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Abstract 

This thesis aims to study the property of rubber–sand mixtures as a geotechnical 

alternative. Previous studies have shown superior properties of this artificial 

composite such as high resiliency, light weight, and improved skin-resistance. 

Also, when mixed with conventional geotechnical materials, the composite often 

exhibits adjusted void ratio, high compressibility, high compression, high friction 

angle, and high attenuation of vibration. 

In the past, the major efforts were focused on the laboratory tests. There is 

limited research in numerical domain performed to predict the mechanical 

behaviour of rubber–soil. In these numerical studies, approximations are 

unsatisfactory because the past studies usually treat the compressible rubble 

granule as a rigid material. To address these research gaps, this study in this thesis 

develops and applies a series of numerical models to replicate the compressible 

nature of the rubber material and to examine the behaviour of the rubber-derived 

composite materials. The behaviour includes the shear strength, dynamic damping, 

mixture segregation, contact asperity, and contact deformation, from the macro- 

to microscale. 

The aims of this thesis contain the following aspects: 1) investigating the 

shear strength of rubber–sand mixture obtained in direct shear test; 2) assessing 

the segregation occurred when rubber–sand mixture is placed; 3) developing a 

coupled numerical method to replicate rigid–soft matters interaction; and 4) 

examining the influence of material surface asperity on energy dissipation. To 

attain these aims, the discrete element method (DEM), a numerical modelling tool, 

is employed to develop a series of modelling framework. The framework is 
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validated, verified and applied through a blend of solutions, including test setups, 

analytical solutions, example problems and case studies. 

The DEM is used to replicate the discrete natural of rubber granules. Using 

this method, the macroscopic material response and particle flow can be monitored 

by determining granular properties such as contact stiffness, friction and damping 

coefficient. As a significant numerical tool, the commercial software package PFC 

is used to investigate the rubber and soil granular interactions. 
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Chapter 1  

Introduction 

1.1 Background 

In Australia, it is estimated that there are around 48 million waste tyres generated 

each year, but less than 16% of these waste materials are recycled and properly 

managed. A large percentage of waste tyres are either dumped in overcrowded 

landfills or discarded illegally, indicating potential fire hazards and other 

environmental and health problems, e.g., breeding mosquitos and rodents, 

resulting in great demand for storage spaces and other associated cost.  

On the other hand, waste tyres are not desired at landfills because of their 

large volume, high void space which occupies limiting and valuable landfill space. 

Currently, the main methods of dealing with discarded tyres are burning them to 

produce electricity or for other purposes such as run pulp or paper mills. However, 

according to Masad et al. (1996b), by using these methods, waste tyres are still 

stockpiled, landfilled or even illegally dumped. Thus, trying to reuse and recycle 

waste tyres and incorporating them into engineering materials could be an 

alternative method.  
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A rising interest in industry of using rubber composite or rubber chips 

alone has been found in recent years.  This includes the application in reinforcing 

road construction (Bosscher et al., 1997, Heimdahl and Drescher, 1999, 

Nightingale and Green, 1997), controlling erosion of ground (Poh and Broms, 

1995),  slope stabilization (Poh and Broms, 1995, Garga and O'shaughnessy, 2000), 

backfilling retaining structures (Basheer et al., 1996, Bosscher et al., 1997, Garga 

and O'shaughnessy, 2000, Humphrey and Manion, 1992, Humphrey et al., 1993, 

Lee et al., 1999, O'Shaughnessy and Garga, 2000), subsurface drainage system 

(Nagasaka et al., 1996) and vibration isolation system (Eldin and Senouci, 1993, 

Tsang et al., 2012). 

The superior properties of waste rubber tyre shreds have been identified 

through a large number of laboratory tests. Generally they are resilient, lightweight, 

skin-resistive and rubber-sand mixtures often exhibit low void ratio, high 

compressibility, high compression, high friction angle and high attenuation (Edil 

and Bosscher, 1994, Feng and Sutter, 2000, Foose et al., 1996, Gebhardt, 1997, 

Humphrey et al., 1993, Kim and Santamarina, 2008, Masad et al., 1996a, Pamukcu 

and Akbulut, 2006, Wu et al., 1997, Yanagida et al., 2002, Zornberg et al., 2004) 

which makes rubber particles a wide application in civil fields. Also, mechanical 

properties of rubber-sand mixture such as integrity, strength, ductility and 

damping ratio could be improved if incorporating cement matrix (Lee and Lui 

2000, Shahin et al 2011, Tsoi and Lee 2010, Anastasiadis et al 2012).  

However, there are insufficient numerical studies undertaken to investigate 

the granular flow behaviour of sand–rubber mixtures. Most existing numerical 

studies adopt a discrete element method (DEM) as a simulation tool. Comparing 
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to other numerical methods such as a finite element method (FEM), the DEM 

treats geotechnical material as a group of individual particles due to system’s 

granular nature. Each particle would be governed by physical laws as it has its 

own physical properties so that the material deformation, failure mode, bifurcation 

behaviour and significant non–linear deformation can be successfully captured 

(Ting et al., 1989).   

Despite the advantages of using the DEM, it should further investigate the 

behaviour of deformable rubber material in the framework of rigid – body but soft 

– contact assumption. This is because in the DEM, the material deformation is 

assumed as a finite overlap at material boundaries, and how to best calibrate the 

deformable soft material in DEM still remains to be a numerical difficulty. 

1.2 Research aims 

The research aims of the study include: 

 Numerically investigating the shear properties of sand–rubber mixture and 

assessing the packing influence to shearing resistance from a microscale 

view. 

 Investigating material segregation by adopting a digital image method 

combined with the DEM and identifying the most significant parameter to 

composite segregation. 

 Proposing a theoretical based model to estimate the influence of surface 

roughness to energy dissipation.  
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 Proposing a numerical algorithm to couple the DE and EF (element free) 

methods where the material behaviour in rigid and soft domain can be 

simulated respectively.  

1.3 Layout of the thesis 

This thesis contains seven chapters in the public format. Chapter 1 presents a 

general introduction of research. A literature review related to the numerical 

methodologies and theories is presented in Chapter 2. This includes a brief review 

of existing studies on rubber—sand composites; an introduction of discrete 

element method (DEM); the using of digital image processing (DIP) to distinguish 

colour difference; and theories in element free Galerkin method. Chapter 3, 4, 5 

and 6 present the four published and/or submitted journal papers, which are the 

core outcomes of the research program. 

Chapter 3 contains a journal paper published in Computers and 

Geotechnics. This paper presents a numerical 3D DE model of sand—rubber 

mixture subjected to direct shear test. This numerical model is verified with the 

laboratory test under various rubber contents and loading stresses, showing great 

capacity and accuracy of the model. Interparticle contact forces, displacement, 

rotation and their variation with rubber content were investigated at a microscale. 

From a particulate-level, it demonstrates the composite stiffness, grading and 

packing greatly influenced by rubber inclusion, resulting in shear resistance 

variations. Some interesting phenomenon were further studied using the DEM tool. 



Chapter 2 
 

26 
 

Chapter 4 includes a journal paper published in International Journal of 

Geomechanics. This paper presents a study on sand–rubber segregation by using 

a digital image processing (DIP) method.  By converting a colour image into a 

binary picture, it enables material ingredients identification through determining a 

threshold grey level. Several important material properties including friction, 

rolling friction, damping and stiffness were calibrated through a range of 

laboratory tests. This research reveals a deeper understanding of composite 

heterogeneity when incorporating artificial material in conventional geotechnical 

materials. The discrete element studies further estimated the influence of micro–

mechanical properties to mixture segregation and identified the most influential 

factor to be density difference. The bigger the density difference is, the more likely 

that segregation can occur but restricted by material surface roughness. 

Chapter 5 includes a journal paper submitted to Granular Mechanics. This 

paper presents a numerical and theoretical study on single particle moving along 

a bumpy surface made by discs. The theoretical study is based on the collision 

model in order to verify the limitations of the DEM due to contact overlap. To 

estimate the roughness of the surface, the disc’s gap and radius were used to 

describe the surface geometric properties. In the numerical and theoretical models, 

inter–particle friction is not considered due to a perfect geometric shape. An initial 

horizontal velocity is given to an object so that its moving trajectory is recorded 

against the loss of energy. It is observed a viscous behaviour of energy dissipation 

due to collisions. To better quantify the surface roughness, the collision angle is 

found to be more accurate over surface asperity average height and height variance 

as a monotonic relationship was observed between energy loss and collision angle. 

In the numerical studies, the surface roughness is increased by using a clump 
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method and a significantly influence to energy dissipation is found due to multiple 

collisions. 

Chapter 6 includes a journal paper submitted to International Journal for 

Numerical Methods in Engineering. This paper presents an algorithm to couple 

DEM (discrete element method) and EFGM (element free Galerkin method) to 

solve dynamic interaction between soft and rigid domains. In both DE and EFG 

domains, an implicit Newmark-β time integration scheme is adopted in the step–

to–step analysis, coded in Matlab. The exchange of the contact force from DE to 

EFG is enforced as the form of point loads at domain interface using the Dirac 

delta function. To prevent the ill–conditioned problems, a weighted orthogonal 

base function is used to compute shape functions. Also, a penalty method is 

enforced to ensure essential boundary problem. It is also demonstrated that DEM 

and EFGM work compatibility in the self-developed Matlab codes. Several 

numerical cases illustrate great accuracy and efficiency is can be obtained. 

The above studies are summarised in Chapter 7 where the contributions 

and outcomes are discussed. Limitations of the research and recommendation to 

the future work are also discussed. 

 

 

 

 

 

 



Chapter 2 
 

28 
 

Chapter 2  

Literature review 
This chapter presents a literature review containing different parts relevant to the 

research study, including the existing studies on rubber—sand material; discussion 

of the numerical tools such as DEM and DIP used to study mixture properties and 

segregation respectively; the theories of using element free Galerkin method. 

2.1 Existing studies on rubber—sand mixture 

2.1.1 Experimental studies 

The existing studies mainly focus on investigating the mechanical properties of 

the mixtures experimentally or numerically. As a guidance to the design of the 

structures, multiple composite properties are investigated, which can be 

categorized into two groups: the static and dynamic properties of the material. 

One of the most important static properties of rubber sand mixture is its 

shearing resistance. A common research interest of using rubber soil is to 

determine the optimal rubber content where the maximum shearing properties can 

be reached (Ghazavi, 2004b, Zornberg et al., 2004). In the static test of soil—sand 

material, direct shear test (Foose et al., 1996, Ghazavi, 2004a, Ghazavi and Sakhi, 

2005) and triaxial test (Airey, 1993, Lee et al., 1999, Wu et al., 1997, Zornberg et 

al., 2004) are most commonly used in investigating mixture mechanical properties. 
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In the triaxial test, pure rubber chips, sand—rubber mixtures and slightly cemented 

sand rubber mixtures can be found in the literature. It is unanimously agreed that 

the shearing properties are mostly related to loading stress, mixture unit weight 

and rubber dosage. Other factors such as rubber aspect ratio also have a positive 

influence on shearing resistance of the mixture. 

The dynamic properties of sand—rubber mixture were investigated by a 

number of previous studies. These are often carried out by torsional resonant test 

(Anastasiadis et al., 2012a, Anastasiadis et al., 2012b, Feng and Sutter, 2000, 

Senetakis et al., 2012), cyclic triaxial test (Nakhaei et al., 2012) and modified 

odemetor test (Kim and Santamarina, 2008) in order to determine material shear 

modulus and damping ratio. Confining pressure, rubber content, grain sizes and 

relative size ratio are believed to be the most important characteristics of the 

mixture dynamic properties. 

2.1.2 Numerical studies 

The numerical studies are mainly conducted by using the discrete element method. 

Comparing to the conventional finite element method, the material behaviour can 

be investigated up to particulate level and in the binary mixture, the granular 

interaction is often of great interest to the researchers. For sand—rubber mixture, 

a range of numerical tests have been performed validating the laboratory results, 

including odemetor test  (Lee et al., 2014, Patil et al., 2010) and 1D compression 

test (Evans and Valdes, 2011, Lee et al., 2010, Valdes and Evans, 2008). The 

material stress—strain relationships were closely predicted by these numerical 
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simulations thorough calibrated material parameters. More importantly, an insight 

result into the particulate interaction can be revealed through DEM simulations. 

The inclusion of rubber content has an important role in determining 

material behaviour in various strain levels. According to (Lee et al., 2014), the 

rubber material usually demonstrates low stiffness and high angularity, elasticity 

and irregularity. These unique properties finally determine the mixture behaviour 

especially at small strain level. As a heterogenous material, the mixture can 

generally behave as sand–like, rubber–like or at transition. The role of rubber 

granules can be illustrated in Table 2-1 where χ is the volume fraction of rubber 

(χ = Vrubber/Vtotal): 
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Table 2-1.Transition and role of the rubber particles with the strain level 

Strain level Small strain Intermediate strain Large strain 

Sand-like χ ≤ 0.8 χ< 0.2 χ ≤ 0.2 

Transition χ > 0.8 0.4 <χ < 0.6 χ > 0.2 

Rubber like  χ>0.8  

Role of rubber 

particle: 

 

 

 

 

 

 

 (a) Increase coordination number; High elasticity and low 

stiffness 

(b) Prevent buckling from force chain; Secondary particle

(c) Lead a contractive behaviour 

White and black circles denote sand and rubber particles, respectively. 

Reproduced from Lee et al. (2014). 

In a granular system, the material behaves anisotropic due to a discrete 

assembly and different stress levels. The inherent material anisotropy and stress 

induced anisotropy can be measured by fitting the contact force polar histogram 

with a truncated Fourier series. This method was first introduced by Bathurst and 

Rothenburg (1990). According to the authors, the micromechanical behaviour of 

the granular media can be quantified through introducing average chrematistics 

fabric anisotropy and statistics averages of contact forces.  

The following numerical study illustrates mixture anisotropy changes 

before and after rubber—soil mixture swelling. The samples are initially 

(a) (b) (c) 
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consolidated to an effective vertical stress of 100 kPa to validate the numerical 

results. The next stage is followed by the radii of the expansive soil expansion 

which multiplies an experimentally determined value. Different mixtures were 

compared based on different rubber inclusions and the mitigation of rubber 

inclusion is illustrated. In the different material matrix, the change of contact force 

anisotropy is illustrated as following: 

 

 

 

 

 

 

                                                  (a) Normal force diagrams 

 

 

 

 

 

                                                    (b) Shear force diagrams 

Figure 2-1. Contact force statistics: polar histograms of (a) contact normal force 

and (b) contact shear force normalized by mean contact normal force and plotted 

on equal scales, reproduced from Patil et al. (2010). 

χ = 0 χ = 0.2 χ = 0.8 

Pre-swell 

Post-swell 

χ = 0 χ = 0.2 χ = 0.8 

Pre-swell 

Post-swell 
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Table 2-1 illustrates the change of lock-in stress before and after swelling. 

According to Patil et al. (2010), a preferred vertical orientation can be identified 

in the three assemblies at pre-swell conditions and this is equivalent to a K0 

consolidation condition. The expansive material swells as the normal contact force 

dissipates, which is consistent in all the cases as shown in Figure 2-1(a). However, 

increasing granular rubber fraction increases the lock-in horizontal stress where 

swell mitigation is enhanced. Adding rubber additives in the sand matrix also 

reduces the rotational resistance after swelling as there is a smaller lock stress at 

shear direction. 

The experimental and numerical studies illustrate a wide range of 

advantages of using rubber material in the conventional geotechnical materials. 

Apart from the alleviation on environmental hazards, the engineering properties 

of geotechnical foundation can be greatly improved. The most significant benefit 

of incorporating rubber material lies in the aspect of the friction angle 

enhancement and this usually comes with a benefit of reducing self-weight by 

adding light weight rubber material. The mitigation of expansive soil by including 

rubber components also demonstrates a practical and economical treatment. 

The DEM simulations used in the literature review are capable to capture 

the contact force changes when rubber material is added the soil matrix. A great 

advantage of using DEM over FEM tool is the individual particle behaviour can 

be simulated, such as granular flows or particle rotation. Through a statistics 

analysis, an insight is also provided into the mechanical behaviour of large number 

of particles, such as observing the particle flow, the preferred orientation of contact 

or contact force. Generally, DEM is a more suitable tool used in the current 
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research program as to observe the microscale behaviour of sand—rubber mixture 

through a number of different tests. 

2.2 The application of DEM in geotechnical studies 

2.2.1 Introduction of DEM 

The first program code based on DEM concept was introduced by Goodman et al. 

(1968) although his work cannot be strictly defined as discrete element method. A 

true discrete element method system was first established by Cundall (1971) in 

order to address the problems in rock mechanics. Later on, this method was 

adopted in soils by Cundall and Strack (1979).  

Being the first granular dynamic technique adopting a soft—particle 

approach, this method received a great deal of attention as it provides detailed 

dynamic information of the granular assembly, which is nearly impossible to be 

captured in the laboratory test. After that, a number of other distinct element codes 

and software such as UDEC, DIBS, 2DSHEAR, 3DEC, PFC2D or PFC3D are 

established.  

Since this method was developed, a large number of research has been 

published related to DEM. A survey of the literature review conducted by Zhu et 

al. (2007) shows a rapidly growing interest in the DEM related studies after 2 

decades since the method was introduced. The summary of literature is shown in 

Figure 2-2. 
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Figure 2-2. Number of publications related to discrete particle simulation in 

the recent 20 years, obtained from the Web of Science with the following 

keywords: discrete element method/model, distinct element method/model, 

discrete particle simulation/method/model, and granular dynamic simulation, 

reproduced from Zhu et al. (2007). 

 

The DEM numerical calculation is based on the Newton’s second Law at 

the particles and a force-displacement law at the contacts. Specifically, the 

calculation cycle adopts a time stepping algorithm, by firstly setting up particle 

and boundary positions and applying the law of motion to each particle, updating 

its velocity and position resulted from the contact force and moment. The 

calculations cycles performed in a DEM tool PFC3D are shown in Figure 2-3. 
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Figure 2-3. Calculation circle in DEM (ITASCA, 2008) 

A wide range of geotechnical applications can be investigated by using 

DEM. In the past two decades, DEM or DEM coupled method has become a 

powerful tool in revealing the microscopic behaviour in soil dynamics. These 

research topics include studying typical soil behaviour such as cemented sand 

(Wang and Leung, 2008), sand creep and aging (Wang et al., 2008), various sand 

behaviour under K0 condition (Gao and Wang, 2014), soil suction and hysteresis 

(Anandarajah and Amarasinghe, 2011), and cyclic liquefaction (Kuhn et al., 2014), 

soil—pile interaction such as monotonic pile penetration in crushable sand (Wang 

and Zhao, 2014), soil—pile failure problems (Khanal et al., 2017), validation of 

soil—pile interaction (Calvetti et al., 2004) and cone penetration test (Butlanska 

et al., 2013), slope stability such as earth pressure balance during excavation 

(Maynar and Rodríguez, 2005) and cohesive soil slope (Li et al., 2017), other 

topics related to hydraulic problems(El Shamy and Aydin, 2008, Nguyen and 

Indraratna, 2016) and discussions of geo-synthesis (Villard and Chareyre, 2004). 
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2.2.2 Theoretical development of DEM 

The particulate assembly maybe bonded together like rock or un-bonded like sand 

or soil. Owning to the behaviour of assembly, different contact models may be 

used in different categories. The discrete element method uses a wide range of 

contact models to describe the mechanical behaviour of an un-bonded granular 

system, including linear spring—dashpot model (Cundall and Strack, 1979), 

simplified Hertz—Mindlin and Deresiewicz model (Langston et al., 1994), Walton 

and Braun’s model (Walton, 1993, Walton and Braun, 1986) and other torque 

models (Ai et al., 2011, Iwashita and Oda, 1998, Iwashita and Oda, 2000, Zhou et 

al., 1999). 

Of all the contact models described, the linear contact model is the most 

intuitive one and is renowned for its simplicity. This model adopts linear and 

dashpot components at the contact which provide linear elastic frictional 

behaviour and viscous behaviour respectively. The schematic drawing of the 

model is illustrated in Figure 2-4.  

 

 

 

 

Figure 2-4. Behaviour and rheological components of the linear model, 

reproduced from (ITASCA, 2014) 
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In the original linear contact model developed by Cundall and Strack (1979), the 

contact does not resist rotation so that the contact moment is zero (Mc ≡ 0). The 

total contact force Fc is resolved to linear and dashpot force: 

 dl
c FFF +=  (2.1) 

where Fd is the linear force and Fl is the dashpot force. 

The linear contact force Fl can be resolved into normal and shear direction, 

which is produced by linear springs with constant normal and shear stiffness, kn 

and ks respectively. A coulomb limit is also enforced at the contact shear direction 

using a friction coefficient μ. The linear force can be updated as: 

 nn
l

n δkF Δ×=  (2.2) 

 ss
l

s δkF Δ×=  (2.3) 

 l
n

l
s FμF ×≤  (2.4) 

where Δδn and Δδs are the increment displacement during a time step Δt at contact 

normal and shear directions respectively. 

The linear stiffness inherits the properties of the particles, 
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where kn
1, kn

2 and ks
1, ks

2 are normal and shear stiffness for contact particles. 

The dashpot normal and shear contact force between particles can be 

calculated as: 
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where m1 and m2 are the mass of the contact particles. βn  and βs are damping ratio 

at normal and shear directions, respectively.  

The contact force development comes from a dynamic process where 

velocities and acceleration are assumed to be constant during the time step. 

According to Cundall and Strack (1979), the time step is taken so small that 

disturbance is only restricted to the neighbour particles without propagating 

further. The resultant force and moment at the particle are calculated using a time-

centred scheme where they updated from timestep tN-1/2 to tN+1/2. Generally, in an 

assembly of many particles, force-displacement law is enforced at any contact and 

the resultant force comes from a vectorial sum of the contact forces. Once the state 

is determined, the particles new acceleration can be determined. For a detailed 

description of a calculation cycle for a general particle assembly, one can refer to 

the work proposed by Cundall and Strack (1979). 

2.3 An introduction to couple numerical methods between the element-

free Galerkin (EFG) method and DEM 

One would like to find the exact solutions analytically to the mechanical response 

of geotechnical material. But in fact, only a small proportion of the practical 

problems can be solved analytically due to the complex situation. Thanks to the 

rapid development of computer technology, numerical tools such as DEM has 
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become an important method to describe and simulate the behaviour of 

geotechnical material. 

Using the numerical method, the complex problem is simplified by 

transforming into a discrete, mathematical form of description. This procedure 

usually requires the use of computer so that the physical process can be revealed 

virtually. Technically, no matter how complex the problem is, a numerical solution 

can often be found with an approximate result. Apart from the DEM, other 

numerical tools such as the finite element method (FEM), the finite difference 

method (FDM) or the boundary element method (BEM) are also used. In this 

section, a meshed free method is introduced which is known as the element-free 

Galerkin method (EFGM).  

The purpose of introducing this method is mainly to couple it with DEM 

to solve the interaction between rigid material (such as rock or sand) and soft 

material such as rubber. Despite DEM has been introduced to study soft—rigid 

material behaviour such as rubber—sand simulation (Evans and Valdes, 2011, Lee 

et al., 2014, Lee et al., 2010, Valdes and Evans, 2008) or particle—membrane 

interaction (De Bono et al., 2012, Lu and McDowell, 2008)it often lacks a proper 

description of soft material deformation. This drawback is attributed to the 

fundamental principles of DEM as the material deformation is numerically 

described as an ‘overlap’ at contacts. In most cases, this principle works well when 

dealing with rock or sand materials; however, it cannot effectively describe the 

mechanical response of soft material. To this end, the EFGM is combined with 

DEM so that the rigid and soft material can be described in different domains. 
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2.3.1 A multiscale analysis of a geotechnical system 

Simulating the nature of granular soils can be accurately achieved at a microscale 

level using DEM tools; however, with the current computing capability, 

constructing a geotechnical model entirely at this level is impossible, owning to 

the large number of particles in the spatial geotechnical domain. 

