Effects of -NO₂ and -NH₂ functional groups in mixed-linker Zr-based MOFs on gas adsorption of CO₂ and CH₄

Zana Hassan Rada, Hussein Rasool Abida,b, Hongqi Sun,c, Jin Shangd, Jiaye Lie, Yingdian He,f, Shaomin Liua, Shaobin Wangb,⁎

ARTICLE INFO

Keywords:
UiO-66-NO₂
UiO-66-NH₂
Multi-linker MOFs
Carbon dioxide
Methane adsorption

ABSTRACT

This study was undertaken to evaluate the effects of mixing BDC-NO₂ and BDC-NH₂ linkers in the synthesis of Zr-based metal organic frameworks (Zr-MOFs) on their adsorption and separation of CO₂ and CH₄. UiO-66 with single or binary -NO₂ and -NH₂ samples were synthesized under solvothermal conditions and activated by solvent exchanging using methanol. Structural analyses of the materials were conducted using FTIR, XRD, TGA, SEM, 1HNMR and N₂ adsorption/desorption techniques and adsorption of CO₂ and CH₄ at high pressures and different temperatures (273 and 298 K) was investigated. It was found that UiO-66-NH₂ exhibited higher CO₂ and CH₄ adsorption capacities than those of UiO-66-NO₂. Addition of -NH₂ functional group in UiO-66-NO₂ could enhance CO₂ and CH₄ adsorption due to the extra CO₂ adsorption sites of -NH₂ functional groups. Addition of -NO₂ functional group to UiO-66-NH₂ at a low loading could also increase CO₂ and CH₄ adsorption, however, a high loading of NO₂ functional group to UiO-66-NH₂ would result in decreased adsorption.

1. Introduction

Capture and separation of carbon dioxide from methane is one of major process for high-valued methane utilization. The effective separation of carbon dioxide (CO₂) from methane (CH₄) can be achieved through some technologies. Adsorption based separation technology such as physical adsorption by porous materials is considered to be a cost efficient process and many types of adsorbent materials have been examined, such as activated carbon, zeolites and metal organic frameworks (MOFs) [1–8].

Metal organic frameworks (MOFs) are a new class of crystalline and promising porous materials, which have recently attracted considerable interest in many applications for gas adsorption and storage, due to their high specific surface area and pore volume. Until now, numerous MOFs have been synthesized and studied in capture of CO₂, storage of CH₄ and their separation [9,10]. Mg-MOF-74, zeolitic imidazolate frameworks (ZIFs) and bio-MOF-11 have showed high CO₂ adsorption [11–13]. For methane storage, Ni-MOF-74 [14–16], MOF-177 [17] and PCN-14 [18] have been demonstrated good capacities.

The uptake capacities of CO₂ and CH₄ on MOFs are dependent on the structural properties such as pore volume and surface area of MOFs. However, achieving a highly selective uptake of a specific gas on MOFs, a balanced porosity and functionality of the framework should be considered [10]. In addition, different types of functional groups (Br, CH₃, NO₂, NH₂, etc.) in the structure of MOFs [19,20] also affect the surface area and adsorption. Ying et al. stated that NH₃ group can show a good role and provide strong affinity for CO₂ molecules in the adsorption [21]. And NO₂ group can also play as Lewis basic sites to increase CO₂ adsorption by acid-base interactions [22].

Many functionalized MOFs [23] have been shown as good adsorbents for CO₂ and CH₄ uptakes [24–26]. Amino (NH₂)-functionalized MOFs usually displayed an improvement in separation of CO₂/CH₄ [27,28] whereas nitro (NO₂) functionalized MOFs reduced surface area and CO₂/CH₄ adsorption [29].

Recently, combination of two different ligands (functional group or non-functional group) over MOFs have been studied by some researchers [30]. The MOFs were referred as mixed linker MOFs (MixMOFs). The properties of MixMOFs led them to be promising sorbent...
materials for CO₂ and CH₄ adsorption, such as Al-MIL-53, CAU-10 [31], Ti-based MOFs [32] and UiO-66 [33] mixed linker MOFs. More recently, UiO-66 mixed linker MOFs have been studied by two research groups due to their high thermal and chemical stabilities. Kim et al. [34] synthesized a mixture of BDC-NH₂ and Br-BDC functionalized UiO-66-Br-NH₂. A mixture of BDC (non-functional linker) with BDC-NH₂ at different loadings functionalized UiO-66 has been studied by Chavan et al. [33].

