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Abstract 

Neuropsychiatric disorders such as schizophrenia have complex genetic 

traits and are believed to arise from defects in multiple genes within connected 

biological networks. One of the major limitations regarding the neurobiology of 

higher brain function and in studying complex psychiatric disorders is the 

necessity to use animal models to mimic the higher complexity of the human brain. 

Recently, 14-3-3ζ has been associated with schizophrenia and our laboratory has 

previously demonstrated that mice lacking this gene have deficits reminiscent of 

the human condition. This thesis provides further evidence for 14-3-3ζ KO mice 

representing a unique and appropriate model to study the aetiology of 

schizophrenia and related disorders, with core focus on the orchestrated 

development of hippocampal neurons. Some of the key findings include; 1) the 

importance of 14-3-3ζ in controlling neuronal migration to promote hippocampal 

lamination, 2) the importance of 14-3-3ζ in controlling axonal pathfinding and 

dendritic spine formation, 3) the direct interaction of 14-3-3ζ with Cdk5/p35 

phosphorylated Ndel1 to maintain Ndel1 phosphorylation and promote neuronal 

migration, and 4) the role of 14-3-3ζ in embryonic, early postnatal and adult 

neurogenesis, particularly in neural stem/progenitor cells proliferation and self-

renewal.  Taken together, this work provides novel insight to the functions of 14-3-

3ζ in neuronal development and the aetiology of neuropsychiatric disorders. 
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1.1 14-3-3 proteins  

14-3-3 proteins are a family of highly conserved regulatory proteins 

expressed in eukaryotic organisms (Aitken et al., 1992, Berg et al., 2003). Moore 

and Perez (1967) first discovered these proteins during a systematic analysis of 

brain tissue based on their fraction number on DEAE-cellulose chromatography 

and their position on starch gel electrophoresis. 14-3-3 proteins are 

multifunctional and interact with over 100 protein partners. Despite this plethora 

of known binding proteins, in many cases the exact role of 14-3-3 in these 

interactions has remained obscure. However, there is extensive evidence 

indicating their involvement in multiple cellular processes such as cell cycle 

regulation, proliferation, migration, differentiation and apoptosis (Berg et al., 

2003, Fu et al., 2000, Toyo-oka et al., 2003, Ikeda et al., 2008). Such diverse 

functions are thought to indicate their importance in human disease (Berg et al., 

2003, Fu et al., 2000).   

 

There are seven distinct mammalian isoforms of the 14-3-3 proteins 

(Figure 1.1) (Martin et al., 1993, Boston et al., 1982), where each isoform has been 

assigned a Greek letter (β, ε, γ, η, σ, τ, ζ) according to its sequential elution position 

after reverse-phase high-performance liquid chromatography (HPLC) (Aitken et 

al., 1992, Ichimura et al., 1988). Up to fifteen isoforms are present in plants and 

two isoforms have been identified in yeast, Drosophila melanogaster and 

Caenorhabditis elegans (Rosenquist et al., 2001, Wang and Shakes, 1996).  
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Figure 1. 1: Crystal structure of human 14-3-3 isoforms bound to peptide ligands. 

A side view of each 14-3-3 isoforms in homodimeric form is shown according to the following 

scheme: red: zeta; grey: epsilon; orange: beta; tan: sigma; green: eta; blue: gamma; purple: tau. 

Dimerization occurs through salt bridges, as well as several buried polar and hydrophobic residues. 

The first salt bridge (Arg18-Glu89) and the hydrophobic/polar contacts (Leu12, Ala16, Ser58, 

Val62, Ile65, & Tyr82) are conserved in all human 14-3-3 isotypes. The second salt bridge (Glu5-

Lys74) is absent in σ, η, ɛ, and γ isoforms, and the third salt bridge (Asp21-Lys85) is present in all 

human 14-3-3 structures except ɛ. In all models yellow residues represent phosphopeptide ligand 

except for ɛ which is a non-phosphopeptide ligand.  Adapted from Gardino et al. (2006). 

 

1.1.1 Structural information and protein interactions  

14-3-3 proteins have molecular masses of around 30kDa and an isoelectric 

point of around 5 in the two-dimensional polyacrylamide gel electrophoresis (2D-

PAGE) system (Aitken et al., 1992). The human 14-3-3ζ (Liu et al., 1995) and 14-3-

3τ (Xiao et al., 1995) crystal structure revealed that these proteins exist in homo- 

or hetero-dimeric forms.  Each monomer has a cup-like shape consisting of nine 

antiparallel α-helices (Berg et al., 2003, Fu et al., 2000) and there is an abundance 
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of acidic residues within their core conserved domains. The other human isoforms 

have subsequently been crystallized (reviewed in Gardino et al., 2006) and show 

similar structure (Figure 1.1). 

 

The 14-3-3 dimers may bind to one target protein or to multiple target 

proteins via different motifs and hold them in multiprotein complexes (Skoulakis 

and Davis, 1998). Although the exact role of 14-3-3 dimerization is not completely 

understood, this phenomenon seems to be crucial for the function of this protein 

family. In fact, some isoforms prefer to adopt strictly homodimeric interactions 

such as human 14-3-3σ and 14-3-3γ while others preferentially form 

heterodimers such as human 14-3-3ε and all yeast 14-3-3 proteins (Gardino et al., 

2006).  

 

14-3-3 binding motifs generally contain phosphoserine/phosphothreonine 

consensus sequences recognized by the 14-3-3 proteins (Gardino et al., 2006, Berg 

et al., 2003). There are two high-affinity phosphorylation-dependent motifs: mode 

1 (RSXpSXP) and mode 2 (RXXXpSXP, where pS represent phosphoserine/ 

threonine) (Gardino et al., 2006, Dougherty and Morrison, 2004). However, it 

should also be noted that a few proteins interact with 14-3-3 in a phosphorylation-

independent manner. Regardless of whether the interactions are dependent on 

phosphorylation or not, all targets appear to interact with the same binding 

domain on 14-3-3, the conserved amphipathic groove (Berg et al., 2003, Fu et al., 

2000, Liu et al., 1995). For example, the unphosphorylated ligand 5-phosphatase 

can bind to 14-3-3 with high affinity because it displays a model 1-like motif (Berg 
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et al., 2003). In this instance, it is likely that phosphorylation is overcome by the 

presence of multiple negatively charged Glutamate residues.      

 

1.1.2 Regulation  

The interaction of 14-3-3 proteins with their ligands is under tight control. 

Besides phosphorylation of target proteins, the status of 14-3-3 itself is also a 

critical determinant of this control. Mechanisms that regulate 14-3-3 include 

expression levels in cells, posttranslational modification, isoform specificity and 

subcellular localization (Takahashi, 2003, Fu et al., 2000). 

 

The 14-3-3 family of proteins clearly have important role(s) in mammalian 

brain, where levels as high as 13.3μg/mL soluble protein (approximately 1%) 

were shown to exist in neuronal tissue (Baxter et al., 2002, Boston et al., 1982). All 

the 14-3-3 isoforms, with the exception of σ, are primarily but not exclusively 

expressed in neurons (Skoulakis and Davis, 1998). Their primarily neuronal 

expression pattern appears conserved in all animal species examined (Skoulakis 

and Davis, 1998, Aitken et al., 1995, Aitken et al., 1992, Ichimura et al., 1988). 

However, the expression pattern of 14-3-3 isoforms within the brain varies 

(Aitken et al., 1992). 

 

 It is noteworthy that the isoforms of 14-3-3 are highly expressed in 

pyramidal cells of the hippocampus, neurons of the cerebral cortex, olfactory bulb 

neurons, and Purkinje cells of the cerebellum (Takahashi, 2003, Skoulakis and 

Davis, 1998). There is a large degree of overlap in expression patterns among the 

isoforms but it is, as yet, undefined whether they are co-expressed in the same 
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cells. Variation in expression pattern and abundance within these brain regions 

may reflect functional differences or engagement of distinct signal-transduction 

pathways by different groups of cells.  

 

Several kinases (sphingosine-dependent protein 1, casein kinase 1 and 

protein kinase Cs) have been reported to phosphorylate 14-3-3, suggesting that 

they could modulate the function of 14-3-3 isoforms (Takahashi, 2003). Among the 

mammalian isoforms, only 14-3-3τ and 14-3-3ζ are phosphorylated to give rise to 

the species initially designated as the α and δ isoforms, respectively (Fu et al., 

2000). However, the role of phosphorylation in the physiological regulation of 14-

3-3 function is not yet clear.  

 

The presence of seven 14-3-3 isoforms also suggests possible roles for 

isoform-specific interactions with different target proteins to control different 

cellular processes. For example, overexpression of 14-3-3σ caused a G2 cell cycle 

arrest in colorectal carcinoma cells, whereas 14-3-3β overexpression did not (Fu 

et al., 2000). 14-3-3γ, but not other isoforms, was found to regulate P53, a tumour 

suppressor, by blocking its inhibitors and interacting with its regulatory proteins, 

such as mouse double minute X homolog (MDMX) (Jin et al., 2006). In addition, 

surface expression of voltage-gated Ca²⁺ channels have been reported to be 

significantly enhanced by 14-3-3τ (Liu et al., 2015).  
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1.2 14-3-3 in brain function 

1.2.1 14-3-3 proteins in neurological disorders  

The high expression of 14-3-3 proteins in the mammalian brain suggests 

that these proteins may be important contributors to neuronal development and 

in certain neuropathologies. The first physiological evidence of an essential role 

for 14-3-3 proteins in neuronal functions such as learning and memory was 

demonstrated in Drosophila (Skoulakis and Davis, 1998). Mutations in the binding 

motif of Drosophila 14-3-3ζ led to disruption of neuronal differentiation, synaptic 

plasticity, and behavioural plasticity, thereby establishing a role for these proteins 

in the development and function of the nervous system (Skoulakis and Davis, 

1998). These effects on synaptic physiology and plasticity do not appear to be the 

result of decreased numbers of synaptic vesicles, but rather through a failure to 

regulate their function (localisation, turnover, ability to signal etc.) correctly.  

 

In humans, several reports have indicated that 14-3-3ε has an important 

influence on neural migration. 14-3-3ε is located in chromosomal region 17p13.3, 

that contains genes implicated in isolated lissencephaly sequence (ILS) and Miller-

Dieker syndrome (MDS) (Dougherty and Morrison, 2004, Berg et al., 2003, Toyo-

oka et al., 2003, Fu et al., 2000). ILS and MDS are diseases characterized by 

classical Lissencephaly (smooth brain), a neural migration defect that results in 

mental retardation and epilepsy. Additionally, 14-3-3 proteins are also found in 

the neurofibrillary tangles seen in patients with Alzheimer’s disease (AD) (Berg et 

al., 2003, Layfield et al., 1996). 14-3-3 proteins have also been detected in the 

cerebrospinal fluid (CSF) of certain neurodegenerative diseases, such as scrapie, 
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bovine spongiform encephalopathy (BSE) and Creutzfeldt-Jakob disease (CJD) 

(Baxter et al., 2002, Hirsch et al., 1992).  

 

1.2.2 14-3-3 in schizophrenia  

Neuropsychiatric disorders such as schizophrenia, bipolar disorder and 

autism are the greatest cause of human suffering which comprise 13% of all 

reported diseases (Figure 1.2) (WHO, 2008). Unlike other chronic illnesses, these 

disorders often begin at a young age and require ongoing treatment throughout 

life making it an economic burden in terms of hospitalization, chronic treatment 

and rehabilitation, and lost productivity. Despite the negative effects of these 

disorders on public health, progress in understanding their pathophysiology has 

been frustratingly slow and the discovery of new therapeutic interventions is at a 

near standstill (Nestler and Hyman, 2010).  

 

Figure 1. 2: Burden of diseases worldwide in 2004. 

Neuropsychiatric disorders comprise 13% of all reported diseases and is the highest burden of 

disease among noncommunicable conditions. Figure was generated using data from WHO (2008).  
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Schizophrenia is the fourth leading cause of disability in the developed 

world affecting about 1% of the population and accounts for over one third of all 

mental illness, one of Australia’s major medical issues (Miyamoto et al., 2003).  

Schizophrenia is characterized by positive symptoms of hallucinations, delusions, 

and thought disorder; negative symptoms of decreased motivation, altered 

expressivity, and an inability to experience pleasure (anhedonia); selective 

cognitive deficits in attention, learning, and memory; and comorbid features of 

depression, substance abuse, and suicide (Clapcote et al., 2007, Ross et al., 2006). 

Antipsychotics are an effective treatment for the positive symptoms of 

schizophrenia, but the illness continues to produce considerable disability 

(Miyamoto et al., 2003). The genetic cause of schizophrenia remains unknown 

despite extensive genetic linkage and association studies (Lewis and Levitt, 2002, 

Walsh et al., 2008).  

 

Advances in the aetiology of schizophrenia provide resounding evidence of 

a neurodevelopmental origin, most likely arising from defects in neural migration 

and synapse formation (Harrison, 2004, Lewis and Levitt, 2002, Walsh et al., 

2008). This evidence comes from in vivo and post mortem analyses as reviewed in 

Harrison (2004). The most consistent structural abnormalities found in 

schizophrenia include lateral and third ventricular enlargement; medial temporal 

lobe (hippocampal formation, subiculum, parahippocampal gyrus) volume 

reductions and superior temporal gyrus (STG) volume reductions (Harrison, 2004, 

Ross et al., 2006). 
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Linkage association studies of schizophrenia are increasingly providing 

evidence of the involvement of 14-3-3 proteins in this crippling disease. Single 

nucleotide polymorphism analysis in schizophrenia patients identified significant 

linkage to 14-3-3ζ compared to the other isoforms (Jia et al., 2004, Wong et al., 

2005). Additionally, post-mortem schizophrenia brain samples revealed 

significant down-regulated mRNA (Middleton et al., 2005, Wong et al., 2005) and 

protein (English et al., 2011, English et al., 2009, Sivagnanasundaram et al., 2007, 

Focking et al., 2011, Schubert et al., 2015) levels of 14-3-3ζ in comparison to 

healthy controls.  

 

More recently, a non-synonymous heterozygous point mutation in 14-3-3ζ 

(14-3-3ζ-K115R) was identified in a schizophrenia patient by whole-exome 

sequencing analyses. This mutation leads to an alteration of a highly conserved 

lysine residue required for protein function (Fromer et al., 2014). In a related 

neurodevelopmental disorder, namely autism, a non-synonymous frame-shift 

mutation in 14-3-3ζ (14-3-3ζ-fs220) results in premature truncation of the protein 

and loss of residues important for controlling protein-protein interactions (Toma 

et al., 2014). Moreover, 14-3-3ζ has been found to be part of the schizophrenia 

protein interaction network (Sun et al., 2010). Taken together, these findings 

identify 14-3-3ζ as a candidate risk factor of schizophrenia and associated 

disorders. On the basis of these reports, this thesis aimed to assess the causal 

relationship between 14-3-3ζ deficiency and the aetiology of schizophrenia and 

related neurodevelopmental disorders.  

 

 



27 
 

1.3 Brain development 

Brain development occurs in a highly orchestrated sequence starting with 

neurulation from the ectoderm of the embryo (Jiang and Nardelli, 2015). 

Neurulation involves rapid proliferation of neuroepithelial cells (neural stem cells) 

of the ectoderm forming the neural plate that folds to form the neural tube. The 

differentiated cells in the neural tube positioned along the rostral or caudal 

portions eventually become the brain and spinal cord, respectively (Stiles and 

Jernigan, 2010).  Following neurulation, the rostral portion of the neural tube swell 

to form three primary vesicles, namely the prosencephalon (forebrain), 

mesencephalon (midbrain), and rhombencephalon (hindbrain) (left image, Figure 

1.3 i). These segments then give rise to five secondary vesicles by subdivision of 

the prosencephalon into the telencephalon and diencephalon, the 

rhombencephalon into the metencephalon and myelencephalon, while the 

mesencephalon remains undivided (right image, Figure 1.3 i)(Stiles and Jernigan, 

2010).  

 

The neuroepithelial cells migrate from their birth place to their final 

position to achieve lamination within all regions of the brain, forming complex 

internal structures (Figure 1.3 ii) (Hippenmeyer et al., 2010). They then mature to 

develop axons and dendrites allowing them to establish synaptic communication 

with other neurons leading to functional neuronal networks. The formation of the 

brain’s general architecture is largely completed at birth, while maturation of the 

two principal glial cells, synaptogenesis and synapse pruning, and myelination 

occur postnatally (Jiang and Nardelli, 2015).  
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Figure 1. 3: Illustration of mouse brain development after neural tube formation.  

(i) The neural tube develops into three primary vesicles at embryonic day (E) 10 that eventually 

forms the forebrain, midbrain, and hindbrain. The vesicles then give rise to five secondary vesicles, 

at E11.5, including the telencephalon, diencephalon, mesencephalon, metencephalon and 

myelencephalon. (ii) Within the mature adult brain these primitive regions develop into complex 

internal structures. Different colours represent the different brain regions.  
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1.3.1 The hippocampus 

The hippocampus is a brain region derived from medial regions of the 

telencephalon and is known to play important roles in spatial memory and 

navigation (Belvindrah et al., 2014, Khalaf-Nazzal and Francis, 2013). It is located 

inside the medial temporal lobe and contains two main interlocking parts: cornu 

ammonis (CA) and the dentate gyrus (DG) (Figure 1.4). The primary neuronal 

layer of cornu ammonis is composed of glutamatergic excitatory pyramidal 

neurons which consist of only one layer of principal neurons.  These neurons have 

different morphological and genetic properties, which divide it into the region of 

CA1 and CA3 where CA2 refers to the transitory region between the two 

anatomically define regions (Danglot et al., 2006). In contrast, the cells within the 

dentate gyrus are composed of granular neurons. Communication between the DG 

granular neurons and CA3 pyramidal neurons is achieved through precise axonal 

navigation and synaptic targeting. 

 

The entorhinal cortex (EC), located in the parahippocampal gyrus, is the 

main interface between the hippocampus and other parts of the cerebral cortex.  

Within the hippocampus, the flow of information from the EC is largely 

unidirectional, with signals propagating through a series of tightly packed cell 

layers (Figure 1.4). EC axons project through the perforant path and innervate the 

granule cells of the DG.  Mossy fibres from granule cells then pass information 

from the EC to thorny spines that exit from the proximal apical dendrite of CA3 

pyramidal cells. The axons of CA3 pyramidal cells (Schaffer collaterals) then 

innervate CA1 pyramidal cells, which in turn innervate back to the EC and the 

subiculum. 
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Figure 1. 4: Hippocampal trisynaptic circuit in adult mouse brain.   

The pyramidal cells of the CA3 and CA1 regions along with the granule cells of the DG compose the trisynaptic loop. The entorhinal cortex projects to the granule 

cells by fibres collectively known as the perforant path (1). Mossy fibres from the granule cells in the DG synapse on pyramidal cells of CA3 (2). Pyramidal cells of 

CA3 sends signals to CA1 cells via Schaffer collaterals (3). Pyramidal cells of CA1 then synapse back to the entorhinal cortex and the subiculum (4). Cornu ammonis, 

CA in light orange; dentate gyrus, DG in blue; so, stratum oriens; sl, stratum lucidum; sr, stratum radiatum; slm, stratum lacunosum-moleculare; sm, stratum 

moleculare. Adapted and redrawn from Danglot et al. (2006). 
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1.3.2 Hippocampal development 

The hippocampus begins to develop during early stages of embryogenesis 

and in mice only obtains its mature structure two weeks postnatally. At the 

earliest stages of its development neuroepithelial precursor cells within the 

ventricular zone (VZ) at the roof of the telencephalon exit the cell cycle and 

migrate radially towards their target layer where they settle in an inside-out 

fashion (Figure 1.5) (Belvindrah et al., 2014, Danglot et al., 2006, Marin et al., 

2010). The neuroepithelium giving rise to the hippocampus consists of three 

subtypes; 1) the ammonic neuroepithelium which forms the pyramidal cells & 

large neurons of stratum oriens and stratum radiatum, 2) the dentate 

neuroepithelium which forms the granule cells & large neurons of stratum 

moleculare and hilus and 3) the glioepithelium which forms the glial cells of the 

future fimbria (Danglot et al., 2006).  

  

In mice, CA3 pyramidal neurons are generated in the VZ at E14-15, while 

CA1 pyramidal neurons arise later at E15-E16. Ammonic neuroepithelial cells 

differentiate into young immature post-mitotic neurons which develop a transient 

multipolar morphology within the subventricular zone (SVZ) (Figure 1.5) (Hayashi 

et al., 2015, Wynshaw-Boris and Gambello, 2001). Upon gaining a bipolar 

morphology, these immature neurons migrate along radial glial scaffolds through 

the intermediate zone (IZ) towards the hippocampal plate (HP) (Belvindrah et al., 

2014, Hayashi et al., 2015). Radial glial cells serve as ideal guide posts for this 

migration event as they extend their processes all the way from the VZ up to the 

marginal zone (MZ) (Belvindrah et al., 2014). Cajal-Retzius cells in the MZ are 

essential for this migration process as they secrete factors to help maintain radial 
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glial cell morphology and attract post-mitotic migrating neurons toward their final 

resting place (Belvindrah et al., 2014).  The pyramidal cells reaching the 

hippocampal plate then polarise and initiate axonal formation and extension 

(Belvindrah et al., 2014). 

 

The generation of the DG granule cells is unique as they are generated both 

within and outside of the VZ throughout brain development (Figure 1.5) (Danglot 

et al., 2006, Urban and Guillemot, 2014). At E14.5 in mice, dentate neuroepithelial 

cells proliferate and undergo initial differentiation within the VZ which is known 

as the primary matrix (1ry, Figure 1.5) (Belvindrah et al., 2014, Danglot et al., 

2006, Khalaf-Nazzal and Francis, 2013). During later stages, neuroepithileial 

precursor cells of the DG migrate away from the VZ toward the dentate plate (DP) 

and give rise to the secondary matrix cell population (2ry, Figure 1.5) (Danglot et 

al., 2006, Khalaf-Nazzal and Francis, 2013, Urban and Guillemot, 2014). The first 

cells to arrive within the secondary matrix constitute the top blade of the dentate 

plate while the cells arriving at later stages give rise to the tertiary matrix cell 

population (3ry, Figure 1.5) (Danglot et al., 2006, Khalaf-Nazzal and Francis, 2013, 

Urban and Guillemot, 2014).   

 

The first migration phase of immature granular neurons occurs 

independent of the Radial Glial cells through a tangential mode of migration, 

however, radial migration is later required for insertion into the granule plate 

(Khalaf-Nazzal and Francis, 2013). Although these cells are first detected in the 

dentate plate at around E18, the majority (~85%) only laminate the dentate gyrus 

postnatally (P1-2)(Khalaf-Nazzal and Francis, 2013). The tertiary matrix is the 
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only source of dentate progenitors and granule cells during postnatal stages of 

development, eventually becoming confined to the subgranular zone (SGZ) (Figure 

1.11) (Khalaf-Nazzal and Francis, 2013, Urban and Guillemot, 2014). Notably, 

neurogenesis of granule precursor cells is retained throughout adulthood in the 

SGZ (section 1.7.1).  
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Figure 1. 5: Mouse hippocampal development.  

Neuroepithelial precursor cells of pyramidal neurons proliferate within the VZ (1) before they pause in the SVZ to gain a multipolar morphology (2).  They then 

develop a bipolar morphology allowing their migration to the IZ using Radial glial cells as scaffolds (3). Upon entering the HP, which occurs in a wave from CA3 to 

CA1, these cells will differentiate to form pyramidal neurons (4), and settle in their appropriate layer (5). CA1-3: Cornu ammonis 1-3; DG: dentate gyrus; VZ: 

ventricular zone (dark blue: glioepithelium; blue: dentate neuroepithelium & light blue: ammonic neuroepithelium); SVZ: sub-ventricular zone; IZ: intermediate 

zone; SPL: subplate; MZ: marginal zone; OMZ: outer marginal zone; HP: hippocampal plate: DP: dentate plate; 1ry, 2ry, 3ry: Primary, Secondary & Tertiary matrices, 

respectively; Red & purple arrows indicate pyramidal cell & granule cell migration path, respectively. Adapted and redrawn from Belvindrah et al. (2004) and 

Danglot et al. (2006).  
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1.4 Mouse models 

1.4.1 Schizophrenia mouse models 

One of the major limitations regarding the neurobiology of higher brain 

function and complex psychiatric disorders is the necessity to use animal models 

to mimic biological functions and the psychiatric state. As many of the symptoms 

used to establish psychiatric diagnoses in humans (e.g. hallucinations) are not 

easily replicated in animals this has provided a major obstacle to understanding 

disease pathogenesis. Nevertheless, disease models derived from plausible risk 

factors that exhibit a substantial degree of anatomical or behavioural pathology 

corresponding to human disease have provided profound insight to our 

understanding of the disease process (Johnstone et al., 2011). 

 

In the context of schizophrenia, there is still a need to develop more 

comprehensive animal models that have the appropriate triad of face, construct 

and predictive validity (Jones et al., 2011, Wilson and Terry, 2010). Face validity is 

the degree of symptom homology between the animal model and human 

condition; such as deficits of information processing (e.g. prepulse inhibition) and 

cognitive function (e.g. working memory) (Jones et al., 2011, Wilson and Terry, 

2010). Construct validity refers to the replication of the neurobiological and 

structural defects; such as neurotransmitter deficits, decreased hippocampal 

volume and synaptic connection (Jones et al., 2011, Wilson and Terry, 2010). 

Predictive validity is evaluation of the pharmacological effects to treatment by 

antipsychotics and potential new therapies (Jones et al., 2011, Wilson and Terry, 

2010).  
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To develop mouse models of schizophrenia, many researchers have focused 

on examining behavioural tasks related to the disorder. For instance, prepulse 

inhibition (PPI) is a cross-species measurement of sensorimotor gating which is 

deficient in schizophrenic patients and which can also be used as a psychiatric-like 

measure in rodents (Young et al., 2010). Other common behaviour paradigms used 

for the study of schizophrenia in rodents include tests of locomotor hyperactivity 

(resulting from enhanced dopaminergic activity), and spatial learning and 

memory.  

 

Many gene association studies have identified candidate risk factors for 

schizophrenia, of which the most replicated include DISC1, dysbindin and 

neuregulin-1 (Young et al., 2010). ENU-induced mutations in Exon 2 of DISC1 in 

C57BL/6 mouse background resulted in disruption of PPI, hyperactivity and 

reduced anxiety (Clapcote et al., 2007). Another study in the same mouse 

background showed that a 25bp deletion in exon 6 of DISC1, resulted in working 

memory deficits but no locomotor hyperactivity or PPI disruption (Koike et al., 

2006). The mutation of dysbindin in the DBA/2J mouse background resulted in 

decreased locomotor activity, social interaction deficit and higher dopamine 

turnover. However, no difference was found in PPI or spatial memory deficits 

(reviewed in Young et al., 2010). Neuregulin-1 heterozygous mice the in C57BL/6 

mouse background have been reported to be mildly hyperactive and with 

impaired PPI (reviewed in van den Buuse 2010). Conversely, the 14-3-3ζ knockout 

(KO) mouse model, the focus of this thesis, has been shown to have striking 

behavioural and cognitive defects which include spatial memory deficits, 
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hyperactivity and disrupted sensorimotor gating which are reminiscent of the 

defects in schizophrenic patients (Cheah et al., 2012). 

 

1.4.2 Disrupted in schizophrenia 1 (DISC1)  

Over 130 genes have been reported to predispose to schizophrenia, but few 

have been replicated, and fewer still have been validated biologically (Clapcote et 

al., 2007, Ross et al., 2006). Among several independent studies, linkage to the 

gene, disrupted in schizophrenia 1 (DISC1) has been the most replicated 

(Johnstone et al., 2011). The DISC1 gene was originally identified at the site of a 

balanced t(1;11) (q42.1;q14.3) chromosomal translocation that co-segregated 

with mental illness, including schizophrenia, in a large Scottish family  (St Clair et 

al., 1990). Since this original finding, DISC1 has also been implicated in a number of 

independent investigations on schizophrenic populations throughout the world 

(Ross et al., 2006). The DISC1 protein has no known enzymatic activity; rather it 

exerts its effect on multiple proteins through interactions that modulate their 

functional states and biological activities (Ross et al., 2006).  

 

Although the precise functions of DISC1 remain unclear, it is reported to be 

maximally expressed in the brain during development and to interact with 

numerous proteins required for neuronal migration, neurite outgrowth, axonal 

guidance and neuronal plasticity (Clapcote et al., 2007). DISC1 has been found to 

interact with several proteins which themselves are implicated in 

neuropsychiatric diseases such as lissencephaly-1 (Lis1) (section 1.6.2) and 

nuclear distribution E-like homolog 1 (Ndel1) (section 1.6.3) (Taya et al., 2007, 

Ross et al., 2006). Ndel1 and Lis1 play cooperative and critical roles in neuronal 
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proliferation, differentiation, and migration within the developing brain 

(Bradshaw and Porteous, 2010). These proteins bind directly to the candidate 

schizophrenia risk factor DISC1 (Bradshaw and Porteous, 2010, Taya et al., 2007, 

Brandon et al., 2004) which is essential for the re-localisation of Ndel1 and Lis1 

from the cell body to the extending axon (Taya et al., 2007). Knock-down of either 

Ndel1 or Lis1 using siRNA in culture leads to reduced neurite outgrowth (Taya et 

al., 2007), while granule neurons from heterozygous Ndel1 or Lis1 knock-out mice 

show impaired migration in vitro (Toyo-Oka et al., 2005). Furthermore, 14-3-3ζ, 

the topic of this thesis, has been shown to interact with Ndel1, Lis1 and DISC1 

(Toyo-oka et al., 2003, Cheah et al., 2012).  

 

1.4.3 14-3-3ζ KO mouse model 

14-3-3ζ KO mice were initially generated in the 129/sv background and 

then backcrossed into BALB/c and C57BL/6 backgrounds (Cheah et al., 2012). The 

14-3-3ζ KO mice in all three genetic backgrounds are grossly normal with all male 

mice being infertile (to obtain litters of all genotypes heterozygous breeding pairs 

are therefore used). However, there are profound variations in terms of progeny 

survival between backgrounds. Knockout mice in the 129/sv background have 

notable growth retardation and moderate postnatal lethality which was 

completely rescued when backcrossed into the BALB/c background. Conversely, 

backcrossing into the C57BL/6 background caused a high rate of embryonic 

lethality with around 50% of knockout mice surviving into adulthood. 14-3-3ζ 

heterozygous (HET) mice in the 129/sv and BALB/c backgrounds were also found 

to breed better than mice in the C57BL/6 background (Hayley Ramshaw, personal 

communication).  
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Previous work in our laboratory has shown that 14-3-3ζ KO mice in the 

129/sv background display anatomical defects associated with abnormal brain 

function (Cheah et al., 2012, Ramshaw et al., 2013). The anatomical defects are 

characterized by abnormal hippocampal lamination likely due to aberrant 

neuronal migration, aberrant mossy fibre navigation and increased excrescences 

on CA3 dendrites that is indicative of aberrant synapse formation. The behavioural 

defects were also reminiscent of schizophrenia-like symptoms including deficits in 

spatial learning and memory, reduced anxiety, locomotor hyperactivity and 

disrupted sensorimotor gating. Enhanced dopaminergic activity is known to 

underlie locomotor hyperactivity (van den Buuse, 2010) and was also observed in 

the 14-3-3ζ KO mice in the 129/sv background (Ramshaw et al., 2013).  Recently, 

our lab undertook similar behavioural studies in the BALB/c background which 

showed spatial learning and memory defects similarly to the 14-3-3ζ KO 129/sv 

background. However, anxiety and locomotor hyperactivity were absent which 

may be due to the genetic makeup of BALB/c mice (van den Buuse, 2010, Xu et al., 

2015).  
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1.5 Neuronal morphogenesis 

The early processes of neuronal differentiation and morphogenesis have 

been well characterized in rodents using a highly reproducible hippocampal 

neuronal culture model (Dotti et al., 1988). The basic principle of neuronal 

morphogenesis is largely conserved between in vivo and ex vivo conditions, 

however notable discrepancies are also present (Arimura and Kaibuchi, 2007, 

Flynn, 2013). For example, neuronal cell bodies are not fixed in space in vivo as it 

they are in culture. Additionally, the presence of the extracellular signals from 

neighbouring cells is often lacking in culture. 

 

As illustrated in Figure 1.6, neuronal morphogenesis is divided into five 

successive stages (Arimura and Kaibuchi, 2007, Flynn, 2013). Neurons isolated 

from embryonic rodent hippocampi initially have a spherical shape, rapidly attach 

to the substratum and develop several thin protrusions within a few minutes 

(stage 1, 0-6hrs). Neurite initiation commences when these protrusions transition 

into immature neurites which are morphologically equal in length (stage 2, 6-

24hrs). Neuronal polarization then occurs when a single neurite with a large 

dynamic growth cone begins extending away from the cell body, later becoming an 

axon (stage 3, 24-72hrs).  While the axon grows and differentiates, the remaining 

neurites continue to grow and arborize into morphologically distinct dendrites 

(stage 4, 3-4days). The neurons continue to develop into mature neurons through 

the formation of dendritic spines which mark functional synaptic connections with 

other neurons (stage 5, 7-28days).  
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Figure 1. 6: Schematic of neuronal morphogenesis.  

Cultured embryonic hippocampal neurons form thin protrusions when they attach to the 

substratum (Stage 1), and shortly after neurites begin to transition into immature neurites (Stage 

2). One of the neurites with an enlarged growth cone elongates rapidly to form the axon (Stage 3). 

The remaining neurites continue to grow and branch to form dendrites (Stage 4), and in a final step 

of maturation, the axon and dendrites develop further with the formation of dendritic protrusions, 

or spines (Stage 5). Adapted and modified from Arimura & Kaibuchi (2007). 
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1.5.1 Neurite outgrowth 

Aberrant neurite outgrowth contributes to morphological defects, 

inappropriate connections and abnormalities in brain function (Kiryushko et al., 

2004). Many in vitro investigations of neurite extension have been achieved using 

cell lines of neuroepithelial origin (e.g. PC12 cells, neuroblastoma cells), where 

neurite outgrowth is induced by addition of exogenous growth factors (Kiryushko 

et al., 2004). Alternatively, primary cultures of rodent neurons have been used to 

study the dynamics of neurite outgrowth (Kiryushko et al., 2004). There are 

several factors that regulate neurite outgrowth such as extracellular matrix (ECM) 

associated molecules, cell adhesion molecules (CAMs), neurotrophic factors, 

repulsive, and attractive guidance cues (Figure 1.7) (Kiryushko et al., 2004). 

 

14-3-3 proteins are known to interact with several of the molecules 

involved in neurite outgrowth, however, there are few studies investigating their 

potential roles in a neurite outgrowth setting (Graeser et al., 2002, Kajiwara et al., 

2009, Marzinke et al., 2013, Ramser et al., 2010a, Ramser et al., 2010b, Tang et al., 

1998, Rong et al., 2007). For example, although 14-3-3ζ has been demonstrated to 

directly interact with the cell adhesion molecule L1 which is essential for neurite 

outgrowth, whether 14-3-3ζ promotes outgrowth of hippocampal neurons 

remains unknown (Ramser et al., 2010b).  
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Figure 1. 7: Signalling inputs regulating neurite outgrowth. 

These signals can be permissive (positive or attractive), negative (inhibitory or repulsive), or 

guiding (affecting the advance of the growth cone). Each signal may arise from either the 

extracellular matrix or the surface of other cells, or may be a diffusible secreted factor. ECM, 

extracellular matrix; CAMs, cell adhesion molecules. ECM: extracellular matrix; HB-GAM: heparin-

binding growth-associated molecule, CAMs: cell adhesion molecules, NCAM: neural cell adhesion 

molecule, NGF: nerve growth factor, BDNF: brain-derived neurotrophic factor, GDNF: glial cell line-

derived neurotrophic factor, NT-3: neurotrophin-3, NT-4: neurotrophin-4, CSPGs: chondroitin 

sulfate proteoglycans, NG2: neuron-glia antigen 2, MAG: myelin-associated glycoprotein. Taken 

from Kiryushko et al. (2004). 
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1.5.2 Dendrite and spine morphogenesis  

Dendrite morphogenesis, a critical aspect of neural development, involves 

the development of dendritic branches that form dendritic arbors and spines 

required for proper brain function (Kulkarni and Firestein, 2012). Dendritic 

arborisation involves a highly dynamic process of branching and retraction to 

ensure that appropriate neural networks are formed (Kulkarni and Firestein, 

2012). Alteration in hippocampal dendritic arborisation and spine number are 

known to contribute to various pathologies including neurological and 

neurodevelopmental disorders such as autism spectrum disorders, schizophrenia, 

bipolar disorder and Alzheimer’s disease, as illustrated in Figure 1.8 (Jan and Jan, 

2010, Koleske, 2013, Kulkarni and Firestein, 2012). Moreover, reduction of CA 

hippocampal dendritic spines has been correlated significantly with the degree of 

memory deficit in individual mice (Chen et al., 2010). Notably, mouse models of 

genes associated with schizophrenia, namely dysbindin, neuregulin-1 and DISC1, 

are reported to show reduced hippocampal spine density (Harrison, 2004, Jaaro-

Peled et al., 2010, Penzes et al., 2011).  
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Figure 1. 8: Schematic of pyramidal neurons depicting atrophies in dendrite morphology 

and spines in brains of individuals with various disorders.  

Autism spectrum disorder: decreased dendrite branching in CA1 and CA4 subregions of the 

hippocampus and higher spine density. Schizophrenia: neurons show reduced dendritic arbor and 

spine density in CA3 region of the hippocampus.  Bipolar disorder: decreased dendrites and spine 

density have been observed in the CA3 region of hippocampus. Alzheimer's disease (AD): 

substantial alterations in the dendritic arbor characterized by significant reductions in the total 

dendrite lengths of apical and basal trees of CA1. In contrast, dentate gyrus granular neurons of the 

hippocampus show significant decreases in dendrite length of apical trees but non-significant 

decreases in basal tree lengths. Adapted and modified from Kulkarni & Firestein (2012). 

 

 

 

 

 

 

 



46 
 

Dendritic spines are small, actin-rich protrusions that receive excitatory 

input typically from one synapse (Koleske, 2013, Nimchinsky et al., 2002, Penzes 

et al., 2011). The head (surface) of the spine contains the postsynaptic density 

(PSD), a membrane-associated disc of electron dense material, consisting of 

receptors, organelles, cytoskeletal and adaptor proteins, and associated signalling 

molecules essential for synaptic function and plasticity (Jan and Jan, 2010, 

Nimchinsky et al., 2002). Some of these key proteins include, but not limited to, 

postsynaptic density protein 95 (PSD95), glutamate receptor interaction protein 1 

(GRIP1) and filamentous actin (Jan and Jan, 2010). Dendritic spines are 

morphologically diverse and are classified based on the relative sizes of their head 

and neck, namely thin, stubby, mushroom- or cup-shaped (Koleske, 2013, 

Nimchinsky et al., 2002). Although their structures can be stable, they can undergo 

morphological remodelling during development and in adaptation to sensory 

stimuli or in learning and memory (Koleske, 2013, Nimchinsky et al., 2002, Penzes 

et al., 2011). 

 

Reorganization of the neuronal cytoskeleton is required for proper 

dendritic morphogenesis; where actin and microtubule dynamics play a key role in 

shaping the dendritic arbor, spine development and plasticity (Jan and Jan, 2010, 

Kulkarni and Firestein, 2012). The actin and microtubule cytoskeleton require 

precise functioning of intricate signalling pathways which involves many 

intracellular proteins, molecular motor proteins, Rho-GTPase family members, and 

extracellular proteins (Jan and Jan, 2010). 14-3-3 proteins have been reported to 

interact with many of these molecules (Johnson et al., 2010), however their 

functional role in regulating the cytoskeleton in vivo is yet to be determined. For 
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example, the motor proteins from the kinesin superfamily (KIFs) play critical roles 

in the transport of cargo proteins along microtubules into the dendritic arbor. 

These cargo proteins include PSD proteins, neurotransmitter receptors, ion 

channels and specific messenger RNAs (Hirokawa and Takemura, 2005, Jan and 

Jan, 2010). KIF5 interacts with GRIP1 to regulate dendritic branching via allowing 

transport of ephrin receptors to dendrites (Hirokawa and Takemura, 2005, 

Hoogenraad et al., 2005, Setou et al., 2002). Recently, 14-3-3ζ has been reported to 

regulate the docking of KIF5 to GRIP1 in order to form proper dendrites (Geiger et 

al., 2014).  
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1.6 Neuronal migration 

Correct neuronal migration is essential for ordering neurons into 

architectonic patterns and involves several coordinated events including leading 

process extension, nucleokinesis and trailing process retraction (illustrated in 

Figure 1.9) (Lambert de Rouvroit and Goffinet, 2001, Shu et al., 2004). Each of 

these steps are highly dependent on the microtubule network and any disruption 

within them can compromise cell motility (Shu et al., 2004). Many of these 

processes are regulated by 14-3-3 molecules (Angrand et al., 2006, Cheah et al., 

2012, Gehler et al., 2004, Gohla and Bokoch, 2002, Toyo-oka et al., 2003, Yuan et 

al., 2004). 

