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Abstract The diagnosis of water distribution systems by means of the inverse
transient analysis requires efficient and reliable numerical models. In the net-
work admittance matrix method (NAMM) the 1-D waterhammer governing
equations are integrated in the frequency domain and organized in a laplacian
matrix form. The NAMM is particularly suitable for complex systems because
of this structure and can be used for the system diagnosis, including leak siz-
ing and location. In this paper a damaged branched system is considered and
the diagnosis is performed by means of the NAMM using experimental data
from laboratory transient tests. Two different boundary conditions are used
in the implementation of the NAMM and the leak is located and sized with
a reasonable approximation. An extended numerical investigation is also pre-
sented and allows confirmation of the results for different leak locations. The
use of the NAMM for the leak detection and the validation using experimental
data on a branched system are the main original contributions of this work.
The successful diagnosis indicates promising results for applications in more
complex systems.
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1 Introduction1

Inverse transient analysis (ITA) is a technique for the diagnosis of pressurized2

pipe systems, based on the use of transients (Liggett and Chen, 1994). With3

respect to other techniques, transients are a cheap and fast tool to collect4

information about the system under consideration (Covas and Ramos, 2010;5

Kapelan, Savic, and Walters, 2003; Pezzinga, Brunone, and Meniconi, 2016;6

Shamloo and Haghighi, 2010; Soares, Covas, and Reis, 2011; Stephens, Lam-7

bert, and Simpson, 2012; Tuck and Lee, 2013; Vitkovsky, Lambert, Simpson,8

and Liggett, 2007; Vitkovsky, Lambert, Simpson, Wang, et al., 2001).9

The ITA implementation can be highly iterative, requiring many simula-10

tions of the numerical model. Consequently, the choice of the numerical model11

plays a crucial role in terms of computational efficiency (Creaco and Pezzinga,12

2015).13

In the case of complex systems, frequency-domain models present an in-14

teresting trade off between accuracy and speed. With respect to time-domain15

models, they do not need a time-space grid with constant steps for the inte-16

gration of the transient governing equations and as a consequence they allow17

a relatively fast and efficient modeling. The linearization errors related to the18

steady-friction can be checked and are often negligible, when compared to vis-19

coelasticity or unsteady-friction, which, in addition, are easy to implement in20

these models (Kim, 2005; Weinerowska-Bords, 2006).21

The network admittance matrix method (NAMM) proposed by Zecchin,22

Simpson, Lambert, White, and Vitkovsky (2009) is a frequency-domain model23

that organizes the transient governing equations for each link of a network24

in a laplacian matrix form. Its elegant structure makes this model appealing25

for the analysis of the response of complex systems to transients and for their26

diagnosis (Zecchin, Lambert, Simpson, and White, 2014).27
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Frequency-domain models have been used for leak detection in the case28

of simple systems (e.g., Gong, Lambert, Simpson, and Zecchin, 2013; Gong,29

Lambert, Zecchin, and Simpson, 2015; Gong, Zecchin, Simpson, and Lam-30

bert, 2014; Lee, Vı́tkovský, and Lambert, 2005a; Lee, Vı́tkovský, Lambert,31

Simpson, and Liggett, 2005b; Lee, Vı́tkovský, Lambert, Simpson, Liggett, and32

Murray, 2004; Sun, Wang, and Duan, 2016), also with the implementation of33

viscoelasticity (Duan, Lee, Ghidaoui, and Tung, 2012). With reference to the34

modeling of more complex systems there are few studies in the time domain35

(Evangelista, Leopardi, Pignatelli, and de Marinis, 2015; Ferrante, Brunone,36

and Meniconi, 2009), while in the frequency domain (Kim, 2008), only a few37

papers explore the leak detection by means of numerical signals (Duan, 2017;38

Duan, Lee, Ghidaoui, and Tung, 2011; Kim, 2015), with none, to the authors39

knowledge, using experimental data.40

In this paper a frequency domain model based on NAMM is used for the41

leak detection by means of ITA in an experimental branched system. The42

pressure dependent demands at nodes are implemented in the model to sim-43

ulate the leak occurrence and the effects of the maneuver giving raise to the44

transient are simulated either with a flow or pressure variation at the valve45

node. These two different boundary conditions for the maneuver node give46

place to two models that can be used for the analysis. The results for both47

cases are presented in this paper, together with some interesting remarks.The48

structure of the NAMM allows an easy implementation of one or more leaks49

and the choice of the leak location and size as parameters for calibrations. It50