In this article, for the first time, BDC-NO₂ and BDC-NH₂ functionalized linkers at different loadings were used for preparation of MixMOFs of UiO-66 and their physicochemical properties and performances in CO₂ and CH₄ adsorption were characterized and compared with single functionalized UiO-66-NO₂ and UiO-66-NH₂.

2. Experimental section

2.1. Chemicals and synthesis of different UiO-66 samples

All chemicals including zirconium chloride (ZrCl₄, 99.9%), N,N-dimethylformamide (DMF, C₃H₇NO, 98%), methanol (CH₃OH, 99%), 2-nitroterephthalic acid (BDC-NO₂, ≥ 99%), and 2-aminoterephthalic acids (BDC-NH₂, 99%) were supplied by Sigma–Aldrich without further purification.

UiO-66-NO₂ was synthesized based on the previous reports [35]. In a typical process, ZrCl₄ (6.5 mmol) was dissolved in DMF (86 mL) in a Teflon vessel and stirred for 10 min. BDC-NO₂ (6 mmole) was then added to the solution and stirred for 20 min. The homogeneous mixture was placed in a Parr PTFE-lined digestion vessel of 125 mL, sealed and left in an oven for 24 h at 393 K. The product was washed two times with DMF and filtered by vacuum filtration. UiO-66-NH₂ was obtained by the similar synthesis procedure of UiO-66-NO₂ using a BDC-NH₂ linker instead of BDC-NO₂.

Synthesis of mixed linker UiO-66-NO₂-N (N = NH₂) and UiO-66-NH₂-N (N = NO₂) were achieved by using the above process through different ratios of the two linkers, BDC-NO₂ and BDC-NH₂ as described in Table S1 (ESI). The molar fractions of BDC-NH₂ with respect to BDC-NO₂ were at 0.10 and 0.75 for UiO-66-NO₂-N samples and vice versa for UiO-66-NH₂-N samples, and the linker BDC-NH₂ with respect to BDC-NO₂ were also at 0.10 and 0.75.

Activation of all samples were carried out using the method as previously reported [35]. About 0.5 g of each sample was immersed separately in 50 mL of methanol solution for 5 d and then the solids were filtered and dried in an oven at 353 K for 12 h. Finally, these materials were heated under vacuum at 463 K overnight.

2.2. Characterisation of samples

The crystalline structure of samples was confirmed by a XRD diffractometer (D8 Advance-diffractometer Bruker XS) with Cu Kα radiation (λ = 1.5406 Å). A FTIR spectrometer (Perkin-Elmer 100 FT-IR spectrometer) was used to investigate functional groups on MOF crystalline structure. The spectrum was scanned from 600 to 4000 cm⁻¹ with a resolution of 4 cm⁻¹ by using an attenuated total reflectance (ATR) technique. Thermal stabilities of all samples were investigated by using a thermogravimetric analysis (TGA) instrument (TGA/DSC1 STAR® system, METTLER-TOLEDO). About 10–20 mg samples were loaded in an alumina pan and then argon gas was introduced into the furnace at a flow rate of 20 mL/min and a heating rate of 10 K/min from 308 to 1150 K. A SEM machine (Zeiss NEON 40 EsB Cross-Beam) was used to determine the morphologies of the samples. Surface area and pore size of each sample were measured by a Micromeritics Tristar 3000 analyzer. All samples were degassed at 463 K under vacuum overnight and then N₂ adsorption at 77 K was carried out. ¹H NMR spectroscopy was used to detect the incorporation of the linkers BDC-NO₂ and BDC-NH₂ into MOF samples. About 20 mg of samples were digested in 600 µL of NaOH-D₂O solution for 24 h before the measurement. The data were recorded on a Bruker Advance III 400 spectrometer and were indirectly referenced to TMS using the resonance of the residual solvent peak.

2.3. Adsorption study of CO₂ and CH₄

A Micromeritics-ASAP2050 was used to measure the adsorption isotherms of pure CO₂ (99.995%) and CH₄ (99.995%) at high pressure up to 1000 kPa on samples. Carbon dioxide (99.995%) and methane (99.995%) were supplied by Coregas. First, the samples were thoroughly dehydrated and degassed on the Micromeritics ASAP2050 analyzer by heating stepwise at 1 K/min up to 423 K and holding at this temperature for 8 h under high vacuum. An equilibrium interval of 20 s was adopted in all the isotherm measurements. The adsorption was carried out at temperatures of both 273 and 298 K.