 

During the first step of neuronal migration, the neuron explores its 

microenvironment through thin protrusions (filopodia and lamellipodia) before 

extension of a leading process (Lambert de Rouvroit and Goffinet, 2001, Tsai and 

Gleeson, 2005). The leading process originates from the axonal growth cone or 

dendritic tips and its extension is controlled by attractive or repulsive cues acting 

on the plasma membrane (Lambert de Rouvroit and Goffinet, 2001, Tsai and 

Gleeson, 2005). Extension of the leading process is directed by microfilament 

polymerisation which is regulated by Rho-type small GTPases (Lambert de 

Rouvroit and Goffinet, 2001, Tsai and Gleeson, 2005). Once the leading edge is 

stabilized ahead of the soma, the nucleus and the cell body are displaced forward 

into the leading process in a cellular event referred to as nucleokinesis (Lambert 

de Rouvroit and Goffinet, 2001, Tsai and Gleeson, 2005). 

 



49 
 

During nucleokinesis the centrosome (also known as the microtubule 

organising centre) plays an essential role in coordinating interactions between the 

cytoskeleton and the nucleus. In the resting state, the centrosome is tightly 

coupled to the nucleus. During migration, the centrosome is positioned directly 

next to the nucleus at the side of the leading edge. As the leading edge extends the 

centrosome becomes uncoupled from the nucleus and moves towards the leading 

process (Marin et al., 2010). The nucleus is then translocated moving towards the 

centrosome, restoring the nucleus-centrosomal coupling (N-C coupling). This 

process is critically dependent on alteration in the actin and microtubules 

cytoskeletons and occurs in a saltatory pattern (Marin et al., 2010). The migrating 

neuron then retracts its trailing process, resulting in cell movement. This step does 

not, however, occur in all neuronal types. For example, pyramidal neurons retract 

their trailing process concurrently with nucleokinesis (Marin et al., 2010). At the 

end of migration as the neurons reach their final destination, they are ordered into 

architectonic patterns allowing proper connection and functioning of neural 

circuits (Lambert de Rouvroit and Goffinet, 2001).  
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Figure 1. 9: Simplified schematic of steps involved in neuronal migration.  

Neurons receive external cues inducing neuronal migration (i) leading to polarized extension of the 

leading process (red arrow) (ii). Forward movement of the centrosome into the leading process 

(green arrow) (iii), followed by translocation of the nucleus (blue arrow) towards the leading 

process (iv) and retraction of the cellular rear process. Neuronal migration is the result of 

repeating these events. Adapted and redrawn from Tsai and Gleeson (2005).  
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1.6.1 Molecular pathways regulating neuronal migration 

Neuronal migration is regulated by three overlapping yet independent 

pathways/complexes namely, the Reelin pathway, Cdk5/p35 pathway and 

Ndel1/Lis1/dynein complex (Figure 1.10 i). Reelin is a large extracellular protein 

secreted by Cajal-Retzius cells to guide post-mitotic migrating neurons toward the 

mantle zone (Wynshaw-Boris and Gambello, 2001). The Reelin signalling pathway 

is also important for the organisation and layering of migrating neurons 

throughout the CNS (Lambert de Rouvroit and Goffinet, 2001). Neuronal migration 

is initiated when Reelin binds to cell surface receptors such as the very low density 

lipoprotein receptor (VLDLR) and ApoE receptor type 2 (ApoER2) leading to 

activation of intracellular factors such as Disabled 1 (Dab1) tyrosine kinase 

adaptor (Lambert de Rouvroit and Goffinet, 2001, Wynshaw-Boris and Gambello, 

2001). Dab1 activation leads to a cascade of downstream signalling which results 

in the activation of the cyclin-dependent kinase (Cdk5) to promote binding with its 

coactivator p35 (Lambert de Rouvroit and Goffinet, 2001). Cdk5/p35 

phosphorylates microtubule associated proteins such as Ndel1 and double cortin 

(DCX) (Niethammer et al., 2000, Tanaka et al., 2004b). Cdk5 phosphorylated Ndel1 

forms a complex with Lis1 and the dynein motor to sustain microtubule bundles 

and facilitate N-C coupling (Feng et al., 2000, Niethammer et al., 2000, Sasaki et al., 

2000).  

 

Several studies have shown that disruption of molecules within the 

neuronal migration pathway leads to hippocampal lamination defects with varying 

degrees of severity (Figure 1.9 ii). For example, Reelin mutant mice displayed 

severe fragmentation, layering, and heterotopic organisation of pyramidal neurons 
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throughout all CA regions, including diffuse organisation of DG granule cells 

(Belvindrah et al., 2014). Mutations in the Cdk5 activator p35 results in loosely 

arranged CA pyramidal neurons and DG granule cells (Belvindrah et al., 2014). 

Like the Reelin mutant mice, although not as severe, Lis1 deficiency leads to 

fragmentation and layering of the CA pyramidal neurons, as well as diffusely 

packed DG granule cells (Belvindrah et al., 2014, Fleck et al., 2000). 

 

 

Figure 1.10: Simplified schematic of the neuronal migration pathway and hippocampal 

lamination defects resulting from migration deficiencies.  

(i) Extracellular Reelin binds to the membrane-bound receptors (APOER2 & VLDLR), which 

stimulate the intracellular signalling molecules (Dab1, Cdk5/p35) to activate microtubule 

associated proteins (DCX, Ndel1, Lis1, dynein) facilitating neuronal migration. Adapted and 

modified from Keays at al.  (2007). (ii) A selections of hippocampal lamination defects arising from 

deficiency in molecules involved in the neuronal migration pathway compared to WT. Broken lines 

indicate degrees of fragmentation. Asterisks indicate either heterotopic cells or diffusely packed 

cells. Adapted and modified from Belvindrah et al. (2014).  
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1.6.2 Lissencephlay 1 (Lis1) 

Lis1 is a key molecule in the neuronal migration pathway (Reiner et al., 

1993, Wynshaw-Boris and Gambello, 2001). In humans, mutations in Lis1 leads to 

the neurodevelopmental disorder lissencephlay which is characterised by a 

smooth brain formation due to cell autonomous neuronal migration defects 

leading to abnormal patterning of neurons in the cortex and hippocampal layers 

(Feng and Walsh, 2001, Reiner, 2013, Tsai and Gleeson, 2005). In mice, null 

mutation of Lis1 is embryonically lethal, while HET mice display severe neuronal 

migration defects in the cortical layers, hippocampus and olfactory bulb (Gambello 

et al., 2003, Reiner et al., 1993, Fleck et al., 2000, Hirotsune et al., 1998).  

 

1.6.3 Nuclear distribution E-like homolog 1 (Ndel1) 

Ndel1 is a coiled-coiled protein first identified as a Lis1 interaction partner 

(Feng et al., 2000, Feng and Walsh, 2001, Niethammer et al., 2000). In mice, 

complete removal of Ndel1 leads to embryonic lethality, where loss of function 

leads to impairment of neuronal migration in the cortex and hippocampus (Feng 

and Walsh, 2004, Hippenmeyer et al., 2010, Sasaki et al., 2005, Shu et al., 2004, 

Youn et al., 2009). Ndel1 phosphorylation mediated by Cdk5/p35 is essential for 

binding with Lis1 and modulates its interaction with the dynein motor protein 

which is required for proper N-C coupling (Niethammer et al., 2000, Sasaki et al., 

2000). Moreover, 14-3-3ε binding to Cdk5/p35 phosphorylated Ndel1 has 

previously been shown to be required to maintain Ndel1 phosphorylation (Toyo-

oka et al., 2003).  
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1.7 Neurogenesis 

Neurogenesis is the process by which neural stem/progenitor cells 

generate mature neurons. This process was traditionally thought to occur only 

during early embryonic and postnatal stages, however, more recently active 

neurogenic zones have also been identified in restricted areas of the adult brain 

(Hayashi et al., 2015, Ming and Song, 2011, Urban and Guillemot, 2014). While 

neurogenesis occurs at high rates throughout embryonic and early postnatal 

development, the percentage of neural population generated throughout 

adulthood is comparatively small (Stiles and Jernigan, 2010). The major 

neurogenic regions in the adult brain include the subventricluar zone (SVZ) 

adjacent to the lateral ventricle and the subgranular zone (SGZ) in the DG of the 

hippocampus (Hayashi et al., 2015, Ming and Song, 2011), a central region affected 

in the 14-3-3ζ KO mice (Cheah et al., 2012). Neurons generated in the SVZ migrate 

via the rostral migratory stream to the olfactory bulb where they become 

interneurons while dentate granule cells generated in the SGZ migrate to the 

nearby granular layer (Stiles and Jernigan, 2010). Neural stem cells from the SVZ 

and the SGZ can be isolated and cultured in vitro as neurospheres (section 2.6) 

generating self-renewing cells that can differentiate into neurons (Ming and Song, 

2011, Reif et al., 2006, Urban and Guillemot, 2014). 

 

1.7.1 Neurogenesis in the adult hippocampus  

Adult neurogenesis in the DG of the hippocampus involves a well-defined 

series of events in which a small number of neural stem cells (∼10%) differentiate 

into functional neurons and incorporate into the existing circuitry (Figure 1.11) 
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(Reif et al., 2007). The undifferentiated precursor cells that give rise to the granule 

dentate cells are found in the SGZ of the DG, where they extend a single radial 

process towards the molecular layer hence giving them the name radial glia-like 

cells (type I cells). These cells are found in quiescent (slow dividing) state, 

expressing GFAP, nestin and SOX2. Upon activation, the radial glia-like cells 

proliferate giving rise to both non-radial precursor (type II cell) and intermediate 

progenitor cells (Ming and Song, 2011, Reif et al., 2006, Reif et al., 2007, Urban and 

Guillemot, 2014). In contrast, during embryonic neurogenesis these cells are 

highly proliferative giving rise to a radial glia-like cell and an intermediate 

progenitor cell (Urban and Guillemot, 2014).  

 

In adult neurogenesis, the non-radial precursor (type II cell) and 

intermediate progenitor cells express nestin and SOX2 but not GFAP and undergo 

a limited number of cell divisions followed by commitment to a neural lineage to 

generate neuroblasts (type III cells) (Ming and Song, 2011, Reif et al., 2006, Urban 

and Guillemot, 2014). Neuroblasts are proliferative cells expressing doublecortin 

(DCX) but not nestin and become immature neurons that migrate a small distance 

through the inner GCL, located just above the SGZ (Ming and Song, 2011, Reif et al., 

2006, Urban and Guillemot, 2014). The immature neurons extend their dendrites 

and axons toward the molecular layer (ML) and CA3 region through the hilus, 

respectively. These neurons eventually differentiate into dentate granule cells 

which integrate structurally and functionally into the pre-existing hippocampal 

trisynaptic circuit (section 1.3.1, Figure 1.4) (Ming and Song, 2011). 
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Figure 1. 11: Developmental stages during adult hippocampal neurogenesis in the dentate gyrus.  

Quiescent radial glia-like cells (dark blue) in the SGZ are activated (1) leading to their proliferation to give rise to non-radial precursor (light blue) and intermediate 

progenitor cells (light green) (2). The latter develop into neuroblast that migrate into the GCL (3) and becomes an immature neuron which starts to integrate into 

the inner GCL (4).  Differentiation of the immature neuron into functional dentate granule cell allows it to integrate into the pre-existing hippocampal trisynaptic 

circuit (5). The expression of stage-specific markers is indicated. DG: dentate gyrus; SGZ: subgranular zone; GCL: granule cell layer; ML: molecular layer; GFAP: glial 

fibrillary acidic protein; BLBP: brain lipid-binding protein; DCX: doublecortin; NeuN: neuronal nuclei. Adapted and redrawn from Ming and Song (2011).  
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1.7.2 Links between disrupted adult neurogenesis and 

schizophrenia 

Adult hippocampal neurogenesis contributes to cognitive functions 

important for spatial learning and memory, known to be disrupted in 

neuropsychiatric disorders such as schizophrenia (Reif et al., 2006). Neuroimaging 

studies in schizophrenia patients revealed reduced hippocampal volume of 4-8% 

(Nelson et al., 1998, Shenton et al., 2001) that was correlated with the degree of 

cognitive dysfunction (Gur et al., 2000, Sanfilipo et al., 2002). Although absolute 

cell numbers within the hippocampus have not been calculated, several reports 

also demonstrate significant reduction in hippocampal cell proliferation and 

neurogenesis in post-mortem schizophrenia brain samples (Allen et al., 2015, Reif 

et al., 2006, Reif et al., 2007). These studies suggest that deficits in adult 

neurogenesis may contribute to the cognitive dysfunction seen in schizophrenia 

patients. Notably, DISC1 has been shown to play important roles in hippocampal 

neurogenesis in embryonic, postal and adult mice brains through various 

signalling pathways (reviewed by Wu et al., 2013).  

  

1.7.3 Regulation of adult hippocampal neurogenesis  

Tight regulation of hippocampal neurogenesis is crucial given its functional 

implications in the adult brain. Several signalling pathways, including  the AKT 

signalling pathway, GABA signalling pathway, GSK3β signalling pathway, WNT 

signalling pathway, and NMDA-R signalling pathway have been implicated in 

regulating different aspects of adult neurogenesis from the activation of quiescent 

stem cells through to maturation and integration within mature neuronal 
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networks (Ming and Song, 2011, Urban and Guillemot, 2014, Varela-Nallar and 

Inestrosa, 2013, Wu et al., 2013).  

 

Wnt proteins are a family of large glycoproteins that interact with cell-

surface receptors to activate different downstream signalling cascades. While the 

canonical pathway generally leads to gene transcriptional changes as a result of 

altered β-catenin activity, the non-canonical or β-catenin-independent pathway 

induces either an increase in intracellular calcium concentration or activation of 

the c-Jun-N-terminal kinase (JNK) cascade (Varela-Nallar and Inestrosa, 2013). 

The canonical Wnt signalling pathway regulates both embryonic and adult 

neurogenesis by promoting proliferation and neural fate specification (Ming and 

Song, 2011, Urban and Guillemot, 2014, Varela-Nallar and Inestrosa, 2013). In the 

absence of ligand (Figure 1.12 i) the destruction complex composed of 

multiproteins including APC (adenomatous polyposis coli), axin, casein kinase I 

(CKI) and glycogen synthase kinase 3β (GSK-3β) phosphorylates β-catenin 

(Varela-Nallar and Inestrosa, 2013, Wu et al., 2013). This in turn results in β-

catenin ubiquitination and degradation by the proteasome (Varela-Nallar and 

Inestrosa, 2013, Wu et al., 2013).   

 

Wnt ligand binding to the frizzled receptor and the low density lipoprotein 

receptor-related protein 5/6 (LRP5/6) at the cell-surface membrane (Figure 1.12 

ii) leads to inhibition of the destruction complex and stabilization of β-catenin 

(Reif et al., 2007, Wu et al., 2013). β-catenin subsequently translocates to the 

nucleus (Varela-Nallar and Inestrosa, 2013) where it associates with transcription 

factors such as lymphoid enhancer factor (LEF) and the T cell factor (TCF) to drive 
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expression of renewal and proliferative genes (Wu et al., 2013). GSK-3β is 

inactivated when phosphorylated by the AKT serine/threonine-specific protein 

kinase at serine 9 (Chang et al., 2012). Not surprisingly, several 14-3-3 proteins 

have been reported to directly interact with GSK-3β at serine 9 with functional 

implications including promotion of mouse embryonic stem cell proliferation and 

neural survival (Chang et al., 2012, Mwangi et al., 2006, Yuan et al., 2004).  

However, the role of 14-3-3 protein in neural stem cell proliferation during 

neurogenesis is yet to be examined.  
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Figure 1. 12: Canonical Wnt signaling pathway.   

(i) In the absence of ligand, β-catenin is associated with the destruction complex (CKI, GSK-3β, APC, 

Axin) where it is phosphorylated and targeted for ubiquitination and proteasomal degradation.  

(ii) Binding of the Wnt ligand to the frizzled-LRP5/6 receptor complex results in dishevelled (DVL) 

activation which displaces GSK-3β from the destruction complex and therefore stabilizes β-catenin.  

β-catenin translocates into the nucleus and associates with LEF/TCF proteins activating renewal 

and proliferative genes. Black arrows represent negative function; red arrows represent positive 

function. 

 

 

 

 

 

 



61 
 

1.8 Aims of the thesis 

The overall aim of this thesis were: 1) to provide evidence that 14-3-3ζ KO 

mice serve as an appropriate model of neuropsychiatric disorders such as 

schizophrenia, 2) to gain insights into the molecular mechanism through which 

14-3-3ζ controls neuronal development, and 3) to explore the developmental 

mechanism underlying the onset of neuropsychiatric disorders. 

 

 More specifically, the aims of the work undertaken were:  

 To address if the defects previously observed in the 129/sv 14-3-3ζ KO 

mice are conserved across different genetic backgrounds, namely BALB/c 

and C57BL/6, and not due to genetic diversity (chapter 3).  

 To determine if the structural hippocampal defects previously observed in 

the 14-3-3ζ KO mice are accompanied by additional defects characteristic of 

schizophrenia, including neurite outgrowth, dendrite morphogenesis and 

spine formation (chapter 3). 

 To explore the molecular mechanism by which 14-3-3ζ may modulate 

neuronal migration (chapter 4).   

 To explore the role of 14-3-3ζ in regulating the maintenance and 

differentiation of neural stem/progenitor cells within the hippocampus 

(chapter 5). 

 

The principal findings of the first aim in chapter 3 revealed that the 

hippocampal lamination defects of 14-3-3ζ KO mice are replicated among three 

independent mouse backgrounds, albeit with varying degree of severity. This was 
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accompanied by aberrant connectivity demonstrated by the misrouting in the 

mossy fibre circuit and reduced dendritic spine density. Results presented in 

chapter 4, using an in vitro neurosphere culture system, show that 14-3-3ζ is 

essential for proper neuronal migration and nucleus-centrosome coupling. 

Further, it was found that 14-3-3ζ directly interacts with Cdk5/p35 

phosphorylated Ndel1 to maintain Ndel1 phosphorylation and thereby modulate 

neuronal migration. Chapter 5 demonstrated that 14-3-3ζ plays a pivotal role in 

hippocampal embryonic, postnatal and adult neurogenesis, given that its loss leads 

to reduction in neural stem/progenitor cell proliferation and self-renewal. 

 

In conclusion, these results identify an important role for 14-3-3ζ in the 

formation and function of the hippocampus. Additionally, this work provides 

strong support to the notion that 14-3-3ζ KO mice are an appropriate animal 

model for disorders such as schizophrenia. 14-3-3ζ KO mice therefore represent 

an ideal model for further investigations into the aetiology of neuropsychiatric 

disorders and offer an exciting pre-clinical resource for the analysis of new 

therapeutic interventions. Although this work presents inroads to the molecular 

functions of 14-3-3ζ in hippocampal development there is still much to learn about 

the mechanisms by which this scaffolding protein modulates molecular pathways 

to control these processes. 
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Chapter Two: 

Material and Methods 
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2.1 Materials 

Chemicals used were primarily supplied by Chem-Supply, Sigma, Merk, Life 

Technologies, Promega, MP Biomedicals, BD Biosciences, RCI Labscan, 

Neurotechnologies and Thermo Fisher Scientific, unless otherwise stated. Surgical 

materials were supplied from Fine Science Tools, BD Biosciences, Swann-Morton 

and Cutisoft.  Sectioning and staining materials were supplied from ProSciTech, 

Molecular Probes, EMS, Tissue-Tek, Ibidi, Sigma, Vector Laboratories and 

Invitrogen, unless otherwise stated. Recipes for the general solutions and buffers 

can be found in Appendix A.1. 

 

All culture media and supplements were supplied from Life Technologies, 

Roche Applied Science, Sigma, Worthington Biochemicals, and Peprotech, unless 

otherwise stated. Sterile tissue culture plasticware was supplied from BD 

Biosciences and Millipore. Molecular biology reagents and purification kits were 

supplied from New England Biolabs, Promega, Sigma, Bioline and Qiagen. All 

primers were ordered from GeneWorks.   
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2.2 Animal husbandry  

2.2.1 Ethics 

All experimental protocols presented in this thesis were conducted in 

accordance with the guidelines of the Animal Ethics Committee of SA Pathology 

and the University of Adelaide. Animals used for experiments included; 1) E18.5 

foetuses obtained from pregnant dams used for hippocampal cultures (section 

2.5.3) and neurosphere cultures (section 2.6.1), 2) postnatal pups (P1-P3) for glial 

cultures (section 2.5.1), 3) postnatal day 7, 14, and 30 mice for EdU short-pulse 

chase labelling (section 2.4.5), and 4) adult mice for immunohistochemistry 

(section 2.4) and protein lysates (section 2.8.3). 

 

2.2.2 Strains and housing of mice  

14-3-3ζ KO mice in 129/sv background were generated carrying a gene 

trap construct that contains the Geo reporter gene disrupting 14-3-3ζ expression 

which was previously described in Cheah et al. (2012). These mice were also 

backcrossed into BALB/c or C57BL/6 mouse backgrounds over ten generations. 

Animals used for this study were obtained from the littermate offspring of 

heterozygous breeding pairs and were maintained under a 12hr light/dark cycle 

and fed with regular rodent’s chow and tap water. Genotypes were determined by 

PCR amplification of genomic tail DNA or DNA from the E18.5 brains (sections 

2.7.1 & 2.7.2). The wild-type (WT) allele amplified a band of 288bp and the mutant 

gene trapped allele amplified a band of 165bp (Appendix A.2). 
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 2.3 Animal and tissue preparation  

2.3.1 Whole mouse perfusion fixation  

Postnatal mice were perfuse-fixed according to a procedure described by 

Gage et al. (2012). Briefly, mice were anesthetized using sodium pentobarbitone 

(Nembutal) prior to surgical procedure. Toe pinch-response was used to 

determine depth of anaesthesia. A small incision in the diaphragm was made 

exposing the pleural cavity. The sides of the ribcage up to the collarbone were cut 

and the tip of the sternum was lifted away using a haemostat which was then 

placed over the head, exposing the heart. A perfusion needle (19G) was inserted to 

the left ventricle at the apex of the heart and a small incision was made to the right 

aorta. The vascular system was first flushed with 1x PBS followed by fixation with 

4% PFA.  Brains were harvested, post-fixed in 4% PFA overnight at 4°C followed 

by infiltration of 20% sucrose at 4°C overnight. Brains were transferred into 

square disposable embedding moulds (EMS), embedded into OCT (Tissuse-Tek) 

and frozen using liquid nitrogen. Samples were stored at -80°C or -20°C until use.  

 

2.3.2 Cryosectioning of mouse brain 

A cryostat (Leica CM1950) was used for cryosectioning of mouse brain 

samples. The chamber and stage temperatures were set to -22°C and -20°C, 

respectively. OCT frozen brain samples (section 2.3.1) stored in the -80°C freezer 

were either equilibrated in -20°C freezer the day before sectioning or for 30min in 

the chamber. The sample was removed from the mould and mounted on the block 

holder using OCT. Excess OCT was trimmed using a single edge razor. The sample 

was clamped to the block holder, aligned, sectioned coronally (10μm), anterior to 
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posterior, and collected onto positively charged plus slides (Thermo Scientific). 

Slides were stored in -20°C, until use.  

 

2.3.3 Vibratome sectioning 

A microtome (Leica VT1200) was used to generate thick sections from 

either fixed (sections 2.4.3) or live (section 2.4.4) brain tissue. Briefly, brain 

samples were mounted onto a metal platform with superglue and allowed to dry 

for 20min. The sample was covered with 1x PBS and fresh razor blades were used 

for sectioning.  Using a paintbrush, floating brain sections were transferred into a 

well of a 24-well plate containing 1x PBS. Plates were sealed using Parafilm 

(Bemis) and stored at 4°C until use.   

 

2.3.4 EdU short-pulse labelling  

EdU short-pulse labelling was used to study proliferating cells in P7, P14 

and P30 mouse brains, using a protocol adapted from Zeng et al. (2010). Briefly, 

10mg/ml EdU (Invitrogen) stock was prepared in sterile 1x PBS and stored in -

20°C. Pre-warmed EdU was intraperitoneally injected into the mice (100mg/kg 

EdU per bodyweight). Brains were isolated from humanely killed mice after 2hrs, 

fixed in 4% PFA overnight at 4°C then infiltrated with 20% sucrose solution at 4°C 

overnight. Brain samples were then embedded in OCT, frozen using liquid nitrogen 

and stored at -20°C until sectioned (section 2.3.2). Sections were stained for EdU-

positive cells using Click-it EdU Imaging Kit (Invitrogen), following the 

manufacturer’s protocol. Images were taken by confocal laser microscopy (LSM 

510 META, Zeiss) and processed with ZEN imaging software (Zeiss). 
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2.4 Histology and immunohistochemistry 

2.4.1 Nissl staining of brain sections 

Nissl staining was based on a protocol by Paul et al. (2008). Briefly, Nissl 

stain consisting of 0.1% cresyl violet (Sigma) in a total of 50ml MilliQ water 

equilibrated with a few drops of glacial acetic acid was freshly prepared and 

filtered. Brain sections (section 2.3.2) were dehydrated in 1:1 ratio of 

ethanol/chloroform overnight, followed by series rehydration in 100%, 75%, 50%, 

25% ethanol to distilled water for 5min each. Samples were then Nissl stained for 

2-5min and rinsed quickly with distilled water. Sections were differentiated in 

95% ethanol then dehydrated in 100% ethanol for 5min each.  To clear the 

samples, they were placed in xylene for 5min and then mounted using Leica CV 

mount (Leica) and covered with an 18X18mm coverslip (ProSciTech). Images 

were taken using a stereo microscope (SZX10, Olympus) with bright field settings 

and processed with OpenLab 2.2 software (Improvision).  

 

2.4.2 Immunostaining of brain sections  

 Frozen brain sections (section 2.3.2) were defrosted at room temperature 

(RT) before immunostaining. Using a PAP pen (Vector Laboratories) barriers were 

created on the slides around the brain sections to contain the solutions. First, brain 

sections were rehydrated in 1x PBS for 30min, followed by treatment with 1x PBT 

(0.1% Tween-20 in 1x PBS) for 10min at RT. Sections were then placed in block 

solution (10% normal goat serum in 1x PBT) for 30min at RT. Primary antibodies 

were prepared by dilution in block solution and added to brain sections 1hr at RT. 

Primary antibodies used include: rabbit polyclonal to calbindin (D-28K) (1:500, 
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Millipore), mouse monocolonal to SOX2 (1:250, Cell Signalling) and rabbit 

polyclonal to doublecortin (1:400, Cell Signalling). For the negative control slide, 

no primary antibodies were added to sections, instead block solution alone was 

used with the same secondary antibodies. Excess antibody was washed off three 

times with 1x PBT for 5min each. The appropriate Alexa Fluor-labelled secondary 

antibodies (1:200, Molecular Probes) were diluted in 1x PBS and added to brain 

sections for 1hr at RT.  After four washes with 1x PBS, sections were post-fixed 

with 4% PFA for 10min and mounted with Prolong Gold antifade reagent with 

DAPI (Molecular Probes). Samples were imaged using confocal laser microscopy 

(LSM 510 META, Zeiss) and processed using ZEN imaging software (Zeiss). 

 

2.4.3 Golgi-cox impregnation 

Adult mouse brains were isolated and subjected to Golgi-cox impregnation 

using a FD Rapid Golgi Stain kit (Neurotechnologies) according to the 

manufacturer’s protocol. Briefly, fixed brains were immersed in impregnation 

solution containing mercuric chloride, potassium dichromate and potassium 

chromate for 24hrs before the solution was replaced and they were left for 2 

weeks at RT in the dark. Brain tissues were then transferred to solution C and 

store at 4°C in the dark for at least 48hrs, with replacement of solution C at first 

24hrs of immersion or the following day. A vibratome (section 2.3.3) was used to 

make 200μm thick sections and samples were kept in 1x PBS at 4°C until use. 

Sections were first rinsed with MilliQ water twice then placed in a mixture 

containing 1 part solution D, 1 part solution E and 2 parts MilliQ water for 10min. 

Sections were rinsed and went through a series of dehydration in 50%, 75%, 95% 

to 100% ethanol. Sections were cleared in xylene for 5min, mounted with Leica CV 
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mount (Leica) and covered with an 18X18mm coverslip (ProSciTech). Images 

were captured with a 40x objective plus 1.6x magnification using an inverted 

microscope (IX81, Olympus) with bright field settings and processed with CellR 

software (Olympus).  

 

2.4.4 Biolistic labelling of neurons using gene gun  

For spine formation analysis, live brain sections were labelled with 

lipophilic dyes using a gene gun method based on a protocol by Seabold et al. 

(2010). Briefly, bullets were made containing gold particles coated with lipophilic 

dyes DiI (orange fluoresce) or DiO (green fluoresce) (Molecular Probes). Thick 

300μm brain slices were cut using a vibratome (section 2.3.3) and placed in 1x PBS 

at 4°C until use. Slices were washed three times with 1x PBS then were moved 

using a paintbrush to the centre of a fresh well of a 24-well plate. Coated bullets 

were shot through a 3μm filter membrane using a Helios Gene Gun system (Bio-

Rad) at 200psi helium gas pressure by placing the gun at a distance of 1.5cm 

between the sample and the end of the barrel. Slices were washed with 1x PBS 

three times and stored in 1x PBS for 24hrs at RT to allow the dye to spread along 

the dendrites and spines. The following day slices were moved onto a glass slide, 

with the labelled side facing up and mounted with Prolong Gold antifade reagent 

with DAPI (Molecular Probes) and covered with 18X18mm coverslip (ProSciTech) 

sealed with clear nail polish. Using a confocal laser microscopy (LSM510 

META, Zeiss), z-stack images of the dendritic spines were acquired with a 63x 

water immersion objective.  Images were processed using ZEN imaging software 

(Zeiss); spines on over 30 dendrites were manually counted 100-500μm from the 

cell body from each mouse.  
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2.5 Hippocampal neuronal cultures   

2.5.1 Glial feeder cultures  

Glial feeder cultures were prepared 1 week prior to hippocampal cultures 

(section 2.5.4) using a modified protocol adapted from Kaech and Banker (2006) 

and Viesselmann et al. (2011). Briefly, postnatal WT mouse pups (P1-P3) were 

humanely killed by decapitation, and the cerebrum was isolated. In a biohazard 

hood, tissues were finely minced and then dissociated in a solution of 2.5% 

Trypsin with 1% (w/v) DNAse1 in Hank's Balanced Salt Solution (HBSS) by 

incubation at 37°C for 5min with occasional mixing. Tissues were triturated using 

a 10ml pipette, and then returned to the water bath for an additional 10-15min. 

Cell suspension was passed through a 50μm cell strainer to remove un-dissociated 

tissues and collected in a 50ml falcon tube. The cell suspension was centrifuged for 

5min at 1500rpm and the cell pellet was resuspended in 1ml of glial growth media 

consisting of Eagle’s Minimum Essential Medium (MEM) supplemented with 0.3% 

(v/v) ᴅ-glucose (Sigma), 1mM pyruvate, 10% (v/v) Fetal Calf Serum (FCS), 

100units/ml Penicillin/Streptomycin (PS).  Cells were counted and 7.5x10⁶cells 

were plated per 75cm² flask containing 15-20ml of growth media.  After 2-3 days 

in culture, the loosely attached cells were dislodged by knocking the flask by hand; 

the media was then removed and replaced with fresh glial growth media.  Glial 

cells were harvested 1-2 weeks after growth for co-culture with hippocampal 

neuronal cultures (section 2.5.5). 
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2.5.2 Preparation of glass coverslips for hippocampal cultures    

Round 18mm glass coverslips (ProSciTech) were washed then autoclaved 

before use. For long-term cultures (DIV10 & DIV21), paraffin wax dots were 

applied onto the coverslips to generate feet to suspend the coverslips above the 

glial feeder layer (section 2.5.5). Paraffin wax was melted in a 65°C water bath and 

three dots were applied onto each coverslip in a triangular pattern using a small 

paint brush. Coverslips were placed in 10cm dishes and were sterilized under UV 

light for 30min then washed with 1x PBS before substrate treatment. Coverslips 

were coated with poly-L-lysine (Sigma) for 1hr at RT, and washed with 1x PBS 

twice. Coverslips were covered in 1x PBS, sealed with Parafilm and stored at 4°C 

until use.  

 

2.5.3 Dissection of the E18.5 hippocampi  

Pregnant mice were humanely killed by cervical dislocation and the 

embryos were removed from the uterus. Embryos were quickly decapitated and 

their heads were collected in ice cold dissection medium (1x HBSS and 200mM 

Hepes in MilliQ water). The head was placed onto the lid of a 10cm dish and using 

forceps the skin was peeled away and the skull plate removed. The brain was 

scooped out and place into a 10cm dish containing ice cold dissection medium.  

Under a stereo microscope (SZX10, Olympus), the cerebral hemispheres were 

removed and the remaining brain was cut in half. The thalamus was removed 

exposing the hippocampus in both halves of the brain, followed by removal of 

meninges. The hippocampi were isolated and placed in eppendorf tubes with 
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appropriate media (section 2.5.5 or 2.6.1). Note that some of the remaining brain 

tissue was kept for genotyping (sections 2.7.1 & 2.72).  

 

2.5.4 Hippocampal primary cell cultures  

Hippocampal primary cell cultures were prepared as previously described 

by Kaech and Banker (2006). Briefly, hippocampi isolated from E18.5 embryos 

described in section 2.5.3 were placed into 500μL of Neural-Feed media 

(Neurobasal media supplemented with 2% (v/v) B27, 2mM L-glutamine, 

100units/ml PS) on ice until dissociation. The remaining tissue from the brain was 

kept at 4°C until use for genotyping the embryos (sections 2.7.1 & 2.7.2).  In a 

biohazard hood, the neural-feed media was removed and the hippocampus was 

minced with sterile scissors. Tissue was washed twice with pre-warmed neat 

Neurobasal media to remove traces of B27 and PS. Supernatant was removed and 

tissue was resuspended with 900μL neat Neurobasal media plus 10μL of 2.5% 

Trypsin for tissue dissociation. After 5min incubation at 37°C, 1μL of 10mg/ml 

DNAse1 was added and the tissue was incubated for another 10min. Tissue was 

then washed with Neural-Seed media (Neurobasal supplemented with 2% B27, 

2mM L-glutamine, 10% FCS, 100units/ml PS) twice.  The tissue was triturated 

using fire polished glass pipette in 1ml of Neural-Seed media. The cell suspension 

was passed through a 50μm cell strainer, and transferred to a fresh tube. Cells 

were counted and plated on substrate coated 18mm round glass coverslips 

(section 2.5.2) which were placed into wells of a 12-well plate.  

 

The number of cells plated varied depending on experiments to be 

undertaken. For low density cultures, 5x10⁴cells/well on 18mm round glass 
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coverslips in a 12-well plate were used for DIV3 (3 days in vitro) and DIV10 (10 

days in vitro) cultures. High density cultures of 1.5x10⁵cells/well on 18mm round 

glass coverslips containing paraffin feet (section 2.5.2) in a 12-well plate were 

used for DIV21 (21 days in vitro) cultures. Hippocampal cell cultures were grown 

at 37°C flushed with 5% CO2 for 4-6hrs then the media was changed to Neural-

Feed. Half the culture medium was renewed every 4 days. Cultures of DIV10 and 

DIV21 were co-cultured with glia (section 2.5.5). Neurons were fixed in 4% PFA 

after 3, 10 or 21 DIV before being subjected to immunostaining (section 2.5.6) and 

analysis (section 2.5.7). 

 

2.5.5 Glial feeder layer preparation for long-term hippocampal 

culture 

Long-term hippocampal cultures of more than 7 days required 

neutrotophic support from glia for survival in vitro. Thus, DIV10 and DIV21 

cultures (section 2.5.4) were co-cultured in 10cm dishes containing a glial 

monolayer.  A week prior to co-culture, glial cultures from section 2.5.1 were first 

rinsed with 5ml of pre-warmed Trypsin/EDTA (Invitrogen) solution. The solution 

was removed and 2ml was added following incubation at 37°C for 2min. 

Trypsinization was stopped by adding 5ml of neat MEM media and cells were 

detached by repeated pipetting. Cell suspension was transferred into 15ml conical 

tubes and centrifuged at 1000rpm for 8min. Cell pellets were then resuspended 

into 10ml of growth media and 5x10⁵cells in 12.5ml of growth media were plated 

per 10cm dish. Growth media was changed every 2-3 days (section 2.5.4). The 

growth media was replaced by conditioned hippocampal culture growth media 



75 
 

three days prior to co-culture. Coverslips with hippocampal cultures were then 

suspended above the glial feeder layer with the help of the paraffin feet.  

 

2.5.6 Immunostaining of hippocampal primary cell cultures  

PFA fixed hippocampal neurons of DIV3 and DIV10 cultures (sections 2.5.4) 

were washed in 1x PBS for 30min followed by treatment with 1x PBT (0.1% 

Tween-20 in 1x PBS) for 10min at RT. Neurons were blocked in block solution 

(10% normal goat serum in 1x PBT) for 30min at RT. Hippocampal neurons were 

incubated with mouse monoclonal anti-MAP2 (1:200, Chemicon) diluted in block 

solution for 1hr at RT. For negative control, no primary antibody was added to 

sections, instead plain block solution was used. Excess antibody was washed off 

three times with 1x PBT for 5min each. The appropriate Alexa Fluor-labelled 

secondary antibody (1:200, Molecular Probes) diluted in 1x PBS was added to the 

neurons for 1hr at RT.  Neurons were washed four times with 1x PBS, post-fixed 

with 4% PFA for 10min and mounted with Prolong Gold antifade reagent with 

DAPI (Molecular Probes). Neurons from DIV3 cultures were imaged at 20x 

magnification and DIV10 at 10x magnification using inverted microscope (IX71, 

Olympus) and processed with AnalySIS getIT software (Olympus). Images of a 

scale bar were taken at 10x and 20x magnification to calibrate the images for 

analysis in section 2.5.7.  

 

2.5.7 Analysis of hippocampal neurons  

Hippocampal neurons from DIV3 and DIV10 were analysed using ImageJ 

software after appropriate calibration (for DIV3 neurons 20x magnification was 

used and, for DIV10 the 10x magnification was used). For scale calibration in 
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ImageJ the appropriate scale bar slide image was used to draw a straight line of 

100μm. The set scale dialog box from the Analyze tab was opened where a 

distance in pixels was automatically filled based on the line that was drawn. The 

known distance (i.e. 100) and the unit of scale (i.e. μm) were filled and applied to 

all images opened within that session. 

 

For neurite outgrowth analysis, DIV3 hippocampal neurons were used to 

measure the length, number of bifurcations and total number of neurites per 

neuron. NeuronJ tool in the ImageJ software was used to measure the length of the 

neurites, whereas the number of bifurcations and total number of neurites per 

neuron were counted manually. For dendrite morphology analysis, DIV10 

hippocampal neurons were used to look at the dendrite complexity.  MAP2 

positive neurites were quantified using the Sholl Analysis tool in the ImageJ 

software. Dendrites crossing concentric circles where drawn at 5μm intervals 

around neuron’s cell body and the number of dendrite crossings the concentric 

circles were measured. For spine analysis, DIV21 neurons were labelled with 

lipophilic dyes using a gene gun as described in section 2.4.4 prior to fixation.  
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2.6 Neurosphere culture   

2.6.1 Neurosphere culture of hippocampal neural progenitor cells  

Neurosphere cell cultures were prepared based on protocols described by 

Chen et al. (2007) and Giachino et al. (2009). Briefly, dissociation media consisting 

of 1x HBSS supplemented with 15units/ml papain (Worthington Biochemicals), 

1.7mM L-cysteine and 0.6mM EDTA was freshly made and filter sterilized. 