At the current stage, geotechnical materials are mostly simulated by using 

FEM based techniques. As the most mature numerical method, continuum 

mechanics can be solved in various fields. A core component of this numerical 

technique is the constitutive relationship describing the material stress-strain 

behaviour (Elmekati and El Shamy, 2010). The drawbacks of this technique are 

described as follow: 

 Constitutive laws and continuum techniques do not provide satisfactory 

results involving contact mechanics (Elmekati and El Shamy, 2010); 

 Capturing the discontinuous soil nature is a challenge for this numerical 

tool (Lei and Zang, 2010); 

 Limitations in some of the situations, such as under large deformation, 

crack growth and material breakage problems (Liu and Gu, 2005). 
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To take advantage of both DEM and FEM, an ideal of coupling these two 

methods emerged in the late 1980s (Munjiza et al., 1995) thanks to the 

computational power advancement. Despite the geotechnical problems maybe 

complex and extend to large spatial area, one would be only interested in limited 

area such as interfaces, boundaries or particulate geotechnical zones which can be 

investigated in a microscale while the rest of domain can be adequately modelled 

based on a macroscale continuous technique. An example of multi domains 

coupling between DEM-FEM can be illustrated below: 

 

Figure 2-5. The ideal of the model: (a) deformable body, (b) multiscale finite-

discrete element model (Rojek and Oñate, 2007). 

Coupling DEM-FEM in different domains has been adopted to solve a 

wide range of engineering purposes. It is found that this method shows great 

efficiency in simulating the interaction between geo-grids and backfill materials, 

e.g., geosynthetic earth reinforced (Villard et al., 2009) structures, pile installation 

(Elmekati and El Shamy, 2010) and earth pressure on tunnel linings (Dang and 

Meguid, 2013).  

It should be pointed out that using FEM based coupled method can still be 

time consuming, which mainly exists in the element meshing process. Usually the 
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problem domain needs to be meshed as a prerequisite for calculation. But in some 

particular cases, fully automatic meshing is not always possible which usually 

requires human intervention. Moreover, according to Liu and Gu (2005), in an 

FEM adaptive analysis, re-meshing the problem domain is often required which is 

computationally expensive.  

To better address the issues discussed above, an element-free Galerkin 

(EFG) method was proposed by Belytschko et al. (1994). Comparing to the FEM, 

some advantages were identified in the studies by Belytschko et al. (1994): 

 Volumetric locking is not observed even in a linear base function; 

 It is faster in terms of convergence rate comparing to the FEM; 

 High resolution of localised steep gradients can be achieved; 

 High efficiency in linear elastic fracture problems. 

Due to the advantages of the EFGM over the FEM, one of the targets in the 

thesis is to develop an algorithm to couple the EFGM and the DEM. The contact 

mechanics between the DEM and the EFG node is one the major tasks that needs 

to be solved. The research gap is identified that so far there is no existing method 

to couple the two numerical techniques. A detailed discussion will be presented in 

Chapter 6. 

2.3.2 A multiscale analysis of a geotechnical system 

As opposed to the FEM, the MFree method adopts a set of scattered nodes to 

represent the problem domain and boundary. The functions of the field variables 
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do not need to be pre-determined as the scattered nodes, also called as field nodes, 

do not need to form a mesh so that the relationship between the geometry points 

is unimportant. According to the definition of MFree methods (Liu, 2002), an 

MFree method is a method used to establish system algebraic equations for the 

whole problem domain without the use of predefined mesh for the domain 

discretization. 

The FEM and element-free method differs in the problem domain 

representation. In the FEM, the mesh is used to discretise the problem domain and 

each mesh unit is called an element. The shape of the element has to be specific, 

such as triangles or quadrilaterals. The problem domain has to be properly meshed 

and the elements are connected. This process is usually a pre-process of FEM. In 

comparison, the element-free method adopts a number of scatter points to carry 

the material properties and they are called field nodes. The density of the nodes 

depends on the required accuracy and the fields nodes can be distributed arbitrarily. 

Figure 2-6 illustrates the different domain representation in the FEM and the 

element-free method.  
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                                                           (a) FEM 

 

 

 

                                                 (b) element free method 

Figure 2-6. Domain representation in FEM and EFree method, reproduced from 

Liu and Gu (2005). 

2.3.3 Basic theoretical development of MFree method 

The general solution procedure of MFree methods follow the steps below: 

 Domain representation: a set of nodes are selected scatting in the problem 

domain and boundary to represent problem domain and its boundary; 

 Function interpolation/approximation: the field variable at any position is 

interpolated using an approximation procedure at a small local domain; 

 Formation of system equations: based on shape function and strong/weak 

form equation 

 Solve the global form MFree equation. 

FEM elements 

Field nodes 
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The meshless method adopts an approximation of displacement at domain 

coordinates, which can be written as: 

 ∑
∈SI

II tuxtxu )()(Φ=),(  (2.11) 

where IΦ is the shape function at problem domain Ω and uI is the nodal value at 

I, S is a set of nodes I for which 0≠)(Φ xI . The discretization of the problem 

domain is illustrated in Figure 2-7, 

 

 

 

 

 

 

Figure 2-7. Domain discretization in meshless method: nodes, and domain 

influence, Nguyen et al. (2008) 

 

The Moving Least-Square (MLS) is one the function approximation 

schemes. Other schemes such as smooth particle hydrodynamics (SPH) (Lucy, 

1977), radical point interpolation method (RPIM) (Liu and Gu, 2001), hp-cloud 

(Liszka et al., 1996) etc. can be found in the relevant references. In this thesis, it 

is mainly focused on using the MLS approximation. Using the MLS, Eq.(2.11) can 

be written as:  

Ω

ΩI 

Node 

I
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j
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h  (2.12) 

where uh(x) is the approximation of the function u(x); pj(x) are the monomial in 

the space coordinates xt=[x,y] constituting the basis function. The coefficients are 

selected to reach a minimum weighted discrete form: 
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 (2.13) 

where n is the number of nodes in the support domain of x satisfying the weight 

function 0≠)-( ixxW


and ui is the nodal parameter of u at x=xi. The relationship 

between u(x) and uh(x) can be illustrated as follow: 

 

 

 

 

 

Figure 2-8. The approximate function uh(x) and the nodal parameters ui in the 

MLS approximation (Liu and Gu, 2005). 

Solving the global form of the MFree equation requires the partial 

derivatives of the shape function and the selection of weight function where the 

details will be given in Chapter 6. As the shape function approximation is the core 

component of a MFree method, special attention should be placed. The properties 

of a MLS approximation include, as summarised in (Liu and Gu, 2005) 1) 
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Consistency; 2) Reproduction;3) Partition of unity and 4) Lack of Kronecker delta 

function property, which can be expressed as: 

 
1

( )
0i j ij

i j
x

i j
 


   

 (2.14) 

which is due to the approximation curve not passing through the nodal values. 

Because of this property, it requires special treatment to the coupling at the contact 

between the MFree and the DEM. This will be further discussed in Chapter 6. 
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ABSTRACT 

Three-dimensional discrete element modeling of direct shear test conducted on 

granular rubbersand is presented. Excellent agreement was attained between the 

simulation and test results, verifying the model’s capacity of examining mixtures 

shear behavior. Important particulate-scale observations were attained, including 

the inter-particle contacts force, particles displacement and rotation, porosity and 

their variation with rubber particle contents. The observations demonstrate that the 

rubber particles inclusion amends the mixture stiffness, grading and packing at the 

particulate level, leading to a corresponding variation in the material shear 

behavior. Some interesting particulate-level simulations were examined to gain 

further insight into micro-mechanic characteristics of the mixtures. 

 

Keywords: direct shear test; rubber; sand; discrete element; contact force; shear 

band. 
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3.1 Introduction 

There are approximately 48 million tons of waste tires per year generated in 

Australia; a low percentage is recycled or managed properly (Hannam, 2014). An 

important solution to increase the recycling rate is to process the wheels tire into 

a range of smaller pieces of rubber (e.g., shreds, chips, particles or fine powers) 

and incorporate the sliced rubber elements as reinforcements into soils (Bosscher 

et al., 1997, Lee et al., 1999, Tsang, 2008). The formed mixtures outperform the 

soils in respect to resilience, strength, ductility and damping (Zornberg et al., 2004, 

Anastasiadis et al., 2012, Tsoi and Lee, 2010). The demonstrated advantages arises 

from the rubber material’s capacity of increasing inter-particle interactions which 

were confirmed in triaxial (Valdes and Evans, 2008, Masad et al., 1996, Lee et al., 

1999, Zornberg et al., 2004), direct shear (Ghazavi and Sakhi, 2005, Ghazavi, 

2004, Lee et al., 2014, Foose et al., 1996) and uniaxial pull-out tests (Balunaini et 

al., 2014).  

Rubber particles can be mixed with sand into rubber–sand fill (Ghazavi, 

2004). The fill exhibits better workability than the shred- or chip-based mixtures 

(Edil and Bosscher, 1994). For the same reason the granular rubber–sand mixtures 

avoid segregation problems and aim at applications in locations that are otherwise 

difficult to access. Additional value lies in the rubbersand being lighter in weight 

by 2040% than the sand backfill depending on the dosage used (Yoon et al., 

2006). The use of the lightweight material reduces loads acting on the surrounding 

infrastructures or utilities (e.g., retaining walls or pipelines). Rubber–sand is also 

graded to facilitate water percolation and drainage and thus avoid environment or 

climate related concerns such as frost heave. Direct shear tests conducted on 
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rubber–sand samples suggested that the material shear strength remains similar in 

magnitude to that of sand, demonstrating a substitute for the sand in backfilling 

applications (Lee et al., 1999, Yoon et al., 2006, Youwai and Bergado, 2004). To 

understand the shear behavior, discrete element modeling was conducted on 

rubber–sand mixtures subjected to direct shear tests (Lee et al., 1999, Lee et al., 

2014, Patil et al., 2010, Evans and Valdes, 2011, Valdes and Evans, 2008). These 

studies gained insight into the inter-particle interactions and demonstrated the role 

of the rubber particles in changing the material fabrics and the material stiffness. 

Most of the discrete element simulations were implemented in a two-dimensional 

plane which under-represents the three-dimensional shape of the particles and 

neglects the boundaries associated with the samples (Zhang and Thornton, 2007, 

Liu et al., 2005, Liu, 2006). The purpose of this study is to conduct three-

dimensional numerical simulations on the rubbersand subjected to direct shear 

tests. The discrete element method is used to conduct the simulations. The 

simulations are validated against laboratory test results and then deployed to 

examine how the rubber particles inclusion influences the material shear behavior. 

3.2 Materials and method 

The materials include sand and rubber particles. Define specific volume fraction χ 

= the rubber particle specific volume over the total specific volume of the mixture. 

Design a series of samples with χ=0, 0.19, 0.34, 0.47, 0.58 and 1, respectively, 

where χ=0 and χ=1 define the pure sand and the pure rubber particle samples, 

respectively. A mixture with χ>0.6 was not viable due to particles segregation 

(Edil and Bosscher, 1994, Kim and Santamarina, 2008). The corresponding dosage 
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by weight is 0, 0.1, 0.2, 0.3, 0.4 and 1, respectively. A mixer was used, following 

the steps shown in (Ghazavi, 2004), to gain a uniformly distributed mixture. 

  

 

Figure 3-1. Particle size distribution of sand and rubber particles. 

Standard direct shear tests were performed. The sample size measures 

60W×60L×40D mm, which was chosen to satisfy the sample size vs. particle size 

criterion. Pour the sample into the shear boxes, and even and level the materials, 

enabling a uniform distribution. Prepare four identical samples for one dosage χ 

and subject the four samples to vertical load v of 100 kPa, 200 kPa, 300 kPa and 

400 kPa, respectively, where dosage indicates the quantity used for rubble material. 

Shear the samples at a rate of 1 mm/minute until the occurrence of the greatest 

shear stress or 5 mm displacement, whichever occurs earlier.  

Discrete element simulation was conducted using a commercially 

accessible software package Particle Flow Code (PFC) 3D. Assemble together ten 
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pieces of wall (a PFC simulation object) to form a compartment, with respective 

dimensions representing the shear boxes, as shown in Figure 3-2. Inside the box 

compartment is the spherical particles assembly, with the particle sizes designed 

in agreement with main portions of rubber particles and sands, respectively. The 

respective gradation curves for both experiments and simulation are shown in 

Figure 3-1. The sand (D50=0.58 mm) is well graded to fit into the pore space of the 

rubber particles (D50=5 mm). Due to a wide range of sand particle sizes, different 

scaling methodologies may be applied (Evans and Valdes, 2011). In this context, 

mass scaling (Belheine et al., 2009, Jacobson et al., 2007, Evans and Frost, 2007) 

was adopted to increase the particle sizes while remain the same material density 

The size optimization has proven successful in computation acceleration and 

simulation accuracy (Feng et al., 2017, Valdes and Evans, 2008). Depending on 

the dosage examined, there are about 6,000 sand particles and 1,000 rubber 

particles created to fill up the boxes space. The mixture in the shear box is shown 

in Figure 3-2. After placing the particles inside the shear boxes, apply the servo-

control method (Itasca, 2008) to release excess sphere contact forces where there 

were.  
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Figure 3-2. Material assembly in direct shear boxes. 

The linear elastic model of PFC3D was used to replicate the shear 

stressdisplacement relations. The linear model outperforms the nonlinear Hertz 

model in respect to the use of she servo-control, which is a model in-built 

developed to maintain a load acting on the materials (Itasca, 2008) The linear 

model is illustrated in Figure 3-3. Two entities (or particles), 1 and 2, interact. The 

interaction is modeled through a set of physical units: springs, dashpots and a 

slider. The springs are used to create a linear elastic relation between relative 

displacement and contact force. The dashpots are applied to provide viscosity at 

shear and normal directions, respectively. The material properties for the 

simulation are summarized in Table 1. In the table, the inter-particle properties 

were determined by PFC3D using the following equations: 
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  (3.1) 

  (3.2) 

 (3.3) 

where kn and ks are normal and shear stiffness at contact; kn,1 and kn,2 are normal 

stiffness of entity 1 and 2, respectively; ks,1 and ks,2 are respective shear stiffness; 

µ is inter-particle friction coefficient; µ1 and µ2 are respective entity surface 

friction. 

 

 

 

 

 

 

Figure 3-3. Linear contact model used in direct shear test 
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Table 3-1. Material properties for discrete element simulation. 

Property  

Value 

Sand particle Rubber particle Wall 

Contact normal stiffness, kn (N/m) 5.9×107 8×105 1×108 

Contact shear stiffness, ks (N/m) 5.9×107 8×105 1×108 

Particle diameter, d (mm) 2.4–2.6 4–5.5 N/A 

Specific density 2.65 1.2 N/A 

Damping coefficient 

Inter-particle friction coefficient 

0.7 

0.55 

0.7 

0.60 

N/A 

0.20 

 

As suggested in previous studies (Nakata et al., 1999, Potyondy and 

Cundall, 2004, Wang and Leung, 2008), the quartz sand stiffness falls into the 

order of magnitude of ×107 N/m. A lower order of magnitude of ×105 N/m was 

suggested for rubber material (De Bono et al., 2012). These values were taken as 

the points to depart and, as suggested in Coetzee and Els (2009), plugged into 

numerical iterations of harmonizing the shear test results, aiming at obtaining the 

final stiffness and other micro-properties. The simulations are shown in Figure 3-

4. Excellent agreement is obtained between the test and simulation results for all 

series of tests. That means the material properties in Table 1 are verified as input 

values for the discrete element model to replicate the particles motion. All of the 

samples exhibit a strain-hardening relation where there is no clear occurrence of 

failure. The relationship agrees with the results provided in similar rubbersand 

studies (e.g., Ghazavi and Sakhi (2005)). The strain-hardening relationships 

become pronounced when the applied vertical load v or rubber content χ increases. 
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The strain-hardening curves suggest two aspects: i) the sand samples are loosely 

packed when sheared and there is no clear shear dilation; and ii) the rubber 

particles inclusion improves the material packing. The improved packing 

promotes the material strain-hardening characteristics as well as ductility, which 

is in favor of stability of backfilling works.  
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Figure 3-4. Shear stressdisplacement curves for samples subjected to direct 

shear test with varying vertical loads. 
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3.3 Particulate-scale simulation results  

3.3.1 Packing 

The material packing is illustrated in Figure 3-5. Four assemblies are presented: 

rubber particles, poorly-packed rubbersand, well-packed rubbersand, and sand. 

The assemblies vary in mix design, leading to material porosity variation. The 

rubber particles assembly (i.e., the leftmost diagram) exhibits the greatest porosity. 

The porosity decreases with the sands inclusion, as the sand particles are finer 

enough to sit in the pore space formed by the rubber particles skeleton i.e., the two 

middle diagrams. The trend, however, seems not to continue into the sand 

assembly; the sand assembly does not yield the least porosity. Plot one single 

presumed rubber particle in red in the sand assembly as shown in the rightmost 

diagram. The presumed rubber particle works better to reduce the pore space than 

the lot of the equivalent sand particles does. That is, there is a rubber fraction 

enabling packing optimization. To work out the optimal fraction, a set of eleven 

assemblies of different mix fractions is packed through simulations, aiming at 

developing the porosity vs. mix fraction relationship. The relationship is shown in 

Figure 3-6 (i.e., the primary axis vs. the horizontal axis). It is shown that the 

porosity vs. rubber fraction relationship is not monotonic but concave. The 

transition sits on sample χ=0.6, less than which the porosity decreases with χ; 

otherwise the opposite occurs. Therefore χ=0.6 is identified as the optimal packing 

mix. Similar packing characteristics occur to other binary mixtures. Kim and 

Santamarina (2008) examined packing of sand and rubber chips (D50=3.5 mm) 

mixtures and recommended an optimal packing fraction of χ=0.67. Mota et al. 
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(2001) assessed spherical glass beads (0.3 mm to 3.4 mm sizes) with 2 to 10 size 

ratios and confirmed a similar optimal fraction χ=0.6 to 0.7 for all series mixtures. 

All of these results suggest that packing is sensitive to particles size difference. 
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Rubber particles           Rubber-sand              Rubber-sand         Sand particles 

(loosely packed) (densely packed) 

Figure 3-5. Schematic of mixtures packing. 
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Figure 3-6. Porosity and force density for samples in direct shear simulations of varying vertical loads. 
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Additional mixtures of varying grading characteristics were examined. The 

simulation results are shown in Figure 3-7. Five mixtures are simulated, with a 

ratio of larger particle size, D, to smaller particle size, d, ranging from 10 to 2. An 

additional variant is the large particle fraction, D, from 0 to 1, aiming at 

broadening the grading characteristics. The results suggest that the grading does 

influence the packing (i.e. porosity). The mixture becomes dense with D/d increase, 

meaning small particles infilling the pores of large particles. The infilling effect is 

optimal at D 0.6, consistently across all of the five series of mixtures. This 

optimal value agrees with those test results provided in Mota et al. (2001). 

 

Figure 3-7. Porosity changes due to varying mixture fraction and particle size. 

The secondary vertical axis of Figure 3-6 reads the force density for the 

samples examined. The force density is defined as the sum-of-force at contact, F, 
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F/(V×D50). For demonstration purpose, the forces at the contacts of a single 

particle are illustrated in the third diagram in Figure 3-5. The value of F is the sum 
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of the forces at the contacts of interest, e.g., the rubber particle contacts. Where a 

particular portion of particles is examined, the force density measures the particles 

capacity of sharing the inter-particle force. Figure 6 shows the force density at 

rubber (and sand) contact vs. rubber fraction curves, each corresponding to one of 

the four vertical loads (i.e., 100, 200, 300 and 400 kPa). For each of the curves, 

the rubble content is the only variant, with the rest conditions remain the same. 

The purpose is to examine the rubber (or sand) contact force with respect to rubber 

content where the load is constant. All of the four curves are convex; and the 

transitions occur consistently at χ = 0.58, at least for the rubber fractions examined. 

The transition points also agree with the optimal value χ = 0.6 for packing. Define 

a transition zone χ=0.55 to 0.65 where the assembly works best in packing and 

load sharing: the rubber fraction develops into a skeleton where the sands largely 

infill the skeleton pore spaces and enable optimal packing; in the meantime the 

rubber particles share the most significant portion of the loads and guarantee 

material strength capacity. 

3.3.2 Inter-particle forces 

The inter-particle forces are examined on sample χ=0.34 being sheared under the 

vertical load v=200 kPa as an example. To gauge the forces evolution, select five 

points of A to E on the corresponding shear stress–displacement curve (Figure 3-8). 

The five points read displacement values of =0, 1, 4, 5 and 6 mm, respectively, 

aiming to span the complete shear process. In addition a separate shear is simulated 

which conducts an unloading-reloading process in the middle of shear, examining 

the damping behavior of the model. In the process, the boxes reverse from =2 
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mm to =1 mm, then are re-sheared to =6 mm. The unloading-reloading process 

creates a hysteresis loop, demonstrating the elastic-plastic behavior of the shear 

process. The unloading clearly and quickly releases the shear stress acting on the 

sample, and meanwhile an opposite shear force occurs and grows. Upon re-loading, 

the curve moves back to the point where unloaded, recovering the original shear 

stress released, and interestingly continues in a new pathway. The new pathway 

rises above that without the load loop, meaning the material stiffens. That is, the 

load loop helps compact the mixture and the damping properties assigned to the 

model reflects the physical behavior of the sample. 

 

Figure 3-8. Shear stress vs. displacement curve. 

The inter-particle forces are plotted as solid lines with its thickness 

proportional to the force magnitude (Itasca, 2008). The lines connect up into a 

chain between particles, forming a force chain. The corresponding normal contact 

force chains that are captured from the front view, together with the illustrated 

shear boxes, are shown in Figure 3-9. The normal contact force, in relation to the 

shear force, gives a better picture of the particles overlap and motion. The force 
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chains for the sand sample (χ =0) sheared to =6 mm is also provided for 

comparison. It is clear that the contact forces progressively redistribute with the 

shear advance. The forces distribute evenly where there is no shear but the vertical 

load v applied (Figure 3-9(a)). When the lower box advances to the left, a force 

concentration band evolves diagonally and becomes pronounced as shown in 

Figure 3-9(b–e), meaning greater normal contact forces oriented diagonally. When 

the shear advances, the force band becomes more diagonally oriented. Define a 

shear advance convention: it is a clockwise shear if the lower box displaces to the 

left, otherwise an anti-clockwise shear. The clockwise shear which is the case of 

Figure 9 leads to a force band oriented from the topleft corners to the 

bottomright. It is plausible to infer that a topright to bottomleft force band 

evolves if the shear acts anti-clockwise. Where sheared to the same displacement 

=6 mm, the sand sample (Figure 3-9(f)) exhibits similar force band orientation, 

but finer force chains than the corresponding rubber–sand sample does (Figure 

3-9(e)). This suggests the capacity of rubber materials in concentrating the contact 

forces. The rubber particles inclusion brings forth to the soil matrix two changes: 

particles stiffness reduction and particle size increase. Both contribute to the 

contact forces concentration in view of contact mechanics. The contributions can 

be illustrated in Figure 3-10. An assembly of discs is enclosed in a box. The line 

between two contacting discs represents a contact force where the line thickness 

is proportional to the force magnitude. In Figure 3-10(a), the presumed larger disc 

is equivalent in area to the six smaller discs. The substitute shown in Figure 3-10(b) 

eliminates the inter-particle contacts bounded by the larger disc, reducing the total 

number of contacts in the assembly and therefore the number of force chains. In 

addition the material stiffness also alters the force chain. Where the assemblies are 
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compressed as shown in Figure 3-10 (cd), a larger overlap at contact is captured 

by the software as a greater contact force. In the meantime, the void around large 

particle surface provides room for the neighboring small discs to rearrange. The 

rearrangement helps release a portion of the force developed between the small 

discs.  

