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Assessing current and global-change driven behaviour of the semi-arid 

Onkaparinga catchment by means of spatially-explicit simulations of flow, 

sediment and nutrient loads based on the modelling tool SWAT 

ABSTRACT:  

The semi-arid rural Onkaparinga catchment in South Australia is vulnerable to future 

change in climate and land use because of its extreme rainfall patterns and periods of 

drought along with intensive horti-and viticulture. The catchment provides up to 40% of 

the drinking water supply to the metropolitan area of Adelaide and hence the risks of 

eutrophication in the downstream reservoirs are of great concern. Effective 

management of such catchment requires development of a robust model that 

sufficiently represents the diverse land use and climate system of the catchment and 

thus facilitate in improved understanding of spatial and seasonal flow and nutrient 

dynamics.  Hence, to achieve this, the semi-distributed catchment modelling tool SWAT 

(Soil and Water Assessment Tools) was utilised with following objectives: 1) to 

investigate different calibration approaches for enhancing model’s validity, 2) to 

determine the combined effects of future climate and land use change on flow and 

water quality of the Onkaparinga catchment and 3) to better understand the spatial 

nutrient dynamics in the Cox Creek catchment by combining site-specific monitoring and 

spatially-explicit modelling. 

The models developed by means of SWAT resulted in realistic simulations of the unique 

flow conditions of the semi-arid Onkaparinga catchment. Experiments with different 

calibration approaches have shown that multi-site calibration produced better 

simulation results for total nitrogen (TN) and phosphorus (TP) loads than single-site 

calibration, but had no significant effects on results for flow and total suspended 

sediments (TSS) loads. Further analysis revealed a high uncertainty in the simulation 

results of TSS pointing at the necessity of improving the sediment modules in SWAT. 

The multi-sited calibrated model has been applied for future projections of climate and 

land use change to assess their effects on flow and water quality in the Onkaparinga 

catchment. The climate models suggested high uncertainty in terms of seasonally 

varying flow and nutrient loads, however a decreasing trend was observed. The effects 
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of climate change were clearly dominating compared to effects of the projected land 

use change. Prospective simulations of combined effects for the period from 2046 to 

2070 revealed highest decrease in water yield, TN and TP loads by -23.3%, -42.5% and -

49.5%, respectively during the spring season. Results for summer months suggest the 

declines in flow and increase in nutrient concentration, mainly driven by land use 

changes, and hint at potential risks of algal blooms in downstream drinking water 

reservoir. 

An approach that combines both monitoring and modelling for better understanding of 

nutrient dynamics was demonstrated in the Cox Creek catchment. Spatially intensive 

monitoring of flow and nutrients helped to identify the nutrient hotspots and 

established the strong link between market garden and TN and TP concentrations. 

Simulated nutrient export from different sub-basins matches well with field collected 

data for most of the sub-basins except at one, which is highly influenced by farm dam 

regulations. Hence future model efforts can be identified through combined monitoring 

and modelling.  

In summary, this study has highlighted the benefit of utilising spatial data for improving 

the performance of catchment models and identifying model deficiencies. Resulting 

validated models can then serve as credible tools assessing effects of future scenarios 

on flow and water quality in catchments. Such approach provides scientific evidence to 

water resource policy-makers for making informed decisions. 
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Chapter 1: Introduction & Literature Review 

1.1 Setting the scene 

1.1.1 Water pollution problems and effects 

The effects of human population growth are widespread in every aspect of our 

environment including water. Human activities such as intensification of agriculture, 

timber logging, industrialization and urbanization within a catchment are occurring at a 

rate that affects both water quantity and quality of adjacent water bodies. Whilst 

advances in water treatment technology and legislation have greatly reduced the effects 

from point source pollution such as industrial effluents on water bodies, diffuse source 

pollution such as agricultural and urban run-off, is relatively difficult to treat and largely 

counts for sediments and nutrients that have detrimental effects on fresh and marine 

water bodies worldwide (Ekholm et al., 2000; Lotze et al., 2006; Waterhouse et al., 

2012).  

Excess loads of nutrients, especially of nitrogen (N) and phosphorus (P), lead to 

eutrophication in fresh and marine ecosystems (Smith, 2003), which is a global problem. 

In Australia, severe cyanobacteria blooms occurred in the Murray-Darling River system in 

December 1991 and 2009. Australia’s Great Barrier Reef is also at risk from 

eutrophication (Great Barrier Reef Marine Park Authority 2014). In all these cases 

eutrophication can be linked to land use changes, modified hydrologic regimes and extreme 

precipitation events (Young et al., 1996). 

The economic and ecological costs from eutrophication are high as it affects not only 

water use for recreation, drinking, irrigation and aesthetic purposes but also aquatic 

biodiversity. As estimated by Dodds et al. (2009), approximately US$ 2.2 billion are 

annually spent in the US for losses on recreational and drinking water use, waterfront 

real estate, and for the recovery of threatened and endangered species. Similarly, algal 

bloom in Australian freshwater costs the community between AU$180 and 240 million 

every year (Atech, 2000). Hence, world-wide efforts focus on containment of nutrient 

sources in catchments in order to prevent economic and ecological losses, and protect 

critical water resources. 
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The study catchment, Onkaparinga catchment in South Australia, has an intensive mixed 

land uses and feeds into the Mount Bold Reservoir. Furthermore, it is supplemented 

with the pumped water from the River Murray. The water from the Mount Bold 

Reservoir is then transferred to the Happy Valley Reservoir, which is an off-stream 

reservoir that supplies raw water to the largest water treatment plant of South 

Australia. These reservoirs frequently experience seasonal episodes of algal bloom 

events causing a range of water quality challenges including taste and odour problems 

in recent decades (van der Linden and Burch, 2016).  

1.1.2 Catchment management and models 

Successful catchment management mitigates conflicts between ongoing human 

activities and the quantity and quality of water within and downstream of the 

catchment. Monitoring of stream flow and water quality is a key source of 

understanding hydrological as well as physical-chemical processes in catchments and 

are prerequisite for decision making. However, the size of catchments and associated 

costs typically exceed the capacity of water industries and catchment authorities to 

continuously maintain highly frequent and spatially-explicit stream monitoring.  

In recent decades catchment modelling has evolved as a vital complementary approach 

to monitoring that enables integration of otherwise highly fragmented complex data 

and simulate past and future stream flow and nutrient loads across whole catchments. 

Process-based catchment models can determine site-specific hydrology and nutrient 

concentrations based on known causal and empirical relationships represented by mass 

balance equations. Such models are considered to be cost and time effective because of 

their ability to perform long-term simulations of the effects of catchment processes and 

management activities on water quantity and quality (Moriasi et al., 2007). Worldwide, 

different modelling tools are applied to assist programs for improving the water quality 

and ecosystem health at regional, national and continental scales. Examples include the 

EU Water Framework Directive (EU, 2016), the US Geological Survey’s National Water 

Quality Assessment Program (USGS, 2002), and the Reef Water Quality Protection Plan 

in Australia (RWQPP, 2013).   

Overall catchment models can facilitate informed decision-making by providing support 

to: (1) enhance scientific understanding of sources and processes that determine stream 
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flow and contaminants, (2) predict long-term effects on stream flow and contaminants 

under the influence of future environmental, land use and climate changes and finally 

(3) design and adapt management strategies to achieve flow and water quality targets. 

1.1.3 Catchment modelling tools 

Several catchment models have been developed for the simulation of stream hydrology 

and water quality (Johnes, 1996) that are widely used for water resource planning and 

management. These models can be broadly classified as: lumped conceptual models or 

distributed process based models. Lumped hydrologic models simulate a spatially 

averaged hydrologic system, while distributed models rely on the spatial variability of 

model input parameters (Chow et al., 1988; Muttiah and Wurbs, 2002). Many studies 

have suggested that lumped models perform equally or better than distributed models. 

However, the later allows making spatially explicit predictions so that any effects from 

local events on catchments can be assessed at an individual site. Since, distributed 

models are data intensive and computationally complex, semi-distributed process based 

models are widely applied, because they have been shown to have prediction reliability 

even with limited data. These models divide catchments into sub-catchments that are 

further divided into non-spatial discrete hydrologic response units (HRU) based on a 

unique combination of topography, soil and land use. Popular semi-distributed process-

based models include CREAMS (Chemical, Runoff, and Erosion from Agricultural 

Management Systems) (Knisel, 1980), EPIC (Erosion-Productivity Impact Calculator) 

(Williams et al., 1984), HSPF (Hydrological Simulation Program—FORTRAN)(Johansen et 

al., 1984), AGNPS (Agricultural Non-Point Source) (Young et al., 1989), HEC-HMS 

(Hydrologic Modelling System) (U.S. Army Corps of Engineers Hydrologic Engineering 

Center (USACE-HEC), 2000) and SWAT (Soil and Water Assessment Tool) (Arnold et al., 

2012; Arnold et al., 1998). 

These models are driven by large numbers of equations and parameters that simulate 

the observed behaviour of complex catchment systems. The models’ parameter 

complexity often exceeds the availability of measurable parameters. For example, in 

simulating flow, some parameters for soil and groundwater properties are represented 

conceptually or quantified by point scale observations, that do not match the scale that 

is required e.g. for soil hydraulic properties. Hence, these models need to be calibrated 



 
 

5 
 

to identify the optimum parameter values. The goal function of the model calibration 

aims at the best match between predicted and measured outputs such as the daily 

outflow from the catchment. Before calibration, sensitivity analysis is usually carried out 

to identify the most sensitive parameters from the range of different parameters. The 

objective functions are usually statistical test such as minimization of relative error, 

average error or optimization of the Nash-Sutcliffe efficiency or coefficient of 

determination (Moriasi et al., 2007). After successful calibration, the evaluation or 

validation process follows in which the calibrated parameter values are used to 

determine if the objective function is satisfied for an independent validation dataset. If 

the objective function is not met, then the calibration and/or model assumptions may 

be revisited. Therefore, the calibration and validation process are often included to 

evaluate the ability of catchment models to reproduce certain catchment processes. 

1.2 Current state-of-the-art and research gaps 

1.2.1 Model calibration and uncertainty 

Distributed models represent spatial variability of catchments related to land use, 

topography, soil, hydrology and weather information that require many parameters. 

This may cause an over-parametrization of models that reduces the models’ robustness 

(Beven, 2001; Beven and Binley, 1992). 

Appropriate parameter calibration is therefore key for reliable distributed models. Even 

though many studies on distributed models reported satisfactory results by calibrating 

parameters based on only one gauging station, it has been suggested that such ‘single-

site’ approach may not account for the spatial variability of parameters particularly of 

large catchments with heterogeneous spatial properties, and cause inaccurate  spatial 

predictions (Green and van Griensven, 2008; Jha et al., 2006).   

The literature is currently divided whether multi-site or single-site parameter calibration 

produced more reliable simulations. Several authors have demonstrated the superiority 

of multi-site calibration over the single-site calibration (Chiang et al., 2014; Daggupati et 

al., 2015; Moussa et al., 2007; Qi and Grunwald, 2005; Wang et al., 2012), including 

applications of the SWAT for nested and non-nested catchments (Cao et al., 2006; White 

and Chaubey, 2005). In contrast, Khakbaz et al. (2012) and Reed et al. (2004) reported 

no significant improvements by multi-site compared to single-site model calibration. 
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Similar conclusions were drawn by Lerat et al. (2012) after applying four different 

calibration strategies including both single-and multi-site to 187 French catchments. 

They also suggested that future model application requires other sources of data such 

as use of remotely sensed data to constrain model predictions. These findings still raise 

the question whether multi-site calibration really outperforms the single-site 

calibration. 

Model uncertainty is another lasting issue of catchment modelling. Even the most 

sophisticated models cannot represent comprehensively and realistically the complex 

processes of hydrological systems (Haan et al., 1995), but rely on simplified 

assumptions. Hence uncertainty is inherent to hydrological models and uncertainty 

analysis becomes increasingly part of model calibration (Montanari and Koutsoyiannis, 

2012). Previous applications of uncertainty analysis studied solely the model parameter 

uncertainty (Beven and Binley, 1992; Duan Q et al., 1992; Gupta et al., 1998; Vrugt et al., 

2003), without taking into account that uncertainty may also result from model 

structure as well as from measured input and output data such as precipitation and flow 

(Vrugt et al., 2005).  

The following tools have been developed that assess different sources of model 

uncertainty: BATEA (Kavetski et al., 2006), SUFI-2 (Abbaspour et al., 2004) and GLUE 

(Beven and Binley, 1992). However, appropriate characterization and quantification of 

sources of uncertainty in model predictions is still a challenge (Bastola et al., 2011), and 

literature that links various calibration strategies to reduced uncertainty is limited. 

Hence, comparative analysis of different calibration approaches and their role in 

constraining uncertainty can be further investigated to develop a robust model. 

1.2.2 Scenario analysis of future changes 

Changes in climate and land uses greatly influence the catchment hydrology in many 

ways in different physiographic regions of the world. The changes in precipitation and 

temperature directly affect the surface water resulting in severe hydrologic events such 

as floods and droughts. Furthermore, there is growing evidence of link between water 

quality and climate variability (Aldous et al., 2011, Sahoo and Schladow, 2008). 

Schneider and Hook (2010) reported that surface water warmed at an average rate of 

0.045 ± 0.011 °C yr-1 by increasing air temperatures during the period of 1985-2009. 
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Another study conducted in the River Kennet in UK (Wilby et al., 2006) indicated that 

increased temperature and climate variability may increase nitrate and ammonium 

concentrations.  

A study on Prince Edward Island, Canada by De Jong et al. (2008) suggested an increase 

of nitrogen leaching by up to 30% under climate change scenario. The increment in 

temperature and nutrient concentration often results in eutrophication thus degrading 

the water quality (van Vliet and Zwolsman, 2008).  

Similarly land use changes such as increased urbanization, intensive agriculture and 

afforestation and deforestation affects the amount of water, sediments and nutrients 

released from the catchment. Nielsen et al. (2012) demonstrated the significant 

relationship between agricultural land area and nutrient concentrations in adjacent 

lakes in Denmark. Increase in agricultural land could release more nutrients into the 

streams as Tong et al. (2012) found an increment of 4% and 3 % of daily TP and TN 

concentrations respectively.  

Different studies analysed the relative effects of climate and land use change on flow 

and water quality to find variable results. For example, El-Khoury et al. (2015) argued 

that changed land uses may have a greater impact on nitrogen and phosphorus than 

climate change. Furthermore, a study conducted by Tu (2009) revealed the highest 

increase in nitrogen when the combined effects are considered. 

The frequency, duration and intensity of extreme meteorological and hydrological 

events are predicted to increase in future, which affects water resources worldwide as 

suggested by IPCC (Intergovernmental Panel on Climate Change, 2007, 2014. Water 

limited catchments of Mediterranean climate are likely to be more vulnerable to these 

future uncertainties (Giorgi and Lionello, 2008; Piras et al., 2014). Furthermore, future 

changes in land uses driven by socio-economic and environment variability are likely to 

occur. Hence long term assessments of water quality and quantity are required as 

prerequisite for sustainable water resources management, especially in the context of 

future climate and land use change. 

Many Global Climate Models (GCM) have been developed to project the future climatic 

drivers under different emission scenarios of greenhouse gases. Since data resolutions 
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of GCM typically apply to 100 kms, their use for hydrological modelling at a catchment 

scale is limited and hence downscaling is often desired. Downscaled data using dynamic 

and statistical techniques are implemented successfully in different catchments as it 

enables projected climate scenarios to be applied at much smaller scale (Fowler et al., 

2007; Fu et al., 2013; Nunez and McGregor, 2007). 

Hydrological models run with the GCMs are widely used to assess possible future effects 

on water resources from different levels and forms of changes.  After successful 

calibration and validation, these models can simulate responses of catchments to future 

drivers of environmental and climate changes. Simulation results are typically compared 

to baseline data and the relative change in flow and nutrients loads can be quantified 

for the future periods. Most of the studies concentrate on quantifying the effects on 

water quantity due to climate change only. A holistic approach that extends the impact 

assessment on both water quantity and quality under future climate and land use 

changes will help to prepare better for the future challenges. 

1.2.3 Spatially intensive monitoring and modelling for better understanding of nutrient 

dynamics 

Routine monitoring established at the main stream reflects environmental conditions of 

a larger area but fails to identify local sources of pollution (EPA, 1996). The spatial 

dynamics of flow and nutrients fluxes are observed within a catchment due to spatially 

heterogenic catchment characteristics (Gelbrecht et al., 2005; Hamilton and Miller, 

2002; Kroon et al., 2012). Understanding of spatially explicit catchment behaviour are 

often desired by catchment managers and stakeholders for efficient management. 

However, installation of routine monitoring at different locations within a catchment is 

very expensive and often, simulations from models calibrated at one site is extrapolated 

in other sites for further assessment. As discussed earlier, such model simulation is not 

free from the inherent uncertainty. Hence, it is suggested that modelling simulation 

needs to be supported from spatial monitoring of flow and water quality (Davenport et 

al., 2008; Poudel et al., 2013). 

Some studies have demonstrated the application of short term spatially intensive 

monitoring by sampling local sites such as tributaries for identifying local hotspots and 

revealing relationships between land use and nutrient dynamics (Eyre and Pepperell, 



 
 

9 
 

1999; Miles et al., 2013). Furthermore, these data can be used to identify the model 

discrepancies and recommend future modification for model enhancement (Baulch et 

at., 2013). 

The Cox Creek catchment, one of the sub-catchments of the Onkaparinga catchment in 

the Adelaide Hills of South Australia, is considered to provide disproportionate amount 

of nutrients to the Onkaparinga River (Fisher, 2005). Identifying locations of critical 

loads of contaminants assists in targeting management effort rather than random 

placement of mitigation measures. Hence modelling supported by spatial monitoring 

may be prerequisite for efficient management of this catchment. 

1.3 Research Objective and significance 

In the context of the current changing environment, the need to address the research 

gaps as highlighted above are very pertinent to sustainable water resource 

management. This study is an attempt to contribute knowledge to improve the model 

robustness and its application in assessment of future effects of climate and land use 

changes in water resources of a Mediterranean catchment. For this research, the eco-

hydrological model SWAT has been utilised in the Onkaparinga catchment of South 

Australia. The fundamental processes of SWAT and basic descriptions of the catchment 

regarding its location and characteristic are detailed in Chapter 2. 

This PhD study in the Onkaparinga Catchment was carried out with the following aims 

and research outcomes: 

1. To develop and calibrate a model of the Onkaparinga catchment that 

successfully predicts flow as well as loads of sediments and nutrients to the 

downstream Mt Bold reservoir using the SWAT modelling tool. 

A review provided by Gassman et al. (2007) has highlighted that most SWAT 

applications are limited to modelling only catchment hydrology. Further studies on 

modelling related water quality parameters by SWAT can enhance the credibility of the 

model. 

2. To determine calibration strategies that improve distributed catchment models. 
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Spatially distributed physical process based models are complex in nature with a large 

number of parameters and hence increased model uncertainty. Two calibration 

approaches for SWAT were tested to demonstrate whether considering internal 

measurements results in better model performance as well as uncertainty reduction in 

simulation of monthly flow and loads of total suspended sediments (TSS), total nitrogen 

(TN) and total phosphorus (TP).  

3. To assess effects of future climate and land use changes on the Onkaparinga 

catchment within a Mediterranean climate zone.  

Catchments in Mediterranean climate are particularly vulnerable to climate and land 

use changes. This study aims to improve knowledge on the response behaviour of 

Mediterranean catchments to ongoing changes driven by demographic and economic 

development. Resulting models and findings of this study will serve as computational 

tools and as a guide for local catchment managers to devise strategic management 

plans and policy.  

4. To investigate the importance of complementary site-specific monitoring and 

modelling approaches in understanding the nutrient dynamics in the Cox Creek 

catchment. 

The Cox Creek catchment is a mixed land use systems and is considered to be one of the 

impaired sub-catchment of the Onkaparinga catchment. Identification of nutrient 

hotspots in the mixed land use system is very difficult from the routine monitoring often 

situated at the catchment outlet. A short spatially intensive sampling was conducted to 

determine if any relationship exists between land use and nutrient concentrations. 

Furthermore, simulations from the SWAT model were evaluated against the field 

collected data to identify if both of them confirm the nutrient hotspots and to evaluate 

the reasons if disparities occur. 

1.4 Thesis structure 

This thesis is presented in five chapters.  A general introduction highlighting the 

research aims and objectives is provided in the first chapter followed by discussions in 

the next three chapters. The final chapter sums up the general conclusion and provide 

recommends for future work.  
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Chapter 1: The current scientific knowledge of water quality problems and use of 

hydrological and water quality models to inform decisions are discussed in this chapter. 

Furthermore, the aims and objectives of the research are elaborated. 

Chapter 2: Distributed catchment models suffer from over-parameterization and 

increased uncertainty in the model simulation. Single and multi-site calibration 

approaches for SWAT were investigated to determine better approach for increasing 

model performance as well as reducing uncertainty. 

Chapter 3: The improved model was then used to assess the potential effects of climate 

and land-use change on flow and nutrient (TN and TP) loads of the Onkaparinga 

catchment in the next 50 years. 

Chapter 4: This chapter highlights the results from spatially explicit monitoring and 

modelling in the Cox Creek catchment, one of the sub-catchments of the Onkaparinga 

catchment.  

Chapter 5: The conclusion from these experiments are summarized with 

recommendations and directions for future modelling work in this basin. 
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CHAPTER 2: 

Assessing SWAT models based on single- and multi-site 

calibration for the simulation of flow and nutrient loads in the 

semi-arid Onkaparinga catchment in South Australia 
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a  b  s  t  r  a  c  t

Distributed  catchment  models  such  as SWAT  (Soil  and  Water  Assessment  Tool)  are  widely  used to assess
catchment  characteristics  and  facilitate  informed  decisions  for  safeguarding  water  quantity  and  quality.
This  study  applied  SWAT  to  simulate  monthly  stream  flow and  loadings  of  total  suspended  sediment
(TSS),  total  nitrogen  (TN) and  total  phosphorus  (TP)  for five  monitoring  stations  within  the Onkaparinga
catchment,  and  tested  the  models’  performance  based  on single-site  or  multi-site  calibration.