Hippocampi isolated from E18.5 embryos described in section 2.5.3 were 

incubated with pre-warmed dissociation media for 20min at 37°C. Pre-warmed 

neat Dulbecco's Modified Eagle Medium: Nutrient Mixture F-12 with Glutamax 

(DMEM/F12) media was used to wash out the papain within the dissociation 

solution twice.  Cells were then dissociated in 500μL neurosphere growth media 

(DMEM/F12 supplemented with 2% B27, 20ng/ml EGF, 20ng/ml hFGF, 

100units/ml PS) using a fire polish glass pipette ~20-25 times, avoiding the 

introduction of air bubbles. Cells were plated at constant density of 

10,000cells/well in uncoated 24-well plates or 500cells/well in uncoated 96-well 

plates and incubated at 37°C flushed with 5% CO2.  

 

Neurospheres initially take longer to develop therefore the first passage 

was undertaken 10 days post culture while following passages were undertaken 

every 6 days thereafter. When passaging, neurospheres were transferred into a 

15ml tube then centrifuged at 1500rpm for 5min. The supernatant was carefully 

removed, 500μL of TrypLE Express (without phenol red) was added and incubated 

at 37°C for 20min. Neurospheres were centrifuged at 1500rpm for 5min and the 

cell pellet was resuspended in growth media (500μL). Using a fire polished glass 
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pipette neurospheres were triturated to a single cell suspension. Cells were plated 

and incubated at 37°C flushed with 5% CO2.  

 

2.6.2 Neurosphere migration assay 

A grid was drawn at the bottom of a 22mm glass bottom dish (ProSciTech).  

Dishes were coated with poly-L-lysine (Sigma) for 30min at RT. Dishes were 

washed with 1x PBS then coated with 10ng/ml laminin (Invitrogen) diluted in neat 

DMEM/F12 medium for 1hr at RT. Dishes were washed with 1x PBS twice and 

stored at 4°C, covered in 1x PBS, until use. The 1x PBS was replaced with ~100-

200μL (just enough to cover the bottom of the dish) of pre-warmed media 

containing DMEM/F12 supplemented with 2% B27 and 100units/ml PS.  

 

Only neurospheres from the third or fourth passage were used for 

migration assays. Neurospheres were transferred to a well of a 6-well plate and 

using a dissecting microscope single neurospheres was transferred to a square 

within the grid drawn on the base of a 22mm glass bottom dish (ensuring 

neurospheres are not in close proximity to each another). Neurospheres were 

incubated for 30min allowing them to adhere to the substrate followed by addition 

of 500μL of media and incubation at 37°C with 5% CO2. Neurospheres were left to 

migrate for 24hrs before media removal and wash with 1x PBS. Neurospheres 

were fixed with pre-warmed 4% PFA for 10min and washed with 1x PBS prior to 

mounting with Prolong Gold antifade reagent with DAPI. Neurospheres were 

imaged at 20x magnification using an inverted microscope (IX71, Olympus) and 

processed with AnalySIS getIT software (Olympus). 
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2.6.3 Analysis of the migration assay  

Photoshop CS3 software (Adobe Systems) was used to prepare the images 

from section 2.6.3 before being analysed using ImageJ software. A template of 

scale bars (50, 100, 200, 300 and 400μm) was generated and saved as tiff file. 

Images of the DAPI stained neurons from the migration assay in section 2.6.2 were 

opened in Photoshop and the images were converted to grey scale. The scale bars 

were then dragged to the image and aligned against the edge of the original 

neurosphere (Figure 4.1 viii). The original neurosphere was then traced by using 

the freehand tool and deleted since the DAPI staining is too bright within this 

region. The central deleted region was coloured black and the image was 

duplicated. The free transform tool was used on the original image to drag the 

outlined sphere to the first scale bar of 50μm whilst holding the alt button to 

increase size of the selection area in scale. That first bin area was copied from the 

duplicated image, pasted in a new file and saved ensuring the background colour is 

also black. The free transform tool was selected on the original image and the 

process was repeated to generate images for the remaining bins.  

 

Once all bins were generated for each area and neurosphere per genotype, 

the images were then analysed in ImageJ. Images were opened in ImageJ and 

inverted. The threshold was adjusted and number of nuclei within that bin were 

counted by using Analyze Particle Tool. The 50μm bin images however were 

counted manually as the cells overlapped and the program was unable to produce 

accurate counts. The raw data was transferred to Excel (Microsoft) and plotted 

using histograms. 
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2.6.4 Live imaging of the neurosphere migration assay using 

spinning disc confocal microscopy 

Migration assays were undertaken as described in section 2.6.2 with the 

following modifications. A line on the centre of the 22mm glass bottom dish was 

drawn instead of a grid. WT neurospheres were isolated and placed on one side of 

the dish and KO neurospheres on the other. Once neurospheres adhered to the 

substrate treated glass bottom dish, media was added and the dish was inserted 

into the spinning disc confocal microscope (CV1000, Yokogawa). While the dish 

was left to equilibrate, the scanning parameters were adjusted. Images were set to 

be taken every 30min z-stacked for 24hrs at 40x magnification of each 

neurosphere (at least 3 neurospheres per group per experiment). Once 

experiments were completed movies were generated using the CV1000 software 

(CV1000, Yokogawa).  

 

Movies generated from live imaging were analysed using the Manual 

Tracking tool to track individual neurons in the ImageJ software. The appropriate 

scale was set using the set scale tool under analyse in the main tabs. The time 

interval parameter was set to 30min in the tracking window. Individual neurons 

were tracked using the add track tool by tracing it in each frame. The end track 

tool was used to end tracking of that individual neuron. This process was repeated 

for each neuron. The result folder was saved then opened in the Chemotaxic and 

Migration Tool (Ibidi) which generates a summary of the raw data generated by 

tracking the neurons. In the setting tab, the time interval was adjusted to 30min 

and the X/Y calibration to μm. The data set saved from the Manual Tracking was 
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imported through the import dataset tool which included all frame slices (the 48 

images in the movie). The imported data was then selected and all settings applied 

within the apply settings tool. To generate statistical values from the dataset, the 

Show Info tool was selected which resulted in a summary of the mean migration 

distance, mean velocity and directionality of the neurons. An animated plot or a 

plot graph of the neurons tracked can be generated using the plot feature tab by 

clicked animate plot or plot graph, respectively.   

 

2.6.5 Adhesion assay on neural progenitors  

The cell adhesion assay was performed based on a modified version of the 

protocol described by Humphries (2009). Briefly, in 96-well plates a few wells 

were left empty for obtaining background measurements and the rest were coated 

with poly- L-lysine (Sigma) for 30min at RT then washed with 1x PBS. Plates were 

then coated with 10ng/ml laminin (Invitrogen) diluted in DMEM/F12 for 1hr at 

RT. Wells were washed twice with wash buffer (0.1% (v/v) Bovine Serum Albumin 

(BSA) in DMEM/F12) then blocked with block buffer (0.5% (v/v) BSA in 

DMEM/F12) for 45-60min in a 37°C incubator with 5% CO2. Wells were washed 

with wash buffer and placed in 4°C covered in wash buffer until use. 

 

A single cell suspension of neurospheres from the third passage (section 

2.6.1) was generated and 4x10⁴cells/ml were seeded per well. In each well 50μL of 

the cell suspension was added and plates were incubated in the 37°C incubator 

with 5% CO2 at for either 10min or 60min. Plates were gently agitated for 10-

15secs to remove loosely attached cells and washed 2-3 times with 1x PBS. Cells 

were fixed with 4% PFA at RT for 10-15min and washed with wash buffer. Cells 
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were stained with 50μL crystal violet (5mg/ml in 2% ethanol) for 10min and 

washed twice with wash buffer. Plates were turned upside down and allowed to 

dry completely before addition of 100μL 1% SDS in MilliQ water and incubation at 

RT for 30min. Absorbance was measured at 550nm using a plate reader (Biotek) 

and analysed using KC4 data analysis software (Biotek). The data was plotted in 

histograms using Excel (Microsoft).  

 

2.6.6 Nuclear-centrosome coupling 

For nuclear-centrosome (N-C) coupling experiments, migration assays 

were performed as described in section 2.6.2. After 24hrs of migration 

neurospheres were fixed with pre-warmed 4% PFA for 10min and washed with 1x 

PBS prior immunostaining with mouse monoclonal antibody to γ-tubulin (1:500, 

Sigma) and Prolong Gold antifade reagent with DAPI to label the centrosome and 

nucleus, respectively. Immunostaining was undertaken based on the method 

described in section 2.4.2. Samples were imaged using confocal laser microscopy 

(LSM 510 META, Zeiss) and processed using ZEN imaging software (Zeiss). For 

measurement of the distance between the nucleus and centrosome, images were 

opened in ZEN imaging software and the graphics tag at the bottom of the screen 

was selected. The line icon was used to measure the distance between the nucleus 

and the centrosome. The measurements were recorded and plotted using 

histograms in Excel (Microsoft). 
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2.6.7 Transfection of neurospheres 

Neurospheres were transfected using the Nucleofection Amaxa kit (Lonza) 

based on a modified protocol from Viesselmann et al. (2011). First, 12-well plates 

were prepared by adding growth media (300μL/well) and left to equilibrate in a 

37°C incubator flushed with 5% CO2. Neurospheres were then isolated from either 

the third or fourth passage and were dissociated into single cell suspension as 

described in section 2.6.1. Cells were seeded at a density of 5x10⁶ 

cells/transfection and the supernatant was removed. Nucleofection solution was 

prepared freshly by mixing 82μL solution A + 18μL of solution B (Lonza) and 10-

20μg of Qiagen endotoxin-free prepared GFP tagged plasmid DNA (sections 2.7.4 & 

2.7.8) was added to the solution. Nucleofection/DNA solution was added to the cell 

pellet and transferred to the electroporation cuvette. The cuvette was inserted into 

a Nucleofector device (Lonza) and program A33 was used to electroporate the 

cells. The cuvette was quickly removed and 500μL growth media was added to the 

cells. The cells were then transferred to a well of the equilibrated 12-well plates 

containing 300μL of growth media. Transfected cells were incubated overnight at 

37°C incubator with 5%CO2, with a change of growth media the following day. GFP 

positive neurospheres were isolated 72hrs post transfection and used for 

migration assay as described in section 2.6.4. 

 

2.6.8 Neurosphere proliferation and self-renewal assays  

Neural progenitors were isolated from the hippocampus of E18.5 embryos 

and cultured in suspension for 10 days until they formed neurospheres as 

described in section 2.6.1. Neurospheres were then passaged at a constant density 
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of 10,000cells/well in 24-well plates or 500cells/well in 96-well plates over three 

passages every 6 days.  

 

For neurosphere size examination, third passage neurospheres cultured in 

24-well plates were imaged using an inverted microscope (CKX41, Olympus) with 

bright field settings. At least 4 images at 10x magnification were taken per well 

and three wells per sample. For analysis the images were opened in ImageJ 

software and the appropriate scale was set using the set scale tool under the 

analyze tab. The circle tool was used to draw a circle around the neurosphere to 

measure total neurosphere area.  

 

To determine the total number of neurospheres, neural stem/progenitor 

cells were plated at a density of 500cells/well in 96-well plates and grown for 6 

days. The number of neurospheres formed was counted under an inverted 

microscope (CKX41, Olympus) under bright field setting. This was repeated for the 

neurospheres from the second and third passages.  

 

To determine the total cell number of neurospheres within a well, 

1000cells/well were cultured in uncoated 24-well plates. Six days post culture 

from the first passage, all neurospheres within a well were isolated and 

dissociated into a single cell suspension and the viable cells within that well were 

counted using a haemocytometer.  This was then repeated for the second and third 

passages.  

 



85 
 

2.6.9 BrdU incorporation assay on neural progenitor cells from 

neurosphere cultures  

BrdU (5-bromodeoxyuridine) incorporation assay was used to determine 

the proliferation rate of the neural progenitor cells in neurosphere cultures. 

Neurospheres were mechanically dissociated to produce a single cell suspension 

as described in section 2.6.1. The dissociated cells were then cultured 

(10,000cells/well) on poly-L-lysine (Sigma) and laminin (Invitrogen) coated 24-

well plates for 48hrs. The media was then replaced with media supplemented with 

10μM BrdU (Sigma) and incubated for an additional hour.  The media was 

removed and the cells were fixed with ice cold 70% ethanol for 20min at RT. The 

cells were then washed twice with 1x PBS and once with wash buffer (0.5% BSA in 

1x PBS).  

 

The DNA was denatured by incubating the cells in 2M HCl for 30min at RT 

and washed once in wash buffer for 2min with gentle shaking. HCl was then 

neutralised by adding 0.1M Borax (pH 8.5) for 5min at RT with shaking, followed 

by two washes in wash buffer for 2min each. Cells were blocked with 0.5% BSA 

and 0.5% Tween-20 in 1x PBS for 30min. Rat monoclonal anti-BrdU (1:250, 

Ab6326) diluted in block solution was added to the cells for 1hr at RT, followed by 

three washes in wash buffer. Secondary donkey anti-rat Alexa-488 conjugated 

antibody (1:250, Invitrogen) diluted in block buffer was then added for 1hr at RT. 

Cells were washed three times with wash buffer and mounted in Prolong Gold 

antifade reagent with DAPI. Four images/well and three wells/genotype were 

taken on an inverted microscope (IX71, Olympus) at 40x magnification and 
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processed with AnalySIS getIT software (Olympus). Images were analysed using 

the Analyze Particle Tool in ImageJ software. The raw data was analysed and 

plotted in histograms as percentage of BrdU-positive cells relative to DAPI using 

Excel (Microsoft). 

 

2.6.10 Immunostaining of neurospheres with stem cells markers  

For immunohistochemistry with stem cell markers, first passage (primary) 

neurospheres from section 2.6.1 were processed in suspension in Eppendorf 

tubes. Half the media was removed from the free-floating neurospheres and the 

same amount of pre-warmed 4% PFA was added and incubated for 10min at RT. 

Neurospheres were washed with 1x PBS then permeabilized with 1x PBT (0.1% 

Tween-20 in 1x PBS)  for 10min at RT. Neurospheres were blocked in 10% normal 

goat serum in 1x PBT for 30min at RT. Primary antibodies were prepared by 

dilution in block solution and added to neurospheres for 1hr at RT. Primary 

antibodies including mouse monocolonal to Nestin (1:250, Abcam) and rabbit 

polyclonal to doublecortin (1:400, Cell Signalling) were added to the same sample. 

Primary antibodies were washed off three times with 1x PBT for 5min each. A 

combination of donkey anti-mouse Alexa-488 and donkey anti-rabbit Alex-555 

conjugated secondary antibodies (1:200, Invitrogen) were diluted in 1x PBS and 

added to the neurospheres for 1hr at RT.  After four washes with 1x PBS, 

neurospheres were stained with DAPI diluted in methanol.  Neurosphere were 

post-fixed with 4% PFA for 10min, then washed and maintained with 1x PBS at 

4°C until imaging.  

 

 



87 
 

To avoid altering 3D structure of the neurospheres, they were mounted on 

a slide containing a rectangular well cut out of three layers of electrical tape. 

Excess PBS was then carefully removed by touching the corner of a Kimwipe 

(Kimtech Science) on the slide drawing off the liquid. 95% glycerol was then added 

to the cells and samples covered using an 18/18mm cover slide. Using a confocal 

laser microscopy (LSM510 META, Zeiss), z-stacks of the neurospheres were 

acquired and processed using ZEN imaging software (Zeiss). 
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2.7 Molecular biology protocols  

2.7.1 Genomic DNA isolation and preparation 

Genomic DNA was isolated from either E18.5 brains or mouse tails. Briefly, 

tails were incubated overnight at 55°C in 500μL DNA lysis buffer (1MTris-HCl pH 

8.5, 0.5M EDTA, 4M NaCl and 10% SDS in MilliQ water) and 0.2mg/ml Proteinase 

K then centrifuged at 13000rpm for 10min. Supernatant was transferred into fresh 

Eppendorf tubes and 500μL isopropanol was mixed with the samples. Samples 

were centrifuged for 5min at 13000rpm and pellets were carefully rinsed with 

70% ethanol followed by centrifugation for 3min at 13000rpm. Supernatant was 

removed and pellet was air dried on the bench top. DNA was resuspended in 

300μL of TE buffer (1M Tris-HCl pH 8.5 and 0.5M EDTA in MilliQ water) and 

heated  for 30min at 65°C. DNA samples were stored at 4°C until use.   

 

2.7.2 Mouse genotyping  

Genomic DNA was prepared as described in section 2.7.1 and genotyping 

was preformed using primers listed in Table 2.1. PCR reactions were performed 

using GeneAMP PCR system 2700 (Applied Biosystems) in 200μL thin-walled PCR 

tubes. The PCR mix contained 100ng genomic DNA, 12.5μL GoTaqGreen 

(Promega), 8μM forward primer, 8μM reverse primer and the mixture was 

brought up to 25μL by addition of sterile MilliQ water.  

 

PCR cycling involved heating the reaction at 94°C for 2min for the 

activation of the polymerase; followed by 40 cycles of denaturing at 94°C for 1min, 

annealing at 46°C for 2min, elongation at 65°C for 5min; the final elongation cycle 
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was at 65°C for 10min and samples were held at 4°C. PCR products were run on 

1% agarose gels (section 2.7.3). The expected PCR product from 14-3-3ζ WT allele 

was 288bp and 14-3-3ζ KO allele was 165bp, while 14-3-3ζ HET allele displayed 

both PCR products (see Appendix A.2 for gel). 

 

 

Allele  Forward Primer Reverse primer 

14-3-3ζ WT   
5’-GAA CTT CAG ATC 
TGG TGA C-3’ 5’- GAT TGT ACT CAA 

AAT GGT GGA C-3 
14-3-3ζ KO  

5’-GCG TTA CTT AAG 
CTA GCT TGC-3’ 

Table 2. 1: Sequence of primer set used for genotyping 14-3-3ζ mice. 

 

 

2.7.3 Agarose gel electrophoresis 

1-3% (w/v) agarose gels were made depending on the samples. Agarose 

gels were prepared using agarose powder in 1x TAE buffer (40mM Tris-Base, 

0.11% glacial acetic acid, 1mM EDTA, pH 8.0 in MilliQ water). To each lane in the 

gel, a mixture of 10μL PCR product and 2μL 10x DNA loading buffer (Invitrogen) 

was added. Low molecular weight DNA Ladder (Invitrogen) was used as a marker 

to determine band sizes. Gels were electrophoresed at a voltage of 85-90 volts for 

20-40min using a Bio-Rad gel electrophoresis system. The gel was stained in 

0.5μg/ml ethidium bromide bath followed by imaging on GelDoc-It Imaging 

System (UVP).     
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2.7.4 Constructs  

The Rc/CMV-14-3-3ζ-Myc and Rc/CMV-14-3-3ζ-IRES-GFP with ampicillin 

(AMP) resistance were generously provided by Joanna Woodcock (Centre for 

Cancer Biology, AUS). The pEGFP-C1-Ndel1 with kanamycin (KAN) resistance was 

kindly supplied by Daisuke Tsuboi (Nagoya University, Japan). The quadruple 

Ndel1 mutant plasmid (S198A, T219A, S231A, & S242A) denoted Ndel14A-IRES-

GFP (AMP) and Ndel1 phosphomimetic plasmid (S198E, T219E, & S231E) denoted 

Ndel13E-IRES-GFP (AMP) were already available in our laboratory. DNA 

concentration was determined using a NanoDrop spectrophotometer, according to 

the manufacturer’s instructions. 

 

2.7.5 DNA sequencing 

Plasmids (section 2.7.4) were sent for sequencing to ensure that they were 

accurate. Samples were prepared based on the Sanger sequencing protocol from 

the Australian Genome Research Facility (AGRF). Briefly, 20μL reaction mixture 

consisting of 4μL 5x RD Buffer, 1μL BDT, 1μL appropriate primer (10ng/μL), 1μL 

plasmid DNA (200-400ng) from section 2.7.4 and 13μL sterile MilliQ water were 

prepared in 200μL thin-walled PCR tubes. The mixtures were reacted in GeneAMP 

PCR system 2700 (Applied Biosystems) using the following cycle: 94°C for 2min 

and 30x cycles of 94°C for 10secs, 50°C for 10secs and 60°C for 4min. Samples 

were held at 4°C until clean up. The 20μL samples were transferred into 

Eppendorf tube, followed by the addition of 50μL of 75% isopropanol and 1μL of 

glycogen. Samples were incubated for 30min at RT and centrifuged at 13000rpm 

for 15min at 4°C. Pellets were carefully washed with 500μL of 75% isopropanol 
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and centrifuged at 13000rpm for 5min at 4°C. Pellets were dried by incubation at 

37°C for 5min and sent for sequencing at the AGRF. Sequences were processed 

using the BioEdit sequencing alignment software (Ibis Biosciences).   

 

2.7.6 Preparation of electrocompetent E. coli DH5α cells 

A starter culture was prepared containing 10mL of Luria Bertani (LB) 

media and E. coli DH5α cells (from -80°C glycerol stock), incubated overnight at 

37°C with shaking at 180rpm. The overnight culture was used to inoculate 400mL 

LB culture until the optical density reached ~0.4-0.8. The cells were cooled on ice 

for 30min, followed by centrifugation at 5,000xg for 10min at 4°C using a super-

speed centrifuge (Avanti J-26XPI, Beckman Coulter). The pellet was then transfer 

to 50mL falcon tubes and centrifuged using a bench centrifuge (Heraeus) 

~3,600xg for 15min at 4°C. The pellet was resuspended in 20mL of ice-cold 10% 

glycerol with 1mM Hepes and centrifuged ~3,600xg for 15min at 4°C. The cells 

were then resuspended in 400μL of ice cold 10% glycerol and 25μL aliquots were 

placed in pre-cooled Eppendorf tubes. Cells were snap frozen in liquid nitrogen 

and stored at -80°C. 

 

2.7.7 Electroporation into E. coli DH5α cells 

Luria Bertani (LB) media was kindly made by the LSC staff at the Centre for 

Cancer Biology. LB agar plates were prepared by heat dissolving 0.375g of 

Bactiological Agar in 25ml of sterilized LB per plate. The LB agar media was cooled 

before addition of the appropriate antibiotic (100μg/μL AMP or 50μg/μL KAN) 
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and 0.1% (w/v) glucose. The LB agar media was poured into petri dishes and 

allowed to set under aseptic conditions.   

 

To 25μL of electrocompetent E. coli DH5α cells, 1-2μL of the DNA was 

added and transferred to the cuvette. The cells were electroporated at 2 volts and 

quickly 200µL of pre-warmed LB media was added to the cuvette. The 

electroporated cells were transferred to fresh Eppendorf tubes and incubated at 

37°C for 1hr. Electroporated cells were then spread plated onto LB agar plates 

containing appropriate antibiotics, and incubated at 37°C overnight. Plates 

containing transformed colonies were sealed with Parafilm and stored at 4°C.  

 

2.7.8 Large scale plasmid purification 

A starter culture was prepared using a single transformed colony from 

section 2.5.7, containing the desired plasmids, inoculated in 5mL of LB media with 

the appropriate antibiotics (100μg/μL AMP or 50μg/μL KAN) for ~8hrs at 37°C 

with agitation (180rpm). The starter culture was diluted (1:1000) into 200mL of 

selective LB media and incubated overnight at 37°C with agitation (180rpm). For 

glycerol frozen stocks, 1mL of culture was mixed with 100μL of 80% glycerol in 

cryovial, snap frozen in liquid nitrogen and stored at -80°C. The remaining culture 

was used for plasmid purification using EndoFree Plasmid Maxi-Prep Kit (Qiagen) 

following the manufacture’s protocol. DNA concentration was determined using a 

NanoDrop spectrophotometer according to the manufacturer’s instructions. 

Aliquots of 50μL Endofree plasmid DNA were stored at -20°C and working stock 

was stored at 4°C. Samples were checked on agarose gels (section 2.7.3). 
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2.8 Protein interaction analysis  

2.8.1 HEK293T cell culture  

The human embryonic kidney 293T (HEK293T) cells were cultured in the 

biohazard hood using aseptic technique. A cryovial containing HEK293T cells from 

the liquid nitrogen storage was quickly thawed in a 37°C water bath followed by 

immediate transfer of cells into the 3mL of pre-warmed HEK293T culture media 

(Dulbecco's Modified Eagle Medium (DMEM) supplemented with 10% FCS and 

100units/ml PS). Cells were centrifuged at 15000rpm for 3min and the cell pellet 

was washed in 3mL of neat DMEM media to remove any traces of dimethyl 

sulfoxide (DMSO) from the cells. Cells were centrifuged again at 15000rpm for 

3min and the cell pellet was resuspended into 1mL of HEK293T culture media and 

transferred into a sterilised 75cm² flask containing 10mL of pre-warmed 

HEK293T culture media. Cells were incubated at 37°C with 5% CO2.  

 

For maintenance, cells were left to reach 80-90% confluence prior to 

passaging (generally 2-3 times a week). Cell monolayers was carefully rinsed twice 

with sterile 1x PBS, then treated with 1.5mL of TrypLE Express (with no phenol 

red) for 2min at 37°C in order to detach cells. Trypsinized cells were gently 

triturated to generate a single cell suspension and 3mL of neat DMEM media was 

then added for inhibition of trypsin from further digestion.  Cells were centrifuged 

at 15000rpm for 3min and the cell pellet was then resuspended in 1mL of 

HEK293T culture media and cultured into a new 75cm² flask at 1:10 or 1:15 ratio 

of cell suspension: media. Cells were incubated at 37°C incubator with 5% CO2. 
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For cell storage, cells were isolated by trypsinization as described above. 

HEK293T cells with a density of 1x10⁵cells/mL were resuspended in freezing 

media consisting of 10% DMSO and 90% FCS.  Cells were aliquoted into cryovials 

and placed in a Mr. Frosty with isopropanol at -80°C for 24hrs to allow gradient 

freezing of cells. Cells were places in liquid nitrogen for long term storage.  

 

2.8.2 Transfection of HEK293T cells  

For transfection, HEK293T cells were seeded at a density of 2x10⁵cells/well 

in a 6-well plate in DMEM supplemented with 10% FCS without antibodies. The 

following day 4μg of Endofree plasmid DNA (section 2.7.10) was mixed with 

250μL of pre-warmed OptiMEM media in an Eppendorf tube. In another 

Eppendorf tube 10μL Lipfectamine 2000 (Invitrogen) was added to 240μL of pre-

warmed OptiMEM media. The solutions were incubated at RT for 5min, and then 

mixed together. After 30min at RT the 500μL transfection solution was added 

carefully dropwise to the cells and incubated for 4hr in the 37°C incubator flushed 

with 5% CO2. The media was then replaced with HEK293T culture media and 

incubated for another 48hrs. In the case where the vectors had fluorescent tags, 

transfected HEK293T cells were visualised using an inverted microscope (IX71, 

Olympus) to calculate transfection efficiency. For protein extraction (section 

2.8.3), transfected cells were either lysed immediately or 2hr post treatment with 

0.5μM Okadaic acid or FTY720 to inhibit or activate PP2A, respectively. The 

Okadaic acid and FTY720 were generously provided by Jason Powell (Centre for 

Cancer Biology, AUS). 
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2.8.3 Protein extraction from cells and brain tissue  

NP-40 lysis buffer (10mM Tris-HCl pH 7.4, 137mM NaCl, 10% glycerol and 

1% NP-40 in MilliQ water) was prepared and stored at 4°C. The protease and 

phosphatase inhibitors: 10mM β-glycerol phosphate, 2mM sodium vanadate, 2mM 

sodium fluoride, 2mM phenylmethylsulfonyl fluoride, 10mM sodium 

pyrophosphate, 1μg/ml leupeptin, 5μg/ml aprotinin, one complete mini EDTA-free 

protease inhibitor cocktail tablet were added freshly to the NP-40 lysis buffer on 

the day of protein extraction.  

 

For cell lysis, transfected HEK293T cells (section 2.8.2) were carefully 

washed first with pre-warmed media then with pre-warmed 1x PBS. Ice cold NP-

40 lysis buffer with the appropriate inhibitors was added to the cells and 

transferred into a microfuge tube. Cells were lysed at 4°C for 30min, then 

centrifuged at 13000rpm for 10min at 4°C. The supernatant was transferred into a 

fresh Eppendorf tube and the protein lysate was stored at -20°C until use (sections 

2.8.4-2.8.7). 

 

For brain tissue lysis, either the hippocampus alone or the whole brain of 

snap frozen or fresh samples were manually homogenized, using a disposable 

homogenization pestle, in NP-40 lysis buffer with the protease and phosphatase 

inhibitors. Tissue was left to lysis 4°C for 30min with shaking. Supernatant was 

collected by centrifuging samples at 13000rpm for 10min at 4°C. Protein lysates 

were stored at -20°C until use (sections 2.8.4-2.8.7). 
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2.8.4 Protein quantitation using BCA protein assay  

The Pierce BCA protein assay kit (Thermo Fisher Scientific) was used for all 

protein quantitation following the manufacture’s protocol. Briefly, a set of protein 

standards using bovine serum albumin (BSA) diluted in 1x PBS were prepared 

(0μg/mL, 0.125μg/mL, 0.25μg/mL, 0.5μg/mL, 1μg/mL, 2μg/mL, 5μg/mL, & 

10μg/mL) and stored in -20°C until use. Protein lysates from section 2.8.3 were 

also prepared by diluting them in neat NP-40 lysis buffer using a 1:10 and 1:50 

dilutions. The BCA working reagent was prepared by mixing 50 parts of reagent A 

with 1 part of reagent B (Thermo Fisher Scientific). The BSA protein standards and 

protein lysate (10μL) were aliquoted into the appropriate wells in a 96-well plate, 

in duplicates (for template see Table 2.2).  

 

To each well, 200μL/well of BCA mixture was added and mixed carefully 

avoiding bubbles. The plate was incubated at 37°C for 30min followed by 

measurement of absorbance at 540nm using a microplate reader (Biotek) and 

processed using KC4 data analysis software (Biotek). A standard graph was 

generated using the known BSA protein concentrations by plotting the blank-

corrected 540nm measurement versus their concentration in µg/ml. The 

concentration of the protein lysates was then determined using the standard curve 

multiplied by the dilution factor used.   
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BSA 
0μg/mL 

BSA 
0μg/mL 

BLANK BLANK BLANK BLANK 
      

BSA 
0.125μg/mL 

BSA 
0.125μg/mL 

BLANK BLANK BLANK BLANK 
      

BSA 
0.25μg/mL 

BSA 
0.25μg/mL 

sample 1 
neat 

sample 1 
neat 

sample 2 
neat 

sample 2 
neat 

      

BSA 
0.5μg/mL 

BSA 
0.5μg/mL 

sample 1 
1:10 

sample 1 
1:10 

sample 2 
1:10 

sample 2 
1:10 

      

BSA 
1μg/mLl 

BSA 
1μg/mL 

sample 1 
1:50 

sample 1 
1:50 

sample 2 
1:50 

sample 2 
1:50 

      

BSA 
2μg/mL 

BSA 
2μg/mL 

sample 3 
neat 

sample 3 
neat 

sample 4 
neat 

sample 4 
neat 

      

BSA 
5μg/mL 

BSA 
5μg/mL 

sample 3 
1:10 

sample 3 
1:10 

sample 4 
1:10 

sample 4 
1:10 

      

BSA 
10μg/mL 

BSA 
10μg/mL 

sample 3 
1:50 

sample 3 
1:50 

sample 4 
1:50 

sample 4 
1:50 

      

Table 2. 2:Template for BCA protein assay based on a 96-well plate.  

All samples are loaded in duplicates, side by side. The first two columns consist of the BSA protein 

standard. Protein lysate samples are loaded neat and diluted (1:10 and 1:50). Colour code 

represents protein concentration: lighter colours represent low protein concentration, while 

darker the colours represent higher protein concentration.  

 

 

2.8.5 Immunoprecipitation  

Prior to immunoprecipitation, 50µL/sample of a 50% protein-A sepharose 

slurry was washed twice with ice cold 1x PBS. For load control, 5% of the protein 

lysates from the transfected HEK293T cells (sections 2.8.3) were kept for later use 

as input. The remaining protein lysates were precleared with protein-A sepharose 

beads for 30min at 4°C with constant rotation of samples to prevent any non-

specific protein binding to the beads. At the same time, 1μL of mouse monoclonal 

anti-Myc (9E10, Cell Signalling) was incubated with 50μL of beads for 30min at 

4°C with rotation. This was then centrifuged at 13000rpm at 4°C for 10min to 

remove excess unbound antibody. The precleared protein lysate was centrifuged 

for 15min at 4°C and the supernatant was transferred to the antibody bound beads 

for immunoprecipitation overnight at 4°C with constant shaking.    
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Immunoprecipitated proteins and lysates were separated using SDS-PAGE (section 

2.8.6), followed by transfer of gels to nitrocellulose membranes for western blot 

analysis by immunoblotting (section 2.8.7). 

 

2.8.6 Sodium dodecyl sulphate polyacrylamide gel 

electrophoresis (SDS-PAGE)  

SDS-PAGE gel electrophoresis was used to separate protein samples 

according to their size. Polyacrylamide gels were prepared using various gel 

concentrations depending on the molecular weight of the protein of interest (see 

Table 2.3). Separating gels were prepared in duplicates by mixing the appropriate 

concentrations of 30% of acrylamide (Bio-Rad) with MilliQ water and Tris buffer 

(1.5M Tris-base and 0.4% SDS in MilliQ water). 20μL TEMED and 40μL fresh 10% 

ammonium persulphate (APS) were added to the acrylamide/buffer mixture prior 

to pouring into the gel cassettes, leaving the top 3cm free for stacking gel. To 

ensure a smooth even surface of the separating gel MilliQ water was carefully 

overlaid on top of the acrylamide/buffer mixture without excessive mixing. The 

separating gel was left to set for at least 1hr. Once set, the MilliQ water overlay was 

discarded, the gel was rinsed MilliQ water and thoroughly drained. Stacking gels 

were prepared by mixing 1.6mL 30% acrylamide, 5.9mL MilliQ water and 2.5mL 

Tris buffer (0.5MTris-base and 0.4% SDS in MilliQ water). 20μL TEMED and 60μL 

fresh 10% APS were added to the mixture prior to pouring it into the cassette. A 

lane comb was inserted to the cassette and the stacking gel was left to set for at 

least 30min. Polyacrylamide gels were kept damp and stored in 4°C until use. 
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Upon use, the comb was removed from the gels and the wells were flushed 

using 1x SDS running buffer (25mM Tris-base, 190mM Glycine and 0.1% SDS in 

MilliQ water). Gels were assembled in the running apparatus and covered with 1x 

SDS running buffer. Load buffer was prepared by freshly adding 5% 2-

mecarptoethanol to 6x SDS-loading dye (0.5M Tris, 20% Glycerol, 4% SDS and 

bromophenol blue in MilliQ water). Protein samples (25-40μg per lane) from 

sections 2.8.3 & 2.8.5 were prepared by adding 1x load buffer and incubated at 

100°C for 5min. Precision plus protein standard (Bio-Rad) and protein samples 

was loaded to gels. Gels were electrophoresed at ~10mA until dyes entered the 

separating gel then increased to 25 mA, per gel, for 40-60min.  

 

 

MW Range Gel (%) 30% Acrylamide (mL) MilliQ water (mL) Lower Buffer (mL) 

70-200kDa 5 2.7 9.3 4 

40-150kDa 7.5 4 8 4 

20-100kDa 10 5.3 6.7 4 

10-70kDa 12.5 6.7 5.3 4 

8-50kDa 15 8 4 4 
Table 2. 3: Recipes to make two separating gels based on protein molecular weight (MW). 

 

 

2.8.7 Western blotting 

After SDS-PAGE (section 2.8.6) proteins from the gel were transferred to 

nitrocellulose membranes in transfer buffer (25mM Tris-base, 190mM Glycine and 

20% methanol in MilliQ water) at 25mA for 1.5hr. Following protein transfer, 

nitrocellulose membranes were bathed in block solution consisting of 1% skim 

milk in 1x TBST (10mM TrisHCl, 100 mM NaCl and 0.1% Tween I MilliQ water) for 

30-60min at RT or overnight at 4°C with shaking. Membranes were washed with 
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block solution three times for 10min each at RT with shaking. Membranes were 

then incubated with primary antibodies (see Table 2.4) diluted in the block 

solution overnight at 4°C with shaking. The following day membranes were 

washed three times with 1x TBST for 10min at RT with shaking. The appropriate 

horseradish peroxidase-conjugated secondary antibodies (1:20,000, Pierce-

Thermo Scientific) diluted in 1x PBS were added to the membranes and incubated 

for 1hr at RT with shaking. Membranes were washed three times with 1x PBS for 

15min each at RT with shaking. Immunoreactive proteins were visualized by 

Amersham ECL detection reagent (Life Science) on a Luminescent Image Analyzer 

(LAS-4000, Fujifilm) and images were processed with Multi Gauge Ver3.0 

(Fujifilm).  Protein bands were quantified using ImageQuant Software (Life 

Science) and were plotted on histograms using Excel. 

 

 

Primary Antibody Host Species Dilutions Source Protein Size 
Ndel1 Mouse 1:1000 Millipore 38.4kDa 
14-3-3 (C16) Rabbit 1:1000 Santa Cruz 27kDa 
pNdel1 (N219T) Mouse 1:1000 MBL 42kDa 
β-actin (AC-15) Mouse 1:5000 Sigma 42kDa 
α-tubulin Rabbit 1:5000 Abcam 52kDa 
SOX2 (L1D6A2) Mouse 1:1000 Cell Signalling 35kDa 
DCX Rabbit 1:1000 Cell Signalling 45kDa 
GSK-3β (27C10) Rabbit 1:1000 Cell Signalling 46kDa 
pGSK-3β (Ser9) Rabbit 1:1000 Cell Signalling 46kDa 

Table 2. 4: Primary antibodies and dilutions used for western blotting. 
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2.9 Statistical analysis  

In all studies, statistical analysis was performed using either GraphPad 

(Prism) or Excel (Microsoft) software. Data was analysed using Student’s t-test and 

either one- or two-way analysis of variance (ANOVA). All statistical calculations 

are presented as mean ± SEM and a p-value of ≤0.05 was taken as significant. 
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Chapter Three: 

Characterization of 14-3-3ζ KO Mice 
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3.1 Introduction  

Mouse models have been employed to study human disease for roughly the 

last one hundred years (Wade and Daly, 2005). These models have provided 

indispensable tools to improve our understanding of the cause and progression of 

diseases and lead to the evaluation of drug candidates in the hope of discovering 

potential therapeutics. Since their first introduction to medical research hundreds 

of inbred mouse backgrounds have been generated where each background has 

considerable genetic variation akin to that across human populations. To 

understand the pathogenic roles of genetic mutations across varied human patient 

populations it is therefore useful to compare any mutation across several genetic 

backgrounds (Hardouin and Nagy, 2000). Indeed, an increasing number of reports 

are showing that the genetic profile of the mouse background can modulate the 

phenotype of a given single mutation (Chalfin et al., 2014). Therefore, it is 

important to examine whether the phenotype observed in one mouse background 

can be recapitulated in another.  

 

The 129/sv mouse background has been widely used by many researchers 

as the bulk of embryonic stem cells used for derivation of genetic defects were 

generated from 129/sv mice (Chalfin et al., 2014, Lusis et al., 2007). The 129/sv 

background generally breed poorly and are reported to have altered anatomy and 

behaviour compared to other mouse backgrounds such as C57BL/6 and BALB/c 

(Sellers, 2012, Rivera and Tessarollo, 2008). Therefore, backcrossing into C57BL/6 

background for at least ten generations is widely accepted and has been reported 

to decrease adverse phenotypes (Sellers, 2012, Rivera and Tessarollo, 2008). The 
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C57BL/6 background is considered the gold standard in biological studies as they 

are known to breed well, live long, and be permissive to the expression of most 

genetic mutations (Rivera and Tessarollo, 2008, Johnson, 2012). Similarly, the 

BALB/c background is widely used as it serves as a general purpose animal model 

and is known to breed well (Johnson, 2012). Notably, the 129/sv, BALB/c and 

C57BL/6 have also been shown to have markedly different behavioural 

phenotypes resulting from their genetic diversity (Sellers, 2012, Rivera and 

Tessarollo, 2008). 

