THE AMPHIBOLITE AND METASEDIMENTS OF THE NORTH-WEST WEEKEROO INLIER, OLARY PROVINCE

by

G. J. TAYLOR

NOVEMBER, 1935
THE
AMPHIBOLITE AND METASEDIMENTS
OF THE NORTHWEST
WEEKEROO INLIER,
OLARY PROVINCE

by

G.J. TAYLOR, B.Sc.

Submitted as partial fulfilment of the Honours Degree,
of Bachelor of Science in Geology,
at the University of Adelaide,
November, 1985

National Grid Reference: S1 54-2 OLARY (1:250,000)
LIST OF FIGURES

Figure 1 : 1:7000 scale map of the north-west Weekeroo Inlier (study area).
Figure 2 : 1:100000 scale map showing parts of the Weekeroo Inlier.
Figure 3 : Regional map of the Olary Province showing broad variation in lithology and metamorphic grade.
Figure 4 : Stereographic projections of structural elements.
Figure 5 : Cross-section showing the variation in style of macroscopic D3 folds.
Figure 6 : Thermal stability and ionic equilibria between muscovite, andalusite and K-feldspar.
Figure 7 : $\text{SiO}_2 - \text{Al}_2\text{O}_3 - \text{FeO} + \text{MgO} + \text{MnO}$ and $\text{Al}_2\text{O}_3 - \text{K}_2\text{O} - \text{FeO} + \text{MgO} + \text{MnO}$ diagrams illustrating the reaction relationship between possible coexisting minerals within sericite pseudomorphs and.
Figure 8 : $K_D$ values of chloritoid-staurolite pairs relative to metamorphic grade.
Figure 9 : Bulk composition of four Weekeroo pelites (two chloritoid bearing) relative to the bulk composition of chloritoid-bearing pelites of the green schist facies.
Figure 10 : P-T plot of the experimentally determined aluminosilicate stability fields after Holdaway (1971).
Figure 11 : Classification of zoned calcic-amphiboles ( $(\text{Na} + \text{K})_A < 0.50$ and $\text{Ti} < 0.50$) from the main amphibolite.
Figure 12 : Ti vs Al$^{IV}$ plot of zoned calcic-amphiboles.
Figure 13 : $\leq$ Al vs Al$^{IV}$ plot of zoned calcic-amphiboles.
Figure 14 : Al$^{IV}$ vs Al$^{VI}$ plot of zones calcic-amphiboles with the superimposed fields of metamorphic facies.
Figure 15 : $\text{Si}$ vs $\text{Ca} + \text{Na}^{m4+} + [\text{Al}]$ plot of zones calcic-amphiboles.
Figure 16 : Fe$^{3+}$ vs $\leq$ Al plot of zoned pistacitic epidotes.
Figure 17 : P-T conditions indicated by critical mineral assemblages in the main amphibolite in relation to experimentally determined chlorite-out and epidote-out reactions in a meta-basaltic system.
Figure 18 : Composition of pyroxenes form the matic lamellae of calc-albitites.
Figure 19 : CaO + MnO vs FeO (Total Fe) + MgO plot of zones almandine garnets in relation to metamorphic grade.
Figure 20 : Precursor materials of diagenetic zeolites, clay and feldspars.
Figure 21 : Dependence of trend of chemical composition of zeolites on chemical composition of precursor glass.
Figure 22 : Generalized model of a playa lake environment.
Figure 23 : Model of brecciation in albites.
Figure 24 : Alkali content of the western and central Weekeroo amphibolite bodies in relation to the alkali content of spilites and keratophyres and the general igneous rock spectrum.
Figure 25 : $\text{SiO}_2 - \text{FeO} (\text{total})/\text{MgO}, \text{FeO} (\text{total}) - \text{FeO} (\text{total})/\text{MgO}$ and $\text{TiO}_2 - \text{FeO} (\text{total})/\text{MgO}$ plots of the western and central Weekeroo amphibolites.
Figure 26 : $A (\text{Na}_2\text{O} + \text{K}_2\text{O}) - F (\text{Fe}_2\text{O}_3$ as total Fe) - $M (\text{MgO})$ plot showing the tholeiitic character of the Weekeroo amphibolites.
Figure 27 : $V - \text{FeO} (\text{total})/\text{MgO}$ plot of the western Weekeroo amphibolite.
Figure 28 : $\text{SiO}_2 - \text{Zr}/\text{TiO}_2$ plot showing the affinity of the western Weekeroo amphibolite and altered modern ocean floor metabasalts.
Figure 29: Zr/TiO$_2$ - Na/Y plot of the western Weekeroo amphibolite.
Figure 30: TiO$_2$ - K$_2$O - P$_2$O$_5$ plot of the western and central Weekeroo amphibolites in relation to the fields of non-oceanic and oceanic basalts.
Figure 31: Ti/I:100 - Zr - Y.3 plot of the western Weekeroo amphibolite.
Figure 32: Zr/Y - Zr plot of the western Weekeroo amphibolite.

List of Tables

Table 1: Appropriate reactions for the production of almandine chloritoid, staurolite and fibrolite.
Table 2: Results of garnet-biotite goethermometry.
Table 3: Comparative major element chemistry of sodium rich rocks.
Table 4: Comparative major element chemistry of the Weekeroo Amphibolites.