 

(a) 

      

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 3-9. Contact force chains drawn at the same scale for samples sheared 

under v=200 kPa to different distances.  
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Figure 3-10. Schematic of disc contacts under different conditions 

The contact force is represented by plotting stress contour lines, aiming at 

mapping the stress and refining the force band orientation. The measurement 

sphere approach (Itasca, 2008) is used to plot the stress contours. The sphere is 

designed to capture the equivalent stress field bounded by the sphere. Figure 

3-11(a) illustrates the enlarged view of one measurement sphere as well as the 

influenced particles. Figure 3-11(b) shows the design of the measurement spheres 

to the shear boxes. A grid of 46 measurement spheres is created in the shear boxes. 

All of the spheres are equal in size with a diameter of 10 mm, occupying the inner 

space of the box. Each of the spheres is at least two times larger in size than the 

particles examined in the direct shear test and can accommodate up to twenty 

particles depending on the particles size.  
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Figure 3-11. Diagram of measurement sphere approach: (a) one measurement 

sphere and bounded particles, and (b) a grid of measurement spheres designed in 

the shear box. 

The stress contour maps plotted for the sand sample before and after the 

shear test are shown in Figure 3-12. The shear as an example is conducted under 

the vertical load v=200 kPa until the displacement =6 mm. Plot the contours at 

three separate vertical planes: the front, middle and back, enabling a 3D view of 

the stress distribution. The set of contour lines is plotted by using the software 

package MATLAB to process the stress values captured by the measurement 

spheres. In a measurement sphere, the stress value is defined as the mean stress at 

contact, σm, which is expressed as σm=(σxx+σyy+σzz)/3 where the dimensional stress 

σxx, σyy and σzz are provided by PFC 3D. It is noteworthy that the contour lines 

draw on the centers of measurement spheres; therefore the margins are not mapped. 

The stress contours in Figure 3-12(a, c and e) show that the samples remain 

broadly even in contact stress before the shearing. At a few spots (e.g. the bottoms 

and corners) the stress values are relatively lower due to the arching created as 

illustrated in the broken curves. The overall stress values on the map agree with 

the vertical load v =200 kPa. Where sheared, the sample develops new contour 
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maps as shown in Figure 3-12(b, d and f). The changes include the contours 

orientation to the diagonal, stress concentrations in the upperleft and lowerright 

corners, and uneven stress distribution on the shear plane. These changes confirm 

the past research outcomes (Wang et al., 2007, Zhou et al., 2009) that displacement 

(and shear stress) is not constant on the shear plane and the active and passive 

pressure zones evolve in the lower and upper boxes, respectively.  

(a) Stress contours before shearing at 

front elevation 

(b)Stress contours after shearing at 

front elevation 

(c) Stress contours before shearing at 

middle elevation 

(d) Stress contours after shearing at 

middle elevation 
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(e) Stress contours before shearing at 

back elevation 

(f) Stress contours after shearing at 

back elevation 

Figure 3-12. Stress contours of sand sample drawn at different elevations: (a) the 

front before shear, (b) the front after shear, (c) the middle before shear, (d) the 

middle after shear, (e) the back before shear, and (f) the back after shear. 

The contour maps shown in Figure 3-12 can be illustrated by plotting 

particles contacts. A collection of discs of different sizes is gathered in the closed 

box as shown in Figure 3-13. The discs sitting on the diagonal band clearly overlap 

with respective neighboring discs. Based on the contact model defined in (Cundall 

and Strack, 1979), the pronounced overlapping demonstrates a greater level of 

stressing developed at the contacts and thus adds up the load shared by these discs. 

The discs in the remaining areas show less magnitude of overlapping and thus are 

less effective in counteracting the shear.  

 

Figure 3-13. Schematic of discs overlapping when sheared. 



Chapter 3 
 

84 
 

3.3.3 Particles Displacement Vector 

Particle displacement vectors are provided in Figure 3-14. A vector, as illustrated 

by the legend, has two independent properties: magnitude and direction. Each of 

the vectors represents the displacement of a particle, with vector’s start (and end) 

corresponding to the initial (and final) position of the particle and the length for 

the travel distance. Vectors are drawn for two samples χ =0.34 and 0, respectively, 

which are sheared to =6 mm under v=200 kPa. The two samples show similar 

particles displacement: significant leftward motions of particles in the lower box, 

and minor convex thrusts of the upper. The difference in displacement magnitude 

between the upper and lower boxes arises from the lower box advancing to the left 

which is picked up by the simulations. The convex thrusts shown in the upper box 

are caused due to the shear dilation (Masson and Martinez, 2001, Liu et al., 2005, 

Liu, 2006). The convex thrusts are more pronounced in the rubber–sand sample 

(i.e. χ=0.34) than in the sand sample (i.e. χ=0) as illustrated by the arrows. Similar 

thrust difference was reported in (Zhou et al., 2009) which concluded that large-

size particles tend to generate a larger strain localization zone and result in stronger 

dilation. To the right of the convex thrust is a small-scale vortex zone as marked 

out. This is formed due to the shear strain evolution. As the shear advances, the 

particles in this zone undergo shear compression (Indraratna et al., 2012). The 

particles in the vortex also fall into the less-overlapping areas (Figure 3-13), and 

the loose inter-particle contacts are in favor of the particles rotations but 

interlocking or dilating.  
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Figure 3-14. Particle displacement vectors drawn at the same scale for samples 

(a) χ=0.34 and (b) χ=0 when sheared to δ=6 mm under v=200 kPa. 

3.3.4 Rubber Fraction Dependence  

The above test and simulation results exhibit the rubber fraction dependence of the 

shear behavior. It is thus of importance to examine the dependence and develop a 

rubber fraction suitable for applications. The approach is to plot the shear stress 

vs. rubber fraction relationship for samples subjected to a set of high- to low 

vertical pressure v. The pressure v is accounted for as it influences the shear 

stress curves. In addition to the aforementioned low- to medium pressures, two 

high pressures are examined: v=1 and 2 MPa. The pressure values are suitable 

for deep (e.g., 50 to 100 m) backfilling works, e.g., mining pit renovations. The 

shear stressdisplacement curves obtained from the developed discrete element 

(a) 

(b) 
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model are presented in Figure 3-15. Four rubber fractions are examined, i.e. =0, 

0.34, 0.58 and 1. It is shown that samples =0 and 0.34 show nearly tied curves 

under both pressures and the curves sit noticeably above those of samples =0.58 

and 1. The curves difference suggests that the fraction =0.34 is a dosage in favor 

of the mixture gaining (or maintaining) shear stress; a further higher fraction may 

likely lead to strength decrease. This trend agrees with the strength development 

examined under the low- to medium pressure shear tests (Figure 3-4).  
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Figure 3-15. Shear stressdisplacement curves for different samples sheared 

under high pressures: (a) v=1 MPa, (b) v=2 MPa. 

Define two stress points, 1 at shear displacement =1 mm and 6 at =6 

mm, as the measures assessing the material early- and late-stage shear strength, 

respectively. The shear strength vs. rubber fraction relationship obtained under a 

set of vertical pressures is provided in Figure 3-16. The pressures examined 

include 2 MPa, 1 MPa, 0.4 MPa and 0.1 MPa. Under the high pressures (i.e., v=2 

and 1 MPa), rubber fraction =0.34 is confirmed in favor of the shear strength 

development and deemed an optimal dosage. Where the vertical load reduces to 

0.4 MPa or lower, the rubber inclusions exhibit marginal effect on the shear 

strength. That is, the rubber particles gain strength in a way similar to the sand 

particles where the mixtures are subjected to medium- to low loads, such as 

medium- to shallow-depth backfilling applications. When placed in a deep 

application, the mixture becomes sensitive in shear strength to the rubber content 

and a fraction =0.34 is a preferred choice to gaining shear strength.   
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Figure 3-16. Shear stress obtained at two shear distances: (a) =1 mm, (b) =6 

mm. 

Similar rubber content dependency occurs to other rubber chips or shreds 

based mixtures. Zornberg et al. (2004) reported the optimal fraction =0.55 where 

the rubber shreds (i.e., 2030 mm by size) were mixed with sands. Rao and Dutta 

(2006) found that a rubber chips fraction of <0.35 shows strength improvement. 

The optimal content becomes =0.20.3 for rubber particles based mixtures 

(Ghazavi, 2004), which agrees with the outcomes of this current study. These past 

and current studies suggest that the optimal rubber content is dependent on the 
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rubber particle size, or increases with the size. When the rubber inclusions become 

larger, they work more like continuous media or geomemberane materials in the 

mixtures, enabling better particlesurface frictions. The frictions increase with the 

rubber contents and help mixtures gain strength. Where the rubber contents exceed 

respective optimal values, there are insufficient volumes of sands infilling the 

skeleton formed by the rubber inclusions and the packing becomes loose. In this 

context, the shear strength reduces.  

3.3.5 Composite micro–structure 

It is worth cross-checking the shear strength development Figure 3-16 against the 

mixture packing results (Figure 3-6). Greater packing is obtained at =0.58 where 

the pressure acted is 0.4 MPa or less. This  value does not agree with the optimal 

fraction =0.34 obtained for the shear strength. That is, the packing and the shear 

strength correspond to different optimal fractions. This finding disagrees with 

Ghazavi (2004) associating the shear strength changes exclusively to the mixture 

packing. In Ghazavi (2004), the maximum shear strength occurs at rubber volume 

fraction χ=0.20.3. The explanation was the occurrence of greatest packing at the 

same fraction, although the packing was not tested or simulated. The current study 

suggests that the greatest packing and maximum shear strength may not coincide 

at the same fraction. The packing is at χ=0.58 and the strength at χ=0.34. That 

means, the single strengthporosity association seems not conclusive. There are 

underlying factors influencing the shear strength development, one of which is the 

particles arrangement, in particular the large size particles (rubber) orientation.  
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Figure 3-17 illustrates three mixtures of different  values and thus varying 

particles arrangement. From the left to the right, the mixtures decrease in  values 

and thus bring forth varying rubber particles arrangement. An important difference 

among the diagrams lies in the chance of rubber particles crossing the shear plane 

and, if there is, the particles number. The chance and number are high where  is 

high, as shown in the leftmost diagram. The particles cross the shear plane, 

forming a flocculated structure. Given the limited number of particle contacts on 

the shear plane, the force counteracting the shear is not significant. The force 

instead builds up where the rubber particles and the sands together sit on the shear 

plane, as shown in the middle diagram. The number of contacts increases, enabling 

better frictions and interlocking. Given the rubber particles crossing the plane, an 

additional component of shear resistance is gained. Where subjected to high 

pressures, the rubber particles help gain further resistance through the contact 

flattening mechanism (Valdes and Evans, 2008). These strength-gaining effects 

fade off and the shear resistance decreases if few rubber particles rest across the 

plane (i.e., the rightmost diagram), whereupon the sands but the rubber particles 

counteract the shear. Albeit the sand-contact number is significant, a portion of the 

on-the-plane sand finds room to relocate as illustrated (due to the rubber particles 

deforming) and fails to gain major shear strength from interlocking or dilating 

(Ghazavi, 2004, Ghazavi and Sakhi, 2005). Given these understandings, the 

mixture particles arrangement is identified as an important factor influencing the 

shear strength development.  
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Figure 3-17. Schematic of mixing arrangement as a function of rubber content 

The above three particle arrangement models can be proven based on the 

rubber particles sitting on the shear plane. Count the number of rubber–rubber 

contacts, Nc, and rubber particles, Nr. The Nc/Nr value suggests how the rubber 

particles orient and to what extent. Plot the Nc/Nr vs. the rubber fraction χ, as 

shown in Figure 18. Three representative vertical loads are examined: σv = 100, 

1000 and 2000 kPa. Despite the varying loads, Nc/Nr  1 where χ  0.34. Otherwise, 

Nc/Nr moves away from the unity. Where Nc/Nr=1, the particles tend to close up. 

This is illustrated in Figure 3-19. Five diagrams (ae) are plotted, each with 

different particle numbers or orientations. Diagrams bc align linearly, and 

Diagrams de close up. The orientation patterns influence the contacts number. 

For example, Diagram c has 2 contacts; Diagram d has 3, although the particle 

numbers remain the same which is 3. Determine Nc/Nr values for the five scenarios. 

It is suggested that the Nc/Nr value is less than 1 if particles align linearly, e.g., 

Diagrams ac; and equal to or near 1 if closed up, e.g., Diagrams de. 
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Figure 3-18. Rubber–rubber contacts to rubber particles vs. rubber content 

obtained under varying vertical loads. 

 
 

 
 

 

(a) (b) (c) (d) (e) 

Figure 3-19. Particles orientation diagrams 

Figure 3-19’s results can be applied to the direct shear simulation results. 

Examine the rubber particle sitting on the shear plane. The rubber particles are 

illustrated in Figure 20. Where χ is small, e.g. Figure 3-20(a) and (b), the rubber 

particles align linearly or are chained. Where χ increases, as of Figure 20(c) and 

(d), the rubber particles close up, forming a mesh. The χ-dependent rubber 

particles arrangement is in support of the conceptual drawings shown in Figure 

3-17. Specifically, where χ=0.34, the rubber particles evolve a closed-up 

arrangement, providing room to accommodate sands. As sands and rubber 
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particles are in balanced and well-contacted arrangements, sandsand, 

sandrubber and rubberrubber interlocks grow; the shear strength builds up 

accordingly. 

 

(a) χ =0.19 

 

(b) χ =0.34 

 

(c) χ =0.47 

 

(d) χ =0.58 

Figure 3-20. On-shear-plane rubble particles in samples at varying rubber 

contents. 

3.3.6 Particles rotation 

Particles rotate when sheared, and the rotations are crucial to material shear 

behavior (Cui and O'sullivan, 2006) The rotation is assessed by examining the 

angular velocity of the particles of interest. As the assembly of particles exhibit 

varying angular velocity values, it helps the assessment if there is a solution to 

normalizing the values and mapping out the values for the particles of interest. 
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Figure 3-21 shows the normalized values and mapping results for two samples 

χ=0.34 and 0, both of which are sheared under v=200 kPa to =6 mm. Both 

samples exhibit a normal distribution of angular velocity, suggesting equal 

portions of clockwise and anti-clockwise rotations. The distributions also suggest 

that particles rotate at varying speed. The majority is at rest or rotates at a slow 

speed; a small portion (i.e., the tails) rotates faster. The particles falling into the 

10% percentile as shaded are mapped out in Figure 3-21(a) for sample χ=0.34 and 

Figure 21(b) for sample χ=0, respectively. As reported in Zhang and Thornton 

(2007), these fast-rotation particles largely sit on the diagonal band of topright to 

bottomleft, conjugated with the force chains bands (Figure 3-20). The study 

(Zhang and Thornton, 2007) however does not provide details explaining the 

conjugation. The conjugation occurs partially due to the mechanism of inter-

particle shear (i.e. the Coulomb’s law of shear strength) which is illustrated in 

Figure 3-22. Two discs contact each other and, at the contact, are subjected to the 

normal pressure . The discs opt for relative displacement due to the shear force  

acting at the contact, which is expressed as:  

  (3.4)

where  and c are the inter-particle constants. On the topright to bottomleft 

diagonal band (Figure 3-9), the particles are subjected to less normal pressures and, 

based on Eq. (3.4), less shear forces to rotate. That means the threshold to rotating 

is low, whereby the particles tend to spin faster if subjected to a driving force. The 

opposite occurs to the particles sitting on the topleft to bottomright diagonal 

band where high-pressure contacts occur.  

c  tan
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Figure 3-21. Mapping of particles angular velocity for samples: (a) χ=0.34; (b) 

χ=0. 

 

Figure 3-22. Inter-particle shear and rotation. 

3.3.7 Particles relocation  

The particles relocation is examined by tracking particles motion occurred at five 

points: A to E, as shown in Figure 3-23. All of the five points originate from sample 

χ=0.34 being sheared under v=200 kPa. The five points sit on critical places: 

points A to C on the shear plane separately, and points D and E in the upper and 

lower boxes, respectively. An accurate positioning is attained by defining the 
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points in a 3D coordinate system (x, y, z) as illustrated. Develop the coordinate 

system inside the shear boxes and set the origin over the inside center. The points 

A to E are positioned, through a target particle, to coordinate (x, y, z) = (20, 0, 0), 

(0, 0, 0), (20, 0, 0), (20, 0, 10) and (20, 0, 10) mm, respectively. Then, around 

the target particle, search all neighboring particles. That is, each of the five points 

encompasses one target particle and its neighboring particles. The neighboring 

particles count from 2 to 9 depending on the point of interest. The target particles 

are marked in the simulation as Nos. 2901, 3481, 3239, 3162 and 10195, 

respectively. Similar identity marking is provided on the neighboring particles, 

enabling a complete track of particles. For each point, the pair of particles group 

illustrate particles arrangement at shear displacement =1 and 6 mm, respectively. 

It is shown that the particles on the shear plane (i.e., points A, B and C) relocate 

more clearly than the particles inside the boxes (i.e., points D and E) do. For 

instance, at point A, particle 10249 clearly moves to the left when the shear travels 

from 1 mm to 6 mm; in the meantime, particle 2823 joins up the target particle and 

particle 3097 detaches from it. Similar changes occur to points B and C. At point 

D (and E), however, the particles assembly remain similar in number and 

arrangement when the shear advances. Although the particles on the shear plane 

relocate noticeably, it is not clear to confirm a relocation law—either the front 

relocates more than the rear, or vice versa. However, the particles relocation 

pattern on the shear plane helps shed light on the process of shear dilation. At point 

A, particle 2823 pushes up particle 2507 and gradually takes over the new position. 

Similar replacement occurs at point C where particle 1186 moves leftward and 

squeezes into the position of particle 2061; particle 2061 relocates upward.  
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Figure 3-23. Particles relocations on shear plane and inside shear boxes. 

3.4 Conclusions 

Three-dimensional discrete element simulations on the direct shear of the rubber–

sand mixtures are presented. The discrete element method enables assessing 
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mixtures shear behavior at a particulate scale. The simulations account for the 

mixtures dosage, particle stiffness, grading characteristics and normal pressure 

changes. The simulation results include the mixture packing characteristics, shear 

stress–displacement relationship, particles contact force chain and contour maps, 

particles displacement vector and rotations. The following conclusions are drawn. 

A rubber specific volume fraction of 0.55 to 0.65 gives rise to greater 

packing for the mixtures examined in this study. The greater packing enables the 

rubber particles sharing greater contact force. The improved packing promotes the 

material strain-hardening characteristics and shear ductility. A rubber specific 

volume fraction of 0.34 gives rise to greater shear strength when sheared under 1 

to 2 MPa pressures. Where sheared under lower pressures, the rubber-fraction 

dependence of shear strength is not significant. Contact forces orient in parallel 

with the shear box diagonal. The force orientation becomes pronounced with the 

shear advance. Rubber particles inclusion is able to harmonize in magnitude the 

force band by reducing particle contacts and stiffness. The particles rotate in 

varying speed and the speed values follow a normal distribution. The fast-rotation 

particles line up diagonally and in conjugation with the force chains. The particles 

on the shear plane relocate more noticeably than the particles away from the plane. 

On the plane, the particle relocations are largely consistent. 
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3.6 Notations 

d  particle diameter 

D50 50% pass particle size 

F sum of normal force at contact 

Gs  specific density of solid 

kn  normal stiffness at contact 

kn,1  normal stiffness of entity 1 

kn,2  normal stiffness of entity 2 

ks shear stiffness at contact 

ks,1  shear stiffness of entity 1 

ks,2  shear stiffness of entity 2 

Nc  number of rubber–rubber contacts on shear plane 

Nr number of rubber particles on shear plane 

V sample volume 

χ  specific volume fraction  

 shear displacement  

µ  inter-particle friction coefficient 
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µ1  surface friction of entity 1 

µ2  surface friction of entity 2 

σm mean stress at contact 

v vertical or normal load 

 damping coefficient 
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ABSTRACT 

The segregation of rubber sand mixtures, when they form heaps as observed by 

the method of digital image processing (DIP), is presented. Through segmenting 

the digital images into a binary picture, the DIP method enables material 

ingredients identification and three-dimensional mapping of mixture segregation. 

This helps reach a better understanding of mixture heterogeneity when 

incorporating artificial material into conventional geotechnical materials. To gain 

an insight into the mixture heterogeneity, the DIP results were used to validate a 

discrete element model and the model was then used to examine the influence of 

particle properties on the segregation. The discrete element simulations showed 

that the particle density is critical in material segregation, and the segregation 

becomes more noticeable when the materials density ratio increases. This trend is 

restricted by increasing the inter-particle surface roughness.   

Keywords: segregation; digital image processing; discrete element; density; 

roughness 
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4.1 Introduction 

Waste tires create problems such as landfilling, health, and environmental 

challenges. The tires can go into recycling facilities for a new life. One of the new-

life solutions is to reuse the tires as geomaterial alternatives (Foose et al. 1996; 

Zornberg et al. 2004). Rubber sand mixture is an attractive alternative and has been 

widely used in geotechnical applications, including roadway construction 

(Bosscher et al. 1997; Nightingale and Green 1997), lightweight fill (Ahmed and 

Lovell 1993; Masad et al. 1996), backfill for retaining walls (Humphrey and 

Manion 1992; Garga and O'shaughnessy 2000), slope stabilization (Poh and 

Broms 1995) and seismic isolation system (Tsang et al. 2012). Where the mixtures 

are prepared, placed or compacted, the ingredients likely segregate. Whichever 

induces the material segregation, a segregated profile causes heterogeneity and 

sometimes severe instability problems such as liquefaction (Yoshimine and Koike 

2005). The sand and rubber ingredients differ at least in density and surface 

roughness and, when placed as a mixture, lead to flow-induced segregation as 

defined by Ottino and Khakhar (2000). In general, the factors causing segregation 

can be classified into particle sizes, densities, shapes and particle resilience 

(Williams 1976). Of all the segregation mechanisms, trajectory segregation, 

percolation of fine particles and the rise of coarse particles on vibration are 

commonly recognized (Kudrolli 2004). Other mechanisms such as rolling, sieving, 

water flow, soil crushing etc. were also reported in early works (Kuerbis and Vaid 

1988; Ottino and Khakhar 2000; Lőrincz et al. 2005; Watabe et al. 2014).  

The first reported work on segregation mechanism came from Donald and 

Roseman (1962), who investigated the experiment of mixing particles of different 
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sizes and densities in a rotating horizontal drum. The recent work to study 

segregation by using the discrete element method (DEM) has become popular as 

the DEM is regarded as a valuable tool for studying granular flow and mixing 

mechanisms, e.g., free surface (Shi et al. 2007) and hopper discharge (Anand et al. 

2010). These tests have shown unanimously that the particle size and density are 

the major factors leading to segregation. Other factors, such as shape, chute angle, 

liquid content, rolling friction and magnetic fields also contribute to material 

segregation (Anand et al. 2010).  

