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Abstract 

 

Prostate cancer (PCa) is a major public health problem worldwide. In Australia, it is the 

most common non-dermatological cancer and second leading cause of cancer related death 

in men. The risk of being diagnosed with PCa increases with age, and 1 in 6 men are 

estimated to be affected in their lifetime. Given that Australia has an ageing population, it 

is projected that the number of men living with PCa will increase from 120,000 to 267,000 

by 2017. While significant advances have been made in the treatment of localised, organ-

confined prostate tumours, the disease becomes incurable once it has metastasized. Thus, 

identifying mechanisms that contribute to PCa spread is an urgent requirement.  

A considerable body of research has demonstrated that aberrant expression of microRNAs 

(miRs), a class of small non-coding regulatory RNAs, can be an important factor in 

prostate cancer metastasis. Previous studies in our laboratory identified serum miR-194 

and miR-375 as novel markers of disease progression in men with PCa. However, whether 

these two miRNAs play a direct role in the biology of prostate tumors is unknown. My 

PhD aimed to assess the role of miR-194 and miR-375 in PCa progression and metastasis.  

My work demonstrated that miR-194 enhanced pro-metastatic features of PCa cells, 

including migration, invasion and epithelial mesenchymal transition (EMT), in vitro and 

also augmented metastasis in vivo. I identified and validated SOCS2 as a novel, direct and 

biologically relevant target of miR-194. My research supports a model whereby targeting 

of SOCS2 by miR-194 leads to activation of the JAK2/STAT3 and ERK1/2 signalling 

pathways, two key pathways involved in promoting PCa metastasis. Further, I have 

demonstrated that miR-194 is regulated by GATA2, an oncogenic transcription factor in 

PCa. 

On the other hand, my work demonstrated that miR-375 is a potent tumour suppressor 

miRNA, as it can inhibit EMT, invasion and growth of prostate cancer cells. I identified 

YAP1, a transcriptional coactivator and a potent oncogene, as a direct and biological 

relevant target of miR-375. Additionally, I demonstrated that miR-375 was under the 

direct transcriptional control of EMT-promoting factor, ZEB1. 
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Collectively, these findings provide greater understanding of the role of miR-194 and 

miR-375 in prostate cancer metastasis. This information could inform the potential 

application of these miRNAs as biomarkers, and could lead to efforts to target miR-194 to 

prevent prostate cancer metastasis.  
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1.1. Anatomy and physiology of the prostate gland 

The prostate gland is a small, rounded organ with a diameter of approximately 4 cm. It is 

positioned immediately below the urinary bladder, where it encircles the proximal portion 

of the urethra. The prostate consists of glands, smooth muscles and connective tissue and 

is enclosed by a fibrous capsule-like structure. The glandular ducts open up into urethra. 

The human prostate can be classified by two different systems; zones or lobes (Figure 

1.1). The zonal classification is used more in pathology; classifying the prostate into four 

different regions – the peripheral, central, transition and the anterior-fibromuscular zone 

(McNeal 1981). The peripheral zone (PZ), where the majority of prostate cancers 

originate, forms about 75% of the prostate and surrounds the urethra (McNeal, et al. 

1988). The central zone (CZ) surrounds the ejaculatory ducts and forms 25% of the 

prostate. Only 2.5% of prostatic cancers arise in this region, however the cancers that do 

develop here are more aggressive (Cohen, et al. 2008). The transition zone (TZ) accounts 

for around 20% of prostatic cancers and surrounds the proximal urethra (Vargas, et al. 

2012). The TZ grows larger over time; benign prostatic enlargement originates in this 

region. The final region, the anterior fibro-muscular zone, consists of muscle and fibrous 

tissue only. The lobe classification system also divides the prostate into four different 

regions, the anterior lobe (roughly the same as the TZ), posterior lobe (comparable to the 

PZ), lateral lobes (spans all zones) and the median or middle lobe (CZ). This classification 

is usually used when describing the anatomy of the prostate. 

1.2. Morphology of the prostate gland 

The glandular ducts are lined by a prostatic epithelium where three distinct cell types can 

be distinguished; luminal cells, basal cells and neuroendocrine cells (Figure 1.2). The 

predominant cell type is the secretory luminal cell. Luminal cells are terminally 

differentiated and characterised by the expression of the androgen receptor (AR) (Sar, et 

al. 1990). They produce PSA and prostatic acid phosphatase (PAP) and they are dependent 

on androgens for survival (Kyprianou and Isaacs 1988). The basal cells are relatively 

undifferentiated, express low levels of AR (Bonkhoff and Remberger 1993), are not 

dependent on androgens for survival (Kyprianou and Isaacs 1988; Sar et al. 1990) and lack 

secretory function and expression of PSA. Although their function is not fully understood, 

it is believed that a subset of the basal cells function as stem cells in the prostate (Isaacs 
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1999). It has been suggested that the androgen-independent (AI) prostate stem cells give 

rise to a population of androgen responsive transit amplifying cells that in turn can 

amplify the number of luminal cells (Collins and Maitland 2006; Isaacs 1999; Maitland, et 

al. 2006). The characteristics of the transit amplifying cells are proposed to be 

intermediate between basal cells and luminal cells. Finally, the third prostatic epithelial 

cell type is the neuroendocrine cell, which are terminally differentiated and androgen-

insensitive cells dispersed throughout the basal cell layer. They contain serotonin and 

thyroid-stimulating hormone that support the growth of the luminal cells (Bonkhoff, et al. 

1995). The stroma is composed of smooth muscle cells, endothelial cells, nerves, 

fibroblasts, dendritic cells and infiltrating immune cells. The fibroblastic stromal cells 

express AR and are androgen responsive (Loda, et al. 1994; Prins, et al. 1991). They 

produce growth factors for the epithelial cells in an androgen-dependent (AD) manner 

(Culig, et al. 1996) and the crosstalk between the stroma and epithelium is an important 

regulator of prostate growth and differentiation (Chung 1995). 
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Figure 1.1: Prostate anatomy [figure adapted from (De Marzo, et al. 2007)] 

 

 

Figure 1.2: Normal histology of prostate (A- fibromuscular stroma; B- two epithelial 

layers and C - secretions [http://www.pathologyoutlines.com/topic/prostatehistology.html 

– accessed on 02/08/16] 
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1.3. Function of the prostate gland 

The primary function of the prostate gland is to store part of seminal fluid and assist 

ejaculation during sexual activity. The smooth muscles in the prostate help to expel semen 

during ejaculation. The slightly alkaline fluid produced by the prostate makes up 25% of 

seminal fluid and allows sperm motility and viability. The vaginal tract is acidic therefore 

the alkalinity of the semen neutralizes the environment to allow the sperm to stay viable. 

A major constituent of prostatic secretion is prostate specific antigen (PSA), along with 

citrate (18.7 mg/ml), zinc (488 μg/ml), spermine (243 mg/ml) and cholesterol (78 mg/ml) 

(Kumar and Majumder 1995) 

1.4. Regulation of the prostate gland: 

Development and growth of the prostate gland is highly dependent on androgens. The 

production of androgens is regulated from the hypothalamus by secretion of gonadotropin-

releasing hormone (GnRH), which acts on the pituitary gland (Obeid, et al. 2016; Verze, et 

al. 2016). The pituitary responds with secretion of luteinizing hormone (LH), which 

thereafter induces the secretion of testosterone from the Leydig cells of the testis (Obeid et 

al. 2016; Verze et al. 2016). In addition, the hypothalamus release corticotropin-releasing 

hormone (CRH) that induces the secretion of adrenocorticotropic hormone (ACTH) from 

the pituitary gland. ACTH influences the adrenal glands to produce testosterone and other 

weak androgens, for example adrenostenediol (Obeid et al. 2016; Verze et al. 2016). Of 

the circulating testosterone, 95% originates from the testis and the remaining 5% 

originates from the adrenal glands (Figure 1.3). 

Circulating testosterone diffuses into the epithelial and stromal cells of the prostate where 

it is converted by the enzyme 5α-reductase into dihydrotestosterone (DHT). Both 

testosterone and DHT can bind the AR, but DHT has a stronger binding affinity and is 

more potent (Krieg, et al. 1995). Ligand-free AR in the cytosol is bound to heat-shock 

proteins (Hsp-70 and Hsp-90) that stabilize the receptor and protects it from degradation. 

Androgen binding to the receptor induces a conformational change that results in 

dissociation of the Hsp proteins. Two copies of AR with bound ligand then form a 

homodimer that is stabilized by phosphorylation and transported into the nucleus. Inside 

the nucleus, the complex binds to specific DNA sites termed androgen response elements 
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(AREs) and regulates transcription of genes regulating growth, differentiation and 

survival. 

1.5. Effects of androgen deprivation 

The normal prostate gland needs androgens for survival. Androgen withdrawal results in 

loss of secretory function, decreased cell proliferation and a rapid reduction in glandular 

size, which is caused by a widespread apoptosis among the epithelial cells (Medh and 

Thompson 2000). It was for a long time assumed that castration-induced epithelial cell 

death was mediated by decreased AR signalling in the epithelial cells. However, recent 

studies indicate that it is in fact the stroma that regulates the major effects observed in the 

epithelium (Kurita, et al. 2001; Leach, et al. 2015). In addition, the prostate epithelial cell 

death is preceded by a major reduction in blood flow and by apoptosis of the endothelial 

cells (Lissbrant, et al. 2001; Wikstrom, et al. 2002). Castration-induced prostate involution 

is therefore partly caused by insufficient blood flow. 

1.6. Prostate cancer 

Prostate cancer (PCa) is the most common non-dermatological malignancy and the sixth 

most common cause of death from cancer in men worldwide (Miller, et al. 2016; Siegel, et 

al. 2016). PCa is diagnosed either as a localized or metastatic disease. In general, localized 

prostate cancers are asymptomatic and are diagnosed by measuring the serum levels of 

prostate-specific antigen (PSA), an androgen regulated serine protease, in combination 

with digital rectal examination (DRE) (Chou, et al. 2011b; Heidenreich, et al. 2011b). 

Definitive diagnosis subsequently requires transrectal ultrasound (TRUS) followed by 

biopsy (transrectal or transperineal) (Heidenreich, et al. 2011a; Heidenreich et al. 2011b).  

The biopsy also permits grading/staging of the disease. The Gleason scoring system is a 

well-established predictor of pathological stage and oncological outcomes for men with 

prostate cancer (Pierorazio, et al. 2013). Primarily, this architectural scoring system helps 

to characterize well-differentiated cells (cells look almost like normal cells) from poorly-

differentiated cells (cells which are irregular, distorted, and look less like normal cells). A 

detailed Gleason’s pattern scale is shown in figure 1.4. The scoring system (ranging from 

2 to 10) is used to grade the prostate tissue and is currently the best measure of a particular 

tumour’s probability of metastasising (Shah 2009). An overall score comprising the most 

prevalent pattern and the second most prevalent pattern (primary + secondary pattern) is 

termed the Gleason grade (Shah 2009). Following assessment of the tumour by pathologic 
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system, tests including radionucleotide bone scan / bone mineral density (BMD) scan, 

pelvic lymphadenectomy and/or seminal vesical biopsy can also be recommended for 

more detailed staging of the disease (Brawer 2006; Shah 2009). A detail of anatomic 

staging/prognostic groups with definitions of primary tumour (from clinical as well as 

pathological view), regional lymph nodes (both clinical and pathological view) and distant 

metastasis is shown in Table 1 (Adapted from American Joint Committee on Cancer 

(AJCC) guidelines, 7th edition. 2010).  

Currently, there are various therapeutic approaches towards the disease. The approaches 

include watchful waiting/ active surveillance for stage I, radical prostatectomy and/or 

radiation therapy (external beam or brachytherapy) for stage II, radiation with androgen 

deprivation therapy (ADT) for stage III and ADT for stage IV (Heidenreich et al. 2011a; 

Mottet, et al. 2011). However, PCa treatment is highly personalized as the disease varies 

from person to person.  

In metastatic PCa, ADT is the primary treatment of choice. ADT consists of surgical 

(orchitectomy; removal of testicles) or medical castration (with gonadotropin releasing 

hormone (GnRH) agonist)(Haseen, et al. 2010) either alone or in combination with anti-

androgen (Taylor, et al. 2009). This therapy is effective because androgens are critical for 

the development and growth of both normal and malignant prostate cells (Heinlein and 

Chang 2004; Yang, et al. 2005).  However, ADT may also be used when the disease is 

localized (within the prostate) if it is a high risk tumour or surgery/radiotherapy are not the 

best options because of the health of the patient (Brawer 2006; Kohli and Tindall 2010; 

Taylor et al. 2009). Moreover, the invasiveness of surgery makes them unacceptable 

options for many men with localized disease (Potosky, et al. 2002). Despite almost all 

patients achieving remission following ADT, the disease inevitably progresses at a median 

of 2–3 years to an incurable form referred to as castration resistant prostate cancer (CRPC) 

(Karantanos, et al. 2013; Kohli and Tindall 2010). CRPC is associated with poor 

prognosis and shortens the survival time to 16 – 18 months on average (Attar, et al. 2009; 

Harris, et al. 2009; Sun, et al. 2010).  

 



 

15 | P a g e  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3: The production of testosterone is under the superior control of the 

hypothalamus and the pituitary gland. The hypothalamus secretes GnRH that influences 

the pituitary to produce LH and ACTH, respectively. LH influences the testis to produce 

testosterone and ACTH regulates the production of testosterone and other weak androgens 

from the adrenal glands. The majority of the testosterone originates from the testis. GnRH 

= gonadotropin-releasing hormone; LH = luteinizing hormone; ACTH = 

adrenocorticotropic hormone [Image adapted from http://thepainsource.com/ (accessed on 

27/03/2016)] 

http://thepainsource.com/


 

16 | P a g e  

 

 

 

Figure 1.4:  Showing detail Gleason’s pattern scale (Gordetsky and Epstein 2016; 

Maygarden and Pruthi 2005). 

Table 1: Anatomic staging of prostate cancer (Cancer 2010) 
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1.7. Metastasis 

Metastasis is a complex series of events in which cancer cells leave their original niche 

and move to a distant part of the body (Nguyen and Massague 2007). On leaving the 

primary site, these malignant cells are exposed to an unfavourable surrounding which is 

different from their original microenvironment and most of them cannot survive this stress 

(Chaffer and Weinberg 2011; Nguyen and Massague 2007). However, tumours have the 

capacity to generate cells with characteristics that are competent to withstand the 

incompatible environment (Nguyen and Massague 2007). Such characteristics include an 

extensive invasive capacity, an ability to detach and translocate to distant tissue and 

capacity to evade microenviromental constraints (Gupta and Massague 2006; Nguyen and 

Massague 2007).  

Metastasis dissemination of tumour cells can be divided into several key steps (Figure 1.5) 

(Chaffer and Weinberg 2011; Gupta and Massague 2006; Nguyen, et al. 2009; Nguyen 

and Massague 2007; Steeg 2006). First, cancer cells acquire an invasive phenotype that 

allows penetration of the surrounding stroma. Next, the cells enter the bloodstream 

through the microvasculature of the lymphatic system (intravasation). Circulating tumour 

cells that evade detachment triggered cell death (anoikis) display properties of anchorage 

independent survival. Some of these cells can then exit the circulation (extravasation) 

which occurs either by vascular remodeling events that facilitate transmigration or 

subsequent disruption of capillaries by expanding tumour emboli. After invading the 

parenchyma of the target organ, the cancer cells must adapt to the foreign 

microenvironment, continue proliferating and evade the immune response of the organ. 

For cells that achieve this, formation of a secondary tumour (colonization) can take place 

either by immediate proliferative growth following extravasation or after a sustained 

period of micro-metastatic latency.  

Metastasis of prostate cancer primarily occurs to bone (Edlund, et al. 2004). PCa 

metastasis to bone is facilitated by three important factors (Edlund et al. 2004; Kim, et al. 

2005; Podgorski, et al. 2005). First, bones provide a suitable environment for the cancer 

cells due to their high vascularity. Second, prostate tumour cells produce adhesive 

molecules that bind them to marrow stromal cells and bone matrix. These adhesive 

interactions cause the malignant cells to increase the production of angiogenic factors and 

bone-resorbing factors that further enhance tumour growth in bone. Third, bone is also a 

large repository for immobilized growth factors, which are released and activated during 
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bone resorption and thus provide a fertile ground for prostate  tumour cells to grow 

(Roodman 2004). 

1.8. Epithelial mesenchymal plasticity (EMP) during development:  

Epithelia are sheets of polarised cells lining the flat surfaces and cavities in the body 

(Shook and Keller 2003). Of the four basic types of tissue found in human body 

(connective, epithelial, muscle, nervous), epithelial tissues are the most abundant (Shook 

and Keller 2003). They are defined by their attachment to an underlying basement 

membrane and by cell-cell adhesions (Figure 1.6) (Shook and Keller 2003). During 

embryonic development, the cells need to proliferate but due to the rigid structure of an 

epithelium, the cells are restricted in their movements. So, in order to proliferate, the 

epithelial cells are internalized to give rise to mesodermal tissue. This cellular program is 

called epithelial-to-mesenchymal cell transition (EMT), which is a rapid and reversible 

biological process that enables an epithelial cell to undergo multiple biochemical changes 

to a mesenchymal phenotype (Hugo, et al. 2007; Kalluri and Weinberg 2009; 

Klymkowsky and Savagner 2009). Mesenchymal cells generally maintain fewer and less 

permanent contacts with adjacent cells and are motile and invasive (Hay 2005; Micalizzi 

and Ford 2009) (Lim and Thiery 2012).  

The molecular processes underlying EMT include activation of transcription factors, 

expression of cell surface proteins such as β4 integrins, α5β1 integrin, and αVβ6 

integrin and production of extracellular matrix (ECM) degrading enzymes (Kalluri and 

Neilson 2003; Kalluri and Weinberg 2009). However, the core component of an EMT is 

abatement of cell to cell adherence which is largely due to a decrease in the cell adhesion 

molecules, such as E-cadherin, occludins and claudins (Hugo et al. 2007; Kalluri and 

Weinberg 2009). 

The reverse process, termed mesenchymal-epithelial transition (MET) (Yang, et al. 2004) 

(Hugo et al. 2007; Kalluri and Weinberg 2009), also takes place during development. 

During MET the motile and multipolar mesenchymal cells transform to an even array of 

polarised cells (Kalluri and Weinberg 2009). In contrast to the developmental EMT, less is 

known about MET. The best-studied MET event during embryogenesis is the formation of 

the nephron epithelium in the developing kidney (Davies 1996; Hugo et al. 2007). During 

this process, nephric mesenchymal cells aggregate around individual branches of the 

ureteral bud, begin to express laminin, polarize, and eventually develop cell-cell adhesions 



 

19 | P a g e  

 

and differentiate into epithelial cells that form kidney tubules. This dynamic phenotypic 

epithelial-mesenchymal plasticity (EMP) is tightly regulated in different tissues and 

occurs throughout the developmental stages. (Biamonti, et al. 2012). 
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Figure 1.5: The metastatic cascade (Chaffer and Weinberg 2011) 

 

 

 

 

Figure 1.6: Morphologic characteristics of epithelial and mesenchymal cells (Turley, et al. 

2008) 
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1.9. EMP and prostate cancer: 

This section of general introduction was published as a review article.  

Publication:  

Epithelial plasticity in prostate cancer: principles and clinical perspectives. Trends Mol 

Med 2014;20: 643–651. 

Rajdeep Das, Philip A Gregory, Bret G Hollier, Wayne D Tilley, Luke A Selth.  

http://www.cell.com/trends/molecular-medicine/fulltext/S1471-4914(14)00141-5  

 

 

http://www.cell.com/trends/molecular-medicine/fulltext/S1471-4914(14)00141-5
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Continuation of section 1.9: EMP and prostate cancer: 

Over the past decade, the capacity of cancer cells to oscillate between epithelial and 

mesenchymal phenotypes, termed epithelial plasticity (EP), has been demonstrated to play 

a critical role in metastasis. This phenomenon may be particularly important for prostate 

cancer (PC) progression, since recent studies have revealed interplay between EP and 

signaling by the androgen receptor (AR) oncoprotein. Moreover, EP appears to play a role 

in dictating the response to therapies for metastatic PC. This review will evaluate 

preclinical and clinical evidence for the relevance of EP in PC progression and consider 

the potential of targeting and measuring EP as a means to treat and manage lethal forms of 

the disease. 
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Prostate cancer: a major health problem 

PC is the second most common solid tumor in men worldwide and a leading cause of 

cancer-related death [1]. More than 90% of PC-associated mortality is caused by 

metastasis, which occurs primarily to the bones and lymph nodes, although visceral 

metastases in liver and lungs, amongst other sites, are also common [2]. The mainstay 

treatment for men with metastatic PC is androgen deprivation therapy (ADT). ADT 

exploits the fact that normal and malignant prostate cells require androgens [i.e., 

testosterone and 5α-dihydrotestosterone (DHT)], which signal through the AR, for growth 

and survival. ADT typically involves chemical castration to markedly reduce the levels of 

circulating androgens; this can be combined with AR antagonists. While most men 

initially respond to ADT, disease progression invariably occurs after a median delay of 

18–24 months [3]. Cancer that has progressed following failure of ADT is referred to as 

castration-resistant PC (CRPC). CRPC is treated with chemotherapy and/or new 

generation androgen signaling inhibitors (e.g., abiraterone acetate, which inhibits 

androgen biosynthesis, and enzalutamide, a potent AR antagonist), the latter reflecting the 

continued reliance of CRPC tumors on AR signaling. However, these treatments only 

provide marginal survival benefits and palliation, and patients generally die within 2 years 

[4]. Therefore, novel therapies for CRPC, including those that would prevent and/or 

inhibit PC metastasis, are urgently required. 

Epithelial plasticity and metastasis 

Metastasis of carcinomas (epithelial-derived cancers) encompasses a complex series of 

events whereby epithelial tumor cells invade the surrounding stroma, enter blood or 

lymphatic circulation, disseminate to distant anatomic sites, exit the vasculature, and 

colonize a secondary location through metastatic outgrowth. Over the past decade, 

epithelial–mesenchymal transition (EMT) has been demonstrated to play a critical role in 

certain phases of this process [5]. EMT is a normal physiological process whereby sessile 

epithelial cells lose adhesion and detach from tight junctions, change shape and polarity, 

and become more migratory and invasive, and it plays a fundamental role during wound 

healing and morphogenesis. At a molecular level, EMT is associated with loss of epithelial 

factors, such as E-cadherin, epithelial cell adhesion molecule (EpCAM), zona occludens 

protein-1 (ZO-1), some cytokeratins (CKs) and miR-200 family members, and gain of 

mesenchymal factors, such as vimentin, fibronectin, and N-cadherin. Cancer cells hijack 

EMT to facilitate escape from the primary tumor, migration and invasion into the stroma, 

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
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and entry/exit from the bloodstream [6]. In tumors, EMT is thought to be primarily 

triggered by soluble factors secreted from the surrounding stroma and other infiltrating 

immune cells that impinge on tumor cell signaling pathways, including transforming 

growth factor-β (TGF-β), Wnt/β-catenin, fibroblast growth factor (FGF), epidermal 

growth factor (EGF), and Notch, which in turn converge on central transcriptional 

mediators of the EMT program, for example, members of the Snail, Twist, and zinc finger 

E-box-binding homeobox (ZEB) families. These EMT transcription factors (EMT-TFs) 

orchestrate the aforementioned molecular alterations and subsequent underlying changes 

in cell state [6]. Tumor cells that have undergone an EMT often exhibit other properties 

that facilitate metastasis and survival within circulation, including suppression of 

senescence, apoptosis, and anoikis [6]. 

The role of EMT in cancer metastasis had previously been called into question by the 

observation that many metastases possess features of the primary tumor, including the 

expression of epithelial markers (e.g., E-cadherin) [7]. This was clearly inconsistent with 

the expectation that changes in gene expression associated with EMT would be enriched 

in metastases. However, this expectation relied on the hypothesis that EMT produced a 

permanent phenotypic change, whereas it is now clear that cells are capable of reverting 

back to epithelial phenotypes. This so-called mesenchymal–epithelial transition (MET) 

would be expected to facilitate the growth of disseminated tumor cells (DTCs) or 

micrometastases into clinically-relevant metastases, since re-differentiation to an epithelial 

state is associated with restoration of proliferative capacity [8]. There is now compelling 

evidence supporting a critical role for MET in metastatic colonization of secondary sites 

[9, 10, 11, 12, 13, 14]. 

In this review, the term EP will be used to describe reversible transitions between 

epithelial and mesenchymal states (i.e., EMT and MET). Such plasticity is linked to the 

frequent appearance of stem cell-like properties during cancer progression [15, 16, 17, 18], 

a concept that will be addressed further later in the review. 

Epithelial plasticity and prostate cancer progression 

Visualizing EP during cancer progression is inherently difficult because of its transient 

nature, heterogeneity in tumor cell populations, the scarcity of metastatic tissue cohorts, 

and the lack of robust EP biomarkers. Nevertheless, the importance of EP during PC 

progression is now well accepted. Important findings that have led to this realization 
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include, among others: evidence for EMT in circulating tumor cells (CTCs) 

[19, 20, 21, 22]; altered expression of epithelial/mesenchymal markers and EMT-TFs in 

primary tumors compared to normal tissues [23], including specific changes at the 

invasive front [24]; and altered expression of epithelial/mesenchymal markers and EMT-

TFs in response to ADT and chemotherapy ([25, 26, 27], and see below). As is evident 

from these examples, the preponderance of work in this field has substantiated the role of 

EMT during disease progression (for excellent recent reviews, see [28, 29]). In this section 

of the review, the focus will be on more recent evidence implicating the reverse process, 

MET, in PC metastasis and the generation of tumor initiating cells. 

Cell line models have afforded extensive and diverse evidence for MET during PC 

progression. An early study analyzing mesenchymal AT3 cell xenografts in Copenhagen 

rats found that tumors and lung metastases gained expression of E-cadherin and ZO-1 

expression and lost expression of vimentin [30]. Interestingly, in both the primary tumors 

and the metastases, the cells that had undergone an apparent MET clustered in proximity 

to stromal components, highlighting potential interplay with microenvironmental cues. 

Further supporting this concept, DU145 cells co-cultured with hepatocytes exhibited 

upregulation of E-cadherin and increased chemoresistance [31], while 

ARCaPM mesenchymal PC cells gained E-cadherin and lost N-cadherin when grown in the 

presence of bone marrow stromal cells [32]. The most direct evidence for MET 

influencing metastasis was provided by a recent study in which repeated rounds of lymph 

node metastatic selection from mice bearing orthotopic DU145 tumors resulted in cells 

that had gained epithelial and lost mesenchymal features [9]. This elegant in vivo cycling 

strategy not only provided evidence for spontaneous MET during colonization of lymph 

nodes but also facilitated the identification of a novel MET-suppressing miRNA, miR-

424. 

