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Estimating the basic reproductive number during the early stages of
an emerging epidemic
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aStochastic Modelling and Operations Research Group, School of Mathematical Sciences, University of Adelaide
bAustralia Research Council Centre of Excellence for Mathematical and Statistical Frontiers

Abstract

A novel outbreak will generally not be detected until such a time that it has become established.

When such an outbreak is detected, public health officials must determine the potential of the

outbreak, for which the basic reproductive number R0 is an important factor. However, it is of-

ten the case that the resulting estimate of R0 is positively-biased for a number of reasons. One

commonly overlooked reason is that the outbreak was not detected until such a time that it had

become established, and therefore did not experience initial fade out. We propose a method which

accounts for this bias by conditioning the underlying epidemic model on becoming established and

demonstrate that this approach leads to a less-biased estimate of R0 during the early stages of an

outbreak. We also present a computationally-efficient approximation scheme which is suitable for

large data sets in which the number of notified cases is large. This methodology is applied to an

outbreak of pandemic influenza in Western Australia, recorded in 2009.

Keywords: Basic reproductive number, Continuous-time Markov chain, Hybrid

discrete-continuous

1. Introduction

Obtaining an accurate and reliable estimate of the basic reproductive number R0, during the

early stages of an outbreak is crucial for public health officials. The basic reproductive number

characterises the transmission potential of a disease which is vital for predicting the size of the

outbreak and the resources required for fighting it (Simonsen et al., 1997; Meltzer et al., 1999;5
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Lemon et al., 2007). Under these circumstances, R0 is typically estimated from data relating to the

daily number of new cases of the disease over a time period of just a few weeks (White and Pagano,

2007; Bettencourt and Ribeiro, 2008) which is often heavily influenced by incomplete reporting,

population heterogeneity, and imported infectious cases (Mercer et al., 2011). Furthermore, esti-

mation methods often over-look the probability of initial fade out during the early stages of the10

outbreak. This is an important factor because the fact that the outbreak is identified as a threat by

authorities requires that it has effectively overcome the probability of initial fade out. Each of these

factors contribute to positively-biased estimates of R0 unless they are appropriately accommodated

(Roberts and Nishiura, 2011; Nishiura et al., 2010; Pedroni et al., 2010; Mercer et al., 2011).

The impact of the probability of initial fade out on the estimate of R0 is relatively unexplored. In15

the context of the Susceptible–Exposed–Infectious–Removed (SEIR) epidemic model, Mercer et al.

(2011) demonstrated that estimates of R0 from the initial stages of an outbreak are positively-biased

and that this bias decreases as the outbreak progresses. This observation supports the hypothesis

that the bias is at least partially influenced by the probability of initial fade out of the outbreak,

which is considerable during the initial stages of an outbreak. Given that the outbreak is known to20

have eventually become established, this bias may be counteracted by conditioning the model on

the event that an “established outbreak” occurs (Mercer et al., 2011; Rida, 1991).

In this paper, we present a conditioned Susceptible–Infectious–Removed (SIR) continuous-time

Markov chain (CTMC) model which accounts for the probability of initial fade out (Bartlett, 1949).

This is achieved by conditioning the usual SIR CTMC on the event that the outbreak eventually25

becomes established by modifying its transition rates according to Waugh (1958). We argue that

it is reasonable to consider an established outbreak to be one where the cumulative number of

cases eventually exceeds a predetermined threshold. Under this construction, we demonstrate that

conditioning the SIR CTMC on the event that the outbreak eventually exceeds 50 cases reduces

the resulting estimate of R0 by around 0.2 on average.30

Fundamental to estimating the basic reproductive number is the likelihood function of the CTMC

model (Sprott, 2000). Computationally-exact methods for evaluating the likelihood function of a

CTMC are typically computationally infeasible, even for moderate population sizes, hence it is

common to consider the various ways in which the likelihood may be approximated (Cooper and

Lipsitch, 2004). One important approximation for inference in large populations utilises the diffu-35

sion approximation of the CTMC (Ross et al., 2006, 2009; Ross, 2012). The diffusion approximation
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provides a highly efficient and accurate approximation of the CTMC once the outbreak is estab-

lished, but provides a poor approximation during the initial stages of the outbreak (Kurtz, 1970,

1971; Barbour, 1980), which Viboud et al. (2016) demonstrated is crucial for faithfully representing

the early growth dynamics of emerging outbreaks. An alternative to the diffusion approximation40

which accounts for this is a hybrid approximation similar to Rebuli et al. (2016); Barbour (1975);

Scalia-Tomba (1985); Safta et al. (2015). The hybrid approximation used here models the initial

stages of the outbreak with a CTMC, until such a time that the population of infectious individuals

is large enough for the diffusion approximation to provide a reliable approximation of the CTMC.

We demonstrate that this hybrid approximation is highly accurate and provides a significant com-45

putational advantage over the CTMC model for large data sets.

We demonstrate the utility of our methodology by applying it to an outbreak of pandemic

influenza from 2009 (A(H1N1)pdm09) which occurred in Western Australia (WA) (Kelly et al.,

2010). During this outbreak, a thorough case ascertainment and follow-up program was conducted

during the first three weeks of the outbreak until such a time that the outbreak was deemed50

widespread, by which stage 102 cases had been confirmed. Using the simple SIR CTMC, we

demonstrate that estimates of R0 which account for this fact are more accurate during the early

stages of the outbreak.