While extensive studies have been performed to test material segregation, 

there is limited research regarding segregation phenomenon when the rubber sand 

mixture falls to form a heap. There is also a limited quantitative connection in 

terms of segregation measurements between numerical simulations and 

experimental observation. Studies of the sand pile by DEM simulation are limited 

when it comes to the angle of repose or force of percolation (Zhou et al. 1999; 

Yang et al. 2000; Zhou et al. 2001). And although significant achievements have 

been made since Zhou et al. (1999) first introduced the concept ‘rolling friction’ 

in studying heap formation, there is a lack of study regarding the phenomenon of 

segregation. 

This paper presents the segregation phenomenon observed when the rubber 

sand forms a heap. It investigates the influence of particle properties using DEM. 

Since many studies have been conducted on evaluating particle sizes, this paper 

focused on studying segregation without size difference, e.g., a mixture with 

similar ingredient sizes. The results of the study are presented as a comparison 

between experiments and numerical simulations so that a parametric study can be 
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performed. Also, it contains the calibration process for restitution coefficient 

measurements and the angle of repose tests so that important micro-properties 

could be obtained. These examinations help quantify mixture segregation when 

the mixture is processed. The parametric study will examine and identify the 

critical material properties causing the segregation and whereby solutions can be 

recommended to reduce the segregation. 

4.2 Methodology 

In this section, prior to investigating material segregation, a number of tests are 

performed to study granular behavior. DEM is adopted as a numerical method to 

calibrate micromechanical properties. This could be achieved through heap-

forming test and repose angle studies. Serious segregation was identified in the 

mixture pile after the heap-forming process in both numerical simulation and tests. 

To accurately measure the material segregation, digital image processing is used. 

Detailed discussion will be provided in the following sections. 

4.2.1 Discrete Element Method 

To simulate the granular interaction, the use of DEM can provide an insight into 

the micromechanical properties reflecting the macroscopic phenomenon. This 

method simulates the material as a collection of frictional and rigid spheres so that 

complex problems can be addressed through observing particles contact (Cundall 

and Strack 1979). The contact model, as depicted in Itasca (2009), is shown in 

Figure 4-1. The contact model can be treated as either a linear model or as a non-
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linear model (e.g., HertzMindlin contact). Both models produce normal and shear 

forces based on normal contact and shear stiffness respectively. A Coulomb limit 

is imposed on the shear force considering a friction coefficient, u. The dashpot 

component is assumed to dissipate extra energy in both normal and shear 

directions.  

 

 

 

 

 

 

 

 

Figure 4-1. Schematic of DEM model. 

4.2.2 Damping Ratio  

As a part of an examination of the microscopic properties, it is necessary to 

evaluate the effect of material damping which could have an impact on mixture 

segregation. The damping ratio is a dimensionless parameter that quantifies 

system decay during oscillations, which is an important property input in DEM. 

Also, for a numerical analysis on rubber sand mixture, the individual damping 

ratio at granular contact is not clear and lacks a calibration process (Patil et al. 
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Shear stiffness 

Normal stiffness 

Viscous dashpot 

Friction slider 
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2010; Evans and Valdes 2011; Lee et al. 2014). In the repose angle test, when 

different particles are dropped from a height, due to the difference in granular re-

bound height, it may generate a different heap when they are stabilized, which may 

greatly influence the mixture segregation at its surface. Therefore, calibrating the 

material damping ratio as a DEM input parameter is necessary. According to 

Kawaguchi et al. (1992), the restitution height is directly linked to the material 

properties of energy dissipation, and the relationship can be obtained by solving 

the motion equation for free vibration with viscous damping, as follows: 

  (4.1) 

where α is restitution coefficient which is determined from the restitution height, 

h;  is the ratio of the damping constant to the critical damping constant. For 

simplification,  is referred to as the ‘damping ratio’. It is clear that a granule’s 

damping ratio can be calculated through its re-bound height. Therefore, an 

experiment was designed to calibrate this parameter input.  

The materials used for the experiment were spherical silica beads and 

rubber beads with a radius of 5 mm, as shown in Figure 4-2. The two materials are 

identical in composition respectively to the sand and rubber beads used for the 

mixture. The restitution process used a glass board as a base. Silica and rubber 

beads were released at a height of H=340 mm, against a vertical scale board, and 

a high resolution camera of 60 fps was placed one meter in front of the scale board. 

The material size and the release height were determined as being proportional to 

the sizes of samples used for the tests that followed. 

)
1

exp(
2
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Figure 4-2. Rubber and silica beads used in the damping ratio calibration. 

Four silica and four rubber beads were chosen at random for the test, as 

shown in Figure 4-2. Each silica and rubber bead was tested three times 

independently. Once the beads were released the maximum re-bound height was 

captured by using the camera to record the whole process, as shown in Figure 4-3. 

The images were analyzed at each frame so that the maximum restitution height 

could be determined. The material beads at the maximum re-bouncing height are 

illustrated in Figure 4-3. The final results of the repeated tests are given in Figure 

4-4. Generally, the silica beads had a much higher height of bounce, with an 

average of 170 mm. Rubber beads rebound to 31.9 mm on average. 
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(a) Silica bead 

 

(b) Rubber bead 

Figure 4-3. Maximum restitutive height captured by high resolution camera for 

silica bead and rubber bead.  

 

Figure 4-4. Restitution height for silica and rubber beads. 

For both the silica and rubber beads, the radius of the bead, r=5 mm, must 

be deducted when comparing its height of rebound. Therefore the restitution 

coefficient α is expressed as: 
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  (4.2) 

The corresponding restitution coefficients α were 0.49 for sand and 0.078 for 

rubber. Substituting the results to Eq. (4.1) to obtain the damping ratio, the results 

were 0.22 and 0.63 for sand and rubber, respectively. The standard deviation for 

silica beads and rubber beads was found to be 0.3 and 0.16, respectively, 

suggesting excellent agreement of the tests.  

A three-dimensional simulation of the restitution test was also performed 

by using numerical software Particle Flow Code (PFC) 3D. The purpose of the 

simulation was to evaluate the materials’ restitution heights under the influence of 

granular micro-properties such as the damping ratio, material density or stiffness. 

For each sphere, different damping ratios ranging from 0 to 1 were considered. 

Actual material densities, such as =1,300 kg/m³ and 2,600 kg/m³, respectively, 

were selected as input values. For each density value, various contact types and 

contact stiffness values were compared, including the linear contact model with 

effective modulus E=1107 Pa and 1109 Pa, respectively, and the Hertz contact 

model with shear modulus G=3107 Pa, Poisson’s ratio =0.5, and G=31010 Pa, 

=0.3, respectively. The same particles size and releasing height were used in the 

numerical simulation. The restitution coefficient α, as defined in Eq. (4.2), is 

plotted about the damping coefficient  and other parameters. This is shown in 

Figure 4-5. 
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Figure 4-5. The relationship between the damping coefficient and the restitution 

coefficient with various material properties. 

In Figure 4-5, the numerical result fits well with the analytical prediction 

from Eq. (4-1). It is thus evident that the damping ratio ζ is independent from 

factors such as contact type, stiffness values or densities, and that the only 

influence on the damping ratio is its restitution height. The numerical–analytical 

comparison provides evidence that contact damping between particles and the base 

surface can be directly obtained from the above calibration. The relevant results 

are discussed in the DEM model results.  

One could argue that material shape or size may create different results. 

However, it is noted that the rebound height of silica beads is around five times of 

that of rubber beads, as observed in the test that the irregular and smaller sized 

rubber and sand beads are used. This can be visually observed but is difficult to 
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capture using the camera. It is much easier to capture the restitution height of 

spheres because the irregular ones may bounce in different directions. Also, the 

spheres were simulated numerically, in order to provide consistency for this 

experiment.  

4.2.3 Angle of Repose  

The repose angle test was performed in this study to investigate material frictional 

behavior, as there is a strong correlation between surface characteristics and the 

repose angle (Liu et al. 2012). For a specific material, its frictional behavior 

contains two parts: sliding friction and rolling friction, which have been well 

established through numerical studies (Zhou et al. 1999; Yang et al. 2000; Zhou 

et al. 2001). In the present study, sliding friction indicates MohrCoulomb friction, 

resisting relative translational movement, while rolling friction indicates the 

ability of particles to rotate, which reflects particle irregularities. However, one 

test cannot determine two unknowns (i.e., sliding and rolling friction coefficients) 

so this study adopted previously reported sliding frictions for sand and rubber 

materials (Patil et al. 2010). The rolling friction coefficient was determined from 

the repose angle accordingly.  

The experiments used granular sand and rubber materials. Both of the 

materials were sieved between 1.18 mm to 2.36 mm to obtain the same-sized 

material, because it might have induced significant differences in both the repose 

angle and the segregation. The mixture was firstly mixed homogeneously and 

placed in a funnel with a bottom diameter of 15 mm. A bottom plate was removed 

to allow the particles to drop by force of gravity. The experiment was performed 
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over a glass base, and the distance from the bottom cone to the base was 60 mm. 

The schematic drawing is shown in Figure 4-6(a). Tests were performed for 

different materials: sand, rubber, and sand–rubber mixture where the two 

ingredients were equal in volume. The mixture test was conducted to confirm the 

individual ingredient test results. Each measurement was repeated three times, 

recording the height and diameter at two directions so that the angle of repose 

could be determined.  

 

Figure 4-6. Repose angle test setup: (a) experimental schematic drawing, and (b) 

numerical simulation. 

The granular frictional properties are calibrated by using the DEM 

simulation. The small-scale material pile (Figure 4-6 (b)) is meaning in respect to 

the simulations. Firstly, a small number of particles requires less time to attain 

computation stabilization. Also, owing to the granules to be displaced from the 

funnel, a large pile may induce broader spreads which also require a longer period 

of processing time. In addition, the pile is significantly larger in scale than the 

(a) (b) 
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greatest particle size. The pile formation is not subject to a major size effect and 

the pile dimension satisfies the segregation purpose.  

To simulate the shape parameter of the material granules, despite making 

clumps of the basic shapes of 2D disks or 3D spheres (Indraratna et al. 2012; Chen 

et al. 2014; Falagush et al. 2015), a rolling resistance behavior at contact could be 

introduced as suggested by Ai (2010). It has shown great advantages in simulating 

a stable pile with a finite angle (Zhou et al. 1999; Yang et al. 2000; Zhou et al. 

2001). The same technique is used in this simulation. Similar to the 

MohrCoulomb friction theory, the rolling resistance model imposes a granular 

torque by introducing a rolling friction coefficient fr. A study of rolling resistance 

model can be found in Ai (2010). 

A calibration process is required to determine the rolling friction 

coefficient, because very limited research has been focused on the rolling behavior 

of rubber and sand. The funnel was made by assembling wall plates as two cones, 

as shown in Figure 4-6 (b). More than 12,000 spheres particles were used and were 

first stabilized in the funnel by use of gravity. This was achieved in the simulation 

by allowing a long simulation time so that the particles’ velocity was reduced 

almost to zero. The bottom plate was removed before particles settled on the base. 

The input micromechanical parameters are listed in Table 4-1.  
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Table 4-1. Input parameters used in simulation. 

Parameter Value 

Diameter of sand particle, ds, mm 1.54  2 

Diameter of rubber particle, dr, mm 1.54  2 

Density of sand particle, ρs, kg/m³ 2,600 

Density of rubber particle, ρr, kg/m³ 1,300 

Sliding friction of sand particle, fs,s 
* 0.31 

Sliding friction of rubber particle, fs,r 
* 0.6 

Rolling friction of sand particle, fr,s 
# 0.7 

Rolling friction of rubber particle, fr,r 
# 0.6 

Effective modulus of sand particle, Es , Pa 1107 

Effective modulus of rubber particle, Er, Pa 1105 

Particle  wall friction, fw 0.405 

Particle  wall stiffness, kw 1106 

Damping ratio of sand particle, ζs # 0.63 

Damping ratio of rubber particle, ζr # 0.22 

* data from Patil et al. (2010); # data from calibration. 

The repose angle cannot be directly measured from the numerical results 

because there might be systematic errors. For example, the topmost particle may 

not rest at the center, which induces an inaccurate pile height. Also, as seen in 

Figure 4-7 the top of the material pile becomes flat, which underestimates the 

repose angle. Directly measuring the base radiuses in two directions is also 

problematic because many particles are scattered. Therefore, an indirect 

measurement method was developed. As shown in Figure 4-7 (d), slice the pile 

horizontally at two elevations: one at the pile’s bottom, and the other one at 80% 
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of its apex. The 80% plane was selected to avoid the cone altitude inaccuracy. The 

angle was determined by measuring the radius of the two slices, and the vertical 

distance between the slices.  

Specifically, the centroid of the funnel is assumed to be the centre of the 

pile bottom rather than the projection of the highest particle at the top. At the 

chosen height, the upper plane in Figure 4-7 (d) was used to slice the pile. A 

number of circles were plot, in equally increasing radius, on the plane, as shown 

in Figure 4-7 (b), and were then referred to, in sequence, from ID 1 to N as the 

radius increased. The circles were used to determine count, C1, of the particles 

sitting on the circular plane, as illustrated in Figure 4-7 (a), as well as count, C2, 

of the particles intersecting the circular periphery, as illustrated in Figure 4-7 (b). 

Define sphere-intersecting frequency=C1/C2. The frequency vs. the sequential 

circles is illustrated in Figure 4-7 (c). The upper plane was regarded as the 14th 

circle because it intersects the maximum number of particles. Similarly the bottom 

plane sat on the 43th circle. Note that some particles fell outside the circle of 

preference, e.g., the red sphere in Figure 4-7 (a) and (b), but intersected at the top 

with the cut plane. In this circumstance, the elevation and plan views were 

combined to examine the preferred circle.
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Figure 4-7. The numerical measurement of the repose angle: (a) elevation view (not to scale), (b) plan view (not to scale), (c) frequency of 

particles intersecting the periphery, and (d) sample pile. 
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Based on calculations and parameters described above, the final results of 

repose angle were obtained experimentally and numerically. The results are shown 

in Table 4-2. Through iteration, the rolling friction coefficients were determined. 

Different coefficients were determined for the sand and rubber, respectively, as 

shown in Table 4-1. Then, when they were mixed at equal volume, the repose 

angles were examined again, enabling verification of the coefficients through 

numerical and experimental tests. The results in Table 4-2 suggest excellent 

agreement between the numerical and experimental tests. Specifically, for the sand 

heap, the repose angle is 31.1  in the experiment and 31.4  in the simulation. 

Similarly excellent agreement is obtained for the rubber heap and rubber sand 

mixture heap, verifying the validity of the particle frictions of forming the heaps. 

At this stage, each single micro parameter has been determined so that digital 

image processing could be performed.  
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Table 4-2. Measurement of repose angle. 

 

As a simulation result, it is noted that different groups of material stiffness 

were used in the simulation but it has negligible impact on the repose angle. Owing 

to the fact that gravity is the only force considered, the load transmission is 

negligible at particle contact, so that the impact on the material behavior is minor. 

The change of material stiffness may have negligible influence to granular 

behavior for some particular cases. For example, Chung (2006) studied rod 

penetration and identified that scaling inter-particle contact stiffness did not show 

any significant variations on the simulation results, but provided considerable 

simulation efficiency. It was concluded that the main reason was that reducing 

stiffness has only minor effects on load transmission onto the boundary surfaces.  

Ai (2010) illustrated the same finding for stiffness scaling, but argued that 

if the stiffness is scaled too low, it may result in unstable behavior for a granular 

Sample 

Experiment Simulation

Test 
Height 
(mm) 

Diameter (mm) 

Angle (°) 

Average 
angle 
(°) Angle (°) X Y Average 

Sand 
bead 

1 28 88 92 90 31.9 

31.1 31.4 2 34.5 118 117 117.5 30.4 

3 35 112 120 116 31.1 

Rubber 
bead 

1 39 103 105 104 36.9 

36.3 36.5 2 40 108 108 108 36.5 

3 34 95 96 95.5 35.5 

Mixture 
1 39 108 106 107 36.1 

35.0 34.8 
2 34 100 102 101 34.0 
3 35 101 100 100.5 34.9 
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pile. This specified methodology was also adopted by Shi et al. (2007) because it 

has no essential effect on flow mechanics. 

4.2.4 Segregation Observation 

Segregation was observed in both the numerical simulation and the experimental 

test. Figure 4-8 (a) and (b) show material piles in elevation view from the 

experimental and numerical studies, respectively. The rubber and sand beads are 

represented as green and blue spheres respectively in the numerical simulations. 

In addition to the similarity in the repose angle, it is also clear that the pile surfaces 

are mostly covered by rubber material. A similar surface covering can be seen in 

the plan view as well (Figure 4-8 (c)) and (d)), demonstrating verification of the 

numerical results. Further quantitative comparison is provided in the subsequent 

sections. 

 

(a) Elevation of test sample 

 

(b) Elevation of simulation 
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(a) Plan of test sample (d) Plan of simulation 

 

 

 

 

 

 

 

(e) Mid cross section of test sample 

 

 

 

 

 

 

 

(f) Mid cross section of simulation 

Figure 4-8. Segregation of mixture pile. 

To gain insight into the inner material distribution, the material piles were 

sliced horizontally at its mid-height, removing the respective top cone and 

exposing the heap core. The mid-height core was assumed of representing the 

particle distribution inside the heaps. The particles on the core were examined. For 

both the test heap and the simulation heap, the majority of sands stayed in the 
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central area (Figure 4-8 (e) and (f)). Close agreement exists between the 

experimental and numerical results in respect to particles distribution on both the 

heap surface and inner core. Again, this agreement is subject to further quantitative 

comparison which is accomplished through the digital image processing as follows. 

4.2.5 Digital Image Processing 

One of the main objectives of this research was to present a measurement method 

that could be used to quantify the segregation obtained from the experiment and 

numerical simulation. Despite other method that has been proposed to quantify the 

segregation, there is a size difference in the mixture. A more general method was 

developed based on visual comparison between numerical and experimental 

results (Shi et al. 2007). As an improvement of visual comparison, this can be 

quantitatively measured by using the digital image processing (DIP) method, 

which has been applied in many fields, such as identifying soil features (Aydemir 

et al. 2004; Manahiloh et al. 2016), diagnosing soilrock mesostructure (Kemeny 

et al. 1993; Villeneuve et al. 2011), analyzing coarse aggregate shape and size 

(Yue and Morin 1996; Altuhafi et al. 2013), and measuring saturation degree 

(Yoshimoto et al. 2011). In this paper, as size effect is not the primary 

consideration, the DIP method was adopted to quantify and compare material 

segregation between the numerical simulation and experimental results. Based on 

the literature review conducted in this study, it is the first time of such comparison 

has been conducted in rubber–sand segregation testing.  

DIP method refers to the process of converting a picture into a digital form, 

and then analyzing the digital image to acquire the useful, underlying information. 
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In the analysis, a picture is represented by a number of pixels. Each pixel is a 

combination of primary colors. A standard digital picture often uses the red (R), 

green (G) and blue (B) channels which can be perceived by human eyes and used 

in simple computer displays. The information extracted from a digital picture can 

be expressed as a discrete function on a (NM) grid, known as an intensity matrix 

in the Cartesian coordinate system (Yue and Morin 1996):  

=  (4.3)

where I is a value often refers to the intensity level of a digital image ranging from 

1 to 255; k =1 to 3, representing red, green and blue channels, respectively; 

therefore there are three separate matrixes for an image. The I value extraction 

process is accomplished by MATLAB which is equipped to read color channel 

information. The present paper briefly illustrates the method for a colored image 

analysis in the next section. As the sample heap was formed on a glass plane, and 

the glass background color was similar to the color of the sample, it was not easy 

to find the color difference between sand and the background, and rubber and the 

background. Some pre-treatment was required to change the background color. It 

was chosen to substitute a blue background for the glass background so that it is 

easier to select the threshold value for further analysis. Figure 4-9 (a) was 

converted from Figure 4-8 (c) by changing the background color. For convenience, 

some particles scattered on the glass base were excluded because the amount of 

these particles are negligible compared to the total granular number. 
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(a) 

Figure 4-9. Calibration of the digital image: (a) sample pile, and (b) an example 

image. 

The threshold value was obtained by processing the pixels of an image. 

However high quality image files consist of a large number of pixels (> 15 million). 

Distinguishing color differences directly from the original picture requires long 

processing time as a result. For simplification in the detailed analysis, a small-

sized picture was extracted as an example so that image processing could be 

performed. Figure 4-9 (b) picked up a small region of  pixels, which 

contains all important elements of the image.  

After selecting the small example image as shown in Figure 4-9 (b), a 

detailed analysis was conducted to find threshold values between color regions. 

MATLAB was used to read individual pixels into I1 for red, I2 for green, and I3 for 

blue. However, the three values cannot be directly used to map the regions. A 

solution is to use an HSI system to identify the materials more easily (Chen et al. 
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2004). The HSI stands for hue, saturation and intensity. According to Chen et al. 

(2004), this solution combines the above three intensity values based on 

appropriate weighting, yielding a weighted intensity value, Iw. According to NTSC 

standard for luminance (IBM 1990), Iw is calculated using the following algorithm:  

 
(4.4)

where Iw has an interval of [0, 1]. This Iw is also known as grey level intensity in 

MATLAB, enabling a bi-color image. Based on the Iw values, contours are drawn 

for the small example image, as shown in Figure 4-10 (a). Figure 4-10 (a) clearly 

identifies the color boundaries of different materials, particularly when compared 

to the original image (Figure 4-9 (b)). However, given there may be multiple 

intensity threshold values, such as between sand and rubber, between sand and the 

background and between rubber and the background, it was not guaranteed that all 

color differences have been distinguished. Since the background intensity is a 

value in between the values of both sand and rubber, the background regions need 

to be excluded before calculating the image intensity. 

255

1140.05870.02989.0 321 III
Iw
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                               (a)                                   (b) 

Figure 4-10. Intensity contours expressed as: (a) color map, and (b) binary map. 

Recall the pre-treatment that the background has been pre-dyed to blue; it 

is easy to find that these regions because they have very high I3 values (for blue 

channel). In this study, the background part was identified by searching I3 > 245 

and assigning a very high constant, such as 10,000. Using Eq. (4-4), the 

background intensity has a value Iw > 1 while the other parts are not affected. In 

this way, the background is excluded and the only intensity threshold value will 

be the one between sand and rubber. Based on a trial-and-error method suggested 

by Chen et al. (2004), a threshold value Iw = 0.35 was taken to be the boundary 

between the partition sand and rubber after comparing multiple values. To yield a 

clear definition of regions, the pixels with Iw < 0.35 were reassigned as a value of 

0 (i.e., rubber particles), otherwise a value of 1 (i.e., sand particles). Figure 4-10 

(b) illustrates the intensity contours using the values of 0 and 1. Due to noise 

influence, such as light intensity, the detection results may not be perfectly correct. 

However, by comparing Figure 4-10 (a), (b) and Figure 4-9 (b), it is believed that 
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Iw = 0.35 represents the color boundary between sand and rubber particles and can 

be applied to the rest part of the image in Figure 4-9 (a).  

4.3 Result discussion 

This section presents the results from a comparison of the experimental and 

numerical results for the present study. The material volume ratio can be expressed 

as the ratio of an area of color based on the intensity threshold outlined earlier. As 

segregation varies significantly between the inside area and the pile surface, the 

comparison was made after removing the pile cap, as shown in Figure 4-8 (e). 

4.3.1 Segregation Ratio  

Digital image processing is further applied here to calculate the area ratio of 

different colors. Figure 4-8 (e) is separated as a peripheral ring and central circle 

so as to directly compare segregation outside and inside the pile. The comparison 

between the experiments and simulations is shown in from Figure 4-11 (a) to 

Figure 4-12 (a). 
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 (a) sample  (b) DIP result 

Figure 4-11. Color segmentation of sand pile at peripheral ring (experiment). 