 

Previous work published by our group (Cheah et al., 2012) has shown that 

14-3-3ζ KO mice in the 129/sv background have anatomical and behavioural 

defects akin to those seen in schizophrenia. To address if these defects are 

conserved across different genetic backgrounds or if they are specific to the 

129/sv background here I examined whether the hippocampal defects are 

reproduced in the BALB/c and C57BL/6 backgrounds. Furthermore, I also 

extended these previous studies to examine if the structural defects of the 

hippocampus are accompanied by additional defects characteristic of 

schizophrenia, including aberrant neurite outgrowth, aberrant dendrite 

morphogenesis and aberrant spine formation.  
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3.2 Results 

3.2.1 14-3-3ζ KO mice in the BALB/c and C57BL/6 backgrounds 

display hippocampal lamination defects similar to the 129/sv 

background  

Our laboratory has previously shown that the anatomy of the brain in 14-3-

3ζ KO mice in the 129/sv background appears grossly normal, with the exception 

of mild hippocampal defects which were first noticeable before hippocampal 

maturation at P0 and maintained throughout adulthood (Cheah et al., 2012). As 

such, for this part of the project I specifically focused on the formation of the 

hippocampus. To determine whether the observed hippocampal defects were 

purely due to 14-3-3ζ deficiency and not through epistatic interactions with the 

129/sv mouse genetic background, we selected two additional and genetically 

dissimilar mouse backgrounds, namely BALB/c and C57BL/6, which were 

backcrossed with the 14-3-3ζ mice over ten generations. This was done to ensure 

that the mice were more than 99% pure-bred for each strain, so that any 

differences observed between WT and KO mice would result from the transgene 

itself and not genetic variance between mice within the same background.   

 

 From the 14-3-3ζ 129/sv, BALB/c and C57BL/6 mouse backgrounds at 

least 4 adult mice per group/genotype were collected and perfuse fixed (section 

2.3.1). Brains were then isolated and fixed in 4% PFA overnight prior to coronal 

sectioning (section 2.3.2) and at least 10 sections per sample were Nissl stained 

(section 2.4.1). Nissl stain is a cresyl violet acetate solution which is used to stain 
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Nissl substances (rough endoplasmic reticulum) in neurons and is commonly used 

to identify the neuronal structures in the brain and spinal cord (Paul et al., 2008).  

 

In the 14-3-3ζ KO 129/sv adult mouse hippocampus I was able to confirm 

that the pyramidal neurons in the CA3 region were malpositioned in the stratum 

radiatum and the stratum oriens, instead of their usual resting place in the stratum 

pyramidale, resulting in a bilaminar layer instead of a single cell layer 

(arrowheads, Figure 3.1 ii). Moreover, the pyramidal neurons at the CA2 region 

were ectopically positioned in the stratum oriens (asterisks, Figure 3.1 ii). The 

granule cells are generally tightly packed in the DG, however, in the 14-3-3ζ KO 

mouse hippocampus they appeared to be diffusely packed (arrows and box, Figure 

3.1 ii). These observations are consistent with that previously reported in Cheah et 

al. (2012). 

 

Consistent with my findings in the 14-3-3ζ KO 129/sv background initial 

low-resolution histological examination of Nissl stained sections in the 14-3-3ζ KO 

BALB/c and C57BL/6 backgrounds revealed that the morphology of the brain was 

grossly normal (not shown) (Xu et al., 2015). The hippocampal defects were also 

replicated in both BALB/c and C57BL/6 backgrounds (Figure 3.1 iv & vi, 

respectively), however the degree of severity varied as discussed below. Moreover, 

the hippocampal defect observed was evident throughout the rostro-caudal extent 

of the hippocampus in all mouse backgrounds (not shown). 

 

The neuronal mispatterning in the 14-3-3ζ KO BALB/c hippocampus was 

found to be most severe among the three backgrounds (Figure 3.1 iv). In the 
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BALB/c background, the CA3 pyramidal neurons formed a discontinuous 

bilaminar structure that failed to merge with the pyramidal layer at the CA2 region 

(open arrowhead, Figure 3.1 iv) (Xu et al., 2015). Moreover, in contrast to the 

129/sv background, in both BALB/c and C57BL/6 backgrounds the malpositioned 

pyramidal neurons were observed throughout all CA regions (CA1-3) (asterisks, 

Figure 3.1 iv & v). Although mild, the diffuse compactions of the granular neurons 

in the DG were also conserved across all backgrounds (arrows and box, Figure 3.1 

ii, iv & v). An observation arising from the analysis of all three backgrounds that 

had not previously been documented for 14-3-3ζ KO mice is the altered shape of 

the DG. Thus, my analyses highlight that the DG is smaller in 14-3-3ζ KO mice and 

that the shape is more circular compared to the normal v-shaped structure in WT 

animals. Another notable difference amongst the backgrounds is that 14-3-3ζ KO 

in the BALB/c background had enlarged ventricles which were not observed in 

either the 129/sv or C57BL/6 backgrounds (not shown) (Xu et al., 2015). 
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Figure 3.1: Hippocampal lamination defects in 14-3-3ζ KO mice.  

Nissl staining of the hippocampus of 14-3-3ζ WT (i, iii, v) and KO (ii, iv, vi) mice from adult 129/sv 

(i, ii), BALB/c (iii, iv), and C57BL/6 (v, iv) mouse backgrounds. Arrowheads highlight the 

duplicated layer of the hippocampal pyramidal neurons. Asterisks highlight the ectopically 

positioned pyramidal neurons. Arrows highlight the loosely arranged granule cells in the DG. Open 

arrowheads indicate a break in the usually continuous laminar organisation of the CA region. Box 

shows high magnification of DG revealing diffuse compaction of the granule neurons in the 14-3-3ζ 

KO mice compared to WT. CA: cornus ammonus; DG: dentate gyrus; so: stratum oriens; sp: stratum 

pyramidale; sl: stratum lucidum; sr: stratum radiatum. Scale bar 50µm. 
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3.2.2 14-3-3ζ KO mice in the BALB/c and C57BL/6 backgrounds 

display disrupted mossy fibre circuit 

I next examined whether the hippocampal trisynaptic circuit (see section 

1.3.1) was also disrupted at the level of the mossy fibre connection between the 

DG and CA3 pyramidal neurons as shown previously in the 129/sv background 

(Cheah et al., 2012). Normally, mossy fibres emanate from the DG granule cells and 

bifurcate to precisely navigate on either side of CA3 pyramidal neurons. The 

supra- and infrapyramidal mossy fibre tracts span along the stratum lucidum and 

stratum oriens layers on either side of the stratum pyramidale of CA3, respectively 

(arrowheads, Figure 3.2 i, iii & v) (Cheah et al., 2012). In 14-3-3ζ KO mice in the 

129/sv background, the suprapyramidal mossy fibre tract navigated along the 

stratum lucidum layer of the CA3 pyramidal neurons while the infrapyramidal 

tract was completely misrouted and navigated amongst the stratum pyramidale 

(Figure 3.2 ii).  

 

To determine whether this phenotype is conserved across the BALB/c and 

C57BL/6 mouse backgrounds, adult mouse brains were isolated and sectioned as 

detailed above and immunostained (section 2.4.2) with anti-calbindin, a mossy 

fibre marker (Figure 3.2). Consistently, the segregation of mossy fibres into supra- 

and infrapyramidal tracts was disrupted in the BALB/c and C57BL/6 backgrounds 

(Figure 3.2 iv & vi, respectively). In both the 129/sv and C57BL/6 backgrounds, 

the suprapyramidal tract navigated along the stratum lucidum, while the 

infrapyramidal mossy fibre tract aberrantly navigated amongst the CA3 stratum 

pyramidale layer (arrows, Figure 3.2 iv & vi, respectively). While the 
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suprapyramidal branch navigates to the site of the CA2/3 boundary in WT and 14-

3-3ζ KO brains of the 129/sv and C57BL/6 backgrounds, my analysis revealed that 

the suprapyramidal branch is prematurely arrested in 14-3-3ζ KOs in the BALB/c 

background (asterisk, Figure 3.2 iv). 

 

Notably, my analyses of hippocampal structure and mossy fibre tracts in 

three independent backgrounds demonstrate that the anatomical defects arising 

from 14-3-3ζ deficiency are largely conserved and independent of background 

differences. In our breeding of 14-3-3ζ KO mice in each of these backgrounds we 

noticed that mice in the C57BL/6 background did not breed as well as the other 

lines. As such, I therefore chose to focus on the 129/sv and the BALB/c mouse 

backgrounds in the subsequent experiments.   
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Figure 3.2: Abnormal mossy fibre navigation in 14-3-3ζ KO mice.  

Calbindin immunostaining of the suprapyramidal (SPMF, yellow arrowheads) and the 

infrapyramidal (IPMF, white arrowheads) mossy fibre trajectories in WT (i, iii & v) and KO (ii, iv & 

vi) mice from adult 129/sv (i, ii), BALB/c (iii, iv), and C57BL/6 (v, iv) mouse backgrounds. Similar 

to WT controls, 14-3-3ζ KO neurites initially bifurcate into the SPMF and IPMF branches after 

navigating away from the DG. However, the IPMF branch of KO mice navigated aberrantly among 

the pyramidal cell somata (sp, white arrows). In addition, the diffuse SPMF branch of the 14-3-3ζ 

KO mice invaded the duplicated pyramidal cell layer in CA3 stratum pyramidale. Asterisk indicates 

shortening of the SPMF in the 14-3-3ζ KO BALB/c mouse background (iv). CA: cornus ammonus; 

DG: dentate gyrus; so: stratum oriens; sp: stratum pyramidale; sl: stratum lucidum; sr: stratum 

radiatum. Scale bar 50µm. 
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3.2.3 The role of 14-3-3ζ in early phase neurite outgrowth  

To examine whether 14-3-3ζ may play a role in the early phase of neurite 

outgrowth, hippocampal neurons were isolated from WT, HET and KO E18.5 

hippocampi from both 129/sv and BALB/c mouse backgrounds (section 2.5.3). 

Hippocampal neurons were plated in 12-well plates (5x10⁴cells/well) and 

cultured for 3 days in vitro (DIV3) (section 2.5.4) before they were immunostained 

with anti-MAP2 and imaged using on a confocal microscope (section 2.5.6). MAP2, 

microtubule-associated protein 2, a neuron-specific protein that can be used as a 

neuronal marker, is known to be important for the earliest phases of neurite 

formation as it is involved in microtubule assembly during neurite outgrowth by 

stabilizing the microtubules (Flynn, 2013, Kulkarni and Firestein, 2012, Jan and 

Jan, 2010). Thus, MAP2 is enriched in the neurites of DIV3 hippocampal neurons 

but as the neuron matures (DIV10) it is only expressed in dendrites and not axons 

and thereby can also be used as a dendrite marker in more mature hippocampal 

neurons.   

 

WT, HET and KO 14-3-3ζ MAP2 positive DIV3 hippocampal neurons from 

both the 129/sv and BALB/c backgrounds were quantified by measuring the 

number of neurites originating from the soma, the length of neurites and the 

number of bifurcations using the NeuronJ tool in ImageJ (section 2.5.7). My 

analysis demonstrated no significant difference between genotypes in both 129/sv 

(Figure 3.3) and BALB/c (Figure 3.4) backgrounds for all quantitative measures. 

This result most likely indicates that 14-3-3ζ is not essential for early neurite 

outgrowth, or conversely that other 14-3-3 isoforms may be able to compensate 

for its function in this process.   
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Figure 3.3: Early phase neurite outgrowth from 14-3-3ζ 129/sv hippocampal neurons.  

(i) Hippocampal neurons isolated from E18.5 14-3-3ζ WT, HET and KO mice and cultured for 3 

days in vitro (DIV3) followed by immunostaining with an anti-MAP2 antibody. Scale bar 50μm. (ii) 

Lengths of the first, second, third and fourth longest neurites at DIV3 were measured in 14-3-3ζ WT 

(white bar), HET (grey bar) and KO (black bar) neurons (mean ± SEM, n=3). (iii) Total neurite 

numbers at DIV3 and (iv) bifurcation were analysed (mean ± SEM, n=3).  The average number of 

neurons analysed is as follows: WT n=64, HET n=60 and KO n=52. ns indicates that no significant 

difference was observed. 
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Figure 3.4: Early phase neurite outgrowth from 14-3-3ζ BALB/c hippocampal neurons.  

(i) Hippocampal neurons isolated from E18.5 14-3-3ζ WT, HET and KO mice and cultured for 3 

days in vitro (DIV3) followed by immunostaining with an anti-MAP2 antibody. Scale bar 50μm. (ii) 

Lengths of the first, second, third and fourth longest neurites at DIV3 were measured in 14-3-3ζ WT 

(white bar), HET (grey bar) and KO (black bar) neurons (mean ± SEM, n=3). (iii) Total neurite 

numbers at DIV3 and (iv) bifurcation were analysed (mean ± SEM, n=3).  The average number of 

neurons analysed is as follows: WT n=59, HET n=57 and KO n=41. ns indicates that no significant 

difference was observed. 
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3.2.4 The role of 14-3-3ζ in dendrite morphogenesis 

To study the function of 14-3-3ζ in dendrite morphogenesis, we analysed 

DIV10 primary hippocampal neurons isolated from E18.5 14-3-3ζ WT, HET and KO 

mice from the 129/sv and BALB/c backgrounds, as introduced above. Long-term 

hippocampal cultures of more than 7 days required neurotrophic support from 

glia for survival in vitro. Therefore, hippocampal neurons were cultured on glass 

cover slides and placed in a well of a 24-well plate (5x10⁴cells/well) then at DIV3 

were transferred to 10cm dishes containing astrocyte islands (sections 2.5.1-

2.5.5). Hippocampal neurons were fixed and immunostained with anti-MAP2 at 

DIV10 (section 2.5.6).  Only neurites positive for MAP2 were quantified to exclude 

axons from the analysis. Dendrite complexity was calculated by Sholl analysis 

(Sholl, 1953), where dendrites crossing concentric circles drawn at 5μm intervals 

around the neuron cell bodies and the number of dendrite crossings the concentric 

circles were measured using the Sholl Analysis tool in ImageJ.  

 

Although no significant differences were noted, the HET and KO neurons 

isolated from the 129/sv mouse background showed a trend toward more 

immature dendrites as compared to WT, indicated by reduced dendrite complexity 

compared to WT neurons (Figure 3.5 i). The peak number of dendrites in WT 

neurons was identified at a 60μm distance from the cell body while the HET 

neurons showed a peak at 35μm and the KO neurons appear to plateau after the 

40μm crossing (Figure 3.5 ii). Comparison of dendrite number at a 60μm distance 

from the cell bodies (as it was the peak crossing for the WT neurons) yielded 

lower values for both HET and KO neurons; however, this was not significant 

(Figure 3.5 iii). 
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Neurons isolated from the BALB/c mouse background showed contrasting 

results from the 129/sv mouse background (Figure 3.6). In terms of peak dendrite 

number, WT neurons showed the highest number of dendrites at a 60μm distance 

from the cell body while the HET neurons showed a peak at 45μm and the KO at 

55μm (Figure 3.6 ii). However, when comparing the crossings at a 60μm distance 

from the cell bodies (as it was the peak crossing for the WT neurons) HET and KO 

neurons yielded significantly higher values compared to WT (Figure 3.6 iii, 

p<0.05). The contrasting results in these experiments may have arisen from 

differences in the genetic profiles or simply the nature of the experimental 

protocol. Here we used high density neuronal cultures which could have affected 

the dendritic complexity; it is known that plating density may influence the rate of 

neuronal maturation and hence dendritic complexity. Therefore, an alternative 

experimental approach is to use autaptic neuronal cultures, where a single neuron 

is cultured on a glial bed. 

 

Although it appeared that the dendrite complexity is reduced in both 14-3-

3ζ HET and KO neurons compared to WT in the 129/sv background, due to 

contrasting results in the BALB/c background I was unable to make any solid 

conclusion. As such, I decided to analyse the dendrite complexity using an in vivo 

system. Thus, adult mouse brains from 14-3-3ζ WT and KO mice in the 129/sv 

background were isolated, coronally sectioned (sections 2.3.2) and at least ten 

sections were Golgi-cox stained (section 2.4.3). Golgi-cox staining is a modified 

silver stain that reveals morphological traits of neurons in brain slices by 

randomly labelling a limited number of cells (~1%) in their entirety, thereby 

showing detailed arborisation of the dendritic tree (Pilati et al., 2008).  
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Upon visual examination of pyramidal cells in stratum radiatum and 

stratum lacunosum moleculare of the CA1 region of hippocampus, it was clearly 

obvious that the dendrites of the 14-3-3ζ KO neurons have reduced complexity in 

terms of branching (Figure 3.7 iii & iv). Furthermore, it appeared that the 

thickness of the apical dendrites is reduced and they appear longer in the length 

compared to WT (arrowheads, Figure 3.7 iii & iv). Manual tracing of these neurons 

clearly demonstrates the altered dendritic complexity between 14-3-3ζ KO and 

WT mice (Figure 3.7 v & vi).  Taken together with my in vitro finding, this result 

suggests that 14-3-3ζ might play a role in dendrite arborisation in vivo. Further 

analysis of the phenotype is required to provide a definitive conclusion on the role 

of 14-3-3ζ in dendrite formation, and to determine if there are indeed quantitative 

differences in alternative backgrounds as may be predicted from my in vitro 

analyses. 
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Figure 3.5: Dendrite morphogenesis of 14-3-3ζ 129/sv hippocampal neurons.  

(i) Immunostaining of 14-3-3ζ WT, HET and KO hippocampal neurons at DIV10 using an anti-MAP2 

antibody. Scale bar 50μm. (ii) Sholl analysis and quantification of the number of crossings within 

175μm radius from the soma (mean ± SEM, n=3). (iii) Number of crossings at 60μm (mean± SEM, 

n=3). The average number of neurons analysed is as follows: WT n=16, HET n=11 and KO n=13. ns 

indicates that no significant difference was observed. 
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Figure 3 6: Dendrite morphogenesis of 14-3-3ζ BALB/c hippocampal neurons.  

(i) Immunostaining of 14-3-3ζ WT, HET and KO hippocampal neurons at DIV10 using an anti-MAP2 

antibody. Scale bar 50μm. (ii) Sholl analysis and quantification of the number of crossings within 

175μm radius from the soma (mean ± SEM, n=3). (iii) Number of crossings at 60μm (mean± SEM, 

n=3). The average number of neurons analysed is as follows: WT n=11, HET n=12 and KO n=14. 

Asterisks indicate p-value < 0.05.   
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Figure 3.7: Altered dendritic morphology in the hippocampus of 14-3-3ζ KO neurons in the 

129/sv background. 

 (i-ii) Low magnification of Golgi-cox stained 129/sv adult brain sections showing an overview of 

14-3-3ζ WT (i) and KO (ii) hippocampal neurons. CA: cornus ammonus; DG: dentate gyrus. Scale 

bar 100μm. (iii-iv) High magnification images of 14-3-3ζ KO CA1 hippocampal neurons (iv) show 

reduction in dendrite complexity accompanied with the thinning of the apical dendrite width 

compared to WT (iii). Arrowhead indicates apical dendrite. Scale bar 50μm. (v-vi) Manually traced 

neurons demonstrating altered apical dendritic complexity between KO (vi) and WT (v) mice. n=3 

for each genotype. 
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3.2.5 14-3-3ζ deficiency affects dendritic spine density     

As reduced dendritic complexity, synapse number and spine formation are 

hallmark features of neurodevelopmental disorders such as schizophrenia, I also 

wanted to determine if dendritic spine density was altered in 14-3-3ζ KO mice. In 

my first analyses I initially planned to measure the number of spines forming in 

14-3-3ζ WT and KO neurons grown for 21 days in vitro (sections 2.5.4 & 2.5.5). 

However, due to technical issues and large variability in spine numbers (Appendix 

A.3), I decided to instead utilise the Golgi-cox impregnation technique (section 

2.4.3). Initially, I examined spines at the apical dendrites on cortical layer V 

pyramidal neurons as they were clearer to image and more spread out compared 

to the hippocampal neurons. We observed that 14-3-3ζ KO cortical pyramidal 

neurons showed reduced dendritic spines compared to WT neurons (Figure 3.8).  

  

In my hands the Golgi-cox impregnation method labelled vast numbers of 

hippocampal neurons (Figure 3.7 i & ii) which precluded the analysis of dendritic 

spines in this area. Accordingly, I decided to utilise a gene gun method where thick 

vibratome sections of the adult mouse brain (sections 2.3.3) were labelled with 

lipohilic fluorescent dyes using a gene gun (section 2.4.4). Following lipophilic dye 

labelling neuronal dendrites were imaged at 63x magnification on a confocal laser 

microscope allowing us to generate 3D reconstructed images from z-stacks. For 

spine density quantification, the number of spines along equivalent lengths of 

dendritic segments proximal to the cell body were quantified.  

 

Similar to my Golgi-cox stain analysis of layer V cortical pyramidal neurons, 

this technique demonstrated that both the dendritic spines of the CA3 pyramidal 
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neurons and DG neurons were significantly reduced (CA, p=0.01; DG, p=0.01, 

Figure 3.9) in the 129/sv mouse background. Consistently, we also observed that 

the 14-3-3ζ KO hippocampal neurons from the BALB/c mouse background showed 

reduced dendritic spine density compare to WT neurons (CA, p=0.05; DG, p=0.19, 

Figure 3.10). To examine this further, transmission electron microscopy (TEM) 

studies were commenced to address if the positioning and synapse type 

(excitatory or inhibitory) are also altered in the 14-3-3ζ KO mice compared to WT 

(Appendix A.4). However, due to time limitations TEM experiments were not 

completed. 
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Figure 3.8: Golgi-cox staining of dendritic spines of cortical layer V pyramidal neurons of the 

129/sv mice.  

Low magnification of Golgi-cox stained sections of 129/sv adult brain layer V cortical pyramidal 

neurons from 14-3-3ζ WT (i) and KO (ii). Scale bar 100μm. High magnification of 14-3-3ζ KO 

neurons (iv) show reduction in spine density compared to WT (iii). Scale bar 20μm. n=3 for each 

genotype. This work was published in Jaehne et al. (2015). 
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Figure 3.9: Reduced dendritic spine density in 14-3-3ζ KO 129/sv hippocampus.  

(i) Pyramidal neurons in the CA3 region of the hippocampus have reduced dendritic spines in 14-3-

3ζ KO mice. (ii) Quantitation of dendritic spines identifies a significant reduction in pyramidal 

neurons of 14-3-3ζ KO neurons compared to WT. Error bars indicate mean ± SEM (WT n=3, KO 

n=3; over 30 dendrites counted/mouse). (iii) Granular cells in the DG of the hippocampus also 

show reduced dendritic spine density in 14-3-3ζ KO mice.  (iv)  Quantitation of dendritic spines 

reveals significant reduction in the DG of 14-3-3ζ KO mice compared to WT. Error bars indicate 

mean ± SEM (WT n=3, KO n=3; over 30 dendrites counted/mouse). Scale bar 20μm. CA: cornus 

ammonus; DG: dentate gyrus. This work was published in Jaehne et al. (2015). 
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Figure 3.10: Reduced dendritic spine density in 14-3-3ζ KO BALB/c hippocampus.  

(i) Pyramidal neurons in the CA of the hippocampus have reduced dendritic spines in 14-3-3ζ KO 

mice. (ii) Quantitation of dendritic spines identifies a significant reduction in pyramidal neurons of 

14-3-3ζ KO neurons compared to WT. Error bars indicate mean ± SEM (WT n=3, KO n=5; over 30 

dendrites counted/mouse).  (iii) Granular cells in the DG of the hippocampus also show reduced 

dendritic spines in 14-3-3ζ KO mouse.  (iv) Quantitation of spine number of granular cells reveals 

that there are no significant differences in the DG of 14-3-3ζ KO mice compared to WT. Error bars 

indicate mean ± SEM (WT n=3, KO n=4; over 30 dendrites counted/mouse). Scale bar 20μm. CA: 

cornus ammonus; DG: dentate gyrus. This work was published in Xu et al. (2015). 
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3.3 Discussion 

The variable penetrance of genetic mutations in human disease is complex 

and may be partially explained by epistatic genetic interactions between the 

mutation itself and the genetic background of the host. Mouse models provide 

important tools to help understand human disease and to develop new 

therapeutics.  Therefore, it is critical to select an appropriate mouse model in the 

correct genetic background to investigate a specific biological phenomenon. In this 

chapter I examined the phenotypic diversity of 14-3-3ζ KO in three commonly 

used mouse backgrounds, namely 129/sv, BALB/c and C57BL/6 to evaluate their 

relevance to model specific components of schizophrenia and related 

neuropsychiatric disorders.  

  

There has been an increasing number of reports detailing the involvement 

of 14-3-3 proteins in the aetiology of schizophrenia (as discussed in section 1.2.2). 

Thus, it is important to select an appropriate animal model that enables in depth 

investigation of the role 14-3-3ζ plays in this crippling disease and other 

neurodevelopmental disorders. Previous work in our laboratory demonstrated 

that 14-3-3ζ KO mice in 129/sv background displayed anatomical and behavioural 

defects reminiscent of a schizophrenia-like phenotype (Ramshaw et al., 2013, 

Cheah et al., 2012). Notably, these mice have hippocampal defects characterised by 

mispatterning of the hippocampal pyramidal neurons and misrouting of the mossy 

fibres (Cheah et al., 2012).  My findings now demonstrate that 14-3-3ζ KO mice in 

the BALB/c and C75BL/6 backgrounds display a similar phenotype to the 129/sv 

background, albeit with varying degree of severity, suggesting that the traits 
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observed are due to direct consequence of 14-3-3ζ deficiency and not due to other 

genetic intrusion.  The mild phenotypic variability observed among the different 

backgrounds therefore make the analysis of 14-3-3ζ KO mice a highly appropriate 

model to investigate certain neuropathologies associated with schizophrenia and 

associated disorders. The spectrum of phenotypic severity and viability of 14-3-3ζ 

KO mice, like in humans, was influenced by the genetic heterogeneity of the 

background strain. For instance, 14-3-3ζ KO mice in the BALB/c and C75BL/6 

backgrounds had an increase in the numbers of ectopically positioned pyramidal 

neurons in all subfields of the hippocampus and not just the CA3 region as 

previously observed in the 129/sv background (Figure 3.1). The mispositioned 

pyramidal neurons in the hippocampus strongly suggest a role of 14-3-3ζ in 

neuronal migration. Notably, the hippocampal lamination defect is similar to 

mouse mutants of protein known to play a role in neuronal migration (Belvindrah 

et al., 2014), which I have investigated in more detail in chapter 4.   

 

This study also identified aberrantly enlarged lateral ventricles in 14-3-3ζ 

KO mice in the BALB/c background that did not extend to the other ventricles. As 

increased ventricular size is commonly associated with schizophrenia (Jaaro-Peled 

et al., 2010, Harrison, 2004), this provides even further credence to the use of 14-

3-3ζ KO mice as a model for the human condition. While the reasons of why the 

lateral ventricle defects would be specific to one background are unclear, BALB/c 

mice have been reported to have a larger brain size compared to other 

backgrounds (Brodkin, 2007). It may therefore be possible that any changes in 

ventricle size could be exacerbated in this background. Regardless of why, this 

finding warrants further detailed investigation of the ventricles over time and in 
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each of the genetic backgrounds. Notably, ventricle enlargement has previously 

been associated with developmental defects in neurogenesis and the reduced 

compaction of DG granule cells in 14-3-3ζ KO mice (Figure 3.1) observed in all 

mouse backgrounds suggests its potential role in neurogenesis, which is examined 

more closely in chapter 5.    

 

The anatomy of the hippocampus complements its function and its 

disruption contributes to several neurological diseases such as Alzheimer's 

disease, epilepsy, depression and schizophrenia (Tamminga et al., 2010). In 

schizophrenic patients, several studies have reported reduction of hippocampal 

size, ventricular enlargement and alteration of the synaptic circuitry, density and 

connectivity (Jaaro-Peled et al., 2010, Harrison, 2004). Miscommunication 

between neurons is also a major underlying cause of many neurological disorders 

and misrouting of neurons can lead to such events.  Mossy fibres are known to 

mediate connectivity between the DG granular cells the CA3 pyramidal neurons in 

the hippocampus and are crucial for higher-order memory formation (Crusio and 

Schwegler, 2005). Alteration of the mossy fibre circuit is known to correlate with 

neuronal disorders, making it one of the most powerful synaptic structures in the 

brain (Wilke et al., 2014, Knoll et al., 2006). However, the exact molecular 

mechanisms which dictate the formation of the mossy fibre circuits are not 

completely understood.  

 

Misrouting of the hippocampal mossy fibres was observed in 14-3-3ζ KO in 

both the BALB/c and C57BL/6 backgrounds, as previously seen in the 129/sv mice 

(Figure 3.2), suggesting axonal guidance abnormalities which warrants further 
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investigation. Although the misrouting of the mossy fibres in the 14-3-3ζ KO 

mouse brain is subtle, it was highly reproducible between biological replicates 

among each of the mouse backgrounds. Moreover, the suprapyramidal mossy 

fibres emanating from the DG were also shortened in the BALB/c background 

(Figure 3.2 iv). The length of the mossy fibres is known to directly correlate with 

improved memory performance (Crusio and Schwegler, 2005).  Consistent with 

the mossy fibre defects, behavioural studies of the 14-3-3ζ KO in the 129/sv and 

BALB/c backgrounds also revealed memory deficits (Cheah et al., 2012, Xu et al., 

2015).  

 

Analysis of pyramidal hippocampal neuron development indicated that 14-

3-3ζ does not play an essential role in initial neurite outgrowth (Figures 3.3 & 3.4), 

possibly due to redundancy of other 14-3-3 proteins which may provide a 

compensatory function. For future studies, a dominant negative approach may be 

useful to bypass this compensatory effect of other 14-3-3 proteins. It is also 

possible that the pathways mediated by 14-3-3ζ are non-responsive to the 

extracellular matrix, namely laminin, used in this experimental system.  In future 

experiments it would therefore be worthwhile analysing different substrates that 

are known to mediate neurite outgrowth such as L1, a cell adhesion molecule. In 

fact, 14-3-3 was shown to act as a switch between positive and negative 

modulation of neurite outgrowth stimulated by retinoic acid, cell adhesion 

molecules (L1 & NCAM), and nerve growth factor (NGF) (Marzinke et al., 2013, 

Ramser et al., 2010a, Ramser et al., 2010b, Kajiwara et al., 2009, Rong et al., 2007, 

Tang et al., 1998). 
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Following initial neurite extension, neurons become specialised by the 

differentiation of their neurites into axons and dendrites. Dendrite morphogenesis 

has been correlated with neuronal function and is affected in many 

neurodevelopmental disorders such as autism spectrum disorders, and 

schizophrenia (Kulkarni and Firestein, 2012). Schizophrenia patients have been 

reported to have reductions in dendritic arbor size of their hippocampal pyramidal 

neurons (Kolomeets et al., 2007). This led me to examine the dendritic 

morphogenesis of the 14-3-3ζ deficient hippocampal neurons. The dendrite 

complexity of 14-3-3ζ KO hippocampal neurons from the 129/sv background was 

reduced in both in vitro and in vivo settings (Figures 3.5 & 3.7). In contrast, 

dendritic arborisation of the 14-3-3ζ KO hippocampal neurons from the BALB/c 

background was enhanced in vitro (Figure 3.6). This contrasting result could 

reflect a true difference in genetic background of the mice and warrants further in 

vivo analysis to address the role of 14-3-3ζ in dendrite arborisation. In 

combination with the fact that 14-3-3ζ has been reported to interact with 

Glutamate Receptor Interacting Protein 1 (GRIP1) to regulate dendrite 

morphogenesis in mouse embryonic cultured hippocampal neurons (Geiger et al., 

2014), my findings in the 129/sv background support the notion that 14-3-3ζ is 

essential for dendrite formation. 

 

As synaptic density is consistently reduced in schizophrenic brain samples I 

also analysed the synaptic density in 14-3-3ζ KO mice by counting the number of 

spines in hippocampal neurons (Xu et al., 2015). Proper synapse formation is 

essential for the establishment of functional neuronal circuitry and ultimately 

behaviour. Synapses occur on small protrusions along dendrites called dendritic 
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spines, where a single spine accommodates a single synapse (Penzes et al., 2011, 

Nimchinsky et al., 2002). Reduction of CA hippocampal dendritic spines has been 

correlated with the degree of memory deficit in individual mice (Chen et al., 2010). 

Dendritic spine density of the CA pyramidal neurons and DG granular cells of 14-3-

3ζ KO 129/sv mice was significantly lower (CA p=0.01; DG p=0.01) than that of WT 

(Figures 3.9). The reduction in dendritic spine density was also apparent in the 14-

3-3ζ KO BALB/c mice (Figures 3.10). However, only the dendritic spine density of 

the CA pyramidal neurons was significantly reduced and not the DG granular cells 

(CA p=0.05; DG, p=0.19).  Consistently, the 129/sv 14-3-3ζ KO mice display a more 

severe memory deficit compared to the BALB/c background (129/sv p<0.001; 

BALB/c p<0.05) (Cheah et al., 2012, Xu et al., 2015). Not only does the latter agree 

with the notion that the degree of spine loss correlates significantly with the 

degree of memory defect, it also suggests a potential role for 14-3-3ζ in spine 

density regulation.  

 

Developmental disturbances of synapse formation resulting in improper 

transmission and plasticity have been implicated in schizophrenia and provide 

solid support to the suggestion of a neurodevelopmental basis for the disorder 

(Walsh et al., 2008, Camargo et al., 2007, Harrison, 2004, Lewis and Levitt, 2002). 

Schizophrenia associated genes, such as DISC1, ERBB4 and NRG1, encode proteins 

that have also been implicated in synapse formation and/or function (Walsh et al., 

2008). Notably, 14-3-3ζ has been reported to interact with several proteins found 

in the post synaptic density such as DISC1, HOMER and SPIN90 (Cheah et al., 2012, 

Angrand et al., 2006, Heverin et al., 2012) and proteins involved in actin 

polymerisation such as cofilin (Gohla and Bokoch, 2002). Indeed, 14-3-3ζ has 
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recently been suggested to control phosphorylation of serine 3 on cofilin to 

mediate spine formation (Gohla and Bokoch, 2002).  

 

In summary, this chapter has demonstrated that 14-3-3ζ KO mice have 

largely conserved phenotypes in three independent backgrounds thereby 

supporting the notion that the phenotype observed is due to deficiency of the gene 

itself and not from genetic interactions. Furthermore, these results highlight an 

important role for 14-3-3ζ in brain development and provide further support to 

the neurodevelopmental basis of schizophrenia and associated disorders. As I have 

verified that the phenotypes arising from 14-3-3ζ deficiency are conserved across 

genetic backgrounds, I have therefore focused the rest of my mechanistic studies 

in this thesis in one genetic background (i.e. 129/sv mouse background). 
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Chapter Four: 

Defining the Role of 14-3-3ζ in Neuronal Migration 
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4.1 Introduction 

Precise control of neuronal migration from the ventricular zone to their 

final destination within the hippocampal plate is essential for establishing brain 

architecture (Marin et al., 2010, Reiner, 2013). This process is regulated by a 

complex molecular pathway that involves extracellular guidance cues (Reelin) 

binding to membrane-bound receptors (APOER2, VLDLR) to stimulate 

intracellular signalling molecules (Dab1, Cdk5, p35)  which activate microtubule 

associated proteins (DCX, Lis1, Ndel1, dyneins) to sustain microtubule bundles 

and facilitate neuronal migration (Keays, 2007, Wynshaw-Boris and Gambello, 

2001) (see section 1.6 for more detail). 

 

Defects in several proteins involved in the neuronal migration pathway 

have been associated with neurological disorders such as lissencephaly, mental 

retardation, epilepsy, schizophrenia and autism. This direct link to human 

disorders makes the molecular basis for neuronal migration an area of intense 

investigation. For example, single nucleotide polymorphism analysis in an 

American population of schizophrenic patients identified significant linkage to 

Ndel1 (Burdick et al., 2008), while expression analyses on post-mortem 

schizophrenia brain samples revealed significant down-regulation of Ndel1 and 

Lis1 (Lipska et al., 2006). Given that 14-3-3ζ is also associated with schizophrenia 

(discussed in section 1.2.2) and that my analyses identified 14-3-3ζ KO mice 

display phenotypic similarity to Ndel1 and Lis1 deficient mice (sections 1.6.2 & 

1.6.3) this suggests a potential role for this protein in the neuronal migration 

pathway.   
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14-3-3 proteins predominantly bind to target proteins through recognition 

of consensus phosphorylated serine (S) or threonine (T) residues (section 1.1.1). 

Proteins can be phosphorylated by kinases, such as Cdk5, and dephosphorylated 

by phosphatases, such as PP2A, causing alteration of the protein’s activity and 

function (Dephoure et al., 2013). To study the roles of S/T phosphorylation in 

protein function the use of molecular variants in which the S/T phosphorylated 

residues are replaced with alternative amino acids has been widely used. Thus, 

replacement of the S/T residues with alanine (A) renders this site phospho-dead 

and therefore acts as a loss-of-function mutant. Conversely, replacement of the S/T 

with glutamic acid (E) mimics the phosphorylation state and acts as a gain-of-

function mutant (Dephoure et al., 2013). However, although mutants in which S/T 

is replaced with E act as a phosphomimetic in functionality, in many cases they do 

not bind adaptor proteins such as 14-3-3 proteins as the E does not fully replicate 

the phosphorylation state and fit into the binding pocket (Dephoure et al., 2013).  

 

Ndel1 is known to have three specific S/T phosphorylation sites (S198, 

T219 & S231) and two weak phosphorylation sites (S242 & T245) which are 

recognised by Cdk5/p35 (Niethammer et al., 2000). Our collaborators have 

previously shown that 14-3-3ε interacts with Ndel1 and this is completely 

abrogated in a triple Ndel1 mutant (S198A, T219A & S231A) (Toyo-oka et al., 

2003). By investigating the phosphorylation dynamics of Ndel1 in the absence of 

14-3-3ε they also found that 14-3-3ε maintains Ndel1 phosphorylation in cortical 

neurons to control binding to Lis1 and the dynein motor complex (Toyo-oka et al., 

2003). This chapter investigates whether 14-3-3ζ, like 14-3-3ε, interacts with 

Cdk5/p35 phosphorylated Ndel1 to modulate hippocampal neuronal migration.  
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4.2 Results 

4.2.1 In vitro neuronal migration assay 

Using a BrdU-pulse chase technique in 14-3-3ζ KO mice, our lab has 

previously reported that 14-3-3ζ plays an important role in neuronal migration of 

hippocampal neurons (Cheah et al., 2012). To explore whether 14-3-3ζ plays a cell 

autonomous role in neuronal migration and to define its the mechanistic role 

within this pathway, I established an in vitro migration assay where neuronal 

progenitors were isolated from the hippocampus of E18.5 14-3-3ζ WT, HET, and 

KO mice (Figure 4.1 i & ii, section 2.6). These cells were cultured in spherical 

cellular re-aggregates, known as neurospheres, (Figure 4.1 iii) over three to four 

passages (Figure 4.1 iv & v) then transferred to poly-L-lysine and laminin-coated 

22mm glass bottom dishes and allowed to migrate radially (Figure 4.1 vi & vii, 

sections 2.6.1 & 2.6.2). After 24hrs, migration distance was measured by both 

manual and automated techniques using ImageJ as described in sections 2.6.3 and 

2.6.4 (Figure 4.1 viii). To examine any differences in neuronal migration rate, I 

counted the number of neurons in concentric circles (bins) surrounding the edge 

of the initial neurosphere (Figure 4.1 viii). Of note, in these experiments DAPI was 

used to label migrating cells relying on the assumption that all migrating cells are 

actually neurons. While not completed here, clarification that these cells are 

indeed neurons would require labelling for DCX or other neuronal markers. 
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Figure 4.1: Neuronal migration assay.  

(i-vi) Diagram illustrating the experimental procedure undertaken for the neuronal migration 

assay. The hippocampus is dissected from E18.5 embryos (i) to isolate neuronal progenitor cells 

which are cultured as a single cell suspension (ii). These cells then proliferate and form 

neurospheres (iii) which are passaged several times (iv-v) before being used for migration assays. 

Neurospheres grown for at least 3-4 passages are isolated and cultured on ploy-L-lysine and 

laminin treated 22mm glass bottom dishes (vi) for 24hrs. (vii, viii) DAPI staining of neurospheres 

after 24hrs migration period. Scale bar 100μm. (viii) Migration distance of each neuron was sorted 

in 50, 100, 200, 300, & 400μm bins using Photoshop (vii). The 50μm bin was analysed manually 

with the rest analysed using ImageJ. White lines indicate corresponding migration distances from 

the edge of the original neuronsphere.  
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4.2.2 14-3-3ζ is important for hippocampal neuronal progenitor 

cell migration  

DAPI staining of neuropheres after 24hrs of migration revealed reduced 

migration in the 14-3-3ζ KO hippocampal neurons compared to HET and WT 

(Figure 4.2 i-iii). Quantification of migration revealed that the 14-3-3ζ KO 

hippocampal neurons display aberrant migration characterised by the leftward 

shift of the distribution bins (Figure 4.2 vi). This effect was also identified in 14-3-

3ζ HET hippocampal neurons which displayed an intermediate leftward shift 

(Figure 4.2 v) compared to the KO neurons (Figure 4.2 iv). Furthermore, the mean 

migration distance of the 14-3-3ζ KO and HET hippocampal neurons was 

significantly reduced compared to WT neurons (p<0.001, Figure 4.2 vii). Analysing 

the data from the HET mice, I determined that there is a significant dose 

dependent effect in neuronal migration similar to that reported for Lis1, Ndel1 and 

14-3-3ε deficient neurons (Gambello et al., 2003, Hirotsune et al., 1998, Sasaki et 

al., 2000, Tanaka et al., 2004a, Toyo-oka et al., 2003, Youn et al., 2009). 
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Figure 4.2: Migration defects are associated with 14-3-3ζ deficiency in neuronal progenitor 

cells. 