The  results  showed  that  multi-site  calibration  did  not  improve  simulations  of  flow  and  sediments  com-
pared  to  single-site  calibration.  However,  simulation  results  for TN and  TP loads  improved  in both  rural
and  urban  sub-catchments  of this  catchment.  Uncertainty  analysis  revealed  that  there  is  high  uncertainty
in  model  simulation  of  TSS  by  both  strategies.  The  study  has  demonstrated:  (1)  the  capability  of SWAT
to  simulate  realistically  the  extreme  flow  conditions  of the semi-arid  Onkaparinga  catchment;  (2) the
benefit  of local  monitoring  data  for more  realistic  simulations  of  nutrient  loads  by means  of  the  multi-site
calibration  of  SWAT  as  pre-requisite  for scenario  analysis  of spatially-explicit  management  options.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Successful catchment management seeks compromises
between conflicting land-uses and the quantity and quality
of water received by downstream reservoirs. Process-based dis-
tributed catchment models such as SWAT prove to be useful tools
for achieving this task (Daloğlu et al., 2012; Karamouz et al., 2010;
Mateus et al., 2014; Nielsen et al., 2013).

The rural Onkaparinga catchment in South Australia feeds into
the Mount Bold and Happy Valley reservoirs that contribute to the
drinking water supply for the metropolitan area of Adelaide. It is not
only affected by the arid climate of South Australia with high vari-
ability of rainfall and periods of drought but also by intensive horti-
and viticulture. Since eutrophication of the reservoirs is a major
concern for safe drinking water supply, improved understanding
of spatial and seasonal nutrient dynamics within the catchment
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is prerequisite for preventative eutrophication management. This
knowledge can be gained from application of distributed catchment
models that take spatial heterogeneity explicitly into account.

Distributed catchment models require careful model calibration
and validation procedure. Several authors have demonstrated the
effectiveness of multi-site calibration over the single-site calibra-
tion centring solely on data of the catchment outlet (Chiang et al.,
2014; Daggupati et al., 2015; Moussa et al., 2007; Qi and Grunwald,
2005; Wang et al., 2012) including successful applications of SWAT
for nested and non-nested catchments (Cao et al., 2006; White and
Chaubey, 2005). In contrast, some authors have reported no signif-
icant improvements by multi-site compared to single-site model
calibration (Khakbaz et al., 2012; Reed et al., 2004). A similar conclu-
sion was  reached by Lerat et al. (2012) after applying four different
calibration strategies including both single-and multi-site to 187
French catchments. Given these conclusions, it raises a question
whether multi-site calibration really outperforms the single site
calibration.

Hence this study aimed to identify if there is any significant
improvement in SWAT model performance by multi-site cali-
bration strategies at both watershed outlet and interior points.
Compared to previous studies that focused on only stream flow
comparisons, this study also highlights the comparison between
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Fig. 1. The Onkaparinga Catchment. (a) Delineation map  and monitoring stations. (b) Land use map.

the two calibration strategies for simulation of loadings of sus-
pended solids, total nitrogen (TN) and total phosphorus (TP) of the
Onkaparinga catchment by means of SWAT.

2. Materials and methods

2.1. Study area and data

The Onkaparinga catchment is situated east of Adelaide with an
area of 535 km2 and an elevation range from 10 to 700 m.  This study
applied to an area of 317 km2 upstream of the Houlgraves gauging
station of the Onkaparinga catchment (see Fig. 1a).

The Mediterranean climate of South Australia is characterized
by dry summers and winter rainfall between 522 mm in the coastal
and 1088 mm in upland areas (Westra et al., 2014). Mixed land uses
of the catchment include horti-, viti- and agriculture, where farm
dams typically serve for irrigation. A pipeline from the River Murray
releases water into the Onkaparinga River downstream of Hahndorf
(see Fig. 1a) that contributes approx. 87% (19952 ML)  of the total
flow during the dry season (Nov–April) and approx. 24% (45310 ML)
during the wet season at Houlgraves.

The geological formation of the western part of the catchment
consists of permeable sandstone and quartzite while the eastern
part is underlain by less permeable siltstone and metasediments
(Zulfic et al., 2002). The subsoil is clayey in texture on the lower
slopes and flats of the catchment and may  prevent water drainage.
The hill slopes have clayey to sandy subsoils mainly utilized for
horticulture and viticulture.

A Shuttle Radar Topography Mission (SRTM)- derived Digital
Elevation Model (DEM) with a resolution of 30 × 30 m (Geoscience
Austrlalia, 2011) was used to delineate the catchment and calculate
important topographical parameters such as slope, channel dimen-
sions and overland field length where a 1:100,000 land-use map of
2003 (see Fig. 1b) was  used. The base data of the soil map of 2005
provided by the Department of Water, Soil and Natural Resources
of South Australia has been compiled at scales of 1:50,000 or
1:100,000. The data attributes of the soil were extracted from the
Australian Soil Resource Information System (ASRIS, 2013). Ten
meteorological stations within and adjacent to the catchment were
used. Since there were missing data for all the stations from the
publicly available website of the Bureau of Meteorology, daily SILO

Fig. 2. Conceptual diagram of the multi-site and single-site approaches for modelling the Onkaparinga catchment by SWAT.
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Table 1
Initial ranges and final calibrated SWAT’s parameter values of single-site model and 5 individual models of the multi-site calibration.

No. Parameters Initial range Single-site Lens Hahn Cox Ald Houl

1 Curve number for mositure conditon II, r CN2.mgt (−0.2, 0.2) −0.18 −0.05 −0.06 −0.07 −0.22 −0.065
2  Baseflow alpha factor, v ALPHA BF.gw (0, 1) 0.72 0.44
3  Ground water delay time, v GW DELAY.gw (20, 450) 20.73 342.5 40.8 396 35.43
4  Threshold water depth in the shallow aquifer for return flow, v GWQMN.gw (0, 5000) 1283.5 3656 1644 1010 489.9
5  Groundwater ‘revap’ coefficient, v GW REVAP.gw (0.02, 0.2) 0.17 0.15 0.08 0.11 0.17 0.15
6  Threshold depth of water in the shallow auifer for revap to occur, v REVAPMN.gw (0, 500) 156 80 217.05
7  Maximum canopy storage, r CANMX.hru (−0.3, 0.3) 0.07 0.2 −0.07
8  Soil evaporation compensation factor, v ESCO.hru (0.72, 1) 0.88 0.93 0.76 0.8 0.85 0.91
9  Manning’s n value for the main channel, v CH N2.rte (0, 0.3) 0.23 0.12 0.13
10  Effective hydraulic conductivity in main channel, v CH K2.rte (5, 130) 64 38.9 12.3 101 26.35
11  Baseflow alpha factor for bank storage, v ALPHA BNK.rte (0, 1) 0.7 0.055 0.08 0.69 0.13 0.49
12  Soil available water capacity for first layer, r SOL AWC(1). sol (−0.2, 0.2) 0.08 −0.016 0.05 −0.14
13  Saturated hydraulic conductivity for first layer, r SOL K(1). sol (−0.1, 0.1) −0.09
14  Moist bulk density for first layer, r SOL BD(1). sol (−0.15, 0.1) −0.05 0.03 −0.07 −0.038
15  Surface runoff lag time, v SURLAG.bsn (0, 12) 2.5 10.5 10.3
16  Deep aquifer percolation coefficient, v RCHRG DP.gw (0, 1) 0.025 0.04 0.004 0.06 0.06 0.04
17  Plant water uptake compensation factor, v EPCO.hru (0.8, 1) 0.9 0.82
18  Channel cover factor, v CH COV2.rte (0, 1) 0.5 0.42
19  Channel erodobility factor, v CH COV1.rte (0, 1) 0.2 0.25
20  Linear parameter for sediment re-entrained in channel, v SPCON.bsn (0.0001, 0.001) 0.0004 0.0001 0.0003
21  Exponential parameter for sediment re-entrained in channel, v SPEXP.bsn (1, 2) 1.2 1.1
22  USLE equation support practice factor, v USLE P.mgt (0, 1) 0.028 0.027 0.03 0.006 0.002 0.002
23  USLE soil erodibility factor, r USLE K(1). sol (−0.3, 0.3) −0.06 −0.11 −0.07 0.15 −0.04 −0.1
24  Peak rate adjustment factor for sediment routing in main channel, v PRF BSN.bsn (0, 2) 0.9
25  Organic nitrogen enrichment ratio, v ERORGN.hru (0, 5) 3.9 4.4 4.17 4.8 4.8 4.3
26  Nitrogen percolation coefficient, v NPERCO.bsn (0, 1) 0.17 0.66 0.57 0.3 0.9
27  Denitrification exponential rate coefficient, v CDN.bsn (0, 3) 2 2.6 2.25 0.35 1.5 0.65
28  Denitrification threshold water content, v SDNCO.bsn (0, 1) 0.48 0.3 0.43 0.74 0.6 0.9
29  Phosphorus percolation coefficient, v PPERCO.bsn (10, 17) 16.4 13.4 15 10.9
30  Phosphorus soil partitioning coefficient, v PHOSKD.bsn (100, 200) 149.9 148 122.4 159.8 183 193
31  Organic phosphorus enrichment ratio, v ERORGP.hru (0, 5) 2.7 1.7 49 4.4 3.1 1.3
32  Phosphorus sorption coefficient, v PSP.bsn (0.01, 0.7) 0.62 0.08 0.22 0.35 0.14

r means the existing parameter value is multiplied by (1 + a given value); v means the parameter is replaced by a given value. Blank represents that the parameter was not sensitive for that model and hence not considered
during  calibration. Parameters for flow (1–17), total suspended sediments (18–24), total nitrogen (25–28) and total phosphorus (29–32) are listed.
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Fig. 3. Comparison of monthly flow simulation during calibration (2000–09) and validation (2010–13) for single-site and multi-site approach. (a–e) and (f–j) represents the
results  for single and multi-site approach respectively. Performance criteria results are provided for validation period only.

(Scientific Information for Land Owners, 2015) patched dataset
were used.

The South Australian Water Corporation provided daily flow
data and biweekly to monthly data of TN and TP from flow weighted
composite samplers monitored at five gauging stations (see Fig. 1a)

within the catchment. Flow data from the River Murray Pipeline
were available on daily basis while grab sample data of water qual-
ity was available in weekly to monthly time steps. This contribution
was treated as point source data.
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Fig. 4. Comparison of monthly total nitrogen (TN) simulation during calibration (2000–09) and validation (2010–13) for single and multi-site approach. (a–e) and (f–j)
represents the results for single and multi-site approach respectively. Performance criteria results are provided for validation period only.

2.2. Application of SWAT

Arc SWAT 2012 (Winchell et al., 2013) was used for catchment
modelling that is physically based and semi-distributed, and suits
continuous, catchment-scale simulations. It operates on a daily
time step and is designed to assess the impact of different man-
agement practices on water, sediment and nutrient transport in

catchments (Arnold et al., 1998). It uses the SCS curve number (Soil
Conservation Service, 1972) and the Penman-Monteith equation
(Monteith, 1965) to estimate runoff and evapotranspiration respec-
tively. For routing the flow, the variable storage routing method was
applied. Planting and harvesting schemes were scheduled based on
potential heat units. The harvest only operation was  used for pas-
ture, vineyard and orchard because these plants are not killed as
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Fig. 5. Comparison of monthly total phosphorus (TP) simulation during calibration (2000–09) and validation (2010–13) for single and multi-site approach. (a–e) and (f–j)
represents the results for single and multi-site approach respectively. Performance criteria results are provided for validation period only.

the crops. For the crops the ‘harvest and kill’ operation was used
while for forest ‘kill/end of growing season’ was used. Fertilization
and irrigation was set to be default.

The model has been designed for simulating monthly flow, total
suspended solids (TSS), total nitrogen (TN) and total phosphorus
(TP). A two year warm-up period was used which allowed enough
time for the model to avoid the effects of the initial state conditions

such as soil water content. Data from 2000 to 2009 was used for
calibration and data from 2010 to 2013 was used for validation.
All four years of validation data was  available for each stations but
only 3 years from 2007 to 2009 and 8 years from 2002 to 2009 of
calibration data was  available for the Cox Creek and the Hahndorf
station respectively. It should be noted that the years 2000–2009
fall in the ‘Millennium drought’ period in Australia with prolonged
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Fig. 6. Annual streamflow and precipitation for Lenswood (a) single-site calibration (b) multi-site calibration.

period of dry conditions (Bureau of Metorology, 2016). For all of
the rainfall stations the year 2002, 2006–2008 and 2012 had below
annual average rainfall.

2.3. Calibration and validation procedure

A single-site and a multi-site calibration approach has been
applied to identify a model for the Onkaparinga Catchment that
suits best for scenario analysis. The performance between these
calibration approaches has been assessed by comparing simulated
with observed output data. The single-site approach was solely cal-
ibrated by data from the outlet station of the catchment, i.e., at
Houlgraves. The resulting model was further evaluated at four inte-
rior stations during the calibration and validation time periods as
shown in Fig. 2.

The multi-site calibration according to Moussa et al. (2007) and
Lerat et al. (2012) has been applied to four interior and the out-
let station of the catchment. The model was first calibrated for the
three head water catchments individually to obtain the parameter
sets �1, �2  and �3  for Lenswood, Cox Creek and Aldgate respec-
tively. Next the model was calibrated for Hahndorf (�4) keeping the
parameter set �1  fixed. Finally the Houlgraves model (�5) was
calibrated keeping all four parameter sets fixed for their respec-
tive sub-catchment. Hence multi-site calibration strategy used here
gained benefits not only from the increased number of data but
also the increased degree of parameter freedom compared to the
single-site calibration. As such practices are common in hydrologi-
cal modelling (Andersen et al., 2001; Lerat et al., 2012) comparative
studies, effect of the number of parameters being varied is not
considered in this study.

Parameters of SWAT models are varied at different spatial lev-
els: HRUs, sub-basins and basin. Since sub-catchments may  have
different basin characteristics, assigning the same basin parameter
values to the whole catchment may  limit the calibration process. In
order to allow each sub-catchment to have its specific basin param-
eter values and to avoid the limitation of calibration process, the
above mentioned methodology has slightly been modified. Instead
of fixing the parameter set as discussed above, we  used the simu-
lated flow and nutrient loadings obtained from that parameter set
as input for the downstream station. For e.g., the output resulted
from the parameter set �1  at Lenswood is used as an input for the
downstream Hahndorf station and so on as shown in Fig. 2. In this
way the basin parameter value obtained at the upstream station
is not subjected to further modification while calibrating for the
downstream station. Same number of initial parameter and their
ranges were used to initiate the calibration at each of the station.

Model calibration and uncertainty analysis for both approaches
were carried out by the semi-automated Sequential Uncertainty
Fitting (SUFI-2) algorithm (Abbaspour et al., 2004) that uses a global
search procedure through Latin Hypercube sampling. It estimated
optimum parameter ranges and global sensitivity analysis for sim-
ulating the outputs: flow and loads of TSS, TP and TN for consecutive
iterations. It was also used for estimating uncertainty in the model
by means of the P-factor and the R-factor. The P-factor represents
the percentage of observed data bracketed by 95% prediction uncer-
tainty (95 PPU) and R-factor calculates the average width of the 95%
uncertainty band divided by the standard deviation of correspond-
ing observed data.

The sequential calibration of the variables suggested by Santhi
et al. (2001) was  performed wherein the flow was calibrated first
and then followed by TSS, TN and TP. After successful calibration of
flow, the flow parameter ranges were kept constant and subsequent
calibration of TSS parameter was  performed and so on. Finally a
simultaneous calibration for the four variables were allowed using
the parameter ranges obtained for each of the variable. Here, the
best-fit parameter set that resulted in maximum objective function
(Nash–Sutcliffe Efficiency in this case) was selected as the cali-
brated parameter set. Initial ranges of thirty two parameters that
were used for calibrating the four output variables and the best-fit
values are presented in Table 1.

The coefficient of determination (R2), Nash–Sutcliffe Efficiency
(NSE) (Nash and Sutcliffe, 1970) and percent bias (PBIAS) (Gupta
et al., 1998) were used for evaluating the model performances as
follows:
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|
∑
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Table 2
Calibration result of single-site and multi-site calibration approach for flow (m3/s), total suspended sediment (TSS, tons/month), total nitrogen (TN, kg/month) and total
phosphorus (TP, kg/month).

Gauging Stations Area (km2) Performance criteriaa Calibration period

Single-site calibration Multi-site calibration

Flow TSS TN TP Flow TSS TN TP

Lenswood 16.9 R2 0.73 0.07 0.37 0.21 0.73 0.12 0.56 0.35
NSE  0.7 0.06 0.34 0.2 0.68 0.1 0.55 0.34
PBIAS 8.1 39.3 32.4 −3.8 −25.8 −62.7 0 −1.7

Hahndorf 222.1 R2 0.79 0.32 0.41 0.4 0.8 0.23 0.69 0.61
NSE  0.78 0.3 0.39 0.4 0.74 0.15 0.55 0.6
PBIAS −14.7 −26.5 23.5 −0.9 −31.4 −119.6 35.5 −19

Cox  Creek 10.4 R2 0.77 0.17 0.33 0.17 0.81 0.27 0.19 0.32
NSE  0.76 −2.54 0.2 0.13 0.78 0.16 0.13 0.22
PBIAS 4.7 −221.9 55.9 49.2 −23.8 −46.9 39.5 49.3

Aldgate 8.17 R2 0.7 0.38 0.04 0.29 0.65 0.37 0.6 0.3
NSE  0.64 0.36 −0.1 0.25 0.62 0.25 0.2 0.2
PBIAS −27.3 −13.1 34.1 −30.1 −23 −27.8 63 31

Houlgraves 317.3 R2 0.85 0.25 0.33 0.36 0.88 0.24 0.2 0.5
NSE  0.84 0.2 0.25 0.33 0.82 0.01 0.2 0.4
PBIAS −8.9 −32.7 36.7 21.8 −19 −86.4 26 24

a Coefficient of determination (R2), Nash–Sutcliffe Efficiency (NSE), and percent bias (PBIAS) are model performance criteria.

where, Y is a variable (e.g., flow, TSS), m and s are measured and sim-
ulated value respectively, i is the ith measured or simulated data, n
is the number of data points and Ȳ represents the average value of
the variable.R2 indicates strength of linear relationship between the
observed and simulated values. It ranges from 0 to 1 with 1 indicat-
ing the perfect model. NSE is a normalized statistic that determines
the relative magnitude of the residual variance (“noise”) compared
to the measured data variance (“information”) (Nash and Sutcliffe,
1970). NSE indicates how well the plot of observed versus simulated
data fits the 1:1 line. It ranges between −∞ and 1, with NSE = 1 being
the optimal value. PBIAS indicates whether the simulated data is
larger or smaller compared to observed counterparts. Positive val-
ues show model underestimation bias and negative values shows
model overestimation bias with 0 being the optimal value.

The model performance was considered satisfactory when R2

and NSE were greater than 0.5 and PBIAS ranged between ±25%
for flow, ±55% and ±70% for sediments and nutrients respectively
(Moriasi et al., 2007). These high ranges for the nutrients are due
to the greater uncertainties in nutrient data associated with errors
in stream flow measurements and sample collection, storage and
analysis (Harmel and Smith, 2007).

3. Results and discussions

As the number of the gauging stations within the catchment
increases, it is assumed that these additional data lead to improved

models. Here we compared the single-site and multi-site calibra-
tion strategies to find out if this assumption is right.

3.1. Model performance for single-site calibration

The single-site approach was applied to calibrate the model for
the outlet station at Houlgraves and to validate it for the 4 upstream
stations. The performance statistics of this model for monthly flow,
TSS, TN and TP during the calibration period are provided in Table 2.
NSE of simulated flow at the outlet and upstream stations ranged
from 0.64 to 0.84 and 0.69 to 0.87 which is well above the sat-
isfactory criteria as recommended by Moriasi et al. (2007) during
the calibration and validation periods, respectively. Similar results
were achieved by Saha et al. (2014) using SWAT for flow simulation
of the semi-arid Australian catchment. This suggests that the model
can sufficiently take into account of hydrological characteristics at
different spatial levels. Even though it achieved the criteria for sat-
isfactory model performance, it underestimated most of the peak
flows while low flows were well simulated for all stations except at
the outlet where they were slightly overestimated (see Fig. 3a–e).

However, the model did not result in satisfactory simulation of
sediment and nutrient loadings at the outlet during both calibra-
tion and validation period as represented by different quantitative
statistics. Validation results at the interior stations were similar
except for the Hahndorf station during the validation period. The
unsatisfactory result for peak loadings (see Figs. 4 and 5a–e) may
have been caused by the underestimated peak flows.

Table 3
Summary of the uncertainty analysis for two calibration strategies for validation period.

Stations Performance Criteria Single-site calibration Multi-site calibration

Flow TSS TN TP Flow TSS TN TP

Lenswood P-factor 0.31 0.52 0.46 0.42 0.31 0.56 0.58 0.54
R-factor 0.27 5.24 1.49 4.27 0.76 11.57 1.71 4.36

Hahndorf P-factor 0.27 0.44 0.71 0.58 0.25 0.29 0.71 0.83
R-factor 0.35 1.99 1.54 2.19 0.94 3.22 1.34 2.45

Cox  P-factor 0.58 0.71 0.48 0.46 0.42 0.54 0.58 0.38
R-factor 0.39 4.35 1.21 1.46 0.25 1.82 1.08 1.04

Aldgate P-factor 0.18 0.33 0.43 0.21 0.14 0.43 0.77 0.64
R-factor 0.24 1.08 0.59 1.93 0.23 5.85 1.58 3.26

Houlgraves P-factor 0.54 0.46 0.58 0.58 0.38 0.15 0.63 0.54
R-factor 0.42 7.34 1.79 2.79 0.67 3.63 0.97 0.88
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Fig. 7. Observed and 95% prediction uncertainty (95 PPU) of flow and TN loadings for validation period at Houlgraves.

The model performance did not meet the satisfactory criteria
for simulation of TN and TP loadings at the Aldgate station. Graph-
ical comparison shows unmatched timing of the event compared
to the observed time series. Since most of the catchment is domi-
nated by the pasture and rural settings, the urban characteristic of
the Aldgate may  not have been sufficiently reproduced. The under-
estimation of TN and TP loadings for the Cox Creek catchment may
be explained by the market gardens known to have high nutrient
losses. This sub-catchment loses 5.5 kg/ha and 0.77 kg/ha of TN and
TP annually which is highest for any sub-catchments within the
Onkaparinga catchment.

