L
j (x, x)�

( n
2m

)

m(4π)
n
2 �
( n
2

)
�
(

j
m + 1

)
∫ 1

0
t s−1+ j

m − n
2m dt.

Carrying out the integral gives the first term of (4.9). ��

5 Asymptotic expansion of complex powers

In this section, we prove two different results regarding the asymptotic expansion of L−s ,
Theorems 5.1 and 5.4.

Theorem 5.1 (Asymptotic expansion of L−s) Let L be a formally self-adjoint m-Laplace
type operator, acting on sections of a metric vector bundle V over M. Then for any s ∈ C, the
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Schwartz kernel L−s(x, y) has a complete asymptotic expansion near the diagonal in terms
of Riesz distributions. More precisely, we have

L−s(x, y) ∼
∞∑

j=0

�L
j (x, y) f.p.α=s

{(
α − 1 + j

m
j
m

)
I2mα+2 j (x, y)

}
, (5.1)

meaning that the difference of L−s(x, y) and the first N terms of the series is in Ck(M 
�
M,V � V∗) whenever N > n/2 + k − 1 − mRe(s). Here the coefficients �L

j (x, y) are the
heat kernel coefficients appearing in (4.2).

Above, we denoted (
α

β

)
= �(α + 1)

�(β + 1)�(α − β + 1)
.

If n
2 − ms /∈ Z, then the terms of (5.1) do not have poles at the relevant values and we

obtain the asymptotic expansion

L−s(x, y) ∼
∞∑

j=0

�L
j (x, y)

(
s − 1 + j

m
j
m

)
I2ms+2 j (x, y).

If however n
2 − ms ∈ Z, then ms + j − n

2 ∈ N0 from j = n
2 − ms onward so that we

obtain

L−s(x, y) ∼
n
2 −ms−1∑

j=0

�L
j (x, y)

(
s − 1 + j

m
j
m

)
I2ms+2 j (x, y)

+
∞∑

j= n
2 −ms

�L
j (x, y) f.p.α=s

{(
α − 1 + j

m
j
m

)
I2mα+2 j (x, y)

}
.

Example 5.2 The case s = 1 is probably most relevant, since in this case, L−s is the Green’s
operator to L . In that case, we have

L−1(x, y) ∼
∞∑

j=0

� j (x, y) f.p.α=1 I2mα+2 j (x, y).

Writing out the right-hand side explicitly in the case that m = 1 (i.e., the case that L is a
Laplace type operator) gives two different answers depending on whether the dimension n
is even or odd. In the case that n is odd, we have the asymptotic expansion

L−1(x, y) ∼
∞∑

j=0

� j (x, y)
�
( n
2 − 1 − j

)

(4π)
n
2 j !

(
d(x, y)

2

)2 j+2−n

.

In the case that n is even, the gamma function has a pole from the coefficient j = n
2 − 1

onward and we get

L−1(x, y) ∼
n
2 −2∑

j=0

� j (x, y)

( n
2 − 1 − j

)!
(4π)

n
2 j !

(
d(x, y)

2

)2−n+2 j

+
∞∑

j= n
2 −1

� j (x, y) (−1) j−
n
2

2 log
(
d(x, y)

)

(4π)
n
2
(
j + 1 − n

2

)! j !
(
d(x, y)

2

)2−n+2 j

.
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Proof of Theorem 5.1 Denote by p+
t (x, y) the positive spectral part of the heat kernel as in

(4.8). Suppose first that Re(s) > n
2m . Then L−s(x, y) is continuous and we may integrate

(4.1) termwise to obtain the pointwise equality

L−s(x, y) = L−s− (x, y) + 1

�(s)

∫ ∞

0
t s−1 p+

t (x, y)dt.

Clearly, the first term of this sum is smooth on M × M and entire in s, so we only need
to consider the second term. We split the integral up as

1

�(s)

∫ ∞

0
t s−1 p+

t (x, y)dt = 1

�(s)

∫ 1

0
t s−1 pLt (x, y)dt − 1

�(s)

∫ 1

0
t s−1 p≤0

t (x, y)dt

+ 1

�(s)

∫ ∞

1
t s−1 p+

t (x, y)dt

where p≤0
t (x, y) denotes the non-positive spectral part of pLt (x, y). The last two terms are

easily found to be smooth in M × M and entire in s. For the first term, we use the asymptotic
expansion (4.2) with some large N ∈ N (to be specified later) to obtain

∫ 1

0
t s−1 pLt (x, y)dt =

N∑

j=0

�L
j (x, y)

�
(

j
m + 1

)
∫ 1

0
t s+

j
m −1emt (x, y)dt +

∫ 1

0
t s−1r Nt (x, y)dt

By (4.4), the last term is Ck on M 
� M , provided N > n
2 + k−1−mRe(s). That is, for any

half plane {s ∈ C | Re(s) > −�}, we can make RN
3 (s; x, y) holomorphic on this half plane

with values in Ck(M 
� M,V � V∗), by choosing N large enough. By Proposition 3.2, we
have

1

�(s)

∫ 1

0
t s+

j
m −1emt (x, y)dt

=
�
(
s + j

m

)

�(s)

(
f.p.α=s I2mα+2 j (x, y) + f.p.α=s�m,α+ j

m
(x, y)

)

= f.p.α=s

⎧
⎨

⎩
�
(
α + j

m

)

�(α)

(
I2mα+2 j (x, y) + �m,α+ j

m
(x, y)

)
⎫
⎬

⎭

for Re(s) > 0 in the distributional sense and for Re(s) > n
2m pointwise, where the function

f.p.α=s�m,α+ j
m
(x, y) is smooth on M 
� M (where we transferred �m,α from V = TxM

to M 
� M via the exponential map, in the same way as Iα and emt ). Here, for the second
equality, we used that the left-hand side is holomorphic and that taking the finite part is linear.

Assembling all the pieces, we get that
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L−s(x, y) =L−s− (x, y) − 1

�(s)

∫ 1

0
t s−1 p≤0

t (x, y)dt + 1

�(s)

∫ ∞

1
t s−1 p+

t (x, y)dt

+ 1

�(s)

∫ 1

0
t s−1r Nt (x, y)dt

+
N∑

j=0

�L
j (x, y)f.p.α=s

⎧
⎨

⎩
�
(
α + j

m

)

�(α)�
(

j
m + 1

) I2mα+2 j (x, y)

⎫
⎬

⎭

+
N∑

j=0

�L
j (x, y)f.p.α=s

⎧
⎨

⎩
�
(
α + j

m

)

�(α)�
(

j
m + 1

)�m,α+ j
m
(x, y)

⎫
⎬

⎭ .

(5.2)

Since the residues as well as the finite part of �m,s+ j
m
are smooth (see Remark 3.3), so is

f.p.α=s

⎧
⎨

⎩
�
(
α + j

m

)

�(α)�
(

j
m + 1

)�m,α+ j
m
(x, y)

⎫
⎬

⎭

=
�
(
s + j

m

)

�(s)�
(

j
m + 1

) f.p.α=s�m,α+ j
m
(x, y)

+ d

dα

∣∣∣
α=s

⎧
⎨

⎩
�
(
α + j

m

)

�(α)�
(

j
m + 1

)

⎫
⎬

⎭ resα=s �m,α+ j
m
(x, y).