(a) Sample  (b) DIP result 

Figure 4-12. Color segmentation of sand pile at central circle (experiment). 



Chapter 4 
 

135 
 

(a) Sample  (b) DIP result 

Figure 4-13. Color segmentation of sand pile at peripheral ring (numerical). 

(a) Sample (b) DIP result 

Figure 4-14. Color segmentation of sand pile at central circle (numerical). 

In the test, the radius of the central circle is half of the bottom of the 

material heap. It is noted that in the numerical analysis, the image has already been 

presented as basic RGB colors which saves the intensity threshold value selection. 

The RGB colors represent the three primary colors of red, green and blue. Each 

pixel of a digital image can be made by the combinations of these primary colors. 
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The calculation of the concentration of sand particles was based on color 

segmentation, shown in Figure 4-11 (b) to 14 (b). These figures present grey 

images obtained using the aforementioned DIP method. In the experiments, the 

percentage of sand as calculated from a color area in the peripheral ring and the 

central circle were 32.09% and 69.86%, respectively. While the numerical result 

showed that blue particles which represent as sand at peripheral ring and central 

circle are 39.09% and 66.00%, respectively. Excellent agreement is obtained 

between the test and numerical results. The agreement is supposed to be valid for 

the rest parts of the heaps, given the heap surface and the core represent the outer 

and inner particle distribution profiles. The quantitative comparison based on the 

DIP results shows a close predication of numerical simulation. This comparison is 

more convincing than visual comparison used in previous studies. Comparing the 

segregation in both numerical and experimental results also showed that the 

chosen material properties (i.e., friction, material rolling friction, and damping 

coefficient) matched the actual material properties. It is suggested that segregation 

tests can be used as a useful calibration method.  

4.3.2 Parametric Study 

Due to many input parameters, it is not clear that which parameter had a critical 

influence on particle segregation. It is necessary to evaluate the impact of each 

parameter with other parameters unchanged. Table 4-3 lists possible input values 

for parameters that potentially affect the segregation. Of the parameters, the rolling 

and sliding friction coefficients determine the particle surface roughness. Five 

mixtures are defined, each composed of two materials, A and B, in equal volume. 
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Again, the mixture ingredients are assumed to be similar in size so that size 

difference is not considered. In each study, only one parameter was changed while 

the others remain the same. For example, in case 1, the density for the two 

ingredients is 2,600 kg/m³ and 1,300 kg/m³ respectively while other parameters 

such as damping ratio or stiffness etc. remain the same, as listed in Table 4-3. The 

input values reflect the normal range of materials used as geomaterial ingredients. 

Table 4-3. Material properties used in the parametric study. 

Case Ingredient 

Density 

(kg/m³)

Damping 

ratio 

Stiffness 

(kPa) 

Rolling friction 

coefficient 

Sliding friction 

coefficient 

Case 1 
A 2,600 0.2 1×105 0.6 0.3 

B 1,300 0.2 1×105 0.6 0.3 

Case 2 
A 1,300 0.2 1×105 0.6 0.3 

B 1,300 0.4 1×105 0.6 0.3 

Case 3 
A 1,300 0.2 1×107 0.6 0.3 

B 1,300 0.2 1×105 0.6 0.3 

Case 4 
A 1,300 0.2 1×105 0.3 0.3 

B 1,300 0.2 1×105 0.6 0.3 

Case 5 
A 1,300 0.2 1×105 0.6 0.3 

B 1,300 0.2 1×105 0.6 0.6 

 

The five cases were subjected to the segregation test. The test is similar in 

process to the aforementioned segregation tests, including forming pile through 

the funnel, slicing the pile at the mid height to compare the inner core and the outer 

ring. To assess the segregation, define segregation coefficient, Cs, as suggested by 

Williams (1976): 
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 (4.5) 

where WI is the volumetric proportion of material A in the inner core while WO is 

the volumetric proportion of material A in the outer ring. Where there is no or 

negligible segregation, Cs is equal or close to zero, and vice versa. The results are 

provided in Figure 4-15. It is clear that case 1 stands out, with Cs=17.97% of 

suggesting the material density governs the segregation. The friction coefficients 

(or surface roughness) however do marginal effect on the segregation which 

agrees with results by Pohlman et al. (2006).  

 

Figure 4-15. Segregation coefficient for varying mixtures. 

Even though the friction coefficients alone do not cause segregation of the 

material, it has a certain effect on the mixture once there is already a density 

difference in the mixture. To examine this densityfriction combined effect, a new 

comparison was made between the mixture density ratios which increase from 1 

to 5, according to different sliding friction values fs = 0.3, 0.4 and 0.5, respectively. 

The results are provided in Figure 4-16. For each case, the segregation coefficient 
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Cs increases with the density ratio. This relationship changes if the material surface 

roughness increases. The rougher the material surface is, the less likely 

segregation will happen. Similar findings was observed by Lai et al. (1997) that 

frictional properties sometimes dominate material segregation such as in the event 

of long range transport. For the funnel discharge in the current study, the 

densityfriction correlation might be explained as follows: when the surface 

roughness increases, the mobility of the mixture is affected so that flowing from 

the funnel requires more kinetic energy and material granules tend to move as a 

whole. Consequently the mixtures are more difficult to be separated during flow. 

 

Figure 4-16. Segregation coefficient vs. mixture density ratio under different 

frictions. 

4.4 Conclusions 

This study presented a DIP method used to examine material segregation based on 

material color difference. The comparison between the DEM simulation and 
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experiments suggests that DIP could be used as a useful method enabling 

verification between the DEM and test results.  

Material rolling friction and damping ratio for sand and rubber were 

calibrated by the repose angle and re-bouncing tests, respectively. The parameter 

values were incorporated into the DEM model for the parametric study. For a 

uniform mixture, from a microscopic perspective, the density difference had most 

significant impact to the segregation during the funnel discharge. Other contact 

properties such as material stiffness, surface roughness or damping ratio had minor 

to negligible impact. The higher the density difference is, the noticeable the 

segregation will be. When the segregation needs to be controlled, the material 

density difference should be considered. However, the density-induced 

segregation can be offset by the inter-particle friction. The higher the frictional 

properties are assigned, the less likely the segregation will occur. 
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4.6 Notations 

C1 count of the particles sitting on a cutting plane 

C2 count of the particles intersecting a circular periphery 

Cs  segregation coefficient 

dr diameter of rubber particle 

ds diameter of sand particle 

E effective modulus 

Er  effective modulus of rubber particle 

Es  effective modulus of sand particle 

fr rolling friction  

fs  sliding friction 

fr,r  rolling friction of rubber particle 

fr,s  rolling friction of sand particle 

fs,r  sliding friction of rubber particle 

fs,s  sliding friction of sand particle 

fw  particlewall friction 

G shear modulus  

h  bead rebound height 

H  bead drop height 

I colour channel intensity 

I1 red channel intensity 

I2 green channel intensity 

I3 blue channel intensity 

Iw grey level intensity 

kw  particlewall stiffness 
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r  bead radius 

WI  volumetric proportion of material in the inner circle 

WO  volumetric proportion of material in the peripheral ring 

α  restitution coefficient  

ζ  damping ratio  

ζr  damping ratio of rubber particle 

ζs  damping ratio of sand particle 

 Poisson’s ratio 

ρ  density 

ρr  density of rubber particle 

ρs  density of sand particle 
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Abstract 

A model of formulating particle kinetic behaviour considering contact asperity 

is presented. The contact asperity is created by lining up a set of particles in 

varying distances. A moving particle is assigned a velocity to travel on the 

rugged surface where the particle trajectory and mechanical energy are gauged. 

The results are used to validate a discrete element framework which is 

developed and applied to examine the effect of particulate-scale properties on 

the kinetic behaviour. Some interesting case studies are designed and simulated. 

The simulations suggest that the surface roughness influences the energy 

dissipation caused by multiple collisions. The research outcomes define the 

inter-particle reaction from a micro-scale perspective and help predict asperity-

induced wear. 

Keywords: collision, surface asperity, DEM, energy dissipation 
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5.1 Introduction 

Upon contacting, particles behaviour is closely dependent on its physical 

characteristics, such as the density, shape, size and surface at contact (Yang and 

Wei, 2012, Jensen et al., 2001, Dai et al., 2015). On the contact surface, the 

asperity, or roughness, governs the particle response, mainly in the form of 

energy loss, in a dynamic process (e.g., the wheel rolling on the rail) (Senetakis 

et al., 2013, Consoli et al., 2007, Anastasiadis et al., 2012, Doménech-Carbó, 

2016). Although the energy loss, at least a major portion of it, is recognised 

arising from the surface adhesion and frictional properties, e.g. Persson et al. 

(2004) which suggested the energy loss in itself is caused primarily by the 

surface deformation at contact. According to Buckley (1981), the deformation 

includes the elastic and plastic components. The two components are nested 

inside the contacting conditions occurred between the particles of concern and, 

depending on the contacting conditions, are subject to variation in magnitude. 

As a result, the relationship between the surface asperity, deformation 

components, and energy loss is still poorly understood (Tayebi and Polycarpou, 

2004; Svahn et al., 2003). Albeit there are experimental solutions (Dai, 2015; 

Buckley, 1981) developed to deal with the lack of understanding, the test 

conditions are less than ideal, and the corresponding results are not accurate 

enough. The reasons, as per Zappone et al. (2007), are the challenge to validate 

the solutions through a well-defined rough surface and the difficulty to avoid 

environmental noises (e.g., the surface chemistry characteristics) surrounding 

the particles in the test. These difficulties can be resolved through mathematical 

tools which enable a system without environment intervention.   
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In this study, a discrete element model (DEM) is developed to reproduce 

the particle kinetic behaviour in response to the surface asperity the particle is 

subjected to. The surface asperity characteristics are defined specifically to 

subject the particle to a unique, exclusive rugged surface. On the rugged surface, 

the particle is assigned with a velocity and allowed to travel. The model is used 

to gauge the particle trajectory and velocity in travel so that the energy loss is 

recorded. The model is validated against the analytical solution established in 

the same asperity conditions as for the DEM model. DEM simulations are 

performed on some interesting case studies in order to gain a further insight into 

the particle kinetic behaviour at micro-scale.  

5.2 Model Development 

5.2.1 Geometry 

The geometry used to develop the model is provided in Figure 5-1. An array of 

semicircular discs, 1 to N, are lined up at fixed positions in (x, y) plane, forming 

the asperity based on the substrate of x-axis. The discs are equal in radius, rj, 

where j=1, 2,…, N, and placed edge to edge with individual centroids sitting on 

the x-axis. At time t, disc M moves at a velocity, v, in the x-direction. Disc M 

measures r in radius and m in mass. The position of the moving disc in relation 

to disc j is determined by the contact angle, γ, which measures the angle from 

the x-axis to the centre-to-centre line drawn between discs M and j. Disc M 

contacts disc j at point A. As suggested in past studies (Jensen et al., 1999; 

Dippel et al., 1996), this geometry defines a clear, continuous and manageable 

asperity surface. This geometry facilitates: i) the expression of the asperity 
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surface (i.e. circular function), ii) the assessment of discs contacting condition, 

and iii) the adaption of the geometry to the analytical model (Greenwood and 

Williamson, 1996). Similar geometry was adopted in past discrete element 

studies (Dippel et al., 1996; Batrouni et al., 1996; Henrique, 1998; Valance and 

Bideau, 1886). Given the model geometry provided in Figure 5-1, there is no 

sub-asperity at the particle surface; the inter-particle friction is assumed to be 

zero as its contribution to energy loss is assumed in the part of collisional energy 

dissipation rate (Gollin et al., 2017); and the energy loss of disc M is based on 

the asperities of the surface plane. The energy loss is determined using two 

approaches: the discrete element simulation method and the analytical solution. 

The analytical results are used to verify the simulation results. The two 

approaches and the method verification are presented in the following sections. 

 

Figure 5-1. The model geometry of disc moving on asperity surface.  

5.2.2 DEM model 

The DEM model is developed to reproduce the mechanical responses of two or 

more discs at contact, e.g., point A in Figure 5-1. As per Cundall (1988), the 

mechanical responses at contact can be represented by using a combination of 

simple mechanical elements, such as the spring, slider and dashpot. The 
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combination is dependent on the materials to be examined and, as suggested in 

the past similar studies (Batrouni et al., 1996; Henrique et al., 1998; Valance 

and Bideau, 1998), is often governed by using the Hertz Contact model 

(Mindlin, 1953). The Hertz Contact model uses the least number of physical 

units, as illustrated in Figure 5-2, but enables mimicking a wide range of distinct 

element based problems. The model is simple and preferably applicable to 

represent the contacting occurred between smooth, elastic particles.  

 

 

 

 

Figure 5-2. Diagram of the Hertz Contact model (adapted from ITASCA 

(2007)), where Fn
h, Fs

h: are respectively non-linear contact force at normal, 

and shear direction; Fn
d, Fs

d are dashpot (viscous) forces at normal and shear 

direction, respectively. 

In the Hertz Contact model, the individual mechanical elements govern 

energy transformation occurred at contact. The energy transformation arises 

from three components: the elastic strain energy, Es, stored in the spring 

elements, the slip energy, Eμ, dissipated by frictional sliding, and the dashpot 

energy, Eβ, being lost due to damping (Cundall and Strack, 1979). The energy 

is lost to other forms of energy, e.g., heat and sound. It is assumed that there is 

no friction at contact as defined in Figure 5-1. Therefore, the dashpot energy 

dissipation Eβ is the only source of energy loss at contact. Considering the 
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absence of surface friction, the moving disc changes merely the normal velocity 

component (Beacker et al., 2008). The energy loss Eβ is expressed as: 

    tFE n
d

n 
  (5.1)

where n  is the relative normal displacement; Δt is the time step increment; 

d
nF  is the normal dashpot force at contact and, as per Itasca (2017), is calculated 

as: 

 
ncnn

d
n kmF  22   (5.2)

where βn is the normal critical damping ratio, kn is the normal stiffness, and mc 

is the mass of the system of interest and defined by:  

 

21

21

mm

mm
mc 

  
(5.3)

where 1m  and 2m  are the mass of discs 1 and 2 respectively. 

In a DEM model, the particles are assumed to be non-deformable. An 

overlap is allowed to develop at the point of contact in order to account for disc-

to-disc interactions (Cundall and Strack, 1979). This overlap likely influences 

the trajectory of the moving disc, as illustrated in Figure 5-3. Figure 5-3 shows 

the potential overlap at the contact between moving disc P and stationary disc 

Q. The two discs collide at an eccentricity of L. DEM algorithm allows disc P 

to penetrate into disc Q, creating a contact overlap as shaded between the two 

discs. As a result, the centroid of disc P passes the trajectory of points A, B and 

C in DEM simulation, but in reality point B may not be a point to pass through. 

The influence to the trajectory of disc P may be negligible in one collision. 

However, where a continuously bumpy surface as in Figure 5-3 is of the choice 

and multiple collisions occur, the overlap influences accumulate, likely leading 

to noticeable trajectory deviation. The change in trajectory is supposed to affect 
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the prediction of the contact angle γ which in turn brings possible inaccuracy to 

estimate the energy loss of the moving disc. The overlap influence can be 

examined by developing the analytical solution. 

 

 

 

 

 

 

 

Figure 5-3. The trajectory of particle P during an oblique collision with 

particle Q. 

5.2.3 Analytical solution 

This section presents the analytical solution to the same problem of the disc 

travelling on asperity surface as simulated by the DEM approach. The DEM 

adopts the Newton’s laws of motion, and the analytical solution considers the 

restitution of material. According to Becker et al.(2008), both the Newton’s 

laws of motion and the restitution can be used to describe the dissipative 

interaction of particles. The restitution coefficient, as per (Doménech-Carbó, 

2016; Chang and Ling, 1992), quantifies the elastic energy restored at contact, 

which is recovered back to kinetic energy, and the energy dissipation that 

results from plastic deformation. Upon surface colliding, no body penetration 
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between the discs of interest is allowed. Therefore, the analytical method offers 

an accurate prediction of the disc trajectory and can be used to examine the 

overlap influences in the DEM simulation.  

5.2.3.1 Model description 

The geometry in Figure 5-1 is refined into the geometry in Figure 5-4. The new 

element added is the centroid profile where the centroid of disc M lies on. The 

profile is set based on the radii of the discs so that the overlap issue is avoided. 

On the centroid profile, a sub-profile, curve BC, is plotted to illustrate one disc 

bounce. Multiple bounces may occur depending on the kinetic energy of the 

moving disc and the disc material properties assigned. The rest conditions such 

as the surface asperity, velocity and radii remain the same as in Figure 5-1. 

When disc M moves on the bumpy surface, the following conditions are 

assumed: i) Only point of contact is used during the collision; and ii) Disc 

collision completes instantaneously, so that the collision time is negligible. 

These conditions are used to simplify the model.  

 

Figure 5-4. Model geometry of disc moving on asperity surface considering 

bounce. 

At a moment when disc M travels on the asperity surface, the disc takes 

one of three moves: rotating, sliding and bouncing. As there is no surface 
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friction, the disc does not spin. Therefore the disc either slides or bounces on 

the surface, depending on the condition of contact between the moving disc and 

one of the base discs. The contact condition can be judged based on the distance 

t
jD  measured at time t between disc M and the base disc j:   

    22

j
t

j
tt

j yyxxD  (5.4) 

where ( jx , jy ) and ( tx , ty ) are the coordinates of the centres of discs j and M, 

respectively. Disc M is bouncing if j
t
j rrD   or sliding if j

t
j rrD  . The 

condition j
t
j rrD   is not allowed to avoid the surface overlap. For the base 

disc j, the centre coordinate is expressed as: 

 






1

1

2
j

i
ijj rrx  

(5.5) 

 0jy (5.6) 

 

5.2.3.2 Trajectory of bouncing 

Upon a collision with disc j, disc M loses a portion of the normal velocity. The 

residual normal velocity drives the disc to bounce up which then falls under 

gravity, as of the profile BC shown in Figure 5-4. This bouncing process 

continues several times until the normal velocity vanishes. Assume disc M is in 

collision with disc j at time t. Meanwhile, the disc bounces up at velocity 

components ( t
xv , t

yv ). If, at time step t+∆t, disc M is in the move of the first 

bounce, the corresponding velocity components become: 

 t
x

tt
x vv   (5.7) 
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 tgvv t
y

tt
y    (5.8)

The centre relocates to ( ttx  , tty  ) which are respectively expressed 

as: 

 tvxx t
x

ttt    (5.9)

  
2

tvv
yy

t
y

tt
yttt 




  (5.10)

The centre coordinate ( ttx  , tty  ) are plugged in Eq. (5.4) to update 

tt
jD  . The updated tt

jD   is then used to confirm the presumed first bounce of 

disc M. If j
tt

j rrD   the presumption is confirmed; if j
tt

j rrD  , the 

disc is sliding; and if j
tt

j rrD  , disc M has performed two or more bounces 

in the time step increment ∆t.  

Where two or more bounces occur in the time step increment ∆t, the 

time t+Δt0 when the first bounce completes needs to be determined. As Δt is 

sufficiently small, the horizontal and vertical velocities are assumed to be 

constant during the collision period Δt0. Also assuming a linear trajectory 

during (t, t+Δt0). The centre of disc M ( 0ttx  , 0tty  ) becomes:  
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   (5.11)

At time t+Δt0, discs M and j are in contact, leading to 

      222
00

jj
tttt rrxxy    (5.12)
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Solving Eqs. (5.11) and Eqs. (5.11) yields roots 0ttx  =  and  

respectively as follow: 
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 (5.13) 

The time increment ∆t0 is calculated as: 

 t
x
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xx
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 0

0  (5.14) 

During the time increment ∆t0, the x-velocity component of disc M 

remains unchanged:  

 t
x

tt
x vv  0  (5.15) 

Disc M changes in elevation, the y-velocity component is updated as: 
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The contact angle γ at t+∆t0 becomes: 
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The tangential and normal velocity components are calculated 

respectively as: 

 00000 sincos tttt
y

tttt
x

tt
s vvv    (5.18) 

 00000 cossin tttt
y
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x
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n vvv    (5.19) 

If the disc rebounds, the normal velocity is subjected to damping and 

reduces to: 
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 00
,
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nn

tt
rn vv     (5.20)

where αn is the material restitution coefficient. Kawaguchi et al (1992) 

expressed n  as a function of damping ratio n : 

 21 n
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   (5.21)

Substituting Eq.(5.21) into Eq.(5.20) yields: 
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Convert the tangential and normal velocity components in the (x, y) 

plane: 

  sincos 000
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The new velocity components drive the disc to bounce up. At time step 

t+∆t, the velocity of disc M and the coordinate of the centre are determined 

respectively as: 

 0tt
x

tt
x vv    (5.25)

  0
0 ttgvv tt

y
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y    (5.26)

  0
00 ttvxx tt

x
tttt   (5.27)

  0
00 ttvyy tt

y
tttt   (5.28)

The coordinate of the centre is subject to the contact criterion (i.e. tt
jD   

vs. jrr  ). If j
tt

j rrD  , disc M is in the move of the second bounce. The 

algorithm proceeds to the next time step. Otherwise, Eqs. (11-28) are saved. 

This is because the normal velocity at t+∆t0 is sufficiently small and there are 
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only micro bounces between (t+∆t0, t+∆t). It is assumed that the normal velocity 

is fully dissipated so that the moving disc continues with sliding. This 

assumption would lead to a small amount of kinetic energy loss as some micro 

bounces are eliminated. However, the assumption would not influence the 

simulation results because a small time step ∆t is selected. Changing different 

time step increment, e.g., Δt = 104 s and 106 s does not affect the trajectories 

of the moving disc. 

5.2.3.3 Trajectory of sliding 

Where the normal velocity of disc M dissipates completely at time t+∆t0, the 

disc does not bounce but starts to slide on the surface. Upon departure, the 

angular velocity is determined as: 

 
j

tt
stt

rr

v







0

0  (5.29) 

where the tangential velocity 0tt
sv   is determined based on Eq. (5.18). 

Meanwhile, the angular acceleration 0+Δt tω  is equal to: 
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The angle of rotation   completed during the time increment (∆t–∆t0) 

is calculated as: 

    0 0 0
2,

0 00.5t t t t t t t tt t t t              (5.31) 

Define angles θ and γ to be positive if they rotate in clockwise and anti-

clockwise directions respectively, as shown in Figure 5-5. 
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Figure 5-5. Increment of contact angle and rotation angle. 

 

At time step t+∆t, the contact angle is expressed as: 

 tttttttt     ,00  (5.32)

The centre of disc M relocates to: 
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The angular velocity  , tangential velocity vs, x-velocity component vx, 

and y-velocity component vy, respectively, are updated as: 

    2
2

2
j

ttt
t

t

t
tt

rr

yy
g







 

  (5.35)

  j
tttt

s rrv     (5.36)

  tttt
s

tt
x vv   cos  (5.37)

  tttt
s

tt
y vv   sin  (5.38)



Chapter 5 
 

164 
 

Eqs. (5.29) to (5.38) are used to calculate the trajectory of disc M 

performed during time step (t+∆t0, t+∆t). Continue the same algorithm at the 

next (t+∆t, t+2∆t) if disc M is in the move of sliding based on the contact 

criterion of tt
jD 2  vs. jrr  . Otherwise, the algorithm developed for bouncing, 

i.e. Eqs. (5.11) to (5.28), is used. An additional position check is performed on 

the contact between disc M and j+1. If, at time t, jj
t rxx  , disc M is in 

contact with disc j+1 which becomes the disc of interest in the algorithm.  