3. Results and discussion

Fig. 1 shows XRD patterns of as-synthesized UiO-66-NO₂-N, UiO-66-NH₂-N, UiO-66-NO₂ and UiO-66-NH₂ samples.

Fig. 2 and 3 show FTIR spectra of non-activated and activated
samples. The functional carboxyl in free aromatic carboxylic acid on non-activated samples was observed at 1650 cm\(^{-1}\). However, after activation of the samples by methanol, the peak was mostly disappeared, demonstrating that a good exchange of DMF by methanol.

The asymmetric (\(\nu(\text{NO})_{\text{asym}}\)) peak at 1544 cm\(^{-1}\) reduced and disappeared at loading of 10% and 75% (-NH\(_2\)) group to UiO-66-NO\(_2\), meanwhile the C-N stretching of aromatic amines appeared at 1356 cm\(^{-1}\) on both the samples of UiO-66-NO\(_2\)-NH\(_2\)-10% and UiO-66-NO\(_2\)-NH\(_2\)-75% [33]. In contrast, the asymmetric (\(\nu(\text{NO})_{\text{asym}}\)) vibration at 1544 cm\(^{-1}\) appeared on mixed linker samples and the C-N stretching of aromatic amines at 1356 cm\(^{-1}\) was missing at the loading 10% and 75% of (-NO\(_2\)) group to UiO-66-NH\(_2\) samples. A similar behavior was observed for the symmetric (\(\nu(\text{NO})_{\text{sym}}\)) stretching at 1355 cm\(^{-1}\), which decreased after loading the UiO-66-NO\(_2\) sample with (-NH\(_2\)) group and vice versa with the addition of (-NO\(_2\)) groups to the sample UiO-66-NH\(_2\) [40,41].

The \(^1\text{H}\) NMR spectra of synthesized samples are shown in Fig. 4. As it can be seen that, BDC-NH\(_2\) and BDC-NO\(_2\) linkers can be found in UiO-66-NH\(_2\) and UiO-66-NO\(_2\), respectively [38]. For the mixed-linker UiO-66-NO\(_2\)-NH\(_2\), both BDC-NH\(_2\) and BDC-NO\(_2\) linkers were found. As expected, by increasing the amount of BDC-NH\(_2\) linker into UiO-66-NO\(_2\) sample, the signals of BDC-NH\(_2\) become more visible in samples of UiO-66-NO\(_2\)-NH\(_2\)-10% and UiO-66-NO\(_2\)-NH\(_2\)-75% and vice versa with increased BDC-NO\(_2\) linkers to UiO-66-NH\(_2\) samples. The intensities of BDC-NO\(_2\) signals in UiO-66-NO\(_2\)-NH\(_2\)-10% and UiO-66-NO\(_2\)-NH\(_2\)-75% samples were obviously presented. Thus, \(^1\text{H}\) NMR spectra clearly proved the incorporation of the linkers into the frameworks of the samples.

The thermal stability of samples was examined by TGA and weight loss profiles are presented in Fig. 5. DTG profiles of all samples are illustrated in Fig. S3. The TGA curves of non-activated samples showed three-steps of weight losses. The first step of the weight loss at 5 – 8% occurred from 305 to 375 K and it is attributed to the removal of moisture and free solvent inside the pores [42]. Meanwhile, the second weight loss at 23 – 30% took place in the range of 375–460 K and this loss is related to the removal of un-coordinated linkers and coordinated solvent (DMF), due to the strong chemical bonding. The last stage (third-step) of weight loss at 62 – 72% is referred to the structural collapse of the MOF samples occurring at 760 K. Fig. 5(b) shows the TGA results for activated samples. It can be confirmed that weight losses appear on all samples with slight differences in the non-activated samples. The removal of moisture and free solvent (initial step) happened at 350 K with 12 – 22% weight loss. However, the second step of weight loss on activated samples presented very small amount of 5% loss compared with the non-activated samples. This provides the evidence of successful exchange of the solvent [33]. The decomposition temperature of activated samples slightly increased to 820 K, suggesting their higher thermal stability.