is worth noting that the NAMM, until now, has not been used yet for leak51

detection purposes. The calibration procedure for leak detection and sizing52

for the considered system is based on a NAMM model and on two optimiza-53

tion algorithms, in series: a genetic algorithm (Creaco and Pezzinga, 2015;54

Pezzinga et al., 2016; Vitkovsky, Simpson, and Lambert, 2000) and a nonlin-55
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ear optimization algorithm (Lagarias, Reeds, Wright, and Wright, 1998). Such56

a calibration procedure is tested on experimental data acquired on a branched57

system with a leak, at the Water Engineering Laboratory (WEL) of the De-58

partment of Civil and Environmental Engineering at the University of Perugia,59

Italy. The detection is performed considering the branch where the leak is as60

known or unknown. This different starting hypothesis allows a generalization61

of the calibration results for more realistic situations. To explore the robust-62

ness of the ITA, different leak locations are also considered in a numerical63

investigation, where simulated pressure signals are used instead of measured64

data.65

The use of the NAMM for the leak detection and the validation using66

experimental data on a branched system are the main original contributions67

of this work. The calibration procedure for leak detection in the case of un-68

known branch is one of the novelties of the paper. The results presented in this69

work represent an important step forward the diagnosis of water distribution70

systems.71

2 Forward modeling using the admittance matrix model with a leak72

In frequency-domain modeling, the 1-D waterhammer governing equations are73

firstly perturbed and linearized, and then integrated in the frequency domain74

(Chaudhry, 2014). In the model based on the network admittance matrix75

method (NAMM) these equations are reorganized in a laplacian matrix form,76

as shown by Zecchin et al. (2009). The obtained formulation entails only nodal77

variables. In fact, this formulation relates the vector of the transformed nodal78

flows, Θ(ω) (where a positive flow is considered as a flow into the network),79

to the vector of the transformed nodal pressures, Ψ(ω), by means of the ad-80

mittance matrix, Y(ω)81
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Y ·
[

Ψ1 · · ·Ψk · · ·Ψn

]T
=

[
Θ1 · · ·Θk · · ·Θn

]T
(1)

with n the number of nodes in the system.82

Y(ω) contains the system dynamics and is defined with a compact notation83

as84

{Y(ω)}i,k =


−sj , if nodes i and k are linked∑
λj∈Λi

tj , if k = i

0 otherwise

(2)

where λj is the j−th link of the system, Λi is the set of links incident to node85

i, ω is the angular frequency and86

tj(ω) = [Zcj(ω)tanhΓj(ω)]
−1

; sj(ω) = [Zcj(ω)sinhΓj(ω)]
−1

(3)

In Eqs. (3) Γj = γj lj , with γj , lj and Zcj being the propagation operator,87

the length and the characteristic impedance for the j−th link, respectively88

(Wylie and Streeter, 1993). Eqs. (3) point out an interesting characteristic of89

the NAMM and of the other frequency domain based models, i.e. the imple-90

mentation of the pipe lengths, lj , as parameters. This feature is relevant for91

the leak location problem, as shown in the following.92

To relate the unknown nodal pressure and flows to the known nodal condi-93

tions, two different types of nodes are distinguished: at the pressure controlled94

nodes, indicated by the subscript “p”, the nodal pressure is known but the out-95

flow is unknown, while at the demand nodes, indicated by the subscript “d”,96

the nodal flow is known but the pressure is unknown. Junctions are typically97

demand nodes whereas reservoirs are pressure nodes.98
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Since the transformed nodal values of the pressures, Ψ, represent the per-99

turbations around the mean values of the pressure head, a prescribed pressure100

head at a node, such as at a constant head reservoir, corresponds to Ψp = 0.101

Similarly, the transformed values of the flows, Θ, represent the variation of the102

negative of the demand at a node. Hence, when a junction without a demand103

is considered, it has Θd = 0.104

The occurrence of a leak, i.e. a pressure dependent demand, at the k−th105

node of a system is modeled in the frequency domain framework as106

Θk = − Ψk

ZLk
(4)