The present paper has two objectives. The first is to present an approach for reducing the

systematic bias in estimates of R0 which are based on daily incidence counts from the initial stages55

of an outbreak. The second is to motivate a computationally-efficient algorithm for computing

these estimates using a hybrid approximation of the underlying CTMC model. These concepts

are straightforward to implement and can be generalised to more complex epidemiological models.

We demonstrate the utility of our methodology by using it to estimate R0 from an outbreak of

pandemic influenza.60

2. Background theory

The SIR CTMC is a population process which tracks the number of individuals in each of the

susceptible (S), infectious (I) and removed (R) compartments, in a fixed population ofN individuals

(Keeling et al., 2000; Kermack and McKendrick, 1927). Using the relation S + I + R = N , the

population process is completely described by the vector (S, I) where S + I ≤ N and S, I ≥ 0.65
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For reasons which will become clear soon, it is more convenient to work with the degree of

advancement (DA) representation of the SIR CTMC, rather than the population representation

(Jenkinson and Goutsias, 2012; Rebuli et al., 2016; Black and Ross, 2015). The DA process {N(t) :

t ≥ 0} is a counting process which tracks the number of infection events (NI) and the number

of recovery events (NR) which belong to the state space S = {(NI , NR) : NI ≥ NR, NI , NR =

0, 1, . . . , N}. For the SIR model considered herein, we can map between representations using the

relationships

NI = N − S − I(0)−R(0), NR = N − S − I −R(0).

The events and transition rates of the DA process are given in Table 1, where β is the effective

transmission rate and γ is the recovery rate (1/γ is the average infectious period). The basic

reproductive number is R0 = β/γ, which is defined as the average number of new cases of the

disease, resulting from a single infectious individual in a completely susceptible population. The

DA process is completely specified by its transition rates and an initial probability mass function70

(PMF) pn(0) = Pr(N(0) = n), ∀n ∈ S, for which we assume p(1,0)(0) = 1, herein.

Event Transition Rate

Infection n→ n + e1 q(n,n + e1) = β(S(0)−NI)(I(0) +NI −NR)/(N − 1)

Recovery n→ n + e2 q(n,n + e2) = γ(I(0) +NI −NR)

Table 1: Events and transmission rates of the DA process where ei is a vector of zeros with a one in the ith entry.

Define the transition probability pm,n(t) = Pr(N(t) = n|N(0) = m), ∀n,m ∈ S as the prob-

ability that the DA process is in the state n, given that t > 0 time units have elapsed since the

process was in the state m. Then ∀n,m ∈ S, the transition probabilities are governed by the

Kolmogorov Forward Equations

dpm,n(t)

dt
=

2∑
i=1

pm,n−ei(t) q(n− ei,n)− pm,n(t) q(n,n + ei),

(Keeling et al., 2000; Norris, 1997; Jenkinson and Goutsias, 2012). The transition probabilities

are calculated by integrating the Forward Equations numerically using the Implicit Euler scheme.

Under the DA representation, Jenkinson and Goutsias (2012) showed that the implicit Euler scheme

is highly computationally-efficient and achieves a global L1-error of O(τ), where τ is the length of75

the time step of the numerical integration.
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Approach to estimation. We can now specify the likelihood of observing a set of daily incidence

counts xk (k = 1, 2, . . . , n), given a set of parameters θ ∈ Θ. An additional benefit of the DA

representation is that the daily incidence counts may be expressed directly in terms of NI by

considering the cumulative incidence counts yk =
∑k
j=1 xj (k = 1, 2, . . . , n). It follows that the

exact likelihood is

L(y|θ) =

n∏
k=1

LkE(θ),

in which the transition probabilities LkE(θ) (k = 1, 2, . . . , n) are defined as

LkE(θ) = Pr (NI(tk) = yk | Yk-1)

=

yk∑
i=0

Pr (N(tk) = (yk, i) | Yk-1)

=

yk-1∑
j=0

yk∑
i=0

Pr (N(tk) = (yk, i) |N(tk-1) = (yk-1, j)) Pr (N(tk-1) = (yk-1, j) | Yk-1)

=

yk-1∑
j=0

yk∑
i=0

Pr (N(tk) = (yk, i) |N(tk-1) = (yk-1, j))

(
Pr (N(tk-1) = (yk-1, j) | Yk-2)

Pr (Yk-1 | Yk-2)

)

=

yk-1∑
j=0

yk∑
i=0

Pr (N(tk) = (yk, i) |N(tk-1) = (yk-1, j))

(
Pr (N(tk-1) = (yk-1, j) | Yk-2)

Lk-1
E (θ)

)
,

where Yk-1 = {NI(tk-1) = yk-1, NI(tk-2) = yk-2, . . . , NI(t0) = y0} (k = 1, 2, . . . , n) is the history of

the outbreak. Each transition probability captures the probability of observing yk infection events

by the end of the kth day, given the history of the epidemic leading up to the start of the kth day,

which describes a recurrence relation that is initialised by assuming the initial state N(0) = (1, 0).80

The dependence of the likelihood on the underlying parameters θ is made explicit because

the likelihood is used for estimating the parameters of the underlying CTMC (Sprott, 2000). A

commonly used estimate is the maximum likelihood estimate (MLE), defined as the set of parameters

which maximise the likelihood over the parameter space Θ.