3.2. Model performance for multi-site calibration

As the single-site calibration did not perform well for sediment
and nutrient loadings the multi-site calibration was deployed to
investigate possible improvements. The performance statistics at
the outlet and the interior stations are provided in Table 2 and rep-
resented in Figs. 3, 4 and 5f–j. Overall this approach led to improved
nutrient simulation at both outlet and upstream stations compared
to single-site calibration. Contrarily, the flow results were slightly
lowered with NSE values ranging from 0.62 to 0.82 and 0.7 to 0.84
during calibration and validation period respectively. Results for
the sediment loads improved only for the Cox Creek sub-catchment
where the PBIAS from −221.9 was reduced to −46.9 which is within
the range of a satisfactory criteria. This site has the lowest average
annual TSS loading of 0.09 ton/ha and hence the overestimation
was significantly reduced as indicated by the USLE practice factor
(USLE P) of 0.006 compared to 0.028 by the single-site calibration

(Table 1). This value represents the ratio of soil loss with a spe-
cific support practice to the corresponding loss with up-and down
slope culture. A sedimentation pond and a wetland system have
been established at Cox Creek between 2004 and 2006 in order to
reduce sediment and nutrient loads. This is reflected in the model
by a decreased USLE P value resulting in more realistic sediment
loads during both calibration and validation. However, we could
not reduce further the USLE-P value for Hahndorf as it decreased
the performance of TN and TP simulation.

From the statistics summarised in Table 2 and results dis-
played in Figs. 3–5 it becomes obvious that TN and TP simulations
have improved for the Lenswood, Hahndorf and Aldgate sub-
catchments. The urban characteristics of the Aldgate is well
represented by the multi-site calibration strategy, and hence the
timing of measured nutrient loading matched well. Houlgraves
which receives output from the calibrated upstream models also
has improved nutrient simulations whereby the observed peak
magnitude exceeding 2500 kg/month of TN was underestimated.

Even though model performance has improved compared to the
single-site calibration, the quantitative statistics indicated that the
nutrient loading simulations are poor. This poor result arose mainly
from the underestimated loadings during the high flow events
mainly for the Cox Creek and Aldgate. This suggests that improved
data regarding nutrient management in these sub-catchments
should be incorporated for future model improvement.

Flow simulation were satisfactory for both strategies but still we
can see the model overestimation and underestimation through-
out the flow time series in Fig. 3 for most of the sub-catchments.
We analyzed how the rainfall-runoff translation occurs in reality
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and that simulated by the model. Fig. 6a and b for Lenswood sta-
tion reveal that the same amount of rainfall did not translate into
approximately same amount of observed stream flow as recorded
in years 2003 and 2009. Both of these years had similar average
annual precipitation and follow after the dry years 2002 and 2008.
Contrarily the model translated almost similar stream flow for same
amount of rainfall as shown in Fig. 6a and b. In semi-arid watersheds
rainfall events are of short duration, high density and very local
summer thunderstorms (Nie et al., 2011; Simanton et al., 1996).
Since curve number method in SWAT uses averaged daily rainfall
and does not consider the duration and intensity of rainfall, this
may  explain why peak flows were underestimated by the model in
our catchment which agrees with other studies conducted in the
semi-arid catchment (Niraula et al., 2012).

3.3. Model uncertainty analysis

Model simulation generally involves three sources of uncer-
tainty: structural uncertainty, parameter uncertainty and input
uncertainty. We  used SUFI-2 to quantify the total uncertainty by
estimating the P-factor and the R-factor. A P-factor should be close
to 1 which means all observations are included by the prediction
uncertainty, and an R-factor is generally desirable at a value of <1.5
(Abbaspour et al., 2015). These values were calculated for each of
the station using the final calibrated parameter ranges obtained
for the single-site and multi-site calibration strategy as provided in
Table 3 for the validation period.

Comparatively the single-site calibration approach has nar-
rower uncertainty for flow simulation as indicated by low R-factor
and high P-factor (Table 3). On the other hand, multi-site calibra-
tion constricted the uncertainty of the model simulation of TN and
TP. The 95 PPU band of TN and TP simulation by multi-site cal-
ibration brackets greater than 50% of observed data for most of
the stations. Further a higher uncertainty during peak period of TN
simulation is more evident for single-site calibration strategy as
shown in Fig. 7c-d for the Houlgraves station. The TSS simulation by
SWAT had high uncertainty for both strategies as reflected by high
R-factors. As reported by Abbaspour et al. (2007), Chahinian et al.
(2011) and Yesuf et al. (2015) model uncertainty can be attributed
to poor data and model structure error. However, in this study we
did not further investigate sources of uncertainties of our models.

4. Conclusions

(1) The model based on single-site calibration achieved better sim-
ulation results for flow while the models based on multi-site
calibration performed better simulations for TN and TP loads.
Even though the response of flow to precipitation is much
unpredictable in this semi-arid catchment, the model perfor-
mance for flow simulation is considered good.

(2) Simulation results for TSS loads were unsatisfactory and char-
acterized by high uncertainty by models either with single-site
or multi-site calibration. However, multi-site calibrated models
reflected local catchment processes more realistic by utilizing
site specific data and hence performed better, as demonstrated
for the Cox Creek and Aldgate station.

(3) SWAT proved to be a suitable modelling tool for the arid
rural Onkaparinga catchment for simulating flow and nutrient
loadings. Model improvement by application of the multi-site
calibration described here gives more confidence for further
application in spatially-explicit scenario analyses of future land
use changes and global warming.
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Daloğlu, I., Cho, K.H., Scavia, D., 2012. Evaluating causes of trends in long-term
dissolved reactive phosphorus loads to Lake Erie. Environ. Sci. Technol. 46,
10660–10666.

Geoscience, Austrlalia, 2011. SRTM-derived 1 Second Digital Elecation Models
Version 1.0. http://www.ga.gov.au/metadata-gateway/metadata/record/gcat
72759.

Gupta, V.K., Sorooshian, S., Yapo, P.O., 1998. Toward improved calibration of
hydrologic model: multiple and noncommensurable measures of information.
Water Resour. Res. 34, 751–763.

Harmel, D.R., Smith, P.K., 2007. Consideration of measurement uncertainty in the
evaluation of goodness-of-fit in hydrologic and water quality modeling. J.
Hydrol. 337, 326–336.

Karamouz, M.,  Taheriyoun, M.,  Baghvand, A., Tavakolifar, H., Emami, F., 2010.
Optimization of watershed control strategies for reservoir eutrophication
management. J. Irrig. Drain. Eng. 136, 847–861.

Khakbaz, B., Imam,  B., Hsu, K., Sorooshian, S., 2012. From lumped to distributed via
semi-distributed: calibration strategies for semi-distributed hydrologic
models. J. Hydrol. 418–419, 61–77.

Lerat, J., Andréassian, V., Perrin, C., Vaze, J., Perraud, J.M., Ribstein, P., Loumagne, C.,
2012. Do internal flow measurements improve the calibration of
rainfall-runoff models? Water Resour. Res. 48.

Mateus, M., Almeida, C., Brito, D., Neves, R., 2014. From eutrophic to mesotrophic:
modelling watershed management scenarios to change the trophic status of a
reservoir. Int. J. Environ. Res. Public Health 11, 3015–3031.

Monteith, J.L., 1965. Evaporation and the environment, the state and movement of
water in living organisms, XIXth Symposium. Cambridge Univeristy Press,
Swansea.

Moriasi, D.N., Arnold, J., Van Liew, M.,  Bingner, R.L., Harmel, R.D., Veith, T.L., 2007.
Model evaluation guidelines for systematic quantification of accuracy in
watershed simulations. Trans. Am.  Soc. Agric. Eng. (ASAE) 50, 885–900.

Moussa, R., Chahinian, N., Bocquillon, C., 2007. Distributed hydrological modelling
of  a Mediterranean mountainous catchment—model construction and
multi-site validation. J. Hydrol. 337, 35–51.

Nash, J.E., Sutcliffe, J.V., 1970. River flow forecasting through conceptual models:
Part I A discussion of principles. J. Hydrol. 10, 282–290.

Nie, W.,  Yuan, Y., Kepner, W.,  Nash, M.S., Jackson, M.,  Erickson, C., 2011. Assessing
impacts of Landuse and Landcover changes on hydrology for the upper San
Pedro watershed. J. Hydrol. 407, 105–114.

Nielsen, A., Trolle, D., Me,  W.,  Luo, L., Han, B.-P., Liu, Z., Olesen, J.E., Jeppesen, E.,
2013. Assessing ways to combat eutrophication in a Chinese drinking water
reservoir using SWAT. Mar. Freshw. Res. 64, 475–492.

http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0005
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0005
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0005
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0005
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0005
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0005
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0005
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0005
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0005
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0005
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0005
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0005
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0005
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0005
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0005
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0005
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0005
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0005
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0005
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0010
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0010
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0010
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0010
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0010
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0010
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0010
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0010
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0010
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0010
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0010
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0010
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0010
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0010
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0010
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0010
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0010
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0010
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0010
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0010
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0010
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0010
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0010
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0010
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0015
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0015
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0015
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0015
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0015
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0015
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0015
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0015
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0015
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0015
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0015
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0015
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0015
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0015
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0015
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0015
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0015
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0015
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0020
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0020
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0020
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0020
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0020
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0020
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0020
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0020
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0020
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0020
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0020
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0020
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0020
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0020
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0020
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0020
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0020
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0025
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0025
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0025
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0025
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0025
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0025
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0025
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0025
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0025
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0025
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0025
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0025
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0025
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0025
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0025
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0025
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0025
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0025
http://www.asris.csiro.au/mapping/viewer.htm
http://www.asris.csiro.au/mapping/viewer.htm
http://www.asris.csiro.au/mapping/viewer.htm
http://www.asris.csiro.au/mapping/viewer.htm
http://www.asris.csiro.au/mapping/viewer.htm
http://www.asris.csiro.au/mapping/viewer.htm
http://www.asris.csiro.au/mapping/viewer.htm
http://www.asris.csiro.au/mapping/viewer.htm
http://www.bom.gov.au/climate/updates/articles/a010-southern-rainfall-decline.shtml
http://www.bom.gov.au/climate/updates/articles/a010-southern-rainfall-decline.shtml
http://www.bom.gov.au/climate/updates/articles/a010-southern-rainfall-decline.shtml
http://www.bom.gov.au/climate/updates/articles/a010-southern-rainfall-decline.shtml
http://www.bom.gov.au/climate/updates/articles/a010-southern-rainfall-decline.shtml
http://www.bom.gov.au/climate/updates/articles/a010-southern-rainfall-decline.shtml
http://www.bom.gov.au/climate/updates/articles/a010-southern-rainfall-decline.shtml
http://www.bom.gov.au/climate/updates/articles/a010-southern-rainfall-decline.shtml
http://www.bom.gov.au/climate/updates/articles/a010-southern-rainfall-decline.shtml
http://www.bom.gov.au/climate/updates/articles/a010-southern-rainfall-decline.shtml
http://www.bom.gov.au/climate/updates/articles/a010-southern-rainfall-decline.shtml
http://www.bom.gov.au/climate/updates/articles/a010-southern-rainfall-decline.shtml
http://www.bom.gov.au/climate/updates/articles/a010-southern-rainfall-decline.shtml
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0040
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0040
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0040
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0040
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0040
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0040
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0040
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0040
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0040
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0040
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0040
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0040
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0040
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0040
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0040
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0040
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0040
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0040
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0040
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0040
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0040
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0040
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0040
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0045
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0045
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0045
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0045
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0045
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0045
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0045
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0045
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0045
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0045
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0045
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0045
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0045
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0045
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0045
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0045
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0045
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0045
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0045
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0045
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0045
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0045
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0045
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0045
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0050
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0050
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0050
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0050
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0050
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0050
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0050
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0050
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0050
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0050
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0050
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0050
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0050
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0050
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0050
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0050
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0050
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0050
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0050
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0050
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0050
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0050
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0050
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0055
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0055
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0055
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0055
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0055
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0055
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0055
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0055
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0055
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0055
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0055
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0055
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0055
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0055
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0055
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0055
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0055
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0055
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0055
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0055
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0055
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0055
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0060
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0060
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0060
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0060
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0060
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0060
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0060
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0060
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0060
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0060
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0060
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0060
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0060
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0060
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0060
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0060
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0060
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0060
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0060
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0060
http://www.ga.gov.au/metadata-gateway/metadata/record/gcat_72759
http://www.ga.gov.au/metadata-gateway/metadata/record/gcat_72759
http://www.ga.gov.au/metadata-gateway/metadata/record/gcat_72759
http://www.ga.gov.au/metadata-gateway/metadata/record/gcat_72759
http://www.ga.gov.au/metadata-gateway/metadata/record/gcat_72759
http://www.ga.gov.au/metadata-gateway/metadata/record/gcat_72759
http://www.ga.gov.au/metadata-gateway/metadata/record/gcat_72759
http://www.ga.gov.au/metadata-gateway/metadata/record/gcat_72759
http://www.ga.gov.au/metadata-gateway/metadata/record/gcat_72759
http://www.ga.gov.au/metadata-gateway/metadata/record/gcat_72759
http://www.ga.gov.au/metadata-gateway/metadata/record/gcat_72759
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0070
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0070
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0070
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0070
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0070
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0070
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0070
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0070
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0070
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0070
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0070
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0070
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0070
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0070
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0070
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0070
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0070
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0070
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0070
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0075
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0075
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0075
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0075
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0075
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0075
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0075
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0075
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0075
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0075
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0075
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0075
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0075
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0075
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0075
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0075
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0075
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0075
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0075
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0075
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0075
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0080
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0080
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0080
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0080
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0080
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0080
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0080
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0080
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0080
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0080
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0080
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0080
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0080
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0080
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0080
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0080
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0080
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0085
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0085
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0085
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0085
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0085
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0085
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0085
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0085
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0085
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0085
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0085
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0085
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0085
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0085
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0085
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0085
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0085
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0085
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0085
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0085
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0090
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0090
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0090
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0090
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0090
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0090
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0090
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0090
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0090
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0090
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0090
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0090
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0090
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0090
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0095
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0095
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0095
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0095
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0095
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0095
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0095
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0095
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0095
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0095
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0095
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0095
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0095
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0095
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0095
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0095
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0095
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0095
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0095
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0095
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0095
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0095
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0095
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0095
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0095
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0095
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0105
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0105
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0105
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0105
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0105
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0105
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0105
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0105
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0105
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0105
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0105
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0105
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0105
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0105
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0105
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0105
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0105
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0105
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0105
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0105
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0105
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0110
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0110
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0110
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0110
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0110
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0110
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0110
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0110
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0110
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0110
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0110
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0110
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0110
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0110
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0110
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0110
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0110
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0110
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0110
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0110
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0115
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0115
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0115
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0115
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0115
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0115
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0115
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0115
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0115
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0115
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0115
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0115
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0115
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0115
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0115
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0115
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0115
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0115
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0120
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0120
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0120
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0120
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0120
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0120
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0120
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0120
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0120
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0120
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0120
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0120
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0120
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0120
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0120
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0120
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0120
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0120
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0120
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0120
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0120
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0125
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0125
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0125
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0125
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0125
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0125
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0125
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0125
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0125
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0125
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0125
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0125
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0125
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0125
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0125
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0125
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0125
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0125
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0125
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0125


M.K. Shrestha et al. / Agricultural Water Management 175 (2016) 61–71 71

Niraula, R., Norman, L.M., Meixner, T., Callegary, J.B., 2012. Multi-gauge calibration
for modeling the semi-arid Santa Cruz Watershed in Arizona-Mexico border
area using SWAT. Air Soil Water Res. 4, 41–57.

Qi, C., Grunwald, S., 2005. GIS-based hydrologic modeling in the sandusky
watershed using SWAT. Trans. Am.  Soc. Agric. Eng. (ASAE) 48, 169–180.

Reed, S., Koren, V., Smith, M.,  Zhang, Z., Moreda, F., Seo, D.-J., 2004. Overall
distributed model intercomparison project results. J. Hydrol. 298, 27–60.

Saha, P.P., Zeleke, K., Hafeez, M.,  2014. Streamflow modeling in a fluctuant climate
using SWAT: Yass River catchment in south eastern Australia. Environ. Earth
Sci. 71, 5241–5254.

Santhi, C., Arnold, J.G., Williams, J.R., Dugas, W.A., Srinivasan, R., Hauck, L.M., 2001.
Validation of the SWAT model on a large river basin with point and nonpoint
sources. J. Am.  Water Resour. Assoc. 37, 1169–1188.

Simanton, J.R., Hawkins, R.H., MohseniSaravi, M.,  Renard, K.G., 1996. Runoff curve
number variation with drainage area, Walnut Gulch, Arizona. Trans. Am.  Soc.
Agric. Eng. 39, 1391–1394.

Wang, S., Zhang, Z., Sun, G., Strauss, P., Guo, J., Tang, Y., Yao, A., 2012. Multi-site
calibration validation, and sensitivity analysis of the MIKE SHE Model for a
large watershed in northern China. Hydrol. Earth Syst. Sci. 16, 4621–4632.

Westra, S., Thyer, M.,  Leonard, M.,  Kavetski, D., Lambert, M., 2014. Impacts of
Climate Change on Surface Water in the Onkaparinga Catchment. Final Report
Volume 1: Hydrological Model Development and Sources of Uncertainty.
Goyder Institute for Water Research, Adelaide,South Australia.

White, K.L., Chaubey, I., 2005. Sensitivity analysis: calibration and validations for a
multisite and multivariable SWAT model. J. Am. Water Resour. Assoc. 41,
1077–1089.

Winchell, M.,  Srinivasan, R., Di Luzio, M.,  Arnold, J., 2013. ArcSWAT Interface for
SWAT 2009: User’s Guide. Texas AgiLife research and USDA Agricultutal
Research Laboratory, Temple, Texas.

Yesuf, H.M., Assen, M.,  Alamirew, T., Melesse, A.M., 2015. Modeling of sediment
yield in Maybar gauged watershed using SWAT northeast Ethiopia. CATENA
127, 191–205.

Zulfic, D., Barnett, S.R., van den Akker, J., 2002. Mount Lofty Ranges Groundwater
Assessment, Upper Onkaparinga Catchment. Department of Water, Land and
Biodiversity Conservation, South Australia. Soil Conservation Service, section
4:  Hydrology in: National Engineering Handbook. SCS. 1972. Scientific
Information for Land Owners, 2015. http://www.longpaddock.qld.gov.au/silo/
ppd/index.php.

http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0130
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0130
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0130
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0130
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0130
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0130
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0130
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0130
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0130
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0130
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0130
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0130
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0130
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0130
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0130
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0130
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0130
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0130
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0130
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0130
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0130
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0130
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0130
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0135
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0135
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0135
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0135
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0135
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0135
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0135
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0135
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0135
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0135
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0135
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0135
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0135
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0135
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0135
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0135
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0135
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0135
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0135
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0140
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0140
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0140
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0140
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0140
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0140
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0140
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0140
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0140
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0140
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0140
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0140
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0145
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0145
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0145
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0145
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0145
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0145
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0145
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0145
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0145
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0145
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0145
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0145
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0145
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0145
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0145
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0145
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0145
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0145
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0145
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0145
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0145
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0145
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0150
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0150
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0150
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0150
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0150
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0150
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0150
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0150
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0150
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0150
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0150
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0150
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0150
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0150
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0150
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0150
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0150
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0150
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0150
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0150
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0150
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0150
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0150
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0150
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0155
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0155
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0155
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0155
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0155
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0155
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0155
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0155
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0155
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0155
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0155
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0155
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0155
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0155
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0155
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0155
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0155
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0155
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0155
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0160
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0160
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0160
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0160
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0160
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0160
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0160
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0160
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0160
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0160
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0160
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0160
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0160
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0160
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0160
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0160
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0160
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0160
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0160
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0160
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0160
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0160
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0160
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0160
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0160
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0160
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0170
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0170
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0170
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0170
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0170
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0170
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0170
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0170
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0170
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0170
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0170
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0170
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0170
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0170
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0170
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0170
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0170
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0170
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0170
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0170
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0170
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0180
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0180
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0180
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0180
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0180
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0180
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0180
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0180
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0180
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0180
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0180
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0180
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0180
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0180
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0180
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0180
http://refhub.elsevier.com/S0378-3774(16)30046-4/sbref0180
http://www.longpaddock.qld.gov.au/silo/ppd/index.php
http://www.longpaddock.qld.gov.au/silo/ppd/index.php
http://www.longpaddock.qld.gov.au/silo/ppd/index.php
http://www.longpaddock.qld.gov.au/silo/ppd/index.php
http://www.longpaddock.qld.gov.au/silo/ppd/index.php
http://www.longpaddock.qld.gov.au/silo/ppd/index.php
http://www.longpaddock.qld.gov.au/silo/ppd/index.php
http://www.longpaddock.qld.gov.au/silo/ppd/index.php
http://www.longpaddock.qld.gov.au/silo/ppd/index.php
http://www.longpaddock.qld.gov.au/silo/ppd/index.php


 
 

26 
 

 

 

 

 

 

CHAPTER 3:  

Future climate and land uses effects on flow and nutrient loads of 

a Mediterranean catchment in South Australia  

  







Future climate and land uses effects on flow and nutrient loads of a
Mediterranean catchment in South Australia

Manoj K. Shrestha a,⁎, Friedrich Recknagel a, Jacqueline Frizenschaf b, Wayne Meyer a

a University of Adelaide, Australia
b South Australian Water Corporation, Australia

H I G H L I G H T S
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precipitation decreases under future
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• SWAT was applied to assess the ef-
fects of climate and land use change
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• Stream flow and water quality were
significantly altered by future climate
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• Flow decline and nutrient enrichment
were indicated for some summer
months.
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Mediterranean catchments experience already high seasonal variability alternating between dry and wet periods,
and aremore vulnerable to future climate and land use changes. Quantification of catchment response under future
changes is particularly crucial for better water resources management. This study assessed the combined effects of
future climate and land use changes onwater yield, total nitrogen (TN) and total phosphorus (TP) loads of theMed-
iterranean Onkaparinga catchment in South Australia by means of the eco-hydrological model SWAT. Six different
global climate models (GCMs) under two representative concentration pathways (RCPs) and a hypothetical land
use change were used for future simulations. The climate models suggested a high degree of uncertainty, varying
seasonally, in both flow and nutrient loads; however, a decreasing trend was observed. Average monthly TN and
TP load decreased up to−55% and−56% respectively andwere found to be dependent on flowmagnitude. The an-
nual and seasonal water yield and nutrient loads may only slightly be affected by envisaged land uses, but signifi-
cantly altered by intermediate and high emission scenarios, predominantly during the spring season. The
combined scenarios indicated the possibility of decliningflow in future but nutrient enrichment in summermonths,
originating mainly from the land use scenario, that may elevate the risk of algal blooms in downstream drinking
water reservoir.Hence, careful planningof futurewater resources in aMediterranean catchment requires the assess-
ment of combined effects of multiple climate models and land use scenarios on both water quantity and quality.