where the leak impedance, ZLk, depends on leak size and on the initial steady-107

state value of the pressure at the leak, as shown by Ferrante, Brunone, Meni-108

coni, Karney, and Massari (2014). Hence, the leak takes effect on Eq. (2)109

introducing a term to the k−th element of the main diagonal of Y, which110

becomes Y + diag
{

0, · · · , 1
ZLk

, · · · , 0
}

. The incorporation of leaks and other111

nodal dynamic elements into the NAMM is considered in detail in Zecchin,112

Lambert, and Simpson (2010).113

The distinction between the conditions of demand control and pressure114

control nodes allows the uncoupling of the unknowns from the known variables.115

The transformed nodal pressures at each node of the system can be determined116

once the corresponding partitions of Y are inverted. The pressure and flow117

signals in the time domain, H(t) and Q(t), respectively, can then be evaluated118

by means of the inverse Fourier transform.119

Given the distinction between pressure and demand nodes, the effects of120

the maneuver can be simulated in terms of a pressure or demand variation,121

giving place to two different models. In the following both models are consid-122

ered. Model 1 uses a demand control condition at the maneuver node, which123
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means that the flow signal is introduced as the input and the pressure is cal-124

culated as an output at the demand node. On the contrary, Model 2 uses a125

pressure control condition at the maneuver node, which means that the ac-126

quired pressure signal is used as the input at a pressure node and the flow is127

calculated as an output.128

3 Leak detection in pipe networks by means of the admittance129

matrix method130

In the ITA, the model parameters are calibrated, i.e. they are varied in a set of131

simulations to reproduce, as close as possible, the measured pressure signals.132

In this research, the objective function used for the calibration to measure133

the distance between simulated and observed data is134

σ2 =

∑n
i=1(Oi − Pi)2

n
(5)

where Oi, Pi, are two sets of measured and simulated data of length n, respec-135

tively.136

Two algorithms in series are used to minimize σ2 and solve the inverse137

problem: a genetic algorithm, also referred to as GA, and an unconstrained138

nonlinear optimization algorithm, referred to as NOA, based on the Nelder-139

Mead algorithm. The GA is used as a first step to explore a wide area and140

provide a rough estimate of the local minimum. NOA is used as a second step141

starting from the GA solution to provide a more accurate estimate.142

4 Experimental verification143

An experimental branched system is considered and used to assess the utility144

of the calibration procedure in determining the leak location and size. The145
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PT1 

PT2 

Y 
leak 

Ll 

Fig. 1 Schematic of the damaged branched system installed at the Water Engineering
Laboratory (WEL) of the Department of Civil and Environmental Engineering (DICA) at
the University of Perugia, Italy.

leak is located on one branch and the procedure is tested by considering both146

the cases of (1) knowing the branch on which the leak is located (but the leak147

location on the branch and size are unknown), and (2) not knowing the branch148

on which the leak is located (again, the location and size are also unknown).149

To extend the investigation to the cases of a single leak in one of the other150

two branches, the signals produced by numerical models are used instead of151

the acquired signals.152

4.1 Experimental setup and measured data153

The branched system of Fig. 1, hereafter referred to as the Y-system, was154

installed at the Water Engineering Laboratory (WEL) of the Department of155

Civil and Environmental Engineering at the University of Perugia, Italy. It156

consisted of 3 HDPE pipes of lengths L1 = 116.78 m, L2 = 61.78 m and157

L3 = 197.82 m, with internal diameter D = 93.3 mm and wall thickness158

e = 8.1 mm. The pipes were bounded via a reservoir (R), a junction (Y) and159

two valves (V1 and V2). Valve V1 was kept closed (i.e., it was a dead end) while160

V2 was the operating valve used to induce the transient into the system. Two161

pressure transducers, PT1 and PT2, were placed immediately upstream of V1162

and V2, respectively. The signals were measured at a sampling frequency, f , of163
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1000 Hz and downsampled to 100 Hz to decrease the noise level and to speed164

up the assessment of the calibration procedure. The downsampling frequency165

of 100 Hz was selected, as at this sampling frequency much of the features of166

the transient signal were retained. The initial steady-state flow at V2, q0, was167