A common alternative is to adopt a Bayesian framework in which the parameters θ are treated

as unknown random variables for which we seek their posterior distribution

f(θ|y) ∝ L(y|θ)f(y),

where f(θ) represents our prior knowledge of the parameters. This is achieved herein by generating85

random samples from the posterior distribution using the Metropolis–Hastings Markov Chain Monte

5



Carlo algorithm, which are used to infer the distributional properties of the posterior (Gilks, 2005).

We obtain a point estimate for θ from the Metropolis–Hastings algorithm by taking the median of

the samples from the posterior distribution, commonly referred to as the median posterior estimate

(MPE).90

Illustrative example. We now provide an example to demonstrate an efficient algorithm for calcu-

lating the likelihood. Suppose an outbreak begins with two infections on the first day, and three on

the second. Assuming that the outbreak started with a single infectious case, the basic reproductive

number is estimated from the cumulative incidence counts y0 = 1, y1 = 3 and y2 = 6 using the exact

likelihood L(y|θ) = L1
E(θ)L2

E(θ), given a set of parameters θ = (β, γ), by sequentially calculating95

L1
E(θ) and L2

E(θ).

NI

NR

1 2 3 4

0

1

2

3

(a) State transition diagram for calculat-

ing the probability that NI(1) = 3, as-

suming the initial state NI(0) = 1.

NI

NR

3 4 5 6 7

0

1

2

3

4

5

6

(b) State transition diagram for calculating the

probability that NI(2) = 6, given NI(1) = 3 and

NI(0) = 1.

Figure 1: Example of how the exact likelihood is calculated, using the data set x1 = 2 and x2 = 3.

The transition probability L1
E(θ) is defined as the probability of observing three infection events

in the CTMC model by time t = 1, assuming N(0) = (1, 0). Since NI is monotonically increasing,

the computational effort of this calculation can be reduced by truncating the state space to contain

only states with 1 ≤ NI ≤ 4. The resulting state space is shown in Figure 1a, in which the green100
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state is the initial state, the yellow states are states with NI = 3, the blue states are ordinary

transient states, and the red states are absorbing states. The absorbing states with NI = NR are

extinction states which we will later condition N(t) on never reaching, hence transition into these

states is denoted by a dashed arrow. It follows that the transition probability L1
E(θ) is obtained

by evolving the distribution of N(t) from time t = 0 to time t = 1 using the Kolmogorov forward105

equations, and then adding up the probability that N(1) is in any of the yellow states.

We now seek the transition probability L2
E(θ), which is defined as the probability that NI(2) = 6,

given the history Y1 = {NI(0) = 1, NI(1) = 3}. In order to consider N(t) conditioned on the event

Y1 for t ≥ 1, the distribution of N(1) must be conditioned on being in the set of the yellow states

in Figure 1a, which is given by

Pr (N(1) = (3, i) | Y1) =
p(1,0),(3,i)(1)

L1
E(θ)

, for i = 0, 1, 2.

To calculate L2
E(θ) we consider the state space truncation containing all states in S with 3 ≤ NI ≤ 7.

This is shown by Figure 1b, in which the initial distribution across the green states is provided by

N(1)|Y1, and the yellow states denote states with NI = 6. It follows that the transition probability

L2
E(θ) is obtained by evolving the distribution of N(t)|Y1 from time t = 1 to time t = 2 using the110

forward equations, and then adding up the probability assigned to each of the yellow states.

The exact likelihood may now be computed from the product of the transition probabilities

L1
E(θ) and L2

E(θ). This algorithm may be extended to include more days of observations by gener-

alising the procedure for calculating L2
E(θ).

A computationally-efficient approach. It is often computationally infeasible to evaluate the exact115

likelihood for a large population of individuals. However, under these circumstances the diffusion

approximation of the underlying CTMC provides a computationally-efficient approach for approx-

imating the exact likelihood (Ross et al., 2006, 2009; Ross, 2012). In the following discussion we

provide a brief outline of how this methodology is applied to the class of density dependent CTMCs.

For more detail, see Kurtz (1970, 1971); Ethier and Kurtz (2008).120

The main technical requirement of the asymptotic approximations of Kurtz (1970, 1971) is that

the CTMC is density dependent. A CTMC is density dependent if its transition rates can be written

in the form q(n,n+ `) = νf(n/ν, `), ∀n,n+ ` ∈ S for a suitable function f and a scaling constant

ν ∈ R, taken to be the population ceiling N , herein. The asymptotic limits then refer to the density

process NN (t) = N(t)/N which depends on the current state n only through the density ñ = n/N ,125
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for which ñ ∈ E and E = [0, 1]2. In a slightly more general definition of density dependence, the

function f is realised asymptotically (for large N), see Pollett (1990).