Since the left-hand side of (5.2) is entire in s as a holomorphic function with values in
distributions onM 
� M , and the right-hand side is holomorphic in s formRe(s) > n

2 −1−N
as a distribution-valued function by (4.4), this representation can be made valid for any fixed
s ∈ C, by possibly increasing N . Furthermore, (4.4) implies that the term involving r Nt (x, y)
is Ck on M 
� M if N > n

2 + k − 1 − mRe(s), while all other terms on the right-hand side
except the Riesz distributions are smooth on M × M . This finishes the proof. ��
Remark 5.3 Assuming that L has only positive eigenvalues, we have for Re(s) > n

2m the
equality

L−s(x, y) = 1

�(s)

∫ ∞

0
t s−1 pLt (x, y)dt.

This inequality continues to hold for 0 < Re(s) ≤ n
2m , but only in the distributional sense,

i.e.,

(L−sϕ)(x) = 1

�(s)

∫ ∞

0
t s−1

∫

M
pLt (x, y)ϕ(y)dVg(y)dt

for smooth functions ϕ. In particular, for m = 1, L−s(x, y) is not necessarily positive for
0 < s ≤ n

2 even though formally, it is given as an integral over the positive function pLt (x, y).

Theorem 5.1 states that by addingmore andmore correction terms, the difference between
L−s(x, y) and the asymptotic expansion becomes more and more regular. However, there is
no pointwise control of the error term. In contrast, the next result gives a pointwise asymptotic
expansion.
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Theorem 5.4 (The constant term is a zeta function) Near the diagonal, we have the asymp-
totic expansion

L−s(x, y) =
	 n
2 −ms
∑

j=0

�L
j (x, y) f.p.α=s

{(
α − 1 + j

m
j
m

)
I2mα+2 j (x, y)

}

+ f.p.α=sζL(α, x) + o(1),

where ζL(s, x) is the local zeta function of L, defined in (4.5).

Remark 5.5 Theorem 5.4 tells us that the constant term in the asymptotic expansion of
L−s(x, y) is given by the value at s of the local zeta function of L . In the case that n−2ms ∈
2Z, the term in the asymptotic expansion with j = n

2 − ms is given by �L
n
2 −ms times

f.p.α=0

{(
α − 1 + n

2m
n
2m − s

)
In+2mα

}

= d

dα

∣∣∣∣
α=0

(
α − 1 + n

2m
n
2m − s

)
resα=0 In+2mα +

( n
2m − 1
n
2m − s

)
f.p.α=0 In+2mα

= 1

(4π)
n
2 �
( n
2

)
( n

2m − 1
n
2m − s

)(
ψ(s) − ψ

( n
2m

)

m
+ ψ

(n
2

)
− γ − 2 log

(
d(x, y)

2

))
,

where γ is the Euler–Mascheroni constant andψ = �′/� is the digamma function (compare
Remark 2.2). Now since this term contains log terms, it is not exactly clear what should be
considered to be the constant term of the asymptotic expansion, since any constant term can
be absorbed into the logarithm. Theorem 5.4 gives a natural candidate for such a constant
term. Notice that this ambiguity does not occur if we have �L

n
2 −ms(x, x) = 0.

Proof By Proposition 3.2, we have

�m,α+ j
m
(x, x) = �

( n
2m

)

(4π)n/2�
( n
2

)
�
(
α + j

m

) 1

mα + j − n
2

as meromorphic functions, where �m,α+ j
m
Plugging this into (5.2), we obtain

N∑

j=0

�L
j (x, x)f.p.α=s

⎧
⎨

⎩
�
(
α + j

m

)

�(α)�
(

j
m + 1

)�m,α+ j
m
(x, x)

⎫
⎬

⎭

=
N∑

j=0

�L
j (x, x)

�
( n
2m

)

�
( n
2

)
�
(

j
m + 1

) f.p.α=s

{
1

�(α)
(
mα + j − n

2

)
}

Now comparing formula (5.2) with the formula (4.9) for the analytic continuation of the zeta
function gives the result. ��

6 Conformal geometry and the positive mass theorem

In this section, we set the stage for conformal geometry. Let M be a Riemannian manifold
of dimension n. For w ∈ R, let |�|w

n be the line bundle of densities of weight w on M . It
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can be constructed as the vector bundle associated with the GL(n) frame bundle of M via the
one-dimensional representation ρw(A) := | det(A)|w

n . In particular, |�|0 = R is the trivial
real line bundle over M , while |�|1 is the bundle of volume densities on M , i.e., the objects
that can be integrated over. The choice of a metric g on M gives rise to global trivializations
ig,w : R = |�|0 → |�|w

n , by mapping 1 ∈ R to Vw/n
g , where Vg is the Riemannian volume

density associated with the Riemannian metric g.
From now on fix a conformal class C = {e2 f g0 | f ∈ C∞(M)} of metrics on M . If V is a

metric (real or complex) vector bundle over M , we say that L is a conformally invariant m-
Laplace type operatorwith respect to the conformal class C, acting on V , if L is a differential

operator of order 2m mapping sections of |�| n−2m
2n ⊗ V to sections of |�| n+2m

2n ⊗ V such that
for each metric g ∈ C, the operator

Lg := i−1
g, n+2m

2
◦ L ◦ ig, n−2m

2
(6.1)

is an m-Laplace type operator, acting on sections of V (here the ig,w are supposed to act
trivally on the V factor). We say that L is formally self-adjoint, if Lg is formally self-adjoint
for each metric g ∈ C. Under the conformal change h = e2 f g, the corresponding operators
Lh , Lg transform according to the law

Lh = e− n+2m
2 f Lge

n−2m
2 f . (6.2)

where e− n+2m
2 f and e

n−2m
2 f are to be understood as multiplication operators.

Remark 6.1 If L is any differential operator mapping |�|a ⊗ V to |�|b ⊗ V such that Lg =
i−1
g,b ◦ L ◦ ig,a is a formally self-adjoint m-Laplace type operator for any metric g in a

conformal class C, then we necessarily have a = n−2m
2 and b = n+2m

2 . This follows easily
using the restricted form of the principal symbol and self-adjointness. Hence, the special
weights considered above are no actual restriction.

We now give several examples for conformally invariant m-Laplace type operators.

Example 6.2 If L̃ is an m-Laplace type operator with respect to a fixed metric g, then we
obtain a conformally invariantm-Laplace type operator L with respect to the conformal class
C = {e2 f g| f ∈ C∞(M)} by setting

Lh = e− n+2m
2 f L̃e

n−2m
2 f

for h = e2 f g. This defines L using (6.1). L is formally self-adjoint if and only if L̃ is.

Example 6.3 (The Yamabe operator) The most classical example of a conformally covariant
differential operator is the Yamabe operator, which is a Laplace type operator (m = 1) and
given by the formula

Lgu = �gu + n − 2

4(n − 1)
scalgu,

where scalg is the scalar curvature of M . Given a connection ∇ on V , one can also define a
twisted Yamabe operator acting on sections V , which then is again a conformally invariant
Laplace type operator (see [29], Section 1).