Fig. 6 presents N\(_2\) adsorption/desorption isotherms at 77 K. A different hysteresis was observed in all samples, which indicates the presence of mesoporous structure with the micropores. A similar observation on functionalized UiO-66 samples has been reported previously [33]. The BET surface areas, micropore volumes and areas of the samples by the t-plot method are presented in Table S2 (ESI). The surface areas can be increased at the lower loading of a second linker but declined with further increasing loading of the functional linkers to UiO-66-NH\(_2\) or UiO-66-NO\(_2\) samples. UiO-66-NO\(_2\)-NH\(_2\)-10% and UiO-66-NH\(_2\)-NO\(_2\)-10% displayed higher surface areas at 867 m\(^2\)g\(^{-1}\) and 1000 1500 2000 2500 3000 3500 4000 40 60 80 100 120 140 160 Wavenumber (cm\(^{-1}\)) Transmittance

Fig. 3. Comparison of FTIR spectra of mixed linker UiO-66-NH\(_2\)-N, UiO-66-NO\(_2\)-N, UiO-66-NO\(_2\), and UiO-66-NH\(_2\) samples.

Fig. 4. \(^1\text{H}\) NMR spectra of linkers BDC-NO\(_2\) and BDC-NH\(_2\) in prepared MOFs samples.
UiO-66-NO2 was obtained as a smaller crystal size and aggregated of BDC-NH2 linker may enhance the formation of the structure of UiO-66-NH2 itself and the solvent [43]. Therefore, adding few amount of BDC-NO2 linker may attenuate the hydrogen bond insides the pores and at the same time enhance the microporosity of the materials, leading to the increase in the specific surface area as demonstrated in UiO-66-NH2-NO2 samples. In addition, BDC-NO2 group within the structure between the linkers leads to decrease of the surface area of UiO-66-NH2-NO2 75% compared with UiO-66-NH2-NO2 10% and UiO-66-NH2. High interconnection between the linkers leads to decrease of the surface area of UiO-66-NH2-NO2 75% compared with UiO-66-NH2-NO2 10% and UiO-66-NH2. UiO-66-NH2-NO2 75% presented less capacities than UiO-66-NH2. High interconnection between the linkers leads to decrease of the surface area of UiO-66-NH2-NO2 75% compared with UiO-66-NH2-NO2 10% and UiO-66-NH2. However, loading 10% and 75% of BDC-NO2 group on UiO-66-NH2 showed slightly different effects on CO2 and CH4 adsorption. Mixed UiO-66-NH2-NO2 10% showed higher CO2 and CH4 uptakes than those of single UiO-66-NH2. Meanwhile, UiO-66-NH2-NO2 75% presented less values of CO2 and CH4 adsorption than UiO-66-NH2. High interconnection between the linkers leads to decrease of the surface area of UiO-66-NH2-NO2 75% compared with UiO-66-NH2-NO2 10% and UiO-66-NH2. In contrast, the surface area and porosity of UiO-66-NH2-NO2 10% are increased. Adding a small amount of BDC-NO2 group can enhance the affinity of the structure toward CO2 with less interconnection between the linkers. In addition, BDC-NO2 group within the structure may lead to increase the polarity of the linker by changing the charge distribution toward CH4 and CO2 adsorption. The highly polar -NO2 groups with the negative charge density on O atoms may interact with the Lewis acidic C center of CO2 molecules on the basis of the dipole–quadrupole interaction [56]. The quadrupole moment of CO2 (−1.34 × 10⁻⁴⁰ C·m²) creates strong interactions with adsorbents. Suitable sizes of micropores within MOF structure also affect CH4 molecular adsorption [57].

The selectivity of CO2 over CH4 by the static adsorption at pressure up to 1000 kPa was calculated according to Eq. S1 and displayed in Fig. 10. UiO-66-NH2 gave a better selectivity than UiO-66-NO2. Addition of a second linker BDC-NO2 to UiO-66-NH2 improves the selectivity while addition of BDC-NO2 to UiO-66-NO2 can result in a lower selectivity because the electron withdrawing nature of the nitro group would be expected to strongly impact coordination where the nitro group.

Fig. 5. TGA profiles of UiO-66-NO2-N, UiO-66-NH2-N, UiO-66-NO2 and UiO-66-NH2 samples (a) before activation (b) after activation.

Fig. 6. N2 adsorption/desorption isotherms on the UiO-66 samples.

