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Abstract. Channel fracturing is a novel technique utilised to achieve discontinuous placement of 
proppant within a hydraulic fracture and create a network of open channels or voids between the 
proppant-filled regions (proppant columns), which can significantly increase the conductivity of the 
fracture. The problem of deformation and fluid flow in a partially-filled fracture involves two length 
scales: a large scale comparable to the length of the fracture ~O(102) m and a fine scale comparable to 
the length of the proppant filled regions or ‘columns’ ~ O(1) m. In this paper, a homogenisation procedure 
is developed to obtain the residual opening profile and effective fracture conductivity at the large scale 
from the solution of a ‘unit-cell’ problem at the fine scale. The application of the model in a practical 
scenario is demonstrated by performing a mock numerical simulation.    

Introduction 
The open channels created by channel fracturing 

technique are very conductive pathways for fluid flow 
from oil/gas reservoir to the wellbore, so the effective 
fracture conductivity can be increased up to several folds 
higher than that using the conventional hydraulic 
fracturing techniques [1,2]. The effective fracture 
conductivity can be maximised by selecting the optimal 
width of the open channels, i.e. the optimal spacing 
between the proppant-filled regions or ‘columns’.  

The optimisation requires solution to the problem of 
rock deformation and fluid flow in a partially-filled 
fracture at two length-scales: a coarse length-scale, X� 
comparable to the half-length of the fracture, L~O(102) 
m, and a fine length-scale, x� comparable to the half-
length of the proppant-filled regions or ‘columns’, 
b~O(1) m. The initial opening of the fracture, δo, the 
fluid pressure within the fracture, pf, as well as the 
compressive overburden stress normal to the fracture 
plane, σyy∞ , vary at the coarse scale. However, these 
variations are expected to be negligible at the fine scale, 
except close to the wellbore (X = 0) or the fracture tips 
(|X| = ±L). Hence, the problem geometry can be treated as periodic at the length-scale of the proppant 
columns, and the fine scale can be formulated as a “unit cell” problem (see Fig. 1) [2]. 
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From a practical viewpoint, it is of greater interest to consider the effective conductivity of the entire 
fracture, rather than a unit-cell. The solution at the coarse scale can be obtained in a computationally 
efficient manner by adopting a homogenisation procedure. The homogenisation or averaging procedure 
replaces the system of discrete proppant columns along the fracture length by a continuously-distributed 
‘fictitious’ porous medium. The purpose of this paper is to develop the displacement-dependent traction 
for the fictitious medium, which is a necessary first step towards the solution of homogenised problem.  

Mathematical model for the unit-cell problem 
The present study adopts a simple one-dimensional model for proppant consolidation, i.e. the lateral 

expansion of the proppant columns is ignored. The compressive stress at a given location in the proppant 
column, σp(x) is related to the change in height of the proppant column, δo − δ(x) using the following 
power-law relationship [2]: 

σp(x) = α�
δo − δ(x)
δ(x) �

β

, (1) 

where the constants α and β are the fitting parameters determined from experimental data. The height of 
the proppant column δ(x) lies in the interval (0, δ0] and Eq. (6) implies that σp = 0 at δ(x) = δ0 and 
σp → ∞ as δ(x) → 0. 

The relative opening between the crack faces, δ(x), is modelled by a continuous distribution of ‘edge 
dislocations’. The singular integral equation which governs the distribution of the dislocations is derived 
in [2] and can be written as 

E�
4π

�By(ξ) �
2ξ

x2 − ξ2
+ K(x, ξ)�dξ

a

0

= σo − σp(x)H(b − |x|), 0 < x < a, (2) 

where By(ξ) is the unknown dislocation density function which represents the continuous distribution of 
dislocations, H( ) is the Heaviside step function and the kernel K(x, ξ) is given by 

K(x, ξ) = �
4ξ(x2 − ξ2 + 4a2n2)

{(x − ξ)2 − 4a2n2}{(x + ξ)2 − 4a2n2}

∞

n=1

. (3) 

The dislocation density is related to the residual opening profile according to 

δ(x) = δmin + �By(ξ)dξ
a

x

, By(ξ) =
dδ(ξ)

dξ
, 0 < x < a. (4) 

The method of solution of Eq. (2) and the residual opening profile is described in [2]. 

Homogenisation procedure 
The aim of the homogenisation procedure is to replace the proppant column, which partially occupies 

the unit-cell, by an effective medium which fills the entire unit-cell. The nonlinear response of the 
effective medium is also described by Eq. (6), except for a multiplicative constant C, which varies with 
the geometrical parameters a, b and δo and the remote stress, σo. The constant C must be found in such 
a manner that the potential energy of the unit-cell, defined below, remains conserved [3]. 
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Π = U1 + U2 + W. (5) 
In Eq. (5), U1 is the strain energy of the rock in the deformed configuration over the region x ∈ [−a, a], 

y ∈ (−∞,∞) and can be written as: 

U1 = 4� � �
σxx2 + σyy2 − 2νσxxσyy

2E�
+
σxy2

2G
�dx

+a

0

dy,
∞

0

 (6) 

where σxx,σyy,σxy are elastic stress components in the rock formation, E� is the generalised Young’s 
modulus, and G is the shear modulus. 

The term U2 in Eq. (5) corresponds to the strain energy stored in the deformed proppant column and 
can be obtained as: 

U2 = 2� � α�
u

δo − u�
β

du

δ0−δ(x)

0

dx,
+b

0

 (7) 

where u = δo − δ denotes the change in height of the proppant column. 