Example 6.4 (The Paneitz–Branson operator) An example of a conformally covariant 2-
Laplace type operator is the Paneitz–Branson operator, given by

Lgu = �2 + δ
(
(n − 2)Jg − 4Pg)

)
d +

(n
2

− 2
) (n

2
J 2g − 2|Pg|2 − �Jg

)
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where

Jg = scalg
2(n − 1)

, Pg = 1

n − 2
(ricg − Jgg)

are the normalized scalar curvature and the Schouten tensor [27] [6].

Example 6.5 (The GJMS operators) On n-dimensional manifolds, there is a self-adjoint
conformally covariantm-Laplace type operator Lg acting on functions for any 1 ≤ m ≤ n

2 if
n is even and arbitrary m if n is odd or conformally Einstein. These involve more and more
complicated expressions in the curvature tensor and its derivatives, Example 6.4 being only
the start. They were constructed by Graham, Jenne, Mason and Sparling in their seminal
work [9] and therefore called GJMS operators. The nonexistence of GJMS operators with
m > n

2 on general even-dimensional manifolds was shown in [13]. The recursive structure
of these operators was investigated by Juhl in [21–23], and [24].

The GJMS operators are related to the problem of prescribing the Q-curvature of a Rie-
mannian manifold in a fixed conformal class, just as the Yamabe operator appears in the
problem of describing the scalar curvature (i.e., the Yamabe problem). For this problem, see,
e.g., [8,10,11] and the references therein.

For further references on the GJMS operators, see also [3,7,12,15].

We are now ready to formulate the main result.

Theorem 6.6 (Conformal invariance of ζg(1, x)) Let V be a metric vector bundle over a
compact n-dimensional Riemannian manifold (M, g) and let L be a conformally invariant,
formally self-adjoint m-Laplace type operator with respect to a conformal structure C on M,
acting on sections of V . If n is odd or m > n

2 , and if ker(Lg) = 0, then the value of the local
zeta function of Lg at one, ζg(1, x) ∈ End(Vx ), satisfies the transformation law

ζh(1, x) = e(2m−n) f (x)ζg(1, x)

if h = e2 f g for f ∈ C∞(M). That is, ζg(1, x) transforms as a density of weight 2m − n
under a conformal change.

The proof of this result will be carried out in the next section. Notice that if the dimension
n of M is odd, then ζL(s, x) is regular at s = 1 so that f.p.s=1ζg(s, x) = ζg(1, x), while
taking the finite part is really necessary if n is even.

Definition 6.7 (Mass) The mass of Lg at a point x ∈ M is defined by the formula

m(x, Lg) := f.p.s=1ζg(s, x),

where ζg(s, x) := ζLg (s, x) is the local zeta function corresponding to Lg .

Theorem 6.6 tells us that for a conformally invariant m-Laplace type operator, the mass
m(x, Lg) is conformally covariant, i.e., it transforms as a density of weight 2m − n under a
conformal change.

Remark 6.8 The notion of mass discussed in [1,18] or [20] always makes the assumption
that M be flat near x . Our definition of mass works without this assumption, in virtue of
Theorem 5.4.

Of course, if one restricts to conformal changes f which are constant in a neighborhood
of x , the conformal covariance of m(x, Lg) from Theorem 6.6 is trivial, by the conformal
transformation law of the Green’s function, which follows from (6.2). Proving Theorem 6.6
for conformal changes f not being constant near x is the hard part.
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Asmentioned in the introduction, in the case that L is theYamabe operator onM ,m(x, Lg)

is related to the ADM mass of the asymptotically flat manifold (M, g) built from (M, g) in
the following way: Suppose that the metric g is flat in a neighborhood of the point x ∈ M and

set γ (y) := 4(n−1)vol(Sn−1)L−1(x, y). Then the metric g := γ
4

n−2 g is asymptotically flat
on the manifold M = M \{x}with zero scalar curvature and one can calculate its ADMmass
mADM(M, g), which is an invariant of asymptotically flat manifolds of relevance in general
relativity. It turns out that mADM(M, g) = Cnm(x, Lg), where Cn is a positive constant
depending only on the dimension. The positive mass conjecture then states that the ADM
mass of an asymptotically flat manifold (M, g) of nonnegative scalar curvature is always
nonnegative, and zero if and only if (M, g) is isometric to flat Rn . The conjecture is known
to be true in the case that n ≤ 7 or that M is locally conformally flat [31,34–36], in the case
that M is spin [30,38] and in the case that ricg ≥ 0 [26, Prop. 10.2].

The corresponding conjecture for compact manifolds is the following: If (M, g) is a
compact Riemannian manifold with Yamabe invariant Y (M, g) > 0 and g is flat in a neigh-
borhood of a point x ∈ M , then m(x, Lg) ≥ 0, and m(x, Lg) = 0 if and only if (M, g)
is conformally diffeomorphic to the round sphere. It can be shown [19, Prop. 4.1] that the
positive mass conjecture for compact manifolds and the one for asymptotically flat manifolds
are equivalent, but solution of the general case seems not to be available. Recent progress
has been made in [18], where the authors show using bordism techniques that if the positive
mass conjecture is true for one oriented non-spin manifold of some dimension n, then it is
true for all manifolds of that dimension.

There is also a version of the positive mass theorem for a higher-order operator, namely
the Paneitz–Branson operator, which is a conformally covariant 2-Laplace operator (see
Example 6.4 above): E. Humbert and S. Raulot show that the mass of the Paneitz–Branson
operator on conformally flat manifolds is positive under suitable positivity conditions [20].
It seems natural to ask whether there are analogs of positive mass theorems for higher-order
GJMS operators. A first start in this direction is maybe the following result.

Theorem 6.9 Let (M, g) be a conformally flat Riemannian manifold of dimension n ≥ 3
with finite fundamental group and let x ∈ M. If n is even, assume furthermore M is flat near
x. Let L be a GJMS operator of order less than n. Then m(x, Lg) is nonnegative, and zero
if and only if m(x, Lg) is conformally equivalent to the standard sphere.

Remark 6.10 In the even-dimensional case, one indeed has to require that the metric be
constant near the point x , because under a generic conformal change, one can achieve any
real number as the mass at x , as one can see by Theorem 7.1 below. In odd dimensions of
course, on can drop this assumption, by Theorem 6.6.

Remark 6.11 In fact, the assumptions imply that (M, g) is the quotient of a sphere by a finite
group of O(n). This is the positivity assumption that replaces the requirement of nonnegative
scalar curvature in the standard positive mass theorem.

Proof By [7, Theorem 2.8], [15, Theorem 1.2], the GJMS operator L of order 2m on Sn with
its round metric gSn is given by the formula

L =
m∏

k=1

(�gSn + ck), ck = 1

4
(n + 2k − 2)(n − 2k).
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Since 2m < n and n ≥ 3, each of the values ck , k = 0, . . . ,m is positive. Hence, L is a
positive operator. We claim that its Green’s function equals

GgSn (x, y) = �
( n−2m

2

)

(2π)
n
2 2m(m − 1)!