(i-vii) In vitro neurosphere migration assay using neuronal progenitor cells isolated from E18.5 

embryos of 14-3-3ζ WT, HET and KO hippocampi and cultured as neurospheres. (i-iii) DAPI 

staining of neurospheres after 24hrs migration on ploy-L-lysine and laminin treated glass bottom 

dish. Scale bar 100μm. (iv-vi) Migration distance of each neuron was sorted in 50-100μm bins. 

Compared to WT neurons (iv), 14-3-3ζ KO neurons (vi) displayed a shift in the bin distribution 

towards the left and the HET neurons (v) displayed a slight shift towards the left. n is the number of 

neurospheres measured for each examination. (vii) Mean migration distance was determined for 

all genotypes. Error bars indicate SEM of neurosphere number (WT n=113, HET n=91, KO n=110).  
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4.2.3 Live imaging reveals neuronal migration defects in 14-3-3ζ 

KO neurons 

To examine the migration dynamics in the 14-3-3ζ KO neurons, I repeated 

the migration assays and observed them in real-time using a spinning disc confocal 

microscope (section 2.6.4). Since our spinning disc microscope only 

accommodated one dish at a time, I cultured 14-3-3ζ WT and KO neurospheres in 

different areas of the same dish. Thus, I first completed experiments to determine 

that the same migration defects observed in the 14-3-3ζ KO neurons as observed 

above (Figure 4.2) were reproduced using this experimental design. Movies were 

generated from the live imaging and used to track individual migrating neurons 

with Manual Tracking tool in ImageJ software (Figure 4.3 i & ii, Movie 4.1, section 

2.6.4). Consistent with my previous result (Figure 4.2), I observed a significant 

migration delay in the 14-3-3ζ KO neurons (p=0.01; Figure 4.3 v, Movie 4.2). In 

addition, the presence of 14-3-3ζ WT neurons in the same dish was unable to 

rescue the migration defect of the 14-3-3ζ KO neurons, suggesting a cell-

autonomous role for 14-3-3ζ in altering neuronal migration. Furthermore, I 

confirmed that the migration delay observed was not due to the 14-3-3ζ KO 

neurons having defects in their directionality as they moved similarly to WT 

neurons (WT D=0.7, KO D=0.7; Figures 4.3 iii & iv, respectively).   
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Figure 4.3: Live imaging of 14-3-3ζ WT and KO migrating  neurons.  

To further examine the migration dynamics in the 14-3-3ζ KO neurons I have analysed the 

migration in real time using a spinning disc confocal microscope (Cell Voyager, CV1000, 

Yokogawa). Snap shot of the neuropshere migration assay of 14-3-3ζ WT (i) and KO (ii) neuronal 

progenitors at ~22hrs. Each line represents a neuron that has been manually tracked. Scale bar 

100μm. (iii-iv) Migration directionality plots indicate no directionality defect in the 14-3-3ζ KO (iii) 

neurons compared to WT (vi). Each line represents a neuron. Note that the plots have comparable 

scale bars. D= directionality correlation. (v) Quantification of the mean migration distance. Error 

bars indicate SEM of neurosphere number (WT n=4, KO n=4). 
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4.2.4 Effect of 14-3-3ζ KO in neuronal migration velocity and 

adhesion  

Previous studies have shown that Lis1 and Ndel1 deficient cortical neurons 

have reduced migration velocity (Youn et al., 2009) and therefore we questioned 

whether 14-3-3ζ KO hippocampal neurons would have a similar defect. Using the 

data from the spinning disc microscope I found that 14-3-3ζ KO neurons have a 

significant decrease in mean migration velocity (p=0.03, Figure 4.4 i). I also 

examined the neurons ability to adhere to laminin using an adhesion assay 

described in section 2.6.5. A single cell suspension of neurons from either 14-3-3ζ 

KO or WT neurospheres were plated on laminin for 10 or 60min then the number 

of cells adhered to the substrate was measured (section 2.6.5). 14-3-3ζ KO neurons 

were able to adhere normally at the 10min time point, but had increased 

adherence compared to WT at 60min (Figure 4.4 ii).  

 

Figure 4.4: Mean migration velocity and adhesion assay of 14-3-3ζ KO neurons. 

(i) 14-3-3ζ KO neurons show a significant reduction in mean migration velocity compared to WT. 

Error bars indicate SEM from neurosphere number (WT n=4, KO n=4; average of 145 neurons were 

measured per sample). (ii) Adhesion assay on laminin, 10 or 60min after plating. Error bars 

indicate SEM (WT n=2, KO n=2).   
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4.2.5 Nuclear-centrosome coupling is disrupted in 14-3-3ζ 

deficient neurons  

 An important mechanism in neuronal migration is nuclear-centrosome (N-

C) coupling (Lambert de Rouvroit and Goffinet, 2001). Tanaka et al. (2004a) have 

previously shown that under normal conditions microtubules in migrating 

neurons couple the leading process to the centrosome and the centrosome to the 

nucleus (Figure 4.5 i). This process allows the translocation of the nucleus during 

neuronal migration. Lis1 and Ndel1 deficient neurons have been reported to have 

uncoupling of the nucleus to the centrosome (Shu et al., 2004, Tanaka et al., 

2004a). Thus, I wanted to determine whether deficiency of 14-3-3ζ would result in 

the same phenotype, given that my data suggest that it may be involved in the 

same neuronal migration pathway. A neuronal migration assay was undertaken as 

previously reported in section 2.6.2 followed by fixation with 4% PFA during the 

active phase of migration. 14-3-3ζ WT and KO neurons were stained with DAPI 

and γ-tubulin to label the nucleus and centrosome, respectively (section 2.6.6). 

Neurons were imaged and analysed using confocal laser microscope as described 

in section 2.6.6. Quantitation of the distance between the nucleus and centrosome 

demonstrates a dose dependent requirement of 14-3-3ζ in maintaining N-C 

distance (Figure 4.5; WT v HET, p<0.001; WT v KO, p<0.001; HET v KO, p=0.01). 
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Figure 4.5: 14-3-3ζ deficient neurons have defective nuclear-centrosome coupling.  

 (i-ii) Schematic illustrating nuclear-centrosome (N-C) coupling under normal migration (i) and 

during migration defects induced by lack of Ndel1 and/or Lis1 (ii). (iii-iv) Migrating neurons were 

stained for DAPI (blue) and γ-tubulin (green) to identify nuclei and centrosomes, respectively. 14-

3-3ζ KO neurons (iv) display increased nucleus-centrosome distance compared to WT (iii). Scale 

bar 10μm. (v) 14-3-3ζ KO neurons displayed N-C coupling defects characterized by the extended 

distance between the nucleus and centrosome. Similar results were obtained from two separate 

experimental trials. Error bars indicate SEM from neurosphere number (WT n=24, HET n=18, KO 

n=22; 200 neurons were measured per sample).   
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4.2.6 14-3-3ζ directly interacts with Ndel1  

 Given that my analysis of 14-3-3ζ KO hippocampal neurons suggests its 

involvement in the neuronal migration pathway and that other members of the 14-

3-3 family interact with Ndel1, I next examined if 14-3-3ζ interacts with Ndel1 

using an exogenous co-immunoprecipitation assay. HEK293T cells were 

individually transfected or co-transfected with expression constructs consisting 

14-3-3ζ Myc tagged (14-3-3ζ-Myc) and one of native Ndel1 GFP tagged (Ndel1-

GFP), quadruple Ndel1 mutant with IRES GFP (Ndel14A; S198A, T219A, S231A, & 

S242A) or phosphomimetic Ndel1 IRES GFP tagged (Ndel13E; S198E, T219E, & 

S231E), as described in sections 2.8.1 - 2.8.3. Cell lysates were 

immunoprecipitated with anti-Myc antibodies on sepharose-A beads (sections 

2.8.4 & 2.8.5) and analysed by immunoblotting with antibodies against anti-Ndel1 

(sections 2.8.6 & 2.8.7). My analysis indicated that 14-3-3ζ-Myc interacts with 

Ndel1-GFP, and this interaction is compromised with both Ndel14A and Ndel13E 

(Figure 4.6 ii). This result suggests that 14-3-3ζ, similar to 14-3-3ε (Toyo-oka et al., 

2003), is able to directly interact with Ndel1 and this interaction is reduced when 

the Cdk5/p35 S/T phosphorylation sites (S198, T219, S231, & S242) are altered. 
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Figure 4.6: 14-3-3ζ interacts directly with Ndel1.  

(i) A schematic of Ndel1 indicating the coiled-coil domain, Lis1 recognition domain and Cdk5/p35 

S/T phosphorylation sites.  (ii) In vitro co-immunoprecipitation assays using recombinant proteins 

for 14-3-3ζ Myc tagged (14-3-3ζ-Myc) and native Ndel1 GFP tagged (Ndel1-GFP) or quadruple 

Ndel1 mutant IRES GFP (Ndel14A) or Ndel1 phosphomimetic IRES GFP (Ndel13E). Proteins were 

pulled down by using Myc antibodies and analysed by immunoblotting with antibodies recognising 

Ndel1. HC, antibody heavy chain. 
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4.2.7 14-3-3ζ maintains Ndel1 phosphorylation 

To further confirm that 14-3-3ζ interaction with Ndel1 is dependent on 

Ndel1 phosphorylation, I performed another co-immunoprecipitation assay where 

the HEK293T cells were treated with either the PP2A inhibitor, Okadaic acid to 

increase Ndel1 phosphorylation, or the PP2A activator, FTY720 to decrease Ndel1 

phosphorylation prior to cell lysis (section 2.8.2). Inhibition of PP2A resulted in 

increased Ndel1 interaction with 14-3-3ζ (Figure 4.7 i & ii). Conversely, activation 

of PP2A resulted in decreased Ndel1 interaction with 14-3-3ζ (Figure 4.7 i & iii). 

This result demonstrates that Ndel1 phosphorylation at S198, T219, S231, and 

S242 is crucial for 14-3-3ζ interaction. This finding is in strong agreement with 

that reported for 14-3-3ε (Toyo-oka et al., 2003) and the findings of Johnson et al. 

(2010) who showed that HA-Ndel1 binds directly to 14-3-3, and that this 

interaction is abolished by dephosphorylation with PP2A.  

 

To determine whether 14-3-3ζ KO has an effect on the levels of Ndel1 

phosphorylation in vivo, I next isolated protein lysates from 14-3-3ζ WT and KO 

hippocampi or whole brain (sections 2.8.3 & 2.8.4) and probed for phosphorylated 

Ndel1 and total Ndel1 (Figure 4.8, i) (sections 2.8.6 & 2.8.7). My analysis indicated 

that the loss of 14-3-3ζ leads to reduction in phosphorylated Ndel1 levels without 

affecting the total levels of Ndel1 (Figure 4.8 ii & iii, respectively). This result 

suggests that 14-3-3ζ may play a protective role for phosphorylated Ndel1 from 

being targeted by phosphatases, such as PP2A.  
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Figure 4.7: Ndel1 phosphorylation promotes interaction with 14-3-3ζ.  

(i) Co-immunoprecipitation assays from cells treated with either Okadaic acid (PP2A inhibitor) to 

inhibit Ndel1 dephosphorylation or FTY720 (PP2A activator) to increase Ndel1 dephosphorylation 

an hour prior to lysis. Western blots were probed with either Anti-14-3-3ζ or Anti-Ndel1. (ii-iii) 

Schematic of effects of PP2A inhibitor (ii)  and activator (iii) on Ndel1 phosphorylation status and 

14-3-3ζ interaction.    
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Figure 4.8: 14-3-3ζ KO leads to reduction in phosphorylated Ndel1 levels in vivo.  

(i) Western-blot analysis of protein lysates from adult hippocampi or whole brains using antibodies 

against pNdel1 or Ndel1. Quantification of pNdel1 (ii) and Ndel1 (iii) protein levels in the presence 

and absence of 14-3-3ζ. Error bars indicate SEM (pNdel1:  hippocampus WT n=2 KO n=3, whole 

brain WT n=3 KO n=3, Ndel1: hippocampus WT n=3 KO= n=3, Ndel1 whole brain WT n=4 KO n=4).  
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4.2.8 Expression of Ndel1 phosphomimetic in 14-3-3ζ KO neurons  

To test the notion that 14-3-3ζ maintains Ndel1 phosphorylation to control 

neuronal migration I next examined whether the constitutively active Ndel1 

phosphomimetic (Ndel13E) was sufficient to rescue the migration defect observed 

in 14-3-3ζ KO neurons. Neuronal progenitor cells isolated from 14-3-3ζ WT and 

KO hippocampi were electroporated with vectors consisting of either GFP alone, 

wild type 14-3-3ζ with IRES GFP, native Ndel1 GFP tagged, Ndel1 phosphomimetic 

with IRES GFP (Ndel3E), or Ndel1 quadruple mutant with IRES GFP (Ndel14A), as 

described in section 2.6.7. Migration of transfected neurons was quantitated by 

analysis of GFP positive cells in real time on a spinning disc confocal microscope 

(section 2.6.4). Movies generated from images taken at 30min intervals (Movie 

4.3) were processed using the Manual Tracking tool in ImageJ (section 2.6.4). 

  

 Albeit that several electroporation parameters were tested to optimise 

transfection efficiency only a small number of cells could be transfected in each 

neurosphere (i.e. ~10-50/neurosphere). Analysis of GFP transfected neurons (WT 

n=19, KO n=19) identified a trend toward KO neurons migrating less than controls 

but lacked power to show significance, likely due to the small number of neurons 

transfected in this assay (Appendix A.5). However, by pooling this data with my 

previous spinning disc analysis (Figure 4.3) there was a clear reduction in 

migration distance of KO compared to WT neurons (p<0.001, Figure 4.9 i). 

Transfection of KO neurospheres with wild type 14-3-3ζ resulted in a complete 

reversal of the migration defect therefore confirming that a lack of 14-3-3ζ leads to 

the migration phenotype (p=0.004, Figure 4.9 iii). Analysis of KO neurons 

transfected with either native Ndel1 or Ndel1 phosphomimetic (Ndel13E) also 
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showed that the migration phenotype can be reversed by increasing the absolute 

levels or phosphorylated levels of Ndel1 (Ndel1 p<0.001, Ndel13E p=0.01; Figure 

4.9 iii). Surprisingly, I also found that the Ndel1 quadruple mutant (Ndel14A) was 

able to increase the migration of KO neurons (p<0.001; Figure 4.9 iii). In contrast, I 

was unable to identify any significant differences in mean migration velocity using 

this assay (Appendix A.6).  

 

 

 

 

 

 

 

 

 

 

 

 

 



153 
 

 

 
 

Figure 4. 9: 14-3-3ζ KO neuronal migration defect is rescued by Ndel1 phosphomimetic.  

Example of transfected WT (i) and KO (ii) neurospheres with empty vector consisting of GFP alone.  

(iii) Mean migration distance from the edge of the re-aggregate was determined for all conditions. 

Error bars indicate SEM of neurosphere number (WT GFP n=120, KO GFP n=117, KO 14-3-3ζ n=4, 

Ndel1 n=8, KO Ndel1 3E n=15, KO Ndel1 4A n=14 KO). Ndel1 3E: Ndel1 phosphomimetic, Ndel1 4A: 

Ndel1 quadruple mutant. 
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4.3 Discussion  

Correct positioning of neurons within the brain is essential to establish 

complex networks for normal brain function. Indeed, many neurodevelopmental 

disorders, such as lissencephaly, epilepsy and schizophrenia, have been directly 

linked to neuronal mispositioning (Keays, 2007, Reiner, 2013, Tsai and Gleeson, 

2005). Our previous analysis of 14-3-3ζ KO mice found that CA pyramidal neurons 

within the hippocampus are mispositioned and that this is accompanied with 

misrouted dentate mossy fibres and reduced synaptic density (chapter 3). While 

previous birth-dating studies suggested that these mispositioning defects may 

arise from aberrant migration (Cheah et al., 2012), whether 14-3-3ζ controls 

neuronal migration remained to be determined. Thus, in this chapter I have 

established an in vitro neuronal migration assay to address if and how 14-3-3ζ 

plays a role in hippocampal neuronal migration. 

 

Proper neuronal migration is crucial for correct neuronal positioning and is 

controlled by a highly regulated series of cellular events involving leading process 

extension, nucleokineses (N-C coupling) and trailing process retraction. Disruption 

of any of these processes can compromise cell motility (section 1.6) (Lambert de 

Rouvroit and Goffinet, 2001, Shu et al., 2004). My results demonstrate, for the first 

time, that 14-3-3ζ is required cell autonomously for neuronal migration. I found 

that 14-3-3ζ deficient neurons display delayed neuronal migration (Figure 4.2) in 

addition to perturbed N-C coupling (Figure 4.5) in a dose-dependent manner, 

similar to that reported in Lis1 and Ndel1 deficient neurons (Gambello et al., 2003, 

Hirotsune et al., 1998, Sasaki et al., 2000, Tanaka et al., 2004a, Toyo-oka et al., 
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2003, Youn et al., 2009, Shu et al., 2004). Providing clues to the molecular 

mechanisms by which 14-3-3ζ controls neuronal migration, I found that 14-3-3ζ 

binds to phosphorylated Ndel1 (Figures 4.6 & 4.7) and that in the absence of 14-3-

3ζ the levels of phosphorylated Ndel1 are perturbed in hippocampal neurons. This 

therefore suggests that 14-3-3ζ binds to Ndel1 to maintain its phosphorylation 

levels to control migration, similar to that reported for 14-3-3ε (Toyo-oka et al., 

2003). Moreover, the migration defect observed could also be a result of 14-3-3ζ 

KO neurons displaying increased adherence (Figure 4.4 ii), however this notion 

requires further investigation.  

 

  My co-immunoprecipitation assays with native and mutant versions of 

Ndel1 show that 14-3-3ζ interaction is dependent on the Cdk5/p35 serine and 

threonine phosphorylation sites (Figure 4.6). Interestingly, in my migration assays 

I found that native Ndel1 and quadruple Ndel1 mutant (Ndel4A; S198A, T219A, 

S231A, & S242A) reduced the migration defects of 14-3-3ζ KO neurons to a similar 

extent as phosphomimetic Ndel1 (Ndel13E; S198E, T219E, & S231E) (Figure 4.9). 

In addition to Cdk5/p35 dependent phosphorylation of S198, T219, & S231, Ndel1 

has also been reported to be phosphorylated by Aurora A at S251 (Mori et al., 

2007). Johnson et al. (2010) have shown that interactions between 14-3-3 and 

Ndel1 are reduced in the presence of serine to alanine mutations at S251 and S336 

and even further reduced in the presence of alanine mutations of S198, T219, 

S231, S251 and S336. It is therefore possible that a phosphorylation hierarchical 

system is in place where phosphorylation of S198, T219 and S231 are first 

required to allow phosphorylation of S251 and S336 to modulate interactions with 

14-3-3. Alternatively, it is also possible that several 14-3-3 molecules are required 
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to interact with different Ndel1 phosphorylated sites. To decipher these 

possibilities, it will be important to expand these migration assays with a series of 

Ndel1 mutants removing all of the potential serine/threonine phosphorylation 

sites. 

 

Although my data fit with the idea that 14-3-3ζ controls neuronal migration 

by maintaining the levels of Ndel1 phosphorylation (Figure 4.10), there are also 

important differences in the phenotypes between mice lacking these proteins. 

Notably, Ndel1 heterozygous mice have profound migration defects in multiple 

neuronal subclasses (Shu et al., 2004). To date we have only seen defects in 

hippocampal neurons, which may be due to functional redundancy of other 14-3-3 

proteins.  However, it will be of interest analyse additional neuronal sub-classes to 

address if there are more widespread defect in the 14-3-3ζ KO mice.  

  

14-3-3 proteins are known to function as either homo- or heterodimers. 

Given that 14-3-3ε functions only as a heterodimer this may suggest that 14-3-3ζ 

and 14-3-3ε preferentially heterodimerise to play a role in hippocampal neuronal 

migration. In support of this notion, our collaborators have recently generated 14-

3-3ζ and 14-3-3ε double KO mice which have cortical lamination defects (Toyo-

oka et al., 2014). It would also be of interest to examine if these mice display more 

severe hippocampal lamination defect compared to the 14-3-3ζ KO mice.  

 

The role of 14-3-3ζ in neuronal migration is in strong agreement with 14-3-

3ζ KO mice modelling many of the anatomical defects associated with 

neurodevelopmental disorders such as schizophrenia. Understanding the 
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mechanisms by which 14-3-3ζ controls neuronal development therefore offers the 

hope of understanding the origins of these disorders and also toward the 

generation of novel diagnostics and therapeutics for these disorders. During the 

course of my project there were several reports of 14-3-3ζ mutations in 

schizophrenia and autism adding weight to the notion of a pivotal role for the 14-

3-3ζ / Ndel1 axis in the pathogenesis of neurodevelopmental disorders. It will now 

be of interest to test the pathogenicity of these mutations using migration assays 

as described in this chapter.  

 

 

 

Figure 4.10: Model of 14-3-3 role to the neuronal migration pathway.  

Schematic of the molecular pathway required for neuronal migration. Extracellular Reelin binds to 

the membrane-bound receptors APOER2 and VLDLR, which stimulate the intracellular signalling 

molecule Dab1. Phosphorylated Dab1 interacts with Lis1. Cdk5 is activated by p35 and 

phosphorylates the microtubule stabilizer DCX and Ndel1. Phosphorylated Ndel1 complexes with 

Lis1 and dynein, which act to sustain microtubule bundles and facilitate nucleokinesis. Adapted 

and redrawn from Keays (2007).  
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Chapter Five: 

The Role of 14-3-3ζ in Neurogenesis 
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5.1 Introduction 

Neural stem cells give rise to the entire central nervous system (brain and 

spinal cord) during embryonic and early postnatal development (section 1.3). 

These cells transition from proliferative and multipotent precursors into fully 

differentiated neurons through a process known as neurogenesis (section 1.7) 

(Ming and Song, 2011, Reif et al., 2006, Urban and Guillemot, 2014). Neurogenesis 

also persists in restricted areas of the adult brain including the subventricular 

zone (SVZ) adjacent to the lateral ventricle and the subgranular zone (SGZ) of the 

hippocampal dentate gyrus (Hayashi et al., 2015, Ming and Song, 2011).  

 

Hippocampal dentate gyrus adult neurogenesis is critical for certain aspects 

of learning and memory throughout life and has been implicated in 

neuropsychiatric disorders such as schizophrenia (section 1.7.2). Several reports 

demonstrate significant reduction in hippocampal cell proliferation and 

neurogenesis in post-mortem schizophrenia brain samples (Allen et al., 2015, Reif 

et al., 2006, Reif et al., 2007). Moreover, several studies also report structural 

abnormality including enlargement of the lateral ventricles and reduced 

hippocampal volume in schizophrenia patients (Harrison, 2004, Jaaro-Peled et al., 

2010, Ross et al., 2006). As highlighted in chapter 3, our 14-3-3ζ KO mouse model 

displays reduced size of the hippocampal dentate gyrus, aberrant compaction of 

granular cells and enlarged lateral ventricles compared to WT which are 

characteristic of perturbed neurogenesis. 
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 Neural stem cells can be isolated from the SVZ and SGZ and expanded in 

culture systems known as neurospheres (Chen et al., 2007, Giachino et al., 2009). 

Neurospheres are composed of several cell populations where only ~1-5% have 

stem-cell like properties. The sequential culture and expansion of stem-cell like 

neuronal progenitors from neurospheres therefore provides an indicator of the 

ability of the cells to proliferate and self-renew (Chen et al., 2007, Giachino et al., 

2009). In this chapter, I have utilised the in vitro neurosphere culture system to 

examine the contribution of 14-3-3ζ in hippocampal neural stem cell proliferation 

and self-renewal. I also extended these studies to determine if neurogenesis is 

perturbed in the 14-3-3ζ KO hippocampi in vivo. 
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5.2 Results 

5.2.1 Optimisation of neurosphere culture system  

To determine if the loss of 14-3-3ζ affects neural stem cell properties I 

utilised the neurosphere culture system (section 2.6) as it allows examination of 

three neural stem cell characteristics including proliferation, self-renewal and 

multipotency. Neurosphere cultures are highly sensitive to the procedure and thus 

it was important to ensure that the culture system was optimal and reproducible. 

For optimisation of the culture system, various cell densities, passage frequency, 

and concentration of mitogens (i.e. EGF, hFGF) were tested which resulted in the 

following experimental protocol. Neural stem/progenitor cells were isolated from 

E18.5 14-3-3ζ WT and KO mouse hippocampi and plated as a single cell 

suspension (Figure 5.1 i, sections 2.6.1). Cells were cultured at a constant density 

of 10,000cells/well in 24-well plates or 500cells/well in 96-well-plates, depending 

on the assay. As neurospheres initially take longer to form, the first passage was 

undertaken 10 days post culture while following passages were undertaken every 

6 days thereafter (Figure 5.1 ii). Experimental analyses were made 6 days post 

neurosphere passage; analysis made from the first, second and third passages will 

be addressed as primary, secondary and tertiary neurospheres, respectively 

(Figure 5.1 iii, section 2.6.8). Note that no experiments exceeded the fourth 

passage since an extended number of passages leads to both complexity and 

reduction in the neurogenic capacity of the neurospheres.  
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Figure 5. 1: Schematic of experimental procedure using the neurosphere culture system.  

(i) Neuronal progenitors are isolated from the hippocampus of 14-3-3ζ WT and KO E18.5 embryos 

and plated as a single cell suspension. These cultures were grown for 10 days until they formed 

neurospheres. (ii) Neurospheres are passaged every 6 days for a maximum of four passages. (iii) 

Neurospheres from the 1st, 2nd and 3rd passages are used to analyse the neurosphere size, total 

neurosphere number and the total cell number.  
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5.2.2 14-3-3ζ KO impairs neural stem/progenitor cell self-

renewal in vitro 

Neural stem/progenitor cells possess the ability self-renew, thus 

examination of the number of neurospheres over several passages allows 

assessment to whether the 14-3-3ζ KO would influence neurosphere formation. A 

serial passage neurosphere-forming assay was performed in which the neural 

stem/progenitor cells were plated at a low density with a set number of single 

cells (500cells/well in uncoated 96-well plate) and left to form primary 

neurospheres. The primary neurospheres were then dissociated and re-cultured 

with stem/progenitors cells going on to develop into secondary neurospheres. 

This process was repeated to generate tertiary neurospheres. The ability to form 

neurospheres after each passage is an indicator of self-renewal. For this 

experiment following each passage, the number of primary, secondary and tertiary 

neurospheres formed in culture were measured (section 2.6.8).  

 

A reduction in neurosphere number from 14-3-3ζ KO culture compared to 

WT was apparent upon visual examination of the wells (Figure 5.2 i). 

Quantification of the total neurosphere number generated from 500 

stem/progenitor cells revealed a significant reduction in the primary, secondary 

and tertiary neurosphere formation in the 14-3-3ζ KO compared to WT (p=0.003, 

p=0.001, p=0.005, respectively; Figure 5.2 ii). This result demonstrates that 14-3-

3ζ KO neural stem/progenitors have decreased capacity to generate neurospheres 

following serial subcloning, suggesting impaired self-renewal capabilities. Notably, 

passaging 14-3-3ζ KO derived neurospheres for 10 passages, the longest time 
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studied, always resulted in fewer neurospheres compared to WT at every passage 

(data not shown).  

 

To further demonstrate the effect of 14-3-3ζ on self-renewal of neural 

stem/progenitors, I measured the total number of viable cells after neurosphere 

formation. Briefly, 10,000 cells/well in 24-well plates were cultured from 14-3-3ζ 

WT and KO embryonic hippocampi for 6 days. Primary neurospheres within that 

well were dissociated and the total number of viable cells was measured, followed 

by re-culturing of cells to generate secondary and tertiary neurospheres (section 

2.6.8). Interestingly, the total neural stem/progenitors cell number from the 14-3-

3ζ KO primary, secondary and tertiary neurospheres was reduced compared to 

WT (p=0.08, p=0.12, p=0.04, respectively; Figure 5.2 iii). Notably, this was also 

seen in the BALB/c derived neural stem/progenitor cells (Appendix A.7). Taken 

together, these results are best explained by a reduction in neurosphere-forming 

cells, which stimulate a decreased number of neurospheres that form, and thus the 

total number of cells in the culture. Additionally, it also could be a result in 

reduction of proliferation which is investigation in the next section (section 5.2.3). 
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Figure 5. 2: 14-3-3ζ KO results in reduced stem/progenitor cell self-renewal in vitro. 

(i) Representative bright-field images showing a well of a 96-well plate with neurospheres cultured 

for 6 days from E18.5 14-3-3ζ WT and KO hippocampi. Scale bar 200μm.  (ii)Quantification of the 

number of neurospheres forming from 500 stem/progenitors cells reveals reduced neurosphere 

number in the 14-3-3ζ KO compared to WT (mean± SEM; WT n=3, KO n=3; three wells/sample 

were analysed).  (iii) Quantification of the total cell number of stem/progenitor cells per well 

reveals a reduced number of stem/progenitor in 14-3-3ζ KO culture compared to WT (mean± SEM; 

WT n=3, KO n=4; two wells/sample were analysed).  
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5.2.3 14-3-3ζ is required for neural stem/progenitor cell 

proliferation in vitro 

Reduced neurosphere size was also apparent in 14-3-3ζ KO neurospheres 

compared to WT (Figure 5.2 i), suggestive of reduced proliferation. Thus, to 

determine if 14-3-3ζ affects neural stem/progenitors cell proliferation, I examined 

size of the neurospheres as an indicator of their proliferative capabilities by 

culturing 10,000cells/well in uncoated 24-well plates for 6 days from E18.5 

hippocampi of 14-3-3ζ WT and KO mice (sections 2.6.1. & 2.6.8). 14-3-3ζ WT and 

KO derived tertiary neurospheres were imaged and the neurospheres area (µm²) 

was measured using ImageJ as described in section 2.6.8. Upon visual examination, 

it was apparent that the 14-3-3ζ KO derived tertiary neurospheres were smaller in 

size compared to WT (Figure 5.3 i). Quantification of the neurosphere size by 

measuring its area revealed that 14-3-3ζ KO derived neurospheres are 

significantly smaller in size compared to WT (p=0.05, Figure 5.3 ii), suggesting a 

potential role for 14-3-3ζ in neural stem/progenitor proliferation. 

 

For direct examination of proliferation, tertiary neurospheres were 

subjected to a BrdU-incorporation assay (section 2.6.9). Briefly, neurospheres 

were dissociated into single cells suspension, plated on poly-L-lysine and laminin 

coated 24-well plates (10,000 cells/well) for 48hrs. BrdU was then added to the 

media for 1hr prior to fixation. BrdU is a nucleotide analogue it is incorporated 

into the DNA of cells undergoing DNA synthesis and therefore acts as a marker of 

proliferation. Cells were stained with anti-BrdU antibody and DAPI, followed by 

imaging and quantification using the Analyze Particle Tool in ImageJ (section 
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2.6.9). The percentage of BrdU-positive cells from 14-3-3ζ KO derived 

neurospheres was significantly lower than WT (p=0.05, Figure 5.4 ii). 

 

 

Figure 5. 3: 14-3-3ζ KO results in reduced neural stem/progenitor cell proliferation in vitro. 

(1-ii) Morphological examination of bright field images of neurospheres from the third passage of 

14-3-3ζ WT (i) and KO (ii) E18.5 hippocampi. Scale bar 100µm. (iii) Quantification of the 

neurosphere area reveals significant reduction in neurosphere size in 14-3-3ζ KO compared to WT, 

indicating reduced proliferation of the neural stem/progenitor cells (mean± SEM; WT n=3, KO n=4; 

three wells/sample and three images/well were analysed).  
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Figure 5. 4: BrdU-incorporation demonstrates that 14-3-3ζ is important for neural 

stem/progenitor cells proliferation in vitro.  

(i) Images of neural stem/progenitor cells labelled by BrdU from E18.5 14-3-3ζ WT and KO 

hippocampi. Rectangular box indicates area of higher magnification. Scale bar 20µm. (ii) Statistical 

analysis of 14-3-3ζ KO samples reveals a significant reduction in the number of BrdU-positive cells 

compared to WT (mean± SEM; n=2; four images/well and four wells/ genotype were analysed). 

 

 

 

 



169 
 

5.2.4 Neurogenesis stage-specific cell marker expression in 14-3-

3ζ KO neurospheres  

I next examined the expression of neurogenesis stage-specific cell markers 

(illustrated in Figure 1.11), including Nestin, an intermediate filament protein 

associated with neural stem/progenitor cells, and doublecortin (DCX), a marker 

expressed in neuroblasts/immature neurons in neurospheres derived from 14-3-

3ζ WT and KO embryos. Briefly, primary neurospheres were isolated and 

processed in suspension by fixation in 4% PFA followed by immunostaining with 

Nestin and DCX antibodies (section 2.6.10). Primary neurospheres were used for 

this assay as these were found to contain the highest number of neuronal stem-like 

progenitors in my previous assays (i.e. see the total number or neurospheres 

generated from primary and secondary neurospheres in Figure 5.2 ii). 

 

Immunoflorescence analysis of 14-3-3ζ WT and KO derived primary 

neurospheres confirmed expression of the neurogenesis stage-specific cell 

markers Nestin and DCX (Figure 5.5 i & ii). For statistical analysis, fluorescent 

intensity of Nestin and DCX within the neurospheres was normalised to DAPI.  As 

expected, the 14-3-3ζ WT derived primary neurospheres showed significantly 

higher Nestin fluorescent intensity compared to DCX, indicating a higher number 

of neural stem/progenitor cells compared to the neuroblasts/immature neurons, 

respectively (p=0.01; Figure 5.5 iii). In contrast, 14-3-3ζ KO derived primary 

neurospheres showed similar levels of neural stem/progenitor cells to 

neuroblasts/immature neurons, demonstrated by the similar levels of Nestin and 

DCX (p=0.325; Figure 5.5 iii). Interestingly, 14-3-3ζ KO derived primary 
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neurospheres exhibited a significant reduction in Nestin fluorescent intensity 

compare to WT neurospheres (p=0.001; Figure 5.5 iii), while DCX remained 

unchanged (p=0.283; Figure 5.5 iii). Together, this staining is suggestive of 

reduced neuronic capacity of the neurospheres. 

 

 
Figure 5. 5: Expression of neurogenesis stage-specific cell markers in neurospheres. 

Representative z-stacked images of primary neurospheres isolated from E18.5 14-3-3ζ WT (i) and 

KO (ii) hippocampi stained with neurogenesis stage-specific cell markers. Green: Nestin 

(stem/progenitor cells), Red: DCX (neuroblasts/immature neurons), Blue: nucleus. Scale bar 20μm. 

(iii) Statistical analysis of fluorescent intensity of Nestin and DCX normalised to DAPI within the 

neurospheres (mean± SEM of neurosphere number; WT n=10, KO n=10).  
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5.2.5 Proliferation of neural stem/progenitor cells is decreased in 

14-3-3ζ KO mice  

To examine if the in vitro findings are recapitulated in vivo, short‐pulse 

labelling with the nucleotide analogue EdU was performed to identify proliferating 

cells within the dentate gyrus. Briefly, EdU was administered intraperitoneally 

(100mg/kg EdU per bodyweight) into P7, P14 and P30 14-3-3ζ WT and KO mice 

(section 2.3.4). Brains were isolated after 2hrs and fixed in 4% PFA overnight prior 

to coronal sectioning (section 2.3.2). At least 8 sections/sample were 

immunostained for EdU-positive cells using Click-it EdU Imaging Kit form 

Invitrogen (section 2.3.4).  

 

14-3-3ζ KO mice showed a marked reduction in EdU labelled cells at all 

ages examined (P7, P14 & P30) (Figure 5.6 i-vi), indicating that 14-3-3ζ is required 

to maintain hippocampal stem/progenitor proliferation in vivo. Quantitative 

analysis of proliferating cells within the DG revealed a significant reduction in the 

number of EdU‐positive cells in the 14-3-3ζ KO P7, P14 and P30 mice compared to 

WT (p=0.02, p=0.05 & p=0.01, respectively; Figure 5.6 vii).  This result is 

consistent with the in vitro data, showing that 14-3-3ζ KO results in significant 

reduction in hippocampal neural progenitor cell proliferation compared to WT in 

early postnatal and adult neurogenesis. Moreover, as the mice age a major 

decrease in the number of proliferative cells in the DG was also identified as 

previously reported by others (Figure 5.6 vii).   
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Figure 5. 6: Representative images of EdU short-pulse chase analysis of hippocampal dentate 

gyrus sections. 

Staining for EdU-positive cells in 14-3-3ζ WT (i, iii, v) and KO (ii, iv, vi) dentate gyrus at different 

ages.. Scale bar 50µm. Boxed image shows high magnification of DG. Green: EdU-positive cells; 

Blue: DAPI staining of nucleus; DG: dentate gyrus. (vii) Statistical analysis of the number of EdU-

positive cells in P7, P14, and P30 DG reveals a significant decrease in neural progenitor cell 

proliferation in 14-3-3ζ KO mice compared to WT (mean± SEM; P7 WT n=4, KO n=3; P14 WT n=3, 

KO n=3; P30 WT n=2, KO n=3).  
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5.2.6 14-3-3ζ KO mice have reduced expression of neurogenesis 

stage-specific cell markers in vivo 

To determine if the reduction in neural stem/progenitor proliferation is 

also associated with a depletion of neurogenesis, I examined expression of SOX2 

(labels same cell population as Nestin) and DCX in the dentate gyrus of adult mice. 

Briefly, adult brains were isolated and stored in 4% PFA overnight prior to coronal 

sectioning and at least 10 sections per sample were stained with SOX2 and DCX 

antibodies (section 2.4.2). Due to non-specific background staining I was unable to 

quantify the level of SOX-positive cells, however, visual examination suggested 

that SOX2-positive cell may be reduced in 14-3-3ζ KO mice (Figure 5.7 ii) 

compared to WT (Figure 5.7 i). DCX-positive cells were also reduced in the 14-3-3ζ 

KO dentate gyrus (Figure 5.7 iii) compared to WT (Figure 5.7 iv). Quantitative 

analysis revealed a significant decrease in the number of DCX-positive cells in the 

14-3-3ζ KO dentate gyrus compared to WT (p<0.001; Figure 5.7 v). This data 

provides further evidence for a role for 14-3-3ζ in hippocampal neurogenesis.  
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Figure 5. 7: 14-3-3ζ KO adult mice show reduced expression of neurogenesis stage-specific 

cell markers.  

Immunohistochemical analysis of dentate gyrus in 14-3-3ζ WT (i, iii) and KO (ii, iv) adult mice 

stained with antibodies against SOX2 (i & ii) and DCX (iii & iv). SOX2: green, DCX: red, Nuclei 

(DAPI): blue. Scale bar 50µm. (v) Quantitative analysis reveals a significant reduction of the 

number of DCX-positive cell in the 14-3-3ζ KO DG compared to WT (mean± SEM; n=2). DG: dentate 

gyrus, DCX: doublecortin.  
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5.2.7 Neurogenesis stage-specific marker expression in adult 

mouse hippocampi 

To further examine the expression of stage-specific neurogenesis markers 

the protein levels of SOX2 (which equivalent to Nestin) and DCX were quantitated 

by western blot. Briefly, protein lysates were obtained from 14-3-3ζ WT and KO 

adult hippocampi (sections 2.8.3 & 2.8.4) and run on SDS-PAGE gels (section 2.8.6) 

prior to immunoblotting (section 2.8.7) for SOX2 and DCX (Figure 5.8 i). My 

analysis showed that in the adult 14-3-3ζ KO mouse hippocampi DCX and SOX2 

protein levels are reduced compared to WT (Figure 5.8).  

 

 

 

Figure 5. 8: 14-3-3ζ interaction with DCX and SOX2. 