The first of these asymptotic approximations is the deterministic approximation (Kurtz, 1970)

which describes the mean trajectory of the scaled process NN (s) over a finite time interval. The

deterministic approximation n(t) ∈ E is the unique solution to the system of ordinary differential

equations (ODEs) dn(t)/dt = F (n(t)) where F (ñ) =
∑
` f(ñ, `), provided n(0) = N(0)/N . The

second approximation is the diffusion approximation (Kurtz, 1971) which describes the fluctuations

of the density process about its deterministic approximation. The centred diffusion approximation

Z(t) =
√
N (NN (t)− n(t)) is a Gaussian diffusion process with expected value 0 and covariance

matrix Σ(t), given by the unique solution to the system of ODEs

dΣ(t)

dt
= B(t)Σ(t) + Σ(t)BT (t) +G(t), Σ(0) = 0,

where B(t) = ∇F (ñ(t)) and [G(t)]i,j =
∑
` `i`jf(ñ(t), `). It follows that the diffusion approxima-

tion of the population process N(t) is a Gaussian diffusion process with mean value Nn(t) and

covariance matrix NΣ(t). We now ground these ideas by applying them to the DA process.130

The DA process is density dependent with the relevant functions

f(ñ, e1) = β(s0 − nI)(i0 + nI − nR),

f(ñ, e2) = γ(i0 + nI − nR),

where s0 = S(0)/N and i0 = I(0)/N . As such, the density process NN (t) is a CTMC taking

values ñ = n/N for all n ∈ S. The density nI denotes the proportion of individuals who have been

infected and the density nR denotes the proportion of individuals who have recovered.

The deterministic approximation of the density DA process, ñ(t) ∈ E, is the unique solution to

the system of ODEs

dnI
dt

= β(s0 − nI)(i0 + nI − nR),

dnR
dt

= γ(i0 + nI − nR),

provided ñ(0) = (NI(0)/N,NR(0)/N). The fluctuations of the density process about the determin-

istic trajectory ñ(t) are captured by the centred diffusion approximation Z(t) which is a Gaussian

diffusion process with mean 0 and covariance matrix Σ(t) = (σi,j(t) : i, j = 1, 2) whose elements
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are the unique solutions to the system of ODEs

dσ1

dt
= 2βσ1 (s0 − i0 + nR − 2nI)− 2βσ1,2 (s0 − nI) + β (s0 − nI) (i0 + nI − nR) ,

dσ1,2

dt
= γ (σ1 − σ1,2) + βσ1,2 (s0 − i0 + nR − 2nI)− βσ2 (s0 − nI) ,

dσ2

dt
= γ (i0 + nI − nR + 2σ1,2 − 2σ2) .

Therefore, a working approximation of the DA process N(t) is a Gaussian diffusion process with

mean N ñ(t) and covariance matrix NΣ(t). Hence, the diffusion approximation of the transition

probability pm,n(θ ; t) is the transition density fN (θ ;n,m, t), ∀n,m ∈ S, which is given by

fN (θ;n,m, t) =
1

2πN
√
|Σ(t)|

exp

(
−1

2
(m/N − ñ(t))

T
Σ−1(t) (m/N − ñ(t))

)
.

We are now able to write down the diffusion likelihood as

L(y|θ) =

n∏
k=1

LkD(θ)

in which the transition probabilities are replaced by the transition densities LkD(θ) (k = 1, 2, . . . , n)

defined by

LkD(θ) =

yk-1∑
j=0

yk∑
i=0

fN (θ ; (yk-1, j), (yk, i), 1) Pr (N(tk-1) = (yk-1, j) | Yk-1) .

The diffusion likelihood is calculated by using the transition densities as a crude midpoint ap-

proximation to the transition probabilities. In the context of Figure 1a, the transition probability

L1
D(θ) is an approximation of L1

E(θ) in which the probability of each of the yellow states is approx-

imated by the transition densities fN (θ; (1, 0), (3, i), 1), for i = 0, 1, 2. It follows that the initial

distribution over the green states in Figure 1b can be approximated by normalising the density of

each state as follows,

Pr (N(1) = (3, i) | Y1) =
fN (θ; (1, 0), (3, i), 1)

L1
D(θ)

, for i = 0, 1, 2.

Provided the population N is large, the diffusion approximation is highly accurate and more

computationally-efficient than the exact likelihood. However, the diffusion approximation breaks135

down if the population of at least one compartment of the population process (S, I) is close to zero,

as is the case during the early stages of an emerging epidemic (Kurtz, 1971; Barbour, 1980).
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3. Accounting for bias during the early stages of an emerging epidemic

The DA process discussed up to this point imposes no restrictions on the trajectory of the

incidence count NI . However, if the probability of initial fade out is not considered appropriately,140

then the resulting estimates of R0 are positively-biased. In this section we condition the DA process

on eventually reaching a particular set of states T ⊂ S, such that once the process hits a state in T

it may be considered an established outbreak. Note that we now refer to the original DA process

as the unconditioned DA process.