© 2017 Elsevier B.V. All rights reserved.
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1. Introduction

Projected changes of future climate are likely to affect the availability
of globalwater resources inmanyways. According to IPCC (2007, 2014),
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extreme meteorological and hydrological events can be expected in fu-
ture resulting in more frequent droughts, storms and floods posing
more uncertainty and risk on river catchments worldwide. Water limit-
ed catchments in Mediterranean climate regions experience already
high seasonal variability alternating between dry and wet periods, and
are particularly vulnerable to global climate change (Giorgi and
Lionello, 2008; Piras et al., 2014). Climate projections forMediterranean
catchments in Southeast Australia suggest a decrease in runoff of up to
25% (Chiew andMcMahon, 2002) with serious consequences for catch-
ment management (Chiew et al., 2011; Charles and FU, 2015; Hope et
al., 2015). Furthermore, future changes in land uses driven by socio-eco-
nomic and environment variability are likely to occur. They can lead to
changes in water availability and nutrient loadings in many different
ways. Hence long term assessments of water quality and quantity are
required as prerequisite for sustainable water resources management,
especially in the context of future climate and land use change.

Previous studies on effects of climate and land use changes world-
wide focused mainly on water availability, and only a few studies have
addressed responses of nutrients to future changes (Dunn et al., 2012;
Mehdi et al., 2015). There is growing evidence that surfacewater quality
is directly affected by several climate relatedmechanisms (Aldous et al.,
2011; Sahoo and Schladow, 2008). Molina-Navarro et al. (2014) found
that decreasing runoff magnitudes diminished nitrogen export but in-
creased total phosphorus (TP) loads in a Spanish catchment. Another
study conducted in the River Kennet in UK (Wilby et al., 2006) indicated
that increased temperature and climate variability may increase nitrate
and ammonium concentrations. Moreover, episodic nitrogen peaks due
to the “wash up” of accumulated soil nitrogen are likely as soon as the
drought breaks. A study of two severe drought periods in the river
Meuse, Belgium by van Vliet and Zwolsman (2008) showed, that
water quality had been degraded by algal blooms favoured by changed
water temperatures and nutrient concentrations. Schneider and Hook
(2010) reported that surface water warmed at an average rate of
0.045 ± 0.011 °C year−1 by increasing air temperatures during the pe-
riod of 1985–2009.

Similarly, studies conducted in several river basins of Scotland by
Dunn et al. (2012) concluded that land use changes increased nitrate
pollution. Another study on Prince Edward Island, Canada by De Jong
et al. (2008) suggested an increase of nitrogen leaching by up to 30%.
El-Khoury et al. (2015) argued that changed land usesmay have a great-
er impact on nitrogen and phosphorus than climate change, and are cru-
cial for determining adaptation strategies. Since these studies
demonstrated that climate and land use changes differently affect nutri-
ent release in catchments, the relative impact of these simultaneously
occurring changes is of an interest to know.

Models such as the widely used process-based eco-hydrological
model SWAT (Arnold et al., 1998) are generally used for investigating
potential impacts of climate and land use changes on catchments. This
study applies the SWAT model for the Onkaparinga catchment that
has previously been developed by Shrestha et al. (2016) to carry out
scenario analyses on flow, total nitrogen and total phosphorus loads af-
fected by future climate and land uses. It combines data from six global
climate models (GCM) for intermediate and high emission cases with
likely land use changes simulated over a period of 25 years from 2046
to 2070, a time horizon that is relevant for planning restoration and ad-
aptation strategies. It also analyses the uncertainty in predicted flow
and nutrient loads caused by the choice of GCM and emission scenarios.

2. Materials and methods

2.1. Study area

The studywas carried out within the Onkaparinga catchment situat-
ed 60 km east of Adelaide by modelling an area of 317 km2 upstream of
the Houlgraves gauging station (Fig. 1a). The elevation of this area

ranges from 10 to 700 m and annual rainfall varies between 522 mm
at the coast and 1088 mm in upland areas.

The Onkaparinga catchment is mostly dominated by pasture areas;
however, intensive horticulture and viticulture are located in some of
the western part of the catchment (Fig. 1b). The western part has hill
slopeswith clayey to sandy subsoils and has permeable sandstones suit-
able for orchard and vineyard. While, the eastern part consists of less
permeable siltstone with lower slopes and flats that is clayey in texture
(Zulfic et al., 2002).

2.2. Model set-up

The process-based semi-distributed catchment model SWAT was
used, which can assess the effects of different management practises
on water, sediment and nutrient transport in catchments (Arnold et
al., 1998). A 30 m Digital Elevation model (DEM) was obtained from
Shuttle Radar Topography Mission (SRTM). A 2003 land use and soil
map of 2005 were sourced from Department of Water, Soil and Natural
Resources of South Australia. Meteorological data were obtained from
SILO (Scientific Information for Land Owners, 2015) patched dataset.

This study used the SWATOnkaparinga catchmentmodel developed
by Shrestha et al. (2016) for simulation ofmonthlyflow, TNand TP load-
ings. It was demonstrated that the multi-site calibration outperformed
the single-site calibration in simulating nutrient loadings and hence
this multi-site calibrated model was selected for this climate change ef-
fect study. However, it was observed that the organic N loadingwas not
reproduced reasonably and themodel was further calibratedwhich im-
proved both organic N and TN loads. Performance during calibration
(2000–2009) and validation (2010−2013) period for this improved
model is provided in Table 1 and figure in Supplements. To understand
the impacts of climate change on natural characteristic of the catchment
only, the contribution of River Murray derived water was omitted from
the calibrated Onkaparinga model. This model then was used for run-
ning climate change scenarios.

2.3. Future climate data and model simulation

Climate projection datasets for different regions of South Australia
were produced by Task 3 of the Goyder Institute ofWater Research Pro-
ject (GIWR, 2015) and is available on SA Climate Ready portal at https://
data.environment.sa.gov.au/Climate/SA-Climate-Ready. This projection
used statistical downscaling techniques called Nonhomogenous Hidden
Markov Model (NHMM) to simulate daily rainfall from global climate
models (GCMS) from the Intergovernmental Panel on Climate Change
(IPCC) Fifth Assessment Report (AR5). These rainfalls were calibrated
at multiple stations in different regions of South Australia. The GCM
grid-scale output of non-rainfall variables were downscaled by using a
weather generator conditional on the weather states and rainfall simu-
lated by NHMM (Charles and Fu, 2015). Fifteen Coupled Model Inter-
comparison Project phase 5 (CMIP5) were chosen for the downscaling
project for South Australia which were further studied to identify the
six ‘best’ GCMS as provided in Table 2. Future emission scenarios
representing two representative concentration pathways (RCP) from
the IPCC AR5 were used to represent possible future greenhouse gas
concentrations whereby RCP 4.5 and RCP 8.5 represents increases in ra-
diative forcing in 2100 relative to preindustrial levels of 4.5 and
8.5W/m2 respectively or simply to put intermediate and high emission
scenarios respectively.

Each of the downscaled GCMs produced 100 stochastic replicates
(realisations) of future projected climate data until 2100 for rainfall
and non-rainfall variables. However, only one realisation for each of
the six climate models was used. The realisation that corresponds to
the median of projected total precipitation amount for the period be-
tween 2006 and 2100 was selected for model simulation.
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2.4. Future land use change scenarios

The Onkaparinga catchment is important for thewater supply of the
metropolitan area of Adelaide and by its unique landscapes, only minor
changes of its land uses are expected in future. As outlined in the
Adelaide Hills Council Development Plan (2016) the current policy em-
phasises controlled development of the catchment by retaining its rural
character. The here proposed land use scenarios consider these policies
alongwith prospective population growth and hence three scenarios of
land use were considered as shown in Table 3. The afforestation scenar-
io consists of two land use changes with increase in forest cover by 40
and 70% respectively termed as frs-40 and frs-70 in expense of pasture.
Similarly the urbanisation scenario included increase of urban area by
50 and 85% refereed as urb-50 and urb-85 respectively. Finally a com-
bined land use scenario (LU) was devised that considers combination
of frs-70 and urb-85 along with double extension of vineyard area.
These changes were implemented by the land use change method of
SWAT at the sub-basin scale. For example, the replacement of pasture
by forest can be considered only if both land uses are present in the
same sub-basin. The double extension of vineyards on agricultural
land applies mainly to the Cox Creek sub catchment and corresponds
with suggestions by Kunhert et al. (2015). The Table 3 summarises cur-
rent and future land use percentages. To be consistent with climate
change scenarios, the land use scenario has been designed for the period
from 2046 to 2070, a time horizon that is relevant for planning restora-
tion and adaptation strategies. Results from different land use change
scenario reveals that urban area contributes to increase in annual flow

and TN losses (see Fig. 2). However, afforestation resulted in small
change in flows and higher losses of TN and TP loads. The LU scenario
shows dominating effects on nutrients from afforestation compared to
the urban areas because of relatively higher percentage of pasture
being replaced to forest coverage.

2.5. Assessment of effects of different scenarios

Three scenarios were implemented to assess the combined effects of
climate and land use on water yield, TN and TP load for the time period
2046–2070.

1) Future land use change with historical climate data from GCMs
called “LU” scenario.

2) Projected climate data under two RCPs with historical land use map
called “CC” scenario and

3) Future climate under two RCPs and future land use data combined
called “CC + LU” scenario.

The calibrated model was run for the historical climate data (1981–
2005) of six global climatemodels, considered as the reference scenario.
This was compared against the flow, TN and TP loads resulting from
model simulation of three future scenarios for a period of 25 years
(2046–2070). The projected deviation (relative change in percentage
between the reference and future scenario) of the three variables for
each climate model was calculated and averaged to be considered as
mean of the climate model ensemble in order to assess the relative

Fig. 1. The Onkaparinga catchment. (a) Location map and gauging stations. (b) Land use map.

Table 1
SWAT calibration and validation result for flow (m3/s), total nitrogen (TN, kg/month) and
total phosphorus (TP, kg/month) loads.

Performance criteriaa Calibration

Flow TN TP

Calibration R2 0.88 0.39 0.41
NSE 0.82 0.37 0.35
PBIAS −17.5 15.1 −20.23

Validation R2 0.89 0.41 0.4
NSE 0.82 0.37 0.36
PBIAS −24.57 −7.46 −12.7

a Coefficient of determination (R2), Nash–Sutcliffe Efficiency (NSE), and percent bias
(PBIAS).

Table 2
Description of six “best” climate models used in study.

Climate
model ID

Climate modelling group Country

CanESM2 Canadian Centre for Climate Modelling and Analysis Canada
CNRM-CM5 Centre National de Recherches Météorologiques/Centre

Européen de Recherche et Foramtion Avancéeen Calcul
Scientifique

France

GFDL-ESM2M NOAA Geophysical Fluid Dynamics Laboratory USA
IPSL-CM5B-LR Institut Pierre-Simon Laplace France
MIROC5 Atmosphere and Ocean Research Institute (The

University of Tokyo), National Institute for
Environmental Studies, and Japan Agency for
Marine-Earth Science and Technology

Japan

MRI-CGCM3 Meteorological Research Institute Japan
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impacts annually, seasonally and monthly. Furthermore, the uncertain-
ty of climate projections from six GCMs was explored to evaluate the
importance of multi-models in impact analysis.

3. Results and discussions

3.1. Future climate effects on precipitation and temperature

Table 4 shows the average annual and seasonal variability of both
precipitation and temperature from multi-climate models in future pe-
riods relative to the baseline (1981–2005). It shows a general trend of
increasing temperature and decreasing precipitation, with more pro-
nounced effects for the later period (2046–2070) under RCP 8.5. Tem-
perature increases in all seasons of both scenarios with the largest
increases in spring and smallest inwinter. Annual average daily temper-
ature is expected to increase by 1.84 °C for 2046–2070 under the high
emission scenario. On the other hand, average precipitation is expected
to decrease both annually and seasonally except for a slight increment
in autumn for 2021–2045 under RCP 4.5. The largest decrease is likely
to occur during the spring up to a −20% change for the later period

under RCP 8.5. The average annual precipitation change varies from
−4.2% to −9.7% under different RCPs and future time periods.

3.2. Effects on water yield

3.2.1. Annual changes
The average annualwater yield is projected to decrease under the CC

scenarios, with stronger declines for RCP 8.5 as shown in Table 5. We
also analysed the projections for 2021–2045 that estimates a decrease
of the average annual water yield by −11.2% and −18.15% for RCP
4.5 and RCP 8.5 respectively (not shown in this paper). This is compara-
ble to the findings from Westra et al. (2014) for the same catchment
using a conceptual hydrological model GR4J that showed −11% and
−16% decrease for the slightly elongated period 2016–2045. The aver-
age decrease for 2046–2070 is slightly higher than the 2021–2045 for
both RCPs and hence only this period was assessed for future effects of
climate (CC), land use (LU) and combined effects of both climate and
land use change (CC + LU) scenarios.

Fig. 3a shows that the CC scenario alone has the largest effect on av-
erage annual water yield with a decrease of up to −20.5% for RCP 8.5.
On the other hand, LU scenario shows a modest increment in water
yield about 0.7% which is comparable to the changes as detected in
the study by El-Khoury et al. (2015). The CC + LU scenario resulted in
a slight decrease of water yield compared to CC scenario alone because
of some increment produced by the future land use change. However,
this decrease of up to −19.5% for RCP 8.5 may result in considerable
concern around the management of water for drinking purposes.

3.2.2. Seasonal changes
The decrease in water yield under the CC scenarios are observed for

all seasons with more pronounced changes in winter and spring that
are, themain flow seasons (Table 5). Comparatively, spring has the larg-
est reduction in water yield by−23.7% which is larger than the annual
decrease. In contrast, the LU scenario shows increase in water yield for
all seasons with the largest increase in autumn of 3.4%. This can be

Table 3
Current and future land use in percentage.

Land uses Current
area
(%)

Environmental
scenario

Development
scenario

Combined
scenario (LU)
(%)

Frs-40
(%)

Frs-70
(%)

Urb-50
(%)

Urb-85
(%)

Forest 7.1 10.3 12.1 – – 12.1
Pasture 57 53.7 51.9 55 54 47
Urban 4.1 – – 6.1 7.8 7.8
Rural 8.6 – – – 7.9 7.9
Vineyard 1.9 – – – – 3.9
Alfa-Alfa 14.9 – – – – 14.9
Orchard 5.7 – – – – 5.7
Agriculture 0.7 – – – – 0.7

– indicates no change in initial cover for different proposed land use scenario.
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Fig. 2.Relative change in percentage on average annual water yield, total nitrogen (TN) and phosphorus (TP) load from different land use change scenarios. Urb represents urban area; Frs
represents forest area; combined represents combination of Urb-85 and Frs-70. The number on the suffix represents percentage by which initial area is increased.
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attributed to the increased forest area coverage at the expense of pas-
ture, which contributesmore base flowduring the summer and autumn
season. The CC + LU scenario projects similar decreases of water yield
as that of CC scenario.

The variability of change in water yield for two major seasons as
projected by the average outputs of six GCMs is displayed in Fig. 4(a,
b) under two RCPs. The CC scenario results in high variation of flow
changes with stronger influence under RCP 8.5. Furthermore, some cli-
mate models result in increased flow represented by dots above the
whisker and is considered outliers. It indicates that a high uncertainty
stems from climate models and impact analysis studies should often
consider ensemble approach as suggested by some authors (Feyen
and Dankers, 2009; van Roosmalen et al., 2007). Similar variation as ob-
served for CC + LU scenario can be attributed to dominance of climate
change effect over land use.

3.2.3. Monthly changes
At monthly time step it is evident from the Fig. 5(a, b) that the LU

scenario is likely to contribute an increase in flow during the period
fromDecember toMay. The projected increase in forest coverage can in-
crease the base flow, while the increase in urban area may increase the
surface flow thus increasing overall flow during this period. However,
decreases inflowdue to CC effects results in decreasedflow for the com-
bined scenarios. It is likely that averagemonthlywater yield decreases is
higher under RCP 8.5 (Fig. 5b) for both CC and CC+ LU scenario, which
may put further stress on already water limited catchment.

3.3. Effects on nutrient loads

3.3.1. Annual changes
The three scenarios indicate a decline of average annual total nitro-

gen (TN) and phosphorus (TP) loads from the catchment and is most
significant for RCP 8.5 (see Fig. 3b and c). Even though the model pre-
dicts a higher water yield by the proposed land use changes, there is a
7.4% decrease of TN loads and a 9.6% decrease of TP loads which can
be attributed to the replacement of pasture areas by forest. Similarly,
the CC scenario estimates up to 24.3% decreases of TN loads and 29% de-
crease of TP loads, a trend that has been further strengthened by the
CC + LU scenario because of cumulative effects.

3.3.2. Seasonal changes
The LU scenario displays a seasonally varied response for nutrient

loads. During winter, significant decreases by −10.7% and −10.6% for
TN and TP respectively are likely to occur that are higher than the annu-
al average loads. Interestingly, both TN and TP loads are projected to in-
crease in the summer dry months which can be attributed to the
increased flow. As with flow, the CC scenario results in an overall de-
crease of nutrient load for all seasons, with the greatest reduction in
spring by−37.9% (TN) and−44.9% (TP) under RCP 8.5. The combined
scenario shows a cumulative effect of decreasing nutrient loads.

The box plot in Fig. 4(c, d, e and f) all shows that there is a little var-
iation in simulated change of nutrient loads among different GCMs for
LU scenario. All GCMs result in a decreased nutrient load though consid-
erable uncertainty exists in projections for both CC and CC+ LU scenar-
ios. However, the variation in TN and TP load has a similar trend, i.e.,
both nutrients have a high variation in winter under RCP 4.5 and
small under RCP 8.5 and vice versa in spring. This again explains why
multiple climate models are required for assessing the modelled
responses.

3.3.3. Monthly changes
The monthly projections in Fig. 5(c, d, e and f) suggest increase in

nutrient loading during dry months from January to February for TP
and extending to April for TN load due to LU change which can be par-
tially attributed to the increased flow. Both TN and TP loads are basically
dominated by dissolved components than the organic components in
summer. The model resulted in increase of mineral phosphorus loads
by up to 10% in January and February. Nitrate being highly soluble can
leach through the soil profile to appear as a ground water contribution
as more forest area resulted in increment in base flow.

However, a significant reduction in nutrient loads up to−11% is ob-
served for the wet months suggesting the decreasing effect of increase
in less agricultural intensive practises such as forest plantations. Fur-
thermore, analysis of sediments loss revealed decreases for all months
which resulted in reduction of loss of sediment attached component
of nutrients.

The effects of CC scenario on nutrient loads is muchmore dominant
than the LU scenario with decreases up to−55% and−56% for TN and

Table 4
Changes in precipitation and temperature under RCP 4.5 and RCP 8.5 scenario (Average of six GCMs ensemble), for 2021–2045 and 2046–2070.

1981–2005 2021–2045 RCP4.5 (RCP8.5)a 2046–2070 RCP4.5 (RCP8.5)a

Average precipitation
in mm

Average daily
temperature in °C

% change in
precipitation

Change in
temperature °C

% change in
precipitation

Change in
temperature °C

Summer (DJF) 84.7 19.5 −9 (−2.5) 0.77 (0.95) −5.8 (−8.8) 1.22 (1.75)
Autumn (MAM) 182 15.2 1.5 (−2.9) 0.85 (1.08) −4.5 (−5.3) 1.29 (1.92)
Winter (JJA) 396.9 10 −0.8 (−3.7) 0.68 (0.87) −5.3 (−6.4) 1.04 (1.57)
Spring (SON) 205 13.9 −13.6 (−12.6) 1 (1.2) −16 (−20) 1.5 (2.14)
Annual 868.6 14.6 −4.2 (−7.8) 0.82 (1.26) −5.5 (−9.7) 1.03 (1.84)

a Figure in brackets are the values for RCP 8.5.

Table 5
Average annual and seasonal changes inwater yield (mm), total nitrogen (TN, kg) and phosphorus (TP, kg) load for future period (2046–2070) and emission scenarios RCP 4.5 (RCP 8.5)a.

Scenarios Summer (DJF) Autumn (MAM) Winter (JJA) Spring (SON) Annual

% change in water yield LU 1.7 3.4 0.5 0.3 0.7
CC −11.6 (−15.6) −9.3 (−15.1) −11.9 (−19.7) −14.3 (−23.7) −12.7 (−20.5)
CC + LU −9.7 (−13.8) −5.8 (−11.5) −11.6 (−18.9) −14.7 (−23.3) −12.2 (−19.5)

% change in TN load LU 10.2 0.4 −10.7 −7.6 −7.4
CC −1.5 (−11.5) −9.8 (−17.7) −16.7 (−22.5) −34 (−37.9) −18.4 (−24.3)
CC + LU 10.9 (−2.1) −11.9 (−20.1) −25.9 (−32.1) −38.9 (−42.5) −24.6 (−30.9)

% change in TP load LU 1.3 −9.6 −10.6 −7.7 −9.6
CC −23.3 (−21.3) −9 (−18.4) −19.2 (−25.8) −41 (−44.9) −22.9 (−29)
CC + LU −19.8 (−19.4) −19.2 (−28.1) −28 (−35.1) −45.5 (−49.5) −30.6 (−37.1)

a Figure in brackets are the values for RCP 8.5.
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TP loads respectively. However, it is to be noted that the change in per-
centage of land use is very minimal as can be seen in Table 3. Further-
more, Fig. 2 suggests clearly the effects of increasing forest area in

reducing nutrient loads. Decreases in nutrient loading during most of
the months can be attributed to decreases in flow and sediment yield
which reduces transportation of the bulk of sediment attached particles
from adjacent land uses to the streams. The impact is far more signifi-
cant for RCP 8.5 compared to RCP 4.5. However, TN increases up to
14% (2.7%) for RCP 4.5 (RCP 8.5) while TP increases by 14% on April
only under RCP 4.5 in dry months. The increase in TP is attributed to
the increase in sediments loads on that particular month even though
the monthly flow has decreased. It confirms with other studies for ex-
ample, Molina-Navarro et al. (2014) that suggest the stronger relation-
ship of sediments and TP loads.

TN increment in summer months despite flow and sediment yield
reduction due to climate change indicates more losses of mineral com-
ponents. This could result from the addition of more fertilisers in the fu-
ture climate scenarios as the model triggered auto fertilisation of
inorganic nitrogen increased to 96.37 kg/ha from baseline of
94.3 kg/ha per annum. Furthermore mineralisation of organic matter
due to increase in soil temperature may accelerate in the future,
which, however cannot be confirmed in this study on seasonal basis.