Support for MET in PC progression is further yielded by clinical studies of CTCs and 

circulating biomarkers. CTCs from 10 patients with metastatic CRPC were found to 

coexpress vimentin and epithelial CKs in all cases, while other combinations of mixed 

epithelial/mesenchymal marker expression were also evident [19]. Interestingly, this same 

study examined bone metastasis biopsies from two of the patients and observed loss of 

vimentin expression in the CK-positive tumor foci, providing evidence for an MET during 

metastatic colonization. Studies aimed at assessing the biomarker potential of circulating 

miRNAs have revealed that serum levels of epithelial miRNAs, including miR-194, miR-
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200 family, and miR-375, are associated with metastatic PC and/or predict disease 

progression following surgery for localized disease [33, 34, 35, 36]. Interestingly, 

circulating levels of many of the same miRNAs are prognostic and correlated with CTCs 

in breast cancer [37]. The frequent elevation of epithelial miRNAs in circulation may 

reflect upregulation of these factors, and consequent MET, in CTCs/DTCs to enable 

efficient metastatic colonization. Supporting this concept, miR-194 is expressed at higher 

levels in metastases compared to primary tumors [34] and is upregulated following lymph 

node colonization and MET of DU145 cells [9]. 

The emerging link between epithelial identity and stem-ness further supports the role of 

MET in PC metastasis. The notion that EP fuels the generation of cancer stem cells 

(CSCs) has long been established, with the majority of research indicating that stem-ness 

is generally associated with EMT and mesenchymal features [38]. Recent findings in PC 

models indicate that the opposite can also be true. For example, Celia-Terrassa and 

colleagues found that an epithelial derivative of the PC3 model possessed considerably 

greater metastatic capacity than its mesenchymal counterpart following orthotopic tumor 

cell implantation, despite the latter being more migratory and invasive in vitro [10]. 

Indeed, the epithelial PC3 subtype exhibited enhanced self-renewal, pluripotency, and 

capacity to grow under attachment-independent conditions, leading the authors to 

speculate that CSCs and/or tumor initiating cells (TICs) are enriched in this cell 

population. A similar study demonstrated that E-cadherin-positive but not E-cadherin-

negative PC3 and DU145 cells expressed the stem-ness markers SRY (sex determining 

region Y)-box2 (SOX2), octamer-binding transcription factor (OCT) 3/4, and Nanog and 

were more tumorigenic [39]. Additionally, the tumorigenicity of chemo-resistant DU145 

cells was enhanced after treatment with 5′-aza-deoxycytidine, which led to increased 

expression of E-cadherin and CD44 [40]. A connection between epithelial identity and 

stem-ness has also been demonstrated in other cancer models and in normal physiology: 

for example, loss of the paired related homeobox 1 (Prrx1) transcription factor in the 

mesenchymal BT-549 breast cancer line is accompanied by acquisition of MET and CSC 

features [12], an MET is required for the cellular reprogramming required to induce 

pluripotent stem cells [41], while mouse embryonic stem cells display both stem and 

epithelial properties [42]. 

Although these observations appear to challenge the notion that EMT is coupled to stem-

ness, a more accurate interpretation is that they indicate that stem-ness, plasticity, and 
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tumorigenicity are associated with partial rather than complete changes in cell state [43]. 

This concept is described in more detail in Box 1. In short, the abundant evidence 

coupling EMT to stem-ness and the more recent studies coupling MET/epithelial-ness to 

stem-ness are less likely to be contradictory than reflective of experimentation that 

captures transitional rather than absolute phenotypes. One other important factor that 

complicates such observations is the ability of distinct populations of epithelial-like and 

mesenchymal-like cells to cooperate during migration, invasion, and metastasis; moreover, 

such interactions between the different cell types can also influence the phenotype of the 

other [10]. 

While the aforementioned studies provide compelling evidence for MET in PC metastasis, 

it is important to bear in mind that they all utilized static measurements, which only 

provide information on the specific stage at which the tissues or cells were harvested. 

Tools enabling temporal delineation of EP (see, for example, [12, 13]) that could, for 

instance, be used to demonstrate directly the role of MET in metastatic colonization are 

now critical to advance this field. 

Interactions between epithelial plasticity and prostate cancer treatment response 

Interaction of androgen receptor signalling with epithelial plasticity: implications for 

androgen deprivation therapy 

Androgen signaling through the AR not only regulates prostate growth but is integral for 

maintaining the structure, function, and differentiation status of prostatic epithelium [44]. 

It was therefore somewhat unexpected that the earliest studies examining the interplay 

between AR signaling and EP reported that AR/androgens could stimulate transition to 

cells possessing mesenchymal features. For example, AR activity was positively 

correlated with the invasive capacity of androgen-dependent MDA PC 2b cells [45]. More 

recently, AR has been reported to stimulate expression of ZEB1 by binding to two 

androgen response elements (AREs) in the promoter, although these experiments were 

performed in a PC3 derivative stably expressing AR and could not be confirmed in the 

more relevant AR-positive model, LNCaP [46]. AR can also upregulate the expression of 

Slug, and Slug interacts directly with AR to coactivate gene expression and facilitate 

castration resistance both in vitro and in vivo [47, 48]. Interestingly, there is evidence that 

both the Slug/AR and ZEB1/AR associations are conserved in other tissues, since Slug is 

also induced by androgens in bladder cancer cells via activation of Wnt/β-catenin 

javascript:void(0);
http://www.cell.com/trends/molecular-medicine/fulltext/S1471-4914(14)00141-5#title-footnote-tb0005
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);


 

29 | P a g e  

 

signaling, resulting in EMT and enhanced metastasis of xenografts [49], while AR can 

induce ZEB1 in triple-negative breast cancer cell lines [50]. 

In contrast to the studies described above, an emerging paradigm purports that inhibiting 

androgen signaling results in EMT. ADT in patients increased the expression of N-

cadherin [25] and cadherin-11 [51]. Sun and colleagues demonstrated that castrate normal 

mouse prostate tissue and human LuCaP35 prostate tumor explants displayed a more 

mesenchymal phenotype, and stem cell-like features, compared with non-castrate tissues 

[52]. Importantly, these findings were partially validated by analysis of microarray data 

from an ADT-treated patient cohort. This same study elucidated a bidirectional negative 

feedback loop between AR and Zeb1, revealing a potential mechanistic explanation for 

ADT-mediated EMT. A more recent paper reported that small interfering RNA (siRNA)-

mediated suppression of AR activity enhanced PC cell migration/invasion and EMT via 

chemokine ligand 2 (CCL2)-dependent activation of signal transducer and activator of 

transcription 3 (STAT3) and macrophage recruitment [53]. CCL2 was associated with 

poor prognosis in clinical samples, providing clinical support for this pathway. The link 

between loss of AR activity, STAT3 signaling, and EP was later validated by the 

observation that loss of AR expression resulted in STAT3 activation and the expansion of 

a CSC-like population [54]. Indeed, elevated stem-like cell markers occurred concurrently 

with high STAT3 activity and low AR expression in human prostate tumors. Other work 

has found that AR can antagonize protein kinase C/Twist1, β-catenin, and TGF-β/Smad3 

signaling pathways in PC [55, 56, 57, 58]. Mechanistically, the inverse relationship 

between AR and Twist1 may be explained by the observation that Twist1 is 

transcriptionally repressed by NKX3-1, an androgen-regulated homeobox transcription 

factor [59]. To summarize, AR signaling appears to actively inhibit numerous EMT-

promoting pathways/factors, and ADT can relieve this inhibition. 

Context-dependency of interplay between androgen signaling and epithelial plasticity 

The reasons underlying apparently contradictory findings in relation to interplay between 

androgen signaling and EP remain to be fully elucidated. We favor the view that the 

canonical androgen signaling system, such as that found in normal prostatic epithelium or 

some treatment-naïve tumors, will generally maintain epithelial differentiation and inhibit 

EMT/EP (Figure 1). By contrast, aberrant androgen signaling found in some tumors de 

novo, and enriched for during adaptive responses to therapy and in treatment-resistant 

cells (i.e., CRPC), can promote EMT/EP (Figure 1). One pertinent illustration of this 
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concept is provided by constitutively active AR splice variants (ARVs), which lack the 

ligand binding domain and can therefore signal in the absence of androgen. ARVs are 

upregulated in response to ADT and can be highly expressed in CRPC samples [60]. 

Accumulating evidence suggests that ARV signaling is distinct from that of the canonical 

AR, and may stimulate EMT. For example, overexpression of the constitutively active 

AR-V7 variant in LNCaP cells caused induction of N-cadherin, vimentin, Snail, and Zeb1 

[61]. A transgenic mouse model expressing the ARv657es variant specifically in prostatic 

epithelium developed tumors characterized by elevated levels of vimentin and Twist and 

enhanced Wnt/β-catenin signaling [62], while an equivalent AR-V7 transgenic mouse 

developed prostatic intraepithelial neoplasia, a precursor of malignancy, that exhibited an 

EMT phenotype [63]. The transmembrane protease serine 2 (TMPRSS2):ERG fusion 

protein likely represents another mechanism by which malignancy distorts the relationship 

between AR signaling and EP. Fusions between the AR-regulatedTMPRSS2 gene 

and ETS-related gene (ERG) are found in approximately 50% of PCs and are associated 

with poor prognosis [64]. TMPRSS2:ERG appears to have a diverse and potent role in 

driving EMT: it can upregulate Frizzled4 (FZD4) and thereby augment the Wnt signaling 

pathway, bind to and activate the ZEB1promoter, positively regulate integrin-linked kinase 

and its downstream effectors Snail and lymphoid enhancer-binding factor 1 (LEF-1), and 

directly repress transcription of the EMT-suppressing miRNA, miR-200c [64, 65, 66, 67]. 

Other mechanisms by which malignancy could convert androgen signaling from pro-

differentiation to pro-EP include loss of forkhead box protein A1 (FoxA1), a pioneer 

transcription factor that constrains the AR cistrome to promote growth and epithelial 

identity [48], and AR-independent androgen activity or non-genomic AR activity that 

converges on the β-catenin signaling pathway [68]. 

While we believe that a model whereby aberrant AR signaling can enhance EP is sound 

(Figure 1), it must be noted that prostate specific antigen (PSA) remains a useful indicator 

of treatment response and disease progression in metastatic PC and CRPC [69]. PSA is an 

AR-regulated protease and a prostate epithelial marker. This indicates that aberrant AR 

signaling in advanced disease would still, in the majority of cases, maintain epithelial 

transcriptional programming even if it concomitantly enhances EP. In other words, 

modulation of the AR signaling system in response to malignancy and selective pressures 

imposed by therapy will skew the pro-differentiation versus pro-EP equilibrium but is not 

expected to cause complete phenotypic transitions (see the legend for Figure 1 for more 
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detail). A consequence of this is that tumor cells with AR-driven EP would likely possess 

both epithelial and mesenchymal attributes, potentially conferring the highest metastatic 

capacity (Box 1). 

In short, the complexity of the interplay between AR signaling and EP is likely dictated by 

the status quo of AR signaling in the tumor (or particular cancer model) and is therefore 

highly context dependent. The crosstalk between AR and other signaling pathways such as 

Wnt, TGF-β, Src kinase, and Akt/mammalian target of rapamycin (mTOR), in some cases 

independent of androgen, adds another level of convolution. Another noteworthy 

implication of these concepts is that observations regarding EP made using cell line 

models, many of which are derived from metastases and represent aggressive, abnormal 

forms of the disease with aberrant (or indeed absent) AR signaling, necessitate careful 

interpretation. Contradictory findings in the literature could reflect laboratory-specific cell 

lineages and/or subtly different experimental conditions. 

Interaction of epithelial plasticity with chemo- and radio-therapy of prostate cancer 

The most common chemotherapy for PC is docetaxel, an antimitotic microtubule-

stabilizing agent (taxane). However, approximately half of patients do not respond to 

docetaxel (i.e., exhibit de novo resistance) and all men ultimately develop resistance. The 

development of resistance to chemotherapy has been linked to acquisition of EP in both 

PC model systems and patient samples. For example, docetaxel-resistant DU145 and 

22Rv1 cells lose expression of the epithelial differentiation markers CK18, CK19, and 

PSA [27]. In these model systems grown in vitro and as xenografts, docetaxel resistance 

was suppressed by treatment with agents that target the EMT/stem-promoting NOTCH 

and Hedgehog pathways. Importantly, the loss of CK18/19 was recapitulated in docetaxel-

treated patient metastases and associated with clinical aggressiveness and poor prognosis. 

Other studies have found that high-risk prostate tumors treated with neoadjuvant 

chemotherapy exhibit gene and protein expression alterations indicative of EMT [70, 71]. 

Indeed, loss of E-cadherin was associated with both treatment and the onset of resistance 

[71]. Importantly, ZEB1 siRNA knockdown could partially overcome the drug-resistant 

EMT phenotype in docetaxel-resistant PC3 and DU145 derivatives, providing direct 

evidence for a link between mesenchymal characteristics and chemoresistance [70]. 

Paclitaxel is another taxane that has been trialed as a treatment for CRPC, but is not in 

current clinical use. Similar to findings from preclinical studies of docetaxel, the 

acquisition of paclitaxel resistance in PC cells was associated with enhanced migratory, 
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invasive, colony-forming, and tumorigenic capacity, upregulation of mesenchymal factors 

(ZEB1, vimentin, and Snail), and loss of E-cadherin and keratins [72]. 

Radiotherapy is a common treatment for localized PC, particularly in men with higher risk 

disease, but up to a third of patients experience disease recurrence. Of note, radiotherapy 

is often used in combination with ADT, complicating any associations with EP that are 

identified. Nevertheless, data from cell line models provides evidence linking radio-

resistance to enhanced EP. For example, a recent study generated three radio-resistant PC 

cell lines based on the PC3, DU145, and LNCaP models and demonstrated that resistance 

was associated with enhanced colony formation, invasion, and spheroid formation 

capabilities and elevated expression of mesenchymal and stem-ness markers [73]. More 

evidence linking EP to the cellular response to radiation therapy was provided by studies 

of the ARCaP PC model [32]. An epithelial subtype of ARCaP (ARCaPE) was more 

sensitive to radiation than its mesenchymal counterpart (ARCaPM) and, interestingly, co-

culture of ARCaPE but not ARCaPM cells with stromal cells enhanced radio-resistance. 

Treatment of ARCaP:bone stroma co-cultures with an E-cadherin blocking antibody or a 

pan-integrin blocking antibody increased cancer cell radiation sensitivity, suggesting that 

stroma-induced radiation resistance can be mediated through E-cadherin and integrin 

signaling in epithelial and mesenchymal cells. Collectively, these results demonstrate that 

both mesenchymal phenotypes and re-epithelialization events are associated with radio-

resistance in the ARCaP model. While this appears somewhat paradoxical, it is consistent 

with the emerging concept that the tumor microenvironment plays a critical role in EP and 

treatment response. 

A possible mechanistic explanation for the association between EMT and both chemo- and 

radio-resistance is that the DNA damage response triggered by these therapies causes 

stromal cells to secrete WNT16B, which can activate EMT in neighboring cancer cells 

through the nuclear factor-κB (NF-κB) pathway [74]. Stromal WNT16B is associated with 

poor outcomes in PC and treatment resistance in PC and is also elevated in breast and 

ovarian tissues following chemotherapy, highlighting the potential importance of this 

mechanism. 

Summary of the interplay between treatments for advanced prostate cancer and epithelial 

plasticity 
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The current body of evidence indicates that acquisition of EP is a common outcome of 

treatments for advanced PC and may drive therapeutic resistance. Enhanced EP, 

particularly when it results in tumor cells occupying transitional states along the 

epithelial–mesenchymal spectrum, is often associated with the emergence of tumor-

initiating and stem-like features (Box 1). It follows then that the changes in EP are not 

only a consequence but also a cause of treatment resistance. Therefore, co-targeting EP 

may increase therapeutic efficacy of ADT, chemotherapy, and radiotherapy. A summary 

of associations between PC treatment resistance mechanisms and EP is provided in Table 

1. 

Another important implication from these observations is the potential for cross-resistance 

mediated through EP-related mechanisms. The phenomenon of cross-resistance between 

ADT and chemotherapy is becoming increasingly clinically relevant [75]. While changes 

to the AR signaling pathway during treatment are generally considered to be the most 

important driver of such cross-resistance, enhanced EP may also partly explain this 

phenomenon. 

Targeting and measuring epithelial plasticity to improve patient outcomes 

Targeting AR signaling remains the focus of therapeutic strategies for advanced PC, 

which is justified given the success of newer agents such as enzalutamide and abiraterone. 

Despite these advancements, many patients do not respond to further targeting of AR 

signaling and none are cured. This likely reflects the heterogeneity of lethal prostate 

tumors, which are frequently characterized by a mixed population of AR-positive and AR-

negative cells [2]. Notably, PC stem cells are likely to be AR-negative [76]. These 

observations support the idea of co-targeting EP and associated stem-ness as a means to 

suppress metastasis and CRPC. An exciting preclinical study found that monoclonal 

antibodies targeting N-cadherin could suppress CRPC xenograft growth and metastasis 

[26]. More recent work has demonstrated the therapeutic potential of inhibiting β2-

microglobulin (β2-M), a soluble signaling molecule that promotes EMT, using an anti-β2-

M monoclonal antibody [77]. However, targeting ‘pure’ mesenchymal factors such as N-

cadherin or EMT-inducing factors such as β2-M might be counter-productive in patients 

who have DTCs, CTCs, or dormant micrometastases at the time of treatment, since 

promoting reversion of such cells to an epithelial state could reactivate proliferation and 

facilitate the formation of clinically-relevant metastasis. This may be particularly relevant 

in PC, since malignant cells likely disseminate early from the primary tumor [78]. 
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Therefore, a more optimal strategy may be to target stem-ness factors that are coexpressed 

in epithelial and mesenchymal cell fractions. Indeed, agents that can inhibit Hedgehog, 

NOTCH, and TGF-β signaling are being intensively investigated (e.g., [27, 79]). Targeting 

stem-ness may be particularly relevant in PC subtypes that have lost expression of the AR, 

such as neuroendocrine (NE) tumors. The relationship between NE differentiation, EP, 

and stem-ness is discussed in more detail in Box 2. 

In addition to being a therapeutic target, EP could be a clinically useful biomarker of PC 

progression. PC CTCs are characterized by mixed epithelial/mesenchymal populations and 

stem-ness markers [19, 20, 21, 22], and it is expected that future studies will discover 

correlates of specific CTC plasticity states with clinical outcomes, as has been observed in 

colorectal cancer [80]. In this respect, combining measurements of EP and AR signaling 

markers could potentially improve predictive power [81]. 

Concluding remarks and future perspectives 

Despite the recent advances in the treatment of advanced PC, metastatic disease is 

incurable and a major cause of cancer mortality in men. EP, encompassing both EMT and 

MET, has emerged as a critical factor in PC metastasis. Of note, compared to earlier 

therapies, the newer, more potent drugs for advanced disease may enhance the plasticity of 

tumor cells, exacerbating the importance of EP in PC progression. Reciprocally, EP 

appears to be an important feedback therapy resistance mechanism. Future studies should 

focus on achieving a better understanding of the pathobiology of EP (Box 3). We believe 

some productive avenues of research to achieve this are: (i) measuring how AR signaling 

is altered in response to EMT and enhanced plasticity in general, to define the context-

dependent relationship between these two processes; (ii) elucidating the ‘EP-ome’ in 

diverse PC models; (iii) accurately measuring, in large clinical cohorts including CTCs, 

the impact of treatment on EP (and vice versa); (iv) using data from the preceding aim, 

deciphering the clinical importance of MET in the later phases of metastasis and CRPC; 

(v) expanding the examination of EP-targeted therapeutics in relevant preclinical models; 

and (vi) identifying stem-ness markers that are associated with both epithelial and 

mesenchymal states as possibly therapeutic avenues for exploitation. Collectively, such 

research will lead to new drugs that could be applied in combination with current therapies 

to prevent or restrict metastasis, and yield improved strategies to monitor PC progression, 

with accompanying improvements in outcomes. 
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Figure 1: Interplay between androgen receptor (AR) signaling and epithelial plasticity 

(EP). The left cell highlights mechanisms by which canonical AR signaling can suppress 

transcriptional programs mediating epithelial–mesenchymal transition (EMT) and 

plasticity (depicted by a box within the white nucleus), whereas the right cell highlights 

mechanisms by which aberrant AR signaling can promote such programs. Some of the 

mechanisms underlying aberrant androgen signaling are intrinsic to AR (e.g., the 

emergence of constitutively-active AR splice variants, non-genomic AR signaling), 

whereas others are a consequence of different factors that are altered in the malignant 

and/or therapy-resistant phenotype [e.g., TMPRSS2:ERG (ETS-related gene) gene 

fusions]. Note that in the majority of cases, canonical androgen signaling is still active in 

cancer and therapy-resistant cells; likewise, aberrant androgen signaling can occur in 

normal epithelial cells. However, the pro-differentiation versus pro-EMT/plasticity 

equilibrium is skewed in tumors, particularly following treatment. Thus, pathways shown 

in the left cell would be enriched in normal prostatic epithelial cells, whereas pathways in 

the right cell would be enriched in cancer and in response to selective pressures imposed 

by therapies such as ADT. Not all pathways discussed in the manuscript are shown in this 

figure. 
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1.10. MicroRNAs 

MicroRNAs (miRNAs) are a large family of small (~ 21 nucleotides long) non- coding 

RNAs (Davis and Hata 2009; Krol, et al. 2010). They are key regulators of gene 

expression at the posttranscriptional level (Bartel and Chen 2004; Krol et al. 2010). 

Mature miRNA guides the multi-protein RNA-induced silencing complex (RISC) to 

silence target mRNAs that share regions of homology. This silencing occurs either by 

mRNA cleavage or translational repression (Figure 1.7).  
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In the nucleus, primary miRNAs (pri-miRNA), which can be several thousand bases long, 

are transcribed either by RNA polymerase II or III from independent miRNA genes or are 

spliced from the introns of protein coding genes (Carthew and Sontheimer 2009; Kim, et 

al. 2009). Following transcription, the pri-miRNA is processed by Drosha (RNAse 

enzyme) into a 60 – 100 nucleotide hairpin structure called precursor-miRNA (pre-

miRNA). This pre-miRNA then transported from the nucleus to the cytoplasm by 

exportin-5 where it undergoes a second cleavage by another RNAse enzyme (Dicer). This 

cleavage results in a double stranded ~ 21-22 nucleotide duplex product which contains a 

mature miRNA guide stand and a miRNA passenger strand (miRNA: miRNA duplex). 

The passenger stand of miRNA is degraded while the functional stand is loaded into RISC 

together with Argonaute (Ago) proteins. 

Experimental and computational studies have determined that a single miRNA may target 

several mRNAs with partial complementarity, mostly involving residues 2–8 from the 

5’termini (seed region) (Bartel 2009; Hibio, et al. 2012; Selbach, et al. 2008). 

Furthermore, in mammals, miRNAs are anticipated to control more than 60% of human 

protein coding genes (Friedman, et al. 2009; Selbach et al. 2008). It is therefore not 

surprising that miRNAs function in all aspects of normal physiology including, organ 

development (Tomankova, et al. 2010), cardiovascular  homeostasis (Grueter, et al. 2012), 

cognitive functions (Fiore, et al. 2011), cell metabolism (Dumortier, et al. 2013).  

1.11. MicroRNAs and cancer 

The Croce laboratory was the first to demonstrate direct evidence for involvement of 

miRNAs in cancer (Calin and Croce 2006). They studied a well-known chromosomal 

abnormality (deletion on chromosome 13) in chronic lymphocytic leukaemia (CLL) and 

found that this region encodes two microRNAs, miR-15a and miR-16a (Zhang, et al. 

2007). Analysis of the deleted region revealed that these two miRNAs were the only genes 

which were lost in the majority of CLL patients. Furthermore, gene expression profiling 

indicated that these two miRNAs were downregulated in around 68% of patients 

diagnosed with CLL (Yanaihara, et al. 2006; Zhang et al. 2007). Since that seminal 

finding, it has been established that miRNA are deregulated in most types of cancer (Selth, 

et al. 2012a; Yanaihara et al. 2006; Zhang et al. 2007).  

Oncogenic miRNAs, also called “oncomirs”, promote tumour development by repressing 

the expression of tumour suppressor genes (Figure 1.8) and are frequently over-expressed 
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in cancer. For example, miR-17-92 cluster is commonly amplified and over-expressed in 

many cancers (Hayashita, et al. 2005; He, et al. 2005a) and forced overexpression of this 

miRNA using an animal model (transgenic mice) significantly increased the formation of 

lymphoid malignancies by targeting tumour suppressor genes PTEN and RB2. Other 

examples of oncomirs include: miR-21, which is overexpressed in breast, colon, lung and 

prostate cancers (Volinia, et al. 2006; Yanaihara et al. 2006) and suppresses the expression 

a large number of genes, including PTEN, PDCD4, TGFBR2, SPRY1, SPRY2, etc. that 

participate directly or indirectly in the extrinsic or intrinsic apoptosis pathways to promote 

tumorigenesis (Buscaglia and Li 2011); miR-155, which is up-regulated in human B-cell 

lymphomas (BCL) and impairs the transcriptional activity of BCL6 by targeting histone 

deacetylase 4 (HDAC4) (Eis, et al. 2005; He et al. 2005a; He, et al. 2005b); miR-18 and 

miR-224, both of which are over-expressed in hepatocellular carcinoma (HCC) and act by 

down-regulating connective tissue growth factor (CTGF), receptor activator nuclear factor 

kappa B ligand (RANKL), platelet-derived growth factor receptor precursor beta 

(PDGFRB) and Ras-related protein RAB-9B (Murakami, et al. 2006). 

Tumour suppressor miRNAs repress the expression of oncogenes and are frequently 

down-regulated or lost in cancer (Figure 1.8). One of the best examples of this category is 

miRNA let-7. In humans, let -7 (a,b,c,d) expression was found to be lower in lung cancer 

patients (Takamizawa, et al. 2004; Yanaihara et al. 2006) and reduced let-7 was associated 

with a shorter post-operative survival rate (Takamizawa et al. 2004). Let-7 has been found 

to negatively regulate multiple oncogenes, such as RAS, MYC, HMGA2, and promoters of 

cell cycle progression, such as CDC25A, CDK6, and Cyclin D2 (Johnson, et al. 2007; 

Johnson, et al. 2005; Lee and Dutta 2007; Trang, et al. 2010). Other examples include: 

miR-125b in breast cancer targeting oncogenes YES, ETS1, TEL, and AKT3(Iorio, et al. 