(
1 − cos d(x, y)

) n−2m
2 . (6.3)

Namely, remember from Sect. 2 that the Green’s function in Rn is given by

L−1
gRn

(x, y) = �
( n−2m

2

)

(4π)
n
2 (m − 1)! |x − y|2m−n .

We now write Sn = {(cos r, v sin r) ∈ R × R
n | r ∈ R, v ∈ Sn−1}, and without loss of

generality let x = (1, 0) be the north pole so that r = d(x, y) is the spherical distance from
x . Then the stereographic projection from the antipodal point −x is given by

σ : Sn \ {−x} −→ M, (cos r, v sin r) �−→ sin r

1 + cos r
v,

and we have σ ∗gRn = u2gSn , where u(y) = (1 + cos r)−1. Hence, since (sin r)2 = (1 −
cos r)(1 + cos r), we have

GgSn (x, y) = �
( n−2m

2

)

(2π)
n
2 2m�(m)

(
1 + cos r

) n−2m
2

∣∣∣∣
sin r

1 + cos r

∣∣∣∣
2m−n

= u(x)
n+2m

2 u(y)
n−2m

2 GRn
(
σ(x), σ (y)

)
.

We therefore obtain from the transformation law of L , that GgSn as defined by (6.3)
satisfies LgSn GgSn = δx . We conclude that it must be the Green’s function of L , for if L−1

gSn

is the Green’s function, then LgSn (GgSn − L−1
gSn

) = 0, so GgSn − L−1
gSn

is smooth by elliptic

regularity and hence in the kernel of LgSn as an unbounded operator on L2(Sn). But this
implies that GgSn − L−1

gSn
is identically zero, because LgSn is a positive operator as noted

above. This finishes the proof of the claim.
Let M̂ be the universal cover of M , with metric ĝ := π∗g, where π : M̂ → M is

the projection. Now it is well known that any simply connected conformally flat admits a
conformal map into the standard sphere, by a monodromy argument (compare [36, Section
1]), hence we obtain a conformal map φ : M̂ → Sn . Since M̂ is compact (as π1(M) is finite),
this map is surjective, hence a covering map. Since Sn does not admit non-trivial coverings
for n ≥ 2, we conclude that φ must be a diffeomorphism.

We obtain that ĝ = | det dφ| 2n gSn (as φ is a conformal map), and by the conformal
transformation law of the GJMS operator L , we have that Lg is a positive operator on M̂
since it is conformally equivalent to Sn and we get that its Green’s function is given by

L−1
ĝ (̂x, ŷ) = | det dφ(̂x)| 2m−n

2n | det dφ(ŷ)| 2m+n
2n L−1

gSn

(
φ(̂x), φ(ŷ)

)

= | det d(σ ◦ φ)(̂x)| 2m−n
2n | det d(σ ◦ φ)(ŷ)| 2m+n

2n L−1
gRn

(
(σ ◦ φ)(̂x), (σ ◦ φ)(ŷ)

)
.

for points x̂, ŷ ∈ M̂ . Now fix x ∈ M and x̂ ∈ M̂ with π(̂x) = x . If n is odd, then

m(̂x, Lĝ) = | det dφ(x)| 2m−n
n m

(
φ(̂x), LgSn

)

by Theorem 6.6. However, m(φ(̂x), LgSn ) = 0 in odd dimensions, as easily seen from the
explicit formula (6.3). If n is even, then we made the additional assumption that g is flat near
x , which implies that also ĝ is flat near x̂ . After choosing an isometry ι from a neighborhood
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U of x̂ to a neighborhood of zero in R
n , we can therefore choose the conformal map φ in

such a way that φ|U = σ−1 ◦ ι (any local immersion into Sn extends uniquely to a global
one). Then for ŷ ∈ U , (σ ◦ φ)(ŷ) = ι(ŷ) = 0 and

| det d(σ ◦ φ)(ŷ)| = | det dι(ŷ)| = 1,

as ι is an isometry. Therefore, the constant term in the asymptotic expansion at x is equal to
the constant term of the asymptotic expansion of the Green’s function of �m in R

n , which
is zero. This shows that m(̂x, Lĝ) = 0 in all dimensions.

Finally, as is easily checked, the Green’s function of g is given by

Gg(x, y) =
∑

γ∈π1(M)

Gĝ (̂x, γ · ŷ),

hence
m(x, Lg) = m(̂x, Lĝ) +

∑

γ∈π1(M)\{1}
Gĝ (̂x, γ · x̂) > 0.

since m(̂x, Lĝ) = 0 and Gĝ is positive. The proof is now finished. ��
Let us make some final observations. Let L be a conformally invariant m-Laplace type

operator, acting on functions on an odd-dimensional Riemannian manifold M . Then by
Theorem 6.6 and by the behavior of the volume form under a conformal change, the (0, 2)
tensor

gcan := |m(x, Lg)| 2
2m−n g

is a conformally invariant (0, 2)-tensor. If m(x, Lg) �= 0 for all x ∈ M , then gcan is even
a metric on M . For example, if L is the Yamabe operator, this is the case if n = 3, 5 or
if M is conformally flat, by the positive mass theorem. For higher-order GJMS operators,
Theorem 6.9 gives some additional situations in which m(x, Lg) �= 0 for all x ∈ M .

In case of the Yamabe operator, Habermann [17] calls gcan the canonical metric associated
with the conformal structure. It is the unique metric in the conformal class that has mass
constant equal to one.

7 The conformal variation of ζg(1, x)

This section is dedicated to calculate the conformal variation of ζg(1, x) in the direction of a
conformal change, a result which implies Theorem6.6. Throughout, wewill use the following
notation. For a smooth function F on C (with respect to its Frêchet topology) with values
in some finite-dimensional vector space (such as F(g) = ζg(s, x) or F(g) = pgt (x, y)), we
define the derivative at g in direction of f ∈ C∞(M) by

δ f F(g) := d

dε

∣∣∣∣
ε=0

F
(
e2ε f g

)
.

We now prove the following more refined version of Theorem 6.6.

Theorem 7.1 Let M be a compact manifold of dimension n and let L be a conformally
invariant m-Laplace type operator with respect to the conformal class C.
1. If n is odd or m > n

2 , then we have

δ f ζg(1, x) = (2m − n) f (x)ζg(1, x) − 4m
[
L−1
g f �g

]
(x, x)

123



Ann Glob Anal Geom (2017) 52:237–268 257

where �g is the projection onto the kernel of Lg.
2. If n is even and m ≤ n

2 , we have

δ f
{
f.p.s=1ζg(s, x)

} =(2m − n) f (x) f.p.s=1ζg(s, x) − 4m
[
L−1
g f �g

]
(x, x)

+ 2mQ n
2 −m f (x)

where Q n
2 −m is a certain differential operator of order n − 2m mapping functions to

endomorphisms of V , given in Lemma 7.6 below.

Notice that the projection�g onto the kernel is a smoothing operator. Therefore, L−1
g f �g

is a smoothing operator aswell and hence has a smooth integral kernel, which can be evaluated
on the diagonal (remember that L−1 is by our convention the inverse of Lg on the orthogonal
complement of its kernel). The differential operator Q n

2 −m is implicitly defined in Lemma 7.6
below and is a differential operator which only depends on the local geometry of M and the
coefficients of L near x .