(i) Western blotting analysis of the protein levels of DCX and SOX2 in 14-3-3ζ KO adult 

hippocampal lysate. WT n=2; KO n=3. DCX: 45kDa, SOX2: 35kDa, β-Actin: 42kDa.  
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5.2.8 Investigating the molecular mechanism through which 14-3-

3ζ controls neurogenesis  

14-3-3 proteins have been reported to directly interact with GSK-3β with 

functional implications such as promotion of mouse embryonic stem cell 

proliferation and neural survival (Chang et al., 2012, Mwangi et al., 2006, Yuan et 

al., 2004). Thus, to elucidate the mechanism by which 14-3-3ζ may regulate 

neurogenesis I investigated whether 14-3-3ζ KO has an effect on the levels of GSK-

3β and phosphorylated GSK-3β in vivo. Briefly, protein lysates isolated from the 

hippocampus of 14-3-3ζ WT and KO adult mice (sections 2.8.3 & 2.8.4) were 

analysed by Western Blot with probing for total GSK-3β (Figure 5.9 i) and 

phosphorylated GSK-3β (Figure 5.9 ii) (sections 2.8.6 & 2.8.7).  Surprisingly, loss of 

14-3-3ζ in adult mouse hippocampi showed dramatic changes in total GSK-3β 

(Figure 5.9 i) which was not replicated for phosphorylated GSK-3β (Figure 5.9 ii).  

 

 

Figure 5. 9: 14-3-3ζ interaction with GSK3-3β and phosphorylated GSK-3β. 

Western blotting analysis of the protein levels of GSK3-3β (i) and pGSK3-3β (ii) in 14-3-3ζ KO adult 

hippocampal lysate compared to WT. WT n=2; KO n=3. GSK3-3β: 46kDa, pGSK3-3β: 46kDa, β-Actin: 

42kDa. 

 

 



178 
 

5.3 Discussion 

It is becoming widely accepted that many neuropsychiatric disorders, such 

as schizophrenia, have a neurodevelopmental origin where the onset of the 

disorder may arise during embryonic development as a result of perturbed neural 

stem cell specification, growth, expansion or differentiation (Walsh et al., 2008, 

Camargo et al., 2007, Harrison, 2004, Lewis and Levitt, 2002). In schizophrenia 

patients, several studies have reported reduction of hippocampal volume size 

(Nelson et al., 1998, Shenton et al., 2001) and ventricular enlargement (Harrison, 

2004, Jaaro-Peled et al., 2010, Ross et al., 2006). The reduction in hippocampal 

volume in some patients has also been shown to correlate with the degree of 

cognitive dysfunction (Gur et al., 2000, Sanfilipo et al., 2002).  Our previous 

analysis of 14-3-3ζ KO mice revealed reduced dentate gyrus size and enlarged 

ventricles (chapter 3), which lead to my hypothesis that 14-3-3ζ may also have a 

role in regulating the fundamental properties of neural stem/progenitor cell 

renewal and/ or maintenance.  

 

Neural stem cells are characterised by their multipotency, ability to 

proliferate and self-renew.  Using neurosphere assays, I have now demonstrated 

that 14-3-3ζ is important for proper embryonic neural stem/progenitor cell 

proliferation and self-renewal in vitro (Figures 5.2-5.4). Moreover, the number of 

neural stem/progenitor (Nestin+) cells in the 14-3-3ζ KO derived neurospheres 

was significantly reduced compare to WT, while the level of neuroblasts/immature 

(DCX+) was unchanged (Figure 5.5). This result suggests that 14-3-3ζ KO derived 

neurospheres have reduced neurogenic capacity compared to WT, potentially 
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resulting from premature cell cycle exit leading to differentiation of the cells. Due 

to time limitation, the latter has not been tested directly using neurosphere 

differentiation assays, although there are now a number of studies that support 

this notion. Recent work by our collaborators using embryonic cortical derived 

neurospheres from conditional double (ζ/ε) 14-3-3 KO mice showed increased 

differentiation of neural progenitor cells into neurons compared to WT (Toyo-oka 

et al., 2014). Moreover, Mao et al. (2009) have shown that DISC1 knockdown in 

embryonic mouse brain caused premature neuronal differentiation at the expense 

of the progenitor pool. Previous work in our laboratory has shown that 14-3-3ζ 

interact with DISC1 (Cheah et al., 2012) and accordingly this interaction may be 

important for embryonic neuronal differentiation, which is yet to be examined.  

 

As mentioned above, 14-3-3ζ KO results in reduced cell proliferation 

compared to WT, which may arise from altered cell cycle or apoptosis. To 

determine whether 14-3-3ζ KO neural progenitor cells prematurely exit the cell 

cycle during embryonic hippocampus development, in vivo BrdU cell cycle analysis 

can be used (proliferating progenitor cell, BrdU+; cell cycle exit, BrdU+/Ki67–). 

Alteration in the frequency of cell division, asymmetric (one progenitor cell and 

one neuron) versus symmetric cell division (two progenitor cells), could also lead 

to reduced cell proliferation.  Frequency of asymmetrical cell division can be 

examined by measuring the cell division angle or spindle orientation. 

Alternatively, a more direct test is pair-cell analysis combined with 

immunostaining with cell division specific marker (neuron–neuron, both TuJ1+; 

neuron–progenitor, one TuJ1+ and one SOX2+; progenitor–progenitor, both TuJ1-

/SOX2+). While increased apoptosis could be a factor in the reduced cell 



180 
 

proliferation observed, tunnel assay on 14-3-3ζ KO embryonic, early postnatal and 

adult hippocampi showed no sign of cell death compared to WT (Cheah et al. 

2012).  Moreover, no difference in cell viability was observed in both hippocampal 

neuron and neurosphere cultures when using trypan blue exclusion assay (data 

not shown).  

 

Hippocampal neurogenesis is downregulated across ageing, which is 

thought to be mediated by a reduction of the neural stem cell pool and increased 

state of quiescence in the remaining cells (Urban and Guillemot, 2014, Varela-

Nallar and Inestrosa, 2013). The age related decline of neural stem/progenitor 

proliferation was apparent in the 14-3-3ζ WT and KO mice hippocampus (Figure 

5.6 vii). Additionally, 14-3-3ζ KO resulted in a consistent reduction of hippocampal 

cell proliferation across all ages examined therefore indicating an important role 

for this molecule in neurodevelopment (Figure 5.6). There are reports 

demonstrating significant reduction in hippocampal cell proliferation and 

neurogenesis in post-mortem schizophrenia brain samples (Allen et al., 2015, Reif 

et al., 2006, Reif et al., 2007). Similarity, 14-3-3ζ KO mice also showed reduced 

hippocampal cell proliferation, however its correlation with the degree of 

cognitive dysfunction reported in these mice (Cheah et al., 2012, Xu et al., 2015) is 

yet to be examined. 

 

The rate and balance between the sequential stages of neurogenesis is 

crucial, where perturbation in one stage can affect another. Neurogenic markers 

(illustrated in Figure 1.11) are used to assess whether the reduced cell 

proliferation in neurogenic regions such as the DG, result in deficits in 
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hippocampal neurogenesis.  My studies indicate that neural stem/progenitor 

(SOX2+) cells and neuroblast/immature neurons (DCX+) are reduced in the 

hippocampus of 14-3-3ζ KO mice (Figure 5.7). It will now be important to fully 

quantitate neural stem (SOX2+/GFAP+), proliferating neural stem cells 

(SOX2+/GFAP+/Ki67+) and differentiated neurons (TuJ1+) in these mice. 

Moreover, SOX2 and DCX protein levels were reduced in 14-3-3ζ KO hippocampal 

lysate compared to WT (Figure 5.8). 

 

Hippocampal neurogenesis is tightly regulated through several signalling 

pathways (section 1.7.3). To provide clues to the molecular mechanisms by which 

14-3-3ζ may regulate hippocampal neurogenesis I chose to examine the GSK-3β/β-

catenin signalling pathway as 14-3-3 proteins are known to directly interact with 

GSK-3β (Chang et al., 2012, Mwangi et al., 2006, Yuan et al., 2004).  At the basal 

state (Figure 1.12 i), β-catenin is associated with the destruction complex (which 

includes GSK-3β) where it is phosphorylated and targeted for ubiquitination and 

proteasomal degradation. Wnt activation (Figure 1.12 ii) results in a signalling 

cascade which in turn causes release and stabilization of β-catenin, leading to its 

translocation into the nucleus to upregulate the transcription of proliferative and 

renewal genes. Meanwhile, GSK-3β is targeted for phosphorylation by AKT 

serine/threonine-specific protein kinase at serine 9 inhibiting its activity (Figure 

1.12 ii).   

 

Unexpectedly, the total GSK-3β level was decreased (Figures 5.9 i) while 

phosphorylated GSK-3β was unchanged (Figures 5.9 ii) in the 14-3-3ζ KO adult 

hippocampal lysate. The molecular mechanisms that control neurogenesis during 
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embryonic development also play important roles in adult neurogenesis, however, 

essential differences exist in the biological responses of neural precursors in the 

embryonic and adult contexts. Therefore, 14-3-3ζ may function in regulating adult 

neural/progenitor cell proliferation through interaction with GSK-3β during 

embryonic and not adult stages, which is yet to be examined.  

 

The hippocampus is composed of several cell populations where only a 

small percentage represent the neural stem cells, therefore a better approach 

would be to use neurosphere protein lysates to examine if loss of 14-3-3ζ has any 

implication in protein required for neurogenesis. Of interest, β-catenin and αN-

catenin were both downregulated in 14-3-3 conditional double (ζ/ε) KO 

embryonic cortical derived neurospheres compared to WT (Toyo-oka et al., 2014). 

Moreover, 14-3-3ζ was shown to directly interact with β-catenin in intestinal stem 

cells, resulting in its stabilisation and enhancing it transactivation action (Tian et 

al., 2004). Future studies are needed to identify cellular and molecular 

mechanisms by which 14-3-3ζ controls the developmental decisions made at 

distinct stages of neurogenesis (Figure 5.10). It has been reported that DISC1 

directly interacts with GSK-3β to inhibit its activity leading to reduced β-catenin 

phosphorylation and stabilization, thereby promoting neural progenitor 

proliferation (Mao et al., 2009). Therefore, during neural stem proliferation 14-3-3 

may potentially act through the GSK-3β/β-catenin signalling pathway by either 

direct interaction with β-catenin or GSK-3β or indirectly through interactions with 

DISC1, given that it has been previously shown to interact with DISC1 (Cheah et al., 

2012). We also need to have a better understanding between the relationships of 
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adult hippocampal neurogenesis and cognitive outcome. Future studies should 

also look at neurogenesis in other brain regions, i.e. SVZ of the lateral ventricles. 

 

In summary, this study presents in vitro and in vivo evidence revealing a 

novel role for 14-3-3ζ in hippocampal embryonic, postnatal and adult 

neurogenesis. Thus, 14-3-3ζ KO mice are an appropriate animal model that would 

enables in depth investigation of crippling diseases with neurodevelopmental 

origin, such as schizophrenia, and offer potential avenues for therapeutic 

intervention. For example, induction neurogenesis may be sufficient to rescue the 

cognitive impairment associated with neuropsychiatric disorders. There is still a 

lot to learn about factors regulating neurogenesis and how neurogenesis is affect 

throughout the course of neuropsychiatric illness such as schizophrenia (Allen et 

al., 2015). 
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Figure 5. 10: A model for the stabilization mechanism of β-catenin by 14-3-3ζ to regulate 

neural stem/progenitor proliferation.   

14-3-3ζ may enhance β-catenin stabilisation through direct interaction or through maintenance of 

GSK-3β in a phosphorylated form. Alternatively, it may interact indirectly through DISC1 in 

maintaining GSK-3β phosphorylation. Red broken arrows represent potential 14-3-3ζ function; red 

arrows represent positive function; black arrows represent negative function.  
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Chapter Six: 

General Discussion and Conclusion  
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6.1 Discussion 

The anatomy of the hippocampus complements its function, and its 

disruption contributes to several neurological diseases such as Alzheimer's 

disease, epilepsy, depression and schizophrenia (Tamminga et al., 2010). Although 

there is extensive evidence regarding schizophrenia susceptibility genes, the 

precise cellular and molecular underpinnings of the disease remain unclear. 

Recently, 14-3-3ζ has been associated with schizophrenia at the genetic, mRNA 

and protein level (discussed in section 1.2.2). Therefore, in hope of shedding light 

on the aetiology of schizophrenia and related neurodevelopmental disorders, this 

thesis assessed the neurodevelopment and neurobiology of the hippocampus in 

the absence of 14-3-3ζ, and the cellular and molecular mechanisms through which 

14-3-3ζ may control hippocampal development and function. 

 

Hippocampal development proceeds through a series of well characterised 

stages (section 1.3.2) involving: 1) proliferation of neural stem precursor cells that 

give rise to immature neurons which migrate to their allocated position within the 

hippocampal plate, 2) differentiation and specialisation of neurons, and 3) 

maturation of neurons into functional networks. The birth-date of each neuron 

determines its final position within the hippocampal layers, therefore the timing of 

neurogenesis contributes to their identity (Belvindrah et al., 2014). Schizophrenia 

patients have been reported to have reduced hippocampal volume (Nelson et al., 

1998, Shenton et al., 2001), correlating with the degree of cognitive dysfunction 

(Gur et al., 2000, Sanfilipo et al., 2002). Moreover, post-mortem schizophrenia 

brain samples were reported to display significant reduction in hippocampal cell 
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proliferation and neurogenesis (Allen et al., 2015, Reif et al., 2006, Reif et al., 

2007). Schizophrenia is a complex heterogeneous disorder with different subtypes 

where the onset of clinical symptoms can arise during early developmental stages 

or later during adulthood (Lewis and Levitt, 2002, Ross et al., 2006). Based on the 

current studies and heterogeneity between schizophrenia patients, the 

neuropathology of the disease may arise from disruptions of early patterning and 

neurogenesis or neuronal functioning during postnatal stages.  Data presented 

here demonstrate that 14-3-3ζ is required at multiple stages of hippocampal 

development including the processes of neurogenesis, migration, maturation and 

integration into functional networks. 

 

Analyses of 14-3-3ζ KO in three independent mouse backgrounds, 

presented in chapter 3, demonstrated that the hippocampal lamination defects 

observed in Cheah et al. (2012) resulted from 14-3-3ζ deficiency and not from 

epistatic interaction with other genetic variation within the 129/sv background. 

These defects were characterised by a bilaminar distribution of pyramidal cells in 

CA3, ectopically positioned pyramidal neurons at the stratum oriens, diffusely 

packed DG granule cells, reduced DG size and aberrant DG structure (Figure 3.1). 

The hippocampal lamination defects in the 14-3-3ζ KO mice were akin to those 

seen in 14-3-3ε, Ndel1 and Lis1 deficient mice (Fleck et al., 2000, Hirotsune et al., 

1998, Sasaki et al., 2005, Toyo-oka et al., 2003). However, additional hippocampal 

lamination defects seen in the CA1 region of 14-3-3ε, Ndel1 and Lis1 deficient mice 

such as fragmentation, bilaminar layering and ectopically positioned pyramidal 

neurons were absent in 14-3-3ζ KO mice (Fleck et al., 2000, Hirotsune et al., 1998, 

Sasaki et al., 2005, Toyo-oka et al., 2003). From a developmental point of view, 
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migration of CA3 cells is more complex than CA1 as they are required to migrate 

curved routes involving additional modes of migration and therefore may require  

additional cellular and molecular mechanisms (Belvindrah et al., 2014). Therefore, 

14-3-3ζ may be more important in CA3 cell migration compared to CA1 cells. 

 

Several studies have shown that disruption of molecules within the 

neuronal migration pathway lead to hippocampal lamination defects (section 

1.6.1).  Work undertaken in chapter 4 demonstrated an important role for 14-3-3ζ 

in proper neuronal migration (Figure 4.2) and nucleus-centrosome coupling 

(Figure 4.5). The role for 14-3-3ζ in neuronal migration was also found to be dose-

dependent, similar to that reported for 14-3-3ε, Ndel1 and  Lis1 (Gambello et al., 

2003, Hirotsune et al., 1998, Sasaki et al., 2000, Tanaka et al., 2004a, Toyo-oka et 

al., 2003, Youn et al., 2009, Shu et al., 2004). My investigations into the molecular 

mechanisms through which 14-3-3ζ may control neuronal migration identified 

direct interaction with Cdk5/p35 phosphorylated Ndel1 (Figures 4.6). Given that 

the interaction between 14-3-3ζ and Ndel1 was dependent on Ndel1 

phosphorylation and that Ndel1 phosphorylation is misregulated in the 

hippocampus of 14-3-3ζ KO mice, my data suggest that in normal circumstances 

14-3-3ζ acts to maintain Ndel1 phosphorylation (Figures 4.8) and protect its 

dephosphorylation by phosphatases such as PP2A (Figures 4.7). Double KO of 14-

3-3ζ and 14-3-3ε leads to severe cortical defects (Toyo-oka et al., 2014) compared 

to the single KO mice. Given that 14-3-3ε only functions as a heterodimer (Gardino 

et al., 2006) and plays a role in neuronal migration (Toyo-oka et al., 2003), this 

suggests that 14-3-3ζ may heterodimerise with 14-3-3ε to provide part of the 
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molecular machinery controlling neuronal migration and lamination within 

several brain structures, such as the hippocampus and cortex.   

 

Abnormalities in mossy fibre connectivity are often correlated with 

aberrant hippocampal lamination (Belvindrah et al., 2014) which was also 

apparent in 14-3-3ζ KO mice. The integration of granular cell mossy fibres into the 

hippocampal circuitry of 14-3-3ζ KO mice was perturbed, affecting both synaptic 

input as indicated by reduced dendritic spine numbers (Figures 3.9 & 3.10), and 

synaptic output as indicated by aberrant mossy fibre projections (Figures 3.2) and 

reduced thorny excrescences on CA3 neurons (Cheah et al., 2012). Establishment 

of functional hippocampal circuitry requires proper synapse formation and 

therefore reduced dendritic spines would likely result in memory deficit in 

individual mice. In support of this notion, cognitive defects in learning and 

memory are one of the hallmark features of 14-3-3ζ KO mice in both the 129/sv 

and BALB/c backgrounds (Cheah et al., 2012, Xu et al., 2015). 

 

Disruption at any stage of hippocampal neuron development can adversely 

affect another. For example, perturbed neural stem proliferation during embryonic 

neurogenesis can impact the timing of neuronal migration leading to 

mispositioning of neurons having functional implications. Using neurosphere 

assays, it was demonstrated in chapter 5 that 14-3-3ζ KO leads to reduced 

embryonic neural stem/progenitor cell proliferation and self-renewal (Figures 

5.2-5.4). The latter was also observed in the 14-3-3ζ KO hippocampal DG where 

reduced cell proliferation was consistently seen in all ages examined (Figures 5.6). 

Given that the role of 14-3-3ζ in hippocampal neurogenesis is novel, there is still a 
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lot to learn about the cellular and molecular mechanism by which it regulates 

neurogenesis and what effects its deficiency at this stage of development have on 

later developmental stages and how these may be involved in the progression of 

diseases such as schizophrenia.  
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6.2 Future studies and conclusion 

Given the complex genetic foundations and variable clinical phenotype to 

schizophrenia it is unrealistic that any animal could replicate the disorder in its 

entirety. The most rational approach to establishing face, construct and predictive 

validity (section 1.4.1) in animal model of this disorder is to focus on the most 

replicated symptoms (behavioural, structural and molecular components). In 

addition to recent publications from our laboratory, the work presented here 

identifies 14-3-3ζ KO mice as a robust model of schizophrenia as they fulfil many 

of these criteria. Face validity for positive and cognitive symptoms of 

schizophrenia were evident from deficits in prepulse inhibition (Cheah et al., 

2012), spatial learning and memory (Cheah et al., 2012, Xu et al., 2015), and 

sensitivity to psychostimulant amphetamine (Ramshaw et al., 2013). Construct 

validity is met in terms of neuroanatomical alterations such as hippocampal 

neuronal disorganization, enlarged ventricles, decreased synaptic connections and 

locomotor hyperactivity arising from neurotransmitter changes (Cheah et al., 

2012, Xu et al., 2015). Moreover, administration of the antipsychotic drug 

clozapine reversed the locomotor hyperactivity of 14-3-3ζ KO mice (Ramshaw et 

al., 2013) therefore providing evidence of predictive validity.   

 

14-3-3 proteins are important for a variety of critical cellular processes and 

hence, future studies should include use of more sophisticated genetic 

manipulation such as conditional knockout only targeting the hippocampus and at 

different stages of development. The latter would help enhance the validity of the 

model and understanding of the neuropathology of schizophrenia. Our laboratory 
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has recently generated conditional 14-3-3ζ KO mice, where preliminary analysis 

showed hippocampal lamination defects when crossed to a ubiquitous Cre driver 

(unpublished). It would now be of interest to determine if the behavioural and 

cognitive defects are also present in these mice. Moreover, it will be imperative to 

determine the implications of removing 14-3-3ζ in the hippocampus at later stages 

of brain development, or in adulthood, to address if any of the schizophrenia-like 

deficiencies are also modelled in these mice.  

 

In summary, data presented here illustrate that 14-3-3ζ crucially regulates 

multiple processes of brain development, which likely underpin aspects of the 

clinical presentations of schizophrenia. At a cellular level 14-3-3ζ deficiency led to 

defects in neural stem cells proliferation and self-renewal, neurogenesis, neuronal 

migration, nucleus-centrosome coupling, dendritic spine formation and mossy 

fibre axonal navigation. 14-3-3 proteins have many binding partners and their 

deficiency can adversely affect multiple signalling pathways which may lead to the 

development of schizophrenia, making it a central player in its neuropathology.  
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A.1 General solutions and buffers 

 
 
 
 
General solutions 
 

 

 

 

Staining solutions 
 

 

 

 

 

 

Solution  Ingredients Storage 
1x PBS (Phosphate-
buffer saline) 

50ml 
1x PBS (Gibco) 
Baxter water 

10ml of 10x 
90ml 

RT 

4% PFA 
(Paraformaldehyde) 

500ml 
PFA 
MilliQ water 
(heat stir to dissolve) 

20g 
500ml 
 

-20°C  
(10ml 
aliquots) 

Solution  Ingredients Storage 

20% Sucrose 
solution 

10ml 
20% Sucrose 
1x PBS 

2g 
10ml 

Make 
fresh 
(filtered) 

10% Tween-20 50ml 
10% Tween-20  
1x PBS 

5ml of 100% 
45ml 

RT (alfoil 
covered) 

1X PBT 50ml 
0.1% Tween-20  
1x PBS  

1.5ml of 10%  
48.5ml 

RT 

10% Normal goat 
serum  

10ml 
10% NGS (Invitrogen) 
1x PBT 

1ml of 100% 
9ml 

Make 
fresh 

10% TTX  (Trion X-
100) 

50ml 
10% Trion X-100 
(Merck) 
1x PBS 

5ml of 100% 
45ml  

RT (alfoil 
covered) 

1x PBST 50ml 
0.3% TTX 
1x PBS 

1.5ml of 10% 
48.5ml  

RT (alfoil 
covered) 
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A.2 Genotyping of mice  

Mice genotype was determined by PCR amplification of genomic tail DNA or 

DNA from the E18.5 brains (sections 2.7.1 & 2.7.2). Two PCRs were run one 

consisting of primers for amplification of the wild type (WT) allele, while the other 

for the knockout (KO) gene trapped allele (see Table 2.1 for primer sets).  

 

 

Agarose gel of mice genotyping. 

The top gel shows PCR products of WT 

allele (exception lane 3 which is of KO 

allele loading control), while the bottom 

show amplification KO gene trapped allele 

(exception lane 2 which is of WT allele 

loading control). The higher band indicates 

WT allele (288bp), while lower band 

indicates KO gene trapped allele (165bp). 

 

 

The above figure shows an example of PCR for identification of the mouse 

genotype. WT samples show a single 288bp band (lane 6), KO samples show a 

single 165bp band (lane 4), while HET samples show double bands of 288bp and 

165bp (lane 5).  
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A.3 Hippocampal primary DIV21 neurons for dendritic spine 

density analysis 

Hippocampal neurons isolated from E18.5 14-33ζ WT and KO mice were 

co-cultured with glia for 21 days in vitro (DIV21) (sections 2.51-2.5.5), followed by 

labelling with lipohilic fluorescent dye using a gene gun approach (section 2.4.4).  

Dendritic spine density tends to be heavily sensitive to culture conditions and may 

produce large variability. In my DIV21 (mass) culture system, the individual 

neurons were innervated by neighbouring cells and therefore cell density had a 

profound influence on dendritic spine density. Autaptic neuronal cultures, where 

single isolated cell innervates itself, are commonly used to study dendritic spine 

density. For future studies of in vitro hippocampal dendritic spine density, use of 

autaptic neuronal cultures may be more appropriate.  

 

Biolistic labelling of DIV21 hippocampal neurons. (i) Low-magnification image showing DIV21 

hippocampal neurons innervating neighbouring cells. The nucleus is labelled with DAPI (blue). 

Scale bar 20μm.  (ii) High magnification of z-stack image of dendritic spines of DIV21 hippocampal 

neurons. Rectangular box shows zoomed image of dendritic spines. Scale bar 5μm.   
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A.4 Preliminary analysis of dendritic spine in the 14-3-3ζ KO 

hippocampus via transmission electron microscopy revealed 

increase size compared to WT 

To examine the dendritic synaptic density and the type of synapses in the 

CA3 region of the hippocampus a protocol used by Kolomeets et al. (2007) was 

adapted with a few modifications. Mice were perfuse fixed in a 1:1 ratio of 2% PFA 

and 2% glutaraldehyde, as described in section 2.3.1. Brains were isolated and 

postfixed in the same fixative solution for 2-4 days. Coronal sections 1mm and 

200μm thick, in sequence, were taken through the anterior part of the 

hippocampus using a vibratome (section 2.3.3). The 200μm sections were Nissl 

stained (section 2.4.1) and used as a quick guide to locate the CA3 region. Once the 

preferred CA3 region was found, a 1x1mm block was dissected from the CA3 

region. The blocks were stained in osmium tetroxide and embedded into epoxy-

resin. Blocks were semi-thin sectioned (1μm) and stained with 1% toluidine blue 

to help orient the blocks before final trimming. Blocks were then ultrathin 

sectioned and placed on carbon-stabilized, formvar-coated copper slot grids. The 

ultrathin sections were then stained with uranyl acetate and lead citrate before 

observation under the transmission electron microscope (CM100, Philips) at the 

Adelaide Microscopy Facility.   
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Unfortunately, thefollowing transmission electron microscope experiment 

was not completed due to lack of time. However, even with the small amount of 

staining that I was able to complete I noticed that 14-3-3ζ KO leads to an increase 

in dendritic spine size in the hippocampus compared to WT. It would be of interest 

to determine if there was a difference in excitatory or inhibitory synapses in the 

14-3-3ζ KO mice compare to WT.   

 

 

 

Electron micrographs of the adult mice hippocampal dendritic spines. (i) Schematic of the 

hippocampus to show location of interest. (ii) Low magnification image of the hippocampus CA3 

region. Scale bar 25µm. (iii) High magnification image of the dendritic spines at the stratum 

lucidum of adult mice. Rectangular box shows close up of excitatory (arrowhead) and inhibitory 

synapses (arrow). Scale bar 0.5µm. CA: cornus ammonus, DG: dentate gyrus, so: stratum oriens, sp: 

stratum pyramidale, sl: stratum lucidum, arrowheads: excitatory synapses, arrow: inhibitory 

synapses. Asterisks highlight mossy fiber terminal. 
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A.5 Additional migration distance rescue experiments   

The rescue experiments were undertaken towards the end of this project. 

Briefly, neuronal progenitor cells isolated from E18.5 hippocampi of 14-3-3ζ WT 

and KO mice were cultured as neurospheres (section 2.6.1). Neurospheres from 

the third passage were transfected with vectors consisting of either GFP alone, 14-

3-3ζ IRES GFP, Ndel1 3E IRES GFP, Ndel1 4A IRES GFP or native Ndel1 GFP tagged 

(section 2.6.7), followed by neurosphere migration assay (section 2.6.2) and live 

imaging (section 2.6.4). The number of neurospheres and neurons analysed for 

each experimental condition is listed in the table below. It is noteworthy that the 

GFP positive cell number varied among the experimental condition and hence the 

number of migrating neurons measured also varied. 
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Quantification of the mean migration distance of the GFP alone transfected 

14-3-3ζ KO neuronal progenitor cells did not identify a significant difference in 

migration distance (Figure A.5 i) as observed in previous experiments using 

untransfected cells (Figures 4.2 viii & 4.3 v). By looking at the table below, it is 

obvious that the number of GFP positive cells measure were significantly lower 

than that of untransfected cells. Therefore, in chapter 4 (section 4.2.8) 

quantification of the mean migration distance of 14-3-3ζ WT and KO control 

neuronal progenitor cells transfected with GFP were pooled together with the 

untransfected data (Figure 4.9 iii). Figures A.5 ii & iii present data using the 14-3-

3ζ WT and KO controls of GFP alone.  Further experiments are required to increase 

GFP positive cell numbers, which is expected to provide enough power to obtain 

significant results. In this study transient transfection was a limitation given that it 

resulted in low numbers of GFP positive cells. For future studies an alternative 

method would be the use of lentivirus systems for transduction of the gene of 

interest.  
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Figure A.5: Migration assay for rescue study. (i) Quantification of the mean migration distance 

using either GFP transfected cells alone or a combination of transfected and untransfected cells. 

Quantification of WT (ii) and KO (iii) neural progenitor cells transfected with either 14-3-3ζ, Ndel1 

3E, Ndel1 4A or Ndel1. Error bars indicate SEM of neurosphere number (see table). GFP: Green 

fluorescent protein, Ndel1 3E: Ndel1 phosphomimetic, Ndel1 4A: Ndel1 quadruple mutant. 
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A.6 Additional migration velocity data 

 Initial analysis of the mean migration velocity in chapter 4 (Figure 4.4 i) 

resulted in a significant reduction in the mean migration velocity. However, the 

plots of the GFP transfected cells alone or data pooled together with the 

untransfected cells did not result in a significant reduction in migration velocity 

(Figure A.6 i). As present in the table below, the neuron number measure was 

smaller compared to initial experiment using untransfected cells alone. As 

discussed above (Appendix A.5) there is a need to increase the number of GFP 

positive cells.  

 

 



224 
 

 
 

Figure A.6: Migration velocity. (i) Quantification of the mean migration velocity using either GFP 

transfected cells alone or a combination of transfected and untransfected cells. Quantification of 

WT (ii) and KO (iii) neural progenitor cells transfected with either 14-3-3ζ, Ndel1 3E, Ndel1 4A or 

Ndel1. Error bars indicate SEM of neurosphere number (see table). GFP: Green fluorescent protein, 

Ndel1 3E: Ndel1 phosphomimetic, Ndel1 4A: Ndel1 quadruple mutant. 
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A.7 BALB/c derived 14-3-3ζ deficient stem/progenitor cells also 

show reduced self-renewal in vitro 

Neural stem/progenitor cells were isolated from 14-3-3ζ WT, HET and KO 

E18.5 mice from the BALB/c background and 10,000cells/well were cultured in a 

24-well plate (section 2.6.8). The total neurosphere number generated from 

10,000 cells showed a trend towards reduced neurosphere number in the 14-3-3ζ 

deficient cultures compared to WT (i). The likely reason that it was not significant 

was because the cell density in this experiment was higher (10,000 cells instead of 

500 cells) compared to the experiment of the 129/sv derived cells in section 5.2.2 

(Figure 5.2 ii). Increased cell number results in higher neurosphere number, given 

the nature of the analysis the accuracy of the measurement was affected. 

Therefore, since these experiments were actually undertaken before the 129/sv 

background derived neural stem/progenitor cells, based on these findings it was 

decided to use 500 cells rather than 10,000 cells for this experiment. Similar to the 

129/sv background derived cells (Figure 5.2 iii), the total neural stem/progenitors 

cell number was reduced in the BALB/c derived 14-3-3ζ deficient cell compared to 

WT (ii). 
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Figure A.7: 14-3-3ζ KO results in reduced stem/progenitor cell self-renewal in vitro. (i) 

Quantification of the number of neurospheres forming from 500 stem/progenitors cells reveals 

reduced neurosphere number in the 14-3-3ζ KO compared to WT (mean± SEM; WT n=3, HET=8, KO 

n=11; three wells/sample were analysed).  (ii) Quantification of the total cell number of 

stem/progenitor cells per well reveals reduced stem/progenitor in 14-3-3ζ KO culture compared to 

WT (mean± SEM; WT n=3, HET=8, KO n=11; two wells/sample were analysed). 
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Locomotor hyperactivity in 14-3-3z KO mice is associated with
dopamine transporter dysfunction
H Ramshaw1,4, X Xu1,4, EJ Jaehne2, P McCarthy1, Z Greenberg1, E Saleh1, B McClure1, J Woodcock1, S Kabbara1, S Wiszniak1,
Ting-Yi Wang3, C Parish3, M van den Buuse3, BT Baune2, A Lopez1 and Q Schwarz1

Dopamine (DA) neurotransmission requires a complex series of enzymatic reactions that are tightly linked to catecholamine
exocytosis and receptor interactions on pre- and postsynaptic neurons. Regulation of dopaminergic signalling is primarily achieved
through reuptake of extracellular DA by the DA transporter (DAT) on presynaptic neurons. Aberrant regulation of DA signalling, and
in particular hyperactivation, has been proposed as a key insult in the presentation of schizophrenia and related neuropsychiatric
disorders. We recently identified 14-3-3z as an essential component of neurodevelopment and a central risk factor in the
schizophrenia protein interaction network. Our analysis of 14-3-3z-deficient mice now shows that baseline hyperactivity of
knockout (KO) mice is rescued by the antipsychotic drug clozapine. 14-3-3z KO mice displayed enhanced locomotor hyperactivity
induced by the DA releaser amphetamine. Consistent with 14-3-3z having a role in DA signalling, we found increased levels of DA in
the striatum of 14-3-3z KO mice. Although 14-3-3z is proposed to modulate activity of the rate-limiting DA biosynthesis enzyme,
tyrosine hydroxylase (TH), we were unable to identify any differences in total TH levels, TH localization or TH activation in 14-3-3z
KO mice. Rather, our analysis identified significantly reduced levels of DAT in the absence of notable differences in RNA or protein
levels of DA receptors D1–D5. Providing insight into the mechanisms by which 14-3-3z controls DAT stability, we found a physical
association between 14-3-3z and DAT by co-immunoprecipitation. Taken together, our results identify a novel role for 14-3-3z in DA
neurotransmission and provide support to the hyperdopaminergic basis of pathologies associated with schizophrenia and related
disorders.

Translational Psychiatry (2013) 3, e327; doi:10.1038/tp.2013.99; published online 3 December 2013

Keywords: 14-3-3z; dopamine neurotransmission; dopamine transporter; schizophrenia; schizophrenia mouse model

INTRODUCTION
Schizophrenia and related neuropsychiatric disorders are widely
believed to arise from neurodevelopmental defects that affect
synaptic transmission.1 Indeed, neuropharmacological studies
with antipsychotic drugs suggest that many of the positive symp-
toms associated with schizophrenia arise from increased
dopamine (DA) signalling.2,3 Neuroimaging studies following
amphetamine treatment add strong support to this notion4,5

and further implicate the mesolimbic pathway in the hyper-
dopaminergic hypothesis. Within the mesolimbic pathway, DA is
produced by neurons predominantly located in the ventral
tegmental area (VTA) and the substantia nigra (SN) of the
midbrain. Central to the function of these neurons is the expres-
sion and activity of the rate-limiting catecholamine biosynthesis
enzyme, tyrosine hydroxylase (TH), which catalyses the synthesis
of DA from its precursor L-tyrosine. Following exocytosis from
presynaptic neurons, DA binds to G-protein-coupled DA receptors
D1–D5 to initiate signalling cascades in postsynaptic neurons. The
activity of DA is tightly regulated by the DA transporter (DAT) that
mediates reuptake of DA by presynaptic neurons where it is either
recycled to the vesicular pool or degraded.6,7

Recent studies have shown that the family of 14-3-3 regulatory
proteins bind to TH to enhance phosphorylation of serine 31
(Ser-31) and Ser-40 to positively regulate its enzymatic activity.8,9

Indeed, 14-3-3 proteins were originally identified as archetypical
TH co-factors.10,11 The 14-3-3 family comprises seven isoforms in
mammals (b, z, e, g, Z, t and s) that bind to phospho-serine/
threonine residues on target proteins to modify their function
and/or localization. In this manner, 14-3-3 proteins have been
described to mediate a range of cell functions including cell cycle
regulation, proliferation, migration, differentiation and apop-
tosis.10,12–14 Although multiple 14-3-3 isoforms have the ability
to bind TH in vitro, knockdown studies in midbrain-derived MN9D
cells suggest that 14-3-3z is the major isoform involved in DA
synthesis.15 In support of these findings, 14-3-3z is also the major
isoform expressed in regions containing termini of dopaminergic
neurons such as the striatum.16 However, the role of 14-3-3z in TH
activity in vivo, or in other stages of DA neurotransmission, has not
been explored.

We recently reported that 14-3-3z knockout (KO) mice have
schizophrenia-like behavioural deficits such as hyperactivity and
disrupted sensorimotor gating that are accompanied by aberrant
neuronal migration and axonal guidance defects in the hippo-
campus.17 14-3-3z KO mice therefore represent a novel neuro-
developmental model of schizophrenia and associated disorders.
In strong support of this notion, 14-3-3z is downregulated in
post-mortem schizophrenia brain samples at the mRNA level18,19

and is one of only 24 proteins downregulated across multiple
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neuroproteomic studies on schizophrenia patient samples.20–22 In
addition, significant linkage to 14-3-3z has been identified
through analysis of single-nucleotide polymorphisms from
control and schizophrenia patient samples.23 Further support for
a role in schizophrenia is derived from the recent finding that
14-3-3z is represented as a central hub within the schizophrenia-
specific interaction network.24 At the molecular level, 14-3-3z
interacts with several proteins essential for neuronal development
that are also implicated in the pathogenesis of schizophrenia,
including DISC1, NUDEL, LIS1 and TH.17,25

Here we have explored the physiological and molecular basis of
schizophrenia-like behavioural deficits by analyzing locomotor
hyperactivity in 14-3-3z KO mice. We found that baseline
hyperactivity of KO mice is rescued by the antipsychotic drug
clozapine and that KO mice are hypersensitive to the DA releaser
amphetamine. In strong support of DA underpinning some of the
schizophrenia-like behavioural defects, in this model we found
that total tissue DA levels were increased in KO mice. Our analysis
of the dopaminergic signalling pathway indicates that 14-3-3z has
an essential role in modulating protein levels of DAT. Our finding
that 14-3-3z interacts with DAT provides insight into the molecular
regulation of DAT stability. Unexpectedly, TH-positive neurons,
TH expression and TH activation were unaffected in KO mice.
Moreover, DA receptors were also expressed at similar levels to
wild-type (WT) mice. Our results therefore implicate 14-3-3z as an
essential component in the DA neurotransmission pathway by
modulating the abundance of DAT.

MATERIALS AND METHODS
Mice
14-3-3zGt(OST062)Lex (or 14-3-3z KO) mice on a SV129 background carrying a
gene trap construct that contains the bGeo reporter gene disrupting
14-3-3z expression, have been described previously.17 14-3-3z Genotype
was determined by PCR amplification of genomic tail DNA as described.17

Animal experiments were conducted in accordance with the guidelines of
the Animal Ethics Committee of the Institute of Medical and Veterinary
Sciences, the University of Adelaide and the Florey Institute for
Neuroscience and Mental Health, University of Melbourne.

Behavioural assays
All procedures were carried out under normal light conditions (60–100 Lux)
between 0800 and 1200 hours. Behavioural phenotyping was performed
on the 14-3-3z KO line as previously described.26–28 One cohort of mice
was used for the psychotropic drug-induced open field test at 30 weeks of
age (11 WT, 5 females and 6 males; 11 KO, 5 females and 6 males).
A separate cohort of mice was used at the age of 35 weeks for clozapine
treatments and locomotor function tests (12 WT, 8 males and 4 females;
12 KO, 8 males and 4 females).