The combined scenarios show the cumulative effect of both climate
and land use scenario ranging from+19% (+3%) to−57% (−57%) for
TN (TP) under RCP 8.5. This increase is observed on January for TPwhile
TN increases even in February.

A positive relationship was found between monthly nutrient load
and flow (R2 = 0.5 to 0.62 for both TN and TP under different RCPs;
not reported here), hence decreasing flow can explain the decreasing
nutrient loads as less organic materials could be transported from land
to the surface water. Panagopoulos et al. (2011) reached a similar con-
clusion in a Mediterranean catchment in Greece where TN and TP was
dependent on flow magnitude.

4. Conclusion

Themodels SWAT andGCMhave been applied to theMediterranean
Onkaparinga catchment to quantify likely impacts of climate and land
use changes on water flow and nutrient loads during the forecasting

Fig. 3. Relative change on average annual water yield, total nitrogen (TN) and phosphorus
(TP) load from impacts of Climate change (CC), land use (LU) and combination of climate
and land use change (CC + LU) under RCP 4.5 and RCP 8.5.

Fig. 4. Effects of future climate and land use change onwinter and springwater yield (a, b), total nitrogen (c, d) and phosphorus (e, f) under two emission scenarios: RCP 4.5 (upper panel)
and RCP 8.5 (Lower panel). Boxplot represents the relative change in percentage as observed from the ensemble of six global climate models for future climate (CC), land use (LU), and
combination of future climate and land use change (CC + LU).
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period from2046 to 2070. Following conclusions can be drawn from the
results:

1. Results from six GCM suggest that increasing temperature and de-
creasing precipitation in the period 2046 to 2070 will lead to declin-
ing water yield and nutrient loads at both annual and seasonal time
scales. The largest decreases of water and nutrient yield have been
projected for spring with pronounced effects by the high emission
scenario RCP 8.5.

2. The land use scenario resulted in very small increases in flow, but de-
creased nutrient loadings coming from less erodible and lower nutri-
ent input land management.

3. The combined scenario clearly showed that climate change can be
expected to havemore severe impacts on the ecohydrology of catch-
ment than theproposed land uses, but displayed similar trends as the
separately run scenarios.

4. Themodel predictions experienced significant uncertainty caused by
the use of six different climate models. It proved right the ensemble
approach by using six climate models in order to determine reliable
adaptation strategies.

5. Monthly simulations forecasted declining flow and nutrient
loadings for most of the months. In addition, decreased flow accom-
panied bynutrient enrichment during summermonthsmay pose eu-
trophication risk to the downstream reservoir. This finding implies
that future research should extend scenario analyses to the catch-
ment-reservoir scale by linking outputs from the catchment models
to a reservoir models that simulates consequences of catchment
changes for water quality conditions in the downstream Mt. Bold
reservoir.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.scitotenv.2017.02.197.
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Understanding spatial pattern of nutrients across the 

Mediterranean catchment by means of spatially-explicit 

monitoring and modelling 
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Abstract: 

Understanding the spatial heterogeneity of nutrient dynamics in catchments is 

prerequisite for efficient management decisions. However, the option of site-specific 

monitoring by a network of automatic gauging stations within a catchment is very 

expensive. Another practice is the implementation of catchment models calibrated by 

data from a single gauging station, and the simulation of the spatially-variable 

catchment processes, which however may not represent the actual processes 

realistically. In this study, we demonstrate the applicability of spatially intensive 

monitoring and modelling to understand the nutrient dynamics and its relationship 

between local land uses in the Cox Creek catchment in South Australia. Flow, nitrate, 

phosphate, total Kjeldahl nitrogen (TKN), total nitrogen (TN) and phosphorus (TP) and 

dissolved organic carbon (DOC) concentrations were periodically monitored at both 

headwater tributaries and along the main stream for 2 years, complementing the long-

term routine monitoring data at the main stream. The spatially distributed catchment 

model SWAT (Soil and Water Assessment Tool) was applied to simulate site specific flow 

and nutrient loads and further evaluated by the monitored data. The resulting spatial 

monitoring data revealed strong positive relationships between market garden area and 

nutrient dynamics. However, the relationship between DOC and land use could not be 

established. TN and TP export coefficient varied from 0.5 to 6.2 and 0.03 to 0.5 kg 

hectare-1 year-1 respectively within the catchment with the highest loads from one 

particular sub-basin dominated by market garden. Comparison between observed and 

simulated nutrient export coefficient showed similar trend, though the magnitudes 

were not always in agreement. However, the model highly overestimated for one of the 

sub-basins indicating the deficiency in current model structure being used. This 

suggested that the stream linked to huge farm dams, which significantly alters the flow 
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regime and nutrient dynamics must be incorporated in the model structure for 

improvement in model performance. 

Keywords: headwater; land use; nutrient hotspot; routine monitoring; South Australia; 

SWAT.

 

1. Introduction: 

Effective management of non-point 

source pollution benefits from 

knowledge of current and prospective 

catchment condition.  While 

hydrological and water quality 

monitoring is common practice to 

assess actual habitat conditions in 

catchments, modelling tools are 

available to simulate catchment 

properties retro- and prospectively. 

Hence a combination of both 

approaches promises improved decision 

making for sustainable catchment 

management. 

Catchment properties are highly 

complex determined by soils, 

topography, climate and land use 

practices that cause distinct spatial 

variability of water quality conditions 

within a catchment (Gelbrecht et al., 

2005; Hamilton and Miller, 2002; Kroon 

et al., 2012). Routine monitoring based 

on periodic measurements and samples, 

however, is costly and typically 

conducted at a few locations within the 

catchment. Resulting monitoring data 

therefore reflect environmental 

conditions of a larger area but fail to 

identify local sources of pollution (EPA, 

1996). Spatially intensive monitoring by 

sampling local sites such as tributaries 

more frequently may provide 

information suitable for targeting 

management efforts (Eyre and 

Pepperell, 1999; Miles et al., 2013). At 

the same time it may reveal links 

between local land uses and stream 

contamination. Modelling tools are 

widely used to simulate the flow and 

water quality in catchments, and allow 

to predict effects of future management 

efforts (Karamouz et al., 2010; Mateus 

et al., 2014) as well as effects of future 

climate and land use changes (Dunn and 

Post, 2012; El-Khoury et al., 2015). The 

integration of monitoring and modelling 

has been suggested to better 

understand sources and processes of 

degrading stream water quality in 
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catchments (Davenport et al., 2008; 

Poudel et al., 2013).  

This study applied a combination of 

monitoring and modelling to the small 

rural Cox Creek catchment in South 

Australia. It aimed at to: 

1) assess spatial variability of stream 

water quality within the catchment; 

2) identify hot spots for high nutrient 

concentrations;       

3) reveal relationship between local 

land uses and nutrient loads; and 

4) identify mismatches between locally 

measured and simulated data as 

prerequisite for   improving the 

implementation and calibration of 

the catchment model SWAT. A well-

validated model SWAT can then be 

used as tool for scenario analysis on 

impacts of future climate and land 

use changes, and inform strategic 

catchment management. 

 

 

Fig.1: Locations of the 11 field monitoring sites and the dominant land uses of 
corresponding sub-basins in the Cox Creek catchment. 
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2. Materials and Methods: 

2.1 Study area: 

The study was carried out in the Cox 

Creek catchment (CCC), a sub-

catchment of the Onkaparinga 

Catchment, covering an area of 14.80 

km2 as shown in Fig. 1. It has a 

Mediterranean climate of dry warm 

summers and wet winters. The annual 

average rainfall is 1055mm of which 

80% occurs between April and October.  

The CCC has a mixed land use 

comprising of forest (26%), residential 

(27%), pasture (14%), vineyard (16%), 

market garden (14%) and others (3%). 

The soils are dominated by Chromosols 

and Kurosols which are the strong 

texture contrasting soils with high clay 

content in the subsoils. Since 2004 

different mitigation measures including 

sedimentation pond (downstream of 

site 3) and a chain of wetlands (between 

7i and 7o) were established in the 

catchment for nutrient retention (see 

Fig.1). 

 2.2 Field Monitoring and analysis: 

A spatially intensive monitoring of the 

CCC was undertaken for a period of two 

years from 11/2013 to 10/2015. There 

are already four routine monitoring 

stations in the catchment, however all 

of them lie in the main stream. In order 

to capture the spatially heterogeneous 

properties of the basin characteristics, 

eleven monitoring sites (7 on 

headwaters and 4 on main reach) were 

established from headwaters to outlet, 

as shown in Fig. 1.  Two of the 

monitoring sites 7i and 7o at the main 

stream lie close to the already 

established gauging stations. The 

snapshot of flow, nitrate, phosphate, 

total nitrogen (TN) and total phosphorus 

(TP) were captured to complement the 

data from long term monitoring 

stations. Additionally dissolved organic 

carbon (DOC) was sampled as 

monitoring of this parameter has not 

been conducted. Monthly and bi-weekly 

samplings were conducted during the 

dry and wet periods respectively within 

the standard working hours. TN, TP and 

DOC concentrations were analysed for 

one year from July 2014 to June 2015 

with DOC sampled seasonally. 

The OTT MF pro handheld 

electromagnetic flow meter was used 

for measuring the instantaneous 

discharge that has a flow velocity 

measurement range of 0-6m/s. The 

cross-section area of the stream flow is 

measured which then calculates the 
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discharge of the stream. Nitrate and 

phosphate concentrations were 

estimated using the HACH DR 2800 

spectrophotometer following the 

standard procedure in the lab, while, 

samples for analysis of TN and TP were 

sent to the Australian Water Quality 

Centre on the same sampling day. The 

samples were filtered using a 0.45 µm 

syringe filter which is then stored at 4 0 

C for subsequent lab analysis on the 

next day. Because of the high cost for 

DOC analysis we used true colour as 

surrogate for estimating DOC 

concentrations in the streams. A power 

function was identified between colour 

and DOC concentration (n=38, R2=0.9) 

which is then used to convert the unit 

colour measurement to DOC 

concentrations. 

29 field samplings were conducted to 

measure flow, nitrate and phosphate 

and true colour while only 11 samples 

for TKN, TN and TP. DOC samples were 

collected at four occasions to represent 

the seasonal fluctuation. Ranges of 

constituent concentration over the 

sampling period were compared 

between the sub-basins. As flow data 

were measured for each of the sub-

basins a spatial flow-weighted 

constituent concentration was 

calculated to identify the impaired sub-

basins. Furthermore, the relationship 

between particular land use and flow-

weighted concentration were investigated 

at significant level of 0.05 (p < 0.05). 

2.3 SWAT modelling: 

SWAT is a physically based, semi 

distributed, catchment-scale simulation 

model that operates on a daily time step 

and is designed to assess the impact of 

different management practices on 

water, sediment and nutrient delivery 

from the watershed (Arnold et al., 

1998). It requires various 

meteorological, topographical, soil and 

land use input data. A 30x30 meter 

resolution Digital Elevation Model 

(DEM)  derived from a Shuttle Radar 

Topography Mission (SRTM) was used 

(Geoscience Australia, 2011). A 2007 

Land use map of a scale 1:100,000 and 

soil map of 1:50,000 (ASRIS, 2013) was 

used. Relevant management practices 

such as planting, harvesting and 

fertilization use for grapes, pasture and 

market garden were collected from 

literature and Wayne Meyer (pers. 

com.). 

Though there are four gauging stations, 

all of them lie in the main stream and 

hence the most downstream station 
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data that is close to site 7o (See Fig. 1) 

was used for model calibration and 

evaluation in this study. Data from 2009 

to 2015 for flow, nitrate, phosphate, TN 

and TP loads were collected. The 

alternate years 2009, 11, 13 and 15 

served as calibration period and the rest 

for evaluation period. These alternate 

years were selected to represent the 

wet, average and dry period. Semi-

automatic calibration algorithm 

Sequential Uncertainty Fitting (SUFI2) 

method (Abbaspour et al., 2004) was 

used to calibrate the model for 

simulation of flow and nutrient loads. 

The flow was calibrated first, which is 

then followed by nitrate, TN, phosphate 

and TP loads. The daily calibration result 

for flow is satisfactory with NSE values 

of 0.67 and 0.75 during calibration and 

validation period respectively. The 

percent bias (PBIAS) for the nutrient 

results are well under ± 75% (see Table 

1) and hence considered to be 

satisfactory. However, nutrient 

simulations were underestimated as 

represented by positive PBIAS values. 

3. Results and discussions: 

3.1 Flow and nutrient concentration 

distribution: 

The distribution of flow and nutrient 

concentrations in the headwater sub-

basins and along the main stream 

during the sampling period is shown as 

a boxplot in Fig. 2 and tables in 

Appendix C. Sites 3, 7i, 7o and 10 are 

located at the main stream while other 

7 sites are situated in the tributaries as 

shown in Fig. 1.

Table 1: Daily model calibration and validation results 

Performance 
Criteriaa 

Flow 
(m3/s) 

Nitrate 
(kg) 

Phosphate 
(kg) 

Total 
nitrogen(kg) 

Total 
phosphorus(kg) 

Calibration 
R2 0.69 0.1 0.42 0.43 0.23 
NSE 0.67 0.01 0.38 0.4 0.2 
PBIAS -25.1 54.2 53.3 41.7 57.1 

Validation 
R2 0.76 0.16 0.55 0.54 0.37 

NSE 0.75 0.12 0.53 0.52 0.33 

PBIAS -25.4 50.6 47.5 36.2 57.2 
aCoefficient of determination (R2), Nash–Sutcliffe Efficiency (NSE), and percent bias (PBIAS)
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Flows in the tributaries show less 

fluctuation compared to that of main 

stream, however it is to be noted that 

flows at tributaries can increase to 

orders of magnitude in a single rainfall 

event. But after a day or two of the 

event the tributaries do not contribute 

much flow, while a reasonable flow can 

still be observed at the main stream. 

This can be partly attributed to the slow 

releasing sub-surface contributions 

along the main stream with higher 

contribution as the size of the 

catchment increases. Furthermore there 

is an active groundwater interaction 

revealed by studies from Green et al. 

(2010). 

In case of nutrients some of the 

headwater sub-basins showed higher 

variability compared to that at the main 

stream for example at Site 2. The 

measurement at Site 2 (see Fig. 2b) 

ranged from 0.12-6.6 mg/l for nitrate 

(NO3-N), 0.031 – 0.397 mg/l for 

phosphate (PO4-P). The median values 

for the nutrients are also relatively 

higher at this location compared to 

other sites. 

3.2 Temporal variation of water quality 

The catchment is perennial while the 

headwater tributaries are found to be 

ephemeral during different seasons 

when there is no rainfall for prolonged 

period; Sub-basins 1 & 2 (Summer), 4 & 

5 (Summer, Autumn and late Spring) 

and 6, 8 & 9 (Summer and Autumn). 

Stream flow at the main reach suggests 

that ground water storage may be an 

important contributor during the 

summer period. The average flow in the 

headwater basin varies from 0.001m3/s 

(site 4) to 0.014 m3/s (Site 6), while at 

the outlet (site 10) it was observed to be 

0.1 m3/s. 

Nitrate concentrations were measured 

to be comparatively higher during the 

late autumn and winter season for all of 

the sub-basins. The maximum 

concentration observed for head water 

sub-basin at site 2 is 6.6 mg/l on May 

20, 2015 with corresponding TN 

concentration of 7.54 mg/l. Phosphate 

and DOC did not follow any seasonal 

trend for most of the headwater sub-

basin. Comparatively site 2 and Site 8 

recorded highest and lowest 

concentration of phosphate 

concentration throughout the sampling 

period. While site 8 had the highest 

concentration of DOC for most of the 

samples.
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3.3 Spatial variation of water quality 

A flow-weighted concentration of 

nitrate, phosphate, TKN, TN, TP and 

DOC (see Fig. 3 a-f) was calculated for 

each of the site to compare the relative 

contribution and identify the impaired 

sub-basin. The site 2 was observed to 

have highest concentration of all the 

constituents except DOC. The 

concentration of nitrate, phosphate, 

TKN, TN and TP for site 2 is calculated to 

be 2.99, 0.15, 0.95, 4.15 and 0.34 mg/l 

respectively. Site 8 and 9 had the lowest 

concentration of these constituents 

while highest for DOC.  

The concentration however decreases 

along the different sites in the main 

reach with lowest concentration at 

outlet of the catchment, which can be 

related to the dilution or nutrient 

attenuation processes of stream. 

Contrarily DOC does not follow this 

pattern. The constituent load 

contribution from head water 

tributaries to the load at the outlet 

revealed that highest load is attributed 

to site 2 which disproportionately 

releases 31 and 27% of the total load of 

nitrate and phosphate respectively. 

Table 2: Correlation coefficients between proportion of land uses and flow weighted nutrient 
concentrations across the headwater sub-basins. 

Land use Correlation coefficients r 

Nitrate Phosphate TKN TN TP DOC 

Pasture -0.36 -0.73* 0.33 -0.39 -0.47 0.61 

Market garden 0.91** 0.77* 0.45 0.9** 0.84** -0.22 

Forest -0.33 -0.23 -0.08 -0.4 -0.34 0.18 

Vineyard -0.58 0 -0.58 -0.56 -0.36 -0.49 

Rural residential -0.72 -0.62 -0.32 -0.8 -0.7 0.43 

Urban residential 0.34 -0.1 0.42 0.27 0.22 0.66 

Transportation -0.24 -0.53 0 -0.29 -0.33 0.62 

* indicates significance at p < 0.05. ** indicates significance at p < 0.01. 
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Fig. 2: Distribution of flow and nutrient concentration in the Cox Creek sub-catchment. Box plot 
of (a) flow, (b) Nitrate-N, (c) TKN-N, (d) TN, (e) Phosphate-P, (f) TP and (g) DOC. 
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Fig. 3: Spatial flow-weighted concentration of (a) nitrate, (b) phosphate, (c) TKN, (d) TN, (e) TP 
and (f) DOC. 

 

 

 

 

Fig. 4: Monthly and annual average nutrient load retention efficiency of sedimentation pond for 
a) Nitrogen and b) Phosphorus components. 
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Fig. 5: Comparison between observed and simulated nutrient export coefficients of the sub-
catchment areas related to the monitoring sites. 

3.4 Association between land use and 

nutrients 

The relationship between land use and 

nutrient concentrations in the 

catchment were investigated for the 

head water sub-basin.  For nitrate and 

TN, there is a highly significant positive 

correlation with the market garden as 

shown in Table 2. Also, a negative 

strong correlation was observed for the 

rural residential, however it is not 

statistically significant. For phosphate 

and TP, market garden showed a strong 

significant relationship while pasture 

had a significant negative relationship 

with phosphate only. This association 

reveals that market garden activity has a 

dominant role compared to other land 

uses in contributing significant amount 

of nutrients in the stream.  

Furthermore, we assessed the efficiency 

of sedimentation pond (upstream of site 

5) in retaining the nitrogen and 

phosphorus loads as the continuous 

flow and composite nutrient 

concentration data were available at the 

inlet and outlet of the pond. It was 

observed that the pond was efficient to 

retain annual average TN and TP loads 

with exceptions in some autumn and 

winter months (see Fig. 4 a,b). However, 

nitrate and phosphate retention were 

highly variable for different months with 

annual average suggesting that the 

pond even became the source of 

phosphate release while had very 
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limited nitrate retention. It reveals that 

the pond is efficient in reducing the 

organic loads of nitrogen and 

phosphorus than the dissolved 

components. Hence a more targeted 

approach to reduce nitrate and 

phosphate concentrations from sub-

basin 2 has to be explored further. 

3.5 SWAT model results 

Modelling results at the catchment 

outlet are satisfactory in simulation of 

flow and nutrient loads as described in 

section 2.3. Furthermore, the 

uncertainty in model simulation of 

spatial nutrient dynamics was evaluated 

by means of the spatially intensive 

sampling data. In general, the model 

simulated well the trend of nutrient 

export coefficient within the catchment 

though some overestimation and 

underestimation in magnitudes was 

seen (see Fig. 5 a-d). However, an out of 

trend simulation was observed 

particularly for sub-basin 9 with large 

overestimation. 

Both modelled and observed data 

recognize sub-basin 2 as a nutrient 

hotspot for nitrate. Sub-basin 9 was also 

identified as the dominant hotspot by 

the model though in reality it produces 

a very marginal amount of loads in the 

catchment.  Similarly, analysis of TN and 

TP export coefficient suggest that the 

model overestimated for all of the sites. 

However, the trend is reasonably 

matched for most of the time. Again, 

Site 2 and Site 9 have been shown to be 

a critical hotspot of nutrient as 

discussed for phosphate above. The 

model tends to produce high nutrient 

load at site 9 even when the stream was 

observed to be dry. The pond situated 

above the monitoring station seems to 

regulate the flow and hence any 

potential loads are not observed in the 

field collected data. It shows that the 

pond not being considered in model 

configuration may have resulted in 

model uncertainty. Enough information 

on flow retention and biogeochemical 

process of nutrient attenuation by the 

pond may be helpful in future model 

improvement for this catchment. Hence 

such study helps to identify where 

considerable model uncertainty exists 

and provide an opportunity to improve 

the process representation more 

reasonably. 

4. Conclusions and Recommendations 

The results from spatially intensive 

monitoring and modelling recognized 

the potential to identify the nutrient 

hotspots rapidly and cost-effectively 
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within the catchment, which is often 

elusive in routine monitoring data. It 

revealed that one of the tributaries of 

the Cox Creek catchment may be 

contributing disproportionately 

significant amount of nutrient loads – 31 

and 27% of the total load of nitrate and 

phosphate respectively. The statistical 

analysis established a strong 

relationship between market garden 

and the elevated nutrient concentration 

of nitrate, TN, phosphate and TP. 

However, no strong association of land 

use and DOC was achieved and hence 

future studies may require detailed 

investigation with high frequency 

sampling. This study suggests that a 

targeted management intervention in 

sub-basins dominated by market garden 

may help to reduce inorganic nitrogen 

and phosphorus loads. This was further 

strengthened by the inefficiency of the 

sedimentation pond to retain nitrate 

and phosphate loads, which is located 

downstream of the impaired sub-basin 

at the main stream. Likewise the 

importance of spatial monitoring data in 

identifying the model deficiences was 

highlighted, which suggests that one of 

the sub-basins require more data to 

improve model representaion more 

accurately. This may pave a way for 

robust model that could be confidently 

used for testing different water 

management scenarios. 
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Chapter 5: Conclusions and Recommendations: 

5.1 General Conclusion 

Water resources planning and management will become more complex in future due to 

growing demands of the human population as well as climate change uncertainties. 