The conditioned DA process is a CTMC taking values (NI , NR) in the state space S. Define

un, ∀n ∈ S as the probability that the unconditioned DA process ever hits a state in T , starting

from the state n (Norris, 1997). Then ∀n,m ∈ S, with m 6= n, the conditioned DA process has

the transition rates

q̃(n,m) =

(um/un) q(n,m) if n /∈ T ,

q(n,m) otherwise,

with the condition that q̃(n,n) = −
∑

m 6=n q̃(n,m) (Waugh, 1958).145

The set T may be defined as any subset of S provided there is a non-zero probability of reaching

T from at least one state in S \ T . We define T as the set of all states with NI > nT , where nT is

defined as the threshold number of infection events. The threshold may be determined a-priori with

the understanding that once NI exceeds nT , there must be a high probability that the outbreak is

established. Hence, the conditioned likelihood is

L(y|θ) =

kT∧n∏
k=1

LkC(θ)

n∏
k=kT +1

LkE(θ),

where kT = min{k|yk > nT }, kT ∧ n = min{kT , n}, and LkC(θ) (k = 1, 2, . . . , n) are the transition

probabilities of the conditioned DA process. Clearly, a more rigorous choice for T would reflect the

number of infectious individuals, rather than the number of infection events. However, this choice

is less convenient to implement because it depends on the difference NI−NR, where NI is observed

but NR is not. Furthermore, it is generally safe to assume that an outbreak is established if a large150

number of individuals have become infected, unless R0 < 1.

The conditioned likelihood is calculated via the same algorithm as the exact likelihood, with the

natural generalisation that the conditioned transition rates are used in place of the unconditioned

transition rates for k = 1, 2, . . . , kT . In particular, the dashed transitions in Figures 1a and 1b are

10



removed from the model and the remaining transition rates are adjusted so that the CTMC will155

eventually reach the set T with probability one.

4. A computationally-efficient approach

The conditioned likelihood is computed via the forward equations which are computationally

prohibitive for large N . Under the assumption that the outbreak is established by the time the

number of infection events reaches nT , it is reasonable to assume that the diffusion approximation

will provide an accurate approximation of the process thereafter. Hence, we define the conditioned

hybrid approximation as the hybrid discrete–continuous process which has the dynamics of the

conditioned DA process while NI ≤ nT , and the dynamics of the diffusion approximation otherwise.

It follows that the conditioned hybrid likelihood is

L(y|θ) =

kT∧n∏
k=1

LkC(θ)

n∏
k=kT +1

LkD(θ).

Computing the conditioned hybrid likelihood is achieved in the same way as the conditioned likeli-

hood and the diffusion likelihood, with the exception that the initial distribution on the (kT + 1)th

day is computed from the final distribution of the conditioned DA process at the end of the kT th160

day.

5. Results

In this section we demonstrate the accuracy and utility of our methodology by using it to

estimate R0 from daily incidence data from the first two weeks of an outbreak. Our analysis is

comprised of two parts. First we demonstrate that conditioning reduces bias in estimates of R0.165

Second, we demonstrate that the hybrid approximation provides an accurate and computationally-

efficient means for estimating R0 during the initial stages of an outbreak. To achieve this, we

consider the four different parameter regimes displayed in Table 2. The values of R0, γ and N have

been selected to be representative of an influenza-like outbreak in a realistic population. The value

of N also guarantees that the susceptible pool will not be depleted during the first two weeks of170

the epidemic, so we will be estimating R0 from data during the early stages of the outbreak. We

vary R0 between Regimes 1 and 2 to investigate the effect of the underlying value of R0 on the

estimated R0. We vary the threshold between Regimes 1 and 3, and Regimes 2 and 4 to investigate
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the sensitivity of the conditioned likelihood to the threshold. In each regime, we consider 1, 000

independent simulated realisations of the SIR CTMC, each of which starts with a single infectious175

case, has a total duration of two weeks, and exceeds 50 infection events by the final day of the

outbreak. We then illustrate the utility of our methodology by applying our conditioned hybrid

process to an outbreak of pandemic influenza.

Parameter Regime 1 Regime 2 Regime 3 Regime 4

R0 1.2 1.4 1.2 1.4

nT 50 50 20 20

γ 1/3 1/3 1/3 1/3

N 107 107 107 107

I(0) 1 1 1 1

Table 2: Parameters used for investigating our methodology. γ and R0 are representative of influenza and N ensures

that the susceptible pool is not depleted during the first two weeks of the epidemic.

In each regime we obtain the MLE and MPE of R0 under the parameterisation θ = (1/γ,R0),

for θ ∈ Θ, where Θ contains all 1/γ,R0 ≥ 1/10. To calculate the MPEs we use the exponential

prior

f(1/γ,R0) =
1

c1c2
e−(1/c1γ)−R0/c2 ,

which favours small values of 1/γ and R0, but provides support to all 1/γ,R0 > 0. We selected

c1 = 5 and c2 = 1.3 to provide a reasonable amount of weight to values of 1/γ and R0 which180

are realistic for an influenza-like outbreak, see Figure 2. Our proposal density is a truncated

bivariate Gaussian with support Θ and fixed covariance structure var(1/γ) = 1, var(R0) = 1/2 and

cov(1/γ,R0) = 0. For each simulated data set, we generate four independent Markov chain Monte

Carlo realisations on Θ consisting of 200, 000 iterations, and discard the initial 20, 000 iterations as

burn-in.185

To calculate the MLEs we maximise the log likelihood function `(y|θ) = log(L(y|θ)) on Θ using

MATLAB’s fmincon function. We found that in some cases a MLE did not exist because the

optimisation routine failed to converge. These cases were characterised by realisations where the

number of infection events remained low for the first week before growing rapidly in the second

week. These realisations have were dropped from the following analysis on the basis that they do190
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Figure 2: Marginal densities of the prior distribution of 1/γ and R0.

not contain enough information to provide a reliable MLE.