2005); miR-199 a/b-3p targeting tumour-promoting gene PAK4 in HCC (Murakami et al. 

2006); miR-143 and miR-145 in colorectal cancer by targeting RAF1 kinase, G-protein γ7  

(Michael, et al. 2003).  

In summary, it is apparent that loss- or gain-of-function of specific miRNAs contributes to 

cellular transformation and tumorigenesis (Figure 1.8). 
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Figure 1.7: MicroRNA biogenesis (Winter, et al. 2009) 

 

 

Figure 1.8: The oncogenic and tumour suppressor role of miRNAs (Paranjape, et al. 

2009) 
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1.12. Prostate cancer-associated microRNAs and EMT 

Many studies have now demonstrated that miRNA play a critical role in EMP. The miR-

200 family (miR-200a, miR-200b, miR-200c, miR-141 and miR-429) is the best studied in 

this process (Gregory, et al. 2008; Korpal and Kang 2008; Park, et al. 2008). Korpal et al 

(Korpal and Kang 2008) and Hurteau et al (Hurteau, et al. 2007) first demonstrated that 

forced overexpression of miR-200c initiates an epithelial phenotype which leads to 

upregulation of E-cadherin in cell line cancer models. Gregory et al (Gregory et al. 2008) 

then went on to show that miR-200 family promotes epithelial phenotypes by targeting the 

ZEB family of transcription factors, which are potent inducers of EMT (Gregory et al. 

2008; Hurteau et al. 2007; Korpal and Kang 2008).   

In prostate cancer, along with the miR-200 family, miR-205 has also been studied 

extensively. Several studies found that miR-205 is significantly down-regulated in PCa 

specimens and the same was found to be true in prostatic cancer cell lines (Gandellini, et 

al. 2009; Gandellini, et al. 2012; Majid, et al. 2010; Porkka, et al. 2007; Schaefer, et al. 

2010). Furthermore, miR-205 was found to be consistently low in patients with metastasis 

when compared with patients with localised tumour (primarily in the basal cells of 

prostate gland) (Gandellini et al. 2009; Gandellini et al. 2012; Tucci, et al. 2012). 

Additionally, it was found that upon ectopic expression of miR-205 in PCa cell lines 

(22RV1, PC3 and DU145 but not LNCaP) there was a marked increase in the level of E-

cadherin protein (Gandellini et al. 2009; Hagman, et al. 2013). The miR-143/145 cluster is 

found to be deregulated in primary cancer in comparison with normal prostate tissue. 

Studies both in vitro and in vivo have reported that upregulation of miR-143 and miR-145 

prevents migration and invasion of PCa cells (Peng, et al. 2011). The same study also 

demonstrated the capability of these miRNAs to suppress mesenchymal markers 

(fibronectin and vimentin) and increase E-cadherin when overexpressed in PCa cell line 

(PC3) (Peng et al. 2011). 

1.13. Circulating miRNAs as biomarkers of PCa  

The use of prostate-specific antigen (PSA) for the diagnosis of PCa is associated with 

several clinical issues. First, PSA lacks specificity as it is also elevated in many other 

conditions including benign prostatic hyperplasia (BPH), urinary retention, prostatitis, 

trauma, and physical manipulation. Second, PSA levels only correlate loosely with disease 

severity. Perhaps more important than its diagnostic inaccuracy, three large clinical trials 
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have revealed that PSA testing/screening is associated with a high rate of over-diagnosis 

and overtreatment (Andriole, et al. 2009; Chou, et al. 2011a; Schroder, et al. 2009). 

Clearly, one of the major requirements for prostate cancer management is to identify new 

biomarkers that can more accurately diagnose prostate cancer and, perhaps more 

importantly, distinguish slow-growing tumours from the aggressive subtypes  (Andriole et 

al. 2009; Andriole, et al. 2012; Crawford, et al. 2011; Schroder et al. 2009) 

Given that microRNAs are dysregulated in human cancers, there has been considerable 

interest with regards to their capability as biomarkers. Lu and colleagues (Lu, et al. 2005) 

were the first to demonstrate the utility of miRNA expression profiles for accurate 

identification of tumours of histologically uncertain cellular origin. Since that time, many 

groups have shown that miRNAs are powerful biomarkers for the diagnosis, prognosis and 

prediction of cancer (Allegra, et al. 2012; Boeri, et al. 2012; Boeri, et al. 2011; Ma, et al. 

2012; Valladares-Ayerbes, et al. 2012; Wittmann and Jack 2010). Indeed, miRNAs have 

recently been added in the panel of molecular markers to improve diagnostic accuracy for 

patients with intermediate thyroid nodules and pancreatic ductal carcinoma (ASURAGEN 

; MiRNATherapeutics). 

A number of studies published in 2008 demonstrated the presence of miRNAs in the cell-

free fraction of blood (i.e: serum and plasma) and other bodily fluids (Chim, et al. 2008; 

Lawrie, et al. 2008; Mitchell, et al. 2008). These studies suggested that miRNAs could be 

sampled in a non-invasive manner to detect and manage disease. Morever, miRNAs in 

human plasma are present in a remarkably stable form, protected from endogenous RNase 

activity (Mitchell et al. 2008). 

For the past 3 years, our laboratory has been interested in identifying circulating miRNAs 

that could be used to better manage prostate cancer patients. In a first for this field, we 

demonstrated that certain circulating miRNAs were common between prostate cancer 

patients and a mouse model of prostate cancer, highlighting the potential of such models 

for the discovery of novel biomarkers (Selth, et al. 2012b). Two of these miRNAs, miR-

141 and miR-375, had been identified previously as markers of metastatic prostate cancer 

(Brase, et al. 2011; Bryant, et al. 2012; Mo, et al. 2012). More recently, our laboratory 

evaluated the ability of circulating miRNAs to predict PCa progression in men treated by 

radical prostatectomy (RP) (Selth, et al. 2013). Analysis of a small discovery cohort found 

that the expression of three miRs namely, miR-141, miR-146b-3p and miR-194, were 

found at differential levels in men who underwent disease recurrence versus those who did 
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not. In a larger validation cohort, miR-146b-3p and miR-194 were positively correlated 

with disease progression (example shown in Figure 1.9). 

1.13.1. Expression of miR-194 and miR-375 in prostate cancer 

In addition to their potential utility as biomarkers, we are interested in determining 

whether any of these circulating miRNAs play a direct role in prostate cancer development 

and progression.  

Based on our earlier studies, we made a short-list of four miRNAs, miR-141, miR-146b-

3p, miR-194 and miR-375, for further functional analysis. MiR-141 is a member of the 

miR-200 family of EMT suppressors and has been extensively studied in prostate and 

other malignancies (Brase et al. 2011; Bryant et al. 2012; Mitchell et al. 2008; Nguyen, et 

al. 2013). MiR-146b-3p appears to only be a circulating marker of prostate cancer because 

we have demonstrated that it is not expressed in prostate tissues (Selth et al. 2013). 

Therefore, we have prioritised research into miR-194 and miR-375 as novel contributors 

to prostate cancer.  

Other studies have provided further evidence for the importance of miR-375 and miR-194 

in prostate cancer. MiR-375 is the most frequently over-expressed miRNA in prostate 

cancer, both in tumours (Szczyrba, et al. 2010) and in circulation (Sita-Lumsden, et al. 

2013). Moreover, it has been associated with prognostic clinicopathological parameters of 

the disease (Brase et al. 2011; Bryant et al. 2012), metastasis (Selth et al. 2012b) (Figure 

1.10) and biochemical recurrence (BCR) with RP (Selth et al. 2012b) (Figure 1.11). 

In addition to our finding that circulating miR-194 is a marker of disease progression, this 

miRNA was reported to be elevated in tumours from men who experienced early BCR 

(within 2 years of radical prostatectomy) compared to men who did not experience BCR 

for >10 years after surgery (Tong, et al. 2009). Furthermore, miR-194 was found to be 

elevated in patients who subsequently experienced recurrence in two independent clinical 

cohorts (Selth et al. 2013) (Figure 1.12).  

 



 

46 | P a g e  

 

 

 

 

Figure 1.9: Kaplan–Meier analysis showing estimated biochemical recurrence (BCR)-free 

probability in patients with high (above median) or low (below median) levels of 

circulating miR-194 (Selth et al. 2013) 

 

 

Figure 1.10: Relative expression of miR-375 in normal prostate tissue, primary prostate 

tumours (Primary) and metastases (Met) following analysis of MSKCC cohort (Selth et al. 

2012b) 
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Figure 1.11: Kaplan–Meier curve showing estimated PSA recurrence-free probability in 

patients with high or low intra-tumoral expression of miR-375 (Selth et al. 2012b) 

 

 

 

Figure 1.12: Kaplan–Meier curves showing estimated biochemical recurrence (BCR)-free 

probability in patients with high or low intra-tumoural expression of miR-194 in Erasmus 

and MSKCC cohort (Selth et al. 2013) 
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Both of these miRNAs have also been found to be deregulated in other malignancies.   

MiR-375 is down-regulated in gastric cancer (Ding, et al. 2010; Tsukamoto, et al. 2010), 

head and neck squamous cell carcinoma (Hui, et al. 2010), pharyngeal squamous cell 

carcinoma (Lajer, et al. 2011) and cervical cancer (Li, et al. 2011). Conversely, miR-375 is 

up-regulated in ER-alpha-positive breast cancer patients (de Souza Rocha Simonini, et al. 

2010), adenocarcinoma of lung (Yu, et al. 2010) and patients with HBV-positive 

hepatocellular carcinoma (Li, et al. 2010). These reports suggest that the function of miR-

375 may vary depending on its spatial expression and by malignancy. MiR-194 is 

overexpressed in oesophageal adenocarcinoma and Barret’s oesophagus (Wijnhoven, et al. 

2010) and pancreatic ductal adenocarcinoma (Mees, et al. 2010), but down-regulated in 

colon cancer (Braun, et al. 2008), colorectal cancer (Chiang, et al. 2012), nephroblastomas 

(mainly mixed-type) (Senanayake, et al. 2012) and liver cancer (Meng, et al. 2010).  

The molecular function and targets of these miRNAs in prostate cancer are largely 

unknown, but recent evidence from other malignancies suggests that both may be involved 

in metastasis and EMP. For example, it was reported that over-expression of miR-194 

reduced expression of N-cadherin and suppressed invasion and migration of the liver 

mesenchymal-like cancer cells both in vitro and in vivo (Meng et al. 2010). Furthermore, 

miR-194 was also found to reduce invasion of endometrial carcinoma cells (Dong, et al. 

2011) and breast cancer cells (Le, et al. 2012) by suppressing self-renewal factor BMI-1 

and cytoskeletal proteins (talin2 and profilin2), respectively. MiR-375 was shown to 

partially reverse EMT in MCF-7 breast cancer cells (Ward et al, 2013) and inhibit 

melanoma invasion and motility (Mazar, et al. 2011). These observations are interesting 

because many of the other circulating miRNAs associated with prostate cancer are also 

associated with epithelial phenotypes. For example, miR-141 and miR-200b target the 

Zeb1/2 transcription factors and thereby repress EMT (Hill, et al. 2013). 

Collectively, these findings have led us to hypothesise that epithelial miRNAs may be 

important drivers of PCa metastasis. This is an interesting concept and contrasts with other 

malignancies in which epithelial miRNAs are frequently down-regulated and positively 

associated with good outcomes, with the thought being that they can repress EMT in the 

earlier stages of metastasis (Dong et al. 2011; Zhou, et al. 2012). We will investigate the 

molecular functions of miR-194 and miR-375 to test the hypothesis that epithelial 

miRNAs have roles in prostate cancer progression and metastasis, potentially by 

modulating the epithelial-mesenchymal plasticity of tumour cells. 
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1.14. Hypothesis and aims: 

 

Preliminary data from our laboratory suggests that elevated levels of miR-375 and miR-

194, both in prostate tumours and in circulation of patients, are associated with poor 

prognosis. Therefore, we hypothesise that these miRNAs have roles in prostate cancer 

progression and metastasis, potentially by modulating the epithelial-mesenchymal 

plasticity of tumour cells. The broad aim of the project was to understand the underlying 

molecular mechanism of these miRNAs in the metastatic process of prostate cancer.  

 

The specific aims of this project were as follows: 

Aim 1: To determine the function of miR-194 and miR-375 in prostate cancer progression 

and metastasis  

Aim 2: To identify and validate the gene targets of miR-194 and miR-375 through which 

their effects on metastasis are mediated. 

Aim 3: To determine the upstream regulators of miR-194 and miR-375 
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This chapter will outline the materials used and methods that have been performed in the 

studies reported in the Results section. Reagents listed below each method were used 

according to procedures outlined by the Health, Safety and Wellbeing Policy principles 

and relevant sections of the Work Health and Safety Act 2012. 

2.1. Materials  

 

Table 2.1: Common chemicals and reagents 

Reagent  Supplier  Catalogue number 

1kb DNA ladder  New England Biolabs N3232S 

100 bp DNA ladder  New England Biolabs N3231S 

Agarose, analytical grade  Sigma Aldrich  A6013  

Bradford assay reagent BioRad 500-0006 

BSA (bovine serum albumin) Sigma Aldrich A9647 

Chloroform  Sigma Aldrich C2432 

Cover slips HD Scientific Supplies ----------- 

Criterion precast gel (4-12%) BioRad 567-1084 

DAPI prolong gold mount media Molecular Probes (Life 

Tech) 

P26935 

dNTPs (deoxynucleotide 

triphosphates) 

Promega Corporation U1511 

DMSO (dimethyl sulfoxide) BDG Laboratory 

Supplies 

D2650 

DynaBeads Invitrogen 112.03D 

Eosin Australian Biostain 

P/L 

AEPA 

Ethanol, general use Chem Supply EA061 

Ethanol, molecular grade Sigma Aldrich E7023 

FBS (fetal bovine serum) Sigma Aldrich 12003C 

Formaldehyde  Chem Supply FA010 

Haematoxylin Australian Biostain 

P/L 

AHLMA 

Inactivation buffer (supplied Ambion Inc. AM1907 
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with Turbo free) 

iScirpt cDNA synthesis kit BioRad 170-8891 

iQ SYBR Green Supermix BioRad 170-8885 

K-SFM (Keratinocyte Serum 

Free Medium) 

Gibco  

Lentiviral Packaging Mix 

(pLP1, pLP2, pVSVG) 

Virapower (Invitrogen) K4975-00 

Lentiviral Transfer (Payload) 

Plasmid 

GeneCopoeia ----------- 

Lipofectamine 2000 Invitrogen 11668-019 

Matrigel Corning Scientific BD 354234 

Methanol Chem Supply MA004 

Nitrocellulose membrane (0.4 

µm) 

BioRad 162-0115 

Nuclear free water Ambion Inc. AM9937 

PBS (phosphate buffered saline) Sigma Aldrich D8537 

Ponceau S Sigma Aldrich P3504 

Propidium Iodide Sigma Aldrich  P4864 

PVDF transmembrane Amersham RPN303F 

QIAquick Plasmid Midiprep Kit QIAGEN 12143 

QIAquick Plasmid Miniprep Kit QIAGEN 27106 

Restriction Digest enzymnes and 

buffer 

New England Biolabs ----------- 

RPMI 1640 liquid media Sigma Aldrich R8758 

SDS (sodium dodecyl sulphate) Sigma Aldrich 75746 

SDS (sodium dodecyl sulphate) 

TGX precast 

BioRad ----------- 

SDS (sodium dodecyl sulphate) 

Criterion 

BioRad ----------- 

siRNA SOCS2 - 1 Ambion s16858 

siRNA SOCS2 - 2 Ambion s16859 
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Skim milk powder Coles Brand ----------- 

Triton-X 100 Sigma Aldrich T8787 

TRIZOL Reagent Sigma Aldrich T9424 

Trypsin EDTA solution Sigma Aldrich T4049 

Tween 20 Sigma Aldrich P7949 

Lipofectamine RNAiMax Thermo Fisher 

Scientific 

13778150 

Optimem Thermo Fisher 

Scientific 

31985070 

Pre-microRNA-194 precursors GenePharma ----------- 

Pre-microRNA-194 precursors 

(miRVana) 

Ambion MC10004 

Pre-microRNA-375 precursors GenePharma ------------ 

Anti-microRNA-194 inhibitors 

(LNA) 

Exiqon 4100890-001 

Anti-microRNA-375 inhibitors 

(LNA) 

Exiqon 4101396-001 

miRCURY LNA Detection 

probe: miR-194 

Exiqon 18082-15 

miRCURY LNA Detection 

probe: miR-375 

Exiqon 38181-15 

miRCURY LNA Detection 

probe: U6 

Exiqon 99002-15 
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Table 2.2: Commonly Used Buffers and Media 

Buffer/Medium Name Buffer/Medium Components  

EDTA 0.2 M, pH 8.0 74.45 g EDTA  

Volume to 800 mL with water  

pH 8.0  

Volume to 1 L with water 

EGTA 0.5 M, pH 8.0  

 

190.175 g EGTA  

Volume to 800 mL with water  

pH 8.0  

Volume to 1 L with water  

KCl 1 M  

 

7.45 g KCl  

Volume to 100 mL with water  

LB Medium  

 

25 g LB Broth  

1 L RO H2O  

(Add 20 g Agar for plates)  

Loading Dye (6x) for agarose gels  

 

50 mL Glycerol  

40 mL 0.5 M EDTA (pH 8.0)  

0.25 g Bromophenol blue  

0.25 g Xylene cyanol  

Volume to 100 mL with water  

Store at 4°C  

Loading Dye (6x) for western blot  

 

7 mL 4x Tris-Cl/SDS  

3 mL Glycerol  

1 g SDS  

0.93 g DTT  

1.2 mg Bromophenol blue  

Volume to 10 mL with water  

Store at -20°C  

Ponceau S Stain  

 

2 g Ponceau S  

30 g Trichloracetic Acid  

30 g Sulfosalycylic Acid  

Volume to 100 mL with water  

RIPA Buffer  

 

10 mM Tris  

150 mM NaCl  

1 mM EDTA  

1% Triton X-100  

Running Buffer (10x)  

 

77.5 g Tris Base  

360 g Glycine  

25 g SDS  

2.5 L RO H2O  

TAE Buffer (50x)  

 

242 g Tris  

57.1 mL Glacial acetic acid  
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100 mL 0.5 M EDTA pH 8.0  

Volume to 1 L with water  

TBS (10x)  

 

151.5 g Tris  

219 g NaCl  

Volume to 2.5 L with water  

pH 7.4  

TBST (1x)  

 

2.5 mL Tween20  

250 mL 10x TBS  

2.25 L RO H2O  

Transfer Buffer (10x)  

 

77.5 g Tris  

360 g Glycine  

Volume to 2.5 L with water  

Tris-HCl, pH 6.5, 7.5, 8.1  

 

121.1 g Tris  

Volume to 800 mL with water  

pH to desired level with concentrated HCl  

Volume to 1 L with water  

 

Table 2.3: Primers 

 

Primer Name  Sequence  Use  

GAPDH fwd  TGCACCACCAACTGCTTAGC  qRT-PCR  

GAPDH rvs  GGCATGGACTGTGGTCATGAG  qRT-PCR  

Fibronectin fwd  TGATCACATGGACGCCTGC  qRT-PCR  

Fibronectin rvs GAGTCAAGCCGGACACAACG  qRT-PCR  

ZO-1 fwd  GCAGCTAGCCAGTGTACAGTATAC  qRT-PCR  

ZO-1 rvs  GCCTCAGAAATCCAGCTTCACGAA  qRT-PCR  

ZEB1 fwd  TTCAAACCATAGTGGTTGCT  qRT-PCR  

ZEB1 rvs  TGGGAGATACCAAACCAACTG  qRT-PCR  

ECAD fwd  CCCACCACGTACAAGGGTC  qRT-PCR  

ECAD rvs  CTGGGGTATTGGGGGCATC  qRT-PCR  

NCAD fwd  CAACTTGCCAGAAAACTCCAGG  qRT-PCR  

NCAD rvs  ATGAAACCGGGCTATCTGCTC  qRT-PCR  

VIM fwd  GAACGCCAGATGCGTGAAATG  qRT-PCR  

VIM rvs  CCAGAGGGAGTGAATCCAGATTA  qRT-PCR  

SNAI1 fwd  TCGCTGCCAATGCTCATC  qRT-PCR  

SNAI1 rvs  GTAGAGGAGAAGGACGAAGGAG  qRT-PCR  

SNAI2 fwd  ATACCACAACCAGAGATCCTCA  qRT-PCR  

SNAI2 rvs  GACTCACTCGCCCCAAAGATG  qRT-PCR  

SOCS2 fwd GTCAGACAGGATGGTACTG qRT-PCR  
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SOCS2 rvs TCCAATCTGAATTTTCCGTC qRT-PCR  

SOCS2 3’UTR fwd CCAGATACAGGGGGATACCTG qRT-PCR  

SOCS2 3’UTR rvs TGGCAATCCTCTATTACCATGA qRT-PCR  

BCL2 fwd GGGCATTCAGTGACCTGACA qRT-PCR  

BCL2 rvs GCATTGTTCCCATAGAGTTC qRT-PCR  

BIRC5 fwd CTGGCAGCCCTTTCTCAA qRT-PCR  

BIRC5 rvs CAGCCTTCCAGCTCCTTG qRT-PCR  

BRF1 fwd GGCATTGATGACCTGGAGAT qRT-PCR  

BRF1 rvs ACCAGAGGCCTCAACCTTTT qRT-PCR  

CDC25A fwd GCCTCTCGTGGCAGGGCAGTC qRT-PCR  

CDC25A rvs CATCACCTGGCCTGAGGA ATC qRT-PCR  

ELK1 fwd GAGCTGCCAACATTGCCAAC qRT-PCR  

ELK1 rvs GGAGATGATGTGGCCATTGC qRT-PCR  

ELK4a fwd CTGTTGCTCCCCTAAGTCCA qRT-PCR  

ELK4a rvs CCAGCCCAGACAGAGTGAAT qRT-PCR  

ELK4b fwd AGCCGAGCCCTCAGATACTA qRT-PCR  

ELK4b rvs ACCATAAAGAGCGAGCAAGC qRT-PCR  

FSCN2 fwd AGGCGGCCAACGAGAGGAAC qRT-PCR  

FSCN2 rvs ACGATGATGGGGCGGTTGAT qRT-PCR  

c-MYC fwd TCCTCGGATTCTTCTGCTCTC qRT-PCR  

c-MYC rvs CTCTGACCTTTTGCCAGGAG qRT-PCR  

N-MYC fwd CTGGGAACTGTGTTTGGAG qRT-PCR  

N-MYC rvs CGACTGAGGGCTTCTTTC qRT-PCR  

GATA2 fwd CATCAAGCCCAAGCGAAGA qRT-PCR  

GATA2 rvs TTTGACAGCTCCTCGAAGCA qRT-PCR  

KLK3 fwd GCCTGGATCTGAGAGAGATATCATC ChIP qPCR 

KLK3 rvs ACACCTTTTTTTTTCTGGATTGTTG ChIP qPCR 

TMPRSS2 fwd GGTAAACTCTCCCTGCCACA ChIP qPCR 

TMPRSS2 rvs TACTCCAGGAAGTGGGGATG ChIP qPCR 
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Table 2.4: Antibodies  

 

Primary Antibody  Dilution  Catalogue number/Supplier  

Tubulin 1:1000  

 

Merick Millipore  

 

E-Cadherin 1:2000 #610182, BD Biosciences 

ZO-1 1:500 sc-10804, Santa Cruz 

Fibronectin 1:750 #610077, BD Biosciences 

N-Cadherin 1:750 sc-7939, Santa Cruz 

GAPDH 1:5000 MAB374, Merck Millipore  

SOCS2 1:500 # 2779, Cell Signaling 

GATA2 1:500 sc-9008, Santa Cruz 

Phospho ERK1/2 (Tyr) 1:500 #9101, Cell Signaling 

Total – ERK1/2  1:500 #9102, Cell Signaling 

Phospho STAT3 (Tyr) 1:500 #9131, Cell Signaling 

Phospho STAT3 (Ser) 1:500 #9134, Cell Signaling 

Total – STAT3  1:500 #9132, Cell Signaling 

Total – JAK2  1:500 #3230, Cell Signaling 

Total – FLT3  1:500 #3462, Cell Signaling 

Secondary Antibody  Marker  Catalogue number/Supplier  

Goat anti-rabbit  

 

HRP  

 

PO448, DAKO 

Goat anti-mouse  

 

HRP  

 

PO161, DAKO 

Goat anti-rabbit  

 

Biotin  

 

E0432, DAKO 

Goat anti-mouse  

 

Biotin  

 

E0433, DAKO 

ALEXA goat anti-rabbit  

 

ALEXA 488nm  

 

A-11034 , Thermo Fisher  

 

ALEXA goat anti-mouse  

 

ALEXA 594nm  

 

A-11005, Thermo Fisher  
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2.2. Methods 

2.2.1 Computational analysis (in silico) 

Bioinformatic prediction of miR-194 and miR-375 targets was performed using three 

different freely available programs: TargetScan (http://www.targetscan.org), miRanda 

(http://www.microrna.org/microrna/home.do) and TargetRank 

(http://hollywood.mit.edu/targetrank/) (Witkos, et al. 2011). These target prediction 

programs uses several characteristics to determine whether a miRNA can potentially target 

an mRNA. The 5′ seed region of the miRNA (bases 2 to 8) must show sequence 

complementarity to the 3′ UTR of a target gene, and the target site within the mRNA 

should be conserved among different species. Therefore, we also considered the predicted 

targets listed initially by the programs. In addition, a thorough literature search was done 

to further gather evidence towards the functionality of potential miRNA targets in the 

metastatic process. 

2.2.2 Cell Culture 

2.2.2.1 Maintaining and Passaging Cells  

The human prostate carcinoma cell lines, RWPE-1, C4-2B, 22Rv1, LNCaP, DU145 and 

PC-3, were obtained from the American Type Culture Collection (ATCC). Cell Bank 

Australia performed verification of all cell lines in 2010 and 2016 via short-tandem repeat 

profiling. RWPE-1 cell line was maintained in Keratinocyte-SFM media and C4-2B, 

22Rv1, LNCaP and DU145 cell lines were maintained in RPMI-1640 containing 10% 

Fetal Bovine Serum (FBS). The PC3 cell line was maintained in RPMI-1640 containing 

5% FBS. HEK293T/17 cells were obtained from ATCC and used for preparation of 

lentiviral constructs and were maintained in Dulbecco's Modified Eagle's Medium 

(DMEM) containing 10% FBS.  