5.2.3.4 Model flow chart 

A flowchart of the model is shown in Figure 5-6. The initial input values include 

the velocity components and the position of the centre of disc M. The position 

values are plugged in the contact criterion of t
jD  vs. jrr   to determine the 

motion of the disc. Where in the move of bouncing, disc M is updated, using 

the corresponding algorithm, in respect to its centre coordinate and velocity 

components. The new values are subject to the contact criterion again. Where 

disc M is in the move of sliding, the new values are plugged into the algorithm 

for sliding in order to update the centre position and disc velocity, and the new 

values flow to the contact criterion again. Whether in the move sliding or 

bouncing, disc M is subject to the check of contact with a new base disc. If there 

is, the base disc of concern becomes disc j+1, and a new loop runs. Before the 

flowchart ends, the x-velocity component is checked. If the velocity component 

remains, the loop keeps running. Otherwise, the program ends. 
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Figure 5-6. Flowchart of a single disc moving on a bumpy surface. 

5.3 DEM  Validation 

The DEM model is validated against the analytical solution. Both approaches 

are applied to the model shown in Figure 5-1. The models are established using 

the following properties. The radii are 0.3 m for the moving disc and 0.05 m for 

the base disc. All discs have a density of 2,000 kg/m³. In the DEM, the Hertz 
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contact is used which adopts a Poisson’s ratio of 0.3 and a shear modulus of 

100 GPa. The relatively large shear modulus is assumed to reduce the influence 

of the contact overlap, enabling a simulation environment similar to that for the 

analytical solution. For both methods, a damping ratio βn = 0.5 is used to 

dissipate energy at each collision. The moving disc is assigned to three initial 

velocities  = 0.3, 0.5 and 1.0 m/s respectively. The results of the horizontal 

velocity versus the distance for the disc assigned with the three initial velocities 

are provided in Figure 5-7. 

 

Figure 5-7. The results of the horizontal velocity versus the distance for the 

disc assigned an initial velocity to travel on a bumpy surface. 

In Figure 5-7, all three curves exhibit a ‘saw-tooth’ mode, which is 

caused by the rugged surface: accelerating on down-slopes and decelerating on 

up-slopes. The horizontal velocity, however, goes down at the end of the travel, 

as a result of energy loss at collisions. Excellent agreement is attained between 

the DEM results and the analytical solutions across all of the three velocities. 

Both curves exhibit agreed amplitudes, frequencies, gradient and the end 

distances. This suggests that the DEM simulation can satisfactorily capture the 
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trajectory of the object moving under various velocities, validating the 

capability of the DEM model to predict the loss of kinetic energy. In both of the 

numerical and analytical scenarios, the dissipation of energy is attributed to the 

asperity collision along the base surface. At each collision, the velocity reduces 

at a gradient of 0.013 m/s per disc or 0.25 m/s per meter. It is noted that the 

numerical predictions deviate from the exact results at the early stage of travel 

if increase from 0.5 to 1.0 m/s. The possible cause arises from the velocity 

change occurred at each of the collisions where the disc travels at relatively 

high velocity. In addition, as the velocity increases, the moving disc takes a 

longer time to complete the move of bouncing, leading to a larger change in the 

next collision position and collision angle.  

5.4 Simulation Results 

The validated DEM model is used to implement a parametric study. The study 

is focused on the travel mode of the disc of interest where important material 

properties and surface asperity characteristics change. The properties examined 

include the material damping, collision angle and irregular asperity surface. In 

addition, the energy transformation associated with the disc travel in each of 

the simulation cases is examined. 
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5.4.1 Damping ratio 

Damping influences the energy loss at collision. To gain an insight into 

the influence, the DEM model is applied to the discs assigned with two different 

damping ratios, βn = 0.1 and 0.9, respectively. The moving disc is assigned with 

an initial velocity of 0.5 m/s. The rest conditions remain the same as the model 

used in the validation section. The simulation results are provided in Figure 5-

8. As shown in Figure 5-8 (a) and (c), the velocity vs. distance curves agree 

between the two cases βn = 0.1 and 0.9. In either case, the moving disc travels 

through 19 discs and stops between the 19th and 20th base discs. This agreement 

suggests that the damping ratio less likely influences the overall energy 

dissipation of the moving disc, where the other conditions remain the same. 

However, the energy dissipation at each collision can be different, as shown in 

Figure 5-8 (b) and (d). These two figures present the velocity vs. distance 

relationship for the disc travelling through the first three base discs. Where the 

damping ratio is relatively small (Figure 5-8(b), two collisions as represented 

by the corresponding vertical short lines and one bounce as of the short 

horizontal short line occur. Where the damping ratio increases as in Figure 5-

8(d), one collision (and no bounce) as of the short vertical line occurs. The 

moving disc is in the move of sliding for the rest part of the travel on the same 

base disc. For both trajectories with different damping coefficients, the moving 

object eventually loses the normal velocity when it contacts the base asperity. 

For example, in Figure 5-7, the moving object finally slides at the surface of 

base disc j+1, no matter how many collisions it has, and the only change to it is 

its normal velocity. This explains that the damping coefficient does not affect 
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the actual trajectory of movement on the surface, but energy dissipation is 

greatly influenced in a single collision (Figure 5-8 (b) and (d)). 

 

 

Figure 5-8. Horizontal velocity vs. distance for the disc traveling on asperity 

surface under different damping conditions: (a) complete travel for damping 

βn= 0.1; (b) travel through the first 3 discs for βn= 0.1;(c) complete travel for 

βn= 0.9; (d) travel through the first 3 discs for βn= 0.9. 

5.4.2 Loss of energy at different damping conditions 

To gain a further insight into the effect of damping on the travel mode of the 

disc, energy dissipation developed in different damping conditions is examined. 

The DEM model is applied to asperity surface assigned with a total of six 

different damping ratios βn = 0.1, 0.2, 0.3, 0.4, 0.5, and 0.9. The initial velocity 
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of the disc is 0.5 m/s, whereas the rest conditions remain the same as in the 

validation study. In order to quantify the loss of energy at each asperity contact, 

define the following equation: 

 )( 1,,,  jmjmj EEE  (5.39) 

where ΔEβ,j is the energy dissipated at the base disc j; Em,j and Em,j1 are the 

system mechanical energy measured when the moving disc is in contact with 

base disc j and j1, respectively. The mechanical energy of the system can be 

calculated as: 

 Em = Ek + Es + U (5.40) 

where Ek, Es and U are the kinetic energy, strain energy at contact, and gravity 

potential, respectively, and are calculated by the program. The gravity potential 

takes the initial elevation as the reference. Energy dissipation at the first 

collision between the moving disc and a new substrate asperity is of particular 

interest, because it denotes the primary collision while the remaining bounces 

are categorized as secondary collisions.  

The relationships of energy loss at each primary collision versus the 

distance for the discs assigned with different damping ratios are provided in 

Figure 5-9. In all cases, the energy dissipation rate (i.e., the curve gradient) 

decreases with the distance. This is because the slower the particle is moving, 

the less the kinetic energy is dissipated. However, the proportion of energy 

dissipation is quite different between βn = 0.1 and 0.9 in each collision. With a 

lower damping coefficient (βn = 0.1), multiple collisions are identified at each 

base substrate, and the energy loss in the primary collision is only a proportion 

of the total energy (the solid line in Figure 5-9).  In comparison, when βn 

increases to 0.9, the loss of primary energy is nearly equal to the loss of total 
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energy. Despite the variation in energy dissipation in primary collisions with 

different damping coefficients, the total energy loss is similar in all cases. As 

explained in the model development section, the total energy loss at each base 

substrate is dependent on the normal velocity when the moving disc first 

contacts a new substrate. Figure 5-9 also suggests that asperity-induced energy 

loss is velocity-dependent, which results in viscous behaviour.  

 

Figure 5-9. Energy Loss versus distance for discs assigned with different 

damping ratios. 

5.4.3 Energy transformation 

This section further examines the energy transformation occurred when the disc 

moves on the asperity surface. The total energy of the system Et contains two 

parts: the mechanical energy Em and dashpot energy Eβ. The relationship is 

expressed as: 

 Et = Em + Eβ (5.41)
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Apply the above relationship to the case of βn = 0.9 and =1.0 m/s. The 

total energy and the energy components versus the distance are plotted in Figure 

5-10. At the initial position, the dashpot energy and strain energy are zero. Since 

the moving disc is placed at the top of the base asperity, the sum of the gravity 

potential and kinetic energy is in the peak value. With an increase in the moving 

distance, a portion of the kinetic energy and gravity potential transforms to the 

strain energy, while the other part dissipate at collisions, in the form of heat and 

sound. It is clear that the loss of kinetic energy is equal to the increase of dashpot 

energy, because the total energy is constant through the whole process. Where 

the horizontal velocity decreases to a small value to slide over the last disc, the 

moving disc bounces, back and forth, in the space of the last two base discs 

until the kinetic energy dissipates to zero. Figure 5-10 also shows the 

contribution of contact overlap to the energy transformation, as captured by 

strain energy Es. When the velocity reduces at the later stage of travel, the 

influence of contact overlap becomes less significant. The strain energy is 

nearly zero after the moving disc travels to 0.5 m. 
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Figure 5-10. Energy transformation and dissipation versus travel distance for 

the disc travelling on the asperity surface. 

5.4.4 Surface asperity gap 

The previous sections confirm that surface asperity can influence the trajectory 

of the moving object. According to Greenwood and Williamson (1966), 

however, the bumpy surface can be described as a collection of different 

asperities (i.e. varying amplitudes). It is worth gaining an insight into the 

choices of surface asperity and examining how the different asperity 

characteristics influence to the travel of the disc. For example, it is still not clear 

about the relationship between the asperity amplitude parameters and energy 

dissipation, such as whether it is linearly related to energy loss or not. In this 

section, the asperity properties, including the average asperity and asperity 

variance, are evaluated against energy loss.  

There are a number of different methods that can be used to constitute 

the roughness degrees of the substrate. Gadelmawla et al (2002) suggested 
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using the asperity amplitude parameters. Specifically, one of the basic 

properties used to describe a rough surface is Ra, which is the mathematical 

average of the absolute values of the profile height deviation from the mean 

line, recorded with the elevation length. This method is complicated and subject 

to the determination of the mean line. As a further step to the approach 

illustrated on Figure 5-1, a simplified approach is developed. The concept is to 

constitute the surface asperity using a set of discs with the same radius r  which 

are spaced per rη×  where η is the gap coefficient. The radius r  ranges from 

0.04 to 0.07 m, and η from 0 to 1. The model developed based on the disc gaps 

is illustrated in Figure 5-11. The average asperity per distance, y , is expressed 

as: 
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The variance of the asperity is expressed as: 
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Figure 5-11. The asperity model developed based on gap coefficient. 
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Simulations were performed based on the model shown in Figure 5-11. 

The simulations focus on the disc travel distance versus the asperity 

characteristics, including the average asperity elevation and asperity variance. 

These characteristics are examined by accounting for the base disc radii, disc 

gaps and asperity average elevation. The rest of simulation conditions remain 

the same as in the validation section. A total of 44 simulations were performed 

to collect the disc travel distance information and were plotted against surface 

average height or height variance. The simulation results are provided in Figure 

5-12 and Figure 5-13 respectively. 

 

Figure 5-12. The relationship between the final distance and surface average 

height. 
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Figure 5-13. The relationship between the final distance and variance of 

asperity. 

In Figure 5-12, the final displacement of the moving disc is plotted per 

the base disc radius r  and gap coefficient η. With the same gap coefficient, the 

asperity average height increases with the disc radius, resulting in a decrease of 

in the final displacement. When the disc radius remains constant, an increase in 

the gap ratio decreases the substrate height, which in turn decreases the final 

displacement. However, the final displacement is independent on the average 

height of the surface substrate, because the actual maximum displacement 

occurs at an intermediate surface height (e.g., the case with r  = 0.04 m and η 

= 0). This indicates that the average surface height is not linearly related to the 

trajectory of the disc. In comparison, the surface-height variance provides better 

quantification of final displacement. It can be identified that the lower the 

asperity-height variance, the farther the object can travel. Technically, this 
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property describes how rough or bumpy the surface is. However, there are still 

some slight overlaps between different groups of radii, and these points inside 

the overlap area produce a reverse trend against the general relationship. Hence, 

it is necessary to seek additional description of surface roughness which is 

discussed in the following section. 

5.4.5  Collision angle 

In this section, the collision angle c  is used to characterise surface roughness. 

At each collision, the collision angle influences the loss of the normal velocity 

of the moving disc as shown in Figure 5-14. The collision angle c is different 

from the contact angle  . The collision angle c   is defined as the contacting 

angle when the moving disc hits a new base disc and, as shown in Figure 5-11, 

is calculated as: 

 
( )

rr

ηr
γ c

+

5.0+1×
arccos= , 



  ,

2
c  (5.44)

It should be noted that there may be other collisions occurred between 

the moving disc and the base disc of interest. However, due to a relatively low 

horizontal velocity, the collision must happen in the middle of the two base 

discs where most of the kinetic energy is dissipated, as shown in Figure 5-11.  

The final displacements were plotted against the collision angle c  as 

shown in Figure 5-14. A monotonic relationship is observed: the smaller the 

collision angle is, the shorter the distance the disc can move on the surface. The 

final displacement is entirely dependent on the collision angle. From this 

perspective, the collision angle is a parameter governing the  surface roughness.  
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Figure 5-14. The relationship between final displacement and collision angle. 

5.4.6 Mixed asperities 

An even surface asperity facilitates model development and simulation. 

However, as per Persson et al. (2004), the height of the surface asperities 

usually follows a normal distribution. To account for the mixed asperities, the 

substrate is constituted with a group of discs of different radius rj and gap 

coefficients η.  The schematic is shown in Figure 5-15. The two governing 

parameters rj and η are assumed to be independent, and respectively follow a 

normal distribution.  
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Figure 5-15. The model developed based on mixed asperities. 

Similar to the previous simulations, the moving disc is first placed at the 

top of base disc i, assigned a velocity of 0.5 m/s. After a number of collisions, 

the kinetic energy is sufficiently damped and the disc rests at a distance. Due to 

the mixed asperity of the substrate, the final distance varies significantly, but, 

due to the existence of varying collision angles, the distance is relatively less 

than that obtained in even asperity case. In order to measure the actual collision 

angle, the disc radii and gaps are controlled to allow the moving object to travel 

over about 20 base discs. The normal distribution used for the base disc radii 

and the base gap is shown in Figure 5-16 and Figure 5-17 respectively.  
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Figure 5-16. Normal distribution of base disc radii. 

Figure 5-17. Normal distribution of base disc gaps 

Additional efforts were made to gauge the actual collision angle. In the 

case of even asperity surface, where the collision angle is estimated, the actual 

collision angle cannot be determined before the disc rests. For example, Figure 

5-15 shows that the moving disc does not contact the base disc j. Therefore, the 
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collision angle between the moving disc and the substrate j does not have 

physical meaning. Also, due to the complication of the substrate shape, the 

moving object may exhibit some significant jumps depending on its initial 

velocity. For these reasons, the actual trajectory of the moving disc is gauged 

to attain the actual collision angles. 

In order to validate the surface properties of energy dissipation for an 

actual bumpy surface, a sufficient number of different surfaces need to be 

generated. This surface of randomly distributed asperity can be generated in 

PFC2D by using a random number, called ‘seed’, which controls particle 

generation. Changing this value can generate different assemblies. In this way, 

a large sample of different rough surfaces can be made. The relationship 

between the collision angle and dissipated energy is presented in Figure 5-18. 

The dissipated energy occurred at the 15th collision with respect to the average 

actual collision angle is calculated. The moving disc can slide more than 20 

particles, but the number of the effective collisions is less, as some base discs, 

e.g., the jth particle as shown in Figure 5-15, are of low elevation and do not 

contact the moving object.  
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Figure 5-18. The relationship between the dissipated energy at the 15th 

collision and the average actual collision angle. 

 

In Figure 5-18, the average collision angle c  is calculated as the sum 

of the collision angles divided by the number of collisions. As can be seen, the 

dissipated energy increases with the decrease in the average collision angle, 

which generates a linear distribution. However, considering the individual 

scatter points in the relationship, even when the average collision angle is 

similar, the results may vary. This is because the surface substrate distribution 

influences significantly on energy dissipation. For example, surfaces A and B 

may exhibit identical substrate properties, such as the same collision angle, 

average height and height variance, but if the upslopes and downslopes occur 

in different sequences, the kinetic energy will dissipate in different modes. With 

respect to the energy dissipation regime, the disc travelling on the mixed 

asperity surface is in a different regime from the one on an even surface asperity. 
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On the even asperity surface, the kinetic energy of the moving disc is gradually 

damped at each collision, while on the mixed asperity surface the disc 

experiences a sudden stop where the moving disc hits into a relatively large gap 

on the surface. The influence of the maximum collision angle on the surface is 

evaluated in the next section. 

5.4.7 Determination of the maximum collision angle on a rough surface 

Theoretically, the moving disc can rest at any trough on a bumpy surface, but 

the simulations suggest that the moving disc often rests at the trough where the 

maximum collision angle occurs. This section aims to investigate the 

relationship between the distance the moving disc is at rest and the maximum 

collision angle. 

Define the relative distance where the maximum collision angle occurs: 

 
stop

r S

S
L max, ,  1,0rL  (5.45)

where Sγ,max is the position at the maximum collision angle, Sstop is the total 

moving distance. A total of 250 different asperity surfaces were tested, and the 

probability of the distance where the moving disc rests is plotted in Figure 5-19.  
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Figure 5-19. The relationship between the probability of the disc being 

trapped and normalised distance Lr. 

On a mixed asperity surface, the moving disc exhibits the actual 

collision angle ranging between 100 to 105 degrees. Figure 5-19 shows that the 

farther distance the maximum collision angle occurs, the more likely the 

moving disc is at rest as a result. The probability is 60% or greater than the 

moving disc is at rest at the maximum collision angle, suggesting a sudden stop 

regime.  Generally, when the disc hits into a relatively large gap, a higher kinetic 

energy is required for the disc to slide over the gap. This energy is the threshold 

that determines whether the moving disc can slide over the asperity gap or not. 

If the particle collides at the maximum angle at an earlier stage, a good number 

of kinetic energy remains which drives the disc to travel farther. If the 

maximum collision angle occurs at a later stage, the disc is of low energy and 

less kinetic to slide over the base disc with a relatively greater collision angle.  
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5.4.8 Asperity and sub-asperity mixed surface 

In the previous sections, the study is performed on the moving disc travelling 

on an asperity surface. However, on a real surface, there are sub-asperities 

affixed over the asperity surface which may influence the trajectory and energy 

loss of the moving disc. To take into account the influence of the micro-

asperities at the surface, the following simulations were performed. To 

constitute a surface with primary and sub-asperities, a clump of discs is used. 

The clump models are provided in Figure 5-20. Clump A is spherical. Clumps 

B and C exhibit different sub-asperities. The sub-asperities are formed by 

affixing a set of discs together, each disc sharing a section of the circular 

perimeter. If travelling on such a surface, the moving disc is subjected to more 

collisions than on the asperity surface and the additional collisions are expected 

to cause greater energy loss in a shorter distance. Similar asperity and sub-

asperity mixed surface can occur to the moving disc, which prompts the 

importance of simulations.  

 

Figure 5-20. Clumps used to represent primary and secondary asperities. 

Clumps A, B and C are paired to reproduce the moving disc and base 

discs. Use number ‘1’ to denote the moving disc and number ‘2’ to the base 

discs. For example, the combination A1A2 represents the model of the spherical 
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disc moving on the spherical base discs. In simulations, four combinations were 

designed: A1A2, A1B2, B1B2 and C1B2, in the order of increasing number of 

asperities. The moving disc of the last three models was initially placed in the 

trough of interest to stand still. The properties of the clump object, such as the 

damping coefficient, density, volume and contact stiffness, remain the same as 

in the validation case. An initial horizontal velocity of 0.5 m/s is assigned to the 

moving disc. Note that, for a clump of discs, the discs collide eccentrically, 

leading to a residual rolling velocity. In the simulation, to create the same 

condition, rolling was restricted for all cases. The simulation results are 

provided in Figure 5-21. The figure shows the relationship between the 

horizontal velocity and moving distance captured for the four models.  

 

Figure 5-21. The relationship between horizontal velocity and distance 

obtained under different asperity and sub-asperity conditions.  

In Figure 5-21, when the surface asperity becomes denser, the moving 

disc travels a shorter distance. For example, model C1B2 travels around one-

tenth of the distance attained by combination model A1A2. It suggests that the 

sub-asperity exhibits a significant effect on the final displacement. In this 

circumstance, at the surface of a primary asperity, the micro-asperities increase 
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the number of effective collisions. Greater energy is dissipated by model C1B2 

at the same distance, compared to the other models with fewer sub-asperities. 

In addition, the sub-asperities on the base discs cause a lower collision angle 

and thus dissipate more energy. Note that, for model A1A2, initiating the 

moving object from the asperity trough reproduces the relationship as with 

initiating the disc from the asperity peak, as shown in Figure 5-22. The 

simulation results suggest that the denser the contact asperity is, the greater 

energy is dissipated at the same distance.  

 

Figure 5-22. The relationship between cumulative dissipation and distance 

under different combinations. 

The simulations performed in this study suggest that surface asperity-

induced friction can be considered as a larger number of individual collisions, 

and that these collisions cause the dissipation of kinetic energy. One of the 

major differences between the two conceptions is that the collision-induced 

energy loss is velocity-dependent, as shown in Figure 5-7, while the friction 

conception assumes that the friction force is independent on the velocity of the 
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moving object. The former conception agrees with recent studies performed at 

an atomic level (Valance and Bideau, 1998; Gnecco et al, 2000). In these two 

studies, the friction force experiences velocity-dependent viscous behaviour. 

Research on atomic friction (Gnecco et al., 2000; Fujisawa et al., 1995) also 

identifies a sawtooth friction behaviour at the nanoscale, which is in further 

support of the current simulation results. This means that the surface of interest 

contains a large number of asperities and sub-asperities, and that the collisions 

at individual asperities and sub-asperities are the cause of friction attained at 

the macroscale.  

Where the sub-asperity surface occurs, the moving disc rotates due to 

the eccentric force acting on the disc. In this section, the rotation of the moving 

disc is examined. Design three models: A1B2, B1B2 and C1B2, where the 

moving disc is assigned with the clumps A, B and C respectively, and the 

substrate surface uses clump B throughout. The relationship between the rolling 

velocity and the sliding distance is plotted in Figure 5-23. Define the anti-

clockwise rolling to be positive. The moving disc in model C1B2 travels a 

longer distance than the distance obtained by model B1B2, which is different 

from the condition if rolling was restricted. As shown in Figure 5-21, the 

moving disc in model B1B2 travels much farther than the disc in model C1B2 

does. This can be explained from the perspective of a collision impact. For 

model B1B2, the collision sometimes induces a negative angular velocity, and 

rotation at this direction prohibits its movement at the surface. The translational 

velocity at the contact point is consequently reduced, and the moving object is 

finally at rest. 
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Figure 5-23. The influence of rolling behaviour on the relationship between 

angular velocity and distance. 

5.5 Conclusions 

This paper presents a study on collision-induced energy dissipation of an object 

moving on a bumpy surface. An analytical model based on a single-contact 

collision model is developed. The model is able to reproduce the trajectory of 

the moving disc. The analytical model is established and applied to validate a 

DEM model. The DEM model is applied to examine the effects of important 

surface asperity properties on the kinetic behaviour of the moving object. The 

properties include the material damping, average asperity height, height 

variance, gaps, collision angle and sub-asperities. The energy loss associated 

with the property changes is also examined. The simulations draw the following 

conclusions. 

The moving object contacts the new asperity at several bounces. 