Validation of the conditioned approach. We begin by presenting the MLEs and MPEs of R0, across

all Regimes. Figure 3 contains density estimates of the MLEs and MPEs under Regimes 1 and

2, plotted on the (1/γ,R0) axes. Each row contains parameter estimates according to a different

model: unconditioned/conditioned DA process, unconditioned/conditioned hybrid process, and195

diffusion process. Figure 4 contains density estimates of the MLEs and MPEs under Regimes 3 and

4 for the conditioned DA process and conditioned hybrid process. Note that the density estimates of

the MPEs are clearly different to the prior distribution, suggesting that our MPEs are not sensitive

to the choice of prior distribution.

The density estimates of 1/γ and R0 appear unimodal with a strong correlation between 1/γ200

and R0(= β/γ). The distributions appear non-symmetric, with a higher density associated with

estimates which have smaller values of 1/γ and R0. Under all regimes, the distributions obtained via

maximum likelihood and Bayesian inference appear similar. The unconditioned estimates appear to

favour higher values of R0 and 1/γ than their conditioned counterparts, which we now investigate

in more detail.205

In the following analysis we use bean plots to compare independent data sets. The bean plot is

comprised of horizontal side-by-side box plots for which the whiskers represent the 2nd and 98th

percentiles. The outliers are shaded according to their distance away from the median. The box

plots are accompanied by the corresponding density estimates which provide a more informative

view of the distribution of the data.210
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Figure 3: Density estimates of the MLEs and MPEs of (1/γ,R0) obtained under Regimes 1 and 2. The rows contain

estimates from the: unconditioned/conditioned DA process, unconditioned/conditioned hybrid process, and diffusion

process. The density estimates demonstrate broad agreement between estimates of R0
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Figure 4: Density estimates of the MLEs and MPEs of (1/γ,R0) obtained under Regimes 3 and 4 from the conditioned

DA process and conditioned hybrid process.

Figure 5 contains bean plots of the MLEs and MPEs of R0 from the unconditioned DA process

against the conditioned DA process, with the vertical dashed black line representing its true value.

The unconditioned estimates are biased towards higher values of R0 than the conditioned estimates

and have a larger IQR. The unconditioned estimates show more bias in Regime 1 than Regime

2, presumably because the lower value of R0 leads to a higher chance of extinctions and hence215

conditioning has a more significant impact on the transition rates. The conditioned MPEs show

less bias than the MLEs though both MLEs and MPEs have a similar IQR in each regime. The

MLEs appear more susceptible to outliers. We determined the cause of these outliers to be relatively

uninformative realisations which do not provide enough information to obtain a reliable estimate

of the underlying values of 1/γ and R0.220

Figure 6 contains bean plots of the paired difference between estimates from the unconditioned

DA process and the conditioned DA process from Regime 1, plotted against Regime 2, where Fig-

ure 6a shows the difference in estimates of R0, and Figure 6b shows the difference between estimates

of the expected proportion of individuals who experience infection. Here, we have defined the dif-

ference to be the value of the unconditioned estimate minus the conditioned estimate. Figure 6a225
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Figure 5: Bean plots of the estimated R0 under Regimes 1 and 2. Bean plots are comprised of side-by-side box

plots (where the whiskers represent the 2nd and 98th percentiles) plotted on top of a kernel density estimate. The

conditioned estimate is smaller than the unconditioned estimate in every case. The unconditioned estimates in

Regime 1 appear more biased than the unconditioned estimates in Regime 2.

shows that the unconditioned estimates of R0 are always larger than the unconditioned estimates.

On average, the unconditioned estimates are approximately 0.3 higher than the corresponding con-

ditioned estimates. In addition, the MLEs appear more variable than the MPEs, although both

distributions have a similar median.

Figure 6b translates the differences in estimates of R0 into differences in the expected proportion230

of individuals of who experience infection, which provides an indication of the extent to which the

unconditioned DA process overestimates the size of the outbreak. The median difference in the

MLE (MPE) of the expected final epidemic proportions are 26% (20%) and 20% (13%) in Regime

1 and Regime 2. Meaning that even the most conservative estimate (MPE in Regime 2), over-

estimates the size of the outbreak by 13% of the total population, in 50% of realisations. This may235

have a significant impact on how public heath authorities perceive an emerging epidemic.
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Figure 6: Bean plots of the paired difference between estimates from the unconditioned DA process and the con-

ditioned DA process in Regime 1 plotted against Regime 2, where the difference is defined as the unconditioned

estimate minus the conditioned estimate. In all cases the conditioned estimates are smaller than the unconditioned

estimates.

Figure 7 contains bean plots of the paired difference between the conditioned DA process esti-

mate of R0 in Regimes 1 and 2 against Regimes 3 and 4. On average, the estimates in Regimes 3

and 4 are higher than those of Regimes 1 and 2, suggesting that the probability of extinction is con-

siderable even after NI has exceeded 20. However, the paired differences exhibited here are smaller240

than the paired differences exhibited in Figure 6a, suggesting that conditioning on a threshold of

20 is preferable to not conditioning at all. It is also clear that the change in the estimated R0 is

lower if the underlying value of R0 is higher.