To prepare cells for storage in liquid nitrogen, fully confluent T75 flasks were collected 

using trypsin followed by centrifugation at 450 rcf for 5 min. Pellets were resuspended in 

1.5 mL of cell line specific media and 1.5 mL of freezing mix (40% DMSO, 40% FBS, 

20% culture media) on ice. One ml of cell:freeze mix suspension was added to each cryo-

vial, labelled appropriately and placed in an isopropanol filled Mr. Frosty freezing 

container at -80°C. Once cells were adequately frozen they were transferred to liquid 

nitrogen for long term storage.  

http://www.targetscan.org/
http://www.microrna.org/microrna/home.do
http://hollywood.mit.edu/targetrank/
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Human prostate cancer cell lines obtained from liquid nitrogen stores were thawed quickly 

by gentle agitation in a 37°C water bath then mixed with 9 mL cell line specific culture 

medium. Cells were centrifuged at 450 rcf for 5 min and pellets were resuspended in 10 

mL cell line specific culture media and placed directly into a T25 flask overnight at 37°C 

with 5% CO2. Cells were passaged to a T75 flask the following day and were then 

passaged a second time prior to use in experiments. 

2.2.2.2 MicroRNA (miR) and Short interfering RNA (siRNA) transfection 

Prostate cancer cells were grown to a density of 70 to 90% and seeded into appropriate 

tissue culture plates. The cells were transfected with 20 nM of pre-miR microRNA 

precursors or siRNA and 50 nM of anti-miR microRNA inhibitors or their appropriate 

negative controls using the RNAiMax transfection agent (details of the agents are in table 

Catalogue # 13778150). RNAiMax was diluted in Opti-MEM and was incubated 10 min 

at RT. The miRNA precursors and miRNA inhibitors were diluted in Opti-MEM. The 

transfection agent was mixed with RNA and incubated for an additional 10 min at RT. 

The transfection complexes were added drop-wise to the cell cultures. The cells were 

allowed to rest for 72 h prior to subsequent assays, except proliferation assays where the 

cells were counted at 24 h and 48 h post transfection. The transfection efficiency was 

monitored by RT-qPCR. 

2.2.3 Trypan blue exclusion test of cell viability 

Cell viability is calculated as the number of viable cells divided by the total number of 

cells within the grids on the haemocytometer.  If cells take up trypan blue, they are 

considered non-viable. First, using a haemocytometer, the cell density of the cell line 

suspension was determined. Second, 20 ul of trypan blue stock solution was added to 20 ul 

of cell suspension and loaded on a haemocytometer to examine the cells under 

microscope, immediately. Finally, the number of blue stained cells and the total number of 

cells are counted and inserted into the following formula:  

% viable cells = [1.00 – (Number of blue cells ÷ Number of total cells)] × 100 
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2.2.4 Western Blotting 

2.2.4.1 Preparation of Cell Lysates  

Cells were washed with 1x PBS and removed from culture plates by scraping in 100 μl 

RIPA lysis buffer per well of a 6-well plate. Cell lysates were centrifuged for 10 min at 

10000 rcf and 4°C and supernatant containing protein was collected and stored at -80°C.  

2.2.4.2 Bradford Assay 

Total protein concentration of cell lysates was determined via Bradford assay. Microtiter 

plates were set up as follows in clear, untreated, flat bottomed 96 well microtiter plates 

with lids (Cole Parmer, Cat no: KH-01728-01). Numbers indicate μl of 1 mg/mL BSA 

added to each standard well and letters indicate duplicate sample wells to which 1 μl of 

sample was added per well. 20% Bradford reagent was added to every well to a total 

volume of 200 μl. The plate was mixed and incubated at RT for 5min before being read at 

595 nm on a PolarStar microplate reader: 

 

 

Standards in duplicate Samples in duplicate 

0 0 a a         

1 1 b b         

2 2 c c         

3 3 d d         

4 4 e e         

5 5           

6 6           
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2.2.4.3 Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE)  

BioRad precast SDS-PAGE gels were run using 25 μg of total protein per well unless 

indicated otherwise. Protein lysates were mixed 5:1 with 6x load dye and heated at 95°C 

for 5 minutes prior to gel loading. The SDS-PAGE running apparatus was filled with 1x 

SDS-running buffer (BioRad). To examine fibronectin expression, protein lysates were 

run on 4-15% gradient gels at constant voltage (80 V) for 15 min followed by 150 V for 2 

h. To detect all other proteins, lysates were run on 10% or 4 – 12% gels at constant voltage 

(120 V) for 90 min. 

2.2.4.4 Western Transfer and Immunoblot  

Proteins were transferred from SDS-PAGE gel to nitrocellulose membrane using a BioRad 

transfer apparatus (miniPROTEAN®Tetra Cell or CriterionTM Cell) filled with 1x 

Transfer Buffer. Transfer of proteins from SDS-PAGE gel to nitrocellulose membrane was 

run using a BioRad CriterionTM Blotter at constant amperage (400 mA) for 60 minutes. 

Nitrocellulose membranes were then blocked for 60 minutes or overnight at 4°C on a 

rocking tray using 3% skim milk powder or 3% Bovine Serum Albumin (BSA) dissolved 

in 1x TBST. Membranes were probed using primary and HRP-conjugated secondary 

antibodies as indicated in table 2.4. HRP-conjugates were detected using ECL solution 

and imaged on a BioRad Chemidoc MP imaging system and processed using Image Lab 

Software. Densitometry and further analysis of protein expression was determined using 

Image Lab Software. 

2.2.5 Quantitative polymerase chain reaction (qRT-PCR)  

2.2.5.1 RNA Isolation  

PCa cell lines were plated in 6-wells plates with miRNA transfection mix at 1x105 cells 

(C4-2B, PC3 and DU145), 1.5 x 105 cells (LNCaP) and 2 x 105 cells (22Rv1) per well in 

2.5 mL of growth media as specified in section 2.2.2.1 and incubated at 37°C and 5% CO2 

for 72 h to adhere to culture plates. Cells were washed with 1x PBS and collected using 1 

mL Trizol per well. Chloroform isolation and isopropanol precipitation were used to 

extract RNA from cell lysates. Trizol samples were mixed with 200 μl of chloroform and 

shaken vigorously for 15 s then left to incubate for 3 mins at RT. Samples were then 

centrifuged at 12000 rcf at 4°C for 15 min and the clear aqueous layer was collected, 
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taking care not to disrupt the interphase layer (which contains DNA). The aqueous layer 

was mixed with 500 μl isopropanol, mixed and incubated for 10 min at RT. RNA was 

pelleted by centrifugation at 12000 rcf at 4°C for 10 min, washed in 75% EtOH and 

resuspended and dissolved in RT-PCR grade water. RNA concentrations were determined 

by spectrophotometry using a Thermo Scientific NanoDrop 2000. 

2.2.5.2 DNase Treatment  

RNA samples were DNase treated using TURBO DNA-freeTM DNase Treatment kits 

(Ambion cat#AM1907). RNA (1 to 2 μg) was diluted in RNase free water to a total 

volume of 44 μl, gently mixed with 5 μl of 10xTurbo DNAse Buffer with 1 μl TURBO 

DNasefree and incubated at 37°C for 30 min. 5 μl of DNase inactivation reagent was 

gently mixed into each sample and repeatedly mixed 2 to 3 times over an incubation 

period of 5 min at RT. Inactivation reagent was removed by centrifugation of samples at 

10000 rcf for 1.5 min and subsequent collection of supernatant being sure not to disrupt 

inactivation reagent. To ensure thorough mixing, samples were incubated at 55°C for 10 

min, flicking twice or thrice during this time. RNA concentrations were determined using 

Nanodrop. 

2.2.5.3 Reverse Transcription  

Reverse transcription of RNA samples was performed following DNase treatment using 

iScriptTM Reverse Transcription kits. RNA (1000 ng) was prepared in a 1:5 mix with 

iScript master mix, including one control containing all products except reverse 

transcriptase and a second control containing all products except RNA. RNA-iScript 

samples were incubated at RT for 5 min, 42°C for 30 min and 85°C for 5 min. Resultant 

cDNA samples were diluted 1:5 and stored at -20°C. 

2.2.5.4 Quantitative Reverse Transcriptase Polymerase Chain Reaction (qRT-PCR ) 

RNA expression was examined via qRT-PCR using a BioRad C1000 Thermal Cycler and 

CFX384TM Real-Time System. RNA expression of target genes was measured and 

expression was expressed relative to reference genes as indicated. Samples were prepared 

by mixing 0.5 μl forward primer (5 pmol per μl), 0.5 μl reverse primer (5 pmol per μl), 5 

μl iQ SYBR Green Supermix, 2 μl RNase free water, and 2 μl cDNA. Three biological 

and three technical replicates were performed for all reactions. qRT-PCR reaction 

followed 3 min 95°C x1 followed by 40x 15 sec 95°C, 15 sec 55°C, 30 sec 72°C and 
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finally 1 min 95°C x1, 1 min 55°C x1 and 70x 10 sec 60°C. Data were analysed using 

CFX Manager Software Version 3.0 (Bio-Rad Laboratories, Inc.). 

2.2.6 Immunohistochemistry 

2.2.6.1 Preparation of sections 

Paraffin embedded human prostate cancer sections (3 μm) were cut using a microtome and 

collected on Superfrost Ultra-plus slides. Slides were placed on a heating block at 62°C 

for a minimum of 2 h prior to beginning the staining procedure. Slides were de-waxed in 

three 5 min washes of 100% xylene. Xylene was cleared by dipping slides 10 times each 

in 3 pots of 100% EtOH, then slides were stained for haematoxylin/eosin (H&E) or 

immunohistochemistry using primary antibodies directed at specific proteins of interest.  

2.2.6.2 Haematoxylin and Eosin (H&E) staining 

For H&E staining, slides were washed for 2 min in running tap water, stained for 4 min in 

1:2 Haematoxylin then rinsed in running tap water for 2 min or until the water ran clear. 

Slides were differentiated with 0.3% acid alcohol by dipping into the solution twice. 

Slides were again rinsed in running tap water for 3 min, counterstained with Eosin for 1 

min and rinsed one final time in running tap water until the water ran clear. Finally, slides 

were dehydrated and cleared in ethanol by dipping 10 times each in 3 separate pots 

followed by 3 times 5 min incubation in xylene and coverslips were sealed using DPX 

mounting media. Scanning of all slides was completed using a Nanozoomer digital slide 

scanner (Hamamatsu). Images were viewed with NDPview software. 

2.2.6.3 Immunohistochemistry  

Slides were washed twice for 3 min in PBS then endogenous peroxidase activity was 

blocked with 0.3% H2O2 for 5 min. Antigen retrieval was completed in citrate buffer 

(0.525 g in 250 mL RO-water, pH 6.5) using a Biocare Medical Decloaking Chamber 

V3.7.2.2 for 15 min at 95°C and 2.5 psi. Slides were then blocked in 5% goat serum for 30 

min at RT, and incubated with primary antibody as indicated overnight at 4°C. Secondary 

biotinylated antibody was added to slides at a dilution of 1:400 in blocking solution for 1h 

at RT followed by HRP-strepdavidin at 1:500 for 1 hr at RT. Freshly mixed DAB: H2O2 

was added to slides for exactly 6 mins. Slides were counterstained in fresh 1:5 

haematoxylin for 1.5 min. Slides were dehydrated and cleared in ethanol by dipping 10 
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times each in 3 separate pots followed by 3 times 5 min incubation in xylene. Coverslips 

were sealed using DPX. Scanning of all slides was completed using a Nanozoomer digital 

slide scanner (Hamamatsu). Images were viewed with NDPview software. 

2.2.7 Fluorescence Microscopy 

Prostate cancer cells were transfected with microRNA mimic or control, as described 

above, plated onto chamber slides (Lab-Tek, Thermo Fisher Scientific) and stained at day 

3. For E-cadherin staining, cells were fixed in 4% paraformaldehyde, permeabilized in 

0.1% Triton X-100 and probed with an anti-E-cadherin antibody (1:500; BD Biosciences, 

610182). To detect nuclei, cells were co-stained with 4´-6-Diamidino-2-phenylindole 

(DAPI; Invitrogen). For F-actin staining, fixed and permeabilized cells were incubated 

with rhodamine phalloidin (Invitrogen) for 10 min. Cells were observed on and pictures 

were taken using a confocal microscope (Leica SP5). 

2.2.8 Cell migration assay 

The cell migration assay or scratch wound assay is a simple and reproducible assay which 

is commonly used to measure the migratory ability of the cells. Briefly, following 

transfection with miRNA- mimics or inhibitors in a 24-wells microplate (Essen-Image 

Lock), cells are grown to confluence (monolayer) and then a thin “wound” is introduced 

by scratching with sterile pipette tips. The microplate is then placed in the Incucyte 

imaging system to record the migratory ability of the cells into the “wound” over a period 

of time. Cells at the wound edge polarise and migrate into the “wound” space (figure 2.1) 

2.2.9 Cell invasion assay 

Twenty-four wells culture plates were prepared by pipetting 100 μl of 1:1 Matrigel diluted 

in ice cold PBS into 8 μm pore 6.5 mm diameter uncoated transwells and incubating for 

30 min at 37°C. Transwells were inverted and 100 μl of 5x105 cells per mL cell 

suspension was pipetted onto the underside of each transwell filter. Transwell plates were 

covered with the base of their 24 well culture plate and incubated inverted for 4 h to allow 

cells to adhere to the transwell membrane. Transwells were then returned to their original 

orientation and washed twice with 1 mL serum free medium by gently dipping into culture 

plate wells containing medium. Transwells were left to incubate in 1 mL serum free media 

containing indicated treatments. 100 μl RPMI 1640 containing 10% FBS was added to 

each transwell on top of the matrigel layer. Plates were incubated for 5 days at 37°C and 
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5% CO2. Cells were stained in culture wells filled with 1 mL PBS containing 10 μg per 

mL propidium iodide for 30 min at RT in the dark. Images were collected by confocal 

microscopy using the inverted Ziess LSM 700 or Leica SP5 microscope. Transwells were 

placed onto a large coverslip covered in a small amount of PBS ensuring no bubbles were 

present for imaging with non-immersion 20x objective. Z-stack sections of Matrigel were 

captured every 10μm beginning at the transwell membrane (0 μm) through the entire 100 

μl (100 μm) plug. Individual z-stack sections were quantified by Image J software using 

analyse-measure to determine amount of PI staining in each z-stack section. Average 

measure of all slices from 50-90 μm was calculated and indicates proportion of cells that 

invaded. The details of this new method written in chapter 3. 

2.2.10 Chick Chorioallantoic Membrane (CAM) Assay  

Fertilised white leghorn chicken eggs were obtained from Hi-chick Gawler, South 

Australia. Eggs were incubated in a MultiQuip Incubator (E2) incubator at 37.3°C and 

60% humidity from day 0 to day 3 of chick embryo development with twice daily rotation 

and humidity maintained at 60%. On day 3 of development, the incubator temperature was 

reduced to 37°C and small window holes were made in the eggs, to detach the CAM from 

the egg shell before it begins to harden. The window holes were sealed with cellophane 

tape and all eggs were returned to the incubator until day 11 of chick embryo 

development. On day 11, the indicated number of 22Rv1, LNCaP or PC3 cells were added 

to Matrigel at a ratio of 1:1 cell suspension to Matrigel. 30 μl drops of cell-Matrigel mix 

were pipetted onto parafilm and placed at 37°C for 30-60 min to harden. One Matrigel 

implant was placed on each chick embryo through the pre-made window. Eggs were then 

re-sealed and incubated for indicated number of days. The Matrigel areas of the CAMs 

were cut from eggs and immediately rinsed in 1xPBS and fixed in 4% paraformaldehyde 

for 24 h. CAMs were transferred to 70% EtOH until processing of serial sections on 

paraffin embedded blocks. CAM blocks were processed through a series of washing, 

clearing and embedding steps which included: 70% EtOH 1hr, 95% EtOH 1 h, 1st 100% 

EtOH 1 h, 2nd 100% EtOH 1.5 h, 3rd 100% EtOH 1.5 h, 4th 100% EtOH 2 h, 1st clearing 

agent [xylene] 1 h, 2nd clearing agent [xylene] 1 h, 1st wax [paraplast X-tra] at 58°C for 1 

h and 2nd wax [paraplast X-tra] at 58°C for 1 h. CAMs were embedded in molten paraffin 

in appropriate sized molds by slicing CAM tissue in half through the centre of the matrigel 

and placing cut sides down while filling blocks with molten paraffin. Cassettes were 

placed on top of paraffin and molds were transferred to cold plate to solidify. Paraffin 
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embedded CAM tissues were cut at 4 μm on a microtome and collected on Superfrost 

Ultra-plus slides for immunohistochemistry as described in section 2.2.6.  

2.2.11 In vivo assays 

In the present study, we performed two different in vivo metastatic assays, namely 

experimental metastasis assay and spontaneous metastasis assay. The specific aspects of 

the metastatic cascade that were investigated by the experimental metastasis assay include 

survival in circulation and avoiding anoikis, extravasation and colonisation at a distant site 

and the formation of micro- and macro-metastases. The spontaneous metastatic assay 

further measured the ability of cancer cells to successfully invade from the primary 

tumour and intravasate into circulation.  

2.2.11.1 Lentiviral transduction of miR-194 overexpression 

Preparation of Lentiviral Plasmid  

HEK293T/17 cells were seeded [1.67x105 cells per cm2] and incubated overnight at 37°C 

with 5% CO2. A DNA mix was prepared by combining a solution containing 3 packaging 

plasmids (pLP1, pLP2, pVSVG) with each of the lentiviral transfer (payload) plasmids. 

Plasmid DNA and the transfection reagent polyethylenimine (PEI) were separately diluted 

into sterile 0.9% NaCl to a total of 100 μL each. The DNA mix was added to PEI solution 

at a ratio of 3.1 μg PEI:1 μg DNA. 

The DNA:PEI solution was incubated at RT for 15 min then added to HEK cell media 

containing 5% FBS. Following the addition of plasmid to HEK cell culture, full viral 

safety precautions were followed. T75 culture flasks were seeded and incubated at 37°C 

and 5% CO2 for 3 days before harvesting active viral supernatant. Viral supernatant was 

passed through a 0.45 μm PVDF syringe filter to remove any residual cell debris then 

stored in sterile screw-capped 1.5 mL tubes at -80°C. 

Transduction  

For transduction, luciferase-tagged PC3 and LNCaP cells were seeded at 1.25x107 cells 

per T75 flask and left overnight at 37°C with 5% CO2 to adhere. The next day, cells were 

transduced with concentrated lentivirus using a MOI of 1 and 6 μg/mL (as final 

concentration) Polybrene (Sigma) in normal growth media. 500 μl viral supernatant was 

added to each well and incubated another 72 h to allow for overexpression to occur. At 
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this time 0.4 μg per mL (for LNCaP-luc cells) and 0.8 μg per mL (for PC3-luc cells)  of 

puromycin was added to 2 mL of cell line specific medium and added to each well to 

select for cells expressing puromycin selectable overexpression plasmid and grown a 

further 72 h at 37°C with 5% CO2. Cells were lysed with 100 μl RIPA buffer and protein 

lysates were collected and processed for western blotting. 

2.2.11.2 Experimental metastasis assay/ Tail-vein assay 

In this assay, intravenous (IV) injection of tumour cells was done through the lateral tail 

vein in immune-compromised mice. We injected PC3 cells stably transduced to express 

luciferase (PC3-luciferase), allowing monitoring of tumour growth and colonization using 

bioluminescence imaging (BLI). BLI is based on using a sensitive cooled charge-coupled 

device (CCD) array to detect photons emitted from luciferase expressing cells in tissues 

after conversion of the luciferin substrate in a reaction. The levels of miR-194 and miR-

375 were modulated in the highly migratory PC3-luciferase cell lines using lentiviral 

based transduction, described previously. The tumour growth was monitored by taking 

serial images at weekly intervals post-injection.  

2.2.11.3 Spontaneous metastasis assay 

In this assay stable cancer cells are injected into an orthotopic tissue (i.e. grown in the 

correct anatomical location). In the present study luciferase-expressing PC3 line was 

injected directly into the prostate of immune-compromised mice. The tumour growth was 

then tracked over time using BLI.  

2.2.12 MicroRNA in situ hybridization (ISH) 

MicroRNA in situ hybridization is a technique that allows precise localization of miRNA 

expression in human clinical prostate tissues. In this study, we analysed tissue samples 

from different stages/grades of prostate cancer.  

Non-mammalian hapten digoxigenin (DIG)-labeled LNA (locked nucleic acid) ISH probes 

was used. The microRNAs in the tissues was de-masked using Proteinase-K, which 

allowed the access of double-DIG-labeled LNA probes to hybridize to the microRNA 

sequence. Digoxigenins then recognized by a specific anti-DIG antibody that directly 

conjugated with the enzyme Alkaline Phosphatase (AP) (figure 2.2) 
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2.2.13 Plasmid isolation 

Plasmids isolation from overnight cultures was performed using the QIAprep Spin 

Miniprep Kit according to the manufacturer’s recommendations. Briefly, 2 ml of bacterial 

overnight cultures was centrifuged for 3 min at 6,800x g and the bacterial pellet was 

resuspended in 250 µl buffer P1. Subsequently, 250 µl buffer P2 was added and the 

suspension was mixed by inverting the tube. To stop lysis, 350 µl buffer N3 was added 

and the solution was centrifuged for 10 min at 12,000x g. The supernatant was purified 

using a spin-column according to the manufacturer’s recommendations, and DNA was 

eluted in 40 µl H2O. 

2.2.14 Statistical analyses 

All experiments were performed at least three times. Results were statistically analyzed 

using GraphPad Prism 6 v0008 software. Error bars represent the standard error of the 

mean (SEM). Scatter plots were analyzed using student’s t tests which were two-tailed and 

unpaired, with statistical significance accepted at p < 0.05. Nonlinear regression (curve fit) 

and Pearson product moment correlation coefficient were used for correlation analysis of 

miR-194 and target mRNAs. 
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Figure 2.1: Shows a wound introduced by a scratching with pipette tips and the migratory 

ability of the cells at the wound edge are recorded over a period of time 

 

 

 

 

 

 

Figure 2.2: Specific anti-DIG antibody directly conjugated with the enzyme Alkaline 

Phosphatase (AP). AP then converts the soluble substrates 4-nitro-blue tetrazolium (NBT) 

and 5-bromo-4-chloro-3’-indolylphosphate (BCIP) into a water and alcohol insoluble 

dark-blue NBT-BCIP precipitate. [Image adapted from http://www.exiqon.com/mirna-ish-

kit (accessed on 27/06/2013)] 

 

 

 

http://www.exiqon.com/mirna-ish-kit
http://www.exiqon.com/mirna-ish-kit
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3.1. Introduction  

3.1.1. MicroRNA in situ hybridization (miR-ISH) 

Changes in specific microRNA (miRNA) expression have been shown to be associated 

with cancer diagnosis or outcome. In fact, it has been shown that specific miRNAs 

function as tumour suppressors and oncogenes in human malignancies (Bartel and Chen 

2004; Esquela-Kerscher and Slack 2006; Ryan, et al. 2010). However, tissue-specific 

expression patterns of miRNAs in tumours remain understudied. The miRNA in situ 

hybridization (ISH) technology enables the determination of miRNA expression at the 

cellular level, and therefore addresses the question: What cell population in a tissue 

expresses the miRNA? A precise answer to that question is of high importance since it 

directs the biological interpretation for further functional studies in disease models and in 

molecular and cellular assays.  

3.1.2. Inverse invasion assay 

In pathology, invasion of carcinomas is defined as the penetration of tissue barriers, such 

as intrusion of tumour cells into the basement membrane and infiltration into the 

underlying interstitial tissues. On the other hand, invasion in experimental cell biology is 

defined as cell movement through a 3-dimensional (3D) matrix, which is accompanied by 

a restructuring of the 3D environment. In order to travel through the matrix, a cell must 

modify its shape and interact with the extra-cellular matrix (ECM), which on the one hand 

provides the cell attachment substrate and on the other represents a barrier toward the 

moving cell body. In cancer biology, particularly in the field of metastasis research, 

invasion assays are critical. Therefore, to understand the actions of miR-194 and miR-375 

on prostate cancer cells, optimising an invasion assay was an important part of my PhD. 

3.2. Materials and Methods 

3.2.1 MiR-ISH 

Tissue samples 

Formalin-fixed paraffin embedded tissue samples of prostate cancer were used. The tissue 

blocks should not be older than a year.  
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LNA probes 

For specific detection of miRNAs, the use of Locked Nucleic Acids (LNA), a nucleic acid 

analogue in which the ribose ring is locked into a C3′-endo conformation by a 2′-O, 4′-C 

methylene bridge, have shown great advantages in a variety of platforms, including 

microarray profiling (Tolstrup, et al. 2003), qPCR (Denys, et al. 2010) as well as in situ 

hybridization (Kloosterman, et al. 2006). For the studies in this thesis, double digoxigenin 

(DIG)-labeled miRCURY LNA microRNA detection probes (Exiqon, Denmark) were 

employed. 

Buffers and reagents 

 Proteinase-K buffer: to make 1 L of Proteinase-K buffer: add 5 ml of 1 M Tris–

HCl (pH 7.4), 2 ml 0.5 M EDTA, and 0.2 ml 5 M NaCl to 900 ml Milli-Q water. 

Adjust volume to 1,000 ml and autoclave. 

 Proteinase-K reagent: For 10 ml proteinase-K reagent with a concentration 15 µg 

/ml: add 7.5 ml proteinase-K stock of 20 µg /ml to 10 ml proteinase-K buffer.  

 SSC buffers: to make 1 L of 5× SSC: add 250 ml 20× SSC to 750 ml Milli-Q 

water. To 1 L of 1× SSC: add 50 ml 20× SSC to 950 ml Milli-Q water. To make 1 

L of 0.2× SSC: add 10 ml 20× SSC to 990 ml Milli-Q water. All SSC buffers 

should be autoclaved.  

 PBS-T: to make 1 L of PBS-T: add 1 ml 0.1% Tween-20 to 1 L of PBS (pH 7.4).  

 KTBT: 50 mM Tris–HCl, 150 mM NaCl, 10 mM KCl. To make 1 L of KTBT 

buffer: add 7.9 g Tris–HCl, 8.7 g NaCl, and 0.75 g KCl to 900 ml Milli-Q water. 

Adjust volume to 1000 ml. Do not adjust pH. Finally, autoclave.  