Finally, the term W in Eq. (5) represents the work done due to the displacement of the remote boundary 
upon which the compressive traction σyy(x, y → ±∞) = −σo is applied. Since the displacement field 
due to the dislocation density tends to zero at the remote boundary y → ∞, the work done can be written 
as 

W = lim
y→∞

�−4a
σo2

E�
y� − 2a(δ0 − δmin)σo. (8) 

A unit-cell filled entirely with the effective medium undergoes uniaxial compression and the strain 
energy stored in the rock over the region x ∈ [−a, a], y ∈ (−∞,∞) is simply given by 

U1
∗ = 4� � �

σo2

2E�
�dx

+a

0

dy.
∞

0

 (9) 

The strain energy stored in the effective medium can be written as 

U2
∗ = 2� � Cα �

u
δo − u�

β
du

δ0−δ∗

0

dx,
+a

0

 (10) 

where δ∗ is the constant opening of the fracture filled with the effective medium, and can be obtained as: 

δ∗ = δo �1 + �
σo
Cα
�
1
β�

−1

. (11) 

Analogous to (8), the work done at the remote boundary is 

W∗ = lim
y→∞

�−4a
σo2

E�
y� − 2a(δ0 − δ∗)σo. (12) 

The equivalence of potential energy requires that Π = Π∗, i.e. U1 + U2 + W = U1
∗ + U2

∗ + W∗. 

Utilising Eqs. (5)-(12), the potential energy equivalence requirement can be stated as 
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4� � �
σxx2 + σyy2 − 2νσxxσyy

2E�
+
σxy2

2G
−
σo2

2E�
�dx

+a

0

dy
∞

0

+ 2� � α�
u

δo − u�
β

du

δ0−δ(x)

0

dx
+b

0

− 2� � Cα �
u

δo − u�
β

du

δ0−δ∗

0

dx
+a

0

− 2a(δ∗ − δmin)σo = 0. 

(13)

Eq. (13) is satisfied by a unique value of the constant C which can be obtained using a suitable root 
finding algorithm. 

Numerical results
In this section, some numerical results are presented for the effective properties of the homogenised 

medium. In these numerical calculations, the initial opening δo is fixed at 5 mm and the width of the 
proppant filled region, 2b is fixed at 1 m. The Young’s modulus and Poisson’s ratio of the rock are 
selected to be E = 10 GPa and ν = 0.3 and the fitting parameters in Eq. (6) are selected to be α = 5.543
MPa and β = 3.873.

The first step of the analysis is to determine the critical spacing between the proppant columns, 2a, at 
which the minimum residual opening of the unit-cell, δmin = δ(|x| = a) equals to zero, i.e. the fracture 
walls come in contact (see Fig. 1b). This critical value of proppant column spacing, 2acr, corresponds to 
a drastic reduction in the fluid conductivity of the open channels. The selection of proppant column 
spacing greater than this critical value will result in sub-optimal increase in the effective fracture 
conductivity, hence represents a case of little practical interest. The dependence of acr on the remotely 
applied compressive stress σo was obtained through an extensive parametric study and the results are 
presented in Fig. 2. The best fit equation recovers the limiting cases, i.e. 2acr → ∞ as σo ⇢ 0 and 2acr →
2b = 1 m as σo ⇢ ∞.

Fig. 2: Envelope showing combinations of proppant column spacing, 2a and remotely applied 
compressive stress, σo which ensure that the fracture faces do not come in contact.

Numerical results for the constant C are obtained for the remotely applied stress in the range 10 <
σo < 50 MPa with increments of 1 MPa and the proppant column spacing in the range 1.0 < 2a < 2.0
m, with increments of 0.05 m. A spline function was fitted through the discrete data points to obtain the 
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interpolated value of the constant C for any combination of parameters 2a and σo which yields δmin > 0
as shown in Fig. 3.

The conductivity of the unit cell fully-filled with the effective medium is equivalent with the effective 
conductivity of the partially-filled unit cell, Keff, which is obtained from [4]. Hence, the permeability of 
the effective medium, κp, can be gained as:

κp =
Keff

δ∗
 (14)

where δ∗ is the constant opening of the unit cell when it is fully-filled with the effective medium, see Eq. 
(11). κp is the key to compute the conductivity of each unit cell along the fracture length, and the 
conductivity of unit cells will be utilised to calculate  the conductivity of the entire fracture.

Fig. 3: Contour plot showing the variation of the effective medium stiffness constant C upon proppant 
column spacing and remotely applied stress.

Conclusion
In this paper, the periodic system of proppant columns within a hydraulic fracture is replaced by a 

continuous distribution of springs along the fracture length using a homogeneous procedure. The energy 
conservation principle and the solution for “unit-cell” developed in [2] are utilised to define the power-
law for the nonlinear springs. The numerical results present the effective medium stiffness constant C
according to any combination of proppant column spacing and the confining stress. The application of
the effective medium stiffness concept allows a significant reduction of the complexity of the problem 
and an application of well-developed methods of Fracture Mechanics to evaluate the residual opening of 
a periodically supported fracture. The outcomes of this work provide the first necessary step to analyse 
the hydraulic channel fracturing technique, which is of great interest to the gas and oil industries. 

conductivity of unit cells will be utilised to calculate  the conductivity of the entire fractu
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