Afterwards, the disc is in the move of sliding on the same asperity. The first 

collision between the moving disc and the base disc consumes most of the 
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kinetic energy, while energy dissipated at other bounces is negligible. The 

actual collision angle reflects a monotonic relationship with maximum 

travelling distance; and the collision angle is an important parameter used to 

describe surface roughness when compared to other geometric properties, such 

as the average asperity height and surface-height variance. 

The surface sub-asperities accelerate the loss of kinetic energy. If the 

sub-asperities are dense enough, it is likely to dissipate a high level of kinetic 

energy. Rolling induced by the asperity collision can restrict the motion of the 

object because less translational velocity remains. The energy dissipation of the 

moving disc is positively proportional to the velocity of the moving disc. The 

asperity-induced loss of kinetic energy reflects the effects of collisions and 

gains an insight into the development of surface friction.  
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5.7 Notations 

Dj
t  relative distance between the moving disc and base disc at time step t 

Em  system mechanical energy 
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Et  total energy 

Ek  kinetic energy 

Eβ  dashpot energy loss 

Fn
d, Fs

d  normal and dashpot force 

Fn
h, Fs

h 
 nonlinear normal and shear contact force 

g  gravity acceleration 

kn  normal stiffness 

Lr  relative distance of the collision angle 

mc  mass of the system 

m1, m2  mass of the bodies 1 and 2 

r  radius of the moving disc 

rj  radius of base disc j 

r   average radius of the base disc 

Sγ,max  distance where the maximum collision angle occurs 

Sstop  total moving distance 

t  time step  

Δt,   time step increment 

Δt0  time step increment at bounce 

v  velocity 

vn  normal velocity before collision 

vs  tangential velocity before collision 
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vn,r  normal velocity after collision 

xt, yt  centre position of the moving disc at time step t 

U  gravity potential 

αn  restitution coefficient 

βn  damping ratio 

γ  contact angle 

γc  collision angle  

c   average collision angle 

n   relative normal translational velocity 

ω  angular velocity 

θ  rotation angle 

η  gap ratio 
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Abstract 

This paper presents an algorithm to couple element free Galerkin (EFG) and discrete 

element (DE) methods to approximate dynamic interaction occurred between 

continuum and discontinuum media. The exchange of the contact force between the 

two domains is attained in the form of point loads acting on the domain interface using 

the Dirac delta function. To prevent the ill-conditioned problems, a weighted 

orthogonal base function is used to compute the shape functions. A penalty method is 

applied to meet with the essential boundary conditions. In both the EFG and DE 

domains, an implicit Newmark-β time integration scheme is developed. The coupled 

EFG–DE method was applied to two example problems. It is shown that the EFG and 

DE methods work in a compatible mode as implemented by the self-developed 

MATLAB codes. Excellent agreement between the modelling and analytical results is 

attained, demonstrating the capability of the coupling method to approximate 

multibody, multiscale dynamic problems.  

 

Key words: meshless, EFG, discrete element, coupling, dynamic 
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6.1 Introduction 

Nowadays multi-domain coupling has become a tool widely employed to analyse 

interactions occurred between multiple bodies where a single platform based 

computation is insufficient or inaccurate to attain the goal. In engineering, one of the 

most important tools is to couple continuum and discontinuum computing methods 

(Potyondy and Cundall, 2004; Munjiza, 2004; Xiao and Belytschko, 2004). The 

coupled methods enable material response examination at multiscale, i.e. the continuum 

at macroscale and the discontinuum or granular medium at microscale. Continuum and 

discontinuum modelling methods can be coupled in a number of ways. A popular 

method is to combine the finite element method (FEM) and the discrete element method 

(DEM) (Munjiza, 2004; Onate and Rojek, 2004; Li et al., 2015). Other numerical 

combinations, such as the finite difference method (FDM) coupled with DEM, are also 

widely applied in simulations of boundary problems (Potyonde and Cundall, 2004; Cai 

et al., 2007; Li et al., 2015). However, there are constraints identified in respect to 

combining FEM (or FDM) with DEM. One of the major constraints is the 

computational costs associated with the combination where the domain of interest is of 

a large scale. The time and efforts are in high demand even if the computer CPU 

capacity has been noticeably faster than before (Chen et al, 2015; Zang et al., 2011; 

Zheng et al., 2017). Another concern is the cost associated with the mesh-based 

interpolation when using FEM or FDM (Liu and Gu, 2005). The two methods count on 
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predefined meshes, and therefore may require excessive iterations in time and efforts 

to generate satisfactory meshes when the domain of interest is large in space and 

complex in geometry. Furthermore, re-meshing is often required in a large deformation 

problem where the original meshes distort, or when low quality meshes are defined 

initially. A solution is to use a meshless method that can be used to couple with the 

discrete method.  

Meshless methods were developed in the 1970s with the intention of reducing 

engineers’ dependence on meshes. Not until the 1990s, the element-free Galerkin (EFG) 

method was developed by Belytschko et al. (1994) to predict fracture and crack growth. 

EFG method uses a global, weak form that makes it suitable for many mechanical 

problems, including shell analysis Krysl and Belytschko (1996), beam elastodynamics 

Zhang et al. (2013), wave propagation and crack development (Lu et al., 1995; 

Belytschko et al., 1994), electromagnetic fields Cingoski (1998), heat transfers (Singh 

et al., 2002; Singh et al., 2003), and fluid flow problems (Singh et al., 2004). Unlike the 

FEM, EFG method defines a grid of nodes which are distributed over the problem 

domain, and constructs the shape function based on the nodes distribution. This method 

adopts the moving least square (MLS) approximation to establish algebraic equations 

for the shape function. 

In this study, the EFG method is coupled with the DE method to examine contact 

mechanics occurred between continuum and discontinuum domains. The discontinuum 
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domain comprises of an assemblage of discrete particles. The contact force from the 

discrete particles is simulated as a point load acting over the boundaries of the two 

domains. The domain shape functions are constructed based on weighted, orthogonal 

basis functions. This improved MLS method has proven capable of solving the ill-

conditioned problem of algebraic equations. In simulating the dynamic interaction 

occurred between the two domains, the Newmark–β method is adopted in the Galerkin 

weak form, solving differential equations associated with the dynamic interaction. The 

penalty method is applied to satisfy the boundary conditions between the two domains. 

Case studies are performed to demonstrate the capacity of the coupled EFG–DE method. 

Although plug-ins are often coded to bridge the programing platforms, i.e., Abaqus for 

FEM and PFC for DEM, as in many of the past studies (Onate and Rojek, 2004; Li et 

al., 2015; Cai et al., 2015), the coupling in this present study is programmed based on 

MATLAB. Therefore this single-platform programming adds further computational 

efficiency. 

6.2 Governing equation  

In this section, the formulations for the EFG and DE domains in a two-dimensional (2D) 

space are presented. The information obtained from the two domains is exchanged at 

the boundaries, i.e., the resulted contact forces at each time step. The forces exchange 

is governed by Newton’s law of motion, and the calculation of nodes and particles are 
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evaluated in corresponding domains. The details of the algorithm developed for the 

forces change are discussed. 

6.2.1 Continuum part 

The mesh-free methods use scattered nodes to represent the problem domain and its 

boundaries so that the shape functions can be formed in a local support domain. 

Although the method of node selection and the choice of the domain shape are arbitrary, 

a grid of nodes in a square domain, as shown in Figure 6-1, is usually used for 

simplification purpose. The problem domain and the local support domain are 

represented by Ω and ΩI respectively. Based on a Gauss quadrature rule, Gauss points 

can be distributed in the background cell so that the influenced nodes will be identified 

in the local domain.  
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Figure 6-1. An illustration of the EF domain 

To construct the shape functions for the continuum domain, mesh-free methods 

usually adopt the MLS approximations. This approach was originally used for data 

fitting and surface construction (Liu and Gu, 2005). Using EFG, this method 

implements MLS approximation to construct the shape functions based on the local 

domain ΩI, covering a group of pre-determined nodes. As a set of equations should be 

solved at the point of interest, an ill-conditioned equation system may be generated 

(Zhang et al., 2013; Lu et al., 1995). To address this issue, an orthogonal basis function 

with MLS application is used. For the displacement, the improved trial function )(xuh , 

defined in the problem domain, is written as: 

 )(),()(),(=)( xaxxqxaxxqxu T
j

m

j
j

h ≡∑  (6.1)

where )(xu h  is an approximation of the actual displacement u(x) at the point of interest, 

),( xxq j  are orthogonal basis functions corresponding to the monomial basis function 

Gauss points 

Ω 

Geometric nodes 

ΩI 
I 
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p(x), )(xa j  are the coefficients, and m is the number of elements in the monomial basis 

function. To simplify the coupling framework with the DEM, a linear basis function in 

a 2D domain is created as: 

 ],,1[=)( yxxpT , m=3 (6.2)

By using the Schmidt method [20], the orthogonal basis function ),( xxq j  is 

obtained: 

 ),()()(=),(
1

xxqxαxpxxq j

k

j
jkkk ∑

-

-  (6.3)

where, k=1 to 3, and the coefficient )(xakj  is expressed as: 
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where the index n refers to the count of nodes in the local support domain ΩI, and )(xwI  

is the weight function and usually based on the exponential weight function or the 

conical weight function Belytschko et al. (1994). In this study, the cubic spine weight 

function is adopted: 
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In a 2D problem the weight function is given by, 

 yxyxI wwrwrwxxw  )()()(  (6.6)

where rx and ry can be determined by Eqs (6.7-6.8) with r replaced by rx or ry so that  
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where dmx and dmy are sizes of the support domain ΩI, and cxI and cyI are coefficients 

calculated at node I by searching for nodes to satisfy the base function in both directions. 

In the Hilbert space span q, for the selected point x and weight function w, the 

orthogonal function ),( xxq j  should satisfy: 

 0),(),(),( xxqxxqxxw IjIkI

m

I
∑  (6.9)

where m=3, k≠j, and k, j=I,…,m. Using the MLS approximation, the difference between 

the trial function )(xuh  and displacement u(x) should be minimised. Define a function: 
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By minimizing the difference defined by J, the coefficients )(xa j can be 

obtained by: 
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Applying the MLS approximation, we have: 

 I

n

I
I

h u)x()x(u ∑  (6.12)

Therefore the shape function )(xI  is defined as: 
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The partial derivative of the shape function )(, xkI  is determined using the 

following equation: 
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where parameters A1 and A2 are expressed respectively as 
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Note that )(xwI , ),( xxq j  and ),( xxq Ij  are derivable with respect to x. The 

subscript symbol k denotes partial derivative to x or y due to the linear basis function.  

6.2.2 Dynamic problem  

According to (Liu and Gu, 2005), the dynamic equation for node I in the local domain 

is expressed as: 

 0)( , 


ducubW iiijijI

I




  (6.17)

where IW


 is the weight function. In a discretised system, the dynamic equation for node 

I is written as: 
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 )()()()( tFtuKtuCtuM IIII    (6.18)

where MI, KI are mass and stiffness matrix respectively for node I, CI is the 

corresponding damping matrix, and FI is the force acting on the domain.  

On the traction boundary t , the boundary conditions are written as: 

 tn   (6.19)

where σ is the stress tensor, n is the unit normal to the domain Ω, and t  are the 

prescribed tractions. On the displacement boundary u , the boundary conditions 

become 

 uu  (6.20)

where u  are the displacements. In order to satisfy the essential boundary conditions, 

the penalty method is adopted. By introducing the penalty coefficient α, the Galerkin 

weak form for a dynamic problem is written as: 

 




 uTρu dΩ + 


 uTcu dΩ + 


 εTσdΩ - 


 uTbdΩ  

                       - 
t

 uT t dΓ + 
u

 uTα(u- u ) Γ = 0, 

(6.21)

where δ is the test function, and α = 








2

1

0

0




. The penalty factors αi are usually 

assigned as constant, large, positive number and this study adoptes αi = 105 E. Using 

Eq. (6.21), the discretised function for a dynamic problem can be developed. The 

detailed process has been discussed in Zhang et al. (2013), and is expressed as: 
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  FFUKKUCUM  )(  (6.22)

In Eq. (6. 22), U , U  and U  are global vectors of nodal displacement, velocity 

and acceleration, respectively; M and K are respectively the mass matrix and stiffness 

matrix in the problem domain, C is the damping matrix, F is the global external force 

vector, Kα is the global penalty matrix, and the additional force vector Fα is derived 

from the essential boundary conditions. And, these parameters are expanded as: 
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where c is the damping coefficient, and the other coefficients are defined as follow 
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6.2.3 Discontinuum part 

In the discontinuum domain, the interaction between the particles, or the particles and 

wall, is determined based on Newton’s second law of motion and the force-

displacement law. The two laws define the motion of the entities of interest and update 

the contact force based on the displacement. Similar to the nodal dynamic problem 

described in Eq. (6.18), in the discontinuum domain, as per Cundall and Strack (1979), 

the particle motion is expressed as: 

 mi (t)ui +c (t)ui = (t)Fi  (6.32)

 Ii (t)θi
 +c* (t)θi

 = (t)Mi  (6.33)

where mi is the mass of disc i, Ii is the moment of inertia of disc i, (t)ui  and (t)θi


 are 

respectively the translational and angular velocities for disc i, c and c* are global and 

local damping coefficient, respectively, and (t)Fi  and (t)Mi  are resultant force and 

moment at contact, respectively. 

The DEM model uses a set of mechanical elements (i.e., spring and dashpot) to 

calculate the contact force occurred between two entities (i.e. particles) of interest. One 

of the widely used models is the linear contact, as presented in Figure 6-2. A finite 
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overlap is allowed between the rigid particles to simulate particle’s deformation. The 

dashpot element is used to reflect viscous behaviour at contact. The contact force is 

determined based on the deformation of these mechanical elements, or the relative 

displacement between the particles. In the model, the normal and shear forces between 

the entities (or discs) i and j, n
ijF  and s

ijF , respectively, are calculated as: 

 nknkF nn
n

ij    (6.34)

 skskF ss
s

ij    (6.35)

where kn and ks are contact normal and shear stiffness respectively, Δn and Δs are 

relative displacement measured at the normal and shear directions, and β is a damping 

coefficient. To model the stick-slip contact occurred between entities, a Coulomb-

friction criterion is employed as follows: 

 ctanF)F( u
n

ijmax
s

ij    (6.36)

where max)( s
ijF  is the maximum magnitude of shear force, u  is the smaller of the 

interparticle friction angle of entities i and j, and c is the smaller of entity cohesion. The 

moment acting on entity i is the result of all the shear forces applied at its contacts and 

expressed as: 

 i

n

j

s
iji rFM 




1

 (6.37)

where ri is the radius of entity i. 
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Figure 6-2. Linear contact spring model used in DEM 

6.2.4 Continuum–discontinuum boundary 

The continuum–discontinuum interface is examined to communicate the force–

displacement relationship between the two domains. The domains interface is modelled 

as the disc–wall contact, which is commonly used in other coupling methods such as 

the DE–FE method (Nakashima and Oida, 2004). Where the DE–FE method is applied 

to a 2D problem, the DE–FE interface becomes disc–segment contacts. At each contact, 

paired disc–segment contact forces are transmitted to the ball centroid and the nodes of 

each element at the interface. The FE domain deformation is therefore subjected to the 

nodal force that arises from the disc–segment contact.  

Entity i Shear stiffness Entity j

Viscous dashpot 

Friction limit 

Normal stiffness 

Viscous dashpot 
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A similar conception for the interface force exchange is used in the EFG–DE 

method as follows: 1) determine the valid contact between discs and segments, 

including contact forces and their positions; and 2) compute the external force matrix 

resulting from the contacts at the interface. It is noted that the EFG–DE method 

processes the interface force in a way different from that for the FE–DE method. In the 

current study, the discrete contact force cannot be transmitted directly to the node forces 

at the interface, because the shape function obtained does not have Kronecker delta 

function property (Liu and Gu, 2005). A new approach is developed to transmit the 

forces. 

6.2.4.1 Contact detection 

In a multi-body dynamic system, objects often contact to transfer the load and the 

detection of the contacting process influences the approximation of objects response.  

In the current EFG–DE modelling framework, contacts occur in the forms of disc–disc 

in the DE domain and disc–segment in the EFG–DE interface. In the DE domain, 

contact detection algorithms are well-established and able to provide satisfactory results 

as in commercially accessible software package e.g. PFC, or open source code such as 

Yade. This study, however, develops the coupled model under the MATLAB platform 

and therefore detects the contact by writing independent code. The code was written 

based on the algorithm suggested by Muth et al. (2007) which accommodates a small 
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number of particles in the DE domain. The limitation in particles number may influence 

the approximation for a DE domain including a large number of particles. Muth’s 

algorithm however supports the development and validation of the EFG–DE method 

where a modified, simple system is of interest, and therefore is adopted in this study. 

Regarding the contacts occurred on the domains interface, there are algorithms (Zang 

et al., 2011; Zheng et al., 2017; Lei and Zang., 2010) developed to detect the contacts 

on the DE–FE interface. These algorithms, however, are not applicable to the EFG–DE 

interface and a separate approach is developed. 

In the detection of the EFG–DE contact, the first step is to gather position 

information for the nodes and discs on the interface. Figure 6-3 illustrates disc O and 

nodes i to i+N which contact and sit on the domains interface. To detect the disc–

segment contact, the following subroutines are performed: a) Calculate di,O, the distance 

between centroid O and node i , where i=i,…,i+N; b) Determine the minimum distance 

(di,O)min and the corresponding node number j; c) Calculate distances dj–1,O and dj+1,O; d) 

Determine the interface segment. The segment is section (j–1, j) if dj–1,O > dj+1,O, or 

section (j, j+1) if dj–1,O < dj+1,O. If dj–1,O = dj+1,O, the segment is dependent on the distance 

between the centroid and the segments of interest which is discussed in the next 

paragraph; e) Calculate dH,O, the distance between centroid O and point H. Line OH is 

drawn normal to the segment determined in Step d); and f) Calculate the velocity at 

point H based on the shape function of this segment, and the velocity of nodes j and j–

1 based on the EFG method. 



Chapter 6 
 

215 
 

 

 

Figure 6-3. An illustration of disc position and boundary line segments 

The next step is to determine the contact geometric primitives. In DE–FE 

coupling work, Zang et al. (2011) categorised the contact geometric primitives into 

particle–facet, particle–edge and particle–vertices problems. These contacts are not 

applicable to the EFG–DE coupling. In this current study, two types of disc–segment 

contact are discussed, as shown in Figure 6-4 (a) and (b) respectively. Figure 6-4 (a) 

shows the particle–segment contact where no nodes sit within the interface segment. 

Figure 6-4 (b) shows the particle–point contact where disc O contacts node j. In the 

particle–point contact, the segment (j–1, j+1) deforms into two sub-segments (j–1, j) 

and (j, j+1). In this case, the contact force is doubled. To eliminate this error, distance 

dH,O is replaced by dj,O in Step f) in the subroutine. 

 

 

 

i i+1 j-1 j j+1 i+N

O 

••• •••

H
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Figure 6-4. Illustration of a disc and a wall segment: (a) particle—segment contact 

(b) particle—point contact 

Using the difference method, the discrete equation used to calculate the increment 

of disc–segment force is written as: 

 tvvktvvkF HOnHOn
n

HO  )()(   (6.38)

 tvvktvvkF HOsHOs
s

HO  )()(   (6.39)

where vo and vH are the average velocities of centroid O and point H at the segment 

during time step Δt. The velocity of vH is expressed as: 

 )( 1
1,

,
ii

ii
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iH vv

l

l
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 (6.40)

or, if dj–1,O = dj+1,O, is simplified into 

 iH vv   (6.41)
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6.2.4.2 Determination of contact force 

The contact forces acting on the interface are determined and adapted to transmit the 

external load across the domains. A conventional method in FEM is to convert the 

contact force into a point load at the boundary nodes (Fakhimi, 2009). However, in the 

EFG domain, the contact forces cannot be directly applied to boundary nodes due to 

the use of MLS (Belytschko, 1994). To impose the point loads to the EFG boundary, 

each load is regarded as a distributed traction, and multiple tractions are superposed. 

According to Zuohui (2006), if a point load F acts at position (x0, y0) on interface Γt
 as 

shown in Figure 6-5, the following equation is obtained: 

 i
T
iii

T
Ii

T
I Fd)xx(Fdt

tt




   (6.42)

where δ is the Dirac delta function. Assuming a total of N point loads act on the 

boundary, the superposed traction is expressed as: 
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)()(   (6.43)

Eq. (6.42) then becomes, 
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Substituting Eq. (6.44) to Eq. (6.27) and we have, 
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Figure 6-5. The interaction between a disc and a EF domain 

In Eq. (6.45), the external force F at domain Ω contains two components: the 

body force such as gravity, and the point load. The latter part of Eq. (6.45) has the 

following meaning: when a point load Fi acts at point (x0, y0) on a continuous boundary, 

this load is distributed to the surrounding points in the local supporting domain Ω0 based 

on shape function )(0 x  which is determined by Eq. (6.13). The supporting domain 

area may be affected by the chosen domain scaling factor dmax.  

6.3 Time integration 

In the EFG–DE approximation, the force–displacement relationship is discretised in 

terms of finite time steps. To enable the approximation to converge, the value of the 

time step is properly set to ensure the algorithms are stable in both DE and EFG domains. 

(x0, y0) 

F 

Ω0 
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This section describes the method developed to determine the time step and present the 

governing equations in the two domains. 

6.3.1 Stable time step 

A time step is determined either explicitly or implicitly. Belytschko et al. (2013) 

discussed the differences between the explicit and implicit methods and suggested that 

the choice of method should be determined based on the partial differential equations, 

smoothness of data, and material response to examine. In a particle-based discrete 

element analysis, the central difference method is often used (Cundall and Strack, 1979). 

This method guarantees numerical stability so that each time step does not exceed the 

critical time step in the explicit time scheme. Also when particle number increases, the 

implicit time schemes may require solving multiple matrices at each time step, which 

significantly increases processing time (O'Sullivan and Bray, 2004). Due to the above 

reasons, one common method in the coupled model is to determine the time step using 

explicit–explicit schemes (Zheng et al., 2017, Lei and Zang, 2010): 

  dcrfcr ttt  ,min  (6.46)

where Δtfcr and Δtdcr are the minimum time steps in the continuum and discontinuum 

domains, respectively. Another method was proposed by Elmekati and El Shamy (2010) 

who uses the predictor–corrector method, a two staged iterative process. As the time 

step in the discontinuum domain is usually much smaller than the one in the continuum 
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domain, the algorithms may allow different time steps in each domain. Therefore the 

time step in the main routine is expressed as: 

 
K

m
ntntt dcrfcr   (6.47)

where n is an integer, m is the particle mass and K is the contact sprint stiffness. 

In this present study, an explicit–implicit time integration scheme was adopted 

in the coupled analysis. In the continuum domain, the iterations are unconditionally 

stable due to the advantages of the explicit method. Therefore, time steps need to be 

determined in the DE domain. Also, the calculation is consistent in the combined model 

because the results of the DE simulation can be transmitted to the EFG domain at each 

time step. In this context, important information such as the contact detection on the 

interface should not be ignored, so that the node and particle statuses are evaluated 

explicitly while executing major iterations. To discretise the governing equations, 

Newmark-β algorithms and the central difference method are adopted in both the 

continuum and discontinuum domains. 