 Levamisol stock: 100 mM. To prepare 100 mM stock by add 10 ml Milli-Q water 

to 250 mg Levamisole. 
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Method/steps 

This method is a modified version of a published miR-ISH protocol (Jorgensen, et al. 

2010):  

1. Deparaffinize slides in xylene and ethanol solutions in coplin jars ending up in 

PBS. In parallel, prepare a water bath and SSC buffers to be heated to 55°C (the 

hybridization temperature).  

2. Deparaffination: Place slides in Xylene for 15 min (through 2–3 times) and then 

hydrate through ethanol solutions at a decreasing concentrations: 99% (three 

times), 96% (two times), and 70% (two times) to PBS (two times). Each solution 

should include one 5-min incubation.  

3. Apply 300 µl/slide proteinase-K reagent at 15 mg/ml directly on the slide over 

the tissue and incubate for 10 min at 37°C in the hybridizer.  

4. Discard the proteinase-K reagent and wash twice with PBS.  

5. Dehydrate slides through ethanol solutions at an increasing concentrations: 70% 

(two times), 96% (two times), and 99% (two times). Keep the dehydration short 

by one immersion. Air dry the slides on clean paper towels for approximately 15 

min. In parallel, denature LNA probe at 950C for 4 minutes and dilute the probe 

in Exiqon ISH buffer. The ISH buffer should be added immediately.  

6. Apply hybridization mix containing the double DIG-labeled LNA probe on each 

tissue section. Gently cover with cover glass. Do not seal the cover slips. Place 

the slides in the hybridizer and start a program hybridizing for 1 h at 55°C. The 

hybridization step should not exceed 2 h.  

7. Carefully detach cover glass and place the slides into 5× SSC at room 

temperature (RT). Place slides in a staining rack.  

8. The stringent washing steps are performed by placing the staining racks with 

slides in jars containing 5× SSC (1 × 5 min), 1× SSC (2 × 5 min), and 0.2× SSC 

(2 × 5 min) at the hybridization temperature (55°C) and 0.2× SSC (1 × 5 min) at 

RT.  

9. Transfer slides to PBS-T.  

10. Incubate with 200 µl blocking solution for 15 min at RT. Blocking solution: 

Prepare blocking solution. For 1600 µl blocking reagent, add 32 µl sheep serum 

(final concentration 2%).  
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11. Apply sheep anti-DIG-AP at 1:800 diluted in blocking solution containing 2% 

sheep serum and incubate for 60 min at RT (two times for 30 min). Preparation 

of anti-DIG reagent: for example, for 1600 µl anti-DIG reagent with a dilution of 

1:800: add 2 µl sheep-anti-DIG AP conjugated to 1600 µl blocking solution 

12. Wash each slide with 300 µl PBS-T two times for at least 3 min.  

13. Incubate freshly prepared NBT/BCIP substrate reagent containing 0.2 mM 

Levamisole and incubate 300 µl for 2 h at 30°C in the incubation racks. Protect 

from light during development. For 10 ml AP substrate: In 10 ml Milli-Q water, 

add one NBT–BCIP tablet (Roche) and add 20 µl Levamisol stock to a final 

concentration of 0.2 mM. Keep protected from light.  

14. Incubate slides with 300 µl KTBT buffer two times for 5 min.  

15. Wash with Milli-Q water two times for 1 min.  

16. Counter stain with Nuclear Fast Red for 1 min: 200–300 µl per slide. This is an 

optional step. This step is not recommended to determine miRNA that have a 

very low expression level. However, must be used for U6 slides.  

17. Rinse the slides in tap water for 10 min.  

18. Dehydrate with ethanol solutions through ethanol solutions at an increasing 

concentration: 70% (two times), 96% (two times), and 99% (two times). Keep 

the dehydration short by one immersion at a time for 1-min. 

19. Mount slides directly with appropriate mounting medium. Avoid air drying 

sections at this step.  

20. Allow overnight settlement of the precipitate and analyse results by light 

microscopy the subsequent day.  
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3.2.2. Invasion assay 

Method/steps 

This method is a modified version of that devised in Prof Laura Machesky’s laboratory at 

the Beatson Institute, UK (Yu and Machesky 2012). Figures 3.1 and 3.2 show the 

schematic of the steps. 

1. Thaw an aliquot of Matrigel slowly on ice (keep the aliquot in fridge overnight). 

2. Dilute 1:1 in ice cold PBS. 

3. Pipette carefully 100 l of this into each Transwell  

4. Incubate for at least 30 mins at 37oC to allow the Matrigel to set.  

5. During this time, prepare cell suspensions in their respective growth medium.  

6. When Matrigel is set, invert the Transwells.  

7. Pipette 100 l of the cell suspension (of your desired concentration) onto the 

underside of the filter (which is now uppermost).  

8. Cover the Transwells carefully with the base of the 24 well tissue culture plate in 

such a way that it contacts the droplet of cell suspension.  

9. Incubate the plate (inverted), for 4 hours.  

10. Turned the plate right-side-up.  

11. Dip each transwell sequentially into 3 x 1 ml serum free medium to wash. Leave 

the Transwell in wash 3 as this serves as the well in which the assay will be 

incubated.  

12. Pipette 100 l of media containing FBS (which will act as chemoattractant) 

gently into the Transwell on top of the Matrigel/PBS.  

13. Replace lid and incubate the plate at 37oC for 4-5 days.  

 

 

 

 

 



 

76 | P a g e  

 

 

Fixation and staining inverse invasion assays  

Propidium iodine staining:   

1. Pipette 1 ml of methanol into each well of a 24 wells plate.  

2. Place at the plate -20oC for 1 hour.  

3. Transfer the Transwells into the cold methanol and keep them for 20 mins. 

4. Transfer directly to wells containing 1 ml propidium iodide at 10 g/ml in PBS.  

5. Incubate the Transwells for 20 mins. 

6. Wash each Transwell 3 times, by placing sequentially into wells containing 1 ml 

PBS for 5 mins per well.  

Finally, proceed to perform confocal analysis. Assays can be kept at 4oC for up to 1 day 

prior to confocal microscopy. 

3.3. Results 

3.3.1. MiR-ISH 

Results of miR-ISH assays are shown in chapter 4. In short, we examined the expression 

of miR-194 at a cellular level in a panel of primary prostate tumours. MiR-194 was 

primarily expressed in prostate epithelial cells, with minimal staining evident in stroma. 

Prostate glands with more normal architecture tended to have weaker staining, whereas 

higher grade foci generally exhibited stronger staining. 

3.3.2. Inverse Invasion assay 

Results of prostate cancer invasion assays are shown in chapter 4 and 5. Briefly, I carried 

out this assay on a range of prostate cancer cell lines and examined their invasive 

capability following modulation of miR-194 and miR-375 levels. MiR-194 was found to 

significantly promote invasion, whereas miR-375 inhibited invasion of prostate cancer 

cells. Figure 3.3 shows optical sections acquired by using confocal microscope at 10 um 

intervals showing invasion of cells (stained with propidium iodide) through Matrigel. 

Figure 3.4 shows a comparison between different prostate cancer cell lines following 

transient transfection of negative control mimics. 
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Figure 3.1: Schematic of steps involved in setting up inverse invasion assay. A) Matrigel 

ECM thawed on ice. B) Matrigel is diluted 1:1 with. C) Transwell inserts are placed into 

multiwell plates, and Matrigel pipetted into each insert. D) Cell suspensions made at 

desired concentration. E) Once the Matrigel has set, the plate is inverted and removed, 

cells are plated onto the underside filter of the Transwell inserts. F) In the inverted 

position, the multiwell plate is carefully placed over Transwell inserts, making contact 

with the cell suspension. G) Cells are allowed to adhere to the filter for 4 hours. (figure 

adapted from (Scott, et al. 2011)) 

 

 

Figure 3.2: Continuation of the schematic diagram for the inverse invasion assay. A) 

Once cells have adhered, dip each Transwell into serum-free media twice to remove 

loose cells. B) Place washed Transwell into a final well containing media plus treatments 

as required. C) Media containing chemoattractant (e.g. 10% fetal bovine serum) as 

required is carefully layered onto Matrigel. (figure adapted from (Scott et al. 2011)) 
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different prostate cancer cells 

following transient transfection with 
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3.4. Discussion 

3.4.1. MiR-ISH 

Implementation of miRNA-ISH in a molecular biology laboratory is challenging, and the 

reason for frequent failure in setting up RNA-ISH technology cannot be attributed to a 

single process or reagent, but rather a combination of technical prerequisites. First and 

foremost, miRNA-ISH is designed to detect RNA, which is highly labile: thus, the 

laboratory should have an RNAse-free workspace and execution of all the steps must be 

followed in a strict RNAse-free set-up. Second, the ISH protocol contains many hands-on 

steps involving a variety of reagents and buffers. Each step has a risk of failure, and tissue 

sections can be fragile: therefore, every step should be carried out with extreme delicate 

attention. Finally, the miR-ISH protocol includes a number of critical steps, some of 

which need optimization related to the type of tissue and the detection probe used. Indeed, 

in the process of optimizing the miRNA-ISH technique during my PhD, I faced several 

challenges. More specifically, these challenges were related to the demasking and 

hybridization steps.  

The demasking step, also known as the pre-digestion step, is based on the use of relatively 

non-specific tissue components like proteases (Proteinase-K). This step provides access to 

the miRNAs in the tissue matrix. The optimal proteinase K concentration varies, 

depending on the tissue type, length of fixation and size of tissue. The recommended 

concentration as per the manufacturer’s protocol is 20 µg/ml. However, on my preliminary 

attempts to carry out the miRNA-ISH protocol with the above mentioned concentration, I 

did not get a desirable outcome. I was not able to appreciate the miRNA staining properly 

as I encountered an abnormal degradation of the tissues. Therefore, I decided to try a 

range of Proteinase-K levels, starting from as low as 5 µg/ml to 30 µg/ml. Finally, after 

several trials and errors, satisfactory images were obtained at a concentration of 15 µg/ml.  

Similarly, the probe hybridization step is also very critical. Other than the requirement of a 

well-defined and stable hybridization buffer, a stable hybridization temperature and 

optimal probe concentration are essential. The manufacturer’s protocol recommends a 

range of hybridization temperature (from 50oC to 70oC) and probe concentrations (from 1 

nM to 40 nM). Similar to Proteinase-K, I tested a range of hybridization temperatures, 

(50oC to 70oC, 5oC intervals) and probe concentrations (5 nM to 100 nM). The optimal 
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probe concentration was found to be 60 nM, concentrations below this provide a 

misleading faint stain. On the other hand, the optimal hybridization temperature was found 

to be 55oC. The benefit of using hybridization temperate at 55oC was twofold: a) even 

though the temperature is quite high for a tissue section to sustain, the glandular 

architecture of the prostate tissue section was well appreciated. A temperature below 55oC 

doesn’t allow the probes to hybridize properly leading to no staining at all, while a 

temperature above 55oC distorts the cellular architecture. b) Another benefit of the 

hybridization temperature being set at 55oC was inactivation of residual Proteinase-K from 

the previous step. Although the sections treated with Proteinase-K were washed with PBS 

prior to the hybridization step, there tended to be some carry over. Interestingly, 

Proteinase-K is known to be inactive at 55oC or higher. 

The fundamental requirement of miR-ISH is to execute the entire protocol in a strict 

RNase-free setup. Apart from this and the points addressed above, once the tissue sections 

are cut with the microtome at 5 – 6 µm thickness, leave them at 4oC at least for a day and 

melt the paraffin on a hot-plate at 60°C for not more than 45 minutes on the same day of 

the ISH experiment. 

3.4.2. Inverse invasion assay 

Despite the availability of different assays to measure the invasive capability of cancer 

cells, a common problem encountered in performing invasion assay is due to different 

modes of cell motility. This is particularly important when a range of cancer cell lines are 

tested. Currently, the modes of cell motility are broadly divided into three types: a) 

amoeboid movement, which is characterized by cells moving as rounded, ellipsoid bodies 

without the involvement of focal adhesions and cell attachment (Charras and Paluch 2008; 

Fackler and Grosse 2008); b) mesenchymal migration, which involves strong focal 

attachment to the extracellular matrix, cytoskeletal contractility and elongated spindle-like 

cell bodies (Grinnell 2003); c) collective migration, which is characterized by the 

movement of a cellular cohort through the ECM with the preservation of functional cell–

cell junctions (Gerharz, et al. 2007). For the studies in this thesis, mesenchymal and 

collective modes of motility were of particular importance. We wanted an assay which 

provides a 3D image and mimics the tumour microenvironment. We therefore, decided for 

the inverse invasion assay designed, tested and formulated by Prof Laura Machesky at the 

Beatson Institute, UK (Yu and Machesky 2012) and optimised the protocol for prostate 

cancer cell lines. Apart from the steps mentioned above in the method section, two critical 
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steps were to allow the invasion of prostate cancer cells to take place for at least 3 days 

and to perform the confocal microscopy within 24 hours after the cells were fixed and 

stained with propidium iodide.  
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“GATA2-regulated miR-194 targets Suppressor of Cytokine Signaling 2 to promote 

prostate cancer metastasis” 

 

The following chapter includes a manuscript submitted for publication to the Journal of 

Clinical Investigations, followed by supplementary figures and tables that make up a large 

portion of the work completed as a part of this PhD. A general discussion of this chapter 

had been included at the end. 
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My role in this study 

I carried out all the experiments (cell line culture and transfection, cellular migration and 

invasion assays, western blots, in situ hybridization, RT-qPCR, immunofluorescence, in 

vivo assays), co-designed the study with my supervisors and drafted the manuscript. 

Abstract 

Dysregulated expression of microRNAs (miRNAs, miRs) is a hallmark of cancer. MiR-

194 is elevated in prostate tumors compared to non-malignant tissues and its levels in 

serum are predictive of post-surgery disease recurrence, but its role in this disease is 

poorly understood. Here, we demonstrated that miR-194 promotes metastasis of prostate 

cancer. Serum levels of miR-194 are higher in men with metastatic versus localized 

disease, and tissue levels of miR-194 are associated with disease recurrence post-surgery 

and tumor aggressiveness. Over-expression of miR-194 in prostate cancer cell lines 

promoted migration, invasion and epithelial-mesenchymal transition in vitro and 

metastasis of xenografts in vivo. The ubiquitin ligase Suppressor of Cytokine Signaling 2 

(SOCS2) was found to be a direct target of miR-194 in prostate cancer and a mediator of 

its pro-metastatic functions. Low levels of SOCS2 were strongly associated with disease 

recurrence and metastasis in patients, and its down-regulation augmented metastatic 

phenotypes. By targeting SOCS2, miR-194 de-repressed key oncogenic kinases including 

FLT3 and JAK2, leading to enhanced ERK and STAT3 signalling. GATA2 was found to 

be an upstream transcriptional regulator of miR-194 in vitro, a finding validated by the 

strong concordance between GATA2 activity and miR-194 levels in patient cohorts. 

Collectively, our study has elucidated a novel pro-metastatic pathway in prostate cancer 

with miR-194 at the nexus, providing further impetus for exploring the potential of this 

miRNA as a biomarker and therapeutic target. 
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Introduction 

Prostate cancer (PCa) is the most common non-skin cancer of men and causes >300,000 

deaths worldwide annually (1, 2). The predominant cause of mortality from PCa is 

metastasis (3, 4), which can be present at the time of diagnosis or develop after failure of 

primary treatment (surgery and/or radiation therapy). Therefore, both the identification of 

markers that accurately predict or demarcate metastatic disease at an early stage, as well as 

the development of strategies that effectively inhibit metastasis, would have a significant 

impact on patient outcomes. Both of these goals have been hindered by an imprecise 

understanding of the mechanisms governing dissemination of tumor cells from the 

prostate (5).  

Metastasis of carcinomas (epithelial-derived cancers) encompasses a complex series of 

events whereby epithelial tumor cells invade the surrounding stroma, enter blood or 

lymphatic circulation, arrest at distant anatomic sites, exit the vasculature, and colonize a 

secondary location through metastatic outgrowth (6). Given the intricacy of the metastatic 

cascade, it is not surprising that many regulators of metastasis have been identified, often 

acting in a context-dependent manner. One such class of metastatic regulatory factors are 

microRNAs (miRNAs; miRs), small, non-coding RNA molecules of 21-23nt that regulate 

gene expression in a sequence-specific manner at both post-transcriptional and epigenetic 

levels (7). Aberrant miRNA expression is a common feature of many cancers, including 

prostate cancer (8-13), and this dysregulation can both promote and inhibit metastasis 

(14).  

In a recent study, we identified miRNAs in the circulation that were predictive of disease 

recurrence following surgery for primary prostate cancer (15). The expression of one of 

the putative biomarkers identified in this earlier work, miR-194, was elevated in metastatic 

tissues, leading us to speculate that it could be a driver of prostate cancer progression. 

Herein, we demonstrate that miR-194 promotes prostate cancer metastasis. 

Mechanistically, miR-194 targets Suppressor of Cytokine Signaling 2 (SOCS2), resulting 

in upregulation of oncogenic and pro-metastatic STAT3 and ERK signaling pathways. 

Moreover, we show that miR-194 is regulated at a transcriptional level by the pro-

metastatic transcription factor GATA2. Collectively, these findings elucidate a new and 

complete pathway driving prostate cancer metastasis. 
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Results 

MiR-194 is a circulating marker of metastasis and a tissue marker of disease 

aggressiveness  

In a previous study (15), we found that high levels of miR-194 in patient serum was 

prognostic for biochemical recurrence following radical prostatectomy. To determine 

whether this reflected an association between miR-194 and metastatic disease, we 

measured miR-194 in an independent set of serum samples obtained from patients with 

localized (n = 21) and metastatic (n = 18; primarily bone metastases) prostate cancer. 

MiR-194 levels were significantly higher in the serum of men with metastatic castration-

resistant prostate cancer compared to men with localized disease (Figure 1A).  

Our previous work (15) had also revealed that tumor levels of miR-194 were associated 

with poor outcomes, including metastasis, in two distinct cohorts from Memorial Sloan-

Kettering Cancer Center (MSKCC) (16) and Erasmus Medical Center (17). To verify this 

finding, a larger patient dataset from The Cancer Genome Atlas (TCGA; (18)) was 

examined. In this cohort, miR-194 was higher in the tumors of men who subsequently 

experienced a new tumor event (Figure 1B) and biochemical recurrence (Figure 1C), 

supporting our earlier findings. Moreover, in both the TCGA and MSKCC cohorts, miR-

194 expression was elevated in higher Gleason score tumors (Figure 1D).  

To complement these in silico analyses, we undertook in situ hybridization (ISH) to 

examine miR-194 expression at a cellular level in a panel (n = 23) of primary prostate 

tumors. Validating the findings from the published cohorts, quantitation of staining 

revealed that miR-194 positivity was associated with Gleason grade (Figure 1E). MiR-194 

was primarily expressed in prostate epithelial cells, with minimal staining evident in 

stroma (Figure 1F). Representative examples demonstrate that glands with more normal 

architecture tended to have weaker staining (Figure 1F, red arrows) whereas higher grade 

foci generally exhibited stronger staining (Figure 1F, black arrows). Collectively, these 

analyses of miR-194 in patient serum and tumors reveal that it is a candidate marker of 

disease aggressiveness, recurrence and metastasis.  

 

 



 

90 | P a g e  

 

MiR-194 enhances metastatic features of prostate cancer cells  

Given the association between miR-194 and tumor aggressiveness, we hypothesized that it 

may directly enhance pro-metastatic phenotypes. To test this concept, we modulated miR-

194 activity in prostate cancer cell lines by over-expression (transfection of miRNA 

mimics) or inhibition (transfection of LNA miRNA inhibitors) and assessed cell 

migration, invasion and growth. Over-expression of miR-194 caused PC3, DU145 and 

22Rv1 cells to become more migratory and invasive in nature (Figures 2A-B). 

Conversely, suppression of endogenous miR-194 activity with an LNA inhibitor 

suppressed cell invasion (Figure 2C). Interestingly, concomitant with enhancing motility 

and invasiveness, exogenous miR-194 attenuated cancer cell growth in all models tested 

(Supplementary Figure 1). Epithelial-mesenchymal transition (EMT) is a fundamental 

aspect of morphogenesis and wound healing during which sessile epithelial cells lose cell 

adhesion and convert to migratory and invasive mesenchymal cells. Cancer cells can 

hijack this process to enable migration and invasion of tumor cells into the surrounding 

stroma and entry/exit from the bloodstream (19). To test whether the pro-migratory and 

pro-invasive activities of miR-194-were associated with EMT, expression of epithelial (E-

cadherin (E-cad) and Zona occludens-1 (ZO-1)) and mesenchymal (N-cadherin (N-cad)) 

markers were examined by Western blotting. In both PC3 and 22Rv1 cells, delivery of 

miR-194 mimic resulted in changes reminiscent of EMT, namely loss of E-cad/ZO-1 and 

gain of N-cad/Fn (Figure 2D). Moreover, the cells lost cohesion and gained a more 

elongated, mesenchymal-like morphology (Figure 2E and Supplementary Figure 2). 

Immunofluorescence analysis validated the loss of E-cad, and staining for F-actin revealed 

cytoskeletal rearrangement characteristic of EMT (Figure 2E).  

MiR-194 promotes prostate cancer invasion and metastasis in vivo  

Our in vitro experiments indicated that miR-194 could enhance pro-metastatic features of 

tumor cells. We further investigated this notion using in vivo models of tumour invasion 

and metastasis. First, the pro-invasive activity of miR-194 was examined in an ex ovo 

chick chorioallantoic membrane (CAM) assays (20). Invasion of PC3 and LNCaP cells 

through the ectoderm into the mesoderm of the CAM was assessed after 3 days of 

implantation of the cancer cells and matrigel grafts on day 14 of chick embryo 

development by pan-cytokeratin immunohistochemistry. Following transfection of 

negative control LNA, both cell types invaded through the ectoderm into the mesoderm 

layer of the CAM, although PC3 was more aggressive (Figures 3A, 3B). Importantly, 
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transfection of cells with miR-194 LNA inhibitor greatly reduced the invasive capacity of 

both cell lines (Figures 3A, 3B). To determine if over-expression of miR-194 could 

enhance prostate cancer cell invasion through CAMs, we generated luciferase-tagged PC3 

and LNCaP cells over-expressing miR-194, termed PC3-194 and LNCaP-194, by 

lentiviral transduction. These cells exhibited significantly augmented invasive capacity 

compared to controls (Supplementary Figure 3). Collectively, these data demonstrate a 

potent pro-invasive role for miR-194 in prostate cancer.  Having verified the ability of 

miR-194 to augment prostate cancer cell invasion, we next turned to experimental 

metastasis assays in immunocompromised mice. The luciferase-tagged PC3-194 and 

control (PC3-NC) cells were injected into the tail veins of NOD/SCID mice, which were 

then assessed by weekly whole-animal bioluminescence imaging. In this assay, over-

expression of miR-194 enhanced both the speed and extent of metastatic colonization 

(Figure 3C).  

Tail vein assays evaluate tumor cell extravasation and metastatic colonization. To 

determine how over-expression of miR-194 influences spontaneous metastasis, we 

employed an orthotopic assay in which cells were injected directly into the prostate (i.e. 

intra-prostatic xenografts). Weekly monitoring of the mice revealed that tumor incidence 

was 77.8% for PC3-NC and 90% for PC3-194 cells, and PC3-194 tumors grew more 

rapidly (Figure 3D). Ex vivo imaging of tissues following intra-prostatic tumor growth 

revealed that, in 6/9 mice, PC3-194 cells spread to major visceral organs such as kidneys, 

lungs, livers and spleens (Figure 3E). By contrast, PC3-NC cells remained contained 

within the prostate in all mice (Figure 3E). The longevity of the mice post-injection further 

highlighted the aggressiveness of the PC3-194 cells in the orthotopic assay (Figure 3F).  

SOCS2 is a clinically relevant target of miR-194  

To elucidate the mechanism(s) by which miR-194 exerts its pro-metastatic effects, we 

identified candidate gene targets by intersecting outputs from three distinct prediction 

algorithms, TargetScan (21), miRanda (22) and PicTar (23) (Supplementary Figure 4). 

From the resultant list of 69 genes, we focused on factors that are down-regulated in 

prostate cancer metastases. One such gene, Suppressor of Cytokine Signaling 2 (SOCS2), 

has a well-conserved miR-194 target site in its 3’UTR (Figure 4A). Importantly, in two 

distinct clinical cohorts, expression of SOCS2 was decreased in metastatic samples (Figure 

4B), as would be expected for a biologically relevant miR-194 target. Moreover, low 

SOCS2 expression was associated with biochemical recurrence and metastasis in multiple 
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datasets: MSKCC, a large pooled multi-institutional cohort with long-term outcome data 

(24-29) and TCGA (Figure 4C and Supplementary Figure 5). The robust association 

between reduced levels of SOCS2 and subsequent development of metastatic disease in the 

large multi-institutional cohort was particularly compelling in light of miR-194’s pro-

metastatic activity.  

To validate SOCS2 as a miR-194 target, we examined its expression in response to ectopic 

delivery of miR-194. SOCS2 protein was decreased by transfection of miR-194 mimic and 

increased by miR-194 inhibition (Figures 4D-E). SOCS2 mRNA was decreased by 

exogenous miR-194 (Supplementary Figure 6) but not to the same extent as SOCS2 

protein, suggesting that targeting is comprised of both translational repression and 

transcript degradation. Down-regulation of SOCS2 by miR-194 was due to a direct 

miRNA:mRNA interaction, since miR-194 inhibited the expression of a luciferase reporter 

gene fused to a fragment of the SOCS2 3’UTR containing the target site (Figure 4F). 

Finally, confirming the potential for miR-194 targeting of SOCS2 in vivo, there was a 

negative relationship between the expression of these factors in an “in-house” cohort 

comprised of 44 tumor samples (Figure 4G).  

Next, we assessed the relevance of SOCS2 in processes associated with miR-194-driven 

metastasis. Knockdown of SOCS2 (Figure 5A) recapitulated miR-194 over-expression in 

all phenotypes tested: specifically, down-regulation of SOCS2 reduced growth 

(Supplementary Figure 7) but enhanced migration (Figure 5B) and invasion (Figure 5C). 