Semi-arid Mediterranean catchments are particularly vulnerable under these future 

changes which pose significant management challenges for water practitioners. Recent 

developments in computing have enabled water agencies throughout the world to 

adopt modelling tools to assist in making efficient decisions. However, modelling results 

are not free from different sources of uncertainty that may stem from the parameter, 

input and output uncertainty. This can greatly compromise our capability to plan 

effective strategies for improving water resources. Hence, there is a need for exploring 

different approaches to improve model performance so that future hydrological 

changes can be reliably projected under different climate and land use changes. 

The first aim of this study (discussed in Chapter 2) was to test the applicability of the 

spatially distributed model SWAT (Soil and Water Assessment Tool) in the Onkaparinga 

catchment, a semi-arid Mediterranean catchment of South Australia. Although SWAT 

has been widely tested around the world, very limited applications have occurred in the 

Australian context. First, the capabilities of SWAT in simulation of flow, total suspended 

sediments (TSS), total nitrogen (TN) and phosphorus (TP) loads were investigated. 

Second, the question whether using data from more monitoring stations significantly 

improves the model performance, has been addressed by a comparative study between 

single- and multi-site calibration approaches. The main findings can be summarized as 

follows: 

 SWAT can be used to simulate realistically the extreme flow conditions of the 

semi-arid Onkaparinga catchment. 

 The results showed that multi-site calibration did not improve simulations of 

flow and sediments compared to single-site calibration. However, simulation 

results for TN and TP loads improved at both outlet and interior stations of the 

catchment. 

 Uncertainty analysis revealed that multi-site calibration approach constrained 

the model uncertainty in simulation of nutrient loads. However, considerable 
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uncertainty in simulation of TSS loads persisted. Hence care should be taken 

while considering simulation results of TSS from the model.  

The second aim of this study (discussed in Chapter 3) focused on assessing the 

combined effects of future climate and land use changes on flow and nutrient loads 

released from the catchment. Such study will provide valuable information for 

catchment managers to make efficient decisions for safeguarding future quantity and 

quality of water resources. Though climate and land use changes have long been 

recognized to alter water quality, yet most studies addressed effects on flow only. In 

order to make an assessment of both water quantity and quality in the Onkaparinga 

catchment, the improved SWAT model as discussed above and in Chapter 2 was used. 

The following findings were highlighted: 

 Climate models suggested high uncertainty in terms of seasonally varying flow 

and nutrient loads. Overall, a decreasing trend in average monthly TN and TP 

loads by up to -55% and -56% respectively was found.  

 The annual and seasonal water yield and nutrient loads appeared to be affected 

only slightly by envisaged land use changes, but have been significantly altered 

by intermediate and high emission scenarios, predominantly during the spring 

season. 

 The combined scenarios indicated the possibility of declining flow in future but 

nutrient enrichment in summer months, originating mainly from the land use 

scenario that may elevate the risk of algal blooms in the downstream drinking 

water reservoir.  

The final aim of this study (discussed in Chapter 4) was to explore the benefits of using 

short term spatially explicit monitoring combined with SWAT model to understand the 

spatial pattern of nutrient generation across the catchment. A two year field monitoring 

of flow and water quality measurements was conducted at 11 sites across the 

catchment, which supplements the routine monitoring at the main stream. 

Furthermore, these data were used to compare the model performance at different 

spatial locations and identify any model discrepancies and uncertainties. The monitoring 

and modelling results indicated: 
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 Spatial monitoring data aid in identifying the relationship between land use and 

nutrient concentrations. A strong positive link between market garden and 

nitrogen and phosphorus components was revealed. 

 Both monitoring and modelling results suggested the same sub-basin as a 

nutrient hotspot where management intervention needs to be targeted. 

 The model matched the spatial trend of observed nutrient export, but the size of 

observed and modelled responses did not always match. However, one of the 

sub-basins showed unusually high simulation of nutrient exports indicating 

model deficiencies in representation of actual processes in this sub-basin. This 

suggested that the farm dam upstream may be affecting the natural flow regime 

and nutrient dynamics and hence should be incorporated for future model 

improvement. 

5.2 Recommendations for future work 

Catchment models are very useful tools to make prudent decisions on managing 

valuable water resources. However, any catchment is a very complex system and hence 

models should accommodate the spatial heterogeneity that results from distinct soils, 

topography, climate and land use practices. This study recognized the value of site 

specific data for reducing uncertainty and ultimately improves the model reliability for 

testing future alternative management scenarios. Some success has been documented 

in the Onkaparinga catchment using the SWAT model; however, future studies must 

address various limitations of the current work, which are described below. 

There is still considerable debate in utility of multi-site calibration approach for model 

improvement. This study has demonstrated that SWAT model performance can be 

enhanced using such an approach, however it is limited to only one catchment as 

described in Chapter 2. Hence it will be worthwhile to extend investigation in other 

catchments of Australia to verify our result, and if not, to examine the reasons for 

discrepancy. Such study can give valid reasons for a need to establish more gauging 

stations within the catchment and hence improve our understanding of spatial dynamics 

of flow and nutrient fluxes. 

Though model improvement resulted from multi-site calibration approach, simulation of 

sediments and nutrient loads are still not entirely satisfactory. Hence future SWAT 
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modelling in the Onkaparinga catchment can benefit from improved representation of 

the different land use management practices. Suspended sediment loads simulation on 

the other hand, was very uncertain mostly during the peak events as the erosion 

process may not be well represented by the empirical equations in SWAT. 

 This study underscored that future climate and land use change will affect the water 

quantity and quality of the Onkaparinga catchment. As it is an important source of 

drinking water to the metropolitan area of Adelaide, stakes are high for water 

management institutions due to these anticipated future changes. The Mount bold 

reservoir, a storage reservoir, receives water from the Onkaparinga catchment which is 

then transferred to a drinking water supply reservoir. The reservoir periodically suffers 

from algal bloom events and any change in catchment flow and nutrient dynamics may 

affect the already degraded water quality in the reservoir. Hence, the application of a 

coupled catchment and lake model could establish the sensitivities between these two 

systems and give better understanding of how the lake system behaves in response to 

catchment fluxes. 

Routine monitoring stations at the main stream generally do not supply enough 

information to identify sub-basins nutrient hotspot areas. Complementary spatial 

monitoring approach as discussed in Chapter 4 would prove to be suitable for 

identifying nutrient hotspots in other catchments. In the Cox Creek catchment, a critical 

sub-basin was identified and performance of sedimentation pond downstream of the 

impaired sub-basin revealed the inefficacy of the pond to retain nitrate and phosphate 

loads. This study recommends that alternative management scenarios such as change in 

land use management practices or extension of sedimentation pond to wetland 

structure for retaining dissolved nutrients should be further evaluated in the catchment. 

Also, this study highlighted some limitations of spatially intensive sampling. Even though 

the spatial trend of nutrient dynamics could be determined reasonably well, the true 

magnitude of nutrient export may be severely underestimated as it is limited by the 

frequency of data collected. The samplings were conducted randomly at least once in a 

month and are more representative of base flow conditions. As the catchment is 

observed to generate huge amount of flow and nutrients during peak event, future 

studies should focus on collecting frequent samples during such events, if this is 
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practically possible. Such events frequently occurred overnight and automatic samplers 

may be required. However, it is expensive to install the samplers in all current 

monitoring sites. Studies such as this that use both monitoring and modelling approach 

helped to target a critical sub-basin where future monitoring can be conducted and 

management interventions can be determined thereafter.  

While the model can certainly benefit from the multi-site data as discussed above, there 

are some challenges for the modelers. For example, multi-site calibrated model did not 

significantly improve the flow results compared to the single-site calibration approach in 

this study, though significant amount of resource was invested. It has long been 

recognized that the model output depends heavily on the model input data. It has to be 

ensured that there is an availability of good resolution of input data such as soil data 

and DEMs along with a spatial network of rain gauge station. Hence, the quality of input 

and output data must be weighed while making a judgement of the model outcome. 

This study reiterates that modelling and monitoring should be integrated to improve 

scientific understanding of catchment dynamics, and ultimately to assist planning and 

decision making that when implemented facilitates to achieve the catchment 

management goals. 
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Introduction 

The quantification of both point- and non-point nutrient sources is prerequisite for estimating 
impacts of catchments with multiple land uses on eutrophication and cyanobacteria blooms in 
downstream lakes and reservoirs (Carpenter et al., 1998) and for determining management 
options. The Soil and Water Assessment Tool, SWAT (Arnold et al., 1998 ) has been designed 
for the simulation of flow and nutrient dynamics in catchments, and supports scenario analyses 
on best-practice management options (   o  u et          ; Nielsen et al., 2013) 

The Onkaparinga Catchment (OC) is the main source of water for the Happy Valley Reservoir 
that supp ies 4 % of Ade  ide’s metropo it n drinking w ter  Since P  nd N  o dings to the 
Happy Valley Reservoir make it susceptible to cyanobacteria blooms causing high economic 
costs, the raw water quality that it receives from the OC is critical.  

The Cox Creek Watershed (CCW) is one of the sub-catchments of the OC covering an area of 
442 km2. The upper part of the CCW dominated by viti- and horticultural makes only 1% of the 
total catchment area but contributes 24% or 1.35kg/ML of total phosphorus load and 34% or 
4.2kg/ML of the total NOx-load of the Onkaparinga River (Fisher, 2005). To consider 
sustainable management options for the Cox-Creek sub-catchment is therefore of high priority 
for the reduction of overall nutrient loadings to the downstream Happy Valley Reservoir.  

This study tested the applicability of the SWAT to better understand the nutrient sources and 
loading within the CCW as prerequisite for management decisions regarding the implementation 
of constructed wetlands or changed land uses. It utilised flow and nutrient measurements of 
three gauging stations operated in the CCW by the SA Water Corporation to test following 
hypotheses: (1) Using data from the most-downstream gauging station simulates less accurate 
flow and nutrient loadings for the two upstream gauging stations than running SWAT for 
individual sites. (2) To properly simulate impacts of constructed wetlands operated before the 
most-downstream gauging station requires a reconfigured SWAT model.       

Materials and methods 

Study Site 

The Cox Creek watershed (CCW) is an important sub-catchment of the Onkaparinga Catchment 
providing surface water and groundwater for domestic, industrial and agricultural purposes 
 oc   y   s we    s for Ade  ide’s metropo it n w ter supp y through the H ppy V   ey reservoir 
(South Australia). It is situated east of Adelaide as shown in figure 1. This modelling study was 
applied to an area of 10.4 km2 of the CCW.  

The CCW has a mixed landuse comprising of forest (23%), residential (22%), pasture (19%), 
vineyard (14%), market garden (14%), annual cropping (4.5%), and horticulture (3.5%). The 
soils are dominated by strong texture contrasting soils like Chromosols and Kurosols with high 
clay content in the subsoils. It has very steep slope along the ridges and forms a valley at the 
bottom of the hills. Its Mediterranean climate is characterized by dry warm summers and wet 
winters with an average annual rainfall of 1055mm occurring by 80% between April and 
October. Between 2004 and 2006 the SA Water Corporation has put mitigation measures for 
nutrient retention in the CCW in place by implementing a sedimentation pond upstream of 
gauging station 1, and a chain of wetlands including a reed bed between the gauging stations 2 
and 3. 
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Model Background  

SWAT is a physically based, semi distributed, long-term, continuous, catchment-scale 
simulation model that operates on a daily time step and is designed to assess the impact of 
different management practices on water, sediment and nutrient delivery from the watershed 
(Arnold et al., 1998 ). Major components of the model include weather, hydrology, erosion, plant 
growth, nutrients, pesticides, channel and reservoir routing. 

 

Figure 1: Location Map of Cox Creek Watershed within Onkaparinga Catchment 

The modelling process in SWAT subdivides a catchment into multiple sub-catchments. These 
sub-catchments are further divided into Hydrologic Response Units (HRUs) which is a unique 
combination of homogeneous land use, soils, slope, and management (Gassman et al., 2007; 
Neitsch et al., 2011). Flow generation, sediment yield and pollutant loadings are summed 
across all HRUs in a sub-catchment, and the resulting flow and loads are then routed through 
channels, ponds, and/or reservoirs to the watershed outlet 

The water balance of each HRU in the catchment is represented by four storage volumes: 
snow, soil profile (0–2m), shallow aquifer (2–20m) and deep aquifer (>20m). SWAT models 
nitrogen and phosphorous cycles including transformation and movement processes in various 
organic and inorganic pools, where nutrient losses from soil occur through crop uptake, surface 
runoff and eroded sediment. It models movement of nutrients from soil surface to the streams 
and simulates in-stream nutrient processes by incorporating the QUAL2E model (Brown and 
Barnwell, 1987). 

Input Datasets: 

SWAT requires various input data related to weather, topography, soil and landuse, and various 
attributes which are collected from different sources as summarised in table 1. Flow and nutrient 
data were monitored at three gauging stations within the catchment by the SA Water 
Corporation. Daily nutrient loadings were derived from the biweekly to monthly concentrations of 
TN and TP sampled by flow weighted composite samplers. 
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Table 1.Data requirements, descriptions and sources 

Data 
Requirements 

Data description Data Sources 

DEM 25 m resolution University of Adelaide 

Observed flow 
and water 
quality 
parameters 

3 gauging stations with data from 
2009-2013 

GS 1 (A5030526), GS 2 (A5031007) 
and GS 3 (A5031006) 

SA Water 

Weather data  Station number 23750 : Daily rainfall 
and solar radiation from 1991-2013 

Bureau of Meteorology 

Station number 23842: Daily 
maximum and minimum temperature, 
long term average wind speed and 
relative humidity from 1990-2013 

Landuse map 2003 land-use map  University of Adelaide 

Soil map 2005 soil map  ASRIS (Australian Soil 
Resource Information System) 

Model Configuration: 

The CCW was divided into 13 sub-basins and 175 HRUs based on land-use and soil 
heterogeneity using ArcSWAT 2009. The Soil Conservation Service (SCS) curve number (CN) 
method was used for simulating surface runoff, while variable storage coefficients were used for 
routing the flow in SWAT. Evapotranspiration was estimated by means of the Penman Montieth 
method. SWAT default values were chosen to simulate preliminary nutrient loadings. 

After a warm-up period from 2006 to 2009 the model was run for 2009-2013. This warm-up 
period minimized uncertainties due to unknown initial conditions such as antecedent soil 
moisture conditions. Unlike other studies that focused mainly on monthly simulations, this study 
focused on daily simulations of flow, TN and TP loadings and compared the model performance 
for the three gauging stations within the catchment (see fig. 1).  

The Sequential Uncertainty Fitting (SUFI2) method (Abbaspour et al., 2004) was used for the 
calibration and validation of the model. The flow was calibrated before the calibration of TN and 
TP. The parameter sensitivity was identified for each variable and parameter values were 
manually calibrated. Calibrated parameters were kept constant during subsequent calibration of 
other variables. Data of the years 2009 to 2011 was used for calibration and data of 2012 and 
2013 was used for validation. To avoid bias in the calibration process (Migliaccio and Chaubey, 
2007) a multi-site calibration was not performed since the gauging stations on the CCW are 
nested (see Fig. 1). The single-site calibration for the three gauging stations resulted in the 
three separate models SWAT GS-1, GS-2 and GS-3.  Model performance of the three models 
was evaluated both qualitatively and quantitatively. The visual comparison of time series plots 
served as qualitative assessment while the quantitative assessment was based on the three 
statistical measures: coefficient of determination (R2), Nash-Sutcliffe Efficiency (NSE) (Nash et 
al 1970) and percent bias (PBIAS) (Gupta et al. 1998) whereby the model is considered 
satisfactory if R2 and NSE is greater than 0.5 and PBIAS ranges between ± 25 % for flow and 
±70 % for nutrients (Moriasi et al., 2007). These high ranges for the nutrients are due to the 
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greater uncertainties in nutrient data associated with errors in streamflow measurements and 
sample collection, storage and analysis (Harmel and Smith, 2007). 

Results and Discussions: 

Individual Model Calibration and Validation: 

All three models satisfied the model performance criteria for daily flow simulations for both the 
calibration and validation periods except the criteria PBIAS for the validation period of model 
GS-2 as summarised in table 2.  Validations results are illustrated in figure 2. The slightly high 
positive PBIAS value is due to the underestimated flows during the second year for most of the 
days as can be seen in figure 2. However, the negative PBIAS value in the calibration period 
indicated an overestimated flow. The four most sensitive parameters for all three models were 
SCS Curve number CN2, main channel conductivity CH_K2, baseflow alpha factor for bank 
storage (ALPHA_BNK),  nd m nning’s n v  ue for the m in channel CH_N2. 

Table 2.Calibration and validation results of the three SWAT models GS-1, GS-2 and GS-3 for 
daily Flow (m3/s), Total Phosphorous (TP, kg/day) and Total Nitrogen (TN, kg/day) 

Models 
Drainage 
area (km2) 

Performance 
Criteria a 

Calibration 2009-2011 Validation 2012-2013 

Flow TP TN Flow TP TN 

SWAT 
GS-1 

4.1 

R2 0.7 0.49 0.62 0.7 0.63 0.67 

NSE 0.7 0.47 0.56 0.69 0.56 0.63 

PBIAS 3.6 0.5 59.9 0.7 40.9 53.3 

SWAT 
GS-2 

10 

R2 0.73 0.26 0.41 0.76 0.46 0.44 

NSE 0.72 0.18 0.34 0.69 0.34 0.32 

PBIAS -11.7 78.3 50 32.2 76.3 68.1 

SWAT 
GS-3 

10.4 

R2 0.69 0.35 0.39 0.68 0.38 0.46 

NSE 0.69 0.32 0.33 0.67 -4.07 0.37 

PBIAS 10.8 39.3 2.7 15.7 -68.8 20.9 

a
Coefficient of determination (R2), Nash-Sutcliffe Efficiency (NSE), and percent bias (PBIAS) are model performance 

criteria.  

Only the SWAT GS-1 model simulated daily TP and TN loadings satisfactorily. The models 
SWAT GS-2 and GS-3 with larger drainage areas did not perform as well whereby SWAT GS-2 
performed better in the validation period while SWAT GS-3 overestimated TP loadings in the 
validation period indicating some model uncertainty. The parameter sensitivity for organic 
phosphorous enrichment ratio ERORGP and the phosphorous soil portioning coefficient 
PHOSKD ranked highest for the simulation of TP loadings. The three most sensitive parameters 
for TN loadings are organic nitrogen enrichment ratio ERORGN, threshold water content for 
denitrification SDNCO and nitrate percolation coefficient NPERCO. Sensitive parameters for 
flow and nutrients identified by this study were consistent with findings of similar studies in the 
literature (Abbaspour et al., 2007;    o  u et          ).  
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Model Validation at upstream sites: 

After the calibration of the SWAT GS-3 model by data of the gauging station 3 at the outlet of 
the catchment, its simulation results for the upstream gauging stations 1 and 2 have been tested 
for the calibration period. The simulated flows matched well with observed flows of the gauging 
station 1 and 2 (fig. 3) with high R2 and NSE values and PBIAS values in a satisfactory range. 
The R2 and NSE values for simulation results of TP and TN at gauging station 1 were also 
satisfactory even though magnitudes of peak events were not always matched well. However 
the simulation results of TP and TN for gauging station 2 were unacceptable as displayed by 
only negative NSE values.  
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Figure 2. Validation of daily SWAT simulations of flow (top row), TP load (middle row) and TN 
load (bottom row) for the three gauging stations of the Cox Creek watershed. 

It can be concluded from these results that SWAT GS3 still performed well for the upstream 
gauging station 1 but overestimated TN and TP loads for gauging station 2. Since the area 
between gauging stations 1 and 2 is largely covered by natural vegetation with little agricultural 
activities less transportation of nutrients is typical for this area but not properly simulated by 
SWAT GS-3. Grab sample data currently collected from stream sites between gauging station 1 
and 2 support this finding by showing very low nutrient concentrations most likely causing 
dilution rather than enrichment. 
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SWAT GS-3 
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Figure 3. Simulation of Flow (top row), TP load (middle row) and TN load (bottom row) for the 
upstream gauging stations 1 and 2 of the Cox Creek watershed by running SWAT for 

downstream station 3 

Conclusions: 

SWAT models for the three gauging stations GS1, GS2 and GS3 simulated satisfactorily daily 
flows, TP and TN loadings in the Cox Creek Watershed. When applying SWAT GS3 to the 
upstream gauging stations 1 and 2 resulting flow simulations were still acceptable. However 
simulation results for TP and TN loads at gauging station 2 failed to match observed data 
suggesting that processes related to transportation  or transformation of nutrients between sites 
GS1 to GS2 were not properly accounted for by the SWAT GS3 model. It clearly indicates the 
need for spatially-explicit monitoring of nutrient loadings at tributary level as prerequisite for 
improved catchment models that justify land-use related scenario analyses to identify suitable 
catchment management improvements. A two-year monitoring scheme for 11 stream sites 
within the CCW is currently underway with the intent to develop a data base that improves 
spatial resolution and accuracy of SWAT applications to this catchment. 
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ABSTRACT.  
Water limited catchments of Mediterranean regions including South Australia experience already high seasonal 

variability alternating between dry and wet periods, and are particularly vulnerable to global climate change. Long-term 
assessments of water resources of South Australian catchments under the projected climate changes are required as a 
prerequisite for sustainable water resources management.  

In this study, the SWAT (Soil and Water Assessment Tool) model is driven by meteorological forecasts of six global 
climate models (GCM) to assess impacts on flow, total nitrogen (TN) and phosphorus (TP) loads of the Mediterranean 
Onkaparinga catchment in South Australia for 50 years ahead. The GCM focus on two representative concentration pathways 
(RCPs) that describe possible future emission scenarios, RCP 4.5 (intermediate emission) and RCP 8.5 (high emission). 
Scenario results for flow and nutrient loads simulated by SWAT for the periods from 2021 to 2045 and from 2046 to 2070 
are compared with baseline data from 1981 to 2005.  

Results for RCP 4.5 indicate that the catchment is likely to experience a decrease in mean annual runoff mainly during 
the spring season with further decrease for RCP 8.5. Projected mean seasonal nutrient loads follow the trends of flow with 
even greater decrease in terms of percentage. However, uncertainties reflected by varying results for monthly flows and 
nutrient loads from different GCM projections suggest that results from a single climate model must be interpreted with 
caution. 
  

Keywords. Climate change scenarios; flow and nutrient loads; GCM; Mediterranean catchment; SWAT. 
 