Remark 7.2 In particular, this shows that if n is even and the function f has a zero of order
n − 2m + 1 or greater at x ∈ M , then ζg(1, x) remains unchanged under the conformal
change h = e2 f g.

Remark 7.3 It is not hard to show that in the presence of a non-trivial kernel, ζg(1, x) is
indeed not conformally covariant, even in odd dimensions. For example, if L is the Yamabe
operator on a flat odd-dimensional torus M , one can choose f to be a suitable finite linear
combination of sines and cosines, and then use the explicit spectral decomposition of L
together with trigonometric identities to show that [L−1

g f �g](x, x) �= 0 at most points x .

For convenience of the reader, we give a sketch of the proof in the case that Lg is a positive
operator, which is considerably easier. Namely, in that case, we have for Re(s) large enough
that

ζg(s, x) =
∫ ∞

0
t s−1 pt (x, x)dt

and the formula for the behavior of the heat kernel under an infinitesimal conformal change
(Lemma 7.4 below) shows that one has

δ f ζg(s, x) = − n f (x)ζg(s, x)

− 2m

�(s)

∫ ∞

0
t s−1

∫ t

0

∫

M

∂

∂t
pgt−u(x, y) f (y)p

g
u (y, x) dVg(y) dudt

=(2m − n) f (x)ζg(s, x)

+ (s − 1)
2m

�(s)

∫ ∞

0
t s−2

∫ t

0

∫

M
pgt−u(x, y) f (y)p

g
u (y, x) dVg(y) dudt,

where we integrated by parts with respect to t . Lemma 7.5 below ensures that the differen-
tiation under the integral sign is justified. If we plug s = 1, the second term will disappear,
provided that it does not have a pole at this value of s. It turns out (Lemma 7.6) that there is
no pole if n is odd, while a pole is present in the case that n is even, with residue Q n

2 −m f (x).
This finishes our sketch of the proof.

We now first state and prove the necessary lemmas and then give a complete proof of
Theorem 7.1. The main difficulty remaining is how to deal with the case of a non-positive
operator.
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Lemma 7.4 Let pgt (x, y) be the heat kernel of Lg. Then we have

δ f p
g
t (x, x)=−n f (x)pgt (x, x) − 2m

∫ t

0

∫

M

∂

∂t
pgt−s(x, y) f (y)p

g
s (y, x) dVg(y) ds.

(7.1)
for any t > 0.

This result can be found for Laplace type operators in [29, Lemma 1.1] or [2, Theo-
rem 2.48]. See also Prop. 3.5 in [4]. Since the result seems not to be available in the literature
in quite the generality and form given here, we give a full proof, for convenience of the reader.

Proof Notice that by the formula (6.2) for the conformal change of L , we have

δ f Lg = ∂

∂ε

∣∣∣∣
ε=0
e− n+2m

2 ε f Lge
n−2m

2 ε f = −n + 2m

2
f Lg + n − 2m

2
Lg f

= −n

2
[ f, Lg] − m{ f, Lg}

(7.2)

in terms of commutator and anti-commutator. Let e−t Lg be the solution operator to the heat
equation given by Lg . Differentiating the defining differential equation ∂

∂t e
−t Lg +Lge−t Lg =

0, e−t Lg |t=0 = u, gives

∂

∂t
(δ f e

−t Lg ) + Lg(δ f e
−t Lg ) = −(δ f Lg)e

−t L , δ f e
−t Lg |t=0 = 0

Using (7.2), the Duhamel principle (i.e., uniqueness of solutions to the heat equation) implies
therefore that δ f e−t Lg is given by

δ f e
−t L =

∫ t

0
e−(t−s)Lg

(n
2
[ f, Lg] + m{ f, Lg}

)
e−sLgds (7.3)

On the other hand, we have Vgε = enε f Vg , hence

(δ f e
−t Lg )u(x) = ∂

∂ε

∣∣∣∣
ε=0

∫

M
pgε
t (x, y)u(y)dVgε (y)

=
∫

M
δ f p

g
t (x, y)u(y)dVg(y) + n

∫

M
pgt (x, y)u(y) f (y)dVg(y).

Plugging this into (7.3) yields the equality of kernels

δ f p
g
t (x, y) = − n f (y)pgt (x, y)

+
∫ t

0

∫

M
pgt−s(x, z)

(n
2
[ f, Lg]z + m{ f, Lg}z

)
pgs (z, y)dVg(z)ds.

If one evaluates this at the diagonal (i.e., sets y = x), then integrating by parts shows that
the term involving [ f, Lg] does not contribute. Using furthermore that pgt (x, y) satisfies the
heat equation finishes the proof. ��
Lemma 7.5 For any ε > 0 smaller than the smallest eigenvalue of Lg, there exists a constant
C > 0 such that ∣∣p+

t (x, y)
∣∣,
∣∣δ f p

+
t (x, y)

∣∣ ≤ Ce−tε (7.4)

for all x, y ∈ M and t ≥ 1.
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Proof For any s ∈ R, the norm defined by

‖u‖2Hs := ‖L
s
2m
g ‖2L2 + ‖�gu‖2L2 ,

where �g is the projection onto the kernel of Lg and is an equivalent Hs Sobolev norm. Let
�+

g denote the orthogonal projection in L2(M,V) onto the positive spectral part of Lg . Set

Ut := e−t Lg�+
g . Then p+

t (x, y) is the integral kernel of Ut . If now u ∈ Hs(M,V) has the
decomposition u = ∑∞

j=1 u jϕ j in terms of the eigendecomposition of L , we have

Utu =
∑

λ j>0

e−tλ j u jϕ j

and

‖Utu‖2Hs =
∑

λ j>0

e−2tλ j λ
s
m
j |uk |2 ≤

(
sup
λ j>0

e−2tλ j λ
s−r
m
j

)
‖u‖2Hr ≤ C2

r,se
−2εt‖u‖2Hr ,

for any t ≥ 1, where one can ε > 0 smaller than the smallest positive eigenvalue of L freely
and then

Cr,s := sup
λ j>0

e−(λ j−ε)λ
s−r
2m
j .

It is well known for operators A with a continuous integral kernel that the sup norm of
the integral kernel equals the operator norm ‖A‖L1,L∞ . Since L1 embeds continuously into

H− n+1
2 , and H

n+1
2 embeds continuously into L∞, we have

∣∣p+
t (x, y)

∣∣ ≤ ‖Ut‖L1,L∞ ≤ B‖Ut‖
H− n+1

2 ,H
n+1
2

≤ BC− n+1
2 , n+1

2
e−tε

for some constant B > 0.
It remains to obtain the same result for δ f p

+
t (x, y). Observe that since Lg has only finitely

many non-positive eigenvalues, the operator id − �+
g is a smoothing operator of finite rank,

and we have δ f �
+
g = −δ f (id − �+

g ), so δ f �
+
g is also a smoothing operator of finite rank.