To demonstrate dependence of miR-194 on SOCS2 to mediate its pro-invasive ability, we 

enforced expression of the SOCS2 ORF without its 3’UTR in PC3 cells (Figure 5D). In 

this rescue assay, co-transfection of the SOCS2 ORF over-expression construct (SOCS2-

OE) with miR-194 significantly reversed miR-194-mediated invasion (Figure 5E). This 

data demonstrates that SOCS2 is a key target through which miR-194 signals to promote 

metastatic phenotypes in prostate cancer cells.  
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MiR-194-mediated suppression of SOCS2 activates STAT3 and ERK signalling 

pathways  

SOCS2 is a member of the SOCS family of ubiquitin E3 ligases, which have pleiotropic 

roles in normal physiology of the immune and central nervous systems as well as in the 

pathophysiology of various cancers (30). In the immune system, these functions are at 

least partly mediated by the ability of SOCS2 to target key tyrosine kinases, such as Janus 

Kinase 2 (JAK2) and Fms-like tyrosine kinase 3 (FLT3), for degradation by the ubiquitin-

proteasome system (30-32). Thus, we speculated that enhanced activity of JAK2- and 

FLT3-regulated pathways in response to loss of SOCS2 might be a mechanism by which 

miR-194 promotes metastasis. Indeed, total levels of both JAK2 and FLT3 were elevated 

in response to miR-194 over-expression and specific SOCS2 knockdown in PCa cells 

(Figure 6A). Moreover, miR-194 and siSOCS2 both enhanced the phosphorylation of 

ERK and STAT3, key downstream mediators of JAK and FLT3 signaling (Figure 6B). 

Activation of ERK and STAT3 pathways by miR-194 was further confirmed by 

measuring the expression of pro-metastatic downstream effector genes, including BCL2, 

BIRC5, BRF1, CDC25A, ELK1, ELK4, FSCN2 and MYC (Figure 6C). All of these genes, 

except BCL2, were also positively correlated with miR-194 in clinical samples (Figure 6D 

and Supplementary Figure 8), suggesting that miR-194-mediated enhancement of ERK 

and STAT3 pathways is physiologically relevant.  

If ERK and STAT3 signalling pathways are important mediators of miR-194’s pro-

metastatic activity, pharmacological inhibition of these pathways should reverse miR-194-

driven phenotypes. To test this hypothesis, we transfected cells 22Rv1 with miR-194 in 

the presence and absence of an ERK1/2 inhibitor (SCH772984) or a pan-JAK inhibitor 

(JAK1 Inhibitor I) and measured invasion. In the presence of these drugs, the pro-invasive 

activity of miR-194 was completely blocked (Figure 6E).  

GATA2 is an upstream regulator of miR-194  

Having established key downstream mediators of miR-194 activity, we wished to identify 

upstream regulators that may be responsible for over-expression of this miRNA in prostate 

cancer. Initially, we searched for genes that were expressed concordantly with miR-194 in 

prostate tumors. GATA2 was one of the most highly positively correlated genes in the 

TCGA cohort (Figure 7A). GATA2 is a transcription factor that plays multiple, key roles 

in prostate cancer growth and metastasis by modulating the AR and IGF2 signaling 
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pathways (33-35). Importantly, miR-194 levels were also closely associated with GATA2 

activity in primary prostate tumors, as revealed by gene set enrichment analysis (GSEA) 

(Figure 7B).  

Supporting the clinical association, knockdown of GATA2 by siRNA caused a significant 

reduction in miR-194 expression (Figure 7C). Interestingly, analysis of ENCODE ChIP-

seq data revealed the presence of GATA2 binding sites within a few kilobases of both 

miR-194-encoding loci (MIR194-1 on chromosome 1 and MIR194-2 on chromosome 11) 

in the lymphoblast K562 cell line (Figure 7D). Collectively, these data indicate that 

GATA2 is an upstream regulator of miR-194 in prostate cancer. 

Discussion  

A better understanding of the mechanisms underpinning prostate cancer metastasis is vital 

to improve patient management and treatment. In this study, we have provided new insight 

into this process by identifying a new pathway influencing this process. More specifically, 

by targeting SOCS2, miR-194 co-ordinately stimulates multiple pro-metastatic effectors 

downstream of JAK2/STAT3 and FLT3/ERK. These novel mechanistic findings likely 

underlie the observation that miR-194 is elevated in the serum of men with metastatic 

disease (this study) or, as we previously showed, experience more rapid relapse following 

surgery (15). A model summarizing these concepts is shown in Figure 8.  

Providing new insight into miR-194 in cancer is an important outcome of this study 

because its precise functions have been difficult to resolve, with reports of both tumour 

suppressive and oncogenic activity. For example, in models of gastric, colorectal, liver, 

kidney, breast and endometrial cancers, miR-194 has variably been shown to suppress 

tumor growth, invasion and metastasis, acting at least partly by driving epithelial 

differentiation and inhibiting EMT (36-48). By contrast, other groups have demonstrated 

that miR-194 can promote invasion and metastasis of pancreatic and endometrial cancer 

cells (49, 50) and colorectal cancer angiogenesis and growth (51), and that its expression 

is elevated in and during progression of oesophageal adenocarcinoma (52-55). Moreover, 

an elegant study using laser-captured tissues demonstrated that high expression of miR-

194 at the invasive front of liver cancers was a prognostic indicator of poor recurrence-

free and overall survival in colorectal liver metastases (56). Our demonstration that miR-

194 promotes invasion, migration, EMT and metastasis are consistent with these latter 

findings. During the preparation of this manuscript, Zhang and colleagues published a 
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study was in which miR-194 was shown to target BMP-1 in PC3 cells, leading to 

decreased expression of matrix metalloproteinases 2 and 9 and subsequent suppression of 

invasion (57). We cannot currently explain the inconsistency between this earlier study 

and our current work. One explanation could simply be the known inter-laboratory 

heterogeneity of cancer cell lines, which can lead to variable results. In our studies, to 

ensure that our findings were not predicated on a single model and thus are likely to be 

robust, we utilized multiple cell line models and in vivo assays. Further research on miR-

194 in prostate cancer, including identification of its complete “targetome”, will 

undoubtedly unravel its precise role and resolve this apparent discrepancy.  

The dichotomy of miR-194 action, acting as an oncomiR in some contexts and a tumor 

suppressor in others, is not unusual in miRNA biology. This phenomenon is underpinned 

by the fact that miRNA function in a particular cell or tissue is contingent on the 

expression of relevant gene targets in that environment. Thus, the context-dependent roles 

of miR-194 can be attributed to its many cancer-relevant targets, including the EMT factor 

N-cadherin (44, 46), the Wnt pathway receptor frizzled-6 (58), IGF1R (44), the 

transforming growth factor (TGF)-β pathway member activin receptor type 2B 

(ACVR2B) (59), the cytoskeletal protein talin2 (39), the SCF E3 ubiquitin ligase 

component RING box protein1 (RBX1) (37), MAP4K4 (42), the EMT-promoting 

transcription factor Bmi-1 (60), and the oncogenic transcription factor YAP1 (61). Here, 

we expand upon miR-194’s target repertoire by identifying SOCS2, which we believe 

represents a particularly critical mediator of miR-194 action in prostate cancer. SOCS2 is 

a substrate-recruiting component of E3-ubiquitin ligase complexes, and its targets include 

factors highly relevant in pathologies such as JAK2, FLT3, IGF and growth hormone (30). 

By promoting degradation of these factors via the ubiquitin-proteasome pathway, SOCS2 

simultaneously constrains multiple key pro-metastatic cellular pathways. Like miR-194, 

the function of SOCS2 in cancer is apparently complex, with reports of both oncogenic 

and tumor-suppressive activities (30). The same is true in prostate cancer, with recent 

reports producing conflicting data in relation to the function of SOCS2 (62, 63): while one 

study found SOCS2 to exert growth-promoting effects in prostate cancer (62), others 

demonstrated that SOCS2 inhibits tumor growth in vitro and in vivo and is a negative 

prognostic indicator post-surgery (63, 64). Our study at least partially resolves these 

conflicting findings by identifying a dual role for SOCS2 in prostate cancer: it is required 

for normal prostate cancer cell growth but acts concomitantly to inhibit metastatic 
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characteristics of cancer cells. Its putative role as a suppressor of metastasis is reinforced 

by our observation that reduced expression of this factor in large, contemporary prostate 

cancer cohorts is strongly associated with increased incidence of biochemical recurrence 

and metastasis. Moreover, we elucidated a mechanism to explain the ability of SOCS2 to 

curtail prostate cancer progression: by down-regulating two key kinases, FLT3 and JAK2, 

SOCS2 thereby inhibits key signalling pathways that are known to promote metastasis.  

The relevance of a GATA2-miR-194-SOCS2 pathway in prostate cancer metastasis is 

supported by the known roles of GATA2, JAK2/STAT3 and MAPK/ERK signalling 

pathways in prostate cancer progression. GATA2 has a well-characterized function as an 

AR co-regulator (35, 65), but also operates independently of the AR signalling axis to 

promote chemoresistance and disease progression (33, 34). STAT3 acts as a key conduit 

in prostate cancer, integrating signals from the IL-6 cytokine and receptor tyrosine kinase 

pathways to drive various oncogenic processes including cell proliferation, AR activity, 

suppression of apoptosis and phenotypic plasticity governing EMT and cancer stem cell 

maintenance (66). Like STAT3, MAPK/ERK integrates multiple extrinsic signals to 

regulate cancer cell survival and apoptosis, amongst other functions (67). Our study 

provides a new link between these various signal transducers, with GATA2-regulated 

miR-194 at the nexus (Figure 8). Interestingly, GATA2 had previously been shown to 

activate multiple oncogenic kinases, including Akt and ERK, via direct regulation of the 

growth hormone IGF2 (34). With this in mind, we propose that miR-194 and IGF2 

represent distinct downstream targets of GATA2 that nevertheless act in a complementary 

manner to additively enhance oncogenic signalling pathways and thereby promote prostate 

cancer progression. More broadly, our findings here further endorse GATA2 as a 

promising target in this disease (35, 68). Importantly, we believe the GATA2-miR-194 

pathway may be generalizable to other tissues and malignancies, since we found evidence 

for a positive association between miR-194 and GATA2 signalling in breast cancer 

(Supplementary Figure 9).  

Our interest in miR-194 arose from an earlier finding that its levels in serum/plasma, 

measured immediately prior to radical prostatectomy for localized prostate cancer, were 

predictive of recurrence after a disease-free period ranging from 1-70 months (15). In this 

previous study, we also noted that tissue expression of miR-194 was higher in metastatic 

disease, leading us to speculate that its potential as a biomarker was a consequence of its 

release into the blood from tumor cells with high metastatic potential and/or clinically 
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undetectable micro-metastases. This hypothesis is further strengthened by the work shown 

in this study. More specifically, using large independent clinical cohorts, we show that 

miR-194 levels in the primary tumor are highly prognostic for prostate cancer metastasis, 

and that circulating miR-194 is higher in men with metastatic compared with localized 

disease. Collectively, these findings support the idea that measuring circulating miR-194 

could be used to detect micrometastases at the time of treatment or predict metastatic 

recurrence post-treatment. However, we acknowledge that the putative utility of miR-194 

as a biomarker requires substantial additional validation.  

In summary, our study has identified a new metastasis-promoting miRNA, miR-194, a 

new metastasis-suppressing factor, SOCS2, and a novel GATA2-driven pathway 

influencing prostate cancer metastasis. These findings have implications in terms of 

utilizing miR-194 as a biomarker and warrant further investigation into potential targeting 

of this miRNA to suppress prostate cancer progression. 

MATERIALS AND METHODS  

Analysis of miR-194 expression in published datasets  

TCGA data was obtained from the web portal (https://tcga-data.nci.nih.gov/tcga/); miRNA 

expression data was obtained previously (69) whereas clinical data was downloaded on 

31st October 2015. The MSKCC dataset was downloaded and processed as described 

previously (70).  

Reagents  

ERK1/2 inhibitor (SCH772984) was obtained from SelleckChem (S7101). Pan-JAK 

inhibitor (JAK1 Inhibitor I) was obtained from Calbiochem (420097).  
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Cell line culture and transfection  

PC-3, DU145, 22Rv1, C4-2B and LNCaP human prostate carcinoma cells were obtained 

from the American Type Culture Collection. DU145, C4-2B, LNCaP and 22Rv1 cells 

were cultured in RPMI + 10% FBS. PC-3 cells were maintained in RPMI-1640 containing 

5% FBS. All cell lines underwent verification by short-tandem repeat profiling in 2016 by 

CellBank Australia.  

Cells were transfected with 20 nM miRNA mimics (miR-194 or negative control mimic; 

Shanghai GenePharma), 50 nM LNA miRNA inhibitors (miR-194 LNA inhibitor or 

negative control inhibitor; Exiqon), 20 nM siRNA (SOCS2 siRNA (Thermo Fisher 

Scientific, 4392420); GATA2 siRNA (Thermo Fisher Scientific, 1299001) or negative 

control siRNA; Qiagen)) using RNAiMAX transfection reagent (Life Technologies), 

according to the manufacturer’s instructions. For plasmid transfections, cells were 

transfected with Lipofectamine 2000 (Life Technologies), according to the manufacturer’s 

instructions. 

MicroRNA in situ hybridization  

In situ hybridization (ISH) was performed to determine the patterns of expression of miR-

194 in human clinical PCa tissue from unmatched benign and malignant prostate tissues. 

ISH was performed using a locked nucleic acid (LNA)-conjugated miR-194-specific probe 

from Exiqon according to the manufacturer’s instructions (71). Slides were examined with 

the aid of an Olympus BX50 microscope; 3 random fields at 60× magnification were 

analysed for each sample.  

Growth assays  

Growth curves were performed essentially as described previously (72), with some minor 

modifications. Briefly, cells were seeded at 2x105 (PC3) or 3x105 (22Rv1) cells/well in 6-

well plates and transfected in suspension with miRNA mimic, miRNA inhibitor or siRNA 

as described above. Live and dead cells were subsequently quantified at the indicated time 

points using Trypan blue.  
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Cellular migration and invasion assays  

In vitro scratch wound migration assays and Matrigel invasion assays in prostate cancer 

cell lines were conducted as described (73). For the SOCS2 rescue experiment, cells were 

co-transfected with miR-194 and a SOCS2 over-expression vector (Origene, SC108265).  

Quantitative real-time PCR analysis of miRNA expression  

Total RNA was extracted from prostate cancer cells using Trizol, essentially as described 

previously (74), except that the RNA was precipitated with 2.5 volume of ethanol, 10mM 

MgCl2, 0.1 volume of 5 M NaCl, and 20 μg of Glyco-Blue (Life Technologies) overnight 

at –20oC. Levels of miR-194 and U6 small nuclear RNA were measured by qRT-PCR 

using Taqman assays, following the manufacturer’s instructions (Life Technologies).  

Quantitative real-time PCR analysis of mRNA expression  

RNA extraction from cells, using Trizol reagent, and qRT-PCR was done as described 

previously (74). GAPDH was used for normalization of qRT-PCR data. Primer sequences 

are available on request.  

Western blotting  

Protein extraction from cells, using RIPA buffer, and Western blotting was done as 

described previously (74). Antibodies used in Western blotting were: E-cadherin (BD 

Biosciences, 610182); ERK (Cell Signaling Technology, 9102); phospho-ERK (Cell 

Signaling Technology, 9101); FLT3 (Cell Signaling Technology, #3462); N-cadherin 

(Santa Cruz Biotechnology, sc-7939); SOCS2 (Cell Signaling Technology, 2779); STAT3 

(Cell Signaling Technology, 9132); phospho-STAT3 (Ser727; Cell Signaling Technology, 

9134); ZO-1 (Santa Cruz, sc-10804); GAPDH (Millipore, MAB374).  
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Immunofluorescence  

22Rv1 cells were transfected with miR-194 mimic or control, as described above, plated 

onto chamber slides (Lab-Tek, Thermo Fisher Scientific) and stained at day 3. For E-

cadherin staining, cells were fixed in 4% paraformaldehyde, permeabilized in 0.1% Triton 

X-100 and probed with an anti-E-cadherin antibody (1:500; BD Biosciences, 610182). To 

detect nuclei, cells were co-stained with 4´-6-Diamidino-2-phenylindole (DAPI; 

Invitrogen). For F-actin staining, fixed and permeabilized cells were incubated with 

rhodamine phalloidin (Invitrogen) for 10 min. Cells were observed on and pictures were 

taken using a confocal microscope (Leica SP5).  

Luciferase assays  

To determine whether miR-194 directly targets the SOCS2 3’UTR, PC3 cells were 

transfected with miR-194 mimic or negative control. The following day, cells were 

transfected again with the 500 ng SOCS2 3’UTR construct (75) using Lipofectamine 2000 

reagent. After 2 days, luciferase activity was measured using a Dual Luciferase Reporter 

assay (Promega). Firefly luciferase activity was normalized to Renilla luciferase activity.  

Generation of miR-194 over-expressing PC3 and LNCaP cells  

Luciferase-tagged PC3 and LNCaP cells were a kind gift from Professor Andreas 

Evdokiou. The lines were generated using the retroviral expression vector SFG-NES-TGL, 

which gives rise to a single fusion protein encoding herpes simplex virus thymidine kinase 

(TK), green fluorescence protein (GFP), and firefly luciferase (Luc), as described 

previously (76). Lentivirus particles designed to over-express miR-194 were prepared 

using a standard third generation packaging system in HEK293T/17 cells after transfection 

of cells with packaging vector and GFP hsa-miR-194-5p miRNA lentivector (Applied 

Biological Materials Inc., mh11109) or empty vector control (Applied Biological 

Materials Inc., m003). For viral transduction experiments, luciferase-tagged PC3 and 

LNCaP cells were seeded at 1.25x107 cells per T75 flask and left overnight to adhere. The 

next day, cells were transduced with concentrated lentivirus using a MOI of 1 and 6 

μg/mL (as final concentration) Polybrene (Sigma) in normal growth media.  
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Chick chorioallantoic membrane (CAM) assays  

CAM assays were approved by the University of Adelaide Animal Ethics Committee 

(approval number M-2014_079). CAM assays were carried out essentially as described 

(20), using the in ovo method. 5 x 104 PC3 cells per 15 μl of growth media and 8 x 104 

LNCaP cells per 15 μl of growth media were mixed with an equal volume of Matrigel and 

grafted on top of the CAM of day 11 chick embryos. After 3 days, the CAM implants 

(containing the cell: Matrigel graft) was removed and fixed in 4% formaldehyde and 

paraffin embedded. Haematoxylin and eosin (H&E) staining and pan-cytokeratin 

immunohistochemistry were performed as described (20). For quantitative analysis of 

cancer cell invasion into the mesoderm layer, 8 to 12 CAM images from each embryo (6-8 

embryos per treatment) were assessed.  

Intravenous experimental metastasis model  

Intravenous xenograft experiments were approved by the University of Adelaide Animal 

Ethics Committee (approval number M-2014-180C). Eight-week old male NOD/SCID 

mice (Animal Resources Centre, Western Australia) received tail vein injections of 1×106 

PC3-194 cells in 200 μl of PBS. Non-invasive, whole-body imaging to monitor luciferase-

expressing cells in mice was done at the time of injection and then once every week using 

the IVIS Lumina XRMS Series III Imaging System (Perkin Elmer). Mice were injected 

intraperitoneally with 100 μL D-luciferin (Biosynth; Cas # 115144-35-9) solution at 300 

mg/kg body weight and then gas-anesthetized with isoflurane. The photon emission 

transmitted from mice was captured and quantitated by converting to physical units of 

surface radiance (photons/sec/cm2/sr) using Perkin Elmer Living Image (version 4.5).  

Intra-prostatic experimental metastasis model  

Intra-prostatic xenograft experiments were approved by the University of Adelaide 

Animal Ethics Committee (approval number M-2014-180C). Eight-week old male 

NOD/SCID mice 

(Animal Resources Centre, Western Australia) received intra-prostatic injections of 

1.5×105 PC3-194 cells in 10 μl of PBS. In vivo imaging was carried out as described 

above. After sacrificing the animals, organs were removed for ex vivo bioluminescence 

imaging.  
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Prospective primary prostate cancer cohort  

Primary prostate cancer specimens were obtained with written informed consent through 

the Australian Prostate Cancer BioResource from 44 men who underwent robotic radical 

prostatectomy at St. Andrew’s Hospital (Adelaide, Australia). The study was approved by 

the University of Adelaide Human Research Ethics Committee (approval number H-2012-

016). A subset of these samples (n = 26) were first reported in a previous publication from 

our group (73); the remainder were collected subsequently. Tissues were homogenized in 

Qiazol using a Precellys 24 tissue homogenizer (Bertin Technologies) before RNA 

extraction with miRNeasy mini kits (Qiagen). DNAse treatment was performed using a 

TurboDNase kit (Ambion) according to the manufacturer’s instructions. RNA was 

quantified using a Nanodrop. Reverse transcription was performed on 400 ng total RNA 

using the iScript kit (BioRad Laboratories) according to the manufacturer’s instructions. 

Levels of miR-194 and SOCS2 were not normally distributed, hence Spearman’s 

correlation tests were used to examine relationships between their levels.  

Gene set enrichment analysis (GSEA)  

GSEA was performed as described previously (73). The GATA2-regulated gene set used 

in this study was comprised of genes that were down-regulated (p < 0.001) in response to 

GATA knockdown (35).  

Measuring levels of miR-194 in serum 

Serum total RNA samples from men with metastatic disease have been described 

previously (77). During this same study, whole blood samples from men with localized 

prostate cancer were also collected. All samples were collected with institutional approval 

from the Research Ethics Board of the British Columbia Cancer Agency. Informed 

consent was obtained from all participating patients and volunteers. Blood was collected 

in accordance with the National Institute of Cancer standard operating procedures for 

serum and plasma processing. Total RNA and Taqman qRT-PCR analysis of miR-194 

(with a pre-amplification step) was performed as described previously (77).  
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Statistical analyses  

All statistical analyses were carried out using GraphPad Prism (version 5; GraphPad 

Software, San Diego, CA, USA). Details of statistical tests used are provided in the figure 

legends. For Kaplan Meier analyses, optimal cutoffs for dichotomizing variables were 

defined as the point with the most significant (Fisher’s exact test) split using Cutoff Finder 

(78). 
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Supplementary figures 

 

Supplementary figure 1: MiR-194 inhibits growth of prostate cancer cells. Cell lines 

were transfected with miR-194 mimic or negative control (NC) mimic. Cells were counted 

using Trypan blue assays at the indicated time points. Error bars are ± SEM. 

 

Supplementary figure 2: MiR-194 alters cell morphology. 22Rv1 cells were transfected 

with miR-194 mimic and negative control (NC) mimic. Representative phase contrast 

images are shown. 
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Supplementary figure 3: Stable overexpression of miR-194 promotes cell invasion. (A) 

In vitro invasion assays. Values for the negative control (NC) were set to 1, and error bars 

are SEM. P values were determined using unpaired t tests (**, P <0.01, ****, P<0.0001). 

(B) CAM invasion assays. Data was generated from 48-60 images from 6 chicken 

embryos per treatment. Data represents the mean percentage of images with invasion into 

the mesoderm. Error bars are SEM. P values was determined using an unpaired t test (***, 

P<0.001, ****, P<0.0001) 
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Supplementary figure 4: Venn diagram showing putative targets of miR-194 from 3 

independent prediction algorithms. The 69 targets found by all 3 algorithms are listed.  
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Supplementary figure 5: Kaplan- Meier analysis showing estimated biochemical relapse 

(BCR) - free probability in patients from the TCGA cohort with high or low levels of 

SOCS2 mRNA. P value was determined using a Log Rank test (*, P<0.05)  

 

 

 
Supplementary figure 6: MiR-194 decreases SOCS2 mRNA expression in prostate cancer 

cells compared to a negative control (NC). Data is normalised to GAPDH reference gene. 

P value was determined using an unpaired two-sided t test (*, P<0.05). Error bars are ± 

SEM. 
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Supplementary figure 7: Knockdown of SOCS2 (siSOCS2) inhibits growth of PC3 and 

22Rv1 cells. Cell lines were transfected with two different siRNAs against SOCS2 or a 

negative (siNC). Cells were counted using Trypan blue assays at the indicated time-points. 

Error bars are ± SEM. 

 



 

121 | P a g e  

 

 
Supplementary figure 8: Plots showing correlation between miR-194 and selected pro-

metastatic gene targets of STAT3 and ERK. Data is from TCGA cohort, comprised of 414 

tumours.  
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Supplementary figure 9: Positive association between miR-194 and a signature of 

GATA2 transcriptional activity, as demonstrated by gene set enrichment analysis (GSEA), 

in the TCGA breast cancer dataset. 
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“A ZEB1-miR-375-YAP1 pathway regulates epithelial plasticity in prostate cancer” 

 

 

The following chapter includes a manuscript published in Oncogene, followed by 

supplementary figures and tables that make up a significant proportion of the work 

completed as a part of this PhD. A general discussion of this chapter had been included at 

the end. 
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My role in this study 

Performed experiments (cell culture and transfection, RT-qPCR, western blots, cellular 

migration and invasion assays, chick chorioallantoic membrane assays); co-designed 

experiments with my principal supervisor Dr Luke Selth; and analysed data 

 

http://www.nature.com/onc/journal/vaop/ncurrent/full/onc2016185a.html  

Introduction  

Prostate cancer is the second most common solid tumor in men worldwide and, despite 

significant advances in early diagnosis and management, it remains a leading cause of 

cancer-related death.1 The vast majority of these deaths are a consequence of metastasis, 

which occurs primarily to lymph nodes and bone. Although mortality rates are decreasing 

overall, for men presenting with de novo metastatic prostate cancer there has been no 

improvement in overall or disease-specific survival in the past 25 years.2 A better 

understanding of the pathobiology of prostate cancer metastasis is urgently required to 

improve patient outcomes. 