1. Introduction: 
Projected changes in future climate are likely to impact on the availability of global water resources in many ways. 
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According to IPCC (2007, 2014), extreme meteorological and hydrological events can be expected resulting in more 
frequent droughts, storms and floods posing more uncertainty and risk on river catchments worldwide. Water limited 
catchments in Mediterranean climates experience already high seasonal variability alternating between dry and wet periods, 
and are particularly vulnerable to global climate change (Giorgi and Lionello, 2008; Piras et al., 2014). Climate projections 
for Mediterranean catchments in South Australia suggest a decrease in runoff by 35% (Chiew and McMahon, 2002) with 
serious consequences for catchment management (Chiew et al., 2011; Charles and FU, 2015; Hope et al., 2015). Long-term 
assessments of the hydrology of South Australian catchments are required as prerequisite for sustainable water resources 
management. 

Hydrological models are widely used to assess possible future impacts on water resources by utilising future climate data 
from specific emission scenarios simulated by global climate models (GCM).Impacts of climate scenarios are assessed by 
comparing predicted and historical runoffs. Since data resolutions of GCM typically apply to 100 kms, their use for 
hydrological modelling at catchment scale is limited. However downscaling the data to catchment scale using dynamic and 
statistical techniques allows to overcome this limitation (Fowler et al., 2007, Nunez and McGregor, 2007; Fu et al., 2013). 

Many studies on impacts of climate change on catchment hydrology have been carried out in different parts of the world, 
including Mediterranean regions (Sellami et al., 2016, Lespinas et al., 2014). Even though climate change impacts both 
water quantity and quality in catchments, most of the published studies address effects on river flow only. However, there 
is growing evidence that surface water quality is directly affected by several climate related mechanisms (Aldous et al., 
2011, Sahoo and Schladow, 2008). Molina-Navarro et al. (2014) found that decreasing runoff magnitudes caused reduced N 
exports but increased TP loads in a Spanish catchment. Another study conducted in the River Kennet in UK (Wilby et al., 
2006) indicated that increased temperature and climate variability may increase nitrate and ammonium concentrations. 
Furthermore, episodic nitrogen peaks due to the wash up of accumulated soil nitrogen are likely as the drought breaks.  A 
study of two severe historical drought periods in the river Meuse, Belgium by Vilet et al. (2008) revealed, that water quality 
was degraded by algal blooms favoured by changed water temperatures and nutrient concentrations. Schneider and Hook 
(2010) reported that surface waters warmed at an average rate of 0.045 ± 0.011 °C yr-1 by increasing air temperatures during 
the period of 1985-2009. Increased temperature and nutrient concentration of stream water can contribute to excessive algal 
bloom in downstream reservoirs increasing both economic and ecological costs. 

This study applied the process-based eco-hydrological model SWAT (Arnold et al., 1998) driven by six climate models 
combined with two emission scenarios (intermediate and high emission) to predict impacts on flow, total nitrogen and 
phosphorus loads of the Mediterranean Onkaparinga catchment in South Australia for 50 years ahead. It also analysed the 
uncertainty in predicted river flow and quality indicators caused by the choice of GCM and emission scenarios.  

2. Materials and methods 

2.1 Study area: 

The study was carried out within the Onkaparinga catchment situated 60 km east of Adelaide by modelling an area of 
317 km2 upstream of the Houlgraves gauging station (see Figure 1).The elevation of this area ranges from 10 to 700 metres 
and annual rainfall varies between 522 mm in coast and 1088 mm in upland areas. 

The land uses of the Onkaparinga catchment include horti-,viti- and agriculture, where farm dams typically serve for 
irrigation. A pipeline from the River Murray releases water into the Onkaparinga River downstream of Hahndorf (see Figure 
1)that contributes approx. 87 % (19952 ML) of the total flow during the dry season (Nov-April) and approx. 24 % (45310 
ML) during the wet season at Houlgraves. 

The geological formation of the western part of the catchment consists of permeable sandstone and quartzite while the 
eastern part is underlain by less permeable siltstone and metasediments (Zulfic et al., 2002). The subsoil is clayey in texture 
on the lower slopes and flats of the catchment and may prevent water drainage. The hill slopes have clayey to sandy subsoils 
mainly utilised for horticulture and viticulture.    

The Digital Elevation Model (DEM) with a resolution of 30 × 30 m (Geoscience Australia, 2011) derived from a Shuttle 
Radar Topography Mission (SRTM) and a 1:100,000 land-use map of2003 was used. The base data of the soil map of 
2005provided by the Department of Water, Soil and Natural Resources of South Australia has been compiled at scales of 
1:50,000 or1:100,000. The data for soil attributes were extracted from the Australian Soil Resource Information System 
(ASRIS, 2013). Ten meteorological stations within and adjacent to the catchment were used. Since there were missing data 
for all stations from the publicly available website of the Bureau of Meteorology, daily SILO (Scientific Information for 
Land Owners, 2015) patched dataset were used. 

The South Australian Water Corporation provided daily flow data and biweekly to monthly data of TN and TP 
concentrations from flow weighted composite samplers monitored at five gauging stations (see Figure 1) within the 
catchment. Flow data from the River Murray Pipeline were available on daily basis while grab sample data of water quality 
was available in weekly to monthly time steps. This contribution was treated as point source data. 
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Figure 1: Onkaparinga Catchment and gauging stations 

2.2 Model set-up 

The process-based semi-distributed Arc SWAT 2012 (Winchell et al., 2013) was used for catchment modelling that 
supports continuous, catchment-scale simulations. It operates at daily time steps and is designed to assess the impacts of 
different management practices on water, sediment and nutrient transport in catchments (Arnold et al., 1998 ). SCS curve 
number (Soil Conservation Service, 1972)and the Pennman-Monteith equation (Monteith, 1965)was used to estimate runoff 
and evapotranspiration respectively. For routing the flow, the variable storage routing method was applied.  

This study utilised the SWAT Onkaparinga catchment model developed by Shrestha et al. (2016) for simulation of 
monthly flow, total nitrogen (TN) and total phosphorus (TP) loadings. It was demonstrated that the multi-site calibration 
outperformed the single-site calibration in simulating nutrient loadings and hence this multi-site calibrated model was 
selected for climate change impact study. However, it was observed that the organic nitrogen loading was not reproduced 
reasonably and the model was further calibrated which improved both organic nitrogen and TN loads. Performance during 
calibration (2000-2009) and validation (2010-2013) period for this improved model is provided in table 1 and figure 2. To 
understand the impacts of climate change on natural characteristic of the catchment only, the contribution of River Murray 
was cut off from the calibrated Onkaparinga model. This model then was used for running climate change scenarios. 

 
Table 1. SWAT calibration and validation result for flow (m3/s), total nitrogen (TN, kg/month) and total phosphorus (TP, kg/month) loads. 

 
Performance 
Criteriaa 

Calibration  
Flow TN TP 

Calibration R2 0.88 0.39 0.41 
NSE 0.82 0.37 0.35 
PBIAS -

17.5 
15.1 -

20.23      

Validation R2 0.89 0.41 0.4 
NSE 0.82 0.37 0.36 
PBIAS -

24.57 
-

7.46 
-

12.7 
aCoefficient of determination (R2), Nash–Sutcliffe Efficiency (NSE), and percent bias (PBIAS) are model performance 

criteria.    
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Figure 2. Simulated and observed time series, flow, TN and TP loads 

2.3 Future climate data and model simulation: 

Climate projection datasets for different regions of South Australia were produced by Task 3 of the Goyder Institute of 
Water Research Project (GIWR, 2015) and is available on SA Climate Ready portal at 
https://data.environment.sa.gov.au/Climate/SA-Climate-Ready. This projection used statistical downscaling techniques 
called Nonhomogenous Hidden Markov Model (NHMM) to simulate daily rainfall from global climate models (GCMS) 
from the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). These rainfall were calibrated 
at multiple stations in different regions of South Australia. The GCM grid-scale output of non-rainfall variables were 
downscaled by using a weather generator conditional on the weather states and rainfall simulated by NHMM (Charles and 
Fu, 2015). Fifteen Coupled Model Inter-comparison Project phase 5 (CMIP5)were chosen for the downscaling project for 
South Australia which were further studied to identify the six ‘best’ GCMS as provided in Table 2. Future emission scenarios 
representing two representative concentration pathways (RCP) from the IPCC AR5 were used to represent possible future 
greenhouse gas concentrations whereby RCP 4.5 and RCP 8.5 represents increases in radiative forcing in 2100 relative to 
preindustrial levels of 4.5 and 8.5 W/m2 respectively or simply to put intermediate and high emission scenarios respectively. 

Each of the downscaled GCMs produced 100 stochastic replicates (realisations) of future projected climate data until 
2100 for rainfall and non-rainfall variables. However, only one realisation for each of the six climate models was used. The 
realisation that corresponds to the median of projected total precipitation amount for the period between 2006-2100 was 
selected for model simulation.  
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Table 2. Description of six “best” climate models used in study 

Climate Model 
ID 

Climate modelling group Country 

CanESM2 Canadian Centre for Climate Modelling and Analysis Canada 

CNRM-CM5 Centre National de Recherches Météorologiques/ Centre 
Européen de Recherche et Foramtion Avancéeen Calcul Scientifique 

France 

GFDL-ESM2M NOAA Geophysical Fluid Dynamics Laboratory USA 
IPSL-CM5B-LR Institut Pierre-Simon Laplace France 
MIROC5 Atmosphere and Ocean Research Institute (The University of 

Tokyo), National Institute for Environmental Studies, and Japan 
Agency for Marine-Earth Science and Technology 

Japan 

MRI-CGCM3 Meteorological Research Institute Japan 

 

2.4 Climate change impact assessment  

The calibrated model was run for the historical climate data (1981-2005) of six global climate models, considered as 
reference scenario. This was compared against the flow, total nitrogen and phosphorus loads resulting from six best GCMs 
and two emission scenarios for a period of 50 years (2021-2070) with the time horizons 2021-2045 and 2046-2070. The 
projected deviation (relative change in percentage between the reference and future period) of the three variables for each 
climate model was calculated and averaged to be considered as mean of the climate model ensemble in order to assess the 
climate change impacts annually, seasonally and monthly. We also used the model ensemble approach to characterize the 
uncertainty of climate projections from six global climate models (GCMs). 

3. Results and Discussions: 
Climate related impacts for average flow and nutrient loadings at annual, seasonal and monthly time scales are discussed 

in this section. These impacts were assessed for the periods from 2021 to 2045 (FP1) and from 2046 to 2070 (FP2) in relation 
to the intermediate emission scenario (RCP 4.5) and the high emission scenario (RCP 8.5). 

3.1 Future climate effects on precipitation and temperature: 

Table 3 shows the annual and seasonal variability of both precipitation and temperature in future periods relative to the 
baseline. It shows a general trend of increasing temperature and decreasing precipitation, with more pronounced effects for 
FP2 under high emission scenario. Temperature is likely to increase in all seasons by both scenarios with highest increments 
in spring and lowest in winter. Annual average daily temperature is expected to increase by 1.84 0C for FP2. On the other 
hand, average precipitation is expected to decrease both annually and seasonally except in autumn for FP1 under RCP 4.5. 
The highest decrease is likely to occur during the spring upto -20 % for later period under RCP 8.5. The average annual 
precipitation change varies between -4.2 % and -9.7 % under different emission scenarios and future time periods. 

3.2 Impacts of climate change on flow 

The average annual water yield is likely to decrease with strongest effects for RCP 8.5 as shown in Table 4.Multi-model 
projections for FP1reveal a decrease of the average annual water yield by -11.2 % and -18.15% for RCP 4.5 and RCP 8.5 
respectively, which corresponds with the study by Westra et al (2014) conducted for the same catchment using a conceptual 
hydrological model GR4J that showed 11 % and 16% decrease for slightly elongated period 2016-2045. The average 
decrease for FP2 for both scenarios is slightly higher than the FP1. 

The box plot in figure 3 displays ranges of change for each of the seasons under different scenarios and time periods. 
Since the range of change is quite significant, the 25th and 75th percentile and median of seasonal flows are below zero 
suggesting a significant decreasing trend. Comparing the two flow seasons, the decrease is likely to be more significant in 
spring (SON) compared to winter (JJA) for both scenarios and time periods. The change in average spring flow is quite 
comparable for both time periods with -16.7% for RCP 4.5 and -23.8% for RCP 8.5. WhereasFP2 sees a further decrease in 
winter mean flow -11.9% (-19.7%) for RCP 4.5 (RCP 8.5).  
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Table 3. Changes in precipitation and temperature under RCP 4.5 and RCP 8.5 scenario (Average of six GCMs ensemble), for 2021-2045 and 
2046-2070. 

 1981-2005 2021-2045  RCP4.5 (RCP8.5) 2046-2070 RCP4.5 (RCP8.5) 

 

Average 
precipitation 
in mm  

Average  
daily 
temperature 
in 0C  

% change in 
precipitation  

Change in 
temperature 
0C  

% change 
in 
precipitation  

Change in 
temperature 
0C  

Summer 
(DJF) 84.7 19.5 -9 (-2.5) 

0.77 
(0.95) -5.8 (-8.8) 1.22 (1.75) 

Autumn 
(MAM) 182 15.2 1.5 (-2.9) 

0.85 
(1.08) -4.5 (-5.3) 1.29 (1.92) 

Winter(JJA) 396.9 10 -0.8 (-3.7) 
0.68 

(0.87) -5.3 (-6.4) 1.04 (1.57) 

Spring(SON) 205 13.9 
-13.6 (-

12.6) 1 (1.2) -16 (-20) 1.5 (2.14) 

Annual 868.6 14.6 -4.2 (-7.8) 
0.82 

(1.26) -5.5 (-9.7) 1.03 (1.84) 
 *Figure in brackets represent the values for RCP 8.5 
 
Table 4. Average annual and seasonal changes in water yield, total nitrogen (TN) and phosphorus (TP) load for two time periods and emission 

scenarios. 

 2021-2045  RCP4.5 (RCP8.5) 2046-2070 RCP4.5 (RCP8.5) 

 
% change 

in water Yield  
% change 

in TN load  
% change 

in TP load 
% change 

in water Yield  
% change 

in TN load  
% change 

in TP load 

Summer (DJF) 
-13.7 (-

14.3) -7.4 (0.1) -18.5 (-6.9) 
-11.6 (-

15.6) -1.5 (-11.5) 
-23.3 (-

21.3) 

Autumn(MAM) -3 (-11.9) 2.5 (-16) 
10.4 (-

12.9) -9.3 (-15.1) -9.8 (-17.7) -9 (-18.4) 

Winter(JJA) -7.9 (-15.5) -5 (-12.1) -5 (-12.5) 
-11.9 (-

19.7) 
-16.7 (-

22.5) 
-19.2 (-

25.8) 

Spring(SON) 
-16.7 (-

23.8) 
-27.2 (-

23.5) 
-30.3 (-

26.9) 
-14.3 (-

23.7) -34 (-37.9) -41 (-44.9) 

Annual 
-11.2 (-

18.15) -8.4 (-14.7) -8.9 (-16) 
-12.7 (-

20.5) 
-18.4 (-

24.3) -22.9 (-29) 
*Figure in brackets represent the values for RCP 8.5 
 
Figure 4 a, b shows the range of average monthly water yield from six climate models simulated under different climate 

scenarios in two future periods. A high prediction uncertainty can be seen for monthly predictions, however, in general the 
decreasing trend is obvious. It is likely that average monthly water yield decreases in all months under high emission scenario 
during FP2 (figure 4b), which may put further stress on already water limited catchment. 

3.3 Impacts of climate change on nutrient loads: 

Similar to flow, both climate scenarios suggest a reduction of mean annual TN- and TP-loads by -24.3% and -
29%respectively for RCP 8.5 for FP2. Whilst average annual TN loads change between -14.7% and -2.9% and -21.8% and 
-10.7% for RCP 4.5 and RCP 8.5 respectively for the first 25 years, it varies from -22.4% to -12% for RCP 4.5 and from -
28.8% to -17.4% for RCP 8.5in the later period from 2046-2070. Similarly for TP, the average annual load changes for RCP 
4.5 and RCP 8.5 ranges between -16.5% and -2.2% and -23.4% and -11.3% respectively for the first 25 years. In the later 
period from 2046-2070, it varies from -26.8% to -16.5% for RCP 4.5 and from -33.9% to -21.4% for RCP 8.5.  

Seasonally, nutrient loads are predicted to decrease sharply for both winter and spring season in FP2 with higher reduction 
for RCP 8.5. Average spring TN load reduces by -34 % (-38%) while winter load decreases by -16.6% (-22.5%) for RCP 4.5 
(RCP 8.5) in FP2. Similarly, for TP the decrease in average spring load is predicted to be -40.9% (-44.9%) and the winter 
load decrease is -19.2% (-25.8%). 

The prediction range for nutrients as shown in figure 4 (c,d,e,f) is higher during the dry months suggesting higher 
uncertainty compared to the wet months. Nevertheless, average monthly nutrient loads from the ensemble of models shows 
a decreasing trend except in some months of autumn and summer under both scenarios and future periods (figure 4 c,d,e 
and f).  This increase may be related to the increased temperature that can lead to enhanced nitrogen mineralisation (Wilby 
et al., 2006). Moreover, the decreasing water yield and increasing TN and TP loads during January, February and April may 
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pose a significant management challenge as these conditions may be favourable for algal bloom.  
A good positive relationship was found between monthly nutrient load and flow (R2=0.5 to 0.62 for both TN and TP 

under different emission scenarios), hence decreasing flow can explain the  decreasing nutrient loads as less organic 
materials could be transported from land to the surface water. Panagopoulos et al. (2011) found similar conclusion in a 
Mediterranean catchment in Greece where TN and TP was dependent on flow magnitude. Furthermore, Molina-Navarro et 
al. (2014) found similar conclusion for N exports, however, it contradicts to the TP load which was attributed to sediment 
load rather than flow magnitude.  

Figure 3. Box plot of percentage change in water yield relative to the baseline for two time periods and emission scenario. 

 

Figure 4. Projected range of change for water yield, TN and TP load for two future time periods and emission scenarios. The coloured band 
represents the range of change as calculated by the ensemble of six global climate models and lines representing the average of the ensemble 

models.  



21st Century Watershed Technology Conference Page 8 

4. Conclusions: 
During this study we investigated the impact of two emission scenarios RCP 4.5 and RCP 8.5 on the flow and nutrient 

loads of the Mediterranean Onkaparinga catchment. Climate data predicted for the 25-yearperiodsfrom2021 to 2045 and 
2046 to 2070 by six global climate models were used as inputs for the SWAT model calibrated for the Onkaparinga 
catchment.  Results suggest that: 

1. increasing temperature and decreasing precipitation over the next 50 years will lead to declining water yield and 
nutrient loads at both annual and seasonal time scales, 

2. highest changes can be expected by the high emission scenario RCP 8.5for the period from 2046 to 2071with 
reduction of the average annual water yield, TN- and TP-loads by -20.5%, -24.3% and -29% respectively. 

3. declining effects on flow and nutrient loads are likely to be highest in spring whereby in some summer months 
increasing nutrient loads at declining flow have been predicted that pose the threat of eutrophication effects in the 
downstream reservoir. 

Future research will focus on possible effects of changed flow and nutrient conditions in the Onkaparinga catchment on 
the downstream Mt Bold reservoir by feeding SWAT outputs of scenarios RCP 4.5 and RCP 8.5 as inputs into the lake 
ecosystem model SALMO. 
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Table 1: Field collected data for Site 1. 

 

Date Flow(m3/s) Nitrate-

N 

(mg/l) 

Phosphate-

P (mg/l) 

TKN-

N 

(mg/l) 

TN 

(mg/l) 

TP(mg/l) DOC 

(mg/l) 

True 

color 

Estimated 

DOC 

(mg/l) 

11/14/2013 0.0004 0.52 0.004     22 2.8 

12/13/2013 0       29 3.3 

1/24/2014 0         

2/20/2014 0.004 0.12 0.14     0 0 

3/13/2014 0.009 0.02 0.051     0 0 

4/10/2014 0.021 0.12 0.164     0 0 

5/1/2014 0.013 0.22 0.129     0 0 

6/4/2014 0.005 0.12 0.167     0 0 

6/25/2014 0.045 1.09 0.11     86 6.8 

7/8/2014 0.024 1.14 0.123     50 4.8 

7/31/2014 NA 0.93 0.308 1.5 1.98 0.545 7.4 108 7.9 

8/18/2014 0.018 0.8 0.107 0.3 1.15 0.059  8 1.4 

9/4/2014 0.011 0.68 0.072 0.52 1.23 0.101  36 3.9 

10/20/2014 0.018 0.34 0.137 0.06 0.56 0.039  2 0.6 

12/4/2014 0.001 0.38 0.123 0.22 0.63 0.05 1 5 1.1 

1/9/2015 0.004 0.21 0.089     14 2.1 

1/13/2015 0.003 0.38 0.079 0.23 0.77 0.058 1.5 12 1.9 

2/26/2015 0         

3/26/2015 0.004 0.07 0.045 0.2 0.58 0.046  7 1.3 

4/6/2015 0.003 0.33 0.072     6 1.2 

4/17/2015 0.002 0.4 0.052 0.11 0.64 0.047 0.7 5 1.1 

5/20/2015 0.012 0.67 0.075 0.28 1.1 0.072  18 2.5 

6/30/2015 0.005 0.46 0.079     4 0.9 

7/13/2015 0.029 1.41 0.096 0.71 1.98 0.116  70 6 

8/4/2015 0.043 1.09 0.065     56 5.1 

8/22/2015 0.01 0.61 0.065     38 4 

9/9/2015 0.036 0.71 0.065     65 5.7 

10/16/2015 0.005 0.7 0.062     4 0.9 

11/5/2015 0.006 0.56 0.048     6 1.2 
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Table 2: Field collected data for Site 2. 