3.0 l/s, with an uncertainty of 0.25%. Along the branch between the Y junction168

and the dead end node, a leak was placed at a distance Ll = 24.18 m from the169

Y junction. The leak was simulated by means of a device with a circular hole of170

14.9 mm diameter and was characterized by an effective area µΣ = 1.101 10−4171

m2 and a relative size µΣ/A = 0.0162, with A being the pipe cross-sectional172

area (Ferrante et al., 2014). Considering that the value of the piezometric173

head at the leak in steady-state conditions was measured as H̄L = 21.3 m,174

the outflow at the leak was Q̄L = 2.3 l/s and the leak impedance was ZL =175

2H̄L/Q̄L = 1.8522 104 s/m2. The steady-state flow ratio was Q̄L/(q0 + Q̄L) =176

0.434 and the impedance ratio (Ferrante et al., 2014) was ZL/Zc = ZLgA/a =177

3.283, with g being the gravitational acceleration. The wave speed a=378.18178

m/s was determined by a calibration process based on the tests on the same179

experimental system without the leak. The procedure is described in Ferrante180

and Capponi (accepted). The pressure signals acquired by PT2 and PT1 are181

shown in time in Fig. 2a and 2b, respectively. The rheological properties of the182

pipe material had been previously investigated on the intact system and are183

considered as known for the purposes of this investigation. Three Kelving-Voigt184

(KV) elements in series are used, with viscosity coefficients ηR−1,2,3 = 8.35 107,185

5.82 109, 2.96 109 Pa s, respectively, and relaxation moduli ER−1,2,3 = 1.88186

1010, 1.98 1010, 4.24 1010 Pa, respectively.187
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Fig. 2 Pressure signals measured at PT2 (a) and PT1 (b), respectively.

4.2 Inverse calibration and results188

The two unknowns in the system of Fig. 1, i.e. the location and the size of the189

leak, are estimated by means of the two step calibration procedure involving190

a GA and a NOA in series. As mentioned above, the location is expressed by191

the distance of the leak from the Y junction, Ll, while the size is expressed in192

terms of leak impedance, ZL. The GA and the NOA minimize the differences193

between the measured pressure signal and the pressure signal simulated by194

means of the NAMM.195

The availability of pressure signals at two different locations allows the use196

of both Model 1 and Model 2. The calibration based on Model 1 uses the197

transient flow signal simulated at the maneuver node. For these purposes, the198

pressure signal during the maneuver duration is used to estimate the variation199
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of the flow at V2 (Brunone and Morelli, 1999). The flow variation is then

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−0.5

0

0.5

1

1.5

2

2.5

3

x 10
−3

t [s]

Q
 [

m
3
/s

]

 

 

Model 1

Model 2

Fig. 3 Comparison in time domain between the flow modeled as a complete and fast closure
in the case of Model 1 (solid line) and the flow obtained by Model 2 (dashed line) using the
acquired pressure signal at immediately upstream V2 as the input.

200

considered as known at the valve demand node (Fig. 3) and the numerical201

pressure signals are simulated at the measurement sections, PT1 and PT2. The202

calibration is based on the comparison of the observed and simulated pressure203

signal at PT2, while the observed and simulated signals at measurement section204

PT1 are only compared for validation.205

Model 2 directly uses the pressure signal as an input at the valve node,206

considered as a pressure controlled node. As a consequence, in this case the207

calibration is made by means of the comparison of experimental and numerical208

signal only at the PT1 section, and no validation is undertaken.209
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Table 1 Results of the calibrations of the leak location and size by means of Model 1 and
Model 2, using a GA and a NOA in series. The errors are referred to the experimental values
of Ll (absolute error) and ZL (relative error).

Calibration
by

σ2
min [m2]

Results
Absolute

Error
in Ll [m]

Relative
Error

in ZL [%]Ll [m] ZL [s/m2]

Model 1
0.1110 (M1)

24.7349 1.5887 104 0.5549 14.23
0.0255 (M2)