Metastasis of epithelial-derived cancers, such as prostate cancer, encompasses a complex 

series of events whereby epithelial tumor cells invade the surrounding stroma, enter blood 

or lymphatic circulation, arrest at distant anatomic sites, exit the vasculature, and colonize 

a secondary location through metastatic outgrowth. An emerging paradigm is the 

importance of epithelial plasticity, defined as flux between epithelial and mesenchymal 

http://www.nature.com/onc/journal/vaop/ncurrent/full/onc2016185a.html
http://www.nature.com/onc/journal/vaop/ncurrent/full/onc2016185a.html#bib1
http://www.nature.com/onc/journal/vaop/ncurrent/full/onc2016185a.html#bib2
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states, for successful metastasis.3 During epithelial–mesenchymal transition (EMT), 

sessile, structured epithelial cells lose cell-to-cell contacts and gain expression of 

mesenchymal factors, enabling migration and invasion into surrounding stroma and 

facilitating traversal of circulatory systems.4 Thiery postulated more than a decade ago 

that the reverse process, mesenchymal–epithelial transition (MET), could facilitate 

successful metastatic colonization of disseminated tumor cells,5 since redifferentiation to 

an epithelial state is associated with restoration of proliferative capacity. Although the 

clinical relevance of MET remains somewhat contentious, recent studies utilizing in 

vivo experimental models have provided strong evidence for its importance during 

secondary tumor development.6, 7, 8, 9, 10 

Epithelial plasticity in cancer is primarily triggered by soluble factors secreted from the 

surrounding stroma that impinge on tumor cell signaling pathways, including TGF-β, 

Wnt/β-catenin, FGF, EGF and Notch.4 These pathways in turn converge on central 

transcriptional mediators of the EMT program, for example members of the Snail, Twist 

and ZEB families, which orchestrate the changes in cell state.4 In addition to these 

transcription factors, more recent work has found that microRNAs (miRNAs, miRs), 

small, non-coding regulators of gene expression, are critical regulators of epithelial 

plasticity.11, 12 

MiR-375 has been described as a robust biomarker of prostate cancer, both within the 

tumor and in circulation,13 but its molecular function has remained largely uncharacterized 

in this disease. Here we demonstrate that miR-375 occupies a nexus between Zinc finger 

E-box binding homeobox 1 (ZEB1) and Yes-associated protein 1 (YAP1) in a novel 

pathway that regulates epithelial plasticity and tumor cell invasion in prostate cancer, and 

provide new insight into the association between circulating miR-375 and metastasis. 

Results 

MiR-375 is elevated in prostate cancer and associated with an epithelial phenotype 

To assess the robustness of the association between miR-375 and prostate cancer, we 

conducted a meta-analysis of 7 published data sets.14, 15, 16, 17, 18, 19 In each of the data sets, 

miR-375 was elevated in malignant compared to normal tissue, with an overall mean 

increase in expression of 2.4-fold compared with non-malignant tissue (Figure 

1a; P=0.003). This meta-analysis demonstrates that elevated miR-375 expression is a 

common characteristic of prostate cancer. 

http://www.nature.com/onc/journal/vaop/ncurrent/full/onc2016185a.html#bib3
http://www.nature.com/onc/journal/vaop/ncurrent/full/onc2016185a.html#bib4
http://www.nature.com/onc/journal/vaop/ncurrent/full/onc2016185a.html#bib5
http://www.nature.com/onc/journal/vaop/ncurrent/full/onc2016185a.html#bib6
http://www.nature.com/onc/journal/vaop/ncurrent/full/onc2016185a.html#bib7
http://www.nature.com/onc/journal/vaop/ncurrent/full/onc2016185a.html#bib8
http://www.nature.com/onc/journal/vaop/ncurrent/full/onc2016185a.html#bib9
http://www.nature.com/onc/journal/vaop/ncurrent/full/onc2016185a.html#bib10
http://www.nature.com/onc/journal/vaop/ncurrent/full/onc2016185a.html#bib4
http://www.nature.com/onc/journal/vaop/ncurrent/full/onc2016185a.html#bib4
http://www.nature.com/onc/journal/vaop/ncurrent/full/onc2016185a.html#bib11
http://www.nature.com/onc/journal/vaop/ncurrent/full/onc2016185a.html#bib12
http://www.nature.com/onc/journal/vaop/ncurrent/full/onc2016185a.html#bib13
http://www.nature.com/onc/journal/vaop/ncurrent/full/onc2016185a.html#bib14
http://www.nature.com/onc/journal/vaop/ncurrent/full/onc2016185a.html#bib15
http://www.nature.com/onc/journal/vaop/ncurrent/full/onc2016185a.html#bib16
http://www.nature.com/onc/journal/vaop/ncurrent/full/onc2016185a.html#bib17
http://www.nature.com/onc/journal/vaop/ncurrent/full/onc2016185a.html#bib18
http://www.nature.com/onc/journal/vaop/ncurrent/full/onc2016185a.html#bib19
http://www.nature.com/onc/journal/vaop/ncurrent/full/onc2016185a.html#fig1
http://www.nature.com/onc/journal/vaop/ncurrent/full/onc2016185a.html#fig1
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To elucidate potential functional consequences of elevated miR-375 in prostate cancer, we 

initially subjected a cohort of 98 primary tumors with matched miRNA:mRNA data17 to 

gene set enrichment analysis.20 As expected, gene sets comprised of predicted miR-375 

targets were significantly negatively correlated with miR-375, validating the approach 

(Supplementary Figure 1). By scanning curated gene sets in the MSigDB collection,20 we 

found that genes known to be elevated in prostate cancer were associated with high miR-

375 expression, providing additional evidence for its link to this disease (Supplementary 

Figure 2). Interestingly, we also observed a prominent negative association of miR-375 

with several EMT gene sets (Figure 1b and Supplementary Figure 3). To further test its 

association with epithelial phenotypes, miR-375 expression was examined in 48 cell lines 

classified as epithelial (n=11) or mesenchymal (n=37) from the NCI-60 panel, and was 

found to be significantly higher in epithelial lines (Figure 1c). We expanded on these 

findings by quantitating miR-375 expression in a panel of prostate cancer cell lines, and 

found it to be highest in the 22Rv1, VCaP and C4-2B models, which possess epithelial 

features, and lowest in the PC3 model, which possesses a more mesenchymal 

phenotype21 (Figure 1d). Another line with more epithelial features, LNCaP,22 and DU-

145, which has an undefined phenotype according to NCI-60 classification,21 exhibited 

intermediate expression of miR-375 (Figure 1d). Collectively, our results indicate that 

miR-375 is a marker of epithelial differentiation in prostate cancer. 

MiR-375 promotes MET of mesenchymal prostate cancer cell lines 

A recent report demonstrated a role for miR-375 in reversing EMT-like features associated 

with tamoxifen resistance in breast cancer cells.23 Combined with our findings above, we 

hypothesized that miR-375 may directly inhibit EMT and/or facilitate MET in prostate 

cancer. To test this idea, we ectopically expressed miR-375 in PC3 cells, which possess a 

more mesenchymal-like gene expression profile,21 and found it was sufficient to increase 

the expression of epithelial markers (CDH1 (E-cadherin; only at the RNA level, protein 

was undetectable) and Zona occludens-1 (ZO-1)) and decrease the expression of 

mesenchymal markers (FN1(Fibronectin) and VIM (Vimentin)) (Figures 2a and b). These 

data indicate that miR-375 can drive an epithelial-like program in PC3 cells. 

The capacity of cancer cells to migrate and invade is an important requirement of 

metastasis, and both of these characteristics are a hallmark of EMT. With this in mind, the 

effect of miR-375 on migration and invasion of prostate cancer cell lines was assessed. 

Increasing the levels of miR-375 hampered the invasive (Figure 2c) and migratory (Figure 

http://www.nature.com/onc/journal/vaop/ncurrent/full/onc2016185a.html#bib17
http://www.nature.com/onc/journal/vaop/ncurrent/full/onc2016185a.html#bib20
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2d) capacity of PC3 cells, findings that were re-capitulated in DU-145 cells (Figure 

2c and Supplementary Figure 4). We also tested the effect of transient overexpression of 

miR-375 on the invasive capacity of the AR-positive, androgen-independent LNCaP 

derivative, C4-2B, and observed a similar deficit in invasive and migratory capacity 

(Figure 2c and Supplementary Figure 4). Collectively, these results indicate that miR-375 

can facilitate MET and thereby suppress migration and invasion of prostate cancer cells. 

Epithelial differentiation states are often also associated with higher rates of proliferation. 

However, ectopic expression of miR-375 significantly decreased the viability of PC3, 

DU145 and C4-2B cells, as well as enhancing cell death in DU145 cells (Figure 

2e and Supplementary Figure 4). Growth suppression by miR-375 was only evident after 3 

days in PC3 cells, indicating that the repression of prostate cancer cell migration and 

invasion, which were evident within ~10–15 h, were independent of this anti-proliferative 

effect. 

Since transient overexpression can potentially yield spurious results, we used locked 

nucleic acid (LNA) inhibitors of miR-375 to further evaluate its function. We focused on 

the anti-invasive capacity of miR-375 as a biologically relevant readout of its role in 

prostate cancer cells, and used the C4-2B line, which has relatively high endogenous 

levels of miR-375, as the model system. As expected, suppression of miR-375 activity 

with an LNA inhibitor caused C4-2B cells to invade more efficiently through Matrigel 

(Figure 2f). 

We subsequently examined the anti-invasive activity of miR-375 in a more 

physiologically relevant setting by using chick chorioallantoic membrane (CAM) 

assays.24 Invasion of cells through the ectoderm of the CAM into the mesoderm was 

assessed on day 14 of chick embryo development by cytokeratin (CK) 

immunohistochemistry and haematoxylin and eosin (H&E) staining. C4-2B cells 

transfected with negative-control LNA invaded through the ectoderm of the CAM very 

poorly (Figure 2g, left images). By contrast, transfection of C4-2B cells with the miR-375 

LNA inhibitor greatly enhanced their capacity to disrupt the ectodermal layer and invade 

into the mesoderm (Figure 2g, right images). Quantitation of the CAM assay data are 

shown in Figure 2h. 
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MiR-375 targets YAP1 to inhibit EMT in prostate cancer 

To identify relevant genes through which miR-375 may exert its ability to suppress EMT 

and cell growth and maintain epithelial differentiation, we searched the literature and 

examined lists of predicted targets. MiR-375 is known to target YAP1 in neuroendocrine 

lung cancer and colorectal cancer.25, 26 YAP1 is an oncogene that is amplified in many 

human malignancies,27 and encodes a major downstream effector of the Hippo pathway 

that can promote growth and, in some cases, EMT in cancer model systems.28, 29 We 

examined the expression of YAP1 in a panel of prostate cancer cell lines and found that it 

was highest in the more invasive and/or mesenchymal lines, namely C4-2B, PC3 and 

DU145 cells, and very low or undetectable in the more epithelial LNCaP, 22Rv1 and 

VCaP lines (Figure 3a). To determine whether YAP1 may be a relevant target of miR-375 

in prostate cancer, we ectopically expressed miR-375 in PC3 and DU145 cells and found 

that this caused a reduction in YAP1 expression at both the mRNA and protein level 

(Figure 3b). Conversely, inhibition of miR-375 with an LNA inhibitor resulted in a modest 

but reproducible increase in YAP1 protein in C4-2B cells (Figure 3c). To confirm that this 

inverse relationship was a result of direct targeting, miR-375 was co-transfected with a 

construct containing the YAP1 3′-UTR downstream of a constitutively active luciferase 

reporter gene. As expected, transfection with a miR-375 mimic significantly decreased 

luciferase expression compared with a negative-control miRNA mimic (Figure 3d). The 

biological relevance of miR-375 in relation to YAP1 signaling was confirmed by the 

observation that miR-375 transfection caused decreased activity of a YAP1-responsive 

promoter (Figure 3e) and reduced expression of a key YAP1 target gene, Survivin (Figure 

3f). 

Having confirmed that YAP1 was a direct target of miR-375 in prostate cancer, we 

examined its function in prostate cancer cells. YAP1 knockdown decreased the expression 

of Vim and FN-1 in PC3 cells (Figure 3g), suggesting that it acts to maintain a 

mesenchymal phenotype. Moreover, loss of YAP1 attenuated the invasion, migration and 

growth of PC3, DU145 and C4-2B cells (Figures 3h–j; Supplementary Fig. 5), 

phenocopying miR-375 overexpression. 

To further interrogate the relevance of YAP1 as a miR-375 target, we undertook a rescue 

experiment using a vector expressing the YAP1 open reading frame (Supplementary 

Figure 6), which cannot be targeted by miR-375. Importantly, co-expression of three 

different doses of the YAP1 vector rescued the anti-invasive activity of miR-375 (Figure 
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3k). Thus, YAP1 is a key downstream target by which miR-375 mediates this tumour 

suppressive function. 

MiR-375 is negatively regulated by ZEB1 during EMT 

EMT is controlled primarily by transcription factors of the Snail, Twist and ZEB families. 

ZEB1 is a key regulator of the expression of epithelial miRNAs, such as miR-200 family 

members,30, 31 and acts by binding to E-box-like regulatory elements in gene promoters. 

Interestingly, the miR-375 promoter also contains E-box-like motifs (Figure 4a) that may 

be binding sites for ZEB1 in breast cancer,32leading us to postulate that miR-375 could be 

a ZEB1-regulated gene. Supporting this hypothesis, siRNA knockdown of ZEB1 

increased the levels of miR-375 in DU-145 cells compared with a control siRNA (Figure 

4b). Moreover, ZEB1 knockdown was associated with concomitant loss of YAP1 (Figure 

4c). These observations suggest that YAP1 is an indirect target gene of ZEB1 via miR-

375. 

To determine whether ZEB1 directly binds to the miR-375 gene loci to mediate its 

transcriptional repression, we conducted chromatin immunoprecipitation (ChIP) assays 

coupled to qPCR using primers that amplify 4 regions proximal to miR-375 (Figure 4a). 

We detected significant ZEB1 enrichment at each of the genomic regions, as well as at a 

positive control locus (the miR-200b/200a/429 promoter),33in DU145 and PC3 cells 

(Figure 4d). Further supporting our ChIP results, analysis of an ENCODE ChIP-seq data 

set34 demonstrated ZEB1 enrichment upstream of the miR-375 gene in HepG2 liver cancer 

cells (Figure 4e). To confirm that ZEB1 is a direct repressor of the miR-375 gene, we 

cloned two separate regions (L1, L2) of the miR-375 gene upstream of a luciferase 

reporter gene (Figure 4a). FollowingZEB1 knockdown, luciferase expression was 

significantly increased when it was coupled to the L1 and L2 promoter fragments or to 

a miR-200b/200a/429 promoter positive control30 (Figure 4f). Given that both the L1 and 

L2 fragments were regulated by ZEB1, we speculated that the two E-box-like motifs 

shared by these DNA sequences (Figure 4a, marked 3 and 4) could be direct target sites 

for ZEB1. However, reporter constructs with deletion mutations of either of these motifs, 

separately or together, remained repressed by ZEB1 (Supplementary Figure 7). 

Collectively, these in vitro assays demonstrate that miR-375 is under the direct control of 

ZEB1 in prostate cancer cells, and that regulatory elements within both the L1 and L2 

regions—but likely not the E-box-like motifs 3 and 4—are required for ZEB1 binding and 

transcriptional regulation. 
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To further investigate the role of miR-375 and YAP1 in ZEB1-mediated EMT, we 

transduced LNCaP cells with a doxycycline-inducible form of ZEB1. This model, referred 

to as LNCaP-iZEB1, underwent a robust EMT within 3 days of doxycycline treatment, 

evidenced by a more mesenchymal cell morphology with loss of cell–cell contacts (Figure 

4g) coupled with decreased epithelial and increased mesenchymal marker expression 

(Figures 4h and i). Confirming our earlier results, doxycycline treatment led to recruitment 

of ZEB1 to the miR-375 promoter (Figure 4j) and a concomitant decrease in miR-375 

expression (Figure 4k). This finding suggests ZEB1-mediated repression of miR-375 

occurs during EMT in prostate cancer cells. 

Clinical evidence for a ZEB1-miR-375-YAP1 pathway 

To assess the clinical relevance of the ZEB1-miR-375-YAP1 pathway in clinical prostate 

cancer samples, we examined the relative expression of these factors in a cohort of 26 

prospectively collected primary tumors. Supporting the cell line data, negative correlations 

between the expression levels of miR-375 and both ZEB1 andYAP1 were evident, 

although the miR-375/ZEB1 correlation did not reach statistical significance. By contrast, 

and supporting the proposed pathway, we found a positive correlation 

between ZEB1 and YAP1 in this cohort (Figure 5a). Importantly, we validated these 

correlations in two large, publically available data sets from Memorial Sloan-Kettering 

Cancer Center (Taylor cohort)17 and The Cancer Genome Atlas (Figure 

5b and Supplementary Figure 8). Collectively, these findings suggest that transcriptional 

downregulation of miR-375 by ZEB1, resulting in de-repression of YAP1, is a pathway 

that can occur in prostate cancer specimens. 

Plasma miR-375 is correlated with circulating tumor cell count 

Circulating cell-free miR-375 is a robust biomarker of metastatic prostate 

cancer,35,36, 37 but our results indicate that miR-375 is a tumor suppressor. To shed further 

light on this apparent discrepancy, we examined the plasma levels of miR-375 in a 

contemporary cohort of metastatic castration-resistant prostate cancer (CRPC) patients 

with known circulating tumor cell (CTC) counts generated by the CellSearch system 

(Supplementary Table 1). In this cohort, we found that circulating miR-375 was higher in 

CTC-positive (n=17) versus CTC-negative (n=35) samples (Figure 5c). Indeed, there was 

a high degree of correlation between these two clinical parameters (all samples: Spearman 

r=0.5137, P<0.0001), which was particularly evident when considering only the CTC-

positive samples (Figure 5d). Thus, while miR-375 acts as a tumor suppressor in prostate 
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cancer model systems, when it is released into the circulation of men with advanced 

disease miR-375 may serve as a proxy for CTC numbers. 

Discussion 

While numerous studies have demonstrated the potential of miR-375 as a tissue and 

circulating biomarker of prostate cancer, its molecular function has remained largely 

uncharacterized. In this study, we (1) revealed that miR-375 is a novel repressor of EMT 

and invasion in prostate cancer, (2) identified YAP1 as a biologically relevant target gene 

of miR-375 in this process and a potential oncogene in prostate cancer in its own right, (3) 

revealed a regulatory circuit between ZEB1, miR-375 and YAP1 in prostate cancer model 

systems that is also evident in clinical samples and (4) demonstrated that circulating miR-

375 may be a proxy for CTC count in the blood of men with metastatic CRPC. The ZEB1-

miR-375-YAP1 pathway controlling epithelial plasticity and invasion in prostate cancer, 

characterized herein, is summarized in a model shown in Figure 5e. 

Our findings suggest that miR-375 is a potent tumor suppressor by inhibiting EMT, 

invasion and growth of prostate cancer cells. Given that these traits are generally 

associated with poor outcome,38 it is somewhat surprising that levels of circulating miR-

375 have been linked to metastasis and disease progression following surgery.35, 37, 39 Our 

study has provided insight into this apparent discrepancy by demonstrating that circulating 

miR-375 is positively correlated with CTC count in men with metastatic CRPC. 

Interestingly, serum miR-375 levels are also positively correlated with CTC count and a 

poor prognostic marker in breast cancer patients,40 suggesting that circulating levels of this 

miRNA could be a general proxy of CTCs in cancer. 

With the tumor suppressive function of miR-375 in mind, we envision at least four non-

mutually exclusive explanations for the association between circulating miR-375 and 

prostate cancer metastasis. First, CTCs may actively release miR-375 to mitigate its 

repressive effects on growth and EMT, thereby resulting in cells with higher metastatic 

capacity. Second, despite the apparent tumor suppressive capacity of miR-375 in prostate 

cancer cell lines and primary tumors, we cannot rule out the possibility that it promotes 

metastasis and disease progression in CTCs, disseminated tumor cells, micrometastases 

and/or metastases. In this respect, high circulating levels of miR-375 could be indicative 

of cancer cells that have undergone or are undergoing MET to facilitate the development 

of clinical metastasis.6 Third, recent studies have highlighted the complexity of the 
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relationship between epithelial plasticity and tumor spread. While early studies indicated 

that EMT was associated with the acquisition of stemness, tumor-initiating capacity and 

metastasis,41 more recent work has indicated that epithelial (or quasi-epithelial) 

phenotypes are also associated with self-renewal and pluripotency.7, 9 For example, Celia-

Terrassa et al.7 demonstrated that PC3 cells with epithelial features had enhanced self-

renewal and pluripotency and greater metastatic capacity than their mesenchymal 

counterparts, despite the latter being more migratory and invasive in vitro. Thus, the 

epithelial and growth-suppressive phenotype mediated by high levels of miR-375 may, in 

certain contexts, be associated with the acquisition of metastasis-promoting traits, such as 

stemness. Finally, our gene set enrichment analysis analysis revealed that miR-375 is 

positively correlated with androgen signalling in multiple tumor data sets (Supplementary 

Figure 9). A molecular mechanism that potentially underpins this association was recently 

elucidated by Chu et al.,42 who demonstrated that the androgen receptor (AR) indirectly 

promotes miR-375 transcription by suppressing DNA methylation of its promoter. Thus, 

miR-375 may also serve as a proxy for AR activity and PSA levels, which are themselves 

prognostic in prostate cancer. It is worth noting that miR-375 could have dichotomous 

roles as a tumor suppressor and metastamiR in prostate cancer, depending on disease 

stage, a concept that was also suggested by a paper published during preparation of this 

manuscript.43 

In summary, our findings indicate that ZEB1-mediated regulation of miR-375 and its 

downstream targets, in particular YAP1, influences epithelial plasticity and cell invasion 

in prostate cancer. This study has implications in terms of utilizing miR-375 as a 

biomarker and developing novel therapeutic strategies targeting epithelial plasticity in 

advanced prostate cancer.3, 44 

Materials and methods 

Analysis of miR-375 expression in published data sets – prostate cancer data sets  

Data were downloaded from GEO (Ambs, GSE8126; Wach, GSE23022; Schaefer, 

GSE14857; Lin, GSE36803), ArrayExpress (Martens-Uzunova: E-TABM-794) or The 

Cancer Genome Atlas data portal. The Taylor data set was downloaded and processed as 

described previously.37 P-values were determined using unpaired (Ambs, Taylor, Martens, 

The Cancer Genome Atlas) or paired (Wach, Schaefer, Lin) t-tests and the P-value for the 
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‘Combined’ value was calculated using a one-sample t-test, with all contributing data 

sets/cohorts weighted equally. 

 NCI60 data sets 

Data were downloaded from CellMiner Database Version 1.5 (Blower45 and Liu46) or 

GEO (Sokilde,47 GSE26375). 

Gene Set Enrichment Analysis (GSEA) 

The correlation between expression levels of miR-375 and 19,389 genes was calculated 

using matched miRNA and mRNA data from 98 prostate tumors in the Taylor 

cohort.17 Genes were subsequently ranked according to Pearson correlation coefficient (r) 

value (shown by a heat map), and gene set enrichment analysis (Preranked analysis) was 

implemented using the Broad Institute’s public GenePattern server, using default 

parameters. 

Cell line culture and transfection 

PC-3, DU145, C4-2B, LNCaP, VCaP and 22Rv1 human prostate carcinoma cells were 

obtained from the American Type Culture Collection. All cell lines underwent verification 

by short-tandem repeat profiling in 2014 by CellBank Australia. PC-3 cells were 

maintained in RPMI-1640 containing 5% fetal bovine serum. DU145, C4-2B, LNCaP and 

22Rv1 cells were cultured in RPMI+10% fetal bovine serum. VCaP cells were maintained 

in Dulbecco's modified Eagle's medium containing 10% fetal bovine serum, 1% sodium 

pyruvate, 1% MEM non–essential amino acids and 0.1 nM5α-dihydrotestosterone (DHT; 

Sigma). 

Transfection of miRNA, siRNA, LNA and plasmids 

PC3 cells, DU145 and C4-2B cells were transfected with 20 nM miRNA mimics (miR-375 

or negative-control mimic; Shanghai GenePharma, Shanghai, China), 20 nMsiRNA (YAP1 

siRNA (catalogue number SI02662954) or control siRNA; Qiagen, Valencia, CA, USA), 

30 nM siRNA (ZEB1 siRNA pool (catalogue numbers HSS110548, HSS11054 and 

HSS110550) or control siRNA; Invitrogen, Carlsbad, CA, USA) or 50 nM LNA inhibitor 

(miR-375 LNA (catalogue number 4101396-102) or control LNA (199006-102); Exiqon, 

Denmark) using RNAiMAX transfection reagent (Life Technologies, Gaithersburg, MD, 

USA), according to the manufacturer’s instructions. For plasmid transfections, cells were 
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transfected with Lipofectamine 2000 (Life Technologies), according to the manufacturer’s 

instructions. 

Quantitative real-time PCR analysis of miRNA expression 

Total RNA was extracted from prostate cancer cells using Trizol essentially as described 

previously48 except that the RNA was precipitated with 2.5 volume of ethanol, 10 mM 

MgCl2, 0.1 volume of 5 M NaCl, and 20 μg of Glyco-Blue (Life Technologies) overnight 

at −20° C. Levels of miR-375 and U6 small nuclear RNA were measured by qRT-PCR 

using Taqman assays, following the manufacturer’s instructions (Life Technologies). The 

expression of miR-375 was normalized to U6. 

Quantitative real-time PCR analysis of mRNA expression 

RNA extraction from cells, using Trizol reagent, and qRT-PCR was done as described 

previously.48 GAPDH was used for normalization of qRT-PCR data. Primer sequences are 

available on request. 

Western blotting 

Protein extraction from cells, using RIPA buffer, and western blotting was done as 

described previously.48 Antibodies used in western blotting were: N-cadherin (sc-7939; 

Santa Cruz Biotechnology, Santa Cruz, CA, USA); Vimentin (ab92547; Abcam, 

Cambridge, MA, USA); ZO-1 (Santa Cruz, sc-10804); Fibronectin (610077; BD 

Biosciences, San Jose, CA); E-cadherin (BD Biosciences, 610182); ZEB1 (3396; Cell 

Signalling Technology, Beverly, MA, USA); EpCAM (2626, Cell Signalling 

Technology); YAP1 (sc-15407; Santa Cruz); and COXIV (4850, Cell Signalling 

Technology). 

Cell migration and invasion assays 

Invasion assays were carried out as described previously.49 Briefly, 100 μl of diluted 

Matrigel (diluted 1:1 in cold PBS) was pipetted into each transwell insert (6.5 mm 

transwell, 8.0-μm pore size) and incubated at 37 °C for 30 min to solidify. Subsequently, 

the transwell inserts were inverted and 100 μl of PCa cell suspension (1 × 105 cells per ml) 

transfected with miRNA, siRNA or LNA was pipetted onto the upward-facing 

microporous membrane. Following cell attachment (4 h at 37 °C), the inserts were placed 

right side up and 100 μl of fetal bovine serum was added. After 3 days of invasion/growth, 

http://www.nature.com/onc/journal/vaop/ncurrent/full/onc2016185a.html#bib48
http://www.nature.com/onc/journal/vaop/ncurrent/full/onc2016185a.html#bib48
http://www.nature.com/onc/journal/vaop/ncurrent/full/onc2016185a.html#bib48
http://www.nature.com/onc/journal/vaop/ncurrent/full/onc2016185a.html#bib49
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inserts were washed in PBS and cells were fixed with methanol and then stained with 

propidium idodine. Stained cells were visualized by a confocal microscope (Zeiss LSM 

700, Carl Zeiss AG, Oberkochen, Germany) using a × 20 objective. Image J software (US 

National Institutes of Health, Bethesda, MD, USA) was used to quantify staining. 