Validation of the hybrid approach. We now define the paired unconditioned hybrid (diffusion) dif-

ference as the estimate of R0 from the unconditioned hybrid (diffusion) process minus the corre-245

sponding estimate from the unconditioned DA process. Figure 8 contains bean plots of the paired

unconditioned hybrid differences against the paired diffusion differences, under Regimes 1 and 2.

17



0.60.50.40.30.20.10

MPE

MLE

Paired differences in R0 between a threshold of 50 and a threshold of 20

(a) Paired difference between Regime 1 and Regime 3.

0.60.50.40.30.20.10

MPE

MLE

(b) Paired difference between Regime 2 and Regime 4.

Figure 7: Bean plots of the paired difference in the conditioned DA process estimate of R0 when the threshold is

decreased from 50 to 20, where the difference is defined as the estimate from a threshold of 20 minus the estimate

from a threshold of 50. The smaller conditioning level in Regimes 3 and 4 do less to reduce the positive-bias of the

unconditioned estimate of R0.

The paired diffusion differences demonstrate more bias and variation than the paired unconditioned

hybrid differences, suggesting that the hybrid approximation is more reliable than the diffusion ap-

proximation in this context. This is unsurprising because the diffusion approximation is not suitable250

during the initial stages of an outbreak. However, since the hybrid approximation utilises the dif-

fusion approximation only once the outbreak has become established, the difference exhibited here

may be thought of as the amount of error accumulated by the diffusion approximation in modelling

the initial stages of the outbreak.

Figure 9 shows bean plots of the paired differences between the estimate of R0 from the con-255

ditioned DA and the conditioned hybrid, where the difference is defined as the conditioned hybrid

estimate minus the conditioned DA estimate. The median bias in the MLE of R0 is approximately

−0.05, and the median bias for the MPE of R0 is approximately −0.03. This indicates that the
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Figure 8: Bean plots of the paired differences in the estimated R0 from the unconditioned hybrid against the diffusion.

The difference is defined as the estimate from the approximation minus the estimate from the unconditioned DA

process. The hybrid approximation is more accurate than the diffusion approximation.

conditioned hybrid approximation adds a slight (0.03 to 0.05) downwards bias on top of the 0.3

downwards correction of the conditioned DA process, when compared to the unconditioned DA260

process.

All computations have been carried out with the supercomputing resources provided by the

Phoenix HPC service at the University of Adelaide, which is comprised of a Lenovo NeXtScale

system consisting of 120 nodes, comprised of 2.3 GHz Intel Xeon E5-2698 v3 CPUs. The Bayesian

analysis utilised 3GB of memory and was parallelised over 4 cores. To assess the computational-265

efficiency of the hybrid approximation we calculated the median runtime (in hours) to compute

the MPE, averaged over all 1, 000 realisations. In Regimes 1 and 2 the computational runtime of

the conditioned DA process was 1.27h and 1.55h, compared to 1.17h and 1.17h from the condi-

tioned hybrid likelihood, indicating that the hybrid model did not have the opportunity to take

full advantage of the computational-efficiency of its diffusion dynamics. In Regime 3 the median270
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Figure 9: Bean plots of the paired differences between the conditioned DA estimate of R0 and the conditioned hybrid

estimate of R0, where the difference is defined as the conditioned hybrid estimate minus the conditioned DA estimate.

The hybrid approximation exhibits a small amount of bias.

computational runtime of the conditioned DA process was 0.72h compared to 0.5h from the condi-

tioned hybrid likelihood. In this case the threshold is lower so the hybrid approximation utilised its

diffusion dynamics more than in Regimes 1 and 2, hence the hybrid approximation was noticeably

faster than the DA process, on average. It’s worth noting that the hybrid approximation scales

better than the DA process with respect to the total number of observed infection events because275

its diffusion dynamics are relatively inexpensive, compared to CTMC dynamics.

Application to pandemic influenza. The first human infected with A(H1N1)pdm09 was recorded

in the United States on the 15th of April 2009 (Gibbs et al., 2009; Team, 2009). Australia’s ini-

tial response was to delay the entry and spread of the disease by enhanced case-finding, isolation,

testing and treatment of incoming travellers with influenza-like illnesses; and prophylactic treat-280

ment and home quarantine of the close contacts of suspected/confirmed cases. The first confirmed
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case in Australia was detected in a traveller returning home from the United States on the 9th

of May. Subsequently, the first confirmed case in WA was detected in a traveller returning home

from Canada via the United States on the 24th of May. On the 13th of June the WA government

deemed the outbreak to be widespread and asked doctors to cease active case-finding, and priori-285

tise influenza testing only to persons with severe influenza-like illness or established medical risk

conditions (Weeramanthri et al., 2010). Prior to the 13th of June, all suspected or confirmed cases

were actively followed-up and travel histories were recorded. This resulted in 102 confirmed cases

and follow-up of 232 household contacts, plus a large number of aeroplane and school contacts. Of

these 102 cases, 53% either originated in Victoria or were directly related to cases originating in290

Victoria. By the 30th of June, a total of 247 cases had been reported.