Now using the Duhamel formula (7.3) on δ f Ut , we obtain

δ f Ut = δ f (�
+
g e

−t L�+
g ) = �+

g (δ f e
−t L)�+

g +Ut (δ f �
+
g ) + (δ f �

+
g )Ut

=
∫ t

0
Ut−s

(n
2
[ f, Lg] + m{ f, Lg}

)
Usds +Ut (δ f �

+
g ) + (δ f �

+
g )Ut ,

(7.5)

where we used several times that �+
g is idempotent and commutes with e−t L . Since Lg is

continuous from Hs to Hs−2 for all s ∈ R, we obtain
∥∥∥
(n
2
[ f, Lg] + m{ f, Lg}

)
Us

∥∥∥
Hr ,Hs

≤ Ds‖Us‖Hs ,Hr+2 ≤ DsCr+2,se
−sε.

Consequently, by (7.5),

‖δ f Ut‖Hr ,Hs ≤
∫ t

0
‖Ut−s‖Hs ,Hs

∥∥∥
(n
2
[ f, Lg] + m{ f, Lg}

)
Us

∥∥∥
Hr ,Hs

ds

+ C(r, s)
(‖δ f �

+
g ‖Hr ,Hr + ‖δ f �

+
g ‖Hs ,Hs

)
︸ ︷︷ ︸

:=Er,s

e−tε

≤DsCs,sCr+2,s

∫ t

0
e−(t−s)εe−sεds + Er,sCr,se

−tε = Fr,se
−tε,
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where Fr,s > 0 is suitably chosen. Let qt (x, y) be the integral kernel of δ f Ut . Then

|qt (x, y)| ≤ ‖δ f Ut‖L1,L∞ ≤ B‖δ f Ut‖
H− n+1

2 ,H
n+1
2

≤ BF− n+1
2 , n+1

2
e−tε.

However, as seen in the proof of Lemma 7.4, we have qt (x, y) = δ f p
+
t (x, y) +

n f (y)p+
t (x, y). The lemma now follows with the estimate on p+

t (x, y) from before. ��
The following lemma is the key to the proof of Theorem 7.1 and the source for the term

Q n
2 −m f in the variation formula.

Lemma 7.6 Let Qt be the integral operator that sends functions f ∈ C∞(M) to sections
Qt f ∈ C∞(M,End(V)) given by

(Qt f )(x) := 1

t

∫ t

0

∫

M
pgt−u(x, y) f (y)p

g
u (y, x) dVg(y) du. (7.6)

Then (Qt f )(x) has the asymptotic expansion as t → 0, given by

(Qt f )(x) ∼
∞∑

j=0

t
j
m − n

2m Q j f (x),

where each Q j is a differential operator of degree 2 j that takes functions to sections of
End(V). The coefficients of the operators Q j depend on the local geometry of M and the
coefficients of the operator L near x. In particular, if V = R, the trivial line bundle, then Q j

is a j-Laplace type operator, up to a constant factor.

Proof The substitution u = tθ yields

(Qt f )(x) =
∫ 1

0

∫

M
pgt (1−θ)(x, y) f (y)p

g
tθ (y, x) dVg(y) dθ.

Because the heat kernel form-Laplace type operators decays exponentially away from the
diagonal (see for example [16] Lemma 1.2.4), the asymptotic expansion is the same when we
replace pgt (x, y) by pgt (x, y)χ(d(x, y)) in the definition of Qt , where χ : [0,∞) → [0, 1]
is a smooth function with χ(r) = 1 for r ≤ R/3 and χ(r) = 0 for r ≥ 2R/3, where R is the
injectivity radius of M . Using the heat kernel asymptotic expansion (4.2), one then has for
any large N that up to order N+1

m − n
2m in t , (Qt f )(x) has the same asymptotic expansion as

∑

j+k≤N

t
j+k
m

�
(

j
m + 1

)
�
( k
m + 1

)
∫ 1

0
(1 − θ) jθk

∫

M
emt (1−θ)(x, y)e

m
tθ (x, y)φ̃ jk(x, y)dVg(y) dθ

where
φ̃ jk(y) := χ

(
d(x, y)

)2
�

g
j (x, y)�

g
k (y, x) f (y).

We are left to calculate the asymptotic expansions of

q jk(t, x) :=
∫ 1

0
(1 − θ) jθk

∫

M
emt (1−θ)(x, y)e

m
tθ (x, y)φ̃ jk(y)dVg(y) dθ,

which in Riemannian normal coordinates around the point x takes the form

q jk(t, x) =
∫ 1

0
(1 − θ) jθk

∫

V
emt (1−θ)(v)emtθ (v)φ jk(v) dvdθ

= (2π)−2n
∫ 1

0
(1 − θ) jθk

∫

V

∫

V

∫

V
ei〈v,ξ+η〉−t (1−θ)|ξ |2m−tθ |η|2mφ jk(v) dξdηdvdθ,
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where we set V := TxM , φ jk := exp∗
x φ̃ jk ∈ D(V ) and used the formula (3.1) for emt .

Substitution ξ �→ t− 1
2m ξ , η �→ t− 1

2m η, v �→ t
1
2m v as well as applying Fubini’s theorem

gives ∫

V

∫

V

∫

V
ei〈v,ξ+η〉−t (1−θ)|ξ |2m−tθ |η|2mφ jk(v) dξdηdv

= t−
n
2m

∫

V

∫

V

∫

V
φ jk(t

1
2m v)ei〈v,ξ+η〉−(1−θ)|ξ |2m−θ |η|2mdξdηdv

= t−
n
2m

∫

V
φ jk(t

1
2m v)F [γm

1−θ ](v)F [γm
θ ](v)dv

= t−
n
2m

∫

V
φ jk(t

1
2m v)F [γm

1−θ ∗ γm
θ ](v)dv,

where F [γθ ] is the Fourier transform of γm
θ (ξ) := e−θ |ξ |2m and ∗ denotes convolution.

Clearly,F [γm
1−θ ∗ γm

θ ] is a Schwartz function on V . Now the function from R
+ to the space

of tempered distributionsS ′(V ) given by sending t ∈ R
+ to the function [v �→ φ jk(t

1
2m v)]

(considered as a distribution) has an asymptotic expansion in S ′(V ) as t → 0 given by its
Taylor expansion around zero,

φ jk(t
1
2m v) ∼

∑

α∈Nn
0

t
|α|
2m

Dαφ jk(0)

α! vα

where we used the usual multi-index notation. We obtain the asymptotic expansion
∫

V
φ jk(t

1
2m v)F [γm

1−θ ∗ γm
θ ](v)dv ∼

∑

α∈Nn
0

t
|α|
2m

Dαφ jk(0)

α!
∫

V
vαF [γm

1−θ ∗ γm
θ ](v)dv,

and standard manipulations give
∫

V
vαF [γm

1−θ ∗ γm
θ ](v)dv = (−i)|α|

∫

V
F [Dαγm

1−θ ∗ γm
θ ](v)dv

= (2π)n(−i)|α|(Dαγm
1−θ ∗ γm

θ

)
(0)

Now it is easy to see that

(
Dαγm

1−θ ∗ γm
θ

)
(0) =

∫

V
e−|ξ |2m Pα(θ, ξ)dξ =

∫ ∞

0
e−r2m

(∫

Sn−1
Pα(θ, rξ)dξ

)
dr

for some polynomial Pα in θ and ξ . Using the theory of spherical harmonics, we can express
Pα(ξ, θ) = ∑N

j=0 p j (θ)|ξ |2 j + Sα(ξ, θ), where Sα(ξ, θ) integrates to zero over the sphere

Sn−1. By investigating how Dα acts on the function e−θ |ξ |2m , one notices that either Pα =
Sα (so that (Dαγm

1−θ ∗ γm
θ )(0) = 0) or that Sα = 0, which happens if α has the form

α = (2l, . . . , 2l) for some l ∈ N0. In this case Dα = (−1)l�l
V , the l-th power of the flat

Laplacian on Rn . Therefore, we set

Cl
jk := (−1)l(n+1)

(2π)n((2l)!)n�
(

j
m + 1

)
�
( k
m + 1

)
∫ 1

0
(1 − θ) jθk

(
�l

V γm
1−θ ∗ γm

θ

)
(0)dθ.