Date Flow(m3/s) Nitrate-

N 

(mg/l) 

Phosphate-

P (mg/l) 

TKN-N 

(mg/l) 

TN 

(mg/l) 

TP 

(mg/l) 

DOC 

(mg/l) 

True 

color 

Estimated 

DOC 

(mg/l) 

11/14/2013 0.006 1.12 0.397   0  68 5.8 

12/13/2013 0.009 0.92 0.329     63 5.6 

1/24/2014 0 0.12 0.102     25 3 

2/20/2014 0.001 1.22 0.311     33 3.6 

3/13/2014 0.0006 0.82 0.148     55 5.1 

4/10/2014 0.007 1.12 0.135     34 3.7 

5/1/2014 0.011 1.82 0.042     14 2.1 

6/4/2014 0.006 1.42 0.055     15 2.2 

6/25/2014 0.06 3.62 0.246     141 9.4 

7/8/2014 0.03 3.73 0.058     30 3.4 

7/31/2014 NA 0.64 0.356 3.72 4.06 1.96 5.7 101 7.6 

8/18/2014 0.007 2.77 0.072 0.46 3.76 0.046  13 2 

9/4/2014 0.005 2.19 0.116 0.92 3.73 0.127  26 3.1 

10/20/2014 0.001 0.87 0.179 0.28 1.18 0.099  8 1.4 

12/4/2014 0 0.38 0.106 0.64 0.71 0.172 3.9 27 3.2 

1/9/2015 0 0.46 0.19     52 4.9 

1/13/2015 0.043 1.96 0.242 1.11 3.15 0.49 6.8 82 6.6 

2/26/2015 0 0.22 0.099 0.65 0.72 0.188  45.5 4.5 

3/26/2015 0.0005 0.2 0.065 0.58 0.69 0.133  32 3.6 

4/6/2015 0.002 2.58 0.363     104 7.7 

4/17/2015 0.004 1.88 0.127 0.54 1.61 0.169 4.7 59 5.3 

5/20/2015 0.011 6.66 0.144 0.94 7.54 0.33  109 7.9 

6/30/2015 0.009 3.04 0.031     11 1.8 

7/13/2015 0.041 3.53 0.12 0.92 4.78 0.3  82 6.6 

8/4/2015 0.024 3.68 0.048     42 4.3 

8/22/2015 0.009 2.99 0.048     22 2.8 

9/9/2015 0.02 3.03 0.058     49 4.7 

10/16/2015 0.002 1.5 0.058     26 3.1 

11/5/2015 0.007 1.52 0.062     32 3.6 
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Table 3: Field collected data for Site 3. 

 

Date Flow(m3/s) Nitrate-

N 

(mg/l) 

Phosphate-

P (mg/l) 

TKN-

N 

(mg/l) 

TN 

(mg/l) 

TP(mg/l) DOC 

(mg/l) 

True 

color 

Estimated 

DOC 

(mg/l) 

11/14/2013 0.012 0.62 0.066     17 2.4 

12/13/2013 0.044 0.12 0.314     0 0 

1/24/2014 0 0.12 0.325     37 3.9 

2/20/2014 0.005 0.32 0.243     11 1.8 

3/13/2014 0.013 0.12 0.083     0 0 

4/10/2014 0.021 0.72 0.083     17 2.4 

5/1/2014 0.015 0.82 0.069     13 2 

6/4/2014 0.015 0.92 0.062     6 1.2 

6/25/2014 0.108 2.48 0.175     122 8.6 

7/8/2014 0.05 2.45 0.127     46 4.5 

7/31/2014 NA 0.93 0.335 1.73 2.21 0.758 7.5 123 8.6 

8/18/2014 0.025 1.8 0.042 0.3 2.4 0.051  14 2.1 

9/4/2014 0.03 1.27 0.134 0.74 2.53 0.137  35 3.8 

10/20/2014 0.005 0.41 0.116 0.12 0.6 0.061  6 1.2 

12/4/2014 0.002 0.08 0.086 0.28 0.46 0.093 1.4 9 1.6 

1/9/2015 0.002 0.27 0.089     16 2.3 

1/13/2015 0.041 1.87 0.284 1.08 3.14 0.429 6.5 85 6.8 

2/26/2015 0.001 0.12 0.079 0.45 0.57 0.163  32.5 3.6 

3/26/2015 0.002 0.06 0.072 0.16 0.41 0.077  15 2.2 

4/6/2015 0.004 1.4 0.288     72 6.1 

4/17/2015 0.007 0.96 0.113 0.32 1.41 0.126 3.1 37 3.9 

5/20/2015 0.028 4.17 0.123 0.73 5.15 0.212  74 6.2 

6/30/2015 0.007 1.8 0.055     8 1.4 

7/13/2015 0.098 2.47 0.103 0.81 3.33 0.205  82 6.6 

8/4/2015 0.079 2.35 0.062     47 4.6 

8/22/2015 0.019 1.58 0.065     29 3.3 

9/9/2015 0.053 1.59 0.069     59 5.3 

10/16/2015 0.004 0.84 0.045     13 2 

11/5/2015 0.012 0.86 0.062     24 3 
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Table 4: Field collected data for Site 4.  

Date Flow(m3/s) Nitrate-

N 

(mg/l) 

Phosphate-

P (mg/l) 

TKN-

N 

(mg/l) 

TN 

(mg/l) 

TP(mg/l) DOC 

(mg/l) 

True 

color 

Estimated 

DOC 

(mg/l) 

11/14/2013 0.0007 0.22 0.23     29 3.3 

12/13/2013 0.0004 0.02 0.21     22 2.8 

1/24/2014 0         

2/20/2014 0.0001 0.001 0.1     22 2.8 

3/13/2014 0 0.02 0.088     15 2.2 

4/10/2014 0.0008 0.12 0.15     37 3.9 

5/1/2014 0.0004 0.02 0.051     37 3.9 

6/4/2014 0.0005 0.12 0.093     32 3.6 

6/25/2014 0.012 1.15 0.068     70 6 

7/8/2014 0.004 0.95 0.047     31 3.5 

7/31/2014 NA 0.86 0.349 2.01 2.29 0.823 7 130 8.9 

8/18/2014 0.001 0.7 0.042 0.34 0.98 0.085  26 3.1 

9/4/2014 0.001 0.85 0.058 0.44 1.14 0.09  36 3.9 

10/20/2014 0 0.26 0.127 0.26 0.48 0.082  17 2.4 

12/4/2014 0 0.06 0.069 0.59 0.99 0.257 3.7 17 2.4 

1/9/2015 0         

1/13/2015 0 0.8 0.095 0.77 1.21 0.22 7.7 71 6 

2/26/2015 0         

3/26/2015 0         

4/6/2015 0 2.7 0.684     278 14.6 

4/17/2015 0 0.1 0.041 0.39 0.39 0.073 5 35 3.8 

5/20/2015 0.002 1.94 0.069 0.8 2.11 0.075  33 3.6 

6/30/2015 0 0.15 0.024     18 2.5 

7/13/2015 0.004 1.86 0.045 0.64 2.33 0.106  75 6.2 

8/4/2015 0.005 1.31 0.062     41 4.2 

8/22/2015 0.002 0.77 0.038     27 3.2 

9/9/2015 0.006 1.26 0.069     44 4.4 

10/16/2015 0 0.36 0.028     22 2.8 

11/5/2015 0.001 0.36 0.045     32 3.6 
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Table 5: Field collected data for Site 5. 

Date Flow(m3/s) Nitrate-

N 

(mg/l) 

Phosphate-

P (mg/l) 

TKN-

N 

(mg/l) 

TN 

(mg/l) 

TP(mg/l) DOC 

(mg/l) 

True 

color 

Estimated 

DOC 

(mg/l) 

11/14/2013 0.0002 0.12 0.072     16 2.3 

12/13/2013 0 0.02 0.148     7 1.3 

1/24/2014 0         

2/20/2014 0         

3/13/2014 0         

4/10/2014 0         

5/1/2014 0         

6/4/2014 0.00002 0.22 0.034     30 3.4 

6/25/2014 0.031 0.8 0.164     73 6.1 

7/8/2014 0.013 1.07 0.069     33 3.6 

7/31/2014 NA 0.5 0.284 0.88 1.07 0.412 6.1 70 6 

8/18/2014 0.002 0.62 0.051 0.28 0.8 0.053  19 2.5 

9/4/2014 0.001 0.58 0.062 0.37 0.83 0.07  21.5 2.8 

10/20/2014 0         

12/4/2014 0         

1/9/2015 0         

1/13/2015 0 1.17 0.179 0.85 1.88 0.256 6.8 63 5.6 

2/26/2015 0         

3/26/2015 0         

4/6/2015 0 1.23 0.455     76 6.3 

4/17/2015 0         

5/20/2015 0.001 1.09 0.11 0.45 1.61 0.105  35 3.8 

6/30/2015 0 0.23 0.062     14 2.1 

7/13/2015 0.028 0.93 0.13 0.58 1.27 0.168  61 5.4 

8/4/2015 0.014 0.75 0.075     39 4.1 

8/22/2015 0.004 0.36 0.048     21 2.7 

9/9/2015 0.026 0.52 0.082     51 4.8 

10/16/2015 0 0.24 0.038     15 2.2 

11/5/2015 0.001 0.18 0.045     27 3.2 
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Table 6: Field collected data for Site 6. 

Date Flow(m3/s) Nitrate-

N 

(mg/l) 

Phosphate-

P (mg/l) 

TKN-

N 

(mg/l) 

TN 

(mg/l) 

TP(mg/l) DOC 

(mg/l) 

True 

color 

Estimated 

DOC 

(mg/l) 

11/14/2013 0.0046 0.12 0.048     45 4.5 

12/13/2013 0.0085 0.02 0.042     25 3 

1/24/2014 0 0.32 0.13     29 3.3 

2/20/2014 0.0025 0.001 0.021     36 3.9 

3/13/2014 0 0.02 0.028     51 4.8 

4/10/2014 0.0023 0.12 0.024     32 3.6 

5/1/2014 0.0079 0.02 0.102     26 3.1 

6/4/2014 0.0033 0.62 0.028     42 4.3 

6/25/2014 0.101 1.5 0.093     116 8.3 

7/8/2014 0.033 0.81 0.034     40 4.1 

7/31/2014 NA 0.69 0.202 1.62 1.79 0.526 8.1 122 8.6 

8/18/2014 0.01 0.71 0.055 0.56 1.1 0.052  58 5.3 

9/4/2014 0.011 0.54 0.079 0.44 0.75 0.068  41.5 4.2 

10/20/2014 0.002 0.31 0.085 0.4 0.66 0.051  25 3 

12/4/2014 0.001 0.25 0.041 0.31 0.31 0.061 3.5 30 3.4 

1/9/2015 0 0.5 0.106     59 5.3 

1/13/2015 0.004 0.59 0.085 1.02 1.12 0.231 9.9 93 7.2 

2/26/2015 0 0.05 0.01 0.62 0.62 0.129  36 3.9 

3/26/2015 0 0.21 0.038 0.44 0.44 0.103  51 4.8 

4/6/2015 0 1.05 0.318     154 10 

4/17/2015 0 0.12 0.021 0.34 0.37 0.062 4.1 34 3.7 

5/20/2015 0.03 0.45 0.048 0.62 1 0.047  43 4.3 

6/30/2015 0.003 0.18 0.021     17 2.4 

7/13/2015 0.052 0.77 0.058 0.64 1.09 0.085  79 6.4 

8/4/2015 0.054 0.75 0.065     64 5.6 

8/22/2015 0.014 0.38 0.028     54 5 

9/9/2015 0.063 0.5 0.045     68 5.8 

10/16/2015 0.002 0.34 0.007     25 3 

11/5/2015 0.002 0.27 0.017     34 3.7 

  



 Appendix C: Tables  
 

94 
 

Table 7: Field collected data for Site 7i. 

 

Date Flow(m3/s) Nitrate-

N 

(mg/l) 

Phosphate-

P (mg/l) 

TKN-

N 

(mg/l) 

TN 

(mg/l) 

TP(mg/l) DOC 

(mg/l) 

True 

color 

Estimated 

DOC 

(mg/l) 

11/14/2013 0.0189 0.001 0.075     20 2.6 

12/13/2013 0.0444 0.001 0.069     18 2.5 

1/24/2014 0.0025 0.001 0.373     17 2.4 

2/20/2014 0.007 0.001 0.213     35 3.8 

3/13/2014 0.0126 0.001 0.062     27 3.2 

4/10/2014 0.0267 0.001 0.161     19 2.5 

5/1/2014 0.0288 0.12 0.158     22 2.8 

6/4/2014 0.0202 0.32 0.045     21 2.7 

6/25/2014 0.37 1.54 0.123     97 7.4 

7/8/2014 0.142 1.57 0.069     48 4.7 

7/31/2014 0.151 1.2 0.069 0.53 1.67 0.115 5.2 51 4.8 

8/18/2014 0.066 1.19 0.055 0.38 1.44 0.077  20 2.6 

9/4/2014 0.064 0.73 0.083 0.74 1.46 0.174  47 4.6 

10/20/2014 0.016 0.36 0.085 0.21 0.27 0.068  14 2.1 

12/4/2014 0.006 0.02 0.089 0.19 0.22 0.071 2.5 16 2.3 

1/9/2015 0.005 0.38 0.185     34 3.7 

1/13/2015 0.037 1.1 0.2 0.87 1.7 0.358 7.6 85 6.8 

2/26/2015 0.002 0.1 0.058 0.29 0.29 0.099  22.5 2.8 

3/26/2015 0.005 0.14 0.045 0.06 0.06 0.07  29 3.3 

4/6/2015 0.016 1.75 0.363     168 10.5 

4/17/2015 0.013 0.06 0.106 0.25 0.32 0.132 3.4 38 4 

5/20/2015 0.061 2.05 0.069 0.57 2.5 0.146  43 4.3 

6/30/2015 0.026 0.76 0.021     20 2.6 

7/13/2015 0.271 1.48 0.069 0.69 1.99 0.129  72 6.1 

8/4/2015 0.186 1.42 0.096     57 5.2 

8/22/2015 0.071 0.9 0.058     37 3.9 

9/9/2015 0.216 1.05 0.069     60 5.4 

10/16/2015 0.018 0.36 0.038     60 5.4 

11/5/2015 0.032 0.31 0.069     34 3.7 
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Table 8: Field collected data for Site 7o. 

Date Flow(m3/s) Nitrate-

N 

(mg/l) 

Phosphate-

P (mg/l) 

TKN-

N 

(mg/l) 

TN 

(mg/l) 

TP(mg/l) DOC 

(mg/l) 

True 

color 

Estimated 

DOC(mg/l) 

11/14/2013 0.0233 0.02 0.034   0  19 2.5 

12/13/2013 0.0392 0.02 0.237     11 1.8 

1/24/2014 0.0055 0.02 0.066     15 2.2 

2/20/2014 0.0103 0.12 0.083     48 4.7 

3/13/2014 0.0187 0.001 0.048     31 3.5 

4/10/2014 0.0158 0.17 0.096     36 3.9 

5/1/2014 0.0295 0.22 0.127     48 4.7 

6/4/2014 0.0382 0.12 0.055     28 3.3 

6/25/2014 0.385 1.71 0.123     107 7.9 

7/8/2014 0.156 1.46 0.079     51 4.8 

7/31/2014 0.164 1.24 0.066 0.61 1.67 0.101 5.4 46 4.5 

8/18/2014 0.049 0.97 0.045 0.37 1.42 0.073  23 2.9 

9/4/2014 0.042 0.61 0.102 0.48 1.47 0.109  29 3.3 

10/20/2014 0.015 0.14 0.053 0.22 0.28 0.049  14 2.1 

12/4/2014 0.005 0.16 0.052 0.15 0.15 0.063 2.9 24 3 

1/9/2015 0.004 0.33 0.053     30 3.4 

1/13/2015 0.041 0.87 0.137 0.88 1.52 0.346 8.3 91 7.1 

2/26/2015 0.001 0.1 0.045 0.39 0.4 0.087  30 3.4 

3/26/2015 0.003 0.03 0.028 0.32 0.33 0.064  26 3.1 

4/6/2015 0.048 0.6 0.106     65 5.7 

4/17/2015 0.025 0.12 0.062 0.27 0.33 0.104 2.8 28 3.3 

5/20/2015 0.093 1.68 0.106 0.74 2.19 0.209  64 5.6 

6/30/2015 0.028 0.53 0.041     20 2.6 

7/13/2015 0.241 1.57 0.075 0.7 2.27 0.113  66 5.7 

8/4/2015 0.212 1.54 0.062     57 5.2 

8/22/2015 0.099 0.85 0.052     41 4.2 

9/9/2015 0.271 0.78 0.062     63 5.6 

10/16/2015 0.016 0.23 0.024     63 5.6 

11/5/2015 0.022 0.3 0.052     33 3.6 
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Table 9: Field collected data for Site 8. 

 

Date Flow(m3/s) Nitrate-

N 

(mg/l) 

Phosphate-

P (mg/l) 

TKN-N 

(mg/l) 

TN 

(mg/l) 

TP(mg/l) DOC 

(mg/l) 

True 

color 

Estimated 

DOC 

(mg/l) 

11/14/2013 0.0050 0.12 0.066     41 4.2 

12/13/2013 0.0028 0.12 0.079     44 4.4 

1/24/2014 0         

2/20/2014 0 0.001 0.031     28 3.3 

3/13/2014 0         

4/10/2014 0.0005 0.12 0.002     74 6.2 

5/1/2014 0.0003 0.22      35 3.8 

6/4/2014 0.0010 0.22      62 5.5 

6/25/2014 0.049 0.54 0.01     92 7.1 

7/8/2014 0.023 0.74 0.001     78 6.4 

7/31/2014 0.043 0.69 0.004 0.59 0.91 0.037 7.4 83 6.7 

8/18/2014 0.01 0.47 0.034 0.45 0.61 0.023  61 5.4 

9/4/2014 0.016 0.52 0.01 0.49 0.56 0.028  56 5.1 

10/20/2014 0.001 0.31 0.032 0.41 0.43 0.016  41 4.2 

12/4/2014 0 0.39 0.014 0.87 0.88 0.037 6 127 8.8 

1/9/2015 0 3.42 0.011     753 28.1 

1/13/2015 0 1.85 0.027 2.95 3.55 0.484 14.9 482 21 

2/26/2015 0         

3/26/2015 0         

4/6/2015 0 2.38 0.756     363 17.4 

4/17/2015 0         

5/20/2015 0.01 0.56 0.014 0.65 0.83 0.042  77 6.3 

6/30/2015 0 0.09 0.004     40 4.1 

7/13/2015 0.025 0.98 0.01 1.59 2.15 0.091  89 7 

8/4/2015 0.028 0.88 0.017     87 6.9 

8/22/2015 0.021 0.56 0.045     65 5.7 

9/9/2015 0.037 0.91 0.007     71 6 

10/16/2015 0.001 0.38      44 4.4 

11/5/2015 0.001 0.32 0.004     42 4.3 
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Table 10: Field collected data for Site 9. 

Date Flow(m3/s) Nitrate-

N 

(mg/l) 

Phosphate-

P (mg/l) 

TKN-

N 

(mg/l) 

TN 

(mg/l) 

TP(mg/l) DOC 

(mg/l) 

True 

color 

Estimated 

DOC 

(mg/l) 

11/14/2013 0.0007 0.42 0.192     143 9.5 

12/13/2013 0.0008 0.12 0.099     67 5.8 

1/24/2014 0         

2/20/2014 0.0003 0.001 0.014     45 4.5 

3/13/2014 0         

4/10/2014 0         

5/1/2014 0.0018 0.12 0.11     45 4.5 

6/4/2014 0.0070       68 5.8 

6/25/2014 0.074 0.51 0.004     106 7.8 

7/8/2014 0.024 0.71 0.01     87 6.9 

7/31/2014 0.037 0.67 0.004 0.67 0.9 0.032 9 95 7.3 

8/18/2014 0.012 0.39 0.014 0.51 0.53 0.029  62 5.5 

9/4/2014 0.017 0.4 0.021 0.66 0.66 0.047  54 5 

10/20/2014 0 0.47 0.011 0.43 0.43 0.022  38 4 

12/4/2014 0 0.36 0.03       

1/9/2015 0         

1/13/2015 0         

2/26/2015 0         

3/26/2015 0         

4/6/2015 0         

4/17/2015 0         

5/20/2015 0.016 0.51 0.017 0.65 0.86 0.041  79 6.4 

6/30/2015 0.004 0.23 0.004     57 5.2 

7/13/2015 0.061 0.91 0.028 0.67 1.08 0.038  95 7.3 

8/4/2015 0.034 1 0.031     95 7.3 

8/22/2015 0.016 0.39 0.014     73 6.1 

9/9/2015 0.033 0.72 0.021     104 7.7 

10/16/2015 0.0001 0.36 0.004     46 4.5 

11/5/2015 0.004 0.58 0.014     110 8 
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Table 11: Field collected data for Site 10. 

 

Date Flow(m3/s) Nitrate-

N (mg/l) 

Phosphate-

P (mg/l) 

TKN-N 

(mg/l) 

TN 

(mg/l) 

TP(mg/l) DOC 

(mg/l) 

True 

color 

Estimated 

DOC 

(mg/l) 

11/14/2013 0.055 0.12 0.024   0  30 3.4 

12/13/2013 0.079 NA NA       

1/24/2014 0.004 0.02 0.335     19 2.5 

2/20/2014 0.008 0.001 0.083     73 6.1 

3/13/2014 0.007 0.001 0.151     38 4 

4/10/2014 0.063 0.001 0.158     31 3.5 

5/1/2014 0.044 0.02 0.192     51 4.8 

6/4/2014 0.034 0.12 0.045     36 3.9 

6/25/2014 0.613 1.4 0.086     100 7.5 

7/8/2014 0.157 1.2 0.069     65 5.7 

7/31/2014 0.279 1.06 0.051 0.61 1.44 0.08 6.5 60 5.4 

8/18/2014 0.074 0.88 0.031 0.47 1.28 0.059  30 3.4 

9/4/2014 0.088 0.79 0.045 0.52 1.04 0.068  43 4.3 

10/20/2014 0.018 0.18 0.074 0.23 0.26 0.045  9 1.6 

12/4/2014 0.004 0.29 0.072 0.25 0.25 0.074 2.9 23 2.9 

1/9/2015 0.006 0.23 0.083     34 3.7 

1/13/2015 0.039 0.81 0.116 0.93 1.48 0.322 7.9 86 6.8 

2/26/2015 0.001 0.19 0.024 0.51 0.51 0.097  21 2.7 

3/26/2015 0.003 0.04 0.028 0.4 0.4 0.066  27 3.2 

4/6/2015 0.037 0.3 0.096     60 5.4 

4/17/2015 NA   0.25 0.29 0.095 3.1 30 3.4 

5/20/2015 0.099 1.32 0.065 0.64 1.95 0.179  58 5.3 

6/30/2015 0.022 0.48 0.014     26 3.1 

7/13/2015 0.308 1.49 0.055 0.61 1.86 0.095  74 6.2 

8/4/2015 0.296 1.36 0.058     65 5.7 

8/22/2015 0.079 0.77 0.038     51 4.8 

9/9/2015 0.392 0.96 0.055     65 5.7 

10/16/2015 0.016 0.28 0.024     32 3.6 

11/5/2015 0.023 0.24 0.045     42 4.3 
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