We are now considering a single outbreak so instead of reporting the distribution of the MLEs

and MPEs, we now report the marginal distribution of R0. We do so by sampling from the posterior

distribution of R0, as before, except this time we report the (2,25,50,75,98) percentiles of the samples

from this distribution, rather than just its median. To achieve this, we use the same parameters295

as the previous analysis (4 chains of 200, 000 iterations with 20, 000 iterations as burn-in) with the

exception that the population size is now assumed to be 2, 040, 000, the population of Perth, and

the mean of the marginal prior distribution of 1/γ is set to 3. We changed the mean of 1/γ to be

consistent with other estimates of the mean serial interval of A(H1N1)pdm09 of 2.8 days (Nishiura

et al., 2009a,b; Munayco et al., 2009). To assess the consistency of our methodology, we estimate300

the distribution of R0 at a weekly resolution from the 24th of May to the 1st of August. Since the

total number of cases by the 1st of August is prohibitively large for the DA process, we use the

hybrid process instead. To demonstrate the impact of conditioning, we estimate the distribution of

R0 with and without conditioning, at the weekly intervals.

Figure 10 shows the number of notified cases of A(H1N1)pdm09, and box plots of the estimated305

distribution of R0 from the conditioned hybrid in yellow and the unconditioned hybrid in ochre.

The metrics of the conditioned distribution are always lower than the corresponding metrics of the

unconditioned distribution. This difference is most prominent during the first few weeks of the

outbreak and gradually subsides as the outbreak progresses because the impact of initial fade out

decreases. The variability in the estimated distribution of R0 can also be observed to decrease310

as the outbreak progresses. The MPE of R0 from the conditioned model appears more stable

than the MPE of the unconditioned model, which is influenced more heavily by a spike in cases

21



0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

E
st

im
a
te

o
f
R

0

30
M

ay

6
J
u

n

13
J
u

n

20
J
u

n

27
J
u

n

4
J
u

l

11
J
u

l

18
J
u

l

25
J
u

l

1
A

u
g

0

20

40

60

80

100

120

140

Date

N
u

m
b

er
o
f

n
o
ti

fi
ed

ca
se

s

Conditioned hybrid estimates of R0 from A(H1N1)pdm09

Number of notified cases
Conditioned
Unconditioned

Figure 10: Number of notified cases of A(H1N1)pdm09 from WA with box plots of the estimated distribution of R0

from the conditioned and unconditioned hybrid process. The conditioned hybrid process estimates a lower R0 than

the unconditioned.

which occurred during the third week of the outbreak. Our MPEs of R0 from the conditioned

hybrid process vary between 1 and 1.1, which are consistent with those in the literature for this

outbreak (Kelly et al., 2010). The computational runtime of this analysis was under 1.5h for the315

first three weeks of the outbreak, and over a day for week 8 onwards.
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6. Discussion

We have presented an approach to estimating R0 from the SIR CTMC using daily incidence

count data from the early stages of an emerging outbreak. This approach is conditioned on the

observed number of infection events exceeding a predetermined threshold, at which stage the out-320

break is regarded as established by public health officials. We also presented a highly accurate and

computationally-efficient approximation applicable when the population size under consideration is

computationally forbidding. We illustrated the utility of these approaches by estimating R0 from

multiple simulated outbreaks with influenza-like parameters and found our conditioned estimates

of R0 to be 0.3 smaller than the unconditioned estimate, on average. In addition, we demonstrated325

that the hybrid approach is more computationally-efficient than the standard CTMC approach and

more accurate than the diffusion approximation.

We applied our methodology to an outbreak of A(H1N1)pdm09 in WA. We found that the

conditioned hybrid process provides a more consistent estimate of R0 during the initial stages of

the outbreak, compared to the unconditioned hybrid, and that our estimates agree with those in330

the literature. However, our assumption that the outbreak is established by the time that the

number of infectious individuals exceeds 50 may potentially be inaccurate in this case, considering

that the number of notified cases is low for the first five weeks of the outbreak. Furthermore, a

significant proportion of the notified cases during the initial stages of the outbreak are originated

outside of WA, thereby positively biasing our estimates of R0. Hence, it would be more appropriate335

to model this outbreak as one in which the number of infectious individuals eventually exceeds

102, considering that this is the number of notified cases at the time that the relevant authorities

deemed the outbreak to be established (Kelly et al., 2010). In addition, the model should also allow

infectious individuals to enter the population, rather than modelling the population as a closed

system.340

In general terms, the simple SIR CTMC used here is not a biologically plausible model. It

makes unrealistic assumptions about the dynamics of the disease, such as the assumption that it has

no incubation period, and the assumption that each individual’s infectious period is exponentially

distributed. Furthermore, it does not account for other sources of bias such as incomplete reporting,

reporting rates which change over time, population heterogeneity (such as spatial variation, age-345

specific or household clustering of contacts), imported infectious cases, and pre-existing immunity.

However, the salient point of the methodology presented here is that conditioning is a simple
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mathematical tool which may be applied to a wide range of CTMC models as a means of obtaining

less-biased estimates of R0 using case incidence data from the early stages of an outbreak.

We are currently generalising the methodology presented here to a partially observed SEIR350

model. The inclusion of an incubation period and an unobserved infectious class should make this

model more suitable for estimating the parameters of real outbreaks.
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