Putting everything together, we obtain that (Qt f )(x) has the asymptotic expansion

(Qt f )(x) ∼ t−
n
2m

∞∑

jkl=0

t
j+k+l
m Cl

jk�
l
Vφ jk(0).
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Hence, Qi is given by

(Qi f )(x) =
∑

j+k+l=i

Cl
jk�̃

l
V y

{
� j (x, y)�k(x, y) f (y)

}∣∣
y=x ,

with �̃l
V = (expx )∗�l

V being the flat l-Laplacian pushed onto the manifold by expx . The
leading order term of Qi is the term where l is maximal, i.e., l = i and j = k = 0 and where

�̃l
V acts completely on f . Since �0(x, x) = idVx , this gives

(Qi f )(x) = Ci
00 idVx · (�i f )(x) + lower order terms.

Since the heat kernel coefficients as well as the exponential map depend only on the local
geometry of M as well as the coefficients of Lg , the same is true for the operators Qi . ��

We are now in the position to prove Theorem 7.1.

Proof of Theorem 7.1 Notice first that by (4.6), we have for any R > 0 and s ∈ C satisfying
Re(s) > n

2m

ζg(s, x) = 1

�(s)

∫ R

0
t s−1 pgt (x, x)dt − 1

�(s)

∫ R

0
t s−1 p≤0

t (x, x)dt

+ 1

�(s)

∫ ∞

R
ts−1 p+

t (x, x)dt + L−s− (x, x)

(7.7)

where p≤0
t (x, y) := pgt (x, y) − p+

t (x, y) is the non-positive spectral part of the heat kernel
and L−s− (x, y) is the negative spectral part of L−s [see (4.7) and (4.8)].

Step 1. We differentiate the formula (7.7) in direction of a conformal change. By
Lemma 7.5, we may exchange differentiation and integration over p+

t (x, x). By Lemma 7.4,
we have

∫ R

0
t s−1δ f p

g
t (x, x)dt

= −2m
∫ R

0
t s−1

∫ t

0

∫

M

∂

∂t
pgt−u(x, y) f (y)p

g
u (y, x)dVg(y)dudt

− n f (x)
∫ R

0
t s−1 pgt (x, x)dt

= −2mRsQR f (x) + 2m(s − 1)
∫ R

0
t s−1(Qt f )(x)dt

+ (2m − n) f (x)
∫ R

0
t s−1 pgt (x, x)dt,

where Qt is the operator from Lemma 7.6 and we integrated by parts in the second step.
Differentiating equation (7.7) and plugging this in, we get
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δ f ζg(s, x) = (2m − n) f (x)ζg(s, x) + 2m

�(s − 1)

∫ R

0
t s−1(Qt f )(x)dt − 2mRs

�(s)
(QR f )(x)

+ (2m − n) f (x)

[
1

�(s)

∫ R

0
t s−1 p≤0

t (x, x)dt

− 1

�(s)

∫ ∞

R
ts−1 p+

t (x, x)dt − L−s− (x, x)

]

− 1

�(s)

∫ R

0
t s−1δ f p

≤0
t (x, x)dt

+ 1

�(s)

∫ ∞

R
ts−1δ f p

+
t (x, x)dt + δ f L

−s− (x, x).

(7.8)
We now proceed to evaluate this formula at s = 1, keeping in mind that if the dimension

n is even and m ≤ n
2 , we cannot evaluate directly but instead need to take the finite part

at s = 1 on both sides. Here the integral over Qt f needs to be considered separately. By
Lemma 7.6, we can write for N ∈ N large

(Qt f )(x) =
N∑

j=0

t
j
m − n

2m (Q j f )(x) + RN
t (x)

for some remainder term RN
t (x) satisfying |RN

t (x)| ≤ t
N+1
m − n

2m . Therefore, we get

∫ R

0
t s−1(Qt f )(x)dt =

N∑

j=0

(Q j f )(x)
∫ R

0
t s−1+ j

m − n
2m dt +

∫ R

0
t s−1RN

t (x)dt

=
N∑

j=0

(Q j f )(x)
Rs+ j

m − n
2m

s − n
2m + j

2m

+
∫ R

0
t s−1RN

t (x)dt

(7.9)

for all s ∈ C with Re(s) large enough, depending on N . By choosing N > n
2 − m, we can

make (7.9) valid in a neighborhood of s = 1, by the estimate on the remainder term RN
t (x).

We now need to divide by �(s − 1) and evaluate at s = 1. Notice, however, that the function
�(s − 1) has a simple pole at s = 1 with reside one, so its inverse has a simple zero with
derivative one. Hence, if (7.9) is regular at s = 1, we obtain zero. This is the case if n is odd
or if m > n

2 , while if n is even with m ≤ n
2 , the integral over Qt has a simple pole at one

coming from the term with j = n
2 − m. We obtain

2m

�(s − 1)

∫ R

0
t s−1(Qt f )(x)dt

∣∣∣∣
s=1

=
{
0 if n is odd or m > n

2

2mQ n
2 −m f (x) otherwise.

All other terms of (7.8) can be directly evaluated at one, so if n is odd or m > n
2 , we obtain

that

δ f ζg(1, x) =(2m − n) f (x)ζg(1, x) − 2mR(QR f )(x)

+ (2m − n) f (x)

[∫ R

0
p≤0
t (x, x)dt −

∫ ∞

R
p+
t (x, x)dt − L−1− (x, x)

]

−
∫ R

0
δ f p

≤0
t (x, x)dt +

∫ ∞

R
δ f p

+
t (x, x)dt + δ f L

−1− (x, x)
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while if n is even and m ≤ n
2 , we get

δ f
{
f.p.s=1ζg(s, x)

}

= (2m − n) f (x)f.p.s=1ζg(s, x) + 2m(Q n
2 −m f )(x) − 2mR(QR f )(x)

+ (2m − n) f (x)

[∫ R

0
p≤0
t (x, x)dt −

∫ ∞

R
p+
t (x, x)dt − L−1− (x, x)

]

−
∫ R

0
δ f p

≤0
t (x, x)dt +

∫ ∞

R
δ f p

+
t (x, x)dt + δ f L

−1− (x, x).