Model 2 0.0250 23.2121 1.5891 104 0.9679 14.20

4.2.1 Leak location and sizing on a known branch210

As a first step, the branch where the leak is placed is assumed to be known211

and the leak location is estimated. As previously mentioned, instead of the212

time-domain models, which point out the nodes closest to the leak, the chosen213

frequency-domain model allows the calibration of an unknown length as a214

parameter.215

The bounds for the parameter Ll are set equal to zero for the lower bound216

and to L1 for the upper bound. Regarding the size, the bounds for the leak217

impedance are assumed as [5 103; 3 105] s/m2. For each GA run a maximum218

number of 50 generations is set with a population size of 100 individuals. The219

starting point for the GA is set to the middle of the range defined by the220

mentioned bounds. The GA solution is then used as the starting point for221

the NOA. The NOA results obtained by means of Model 1 and Model 2 are222

summarized in Table 1, where the errors with respect to the experimental223

values of the two calibrated parameters are also reported.224

The values of σ2 in the second column are evaluated by Model 1 both at225

PT1, as minimized by the calibration procedure, and PT2, only for validation226

purposes. The value of σ2 for Model 2 is minimized considering the signals at227

PT2 since the signal at PT1 is used as input.228
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Based on the comparisons of the results (Fig. 4), it seems that Model 2 has229

the important advantage that it captures the deterministic components of the230

signal at the valve that is not properly described by the estimated maneuver231

characteristics and it can reproduce the small oscillation of the signal, that232

are not due to the noise, better than Model 1.233

The leak location and size obtained by the calibration using Model 1 are234

used to simulate the transient at the maneuver node with Model 1 and at235

the dead end node with Model 2. These signals, denoted by “M1” and “M2”,236

respectively, are compared in Fig. 4 with the observed pressure signals, denoted237

by “exp”. Fig. 4a shows the comparison of the experimental signal at the dead238

end node with the numerical one simulated by means of Model 2 using the239

values of leak location and size calibrated by means of Model 1. The same240

values are used in Model 1 to generate the signal at the maneuver node shown241

in Fig. 4c. In Fig. 4b (Fig. 4d) the comparison of Fig. 4a (Fig. 4c) is shown242

for the time, t, ranging from 0 to 4 s.243

When the leak location and size are calibrated by means of Model 2, the244

experimental signal at the maneuver node is used as the input so it cannot be245

exploited for comparisons and for the evaluation of σ2. Therefore, in this case,246

only the signal acquired at the dead end node is used for the minimization247

of σ2 and the result is shown in Tab. 1. The minimum value of σ2 is very248

similar to the one obtained with the same model in the calibration based on249

Model 1. Moreover, the relative error in the leak sizing is similar for the two250

models, but the absolute error in the location is slightly higher in Model 2251

than in Model 1. The comparison between the experimental signal and the252

signal simulated by Model 2 using these results is shown in Fig. 5. Also, at a253

closer look (Fig. 5b) it can be observed that, as in the previous calibration,254

the signals are almost indistinguishable. To give an insight into the calibration,255

the shape of the objective function over the entire parameter space is shown256
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Fig. 4 Comparison of the experimental signals at the dead end node (a) and at the maneu-
ver node (c) with the signals simulated by Model 2, M2 (a), and by Model 1, M1 (c), using
the leak location and size calibrated by means of Model 1 at the maneuver node. In (b) and
(d) the same comparisons of (a) and (c) are shown for t ranging from 0 to 4 s, respectively.

in Fig. 6. The existence of two calibrated parameters allows its visualization257

on a surface plot. The range of variation of the leak location and size are split258

in 100 parts giving place to a grid of 104 points. At each point σ2 is evaluated259

comparing the experimental signal with those simulated by means of Models260

1 at the maneuver node. The white cross indicates the values of the location261

and the size found by the optimization algorithm and shown in Tab. 1.262
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Fig. 5 Comparison of the experimental signal at the dead end node with the signal simu-

lated by Model 2, M2, using the leak location and size calibrated by means of Model 2. In

(b) the same comparisons of (a) is shown for t ranging from 0 to 4 s.
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shown in Tab. 1.

4.2.2 Unknown branch263

The calibration results shown so far are based on the assumption that the264

branch on which the leak is located is known. This assumption is optimistic265

but in the diagnosis of water pipeline systems it can happen that the branch266

containing the leak is unknown. For this reason a further calibration approach267

is carried out removing this assumption. The numerical model is set placing a268

leak node on each branch and performing a calibration by means of Model 1269

that minimizes σ2 in the comparison of experimental and numerical signal at270

the maneuver node. In this way there are 6 calibration parameters, i.e. 3 leak271

locations, expressed as distances from the Y junction, and 3 leak impedances,272

that indicate the sizes. The calibration based on the NAMM can be considered273
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Table 2 Results of the calibrations of the leak location and size by means of Model 1 and
Model 2, using a GA and a NOA in series, in the case of unknown branch. The errors are
referred to the experimental values of Ll (absolute error) and ZL (relative error).