Clozapine treatment and locomotor function test
Clozapine was obtained from Sigma Aldrich (St Louis, MO, USA) and was
dissolved in 10 mM HCl and diluted in sterile water.29 Vehicle was prepared
in an identical manner without the addition of clozapine. Concentrated
aliquots of both clozapine and vehicle were stored at � 20 1C. Aliquots
were thawed and diluted to their final concentration in sterile saline on the
day of dosing. Solutions were buffered with NaOH to achieve a final pH of
6.5–7.5. Mice were given clozapine (5 mg kg–1) or vehicle daily for 14 days
before behavioural testing. Dosing was continued for a further 11 days
throughout the behavioural testing period, with dosing always conducted
between 1530 and 1700 hours, following any behavioural testing. In all, 10
WT (3 malesþ 7 females) and 9 KO (3 malesþ 6 females) mice were given
vehicle, whereas 10 WT (4 malesþ 6 females) and 8 KO (4 malesþ 4
females) mice were given clozapine. Mice were tested in a brightly lit
square arena, 40� 40 cm (Stoelting, Wood Dale, IL, USA), with clear walls
35 cm high for 5 min according to published protocols.30,31 The floor was
divided into inner and outer zones. Time spent in each zone was measured
and total distance travelled was measured as an indication of baseline
locomotor activity. An imaging program (ANY-maze, Wood Dale, IL, USA)
was used to track movements and measure time in zones.

Amphetamine-induced locomotor hyperactivity
Baseline locomotor activity and amphetamine-induced locomotor activity
were assessed using a TruScan Photobeam Activity system (Coulbourn
Instruments, Whitehall, PA, USA). This system consists of a mouse enclo-
sure (25.4� 25.4� 40.6 cm) surrounded by a sensor-ring that included a
16� 16 array of photobeams and a computerized data acquisition system.
After 30 min of baseline locomotor activity and habituation to the test
environment, the animals received either saline or 5 mg kg–1 of amphet-
amine by intraperitoneal injection and activity was monitored over a
subsequent 90-min period.

Production of 14-3-3z monoclonal antibodies
Anti-14-3-3z monoclonal antibodies were generated in a female BALB/c
14.3.3z KO mouse, which was injected three times, each with 10mg purified
recombinant 14.3.3z protein, over a period of 6 weeks. Enzyme-linked
immunoassay of serum was performed to verify immunoreactivity to
14-3-3z. Splenocytes were isolated and fused with NS1 myeloma cells.
Hybridomas were selected by incubating the cells at 37 1C with humidified
5% CO2 atmosphere in hypoxanthine–aminopterin–thymidine containing
media. Immunoreactivity of these hybridomas was determined using a
modified enzyme-linked immunoassay in which recombinant 14-3-3z was
adsorbed to the surface of 96-well tissue culture plates. Positive lines were
then clonally expanded. From this screen, we identified 35 positive
hybridoma cell lines. Monoclonal antibodies were purified from eight lines
detailed in Supplementary Figure S1. Purified antibodies were tested by
western blot against each 14-3-3 isoform obtained from overexpression of
His-tagged pGEX-expression constructs in bacteria in comparison with a
commercially available 14-3-3z polyclonal antibody (C-16, Santa Cruz, CA,
USA). Antibodies M6 (for western blots) and G1-7 for immunoprecipitation
(IPs) were grown up and purified by the Walter Eliza Hall Institute Antibody
facility for use in this study.

Histology and immunohistochemistry
For all anatomical analyses, postnatal mice were perfuse fixed with fresh
4% paraformaldehyde dissolved in phosphate-buffered saline as previously
described.32 Brains were rapidly dissected free from other tissue and post
fixed in 4% paraformaldehyde for an additional 24 h at 4 1C. Tissue was
cryopreserved in 20% sucrose at room temperature (RT) overnight and
frozen in Tissue-Tek OCT (Sakura Finetek, Torrance, CA, USA). Sections were
cut at a thickness of 10 mm on a CM1850 cryostat (Leica, North Ryde,
Australia) and air-dried for 60 min before staining.

For immunohistochemistry, sections were blocked in 10% non-immune
goat serum or 1% bovine serum albumin in PBST (0.1 M phosphate-
buffered saline, 0.3% Triton X-100, 1% bovine serum albumin) for 1 h at RT
and subsequently incubated with primary antibodies for 1 h at RT. Primary
antibodies and dilutions: rabbit polyclonal to TH (1:200; Millipore, Billerica,
MA, USA), rat monoclonal to DAT (1:20, Santa Cruz). Sections were washed
several times with PBST and then incubated with 1:200 dilution of Alexa
Fluor-labelled secondary antibodies (Molecular Probes, Mullgrave, VIC,
Australia) or streptavidin-labelled secondary antibodies (Jackson Labora-
tories, Bar Harbor, ME, USA) for 1 h at RT. After three washes in PBST,
fluorescent sections were mounted in Prolong Gold antifade reagent with
4,6-diamidino-2-phenylindole (Molecular Probes) and streptavidin-labelled
sections were developed with DAB substrate (Sigma, Castle Hill, NSW,
Australia).

Image analysis
Low-resolution images were recorded on an SZX10 stereo microscope
(Olympus, Edwardstown, SA, Australia) equipped with a Micropublisher 3.3
digital camera (Q-Imaging, Waltham, MA, USA) and processed with
OpenLab 2.2 software (Improvision, Waltham, MA, USA). High-resolution
images were recorded on an IX81 inverted microscope (Olympus)
equipped with an OCRA-ER digital CCD camera (Hamamatsu, Hamamatsu,
Japan) and processed with CellR software (Olympus). DAT and TH
immunofluorescence was captured on a LSM700 confocal microscope
(Zeiss, North Ryde, NSW, Australia). All figures were constructed in Adobe
Photoshop CS3 (Adobe Systems, San Jose, CA, USA). Quantitation of DAT
and TH expression from confocal immunofluorescence images was
completed as described previously.33 Briefly, images were split into
separate channels for TH or DAT, converted to binary images and used for
fluorescence intensity calculations with an Image J area calculator macro
designed to detect staining in confocal image slices.
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Cell culture
The dopaminergic neuronal progenitor cell line, SN4741,34 was maintained
in Dulbecco’s modified Eagle’s medium containing 10% fetal bovine serum
(HyClone, South Logan, UT, USA), 1% glutamine and antibiotics. FLAG-His-
DAT (generously provided by Alexander Sorkin) and Myc-14-3-3z
(generously provided by Joanna Woodcock) were transiently transfected
into cells with Lipofectamine 2000 (Life Sciences, Mullgrave, VIC, Australia)
and allowed to grow for 48 h before extracting protein lysates.

Immunoprecipitation
All protein extracts were prepared by lysis in NP40 lysis buffer composed of
137 mM NaCl, 10 mM Tris-HCl (pH 7.4), 10% glycerol, 1% Nonidet P-40, and
protease and phosphatase inhibitors (4.5 U of aprotinin per ml, 1 mg of
leupeptin per ml, 1 mM phenylmethylsulfonyl fluoride, 10 mM sodium
fluoride, 10 mM b-glycerol phosphate, 10 mM sodium pyrophosphate and
10 mM sodium vanadate). Samples were lysed for 60 min at 4 1C, then
centrifuged at 10 000 g for 15 min. The supernatants were precleared with
mouse Ig-coupled Sepharose beads for 30 min at 4 1C. The precleared lysates
were incubated for 2 h at 4 1C with 2mg ml–1 of anti-TH antibody (Millipore),
monoclonal anti-1433z antibody (G1-7), anti-DAT (6-5G10, Santa Cruz; and
MAB369, Millipore), anti-Flag (Sigma) and control immunoglobulin G (Sigma)
absorbed to protein G-Sepharose (Amersham Biosciences, Amersham, UK).
The sepharose beads were washed three times with lysis buffer before being
boiled for 5 min in sodium dodecyl sulphate–polyacrylamide gel electro-
phoresis sample buffer. The immunoprecipitated proteins and lysates were
separated by sodium dodecyl sulphate–polyacrylamide gel electrophoresis,
electrophorectically transferred to a polyvinylidene difluoride (Hybond-P,
Amersham, UK) membrane (GE Health, Rydalmere, NSW, Australia) and
analysed by immunoblotting.

Immunoblotting
Polyvinylidene difluoride membranes were blocked with 5% skim milk
powder in TBST and immunoblotted with polyclonal rabbit anti-14-3-3z
C-16 (Santa Cruz) at 1:1000, rabbit anti-TH (Millipore) at 1:1000, rabbit anti-
phospho-serine-31 TH (Cell Signalling Anibodies, Danvers, MA, USA) at
1:1000, rabbit anti-phospho-serine-40 TH (Cell Signalling Anibodies) at
1:1000, rat anti-DAT (6–5G10; Santa Cruz) at 1:200, mouse anti-Flag-M2
(Sigma-Aldrich) at 1:1000, mouse anti-Myc (9B11; Cell Signalling Technol-
ogies) at 1:1000 and mouse anti-HA (6E2; Cell Signalling Technologies) at
1:1000. Rabbit polyclonal against b-actin (1:5000, Millipore) was used as a
loading control. Bound antibodies were detected with horseradish
peroxidase-conjugated secondary antibody (1:5,000, Pierce-Thermo Scien-
tific, Rockford, IL, USA). Immunoreactive proteins were visualized by ECL
(Luminescent Image Analyzer LAS-4000, Fujifilm, Tokyo, Japan). The images
were analysed with Multi Gauge Ver3.0 (Fujifilm).

Detection of DA levels and metabolism
DA, and the metabolite 3,4-dihydroxyphenylacetic acid (DOPAC), levels in
the striatum, prefrontal cortex and hippocampus of 7 WT and 7 KO animals
were determined using reverse-phase high-performance liquid chromato-
graphy (HPLC) as previously described. For tissue preparation, small
biopsies were dissected on a chilled plate, weighed, and stabilized in 200ml
0.4 M perchloric acid (HClO4) containing 0.05% sodium metabisulphate
(Na2S2O5) and 0.01% disodium EDTA. The sample tissue was then
homogenized, cellular and vesicular membranes disrupted using a
sonicator and finally stored at 70 1C. On the day of analysis, all samples
were centrifuged at 10 500 g for 10 min and filtered though minispin filters
for additional 3 min at 10 000 r.p.m. before being injected into the HPLC.
For each sample, 10 ml was injected by a cooled autosampler (SIL 20A,
Shimadzu, Rydalmere, NSW, Australia) and Shimadzu LC-AT pumpon to a
reverse-phase C18 column (4.6 mm diameter, 150 mm length; CHROM-
PACK, Croydon, UK) coupled with an electrochemical detector (Decade II,
Antec Leyden, Rydalmere, NSW, Australia). The mobile phase, comprises
the following (mM): (KH2PO4, 70; EDTA di-sodium salt, 0.5; octane-sulphonic
acid, sodium salt, 8; with 17% HPLC grade methanol, pH 3) was delivered at
a flow rate of 500ml min–1. The peaks were processed using LC solutions
software (Antec Leyden). Concentrations of DA and its metabolite DOPAC
were calculated for each sample.

Quantitative reverse transcriptase-PCR
Total RNA was isolated from cells using Trizol (Ambion, Austin, TX, USA)
and single-stranded complementary DNA was synthesized using the

QuantiTect Reverse transcription kit (Qiagen, Frankfurt, Germany). Quanti-
tative PCR was performed with SYBR Green reagent (Qiagen) using the
Rotor-Gene 6000 real-time PCR system (Corbett Life Science, Frankfurt,
Germany). Primers used were: glyceraldehyde 3-phosphate dehydrogenase F:
50-ACCCAGAAGACTGTGGATGG-30 , R: 50-CAGTGAGCTTCCCGTTCA-30 ; DA
receptor D1 F: 50-AACTGTATGGTGCCCTTCTGTGG-30 , R: 50-CATTCGTAGTT
GTTGTTGCCCCG-30 ; DA receptor D2 F: 50-CACTCCGCCACTTCTTGACATA
CA-30 , R: 50-TCTCCTCCGACACCTACCCCGA-30 ; DA receptor D3 F: 50-GTCCT
GCCCTCTCCTCTTTGGTTT-30 , R: 50-AGTCTACGGTGCCCTGTTTAC-30 ; DA recep-
tor D4 F: 50-TGCCCTCAACCCCATCATCTACAC-30 , R: 50-AATACTTCCGAC
CCCCAACCCT-30 ; DA receptor D5 F: 50-GGGAGATCGCTGCTGCCTATGTC-30 ,
R: 50-TTTTAGAGTGGTGAGTGGGGGTTA-30 ; DAT F: 50-ACGCTCAAAATACTCAG
CAG-30 , R: 50-TACCGAGAGGACAGCATTCC-30 . Relative mRNA levels were
quantified using the comparative quantitation method in Rotor-Gene 6000
Series Software. Relative mRNAs levels were then normalized to glyceral-
dehyde 3-phosphate dehydrogenase. Each PCR was performed in technical
triplicates, and each experiment was performed in at least three biological
replicates. Error bars represent s.e.m. between biological replicates.

Statistical analysis
All data are presented as mean±s.e.m. Behavioural experiments were
analysed using two-way analysis of variance (ANOVA) with repeated
measures where appropriate (Systat, version 9.0, SPSS software; SPSS,
Armonk, NY, USA). Neurochemical data were analysed using ANOVA and
Student’s t-test. In all studies, a P-value of o0.05 was considered to be
statistically significant.

RESULTS
Baseline hyperactivity of 14-3-3z KO mice is rescued with
clozapine
Our previous studies identified several schizophrenia-like beha-
vioural deficits in 14-3-3z KO mice, including a reduced capacity to
learn and remember, hyperactivity and disrupted sensorimotor
gating. To further test the relevance of this mouse model to
schizophrenia and related disorders, we completed behavioural
analyses with the antipsychotic drug clozapine, an antagonist of
DA and serotonin receptors. Consistent with our previous report,
we found that 14-3-3z KO mice have baseline hyperactivity over a
30-min test period. Following 2 weeks of daily intraperitoneal
injections of 5 mg kg–1 clozapine, we found that baseline
locomotor hyperactivity of 14-3-3z KO mice returned to levels
similar to WT mice (Figure 1). ANOVA revealed main effects of
genotype (F(1, 31)¼ 7.2, P¼ 0.012) and of clozapine treatment

Figure 1. Clozapine rescues baseline hyperactivity of 14-3-3z knock-
out (KO) mice. 14-3-3z KO mice (white bar; n¼ 8; 5 males and 3
females) have greater baseline exploratory behaviour than 14-3-3z
wild-type (WT) mice (closed bar; n¼ 10; 6 males and 4 females) in an
open field test. Treatment with the antipsychotic clozapine has no
effect on WT mice (dark grey hashed bar; n¼ 10; 6 males and 4
females) but reduces baseline exploratory behaviour of 14-3-3z KO
mice (light grey bar; n¼ 8; 5 males and 3 females) to levels similar
to WT.
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(F(1, 31)¼ 4.3, P¼ 0.046) and a trend towards a genotype�
clozapine interaction (F(1, 31)¼ 3.3, P¼ 0.078). Further pairwise
comparison confirmed the expected baseline locomotor hyper-
activity in 14-3-3z KO mice compared with controls (F(1, 16)¼ 9.9,
P¼ 0.006) but there was no difference between clozapine-treated
14-3-3z KO mice and WT controls (Figure 1). Distance moved was
significantly reduced in clozapine-treated compared with saline-
treated 14-3-3z KO mice (F(1, 14)¼ 6.4, P¼ 0.024) but there was no
clozapine effect in WT controls (Figure 1). This functional rescue of
hyperactivity was independent of sex.

14-3-3z KO mice are hypersensitive to amphetamine
A defining feature of human psychiatric conditions is enhanced
behavioural effects of amphetamine.35–37 To further validate 14-3-
3z KO mice as a robust schizophrenia-like mouse model, we
completed analysis of amphetamine-induced hyperactivity.
Amphetamine is a potent psychostimulant that enhances the
release of DA from presynaptic dopaminergic terminals.38

Consistent with previous findings, we found that 14-3-3z KO
mice showed hyperactivity relative to WT mice in the 20-min
habituation phase before drug or after saline administration
(Figure 2a; WT, n¼ 12; KO, n¼ 11). Indeed, ANOVA showed a
significant main effect of genotype after injection of saline
(F(1, 22)¼ 11.0, P¼ 0.003). WT and KO mice also demonstrated a
decline in activity with habituation to the test arena. Subcuta-
neous injection of amphetamine-induced (5 mg kg–1) hyperactivity
in both 14-3-3z WT and KO mice (WT, n¼ 12; KO, n¼ 11), however,
this effect was significantly enhanced in the KO mice that had
reduced time to become maximally hyperactive and also covered
a greater distance than WT controls particularly in the first 45 min
of the 90-min testing period (Figure 2b). The genotype-dependent

difference in amphetamine time-course was reflected by a
significant ANOVA amphetamine� genotype� time interaction
(F(17, 374¼ 2.8, Po0.001). During the first 45 min after ampheta-
mine injection, there was also a genotype� amphetamine
interaction (F(1, 22)¼ 6.0, P¼ 0.023), which was absent for the
second 45 min after injection (Figure 2b). Induced hyperactivity
was similar for both males and females with no sex bias (P40.05).

DA levels and DA turnover are aberrant in 14-3-3z KO mice
Given the rescue of baseline hyperactivity with clozapine and the
increased hyperactivity to the DA releaser amphetamine, we next
investigated the levels of total tissue DA and DOPAC in the
striatum, cortex and hippocampus by HPLC/EC. Our analysis found
that tissue content of DA was significantly increased by 30% in
the striatum of P100 14-3-3z KO mice when compared with WT
controls (Figure 3a; WT, mean¼ 135 pmol mg–1, n¼ 6; KO,
mean¼ 178 pmol mg–1, n¼ 6; P¼ 0.038). Although not reaching
levels of significance this trend was also observed in the cortex
and hippocampus of 14-3-3z KO mice (Supplementary Figures S1a
and d). We also observed an increase of DOPAC in the striatum of
14-3-3z KO mice when compared with WT controls (Figure 3b; WT,
mean¼ 14.7 pmol mg–1; KO, mean ¼ 20.9 pmol mg–1) that was
not observed in the cortex (Supplementary Figure S1b). This
increase of DOPAC resulted in a similar level of DA turnover
(DOPAC/DA ratio) in 14-3-3z KO and WT mice (Figure 3c).

TH is preserved in 14-3-3z KO mice
Our previous findings raised the hypothesis that DA neurotrans-
mission is affected in 14-3-3z KO mice. DA is produced by
dopaminergic neurons that primarily reside in the VTA/SN and
send their processes to the dorsal and ventral striatum,

Figure 2. 14-3-3z Knockout (KO) mice are hypersensitive to amphetamine. (a) 14-3-3z KO mice (closed square; n¼ 11; 6 males and 5 females)
have greater baseline exploratory behaviour than 14-3-3z wild-type (WT) mice (open square; n¼ 12; 8 males and 4 females) in an open field
test. (b) 14-3-3z KO mice (closed circle; n¼ 11; 6 males and 5 females) have increased hyperactivity in response to amphetamine (5mg kg–1)
than 14-3-3z WT mice (open circle; n¼ 12; 8 males and 4 females) in an open field test. Note difference in vertical scale.

Figure 3. Altered baseline dopamine (DA) in the striatum of 14-3-3z knockout (KO) mice. (a) Baseline DA and 3,4-dihydroxyphenylacetic acid
(DOPAC) levels were measured in the striatum by high-performance liquid chromatography (HPLC)/EC. 14-3-3z KO mice (white bar; n¼ 6; 4
males and 2 females) have increased DA compared with 14-3-3z wild-type (WT) mice (closed bar; n¼ 6; 3 males and 3 females). (b) 14-3-3z KO
mice (white bar) also have increased DOPAC compared with 14-3-3z WT mice (closed bar). (c) DA turnover (DOPAC/DA ratio) is conserved in
14-3-3z KO mice (white bar) compared with 14-3-3z WT mice (closed bar).
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respectively. 14-3-3z Has previously been suggested to have an
essential role in DA synthesis by interacting with TH to promote its
phosphorylation and activity.15 To investigate the interactions and
functions of 14-3-3z, we generated a suite of 14-3-3z monoclonal
antibodies by immunizing 14-3-3z KO mice with recombinant
14-3-3z protein. Western blot analysis of recombinant 14-3-3
proteins expressed in bacteria shows that anti-14-3-3z M6, D1-4
and N4 predominantly interact with 14-3-3z while also recognizing
14-3-3t (Supplementary Figure S2). However, as 14-3-3t is not
expressed in brain tissue16 these antibodies provide an ideal
resource to specifically address the role of 14-3-3z in brain function.
Using anti-14-3-3z M6 on a western blot of proteins co-immuno-
precipitated with anti-TH from P35 mouse brain lysates, we were
able to confirm the interaction of 14-3-3z and TH in vivo (Figure 4a).

We next analysed the abundance of total TH in sagittal and
coronal brain sections by immunohistochemistry. Our analysis
identified similar levels of expression in the striatum, VTA and SN
and further showed that 14-3-3z KO mice have an equivalent

number of TH-positive dopaminergic neurons as WT controls
(Figure 4b; WT, n¼ 4; KO, n¼ 4). As TH activity is controlled through
the phosphorylation of Ser-31 and Ser-40, we next explored the
abundance of active TH with phospho-specific antibodies. Our
immunoblotting analysis was unable to identify any significant
differences in the levels of total or active TH in 14-3-3z KO brains
(Figure 4c and Supplementary Figure S3; WT, n¼ 6; KO, n¼ 6).

DAT density is reduced in 14-3-3z KO mice
Following release of DA into the synaptic cleft it initiates signalling
cascades in postsynaptic neurons by interacting with the
G-protein-coupled DA receptors D1–D5. Regulation of this
interaction is primarily achieved through the reuptake of DA by
presynaptic neurons with DAT. Given the distinct possibility of a
DA signalling dysfunction in 14-3-3z KO mice, we therefore
explored the abundance of DA receptors and DAT in 14-3-3z KO
brain samples. Quantitative reverse transcriptase-PCR analysis
from P35 whole-brain RNA shows that each of these receptors is
expressed normally at the transcript level (Figure 5a). Furthermore,
analysis of the DA receptors by immunoblotting of P35 whole-
brain lysates shows that the major isoforms of D1–D5 are present
at normal levels in 14-3-3z KO mice (Figure 5b and Supplementary
Figure S4; WT, n¼ 4; KO, n¼ 4).

We next analysed the localization and abundance of DAT by co-
labelling sagittal brain sections with anti-DAT and anti-TH
antibodies. In comparison with 14-3-3z WT mice, we observed a
reduction in DAT within the SN-VTA of KO mice (Figure 6a). Upon
closer examination, 14-3-3z WT showed evenly distributed DAT
staining throughout the cell body and neurites of dopaminergic
neurons within the midbrain, whereas KO neurons had sparse
staining in neuronal processes and irregular localization within the
cell body (Figure 6b). Within these KO mice, DAT localization was
predominantly polarized to one side of the nucleus (Figure 6b).
Expression of DAT was quantified by measuring the fluorescence
intensity of anti-DAT in SN-VTA neurons relative to that of anti-TH
antibodies. Our analysis shows that DAT levels are reduced by
approximately 30% in the SN-VTA of 14-3-3z KO mice (Figure 6c;
WT, n¼ 4; KO, n¼ 4; P¼ 0.043). Using the same immunostaining
method, we also found a significant reduction of DAT in the
striatum (Figure 7). Analysis of low magnification images shows
that DAT is uniformly reduced across the entire striatum
(Figure 7a). Higher magnification further identifies distinct TH-
positive fibres within the striatum that lack DAT (arrowheads,
Figure 7b). Quantitation of this staining shows that DAT levels are

Figure 4. Tyrosine hydroxylase (TH) is activated normally in 14-3-3z
knockout (KO) mice. (a) TH was precipitated from P35 whole-brain
lysates with anti-TH antibody. TH immunoprecipitates were probed
with anti-TH and monoclonal antibodies against 14-3-3z (M6).
(b) Sagittal sections and (i, ii) coronal sections (iii iv) show that the
abundance of TH-positive dopaminergic neurons in the substantia
nigra (sn) and ventral tegmental area (vta), and their projections to
the striatum (st) are similar in 14-3-3z KO and wild-type (WT) mice.
Scale bars¼ 500 mm. (c) Western blot analysis of brain lysates shows
that total TH, phospho serine 31 (Ser-31) and phospho Ser-40 are
present at similar levels in 14-3-3z KO and WT mice. Load control
used for quantitating western blots was a tubulin. A representative
blot of all four samples is shown in this figure that is quantitated in
Supplementary Figure S3.

Figure 5. Expression of dopamine (DA) receptors in 14-3-3z knock-
out (KO) mice. (a) Quantitative reverse transcriptase-PCR (qRT-PCR)
of DA receptors D1–D5 and DA transporter (DAT) show that transcript
levels of these genes are present at the same level in 14-3-3z KO
(open bars; n¼ 4) and 14-3-3z wild-type (WT) brains (closed bars;
n¼ 4). (b) Western blot analysis of whole-brain lysate shows that
protein levels of DA receptors D1–D5 are present at the same level
in 14-3-3z KO (n¼ 4) and 14-3-3z WT brains (n¼ 4). A representative
blot of all four samples is shown in this figure that is quantitated in
Supplementary Figure S4.
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Figure 6. 14–3-3z Regulates dopamine transporter (DAT )expression in the substantia nigra (SN)-ventral tegmental area (VTA). (a) Sagittal brain
sections stained with anti-tyrosine hydroxylase (TH; red) and anti-DAT (green) show reduced levels of DAT in the SN-VTA of 14-3-3z knockout
(KO) mice compared with wild-type (WT) littermates. Blue, 4,6-diamidino-2-phenylindole (DAPI); scale bars¼ 50 um. (b) Higher magnification
of anti-DAT immunostaining (green) in SN-VTA shows that DAT is mislocalized in the cell bodies of dopaminergic neurons (white arrowheads).
Scale bar¼ 20 um. (c) Quantitation of anti-DAT immunostaining normalized to anti-TH confirms that 14-3-3z KO (open bar) have an
approximately 30% reduction of DAT compared with WT mice (closed bar).

Figure 7. 14–3-3z Regulates dopamine transporter (DAT) expression in the striatum. (a) Sagittal brain sections stained with anti-tyrosine
hydroxylase (TH; red) and anti-DAT (green) show reduced levels of DAT in the striatum of 14-3-3z knockout (KO) mice compared with wild-type
(WT) littermates. Blue, 4,6-diamidino-2-phenylindole (DAPI); scale bars¼ 200 um. (b) Higher magnification of anti-DAT immunostaining (boxed
region in a) shows that DAT is missing in the axonal terminals of dopaminergic neurons (white arrowheads). Blue, DAPI; scale bar¼ 10 um.
(c) Quantitation of anti-DAT immunostaining normalized to anti-TH confirms that 14-3-3z KO (open bar) have an approximately 50% reduction
of DAT compared with WT mice (closed bar). (d) Western blot analysis of whole-brain lysate shows that proteins levels of unglycosylated DAT
(50 kDa) and glycosylated DAT (80 kDa) are reduced in 14-3-3z KO (n¼ 4) compared with 14-3-3z WT mice (n¼ 4).
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reduced by approximately 50% in the striatum of 14-3-3z KO mice
(Figure 7c; WT, n¼ 4; KO, n¼ 4; P¼ 0.009).

Analysis of P35 whole-brain lysates by immunoblotting further
identified robust deficiency of the non-glycosylated form of DAT
(approximately 50 kDa band) in KO mice and in around half the
cases also deficiency of the glycosylated form (approximately
75 kDa band; Figure 7d). To confirm that 14-3-3z is expressed in
dopaminergic neurons, and in appropriate regions to have a role
in DAT function, we co-immunostained sagittal brain sections with
anti-14-3-3z M6 and anti-TH antibodies. Our analysis found that
14-3-3z is widely expressed in the midbrain, and importantly,
within TH-positive neurons in the SN/VTA and their terminals in
the striatum (Supplementary Figure S5). The lack of staining in
14-3-3z KO brain sections further confirms the specificity of this
antibody and the expression of 14-3-3z in dopaminergic neurons.

DAT associates with 14-3-3z
As DAT is phosphorylated on several serine and threonine
residues by CAMKII/protein kinase C and contains putative
14-3-3 binding sites (data not shown), we next investigated if
14-3-3z interacts with this transporter. By transiently expressing
Flag-His-DAT and Myc-14-3-3z in the SN-derived mouse neuronal
cell line SN4741, we were able to identify an interaction between
these proteins by co-immuoprecipitation. In these experiments,
purification of 14-3-3z with anti-Myc antibodies also co-precipi-
tated Flag-His-tagged DAT (Figure 8a). In addition, purification of
DAT with anti-Flag antibodies co-precipitated Myc-tagged 14-3-3z
(Figure 8b). In contrast, co-immunoprecipitation with an immuno-
globulin G isotype control antibody was unable to purify either
14-3-3z or DAT from protein lysates in which purification of DAT
with anti-Flag antibodies co-precipitated Myc-tagged 14-3-3z
(Supplementary Figure S6). To confirm the interaction between
these proteins in vivo, we next completed co-immunoprecipitation
experiments with our G1-7 monoclonal antibody in striatal protein
extracts from P35 WT mice. Consistent with our overexpression
study, we found that antibodies recognizing 14-3-3z also
precipitate DAT from these complex protein extracts (Figure 8c).

DISCUSSION
Over the past 50 years, there have been many clinical and
pharmacological studies implicating aberrant DA signalling in the
pathology of psychosis associated with schizophrenia and related
disorders.5,39–42 Animal models with deficits in each component of
the dopaminergic pathway, such as DA biosynthesis, DA receptors
and DAT have provided valuable insight to the role of aberrant
DA signalling in the presentation of psychosis-like behavioural
defects.43 However, many of these models have also shown
paradoxical effects when compared with the human condition.
We recently described 14-3-3z KO mice as a novel

neurodevelopmental schizophrenia-like mouse model that has
many anatomical and behavioural defects associated with the
human condition.17 This notion is supported by genetic linkage
analysis23 and the observations that 14-3-3z is downregulated
at the mRNA18 and protein20,21,44 levels in post-mortem
schizophrenia brain samples. Further support for a role in
schizophrenia is derived from the recent finding that 14-3-3z is
represented as a central hub within the schizophrenia-specific
protein interaction network.24 At the molecular level, 14-3-3z also
interacts with several putative risk factors for schizophrenia that
are essential for neuronal development, such as NdeL1, LIS1 and
DISC1.17,45 In this study, we have significantly advanced our
understanding of the role of 14-3-3z in the presentation of
schizophrenia-like deficits by identifying part of the molecular
defects underpinning locomotor hyperactivity. First, we
specifically identify dysregulated DA signalling as a cause of
hyperactivity in 14-3-3z KO mice. Second, we have shown that
DAT dysregulation occurs in the absence of any obvious change in
abundance of TH or DA receptors. Finally, we found a reduction in
the abundance of DAT in the brains of adult 14-3-3z KO mice, and
show that in the WT setting, 14-3-3z and DAT interact.

A defining feature of schizophrenia is hypersensitivity to drugs
that increase synaptic DA levels.35–37 To test the validity of 14-3-3z
KO mice as a model for the human condition, we therefore
analysed both this feature and the ability of antipsychotics to
ameliorate psychosis-like symptoms in our mouse model in vivo.

In support of 14-3-3z KO mice modelling the behavioural
deficits associated with schizophrenia and associated disorders,
we found that the antipsychotic drug clozapine was able to rescue
baseline hyperactivity. However, although a 2-week treatment
regime with clozapine had dramatic pharmacological effects on
hyperactivity it was unable to modify the neurodevelopmental
and anatomical defects associated with the disorder, including
lamination and mossy fibre navigation in the hippocampus (data
not shown).

Consistent with behavioural responses in patients with schizo-
phrenia and related psychiatric disorders, we found that 14-3-3z
KO mice are hypersensitive to the effects of amphetamine in a test
of locomotor function. Taken together with our findings of
baseline hyperactivity, disrupted senorimotor gating and deve-
lopmental defects in the hippocampus,17 these analyses implicate
14-3-3z KO mice as a highly applicable neurodevelopmental
model of schizophrenia and related disorders.

As amphetamine acts as a substrate for DAT to promote DA
efflux from presynaptic neurons, and clozapine can antagonise DA
receptors, our results further suggest that some of the psychosis-
like behavioural defects of 14-3-3z KO mice may arise from defects
in the dopaminergic pathway. Indeed, our analysis of total tissue
DA levels found that DA is significantly increased in the striatum of
KO mice and strongly supports a role for 14-3-3z in the DA
signalling pathway. 14-3-3z Has been implicated as a regulator of

Figure 8. 14–3-3z Associates with dopamine transporter (DAT). (a) SN4741 cells were transiently transfected with Flag-His-DAT and Myc-14-3-
3z. 14-3-3z was precipitated from protein lysates with anti-Myc antibody. 14-3-3z Immunoprecipitates were probed with anti-Myc monoclonal
antibody to recognise 14-3-3z and anti-Flag to recognize DAT. (b) DAT was precipitated from protein lysates as in (a) with anti-Flag antibody.
DAT immunoprecipitates were probed with anti-Myc monoclonal antibody to recognise 14-3-3f and anti-Flag to recognize DAT (c) 14-3-3z
Was precipitated from P35 striatum lysates with anti-14-3-3z G1-7 monoclonal antibody. 14-3-3z Immunoprecipitates were probed with anti-
14-3-3z (C16) and antibodies against DAT.
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DA signalling by interacting with TH through phosphorylation of
Ser-19 to enhance activation of TH enzymatic activity by
promoting further phosphorylation of Ser-31 and Ser-40.15 Our
analysis of 14-3-3z KO mice not only shows that 14-3-3z is
indispensable for the formation of dopaminergic neurons in the
brain, it also shows that TH levels and TH activation are
maintained in the absence of 14-3-3z. In contrast to the
proposal that 14-3-3z is the major isoform controlling TH
activity,15 our results suggest that 14-3-3 isoforms are likely to
act redundantly in promoting TH activity in vivo. Indeed, multiple
14-3-3 isoforms have been shown to bind TH, and 14-3-3g has
recently been suggested to promote localization of TH to
membrane fractions to preserve enzymatic activity.46 Although
our data fit with the idea that DA production is normal in 14-3-3z
KO mice, it will now be important to measure the rate of DA
synthesis in vivo.

To determine the nature of the dopaminergic dysfunction in our
schizophrenia-like mouse model, we therefore analysed later
stages of signalling post-secretion of DA from presynaptic vesicles.
DA interacts with receptors on postsynaptic neurons to initiate a
myriad of downstream signalling events by modulating activity of
adenylate cyclase. Our analysis of the abundance of DA receptor
by quantitative reverse transcriptase-PCR and western blotting
was unable to detect any differences in the levels of either total
RNA or protein from whole-brain samples. This finding identifies
important differences between our schizophrenia-like mouse
model and that of the DISC1 mouse models. DISC1 mutant mice
also display DA dysfunction, however, in these mice the primary
defect has been attributed to excessive levels of DA receptor
D2.47 Although the techniques used in our study provide a high
level of quantitation, future experiments will be best directed at
completing receptor binding studies to confirm our results and to
analyse the levels and binding capacity of the DA receptors in
more detail.

In the absence of gross defects in DA receptor levels, we next
analysed the abundance of DAT that is expressed in presynaptic
dopaminergic neurons to regulate levels of DA in the synaptic
cleft. Our finding that DAT levels are reduced at the protein level
and not at the RNA level suggests that the deficiency of DAT
occurs via post-transcriptional mechanisms. In support of DAT
dysfunction having a central role in the behavioural defects of our
14-3-3z mouse model, DAT KO mice have also been shown to
have baseline hyperactivity.48 At steady-state levels DAT is
constitutively internalized, recycled to the plasma membrane or
degraded in the lysosome through the activity of the E3 ubiquitin
ligase Nedd4-2.49 Although the precise mechanisms of this
trafficking pathway are unclear it is reliant on amino acids
587–597 in the c-terminus of the protein50 and on the
ubiquitination of three lysine residues in the N-terminus.51 DAT
function is also heavily regulated by several kinases that primarily
phosphorylate serine and threonine residues in its n-terminus.52

Upon pharmacological stimulation of DAT with amphetamine,
several serine and threonine residues in this n-terminal region are
phosphorylated by protein kinase C and CAMKII to induce DA
efflux from presynaptic neurons.52 Our finding that DAT levels are
reduced in 14-3-3z KO mice and also mislocalized in dopaminergic
neurons therefore raises the hypothesis that 14-3-3z may have a
role in modulating DAT phosphorylation, trafficking and/or
degradation. In support of this notion, 14-3-3z has previously
been found to bind to and inhibit the function of Nedd4-2 to
positively regulate the abundance of other substrates such as
amiloride-sensitive epithelial Naþ channel.53 Whether 14-3-3z
also binds Nedd4-2 to regulate levels of DAT is currently unknown,
however, as Nedd4-2 is proposed to modulate membrane
associated DAT (that is, the glycosylated form) our finding of
reduced non-glycosylated DAT may argue against a primary role
in regulating DAT levels through this pathway. A role for 14-3-3z in
modulating DAT phosphorylation or function may also help to

explain the ability of amphetamine to increase hyperactivity of
KO mice over and above that of WT controls albeit in the presence
of a 30% reduction of total DAT levels. Thus, dysregulation
of receptor phosphorylation and/or activity may promote
degradation in the resting state but retain DAT in a primed
state for activation upon pharmacological stimulation. In support
of this notion, phosphorylation of DAT Ser-7 has previously been
found to hold DAT in a primed state for amphetamine-induced DA
efflux.52 It will now be of interest to examine the response of 14-3-
3z KO mice to alternative stimulants of DAT such as cocaine and to
test the ability of 14-3-3z to reduce amphetamine-induced DA
efflux, for example by micro-dialysis.

In this study, we also identified an interaction between DAT and
14-3-3z in SN4741 cells and striatum brain extracts. However, as
we were only able to co-purify a small proportion of total input
protein in our co-immunoprecipitation experiments this further
suggests that the interaction between DAT and 14-3-3z is quite
weak and/or unstable. Whether this interaction is direct or
mediated by an intermediate adaptor protein and whether this
has a role in DAT function is currently unknown. Our in silico
analysis of DAT identifies several high stringency phospho-serine/
threonine 14-3-3 binding motifs in the c-terminus of the protein.
Interestingly, these sites are located near the regions predicted to
act as interaction sites for CAMKII and in the regions predicted to
be essential for DAT internalization. It will now be of interest to
determine the interaction dynamics of 14-3-3z and DAT and to
determine if this has any role in kinase binding and receptor
phosphorylation.

Finally, consistent with a functional abnormality in DAT
physiology we found that total tissue DA levels are increased in
14-3-3z KO mice. Our study also found an increase in the DA
degradation by-product, DOPAC. Although a 30% reduction in
DAT may be expected to result in reduced DA degradation, our
finding is in agreement with that observed in DAT KO mice that
also have abundant levels of DOPAC.54 Our findings therefore add
strong support to the notion that DOPAC represents a by-product
of newly synthesized DA rather than a by-product of DA recycled
from the synaptic cleft.54 Thus, although TH levels and activation
are normal in 14-3-3z KO mice it will be of interest to determine
the rate of DA synthesis in this model.

In conclusion, our data supports a model in which 14-3-3z
interacts with DAT to modulate its activity and stability and
thereby control the availability of DA in the synaptic cleft. This
finding has important implications to the physiological basis of
schizophrenia-like behavioural defects, the mechanisms control-
ling DAT function and the potential modulation of this pathway in
the treatment of disorders with a hyperdopaminergic basis.
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14-3-3ζ deficient mice in the 
BALB/c background display 
behavioural and anatomical 
defects associated with 
neurodevelopmental disorders
Xiangjun Xu1, Emily J. Jaehne2, Zarina Greenberg1, Peter McCarthy1, Eiman Saleh1, 
Clare L. Parish3, Daria Camera4, Julian Heng5,6, Matilda Haas7, Bernhard T. Baune2, 
Udani Ratnayake3, Maarten van den Buuse3,7, Angel F. Lopez1, Hayley S. Ramshaw1,* & 
Quenten Schwarz1,*

Sequencing and expression analyses implicate 14-3-3ζ as a genetic risk factor for 
neurodevelopmental disorders such as schizophrenia and autism. In support of this notion, we 
recently found that 14-3-3ζ−/− mice in the Sv/129 background display schizophrenia-like defects. As 
epistatic interactions play a significant role in disease pathogenesis we generated a new congenic 
strain in the BALB/c background to determine the impact of genetic interactions on the 14-3-3ζ−/− 
phenotype. In addition to replicating defects such as aberrant mossy fibre connectivity and impaired 
spatial memory, our analysis of 14-3-3ζ−/− BALB/c mice identified enlarged lateral ventricles, reduced 
synaptic density and ectopically positioned pyramidal neurons in all subfields of the hippocampus. In 
contrast to our previous analyses, 14-3-3ζ−/− BALB/c mice lacked locomotor hyperactivity that was 
underscored by normal levels of the dopamine transporter (DAT) and dopamine signalling. Taken 
together, our results demonstrate that dysfunction of 14-3-3ζ gives rise to many of the pathological 
hallmarks associated with the human condition. 14-3-3ζ-deficient BALB/c mice therefore provide a 
novel model to address the underlying biology of structural defects affecting the hippocampus and 
ventricle, and cognitive defects such as hippocampal-dependent learning and memory.