Step 2. Since these formulas are valid for all R > 0, the plan is now to take the limit as
R → ∞. Notice that if L is a positive operator, then one can directly see that all the terms
involving R tend to zero as R → ∞ and we are left with the variation formulas claimed. In
particular, we have

∫ ∞

R
p+
t (x, x)dt,

∫ ∞

R
δ f p

+
t (x, x)dt −→ 0

as R → 0, the first term by decay properties of p+
t and the second by Lemma 7.5.

In the general case, we have to invest some more work. Namely, we will see that each
individual summand has an asymptotic expansion as R → ∞, where the unbounded terms
consist of a finite linear combination of R, e−Rλ j and Re−Rλ j , with λ j running over the
negative eigenvalues of Lg . Since we a priori know that the term converges, we get that the
sum of the coefficients of the exploding terms must vanish. In particular, we only need to
calculate the constant term of the asymptotic expansion, which will turn out to be contained
(if present) in the term R(QR f )(x).

First notice that we have
∫ R

0
p≤0
t (x, x)dt = R�(x, x) +

∑

λ j<0

(∫ R

0
e−tλ j dt

)
ϕ j (x)

2

= R�(x, x) + L−1− (x, x) −
∑

λ j<0

e−λ j R

λ j
ϕ j (x)

2

so that we are left to evaluate the limit as R → ∞ of the term

−2mR(QR f )(x) + (
(2m − n) f (x) − δ f

)
⎛

⎝R�(x, x) −
∑

λ j<0

e−λ j R

λ j
ϕ j (x)

2

⎞

⎠ .

(7.10)
We have

R(QR f )(x) =
∫ R

0

∫

M
p+
R−u(x, y) f (y)p

+
u (y, x)dVg(y)du

+
∫ R

0

∫

M
p≤0
R−u(x, y) f (y)p

+
u (y, x)dVg(y)du

+
∫ R

0

∫

M
p+
R−u(x, y) f (y)p

≤0
u (y, x)dVg(y)du

+
∫ R

0

∫

M
p≤0
R−u(x, y) f (y)p

≤0
u (y, x)dVg(y)du

(7.11)

123



Ann Glob Anal Geom (2017) 52:237–268 265

To calculate the asymptotic expansions of these terms, we furthermore split

p≤0
u (x, x) = �(x, x) +

∑

λ j<0

e−uλ j ϕ j (x) ⊗ ϕ j (x)
∗ = �(x, x) + p−

u (x, x)

in terms of the eigendecomposition of L . For the first term of (7.11), we get
∣∣∣∣
∫ R

0

∫

M
p+
R−u(x, y) f (y)p

+
u (y, x)dVg(y)du

∣∣∣∣

≤ ‖ f ‖∞
∫ R

0

∫

M
p+
R−u(x, y)p

+
u (y, x)dVg(y)du

= ‖ f ‖∞Rp+
R (x, x),

which converges to zero as R → ∞. The second term of (7.11) yields
∫ R

0

∫

M
p≤0
R−u(x, y) f (y)p

+
u (y, x)dVg(y)du

=
∫ R

0

∫

M
�(x, y) f (y)p+

u (y, x)dVg(y)du

+
∫ R

0

∫

M
p−
R−u(x, y) f (y)p

+
u (y, x)dVg(y)du

Here we have

lim
R→∞

∫ R

0

∫

M
�(x, y) f (y)p+

u (y, x)dVg(y)du =
∫

M
�(x, y) f (y)L−1+ (y, x)dVg(y)

= [� f L−1+ ](x, x)
and

∫ R

0

∫

M
p−
R−u(x, y) f (y)p

+
u (y, x)dVg(y)du

=
∑

λ j<0

ϕ j (x)e
−Rλ j

∫ R

0

∫

M
f (y)ϕ j (y)

∗euλ j p+
u (y, x)dVg(y)dt

=
∑

λ j<0

ϕ j (x)e
−Rλ j

∫ R

0

∫

M
(Lg − λ j )

−1{ f ϕ j
}
(y)∗ ∂

∂u

{
euλ j p+

u (y, x)
}
dVg(y)dt

=
∑

λ j<0

ϕ j (x)
∫

M
(Lg − λ j )

−1{ f ϕ j
}
(y)∗ p+

R (y, x)dVg(y)

−
∑

λ j<0

ϕ j (x)e
−Rλ j �+

g (Lg − λ j )
−1{ f ϕ j

}
(x)∗,

where �+
g is the projection on the positive spectral part of Lg , i.e., �+

g ϕ j = ϕ j if λ j > 0
and �+

g ϕ j = 0 otherwise. The first term here again converges to zero as R → ∞, so that
we have the asymptotic expansion

∫ R

0

∫

M
p≤0
R−u(x, y) f (y)p

+
u (y, x)dVg(y)du

∼ [� f L−1+ ](x, x) −
∑

λ j<0

e−Rλ j ϕ j (x)�
+
g (L − λ j )

−1{ f ϕ j
}
(y)∗ + o(1).
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The third term of (7.11) just yields the pointwise transpose inside End(Vx ) of this term.
The fourth term of (7.11) finally gives

∫ R

0

∫

M
p≤0
R−u(x, y) f (y)p

≤0
u (y, x)dVg(y)du = R[� f �](x, x)

+
∑

λi ,λ j≤0
λi �=λ j

ϕi (x)ϕ j (x)
∗ e−Rλ j − e−Rλi

λi − λ j
(ϕi , f ϕ j )L2

+
∑

λ j<0

ϕ j (x)ϕ j (x)
∗Re−Rλ j (ϕ j , f ϕ j )L2

The constant term in R is here given by
∑

λi=0,λ j<0

ϕi (x)ϕ j (x)
∗ 1

λ j
(ϕi , f ϕ j )L2 +

∑

λi<0,λ j=0

ϕi (x)ϕ j (x)
∗ 1

λi
(ϕi , f ϕ j )L2

= [� f L−1− ](x, x) + [L−1− f �](x, x)
Putting all terms together and ignoring all divergent terms (knowing that these must cancel),
this shows that in the limit R → ∞ of (7.10), we get

[�g f L
−1+ ](x, x) + [L−1+ f �g](x, x) + [�g f L

−1− ](x, x) + [L−1− f �g](x, x)
= [�g f L

−1
g ](x, x) + [L−1

g f �g](x, x) = 2[�g f L
−1
g ](x, x),

where the last step follows since the integral kernel of the antisymmetric part of a smoothing
operator evaluates to zero on the diagonal. ��
Remark 7.7 Taking the residue of (7.8) at s = 1 on both sides, we obtain that

δ f
{
ress=1 ζg(s, x)

} = (2m − n) f (x) ress=1 ζg(s, x),

which gives the well-known pointwise invariant in even dimensions.

Let us remark that collecting the terms linear in R in the above proof, we obtain the
following result.

Corollary 7.8 The integral kernel of the projection onto the kernel �g evaluated at the
diagonal satisfies the variation formula

δ f �g(x, x) = (2m − n) f (x)�g(x, x) − 2m[�g f �g](x, x).
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