Treatments were done in biological triplicates, and three to four separate regions of each 

insert were quantified. All experiments were conducted at least twice. 

For the rescue experiments shown in Figure 3k, cells were first transfected with miRNA 

and then with a YAP1 overexpression plasmid (FLAG-tagged YAP150) the following day. 

These double-transfected cells were then used in invasion assays as described above. 

Scratch wound migration assays were performed using an Incucyte (Essen BioScience, 

Ann Arbor, MI, USA) as described previously.51 Briefly, following transient transfection 

of prostate cancer cells with miRNA mimics, siRNAs and appropriate controls in 24-well 

microplates (Essen Image Lock plates, Essen BioScience), cells were grown to confluence 

and then a thin ‘wound’ was introduced by scratching with sterile pipette tips. The 

microplate was then placed in the Incucyte imaging system to record the migratory ability 

of the cells into the ‘wound’ over a period of time. Treatments were done in biological 

quadruplicates, and 3 separate regions of the scratch was analyzed. All experiments were 

conducted at least twice. 

Growth curves 

Growth curves were performed as described previously.52 Treatments were done in 

biological triplicates. All experiments were conducted at least twice. 

Chick chorioallantoic membrane assays (CAM) 

CAM assays were carried out essentially as described,24 using the in ovo method. C4-2B 

(5 × 104) cells were mixed with Matrigel and grafted on top of the CAM of day 11 chick 

embryos. Haematoxylin and eosin (H&E) staining and cytokeratin immunohistochemistry 

were performed as described.24 For quantitative analysis of cancer cell invasion into the 

mesoderm layer, 8 to 12 CAM images from each embryo (6 per treatment) were assessed; 

the graph shown in Figure 2h represents the mean percentage of images with invasion into 

the mesoderm± s.e.m. 

 

http://www.nature.com/onc/journal/vaop/ncurrent/full/onc2016185a.html#fig3
http://www.nature.com/onc/journal/vaop/ncurrent/full/onc2016185a.html#bib50
http://www.nature.com/onc/journal/vaop/ncurrent/full/onc2016185a.html#bib51
http://www.nature.com/onc/journal/vaop/ncurrent/full/onc2016185a.html#bib52
http://www.nature.com/onc/journal/vaop/ncurrent/full/onc2016185a.html#bib24
http://www.nature.com/onc/journal/vaop/ncurrent/full/onc2016185a.html#bib24
http://www.nature.com/onc/journal/vaop/ncurrent/full/onc2016185a.html#fig2
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Luciferase assays 

To determine whether miR-375 directly targets the YAP1 3′-UTR in prostate cancer cells, 

PC3 cells were transfected with miR-375 or negative control. The following day, cells 

were transfected again with a Renilla luciferase (luc) YAP1 3′-UTR construct25 (a kind 

gift from Prof Takashi Takahashi) using Lipofectamine 2000 reagent. After 2 days, 

luciferase activity was measured using a Dual Luciferase Reporter assay (Promega, 

Madison, WI, USA). Firefly luciferase activity was normalized to Renilla luciferase 

activity. 

To determine whether miR-375 modulates YAP1 activity, we utilized a YAP/TAZ-

responsive synthetic promoter driving luciferase expression (8xGTIIC-luciferase).53 

To assess whether ZEB1 can repress the miR-375 promoter, the L1 and L2 miR-375 

promoter regions were cloned into the pGL3 vector. pGL4 constructs containing an 

alternative promoter region with wildtype or deleted E-box-like motifs have been 

described previously:25 the Δ3, Δ4 and Δ3,4 constructs shown in Supplementary Figure 

7 correspond to pGL4-ΔE1, pGL4-ΔE2 pGL4-ΔE12 described by Nishikawa and 

colleagues, respectively. DU145 cells were transfected with either ZEB1 or scrambled 

siRNA using RNAiMAX transfection reagent. The following day, cells were transfected 

again with the indicated pGL3 constructs and pRL-CMV (Promega) using Lipofectamine 

2000 transfection reagent. After 2 days, luciferase activity was measured using a Dual 

Luciferase Reporter assay. Firefly luciferase activity was normalized to Renilla luciferase 

activity. A miR-200b/200a/429 promoter:luciferase construct30 was used as a positive 

control. 

Chromatin immunoprecipitation 

ChIP assays were performed as described previously54 using a ZEB1 antibody from Santa 

Cruz (sc-25388). Two known ZEB1 binding sites from the miR-200a/b/429promoter (one 

just upstream and one just downstream of the transcriptional start site; referred to as -

0.124 and 0.180, respectively) were used as positive controls; a site further upstream of 

the miR-200a/b/429 promoter (−2.778) was used as negative control.33 

 

http://www.nature.com/onc/journal/vaop/ncurrent/full/onc2016185a.html#bib25
http://www.nature.com/onc/journal/vaop/ncurrent/full/onc2016185a.html#bib53
http://www.nature.com/onc/journal/vaop/ncurrent/full/onc2016185a.html#bib25
http://www.nature.com/onc/journal/vaop/ncurrent/suppinfo/onc2016185s1.html
http://www.nature.com/onc/journal/vaop/ncurrent/suppinfo/onc2016185s1.html
http://www.nature.com/onc/journal/vaop/ncurrent/full/onc2016185a.html#bib30
http://www.nature.com/onc/journal/vaop/ncurrent/full/onc2016185a.html#bib54
http://www.nature.com/onc/journal/vaop/ncurrent/full/onc2016185a.html#bib33
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Prospective primary prostate cancer cohort 

Primary prostate cancer specimens were obtained with written informed consent through 

the Australian Prostate Cancer BioResource from 26 men who underwent robotic radical 

prostatectomy at St. Andrew’s Hospital (Adelaide, Australia). The study was approved by 

the University of Adelaide Human Research Ethics Committee (HREC). Tissues were 

homogenized in Qiazol using a Precellys 24 tissue homogenizer (Bertin Technologies, 

France) before RNA extraction with miRNeasy mini kits (Qiagen, Germany). DNAse 

treatment was performed using a TurboDNase kit (Ambion, Austin, TX, USA) according 

to the manufacturer’s instructions. RNA was quantified using a Nanodrop. Reverse 

transcription was performed on 400 ng total RNA using the iScript kit (BioRad 

Laboratories, Hercules, CA, USA) according to the manufacturer’s instructions. Levels of 

miR-375, YAP1 and ZEB1 were not normally distributed, hence Spearman’s correlation 

tests were used to examine relationships between their levels. Levels of miR-

375, YAP1 and ZEB1 exhibited coefficients of variation of 114%, 43% and 117%, 

respectively. 

Quantitation of circulating miR-375 in men with metastatic prostate cancer 

Blood samples from men with metastatic prostate cancer (n=52) were obtained with 

written informed consent from Princess Alexandra Hospital (Brisbane, Australia), under a 

protocol approved by the Metro South Health Service District HREC and the Queensland 

University of Technology HREC. CellSearch analysis was used to count circulating tumor 

cells from whole blood, as described.55 To measure levels of miR-375 in matched plasma 

samples, RNA was extracted and qRT-PCR (with pre-amplification) was carried out as 

described previously.39 Levels of miR-375 in the two groups (CTC-negative and CTC-

positive) were not normally distributed, hence a two-tailed Mann–Whitney test was used 

for comparison. Levels of miR-375 exhibited a coefficient of variation of 158% and 

178% in the CTC-negative and CTC-positive groups, respectively. 

Statistical analyses 

All statistical analyses were carried out using GraphPad Prism (version 5; GraphPad 

Software, San Diego, CA, USA) or MedCalc (version 12; MedCalc Software, Mariakerke, 

Belgium). Details of statistical tests used are provided in the appropriate methods section 

or figure legends. 

http://www.nature.com/onc/journal/vaop/ncurrent/full/onc2016185a.html#bib55
http://www.nature.com/onc/journal/vaop/ncurrent/full/onc2016185a.html#bib39
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Supplementary figures and legends 
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6.1. General discussion of thesis findings 

The broad classes of cellular alterations required for the initiation and progression of 

cancer have been described (Hanahan and Weinberg 2011) and are composed of changes 

that drive cell growth, inhibit cell death, and promote metastasis, amongst others. There is 

compelling evidence that miRNAs are involved in driving and coordinating the expression 

of these cancer “hallmarks”, especially cell migration and invasion, two critical 

requirements for cancer spread (Bartel 2004, 2009; Bartel and Chen 2004; Iorio and Croce 

2009, 2012). However, for most miRNAs, their molecular mechanism of action is largely 

unknown. Thus, understanding the role of various miRNAs at different stages of prostate 

cancer progression, along with their expression at those stages, will provide crucial 

information. This in particularly important knowing the highly heterogeneous nature of 

prostate cancer (Boyd, et al. 2012). Studies in this thesis have explored the molecular 

functionality of two miRNAs, miR-194 and miR-375, and provided novel insights into 

their roles in prostate cancer metastasis.  

MiR-194: a new “metastamiR” 

Our interest in miR-194 was prompted by a previous study conducted in our laboratory 

which aimed to identify circulating miRNAs that could be used as prognostic markers for 

men diagnosed with prostate cancer (Selth et al. 2013). In that study, miR-194 was found 

to be elevated in serum of men who subsequently experienced disease progression 

following surgery, suggesting that it could potentially be used to stratify low- and high-

risk patients. Further, its expression in tumours was associated with poor patient outcome, 

and it was elevated in metastases compared to primary tumours and normal prostate tissue. 

Based on these latter findings, we hypothesized that miR-194 has a direct role in prostate 

cancer metastasis. Hence, one of my key aims was to determine its function as well as 

identify its gene targets through which its actions are mediated.  

In my PhD studies, I showed miR-194 to be a potent oncogenic miRNA by promoting 

invasion and migration and EMT in multiple prostate cancer cell lines in vitro and 

metastasis in vivo. Further, I identified SOCS2 as a novel, direct and biological relevant 

target for miR-194. SOCS2 has been found to have tumour suppressive effect on prostate 

cancer cells (Iglesias-Gato, et al. 2014). In the literature, SOCS2 had been shown to 

mediate its action by negatively regulating JAK2 and FLT3 and accordingly suppressing 
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the STAT3 and ERK signalling pathways, two key oncogenic signalling pathways in 

various cancer, including prostate cancer (Kazi and Ronnstrand 2013; Letellier and Haan 

2016; Sen, et al. 2012). I therefore postulated that miR-194 promotes prostate cancer 

metastasis by upregulating JAK2/STAT3 and FLT3/ERK signalling pathways via SOCS2. 

Indeed, the results in Chapter 4 confirmed this hypothesis.  

In my studies, I also explored what factors regulate miR-194. MicroRNAs are generally 

transcribed by RNA polymerase II (Pol II), and hence they are regulated by RNA Pol II-

associated transcription factors (Cai, et al. 2004; Lee, et al. 2004). For example, 

transcription factors such as p53, Twist, ZEB1 and ZEB2 and others, positively or 

negatively regulate miRNA expression (Kim et al. 2009; Krol et al. 2010). By undertaking 

bioinformatics analysis, we found GATA2, a key transcription factor in prostate cancer, as 

one of the most highly positively correlated genes to miR-194. This was supported by the 

decrease in levels of miR-194 in 22Rv1 cells following knockdown of GATA2. A 

summary of our theory of miR-194 regulation and action as a pro-metastatic miRNA in 

prostate cancer is shown in Figure 6.1 (this is the same figure from our submitted paper in 

Chapter 4).   

The applicability of GATA2-miR-194-SOCS2 pathway, revealed in this study, to promote 

prostate cancer metastasis is of considerable interest for the following reasons a) GATA2 

is an established pioneer factor for AR-regulated genes in prostate cancer (Chen, et al. 

2013; Wu, et al. 2014). Further, a recent study demonstrated a GATA2 dependency of 

prostate cancer for both chemotherapy resistance and in vivo growth (Vidal, et al. 

2015). b) In several studies, researchers demonstrated that increased nuclear translocation 

and phosphorylation of STAT3 are causally related to prostate cancer 

progression (Civenni, et al. 2016; Moreira, et al. 2015). c) Similar to STAT3, the role of 

ERK1/2 in prostate cancer as pro-metastasis factor is evident (Jin, et al. 2013; Ma and 

Wells 2014; Rodriguez-Berriguete, et al. 2012). All in all, these earlier studies along with 

the findings from my work highlight that miR-194 sits at the centre of key pro-metastatic 

transcription factors and signalling pathways. Clinical implications of this study are 

mentioned below. 

MiR-375: a potent tumour suppressor miRNA 

Similar to miR-194, our interest in miR-375 was triggered by the findings from another 

previous study conducted in our laboratory, where a mouse model of prostate cancer was 
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used to identify candidate miRNAs that were elevated in serum compared to healthy 

control mice (Selth et al. 2012b). In that study, upregulation of miR-141, miR-298, miR-

346 and miR-375 were higher in both the mouse model and the serum of men with CRPC 

compared to controls. Although miR-375 expression levels in body fluids had been 

previously proposed as diagnostic and prognostic prostate cancer biomarkers, its 

biological role in prostate carcinogenesis had not been investigated (Cheng, et al. 2013; 

Huang, et al. 2015; Nguyen et al. 2013). My work demonstrated that miR-375 is a potent 

tumour suppressor miRNA by inhibiting epithelial mesenchymal transition (EMT), 

invasion and growth of prostate cancer cells. I further demonstrated that Yes-associated 

protein (YAP1), a transcriptional coactivator and a potent oncogene itself, is a direct and 

biological relevant target of miR-375. Again, I explored what factors might regulate miR-

375 and found that it is under the direct transcriptional control of the EMT-promoting 

transcription factor, ZEB1. Figure 6.2 illustrates our concept of miR-375 regulation and 

action as a potent tumour suppressor miRNA in prostate cancer (previously published; see 

Chapter 5) 

The relevance of ZEB1-miR-375-YAP1 pathway in prostate cancer metastasis is 

supported by the known roles of ZEB1 and YAP1. ZEB1 is a master regulator of EMT 

and known to drive cancer metastasis (Drake, et al. 2009; Putzke, et al. 2011). In addition, 

a recent study demonstrated YAP1 to regulate prostate cancer cell motility, invasion, and 

castration-resistant growth (Zhang, et al. 2015) 

Interestingly, even though we demonstrated anti-invasive and anti-EMT capacities of 

miR-375, its plasma levels were found to be correlated with circulating tumour cells in 

men with metastatic prostate cancer. Possibilities for this variation could be a) patients 

with high circulating level of miR-375 could have CTCs that have undergone or 

undergoing mesenchymal epithelial transition (MET), a cellular process likely to be 

important to form metastases efficiently at secondary locations (Gao, et al. 2012). This 

concept is in agreement with a study that demonstrated that circulating miR-200 family 

members and miR-375 are surrogate markers for circulating tumour cells in breast cancer 

and correlated with disease progression and overall survival (Madhavan, et al. 2012). b) 

The concept of plasticity of EMT has been expanded in recent years with the recognition 

that cancer cells may undergo partial EMT or MET, and in fact that resulting ‘quasi’ states 

may be advantageous to metastatic progression. Indeed, cells that have transited fully 

towards a mesenchymal state are thought to have lost the plasticity required for metastasis 
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formation (Tsai, et al. 2012). Partial EMT and the resultant quasi-mesenchymal phenotype 

is often associated with acquisition of stem-ness properties (Mani, et al. 2008). Such cells 

have been referred to as ‘migrating cancer stem cells’ and generally possess increased 

tumour initiation and self-renewal capacity (Brabletz, et al. 2005). Thus, the epithelial and 

the growth suppressive characteristics mediated by the high levels of miR-375 may be 

associated with the acquisition of metastasis promoting traits. 

Collectively, the studies in this thesis have provided a new insight into the molecular 

function of these two miRNAs in prostate cancer and have identified two new pathways: 

metastasis promoting in case of miR-194 and metastasis inhibiting in case of miR-375. 

6.2. Clinical implications of my findings 

In prostate cancer, more accurate diagnosis and follow-up monitoring after therapies are 

two of the major challenges for its clinical management. Although prostate-specific 

antigen (PSA) screening has improved early detection, its levels poorly correlate with 

tumour aggressiveness or dissemination. Further, there are several studies which 

demonstrated that PSA levels were not specifically related to the presence of the disease 

(Roobol and Carlsson 2013). Diagnostic accuracy, in particular in terms of risk 

stratification, initial staging, active surveillance, and focal therapy, is one of the main 

issues in this field. Patients undergo repetitive biopsies, which are not only invasive but 

also indecisive, even when coupled with PSA and digital rectal examination (DRE). 

Considering these issues, biomarkers that have the capability to identify potentially 

aggressive tumours at a point when the cancer is still curable while minimizing detection 

of indolent disease could transform the clinical management of this disease. Moreover, 

identifying predictive biomarkers for the multitude of new treatment strategies being 

developed for metastatic prostate cancer is of critical importance (Attard and de Bono 

2011).  

MiRNAs are attractive molecular biomarker candidates because they can be reproducibly 

extracted from a wide range of biologic samples and are generally stable and resistant to 

various storage conditions (Chen, et al. 2008; Fabris, et al. 2016). Furthermore, miRNAs 

can be easily detected and accurately quantified by a variety of widely used standard 

techniques, such as qRT-PCR (Selth, et al. 2014). Evidence from the studies provided in 

this thesis suggest that miR-375 and miR-194 both have the potential to be used as 

prognostic markers of prostate cancer. In particular, based on the findings, two relevance 
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can be proposed, a) circulating miR-194 can be used as a marker to detect 

micrometastases at the time of treatment or predict metastatic recurrence post-treatment. 

This rationale is supported by our findings that circulating levels of miR-194 were higher 

in men with metastatic compared with localised disease and that miR-194 was found to be 

higher in the tumours of men who subsequently experienced a new tumour event, in large 

independent cohorts. Consequently, it might be suggested that patients with a high miR-

194 expression should be considered for adjuvant therapy in order to optimize their 

prognosis. b) The utility of miR-375 as biomarker could be twofold: first, potentially miR-

375 could be used in a test along with PSA and DRE to provide complementary 

information at the time of diagnosis to whether or not there is an urgency of biopsy for 

men with elevated serum PSA level. This possibility is based on an earlier study from our 

group in which small RNA sequencing and qRT-PCR was used to access the potential of 

seminal fluid miRNAs as diagnostic biomarkers of prostate cancer (Selth et al. 2014). In 

that study we found that seminal fluid derived miR-375 was at higher levels in men with 

elevated serum PSA levels and biopsy proven cancer compared with men with elevated 

PSA levels but no cancer. Second, circulating level of miR-375 could be used as a non-

invasive marker for monitoring men in active surveillance. This is in position with the 

findings from the study in this thesis that plasma levels of miR-375 were found to be 

correlated with circulating tumour cells in men with metastatic prostate cancer and with 

the opinion that high circulating level of miR-375 may be associated with acquisition of 

metastasis promoting traits. Active surveillance, also called expectant management is for 

men with prostate cancer that involves the postponement of immediate therapy. Active 

surveillance is an accepted option for the initial management of carefully selected men 

with localized, well-differentiated prostate cancer thought to be at low-risk for progression 

(Chen, et al. 2016; Dall'Era, et al. 2012; Thompson, et al. 2007). MiR-375 measurements 

could be used to determine whether or not to proceed with definitive curative 

interventions.  However, substantial studies with longitudinal follow-up are required to 

validate our above theorem. 

The realization that many miRNAs have crucial roles in basic biological processes and 

that dysregulation of miRNAs is common in human disease has led to considerable 

interest in the therapeutic targeting of miRNAs. Fundamental findings from my work 

reveal that inhibition of miR-194 can significantly block invasion of prostate cancer cells 

in vitro and in vivo, and therefore, work in this thesis sets a stage to develop strategies to 
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target this miRNA to block metastasis. Evidence to date suggests that anti-miR-mediated 

silencing of miRNAs could be a powerful technology for the treatment of human disease 

(Cheng, et al. 2015; Stenvang, et al. 2012; Su, et al. 2011). Despite of some obstacles on 

the way for efficient delivery of anti-miRs, considerable progress in the field has been 

achieved to improve the target binding affinity and nuclease resistance of anti-miRs for 

their successful deliver in vivo, with prospect to improve in the future (Ben-Shushan, et al. 

2014; Li and Rana 2014).  

To date, three main approaches have been taken: expression vectors (miRNA sponges), 

antisense oligonucleotides (ASOs) and small-molecule inhibitors (figure 6.3). 

Overexpression of mRNAs containing artificial miRNA-binding sites, which acts as decoys or 

‘sponges’, can selectively sequester endogenous miRNAs (Meng, et al. 2007). However, despite 

the wide use of sponges to investigate miRNA function in vitro, their utility in vivo has thus far 

been limited to transgenic animals (Ebert and Sharp 2010). On the other hand, considerable 

attention has been paid to ASO and small molecule inhibition technologies (Bennett and Swayze 

2010; Gumireddy, et al. 2008). ASOs designed to directly target and specifically inhibit miRNA 

function are also called anti-miRs. Anti-miRs bind with high complementarity to miRNAs, thereby 

blocking their binding to endogenous mRNA targets. Approaches that are based on small 

molecules are also being developed to manipulate miRNA expression and function. The modes of 

action of these small molecules are mainly through transcriptional regulation of targeted miRNAs; 

more specifically, the molecules are designed to reduce levels of the mature, active form of the 

miRNA by inhibiting processing of the pri-miRNA. 
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Figure 6.1: Schematic showing regulation and pro-metastatic action of miR-194 

 

 

 

Figure 6.2: Schematic showing regulation and tumour suppressive action of miR-375 
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Figure 6.3: miRNA inhibition strategies. Adapted from (Li and Rana 2014) 
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6.3. Future directions 

The canonical way of a miRNA interacting with an mRNA involves base pairing between 

the 5′ miRNA end (called as 'seed') and a complementary sequence in the target's 3′ 

untranslated region (3′ UTR). However, studies have demonstrated alternative modes of 

binding, for example, those involving the 3′ regions of miRNAs (Chi, et al. 2012; Chi, et 

al. 2009; Xia, et al. 2012). These studies highlight the undiscovered mechanisms of post-

transcriptional regulation through miRNAs. More importantly, they also highlight a need 

for new experimental methods to complement existing computational target prediction 

methods, where canonical prediction sites are the main focus for miRNA target prediction. 

The research in this thesis evidently suggest considerable importance of miR-194 and 

miR-375 in prostate cancer metastasis. Therefore, identifying additional biologically 

relevant targets of these two miRNAs is essential to unravel the underlying molecular 

metastatic mechanisms of prostate cancer and to better understand the roles of the two 

miRNAs within the cellular context. An approach that I propose is to introduce 

biotinylated microRNA mimics into prostate cancer cells. Studies have exploited this 

approach to obtain experimental evidence of physical interaction between a specific 

microRNA of interest and its mRNA targets (Cloonan, et al. 2011; Easow, et al. 2007; Tan 

and Lieberman 2016). Briefly, biotin-labelled synthetic miRNAs will be transfected to 

prostate cancer cells to pull-down endogenous mRNA targets. These mRNAs will then be 

profiled by microarray or RNA-sequencing (figure 6.4). This can also be combined with 

small RNA sequencing modulation of the miRNA levels. Additionally, proteomics can 

also be used to identify the role of miRNA-target interaction. A study demonstrated 

polysome profiling of mRNA species after over-expression of three different miRNA to 

capture functional mRNA targets by virtue of their reduced occurrence in actively 

translating poly-ribosomal fractions (Shi, et al. 2010). Therefore, to identify the targets of 

miR-194 and miR-375 and their effect on the overall proteomic profile of cells, I propose 

to opt for a proteomic method, like SILAC (stable isotope labelling by amino acids in cell 

culture) (Baek, et al. 2008; Chen, et al. 2012; Vinther, et al. 2006) following transient 

modulation of the levels of these two miRNAs, by miRNA mimics or inhibitors.  

In the case of metastatic disease, analysis of metastatic tissue can be very informative, but 

biopsies are highly invasive and complicated procedures and do not always yield tumour 

material. By contrast, isolation and subsequent characterization of circulating tumour cells 
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(CTCs) provide an opportunity to bypass the problems associated with obtaining 

metastatic tissue, serving as a 'liquid biopsy'. To date, there have been many efforts to 

correlate circulating miRNAs with the number of CTCs, including our previous studies. 

However, it may be challenging to implement this approach on a broad scale, mainly due 

to the low number of CTCs in the blood and the issue of leukocyte contamination. 

Therefore, there is a clear need for an efficient and sensitive method for the detection of 

miRNA within CTCs. As a prospective investigation to miR-194’s and miR-375’s in 

prostate cancer metastasis I propose to integrate in situ hybridization (ISH) protocol for 

detecting miRNAs in single cells with the methodological steps necessary to isolate and 

identify CTCs from patient blood. A recent study had implemented this approach to detect 

miR-21 in CTCs (Ortega, et al. 2015). Briefly, CTCs were selected based on cytokeratin 

(CK) expression and immunocytochemistry and locked-nucleic acid (LNA) probes 

associated with an enzyme-labelled fluorescence (ELF) signal amplification approach 

were used to detect miRNA-21 in CTCs (figure 6.5). Thus, this approach can be a 

potential tool that can be used to monitor prostate cancer patients and determine the 

efficacy of their treatments. 

In order to further clarify the relevance of miR-194 in prostate cancer metastasis, long-

term stable silencing of miR-194 should be one of the key future aims. CRISPR/cas9 

system is emerging as a novel genome editing tool in biology/medicine research (Chang, 

et al. 2016). Therefore, applying this technology to silence miR-194 and determine its 

effect on prostate cancer metastasis will be of considerable interest. Additionally, to 

determine the therapeutic efficacy of miR-194 in prostate cancer, I propose to perform 

silencing of miR-194 using anti-miRs in vivo using an anti-miR strategy as described in 

clinical implications section of the general discussion chapter.   

6.4. Summary 

The possible use of miRNAs in the clinic as biomarkers or therapeutic targets for prostate 

cancer is based on a growing body of investigations throughout the last decade. The 

research completed in this thesis provides greater understanding about the role of miR-194 

and miR-375 in prostate cancer metastasis. This information could inform the potential 

application of these miRNAs as biomarkers, and could lead to efforts to target miR-194 to 

prevent prostate cancer metastasis.  
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Figure 6.4: Schematic showing the laboratory workflow for the pulldown of mRNA 

targets of a synthetic biotinylated miRNA (Cloonan et al. 2011) 

 

 

Figure 6.5: Schematic illustration of miR-ISH-CTC (Ortega et al. 2015) 
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