Figs. 8 and 9 show CO2 and CH4 adsorption isotherms on all samples at varying temperatures (273 and 296 K). In general, all samples exposed affinity for CO2 higher than CH4. Furthermore, UiO-66-NH2 presented higher capacities than UiO-66-NO2 to adsorb both CO2 and CH4. The presences of BDC-NH2 as a second linker at different ratios of 10% and 75% increased CO2 and CH4 adsorption. UiO-66-NO2-NH2 10% and UiO-66-NO2-NH2 75% showed the values of CO2 uptakes at 4.96 and 4.31 mmol/g at 298 K, respectively, and the adsorption capacities were at 6.33 and 6.00 mmol/g at 273 K, respectively. The amounts of CH4 uptake were 2.04 and 1.90 mmol/g at 298 K and they were higher at 2.9 and 2.76 mmol/g at 273 K for UiO-66-NH2-NH2 10% and UiO-66-NH2-NH2 75%, respectively. The high surface area and the presence of amino functional groups can increase the affinity towards the gas uptakes [49] (CO2 and CH4) on mixed ligand samples. It seems that the adsorption of CO2 and CH4 on the bifunctional UiO-66 samples in this study is higher than that of several other MOFs such as FMOF-2, MIL-20, MIL-125(Ti), ZIF-100 and ZIF-95. However, MIL-53(Cr) and Zeolite 13× presented higher capacities than the samples reported here, as shown in Table 1.

However, the pore sizes of UiO-66-NH2-NH2 10% and UiO-66-NH2-NH2 10% samples were significantly decreased.

SEM pictures of samples are presented in Fig. 7. All samples exhibit a similar crystalline morphology of Zr-MOFs reported before [37,46,47] with homogeneous triangular base-pyramid particles at different sizes. UiO-66-NO2 was obtained as a smaller crystal size and aggregated crystals, however, modified samples present a larger particle size than single functionalized samples. In addition, with loading of BDC-NO2 and BDC-NH2 linkers into single linker MOFs samples, the size of the crystals increased and became less aggregated that may be related to different polarities of the ligands [48].

1152 m²g⁻¹ than single linker functionalized samples, UiO-66-NO2 and UiO-66-NH2 at 771 m²g⁻¹ and 1025 m²g⁻¹, respectively. More specifically, BDC-NO2 linker has the least favorable energy of structural assembly because of the electronegative -NO2 group. Adding few amount of BDC-NH2 linker may enhance the formation of the structure of UiO-66-NO2 and enhance the specific surface area as demonstrated in UiO-66-NO2-NH2. On the other hand, NH2-linker segregates itself from others because this linker can build hydrogen bonds with both BDC-NH2 itself and the solvent [43]. Therefore, adding few amount of BDC-NO2 linker may attenuate the hydrogen bond inside the pores and at the same time enhance the microporosity of the materials, leading to the increase in the specific surface area as observed in UiO-66-NH2-NO2 10% [44,45].

However, the pore sizes of UiO-66-NH2-NH2 10% and UiO-66-NH2-NH2 10% samples were significantly decreased. Suitable sizes of micropores within MOF structure also affect CH4 molecular adsorption [57].

The selectivity of CO2 over CH4 by the static adsorption at pressure up to 1000 kPa was calculated according to Eq. S1 and displayed in Fig. 10. UiO-66-NH2 gave a better selectivity than UiO-66-NO2. Addition of a second linker BDC-NO2 to UiO-66-NH2 improves the selectivity while addition of BDC-NO2 to UiO-66-NO2 can result in a lower selectivity because the electron withdrawing nature of the nitro group would be expected to strongly impact coordination where the nitro group.
group affected the sorption of protic guests [58]. Consequently, the N-based Lewis basic functional polar surfaces in the framework may also lead to the high CO₂ selectivity [56]. At pressure of 1000 kPa, UiO-66-NO₂-NH₂ 75% has the lowest separation factor for carbon dioxide over methane (2.05) and (2.16) at 298 K and 273 K, respectively, whereas, UiO-66-NH₂-NO₂ 10% displays the best selectivity amongst others. The selectivity of CO₂ over CH₄ decreased with increasing pressure. Therefore, the selectivity of CO₂ /CH₄ of most samples at pressure lower than 200 kPa can be selected as best separation. Table 2 summarizes the selectivity of CO₂ over CH₄ on various MOFs. The selectivities of CO₂ over CH₄ for mixed ligands MOFs are better in comparison with other MOFs.