6.3.2 Partial difference solution 

Difference method is used to discretise the time domain so that the EFG–DE 

approximation is implemented properly. Motion governing equations relating to 

accelerations, velocities and displacements resulted from the force acting on the two 
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domains are updated at each time step. However, the calculation methods for the 

equations of the two domains are slightly different. In the EFG domain, the governing 

equations are solved based on a matrix, because the domain is continuous as shown in 

Figure 6-6 (a). In the DE domain, stiffness matrix dimensions may vary in different 

steps because some particles may not in contact as shown in Figure 6-6 (b). Therefore, 

the contact state needs to be determined at the end of each step. It is computationally 

expensive to compute a stiffness matrix at each loop. This is why the method in the DE 

domain usually focuses on individual particles. It avoids excessive iterations of the 

stiffness matrix. In the EFG domain, the nodes are numbered sequentially and the 

displacement, velocity and acceleration are obtained in matrices, denoted as U , U  and 

U , respectively. In the DE domain, the displacement, velocity and acceleration are only 

calculated based on individual discs such as iu , iu  and iu  respectively, because discs 

contact is subject to change at each time step increment. 
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Figure 6-6. Schematic illustrating EFG–DE domains: (a) EFG domain with 

difference nodes, and (b) DE domain with particles at contact. 

Table 6-1 presents the sets of governing equations used in the EFG and DE 

domains respectively. These equations demonstrate the motions occurred in a time step 

increment from t to t+Δt. The two sets of equations are tabularised to compare the 

difference in conception when computing element motions. In the continuum domain, 

an external force matrix is the major concern; in the discontinuum domain, internal 

disc–disc contact forces are computed to provide the force–displacement relationship. 

In the EFG part, the Taylor expansion is used to obtain the recurrence relationship at 

the end of the time increment. In contrast, as a central difference method in the DE part, 

it is required to determine velocity at t+
2

t
 which is known as the average speed during 

a time step. Extra rolling behaviour at disc i, such as rolling angle i , rolling velocity 

i , and rolling acceleration i , was added in the DE analysis. 
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Table 6-1. Governing equations to depict motion of elements in EFG and DE domains. 1 

 EFG domain DE domain 

Displacement
KM
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(6.48) 
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Force External force Eqs. (6.27-6.28) 
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Where in Eq. (6.48) the parameters are respectively expressed as: 

 KKK   (6.59) 

 2
2

1

2

t
   (6.60) 

 
t


2

2

2
  (6.61) 

 1
1

2
3 


  (6.62) 

two constants 1 =1.5 and 2 =1.6 are used as Newmark parameters. 

6.4 Example problems 

Two example problems were examined and solved using the EFG–DE method, 

aiming to validate the coupling method. The first example problem is to assess a 

cantilever beam which is subjected to a disc acting at the end of the beam; the 

second one is developed based on the Nine Disc Test (Cundall and Strack, 1979). 

The two example problems consider multi-body interactions, but involves less 

number of nodes/discs than in other large-scale problems. This means the 

computational costs are affordable, and this special settings satisfy the aim of 

developing and validating the EFG–DE method. 
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6.4.1 Example problem 1 

This section presents a study on the dynamic interaction occurred between a disc 

and a cantilever beam. The EFG–DE method is applied to the example problem 

and the numerical results are compared with the analytical solutions developed for 

the same example problem. 

6.4.1.1 Problem description 

In this example problem, the cantilever beam is fixed to a rigid surface and 

the disc sits on the other end, as shown in Figure 6-7.  The beam measures 1 (L) × 

0.2 (H) × 0.025 (D) m. The material density of the beam is ρb=2,000 kg/m³. The 

radius of the disc is r=0.05 m and its density is ρd=1,000 kg/m³. It was assumed 

that the material of the beam exhibits linear elastic behaviour with the Young’s 

modulus E=2.1 108 Pa and Poisson ratio =0.3, and that the disc material is 

simulated with the linear contact model with kn=ks=106 N/m.  
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Figure 6-7. Configuration of a disc and a cantilever beam 

In the approximation, the beam is discretised by a node arrangement of 

20×4. The node grid is refined by a 4×4 Gauss quadrature scheme. At time t=0, 

the beam is in equilibrium and its upper-right boundary is in contact with the disc 

edge (no overlap or deformation). The disc centroid sits at a small distance Δ=10–

3 mm from the beam end, to ensure that the centroid falls inside the boundary of 

the beam. When t increases, the disc goes down gradually and penetrates the 

boundary of the beam until equilibrium is reached.  

6.4.1.2 Termination condition  

The termination condition was determined in terms of the move of the disc 

centroid. The centroid tends to move opposite to the rigid surface when the beam 

is bent downward. Where the projection of the centroid falls out of the boundary 
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of the beam, the interaction between the disc and beam becomes instable and the 

approximation tends to be less accurate. To determine the moment when the 

centroid projection moves out of the boundary, the vertical displacement of the 

end of the beam and the disc centroid is captured and plotted against time as shown 

in Figure 6-8. Where the two displacement values disagree, the corresponding time 

signals the disc falling off. It is shown that the time point is t=0.1431 s where the 

falling-off occurs. It is noteworthy that excellent agreement is obtained between 

the two displacement curves before the time point is reached, demonstrating the 

stability of the simulation. 

 

Figure 6-8. Displacement profile for the end of the beam and the centroid of the 

disc. 

6.4.1.3 Model validation 

In this section, the numerical results are compared with the analytical solutions 

obtained for the same example problem. The problem was solved in a plane stress 
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to Euler–Bernoulli beam theory, the axial stress, 11 , and the deflection of the 

beam, wx, are respectively expressed as: 

 
I

y)xL(P 
11  (6.63) 

 
EI

)xL(Px
)x(w

6

32 
  (6.64) 

where (x, y) is the coordinate of the cross section of interest, and Im is the moment 

of inertia of the beam.  

The axial stress σ11 profiles at two cross sections I at L1=0.3 m and II at 

L2=0.5 m as shown in Figure 6-7 are obtained. For the simulation results, the axial 

stress at the same cross sections are captured. But, due to the beam acting without 

damping, the results where the beam is in its minimal acceleration t=T/4, are used. 

The results are presented in Figure 6-9. The axial stress is plotted as a function of 

the vertical depth y for both the simulation and analytical results. At either of the 

cross sections, excellent agreement between the simulation and analytical results 

is obtained. Similar agreement is obtained for the deflection profile of the beam, 

as presented in Figure 6-10. The results agreement verifies the capability of the 

EFG–DE model in simulating the dynamic response of the beam. Furthermore, the 

orthogonal basis function was used in the iterations and this function avoids the 

occurrence of the ill-conditioned problem discussed in Section 1. Similar 

advantage in simulation effectiveness is brought through by the uses of the 

explicit–implicit algorithm and the penalty method. 
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Figure 6-9. Comparison of σ11 in numerical and analyticsal solutions in different 

sections 

 

Figure 6-10. Comparison of the beam’s deflection between numerical and 

analytical solutions 
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6.4.1.4 Stress distribution along the cantilever beam 

When the beam is subjected to a dynamic vibration, the contact forces acting on 

the boundary change over time. The results of the contact forces are provided in 

Figure 6-11. In the figure, four critical time steps are marked up: t=0.001, 0.05, 

0.1, and 0.143 s, which are labelled as points (a), (b), (c), and (d) respectively. It 

is shown that the contact force gradually increases with time at the early stage of 

the test. At t=0.05 s where the contact force equals the gravity force, the 

acceleration becomes zero, and negative where the contact force exceeds the 

gravity. In the meantime, the disc velocity gradually decreases, but the contact 

force grows at a similar gradient. The contact force attains the peak value when 

t=0.1 s, and at this moment, the disc attains the maximum displacement and 

penetration into the beam. After the peak point, the penetration releases gradually 

and the contact force does down. At t=0.143 s the contact force is less than the 

gravity and the disc falls off the end of the beam. 

 

Figure 6-11. Development of disc–segment contact force over time 
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6.4.2 Example problem 2 

Example problem 2 modifies the Nine Disc Test (Cundall and Strack, 1979). In 

the original test, two pairs of plates were used to compress an assemblage of 9 

discs. The plates were assumed ideally rigid. In example problem 2, the plates are 

allowed to deform to avoid the assumption. In this present study, the Nine Disc 

Test is employed because of the following reasons: i) This test is designed to 

record the single contact force occurred between the discs and walls, enabling a 

smooth gauging profess. ii) The test can capture the effects of the change of plate 

on the contact force. And, iii) the test uses a small number of discs and facilitates 

contact detection and simulation in a short time period. 

6.4.2.1 Problem description 

An assemblage of nine discs is sandwiched by two pairs of plates, as shown in 

Figure 6-12. The setup remain the same as in Cundall and Strack (1979), except 

the left-hand side plate which is replaced with a deformable strip plate. This plate 

dimensions are 50 (L1) × 300 (H) × 1 (D) units, which enables a plane stress 

problem. As per Cundall and Strack (1979), no physical unit is provided to the 

properties of the elements, but a number. Specifically, the radii are 50 units, the 

density is 1000 units, and the normal and shear stiffness are kn=ks=1.35×109 units 

for the linear contact model used for the discs. In the DE domain, the object wall 

is not assigned with physical properties such as a Young’s modulus, Poisson ratio 

or density. However, in the EFG domain (i.e., the strip plate), the material 

properties are specified in order to constitute a motion. These properties include 

Young’s Modulus of 2.1 1014 units (to create a very rigid plate), Poisson’s ratio 
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of 0.3, density of 2000 units. The plates were assumed to be undamped (c=0 in 

Eqs. (6.24), and fixed at the top and bottom boundaries.  

 

 

 

 

 

 

 

Figure 6-12. Nine disc test with a deformable boundary 

6.4.2.2 Model validation 

In the simulation, the assembly of the nine discs is subjected to the bi-axial 

compression provided by the two pairs of the plates. Two tests were performed. In 

Test 1, the enclosed facets travel at a velocity of 0.12 units, and stop after 40 cycles. 

In Test 2, the velocity reduces to 0.04 units, but the facets continue to move until 

the 120th cycle. As per Cundall and Strack (1979), both simulations continue to the 

150th cycle, and use a time step Δt=0.01525 units and damping coefficient of 0.1. 

The continuous domain uses the cubic spine function and a 3×11 nodal 

arrangement. In this arrangement, the discs fall into the choices of disc–segment 

and disc–point contact, depending on the disc locations as discussed in Figure 6-4.  
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The normal contact force at point C (i.e., the contact of discs 4 and 5) 

throughout the loading process is examined. The results of the contact force are 

presented in Figure 6-13. The results include the simulations provided by the 

EFG–DE method based on MATLAB, DEM based on PFC, and the simulations 

in Cundall and Strack (1979). The EFG–DE results agree with the results of the 

other two simulations, verifying the capability of the coupling method in 

approximating the dynamic response occurred between the continuum and 

discontinuum domains. A slight discrepancy between the EFG–DE simulation and 

the other two simulations is observed in Test 1 where the facets stop stressing the 

discs. This discrepancy is probably attributed to the deformation of the plates.   

 

Figure 6-13. Normal force at contact C versus simulation cycle 

determined by different simulation methods.test 

00E+00

05E+06

10E+06

15E+06

20E+06

25E+06

30E+06

0 50 100 150

N
or

m
al

 f
or

ce
 a

t c
on

ta
ct

 C

Simulation cycle

Cundall and
Strack

DEM

EFGM-DEM

End of loading in Test 1
End of loading 
in test 2

Test 1

Test 2



Chapter 6 
 

234 
 

6.4.2.3 Error discussion 

The deformability of the plates influences the displacement of the discs. The 

vertical displacement of disc 4 calculated by the EFG–DE method and DEM 

method is presented in Figure 6-14. In the figure, the EFG–DE results show that 

disc 4 oscillates in y direction after the 20th cycle. This suggests that the contact 

forces in y direction are not in equilibrium in the course of the test. The changing 

contact force is related to the deformation of the plate which is used as the 

boundaries. Based on the penalty method, Eq. (6-22) gives rise to a small 

difference in the displacement of the top and bottom boundaries. This is because 

the boundary condition was only approximately satisfied. Consequently, the 

deformation of the beam is not perfectly symmetrical. The asymmetric problem 

nests in the floating numbers used in the matrix. This error accumulates in 

simulations. For example, the displacement of the discs increases with time as 

shown in Figure 6-14. In the test performed by Cundall and Strack (1979), the 

plates were assumed rigid and the simulations ignored the disc displacement and 

contact force changing. This assumption is tolerable for a short term of simulations 

(i.e., 20 cycles) but not a longer term. This is mainly because of the algorithm used 

to calculate the contact force between disc–segment as specified in Eq. (6.40). The 

orientation of the segment largely affects the force values and directions. In this 

context, a termination can be applied to the dynamic process when the 

displacement in y-direction of disc 4 is sufficiently large, e.g., Δy>1e–5. 
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Figure 6-14. The vertical displacement of disc 4 obtained using the EFG–DE 

method and DEM method. 

The simulation error can be discussed by examining the deformation of the 

nodes on the boundary. The nodes arrangement is provided in Figure 6-15. A total 

of 33 nodes sit along the edge of the plate, and for some representative nodes, the 

displacement in x direction occurred at the 10th and 150th cycles is recorded and 

provided in Table 6-2. The results show that the boundary conditions is well 

satisfied in the coupling work. Specifically a sufficiently small displacement 

occurs at nodes 1, 11, 12, 22, 23 and 33. However, as discussed above on the 

simulation error, the actual displacement is not symmetric, but the difference is 

marginal.  
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Figure 6-15. Boundary nodes of the beam. 

 Table 6-2. Displacement at boundary 

Node 

Displacement (x) 

10th cycle 150th cycle 

1 –5.426E–13 –3.905E-11 

11 –5.426E–13 –3.905E-11 

12 –2.522E–13 –1.825E–11 

22 –2.522E–13 –1.825E–11 

23 –5.099E–13 –3.715E–11 

24 –6.561E–07 –4.625E–05 

25 –1.686E–06 –1.197E–04 

31 –1.686E–06 –1.197E–04 

32 –6.561E–07 –4.625E–05 

33 –5.098E–13 –3.715E–11 
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6.4.2.4 Influence of Young’s Modulus 

To gain an insight into the effects of plate deformation on the discs contact force, 

additional EFG–DE simulations were performed on scenarios with varying 

Young’s modulus for the plate of interest. Where the modulus is small, a large 

contact overlap tends to occur, and the results likely become unstable which is 

called contact buckling (Nakashima and Oida, 2004). In this circumstance, as 

pointed out by Kanto and Yagawa (1990), numerical oscillation may occur at 

contact because of the discontinuous velocity and acceleration when enforcing 

geometric compatibility. To prevent a severe contact overlap, Young’s modulus 

was trialled and assigned with E=2.1×1014, 2.1×1013, 2.1×1012, and 1×1010 units 

for the plate. Similarly, scenarios Tests 1 and 2 were performed to examine the 

effects of the simulation cycles on the results. The results of the normal force at 

contact C obtained in the two tests under the varying plate stiffness conditions are 

presented in Figure 6-16. In either test, the plate stiffness noticeably influences the 

development of the contact force. The higher the wall stiffness is, the greater the 

contact force will be. This relationship is more pronounced in stage two of the 

tests, i.e., the period when the plates stop compressing the assembly of discs. 

Where the plate stiffness is relatively high i.e., E≥2.1×1013 units, the curves 

coincide and approach an equilibrium at the end of the simulation. This trendline 

agrees with the results obtained in the DEM simulation (Figure 6-13). This means 

that the plate stiffness of E≥2.1×1013 units is high enough to satisfy the rigid 

assumption made in the DEM simulation. Where the plate is less stiff, the contact 

force attenuates over time. This is probably caused by the discs moving toward the 

wall segment when it deforms, decreasing the overlap at contact C.  
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Figure 6-16. Relationship between the contact force and the cycles subjected to 

different Young’s moduli 

To gain a further insight into the response of a less stiff plate (i.e., E=1.0×1012 

units), the deformation occurred to the boundary nodes of the plate as shown in 

Figure 6-17 is examined. An enlarged view of the nodes displacement captured at 

the 40th cycle is shown in Figure 6-18. Due to the use of a deformation plate, the 

actual displacement at the wall boundary is not uniform. The central nodes 

displace significantly larger than the ones on the upper and bottom. This 

differential displacement of the deformable plates agrees with the observations 

occurred in the tri-axial tests (Oda, 1972; Fakhimi, 2009). In these tests, the 

samples under compression dilated in the central section of the samples tested.  
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Figure 6-17. Boundary nodes on the plate–discs interface examined for the plate 

deformation. 

 

 

 

 

 

 

 

Figure 6-18. Displacement of the boundary nodes on the plate–discs interface 

recorded at the 40th cycle. 
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6.5 Conclusion 

This paper presents a 2D elastrodynamic EFG–DE method. This coupling method 

is capable of simulating multi-body interactions, in particular the continuum–

discontinuum contact problems. This method uses a transient disc–segment 

contact algorithm for the contact problems and is applied to two example problems. 

This study draws the following conclusions. 

(1) The coupling EFG–DE method is free of finite elements and saves 

computational costs and simulation efficiency. The method is successfully applied 

to the two example problems and verified against the existing analytical and 

approximation results. The method is able to approximate dynamic interaction 

occurred between continuum and discontinuum media. 

(2) This coupling method applies the Newmark-β method and central difference 

method to the continuum and discontinuum domains to solve the dynamic problem 

in a discrete form. Using this implicit–explicit time scheme, the stability condition 

for the combined work is unconditionally satisfied.  

(3) This coupling method develops a transient contact detection algorithm. After 

detecting the valid contact, the contact force can be treated as point load at the 

boundary and integrated as distribution. This feature enables simulations to 

account for deformable boundaries of the continuum and discontinuum media. 

(4) Using the penalty method, the essential boundary condition is well satisfied. 

However, due to an accumulated error during the dynamic process, advanced 

techniques may be required to achieve higher accuracy. 
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Chapter 7  

Conclusions  

7.1 Summary 

Despite the fact that the use of rubber reinforced sand material is becoming more 

popular today, the complexity of soft—rigid material interaction still limits the 

understanding of the granular mechanism. The use of the numerical tool such as 

the DEM promotes the knowledge of granular material behaviour and visualises 

the granular movement such as the material flow and inter–particle contact force 

development. Gaining the knowledge on the soft—rigid particle interaction 

enhances the better application of tyre-reinforced geotechnical materials. To 

achieve this, the research uses a series of different numerical methodologies to 

study the material behaviour in a wide range of aspects. These include important 

material properties and using the selective methods, the material behaviour is 

presented comprehensively. The purpose of the research includes investigating the 

material shear behaviour, the determination of material segregation based on 

colour difference, the influence of material surface roughness from a dynamic 

perspective and combined methodologies with other numerical tools.  

7.2 Research Contributions 

This work contains research contributions in various aspects and they are 

summarised as follow: 
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1) A three-dimensional discrete element model was built to investigate the 

granular behaviour of rubber—sand. Despite the simplicity of linear contact 

mechanism, this model shows an accurate match with the laboratory results. 

The micromechanical material behaviour is thus investigated numerically 

which is impossible to be obtained at laboratory condition. The relocation of 

particle shows a great influence to the macro material behaviour. The 

displacement and rotation of granular materials determines the porosity of the 

material, which leads to the redistribution of contact forces and the change of 

shear behaviour. The visulalization of the numerical results provides a link 

between the micro and macro perspectives, promoting a further understanding 

of the granular material science. 

 

2) A digital image based study is adopted in studying the rubber—sand composite 

segregation. As a matter of fact, despite the widely application of rubber 

reinforced material, the material segregation has not been fully discussed 

which can lead to great heterogeneity due to density difference. The major 

purpose of the study is to reach a better understanding and identification of the 

mixture heterogeneity. Comparing the digital image results from numerical 

and test results, it illustrates the accuracy of the numerical model. The usage 

of digital image also prevails the previous used visual comparison as it 

quantifies the segregation degree. Through converting the colour image into a 

binary picture, the concentration of each material can be easily identified. The 

using digital image processing (DIP) method quantifies density as the most 

influential factors to segregation among other material properties such as 

surface friction, stiffness and damping ratio. With density increases, the 
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material segregation is more likely to occur but it is restricted by the material 

surface roughness.  

 

3) A study on the influence of surface roughness is conducted during a dynamic 

process. A DEM model is developed based on single contact theorem and the 

numerical model is validated with the theoretical model which connects the 

restitution coefficient to the loss of energy. In the model, a single disc is 

allocated with a constant velocity which moves on a roughed surface created 

by a line of discs. In the dynamic process of DEM, a viscous energy dissipation 

behaviour is observed during each contact collision, as opposed to the friction 

induced energy loss. In other words, friction is the material macro behaviour 

which is considered as a reflection of micro contact collisions. Further 

studying on the surface roughness identified that the actual collision angle has 

the most significant influence to the amount of energy loss. 

 

4) A combined numerical method between the DEM and EFG is introduced to 

simulate the contact relationship between rigid—soft material. Two domains 

are created which represent the rigid and soft material by using the DEM and 

EFG, respectively. The advantages of using the EFG includes avoiding the 

volumetric locking and the numerical mesh. In the EFG method, the material 

is represented by a number of scatter nodes while the background cell is 

supported by gauss points. The base function is constructed by using an 

orthogonal weighted function. A Newmark-β method is adopted to solve the 

dynamic equation in the element–domain. To bridge the two different domains, 

the contact force is converted to point loads test and applied at the domain 

boundary by using Dirac delta function. This coupling method illustrates an 
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efficient simulation between soft—rigid materials by considering the 

deformation of the soft domain and it is more advantageous than DEM–FEM 

coupling with the improvement of computer power. 

7.3 Limitation and recommendations for future research 

1) One of the limitations of the DEM based method is the challenge of numerical 

efficiency. As the geotechnical material contains a large number of particles, 

simulating all the material granules is impossible so that a feasible method is 

to scale the particle sizes or to neglect the particles which are insignificant 

regarding their sizes. This is not always realistic but with the improvement of 

the computer efficiency, it is likely to take the real particle number into account 

in the future. 

 

2) The current research takes the disc or spherical shape for 2D and 3D analysis, 

respectively. To restrict the particle’s rotation, a rolling friction parameter is 

introduced. However, the actual shape of the particle varies and it is difficult 

to quantify them in the numerical analysis. Previous researchers used sphere 

clumps or polyhedron in the analysis but it generates other problems. For 

example, a sphere clump still has a point contact with other clumps while the 

polyhedron may induce a larger degrees of freedom which exacerbates the 

numerical efficiency. The best method to solve the problems is still depend on 

the power of the computer which may take the realistic particle shapes into 

consideration. 
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3) The soft–rigid contact relationship is the biggest challenge of using DEM as 

this method considers all particles to be non-deformable. This may lead to an 

unrealistic penetration into soft material due to particle overlap assumption at 

the contact. With the introduction of combining EFG, it is possible to consider 

the soft material deformation but it complicates the numerical calculation and 

more computer power is required. At this stage there is no commercial package 

to combine these two methods and the difficulty to implement the algorithms 

limits its application. A recommendation to address this issue includes either 

to develop a constitutive material relationship between soft and rigid material 

or to increase the computer power to improve the calculation. 
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Appendix:  

Copy of Paper 1 (As published) 
 

Publication: Wang, C., Deng, A. & Taheri, A. 2018. Three-dimensional discrete 

element modelling of direct shear test for granular rubber-sand. Computers and 

geotechnics, 97, 204-216. 

Copy of Paper 2 (In Press) 
 

Publication: Wang, C., Deng, A. & Taheri, A. 2018. Three-dimensional discrete 

element modelling of direct shear test for granular rubber-sand. Computers and 

geotechnics, 97, 204-216. 

 

Copy of Conference Paper 3 (As 

published) 
 

Wang, C., Deng, A. and Taheri, A., 2018, May. Energy Dissipation Due to Surface 

Asperity: A Micro-scale Study. In GeoShanghai International Conference (pp. 

975-983). Springer, Singapore. 
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