Calibration
by

σ2
min [m2]

Results
Absolute

Error
in Ll [m]

Relative
Error

in ZL [%]Ll [m] ZL [s/m2]

Model 1
0.1110 (M1)

24.7349 1.5887 104 0.5549 14.23
0.0255 (M2)

Model 2 0.0218 24.3852 1.5740 104 0.2052 15.02

as successful if in the results the actual leak location and the corresponding274

leak size are as close as possible to the experimental ones and if the other 2275

sizes (corresponding to leaks on the pipes that actually contain no leaks) are276

as small as possible (which correspond to leak impedances values as high as277

possible). The 2 locations that are estimated on the pipes that contain no leaks278

are not significant for the success of the calibration. The parameter bounds are279

set constraining the locations to the total lengths of the branches and allowing280

the leak impedances to vary up to 1020 s/m2, which corresponds to a negligible281

leakage. The population size is set to 100 individuals and the maximum number282

of generations is 50, as in the previous cases. The GA solution does not suggest283

the most likely branch containing the leak and it is used as the starting point284

for the next step, the NOA. In a computational time of about 5512 s on an285

Intel Xeon 2.20 GHz computer, the NOA finds the same solution of the first286

calibration presented in this work: the minimum value of σ2 is 0.1110 m2, the287

leak impedance is 1.5887 104 s/m2, and the leak location found is 24.7349 m288

from the Y junction along the branch connected to the dead end, as shown in289

Tab.2.290

Besides the fact that the calibration procedure finds the same result as291

the previous case, when only one branch was used as candidate, the values292

found for the other parameters are interesting as well. The leak impedance293

values found for the leak nodes placed on the other branches are 5.0800 1015294
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and 2.9499 1015 s/m2. This means that, regardless the locations found for295

these two leaks, they are estimated to be almost negligible in the size. In296

fact, the corresponding values of the effective area, µΣ, are 4.103 10−16 and297

7.066 10−16 m2, respectively. As a consequence, the numerical signal obtained298

by this calibration, carried out assuming the branch containing the leak as299

unknown, is practically the same as that of Fig. 4c,d.300

The same procedure is followed using Model 2. The results are similar to301

those found in the previous case and are reported in Tab.2.302

5 Extended numerical investigation303

To investigate the reliability of the calibration procedure for different leak size304

and locations, a set of numerical tests has also been used, considering the same305

experimental setup used in the laboratory, but varying the leak location.306

The leak considered within the numerical investigation is characterized307

by µΣ = 3.36 10−5 m2, H̄L = 20, and a relative size µΣ/A = 0.0049. The308

corresponding leak impedance is ZL = 6.0110 104 s/m2. The leak is placed on309

each branch, one at a time, at a distance of 20 m from the Y junction. Three310

numerical signals (Fig. 7) were generated at the valve V2 using these different311

locations and are considered as benchmarking in the calibrations, which are312

based on Model 1.313

The same calibration procedure applied to the experimental data is used314

for the three numerical signals. For each branch the length parameter upper315

bound is set to the total length of the considered branch. The starting point316

is the middle of the range defined by the bounds.317

In Tab. 3 the results of the numerical calibrations are reported. For each318

branch the solution that the calibration procedure has to find is indicated in319

the second column, while in the third one there is the total length, Lb, of320
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Fig. 7 Benchmark signals generated locating the leak on each branch of the system, one at
a time. In (b) the same comparisons of (a) is shown for t ranging from 0 to 4 s.

each considered branch containing the leak. σ2
min is the minimum value of the321

optimization function found by the GA and the NOA in series. Lastly, the322

“yes” in the last column indicates that all the numerical calibrations carried323

out have been successful in identifying the location of the leak.324

These calibrations demonstrate that the procedure developed in this work325

is able to find a leak even smaller than that used in the experimental study326

and identify leaks in the other branches of the considered system.327
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Table 3 Results of the numerical calibrations of the leak location and size on the three
branches.