In Figs. S4 and S5 (ESI), the isosteric heats of adsorption (Qₑₐₛ) for CO₂ and CH₄ were determined based on the Clausius–Clapeyron
\[\Delta \text{dp} / \text{pH} = \Delta H \text{dT}/(\text{RT}^2) \] from isotherms that measured at 273 and 298 K. Generally, CO₂ isosteric heats of adsorption slightly reduced with increasing coverage of CO₂ on samples. UiO-66-NO₂ showed the lowest value due to a larger pore size [60]. The adsorption heat of CO₂ adsorption at different CO₂ loading on samples were found at an average between 28 and 33 kJ/mol, which are in the range of heat of adsorption of most MOFs. On the other hand, the average adsorption heat values of CH₄ at different CH₄ coverages were between 18 and 29 kJ/mol on samples. Similar to the previous work, the isosteric heat of CH₄ increased on samples with high loading of CH₄, relating to more dispersion of CH₄ occurring on the polar surface [61].

4. Conclusions

Multifunctionalized Zr-based MOFs samples (UiO-66-NO₂, UiO-66-NO₂-N, UiO-66-NH₂-N, and UiO-66-NH₂) were obtained for CO₂ and CH₄ adsorption. 1H NMR and FTIR indicate the good incorporation of the two functional groups of BDC –NO₂ and BDC –NH₂ in MOF structures. Uptake capacities of CO₂ and CH₄ on UiO-66-NH₂-NO₂ 10% were the highest around 6.6 and 9.1 mmol CO₂/g at 298 and 273 K, respectively, and 2.5 and 3.5 mmol CH₄/g, at 298 and 273 K, respectively. UiO-66-NO₂-NH₂ 75% presented the lowest of CO₂ and CH₄ adsorption. Overall, mixed ligands MOFs demonstrated good adsorption of CO₂ and CH₄, however, selectivity of CO₂/CH₄ could be reduced.

Acknowledgements

We thank Ms Elaine Miller for SEM measurements. We also acknowledge the Ministry of Higher Education and Minister of Natural Resources/Kurdistan regional government-Iraq for PhD scholarship. This project was supported by Australian Research Council (DP170104264).

Appendix A. Supporting information

Supplementary data associated with this article can be found in the
Table 2

<table>
<thead>
<tr>
<th>MOFs</th>
<th>CO₂/CH₄ at 298 K</th>
<th>CO₂/CH₄ at 273 K</th>
</tr>
</thead>
<tbody>
<tr>
<td>UiO-66-NH₂NO₂ 10%</td>
<td>4.3 (1 bar 2.5)</td>
<td>3.8 (1 bar 2.7)</td>
</tr>
<tr>
<td>(9.8 bar)</td>
<td>(9.8 bar)</td>
<td>This work</td>
</tr>
<tr>
<td>UiO-66-NH₂</td>
<td>3.9 (1 bar 2.7)</td>
<td>3.5 (1 bar 2.3)</td>
</tr>
<tr>
<td>(9.8 bar)</td>
<td>(9.8 bar)</td>
<td>This work</td>
</tr>
<tr>
<td>ZIF 68</td>
<td>3.8 (1 bar 2.8)</td>
<td>5.0 (1 bar 3.3)</td>
</tr>
<tr>
<td>(9.8 bar)</td>
<td>(9.8 bar)</td>
<td>[59]</td>
</tr>
<tr>
<td>UiO-66-NH₂NO₂ 75%</td>
<td>3.7 (1 bar 2.7)</td>
<td>3.4 (1 bar 2.4)</td>
</tr>
<tr>
<td>(9.8 bar)</td>
<td>(9.8 bar)</td>
<td>This work</td>
</tr>
<tr>
<td>UiO-66-NH₂</td>
<td>3.6 (1 bar 2.4)</td>
<td>3.1 (1 bar 2.2)</td>
</tr>
<tr>
<td>(9.8 bar)</td>
<td>(9.8 bar)</td>
<td>This work</td>
</tr>
<tr>
<td>UiO-66-NH₂NO₂ 75%</td>
<td>3.5 (1 bar 2.4)</td>
<td>3.4 (1 bar 2.2)</td>
</tr>
<tr>
<td>(9.8 bar)</td>
<td>(9.8 bar)</td>
<td>This work</td>
</tr>
<tr>
<td>ZIF 69</td>
<td>3.4 (1 bar 2.0)</td>
<td>5.1 (1 bar 3.3)</td>
</tr>
<tr>
<td>(9.8 bar)</td>
<td>(9.8 bar)</td>
<td>[59]</td>
</tr>
<tr>
<td>ZIF 70</td>
<td>3.2 (1 bar)</td>
<td>5.2 (1 bar 3.3)</td>
</tr>
</tbody>
</table>

This work

References