List of Plates

Plate 1: Lithologies
Plate 2: Lithologies
Plate 3: Structural features
Plate 4: Sedimentary structures
Plate 5: Various metamorphic assemblages
Plate 6: Albitites
Plate 7: Albitites
Plate 8: Volcanic affinities of the Weekeroo amphibolites
Plate 9: Breccias.
CONTENTS

Abstract 4-5

1. Introduction

1.1 Aims 6
1.2 Location of the Study Area 6
1.3 Previous Investigations 6
1.4 Geological Setting 7

2. Lithologies of the Study Area

2.1 Metasediments
   2.1.1 Psammite 8
   2.1.2 Pelite 8
   2.1.3 Psammo-pelite 8-9
   2.1.4 Carbonate facies B.I.F. 9-10
   2.1.5 Quartz-albite rocks 10
   2.1.6 Albitites 10-11
   2.1.7 Calc-albitites 11-12

2.2 Pegmatites and Amphibolites
   2.2.1 Albite pegmatite 12
   2.2.2 Quartz-K-feldspar pegmatite 13
   2.2.3 Meta-dolerite dykes 13-14
   2.2.4 Fine grained, amygdaloidal amphibolite 14-15
   2.2.5 Medium to coarse grained amphibolite 15-16
   2.2.6 Amphibolite-albite breccia 16-17
   2.2.7 Albitite breccia 17
   2.2.8 Quartz-epidote rock 17

3. Structural Investigation

3.1 $D_1 - D_2$ 18
3.2 $D_3$ 19-10
3.3 $D_4$ 20-21
3.4 $D_5$ 21
4. Stratigraphy and Depositional Models
   22-25

5. Metamorphism
   5.1 Metasediments
      5.1.1 Sericite Pseudomorphs
      5.1.2 Almandine, staurolite, chloritoid and fibrolite
      5.1.3 Stability of chloritoid and staurolite
      5.1.4 Broad P-T conditions
      26-28
      28-31
      32
      32-33

   5.2 Amphibolite and Calc-albitite
      5.2.1 Calcic amphibolite, epidote, pagioclase and sphene
      5.2.2 P-T conditions as indicated by amphibolite and calc-albitite mineral assemblages
      5.2.3 Broad P\textsubscript{CO}_2 conditions
      33-37
      37-38
      38-39

   5.3 Regional Metamorphic Events
      39-41

6. Sodium Rich Rocks
   6.1 Origin of sodium rich rocks
      42-45

   6.2 Source of the sodium
      6.2.1 Comparison of the albite rich lithologies with tuffaceous deposits
      6.2.2 Comparison of the albite rich lithologies with evaporite deposits
      45-48
      48-51

7. Contact Relations and Volcanic Affinities of the Weekeroo Amphibolites
   52-54

8. Volcanic Breccias
   8.1 Amphibolite breccia
      55-56

   8.2 Amphibolite-albitite and albitite agglomerates
      56-57

   8.3 Pyroclastics
      57
9. Comparative geochemistry of the Weekeroo amphibolite

9.1 Major elements
9.2 Trace Elements

10. Tectono-sedimentary Significance: Conclusions

Acknowledgements

Appendices

1) Thin Section Descriptions
2) Method of whole rock analysis
3) Pelite analysis
4) Albite rich rock analyses
5) Harker Variation Diagrams of albite rich lithologies
6) Amphibolite analyses
7) Harker Variation Diagrams of the western Weekeroo amphibolite
8) Electron Probe data
ABSTRACT

The northwest Weekeroo Inlier, Olary, consists of Lower Proterozoic, Willyama Supergroup metasediments and amphibolites. Upper Proterozoic cover metasediments of the Adelaide Supergroup overly these basement rocks.

The basement rocks of the area are dominated by structures of the third Olarian event. Macrosopic anticlines and synclines are open to tight, easterly plunging with a southerly dipping axial surface. The third generation penetrative schistosity cross-cuts a former schistosity (S₁ or S₂) which is parallel or oblique to layering. Abundant crenulations and kinkbands are likely to belong to the first Delamerian folding event which reactivated many basement structures of the Weekeroo Inlier.

A stratigraphic sequence is recognized whereby pelites ('Mica Schists') overly psammo-pelites and quartz-albite rocks ('Bedded Schists'). A very broadly conformable sequence of massive, brecciated and layered amphibolite is "stratigraphically positioned" at the top of the Bedded Schists. From consideration of abundant sedimentary structures, together with facies changes and overall stratigraphic relations, likely depositional models include a very shallow marine shelf, a broad shallow inland lake-alluvial fan toe complex, and a river dominated, regressive deltaic-sabkha situation.

Olarian metamorphic conditions ranged from those characteristic of the upper greenschist facies to those typical of the mid-amphibolite facies. These were followed by strongly retrogressive metamorphism (lower greenschist facies grade) associated with the cover deformation events during the Delamerian Orogeny. The Olarian metamorphism is manifested by paragenetic relations between actinolite, hornblende, epidote, albite, opaques and sphene in amphibolites and
between fibrolite, chloritoid, almandine, biotite, muscovite, sericite, quartz, minor staurolite and minor chlorite in pelites.

Closely associated with the amphibolite bodies of the Weekeroo Inlier are albitites and calc-albitites. Previously, a metasomatic origin was proposed for these albitite-rich rocks. An evaporitic sediment with a possible tuffaceous component is now considered more likely.

The Weekeroo amphibolites are chemically similar to ferro-tholeiites of ocean floor/mid oceanic ridge transitional to continental origin.