branch with leak
Ll [m];

ZL [s/m2]
Lb [m] σ2

min [m2] identification

Y-V1
20; 6.0110 104

116.78 2.22 10−28 yes
Y-V2 61.78 3.27 10−28 yes
Y-R 197.82 1.39 10−28 yes

6 Discussion328

The admittance matrix method used for the calibration in this work is a key329

point in the diagnosis of the considered Y-system. It has the advantage of330

the ease in modeling complex systems and it requires a low computational331

effort with respect to time-domain models. Moreover, its structure allows the332

introduction of a link length (i.e., the leak location) as a calibration parameter,333

thus facilitating the diagnosis of the damaged system and avoiding the grid334

approximation problems typical of time-domain modeling, such as those due335

to a fixed time-space grid.336

The chosen calibration procedure minimizes the optimization function, σ2,337

in two steps, consisting of a GA and a NOA in series. The GA minimizes σ2
338

starting from an initial value and exploring a wide range of the parameter339

space, but within certain bounds. The tests showed that, with the appropri-340

ate settings, the GA can be an efficient optimizer, but it was found to have341

some limits within our application, such as the fact that the individuals can342

gather around local minima instead of the global minimum. Furthermore, the343

global minimum location is found with a low accuracy. To reduce the risk of344

pointing out local minima, the conventional practice is to set a lot of popu-345

lations with a large number of individuals. This increases the computational346

time, making the calibration procedure inefficient, with respect, for example,347

to the direct scrutiny of the optimization function on a regular grid. The NOA348

minimizes σ2 starting from the GA solution and exploring a relatively narrow349
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region around it, but without specified bounds. If the GA result is not too350

far from the solution, the NOA finds the global minimum with high accuracy351

and efficiency. The combination of these two steps allows the success of the352

diagnosis in all the cases considered in this work. When the experimental data353

are used, the diagnosis gives result close to reality, with a good approximation.354

On the other hand, when the numerical data are used, to assess the reliability355

of the procedure with a leak smaller than the leak size used in the experimen-356

tal study, located also on the other branches, the minimum value of σ2 has357

an order of magnitude of 10−28 m2. Other issues that can affect the diagno-358

sis results are the uncertainties in the system parameters and geometry, and359

those due to measurement noise. The noise for example can compromise the360

diagnosis because it can produce oscillations in the pressure signal that can361

be misinterpreted and lead to errors in the leak detection. Uncertainties in the362

system parameters and in the geometry can limit the utility of a model-based363

interpretation of the pressure signal and affect the calibration with significant364

error or even make it fail to correctly detect the leak. In the numerical in-365

vestigation these uncertainties are not considered and this is the reason the366

values of σ2 are so low (see Tab. 3). In the diagnosis of the system by means367

of the experimental data the uncertainties influence the results in the sense368

that σ2 has higher, albeit reasonable (Tab. 1), values than in the numerical369

case-studies. Within the experimental study, the calibrated model was found370

to provide an excellent match to the observed pressure signal.371

7 Conclusions372

A frequency-domain model based on the network admittance matrix method373

(NAMM) is implemented in this paper and used within an inverse transient374

analysis on a branched system installed at the Water Engineering Laboratory375
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(WEL) of the Department of Civil and Environmental Engineering (DICA) at376

the university of Perugia, Italy. The ability to detect leaks on the considered377

system is tested both by experimental and numerical data and the detection378

is performed using two optimization algorithms in series. Regarding the ex-379

perimental data, the detection is performed for different scenarios where the380

branch with the leak is considered as known or unknown, since the assump-381

tion that the branch where the leak is placed is known is optimistic and for382

this reason has been removed in the second step. In both cases, the leak is383

successfully detected, with an accuracy of less than 1 meter in the location384

and a relative error of about 14 % in the size. The numerical data are used to385

extend the investigation to the cases the leak is placed on the other branches386

and is characterized by a different size, smaller than the experimental one,387

with the aim to confirm the reliability of the detection procedure. In all the388

considered cases, the leak is successfully located and sized with high accu-389

racy. Although the considered system is relatively simple and other time- and390

frequency-domain models could also be used, NAMM is particularly suited for391

complex systems and these results push towards the analysis of more complex392

systems.393
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