Neurodevelopmental disorders arise from aberrant embryonic and postnatal brain development and 
encompass a wide spectrum of pathologies such as schizophrenia, autism and intellectual disability. 
Although heterogeneous in nature, recent sequencing analyses have shown that many of these disorders, 
in particular schizophrenia and autism, arise from mutations in overlapping molecular pathways thereby 
suggesting they share similar pathophysiological origins1–3. Indeed, this notion is further supported by 
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the finding that these disorders often share similar anatomical features including structural anomalies of 
the hippocampus, enlarged ventricles and reduced synaptic density4–7.

The family of 14-3-3 proteins comprise seven distinct isoforms (β , ζ , ε , γ , η , τ , σ ) that are expressed 
abundantly throughout development and in adult tissue8. This family of proteins comprise over 1% of 
total soluble brain protein9 and have been implicated in several neurological disorders such as epilepsy10, 
bipolar disorder11,12, mental retardation13 and lissencephaly. Notably, non-synonomous 14-3-3ζ muta-
tions have recently been identified in both schizophrenia and autistic patients14,15. Taken together with 
the findings that this gene is consistently down-regulated in post-mortem brain samples at the mRNA11,16 
and protein levels17–19, these data collectively identify 14-3-3ζ as a potential risk factor for neurodevel-
opmental disorders.

Mouse models of schizophrenia and autism have been paramount in our understanding of genetic 
risk factors and in the identification of biological pathways underlying neurobehavioural deficits. To 
define the role of 14-3-3ζ  in neurodevelopmental disorders we recently characterised some of the ana-
tomical, physiological and behavioural defects of 14-3-3ζ −/− mice in the Sv/129 background20,21. Our 
findings demonstrated that 14-3-3ζ  is required for normal brain development and brain function. Thus, 
14-3-3ζ −/− mice have schizophrenia-like behavioural defects including hyperactivity and disrupted sen-
sorimotor gating that are accompanied by aberrant neuronal migration and axonal guidance defects in 
the hippocampus20. We further demonstrated that baseline hyperactivity of 14-3-3ζ −/− mice arises from 
aberrant dopamine signaling as a result of decreased levels of the dopamine transporter (DAT). Given 
that 14-3-3ζ −/− mice respond favourably to the frontline antipsychotic drug clozapine, our previous 
findings suggest that 14-3-3ζ −/− mice represent a novel neurodevelopmental model of schizophrenia 
and associated disorders.

One of the major confounding factors in interpreting findings from neurodevelopmental mouse mod-
els is the epistatic effects of the background strain. For example, the phenotypes of mice lacking DAT 
vary dramatically depending on genetic background22 and even wild type mice from different back-
grounds have profoundly different behavioural phenotypes23,24. To establish the role of candidate genes 
in the pathophysiology of any particular disorder it is therefore essential to examine the role of any 
mutations in multiple genetic backgrounds.

To investigate the contribution of genetic backgrounds to the 14-3-3ζ −/− phenotype we have derived 
a new congenic strain in the BALB/c background by back-crossing to this line for over 10 generations. 
BALB/c mice were chosen as they are a widely used inbred mouse strain that breeds well and shows 
markedly different behavioural phenotypes to the Sv/129 strain21,23,24. Moreover, as BALB/c mice are 
reported to respond differently to psychostimulants acting on the dopamine pathway23 this line provides 
an ideal model to test the role of 14-3-3ζ  in dopamine signalling.

Here we report that 14-3-3ζ −/− mice in the BALB/c genetic background replicate all of the anatom-
ical defects previously reported in the Sv/129 strain and uncover additional hallmark phenotypes of 
neurodevelopmental disorders. In the absence of profound structural brain defects BALB/c mice lack-
ing 14-3-3ζ  display mispatterning of hippocampal pyramidal neurons and misrouting of dentate mossy 
fibres. Importantly, we show for the first time that 14-3-3ζ  is essential for correct formation of the lateral 
ventricles and for hippocampal synaptic connections. Consistent with physiological dysfunction of the 
hippocampus we found that 14-3-3ζ −/− mice had striking neurobehavioural deficits in spatial learning 
and memory. In contrast, we failed to observe alterations in anxiety or locomotor function, a finding 
that is underscored by normal levels of DAT and dopaminergic signaling. Our analysis therefore shows 
that 14-3-3ζ  is essential for neurodevelopment and for higher-order brain function. Although 14-3-
3ζ −/− mice have variable behavioural phenotypes depending on the genetic background, each of the lines 
present unique features of human neurodevelopmental disorders and identify a key role for deficiency 
of the 14-3-3ζ  molecular pathway in the pathophysiology of schizophrenia and associated disorders.

Results
14-3-3ζ-deficient mice in the BALB/c background display hippocampal defects.  We have 
previously shown that 14-3-3ζ −/− mice in the Sv/129 background display anatomical and behavioural 
defects reminiscent to neurodevelopmental disorders such as schizophrenia20,21. To determine if different 
genetic backgrounds affect the 14-3-3ζ −/− phenotype we back-crossed these mice in to the BALB/c back-
ground for over 10 generations. Quantitative RT-PCR and western blot analysis on embryonic and adult 
tissue confirmed that BALB/c 14-3-3ζ −/− mice completely lacked 14-3-3ζ expression (Supplementary Fig. 
1). Inter-crosses of BALB/c 14-3-3ζ  heterozygous mice gave rise to homozygous mice at the expected 
Mendelian ratio at birth indicating that 14-3-3ζ −/− mice are embryonically viable (25.5% 14-3-3ζ +/+, 
53.2% 14-3-3ζ +/−, 21.2% 14-3-3ζ −/−; n =  470, P =  0.1772). Notably, back-crossing into the BALB/c back-
ground rescued the growth retardation and postnatal death of 14-3-3ζ −/− mice that was evident in the 
Sv/129 background. Regardless of the genetic background 14-3-3ζ −/− males and females were infertile. 
Tests of olfaction, vision, balance, self-righting, eye blink, eye twitch, whisker orientation and neuromus-
cular strength were normal in 14-3-3ζ −/− compared to 14-3-3ζ +/+ controls (summarised in Table S1) 
further indicating that there are no outwardly abnormal phenotypes in these mice.

Nissl staining of coronal brain sections from adult mice indicated that laminar organisation of sev-
eral brain regions, implicated in neurodevelopmental disorders, such as the prefrontal cortex, cingulate 
cortex, hypothalamus, motor cortex and striatum formed normally in BALB/c 14-3-3ζ −/− mice (Fig. 1). 
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In contrast, pyramidal neurons of the dorsal and ventral hippocampus in cornu ammonis (CA) subfields 
CA1, CA2 and CA3 were ectopically positioned (arrowheads, Fig.  1  iii,iv,vii,viii). Consistent with the 
notion that 14-3-3ζ −/− mice model schizophrenia-like symptoms, Nissl staining also uncovered enlarge-
ment of the lateral ventricle in 14-3-3ζ −/− adult mice compared to wildtypes, that was fully penetrant and 
not previously identified in other genetic backgrounds (Fig. 1vi,vii and ii,iii respectively; n =  5/genotype).

We next asked if the neuronal mispatterning and enlarged ventricles arose from developmental 
defects. Ectopically positioned pyramidal neurons in CA1-3 were first identified prior to hippocampal 
maturation at postnatal day (P) 7 and this was maintained throughout all postnatal stages (asterisk, 
Fig.  2A; 3/3 at P7, 5/5 at P14 and 5/5 at P56). Similar to our observations in the Sv/129 background, 
pyramidal neurons within the CA3 subfield split into a bilaminar stratum while pyramidal neurons 
within the CA2/3 boundary were ectopically positioned in the stratum radiatum and stratum oriens. In 
addition, we identified ectopically positioned neurons in the stratum oriens of the CA1 subfield that was 
not previously described in Sv/129 14-3-3ζ −/− mice20 (Fig. 2Avi–viii). Analysis of Nissl-stained sections 
was unable to detect any notable differences at embryonic day (E) 17.5, a stage at which the pyramidal 
neurons are starting to condense in to a bonafide stratum (Fig. 2Ai and v). Enlargement of the lateral 
ventricles was also identified during developmental stages, first being detected at P14 with no notable 
defects at P7 (Fig. 2Avi–viii) or in additional mice examined at P10 (data not shown).

To determine if ectopically-positioned pyramidal cells formed mature neurons we next immunos-
tained coronal sections with antibodies against the neuronal marker NeuN. At all ages examined the 
ectopically positioned cells were positive for NeuN (Fig.  2B) indicating that these neurons likely form 
functional connections. At E17.5 when pyramidal neurons are condensing in to the stratum of the CA in 
the 14-3-3ζ +/+ controls, mature neurons were identified in the superficial layers juxtaposing the subven-
tricular zone of 14-3-3ζ −/− embryos (Fig. 2Bi,ii). Taken together, and in light of our previous work in the 
Sv/129 background, these findings identify a clear role for 14-3-3ζ  during hippocampal morphogenesis 
and pyramidal neuron migration.

Figure 1.  Structural brain defects in 14-3-3ζ-deficient mice. Nissl staining of coronal brain sections 
from 5 month old adult 14-3-3ζ +/+ (i–iv) and 14-3-3ζ −/− mice (v–viii). Images show that lamination of the 
prefrontal cortex (i and v), motor cortex and cingulate cortex (i–iii and v–vii), thalamus (iii and vii) and 
amygdala (iii and vii) are normal in 14-3-3ζ −/− mice. Lamination defects were identified in the dorsal and 
ventral hippocampus of 14-3-3ζ −/− mice (iii and vii, iv and viii respectively; arrowhead). The lateral ventricle 
was also enlarged in 14-3-3ζ −/− mice (ii–iii and vi–vii; asterisk). Scale bar =  100 μ m.
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Aberrant hippocampal connectivity in 14-3-3ζ-deficient mice.  Functional connectivity within 
the hippocampus is essential for high-order brain function25. Given the ectopic positions of neurons 
within the CA of 14-3-3ζ −/− mice we next asked if the mossy fibre connections between the dentate gran-
ular neurons and CA3 pyramidal neurons were also affected. Immunostaining with antibodies against 
calbindin showed that the suprapyramidal and infrapyramidal mossy fibre tracts were aberrantly aligned 
in the 14-3-3ζ −/− mice, compared to wildtype littermates (Fig. 3i–iv). Whereas the suprapyramidal tract 

Figure 2.  Hippocampal lamination defects in 14-3-3ζ-deficient mice. (A) Nissl staining shows the 
hippocampal development of 14-3-3ζ +/+ (i–iv) and 14-3-3ζ −/− (v–viii) mice from embryonic day (E) 17.5 
until post natal day (P) 56. During embryonic development no gross structural defects could be seen in 14-
3-3ζ −/− mice (i and v). Pyramidal neurons in the cornu ammonis (CA) subfields, CA1-3, were dispersed in 
the stratum pyramidale (sp) and stratum oriens (arrowheads) layer in 14-3-3ζ −/− mice. Arrows highlight the 
duplicated layer of hippocampal pyramidal neurons in stratum radiatum (sr). Scale bar =  100 μ m. (B) Coronal 
sections of the hippocampus obtained from E17.5 (i and iv), P7 (ii and v) and P56 (iii and vi) 14-3-3ζ +/+ 
and14-3-3ζ −/− mice. At E17.5 the stratum pyramidale is populated by NeuN-positive pyramidal cells in 14-
3-3ζ +/+ hippocampi forming a uniform mature zone in the developing CA. In 14-3-3ζ −/− hippocampi, the 
maturation zone was less uniform with some NeuN-positive mature pyramidal cells ectopically positioned in 
the superficial zone of the stratum pyramidale in the CA and others in the sub ventricular zone (SVZ; white 
arrowheads). In P7 and P56 14-3-3-ζ −/− mice, NeuN immunostaining identifies mature pyramidal neurons 
ectopically positioned in the stratum oriens of CA1-3 (arrowheads). Scale bars: 100 μm.
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Figure 3.  Abnormal connectivity of the hippocampus in 14-3-3ζ-deficient mice. Calbindin 
immunostaining of the infrapyramidal (IPMF) and the suprapyramidal (SPMF) mossy fibre trajectories. At 
P7 (i–iv) the calbindin mossy fibres are seen along the SPMF branch navigating away from the dentate gyrus 
(DG) in both 14-3-3ζ +/+ and 14-3-3ζ −/− mice. In 14-3-3ζ −/− mice the SPMF (green) branch aberrantly 
navigates among the NeuN positive (red) pyramidal cell somata (sp, arrowheads) in CA3. (iii’) higher 
magnification of boxed area in (i) and (iii”) higher magnification of calbindin staining from boxed area in 
(i). (iv’) Higher magnification of boxed area in (ii) and (iv”) higher magnification of calbindin staining from 
boxed area in (ii). At P56 (v-viii) the SPMF and IPMF branches of 14-3-3ζ −/− mice navigate aberrantly 
among the pyramidal cell somata (arrowheads) in CA3 and, the SPMF is shorter than in 14-3-3ζ +/+ 
mice (arrow). (vii and viii) higher magnification of the boxed regions in (v) and (vi), respectively. Scale 
bars =  100 μ m.

formed tight axonal bundles along the apical surface of the CA3 pyramidal neurons in 14-3-3ζ +/+ mice, 
these mossy fibres navigated within the CA3 pyramidal layer of 14-3-3ζ −/− mice at P7 (Fig.  3iii,iv). 
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In adult 14-3-3ζ +/+ brains, mossy fibres split into tightly bundled infrapyramidal and suprapyrami-
dal branches lining the CA3 pyramidal layer. However, in 14-3-3ζ −/− mice the suprapyramidal fibres 
were diffuse and the infrapyramidal branch aberrantly navigated among the pyramidal cell layer and 
ectopically fused with the suprapyramidal branch (Fig. 3v–viii). Moreover, analysis of calbindin staining 
showed that the suprapyramidal branch failed to extend to the boundary of CA2/3 in 14-3-3ζ −/− adult 
brains (arrowheads, Fig. 3v,vi).

Given the aberrant axonal navigation within the hippocampus we next asked if the granular and 
pyramidal neurons had altered synaptic density. Dendritic spines are small membranous protrusions 
on neuronal dendrites that mark the sites of contact between pre- and post-synaptic neurons. As over 
90% of excitatory synapses form on these spines their density and morphology are considered a direct 
correlation of synaptic strength and activity26,27. Furthermore, altered spine formation is associated 
with several human conditions showing deficits in social interaction, cognition and memory function, 
including schizophrenia, autism and intellectual disability28–31. To analyse spine density we labelled 
individual neurons in fixed vibratome sections with biolistic delivery of lipophilic fluorescent dyes 
(DiI and DiO). Spines from secondary apical dendrites on CA3 pyramidal neurons and basal den-
drites from dentate granular neurons were quantitated from 3D-reconstructed confocal images. In 
comparison to 14-3-3ζ +/+ adult mice, we identified reduced spine density in 14-3-3ζ −/− mice that was 
specific to the CA3 region of the hippocampus (Fig. 4; n =  3/genotype with over 50 dendrites counted/
mouse, P =  0.04). 14-3-3ζ  is therefore required for the formation of functional connections within the 
hippocampus.

14-3-3ζ-deficient mice display cognitive defects.  As the anatomical defects of 14-3-3ζ −/− 
mice are conserved across genetic backgrounds we next asked if the BALB/c model recapitulates the 

Figure 4.  14–3–3ζ-deficient mice have reduced spine density. (A) Biolistic labelling of dendritic spines in 
the dentate gyrus (DG) and cornu ammonis layer 3 (CA3) of 14-3-3ζ +/+ and 14-3-3ζ −/− mice. (B) Granular 
neurons in the DG have similar numbers of dendritic spines in 14-3-3ζ −/− (open bar) and 14-3-3ζ +/+ mice 
(closed bar; n = 3 mice/genotype, >50 dendrites quantified/mouse). (C) Pyramidal neurons in CA3 have 
significantly reduced dendritic spine density in 14-3-3ζ −/− mice (open bar) compared to 14-3-3ζ +/+ mice 
(closed bar; n = 3 mice/genotype, >50 dendrites counted/mouse). * <0.05. Scale bar =  5μm.
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schizophrenia-like behavioural defects observed in the Sv/129 background. We first tested the locomotor 
function of 14-3-3ζ −/− mice in an open field environment. In contrast to the robust hyperactivity seen 
in the Sv/129 background, 14-3-3ζ −/− in the BALB/c background showed no differences in distance 
travelled over the test period (Fig. 5A), or across sexes (data not shown). We next performed an anal-
ysis of amphetamine-induced hyperactivity. Both WT 14-3-3ζ +/+ and 14-3-3ζ −/− mice demonstrated a 
decline in activity in the test arena during the 60 min habituation phase. Consistent with previous reports 
suggesting that BALB/c mice respond poorly to psychostimulants of the dopamine signalling pathway23, 
subcutaneous injection of amphetamine (5 mg/kg) induced only mild and variable hyperactivity in both 
14-3-3ζ +/+ (n =  10; 5 male, 5 female) and 14-3-3ζ −/− mice (n =  12; 5 male, 7 female), with similar time to 
become maximally hyperactive and similar degree of hyperactivity being reached across both genotypes 
and sexes (Fig. 5B). 14-3-3ζ −/− mice trended toward covering a greater distance in the 60–120 min post 
amphetamine injection, however the accumulated distance travelled in this period was not significantly 
different between genotypes (Fig. 5C).

To test the levels of anxiety, we next analysed the mice on the elevated zero maze. 14-3-3ζ −/− mice 
and 14-3-3ζ +/+ mice showed similar preference for the closed quadrants over the open quadrants of 
the maze (Supp. Fig. 2A). As the anxiety levels of BALB/c mice are heightened under normal lighting 
conditions compared to other strains32, we also completed the elevated plus maze test under low-level 
lighting. Consistent with our previous test of anxiety, we found that 14-3-3ζ −/− mice and 14-3-3ζ +/+ 
mice showed similar preference for the closed arm to the open arms of the maze in the 5 min test period 
with no change in rearing or head dipping (Supp. Fig. 2B). Therefore, in contrast to our previous findings 
in the Sv/129 background, mice lacking 14-3-3ζ  in the BALB/c background do not display disturbances 
of hyperactivity or anxiety.

Given the structural defects in the hippocampus we next completed a series of tests to investi-
gate cognitive behaviours of learning and memory. Short-term memory of 14-3-3ζ −/− mice was first 
explored by performing an object recognition task. Overall both the 14-3-3ζ +/+ and 14-3-3ζ −/− mice 
had limited interactions with the novel and familiar objects with 14-3-3ζ −/− mice trending towards 
spending less time interacting with the objects compared to controls (Supp Fig. 3A). However, both 
genotypes showed the same preference for the novel object compared to the familiar object, as indi-
cated by an equivalent preference index (Supp. Fig. 3B). We next explored working memory-dependent 
learning and memory using a cross-maze escape task under low-level lighting to reduce anxiety levels 
of the BALB/c mice. After 5 days of training to identify the correct arm of a cross-maze containing a 
submerged escape platform, we found that 14-3-3ζ −/− mice learned at the same rate as 14-3-3ζ +/+ mice 
(Fig.  5D), showing the same amount of latency to find the escape platform. However, only the 14-3-
3ζ +/+ mice had a significant change in escape latency during the learning phase, suggesting that they 
learned better than 14-3-3ζ −/− mice (Fig. 5D, One-way ANOVA, P =  0.0116). The ability to remember 
the correct arm of the maze was then tested after a 14- and 28-day rest period (M1 and M2, respec-
tively). Consistent with defects in hippocampal-dependent memory, we found that 14-3-3ζ −/− mice 

Figure 5.  14–3–3ζ-deficient mice in the BALB/c background demonstrate abnormal cognitive traits.  
(A) 14-3-3ζ −/− mice (open bars; n =  12; 5 male and 7 female) have similar exploratory behaviour at 3 
months of age compared to 14-3-3ζ +/+ littermates (filled bars; n =  10; 5 male and 5 female) in an open 
field test. (B) 14-3-3ζ −/− mice (open circle; n =  12; 5 male and 7 female) have similar baseline exploratory 
behaviour compared to 14-3-3ζ +/+ littermates (closed circle; n =  10; 5 male and 5 female) in an open 
field test over 120 mins. 14-3-3ζ −/− mice and 14-3-3ζ +/+ mice display similar hyperactivity in response to 
amphetamine (5 mg/kg). 14-3-3ζ −/− mice showed a trend towards increased hyperactivity in the 60–120 
min post amphetamine injection compared to 14-3-3ζ +/+ mice. (C) 14-3-3ζ −/− mice and 14-3-3ζ +/+ mice 
have no significant differences in amphetamine-induced hyperactivity in the 0–60 min or 60–120 min post 
amphetamine injection. Error bars are presented as mean ±  SEM. (D) 14-3-3ζ −/− mice (closed squares; 
n =  12; 8 male and 4 female) and 14-3-3ζ +/+ mice (open circles; n =  8; 4 male and 4 female) have similar 
capacity for spatial learning (Day1-5) in a cross maze escape task test. In contrast, 14-3-3ζ −/− mice have 
reduced capacity to remember (M1 and M2) in the cross maze escape task.
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had significantly increased escape latency compared to 14-3-3ζ +/+ mice after the 28-day rest period 
(Fig. 5D; student t-test, P =  0.04).

Dopamine signalling is preserved in BALB/c mice lacking 14-3-3ζ.  We have previously shown 
that baseline hyperactivity of 14-3-3ζ −/− mice in the Sv/129 background correlates with reduced levels 
of the dopamine transporter DAT and increased levels of dopamine21. As 14-3-3ζ −/− in the BALB/c 
background lacked hyperactivity, we tested the notion that DAT and dopamine are also preserved in 
this model. Notably, both dopamine signalling and DAT function have been reported to be altered in 
BALB/c mice23,33. Dopamine signalling is usually balanced by reuptake from the synaptic space through 
DAT, which promotes recycling to the presynaptic vesicular pool or degradation to DOPAC and other 
by-products. Total tissue levels of dopamine and DOPAC were measured in the striatum, cortex and 
hypothalamus by reverse phase high performance liquid chromatography with electrochemical detection 
(HPLC). Our analysis found that tissue content of dopamine, DOPAC and dopamine turnover (ratio of 
dopamine/DOPAC) were preserved across genotypes in all regions examined (Fig. 6A–C and Supp. Fig. 4),  
supporting our previous behavioural analyses (Fig. 5).

We next examined the localisation and abundance of DAT by co-labelling sagittal brain sections 
with anti-DAT and anti-TH antibodies. In contrast to our previous findings in the Sv/129 model, we 
observed no changes in the expression levels or localisation of DAT within the SN-VTA of 14-3-3ζ −/− 
mice (Fig. 7A). Thus, DAT was distributed evenly throughout the cell body and neurites of dopaminergic 
neurons within the midbrain in both 14-3-3ζ +/+ and 14-3-3ζ −/− mice. Expression of DAT was quantified 
by measuring the fluorescence intensity of anti-DAT in the termini of dopaminergic neurons within the 
striatum relative to that of anti-TH antibodies. Our analysis shows that DAT levels are similar in both 
14-3-3ζ +/+ and 14-3-3ζ −/− mice (Fig.  7B,C). Analysis of adult whole-brain lysates by immunoblotting 
further confirmed that DAT levels were preserved in BALB/c mice lacking 14-3-3ζ  (Fig. 7D).

Discussion
Neurodevelopmental disorders such as schizophrenia and autism are highly prevalent clinical syndromes 
affecting over 2% of the population34. Although these disorders are known to arise from neurodevelop-
mental insults, their complex genetic nature has provided a major obstacle in elucidating the molecular 
and cellular deficiencies underlying their aetiology. Indeed, schizophrenia and autism are considered 
prototypic complex genetic traits with pathogenesis arising from synergistic defects in multiple genes 
within connected molecular pathways. As such, the genetic background of any affected individual plays 
a significant role in the pathophysiology, fecundity and severity of disease presentation. Through the use 
of deep sequencing technologies, several recent publications have highlighted the presence of overlap-
ping genetic mutations in both schizophrenia and autism1, suggesting that many neurodevelopmental 
disorders share common molecular origins. Of note, exome sequencing of afflicted patients and their 
unaffected parents has recently identified de novo loss of function mutations in 14-3-3ζ in both schizo-
phrenia and autism14,15, strongly implicating this gene as a risk factor for neurodevelopmental disorders. 
Our previous analysis of 14-3-3ζ -deficient mice in the Sv/129 background provided strong support to 
this notion, showing that complete abrogation of 14-3-3ζ  expression gives rise to schizophrenia-like 
behavioural, physiological and anatomical defects20,21. Importantly, our current study now shows that 
many of these defects are conserved across other genetic backgrounds, thereby demonstrating that these 
traits arise as a direct consequence of 14-3-3ζ  deficiency.

Figure 6.  Baseline dopamine levels are conserved in 14-3-3ζ-deficient BALB/c mice. (A) Baseline DA 
and DOPAC levels, measured in the striatum by HPLC. 14-3-3ζ −/− mice (open bar; n =  12; 7 male and 5 
female), were not significantly different from 14-3-3ζ +/+ mice (closed bar; n =  10; 5 male and 5 female).  
(B) 14-3-3ζ −/− mice have the same levels of DOPAC compared to 14-3-3ζ +/+ mice. (C) Dopamine turnover 
(DOPAC/DA ratio) was conserved in 14-3-3ζ −/− mice compared to 14-3-3ζ +/+ mice.



www.nature.com/scientificreports/

9Scientific Reports | 5:12434 | DOI: 10.1038/srep12434

Figure 7.  Expression of DAT is conserved in 14-3-3ζ-deficient mice in the BALB/c background.  
(A) Sagittal brain sections stained with anti-TH (red) and anti-DAT (green) show similar levels of DAT 
in the VTA/SN of 14-3-3ζ −/− mice compared to 14-3-3ζ +/+ littermates. Higher magnification of anti-DAT 
immunostaining (inserts) in VTA/SN shows that DAT is localised normally in dopaminergic neurons. Scale 
bars =  50 μm in main figure and 20μm in the higher magnification inset figure. (B) Sagittal brain sections 
show similar levels of DAT in the striatum of 14-3-3ζ −/− mice compared to 14-3-3ζ +/+ littermates. Scale 
bars =  200μm. (C) Quantitation of anti-DAT immunostaining in the striatum normalised to anti-TH confirms 
that 14-3-3ζ −/− (open bar; n =  4) had equivalent expression of DAT compared to 14-3-3ζ +/+ mice (closed 
bar; n =  4). (D) Western blot analysis of whole brain lysate shows that proteins levels of unglycosylated DAT 
(50 kDa) and glycosylated DAT (80 kDa) are equivalent in 14-3-3ζ −/− (n =  2) 14-3-3ζ +/+ mice (n =  2).
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In addition to replicating the hippocampal structural defects, mossy fibre navigation defects and cog-
nitive defects previously seen in the Sv/129 background, our current study identified critical roles for 
14-3-3ζ  in promoting formation of the lateral ventricle and excitatory synapses. 14-3-3 regulatory pro-
teins lack enzymatic activity but instead exert their functions by binding to substrate proteins that are 
phosphorylated on serine/threonine residues to modify their localisation, stabilisation and/or biological 
property. Our finding that pyramidal neurons of the hippocampus are ectopically positioned in 14-3-
3ζ −/− mice suggests that the role of 14-3-3ζ  in promoting pyramidal neuron migration is conserved 
across genetic backgrounds. Moreover, the interactions of 14-3-3ζ  with DISC1 and Ndel120,35 further 
implicate this protein as a key component of the migratory machinery within this cell type. BALB/c 
14-3-3ζ −/− mice also had reduced dendritic spine density demonstrating that the number of excitatory 
synapses is reduced in these mice. Consistent with 14-3-3ζ  playing an essential role in synapse formation, 
transgenic mice over-expressing 14-3-3ζ  have been shown to have increased spine density36. Although it 
is currently unknown how 14-3-3ζ  regulates spine density, it binds to several proteins found in the post 
synaptic density including HOMER, DISC1 and SPIN9020,37,38, and plays a critical role in modulating 
actin polymerisation by binding to cofilin39. Notably, mice lacking cofilin or other 14-3-3ζ  interact-
ing partners such as DAT, Ndel1 and Lis1 have reduced dendritic spine density reminiscent of what is 
reported here40,41.

Retrospective analysis of sections from 14-3-3ζ −/− mice in the Sv/129 background confirmed that 
the enlarged lateral ventricle is specific to the BALB/c background (data not shown), indicating that 
there is a genetic modifier in one of these backgrounds that either ameliorates or enhances this defect. 
Alternatively, as the brain size of BALB/c mice has been reported to be larger in comparison to other 
backgrounds42, the enlarged ventricles in the 14-3-3ζ −/− mice may be exacerbated in this background. 
Ventricular enlargement is a common occurrence in many neurodevelopmental disorders and thought 
to arise from aberrant cell death or reduced neurogenesis43. Although we can not rule out aberrant cell 
death as the mechanism driving ventricular enlargement, its foundations during a time at which the 
brain is rapidly expanding fits best with a primary defect in neurogenesis, possibly through interactions 
with 14-3-3ε  and δ -catenin44.

The learning and memory defects previously identified in the Sv/129 background are also conserved 
in the BALB/c model20 and are consistent with the anatomical and synaptic defects identified in the 
hippocampus, a major brain centre essential for these functions. However, in contrast to these cognitive 
defects we did not observe altered locomotor function in the BALB/c model. Our previous analyses 
demonstrated that hyperactivity in 14-3-3ζ −/− mice arose from aberrant DAT biogenesis and increased 
dopamine levels21. BALB/c mice have known differences in the dopamine signalling pathway that may 
arise from reduced expression of the monoamine oxidase enzymes MAO-A and MAO-B that also play 
a role in dopamine turnover45. Due to reduced activity of monamine oxidases, the tissue content of 
dopamine is increased in the BALB/c background, a defect that is thought to underpin some of the 
increased anxiolytic behavioural defects of these mice46. In addition, BALB/c mice respond poorly to 
psychostimulants such as amphetamine23. Given amphetamines primary mode of action is to block dopa-
mine reuptake by DAT and subsequently promote dopamine efflux, there also appears to be fundamental 
differences in either the activity or biogenesis of DAT in the BALB/c background. In our current study 
we found that dopamine levels, DAT and locomotor function were normal in mice lacking 14-3-3ζ . 
Notably, in comparison to our previous study we found that BALB/c mice have a dramatic increase in 
total tissue content of dopamine (i.e. Sv/129 mice had approximately 125 pmol/mg tissue21 compared 
with BALB/c mice that had approximately 6200 pmol/mg tissue) that may also mask any effects of 14-3-
3ζ  in regulating the dopamine pathway. By showing that DAT levels are unaltered in the current model, 
our results further suggest that the genetic background of BALB/c mice is somehow protective against 
the loss of DAT expression observed in other 14-3-3ζ -deficient backgrounds, such as 14-3-3ζ −/− Sv/129 
mice. Thus, the mechanisms by which 14-3-3ζ  plays a role in DAT biogenesis may be genetically het-
erogeneous, or there may be potentially greater redundancy for 14-3-3ζ  function with respect to DAT 
biogenesis in BALB/c mice.

Taken together our data provide further support to the notion that deficiencies of the synapse are 
a key insult in the pathogenesis of behavioural deficits associated with neurodevelopmental disorders. 
Importantly, our analyses of 14-3-3ζ -deficiency in diverse genetic backgrounds, now demonstrates that 
14-3-3ζ  is essential for brain development and higher order brain function. Absence of the 14-3-3ζ  
molecular pathway during critical times of neuronal development is therefore predicted to underlie at 
least some of the anatomical and neurobehavioral deficits associated with neurodevelopmental disorders 
such as schizophrenia.

Materials and Methods
Mice.  14-3-3ζ Gt(OST062)Lex (or 14-3-3ζ −/−) mice carrying a gene trap construct that contains the 
β Geo reporter gene disrupting 14-3-3ζ  expression have been described previously20. In this study we 
back-crossed 14-3-3ζ  KO mice onto the BALB/c background for over 10 generations. 14-3-3ζ geno-
type was determined by PCR amplification of genomic tail DNA as described20. All experiments were 
approved by and conducted in accordance with the guidelines of the Animal Ethics Committee of the 
Central Adelaide Local Health Network, the University of Adelaide and Florey Institute of Neuroscience 
and Mental Health.
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General health and basic sensorimotor characteristics.  General physical attributes and basic 
sensorimotor characteristics of all animals were evaluated as previously described47,48. In brief, at the 
time body weight was measured, the appearance of fur and body posture were also examined. Vision 
was tested by placing mice on a visual cliff apparatus and by testing the ability of mice to stretch their 
arms to the surface upon being lowered from a 30 cm height. Olfaction was tested by the ability to locate 
buried cat food pellets in a clean cage in a period of 2 minutes. Balance was tested by the ability to remain 
standing in a shaking cage. Self-righting was tested by the ability to immediately return to a standing 
position after being placed on their back. Eye blink, ear twitch and whisker orientation were tested by 
touching the eyeball, ear or whiskers with a cotton swab. The wire-hang test was completed by placing 
mice on a wire cage lid and measuring the latency to fall after being inverted and held 15 cm above fresh 
bedding (maximum time of 60 sec).

Behavioural assays.  Except where indicated, all procedures were carried out under normal light 
conditions (60–100 Lux) between 8.00 am and 12.00 pm. Behavioural phenotyping was performed on 
the 14-3-3ζ −/− and 14-3-3ζ +/+ BALB mice as previously described49–51. One cohort of mice was used 
for locomotor hyperactivity testing and measurements of dopamine/DOPAC levels at 3 months of age 
(14-3-3ζ +/+: n =  5 male and n =  5 female; 14-3-3ζ −/−: n =  5 males and n =  7 females). Separate cohorts 
of mice were used at the age of 35 weeks for the novel-object recognition test and elevated zero maze 
(14-3-3ζ +/+: n =  9 male and n =  6 female; 14-3-3ζ −/−: n =  7 males and n =  6 females) and at 28 weeks 
for the elevated plus maze and cross escape water maze (14-3-3ζ +/+: n =  4 male and n =  4 female; 14-3-
3ζ −/−: n =  8 males and n =  4 females).

Psychotropic drug-induced test of locomotor activity.  Baseline locomotor activity and psycho-
tropic drug-induced locomotor hyperactivity were assessed using an automated photobeam system (Med 
Associates, St. Albans, VT, USA). The system consisted of a mouse enclosure (25.4 ×  25.4 ×  40.6 cm) 
surrounded by a sensor-ring that included a 16 ×  16 array of photobeams, and a computerized 
data-acquisition system. After 60 min of baseline locomotor activity and habituation to the test environ-
ment, amphetamine (5 mg/kg) or saline vehicle was injected intraperitoneally and behavioural activity 
monitored over a subsequent 120 min period.

Novel-object recognition test.  The novel-object recognition test was completed in the same appa-
ratus as the open-field test as previously reported52–54. In brief, mice were first habituated to the appa-
ratus for three sessions of 5 minutes each (open field test). The following day, mice were placed back 
into the arena for a period of 3 minutes, for the training session with 2 identical objects. Objects were 
black painted wooden cubes or spheres, approximately 4 cm in diameter. Following the training session 
(15 min), mice were placed back into the arena, for the retention session with 1 familiar object (the 
same as used in the training session) and 1 novel object (different shape). Time spent interacting with 
the 2 objects (defined as mice touching the object, or sniffing the object within a distance of 2 cm) was 
recorded. Total time spent interacting with objects was used as a measure of exploratory behaviour, and 
time spent interacting with the novel object compared to the familiar object was used as a measure of 
retention memory. A preference index, a ratio of the amount of time spent exploring the novel object 
over the total time spent exploring both objects, was used to measure recognition memory. A preference 
index approaching 1 was regarded as successful learning and retention memory.

Escape water maze test.  Spatial learning and memory was assessed using a cross-maze escape task 
as previously described49. The cross maze was made of clear plastic (length, 72 cm; arm dimensions, 
length 26 cm x width 20 cm) and placed in a circular pool of water (1 m diameter) maintained at 23°C. 
Milk powder was mixed with water-soluble black paint in the water to conceal a submerged (0.5 cm 
below the water surface) escape platform placed in the distal north arm of the maze. The pool was 
enclosed by a black plastic wall (height, 90 cm). Constant spatial cues were arranged at each arm of the 
maze and the experimenter always stood at the southern end of the apparatus during the training and 
testing procedures. Mice were individually habituated to the maze environment by being placed into the 
pool without the escape platform and allowed to swim for 60 s 2 days prior to learning. Learning trials 
were then conducted over a 5-day training period in which mice were required to learn the position of 
the submerged escape platform from the other three (East, South, West) arms that did not contain an 
escape platform. Each mouse was given six daily trials (two blocks of three trials separated by a 30 min 
rest interval), in which each of the three arms was chosen as a starting point in a randomized pattern 
(twice daily). For each trial, the mouse was placed in the distal end of an arm facing the wall and allowed 
60 s to reach the escape platform where it remained for 10 s. Mice that did not climb onto the escape 
platform in the given time were placed on the platform for 10 s. The mouse was then placed in a clean 
holding cage before subsequent trials. Mice were assessed on their long-term retention of the escape 
platform location, which was placed in the same position as during the learning phase. Memory was 
tested 14 (M1) and 28 (M2) days after the final day of learning and consisted of a single day of 6 trials 
as described for the learning period. Data were recorded for each mouse for each trial on their escape 
latency (i.e. time (s) taken to swim to the platform), number of correct trials (i.e. if a mouse found the 
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platform on the first arm entry) and number of incorrect entries/reentries (i.e. the number of times that 
a mouse went into an arm that did not contain the escape platform).

Elevated Zero Maze.  The elevated zero maze consisted of an elevated circular platform, 50 cm diam-
eter, with a 5 cm wide platform 40 cm above ground. The zero was divided into four quadrants with two 
quadrants of the maze open and two enclosed with 15 cm high walls. Mice were placed into an open 
quadrant of the maze and were allowed to explore the apparatus for 5 minutes55. Time spent in the open 
quadrants was measured as an indication of anxiety-like behaviour.

Elevated plus maze test.  The elevated plus-maze was completed as previously described56,57. Briefly, 
the apparatus was made in the shape of a cross from black plexiglass and consisted of two open arms 
(25 cm x 5 cm) and two closed arms (25 cm x 5 cm x 16 cm) that crossed in the middle perpendicular 
to each other. The plus maze was raised 1 m from the ground. Individual mice were introduced to the 
centre of the apparatus, facing the open arm opposite to the experimenter, and were observed by video 
recording for 5 minutes. The number of entries into the open and closed arms, and the time in exploring 
both types of arm were scored. Naturalistic behaviour of the mouse, such as the number of head dipping, 
number of rearing and number of stretch-attended postures were also counted. After each trial, the maze 
was thoroughly cleaned with alcohol to remove any scents cues.

Histology and Immunohistochemistry.  For all anatomical analyses, postnatal mice were perfuse 
fixed with fresh 4% paraformaldehyde (PFA) dissolved in PBS as previously described58. Brains were 
rapidly dissected free from other tissue and post fixed in 4% PFA for an additional 24 hrs at 4°C. Tissue 
was cryopreserved in 20% sucrose at room temperature (RT) overnight and frozen in Tissue-Tek O.C.T. 
(Sakura Finetek, Torrance, CA). Sections were cut at a thickness of 10μ m on a CM1850 cryostat (Leica) 
and air-dried for 60 min before staining.

Nissl staining and determination of β -galactosidase activity was performed using previously described 
methods59,60. For immunohistochemistry, sections were blocked in 10% non-immune goat serum or 1% 
bovine serum albumin in PBST (0.1 M PBS, 0.3% Triton X-100, 1% BSA) for 1 h at RT and subsequently 
incubated with primary antibodies for 1 h at RT. Primary antibodies and dilutions: rabbit polyclonal 
to calbindin-D28K (1:1000, Chemicon), mouse monoclonal to NeuN (1:500, Chemicon), rabbit poly-
clonal to TH (1:200; Millipore), rat monoclonal to DAT (1:20, Santa Cruz). Sections were washed several 
times with PBST and then incubated with 1:200 dilution of Alexa Fluor labelled secondary antibodies 
(Molecular Probes) or streptavidin labelled secondary antibodies (Jackson Laboratories) for 1 h at RT. 
After 3 washes in PBST, fluorescent sections were mounted in Prolong®  Gold antifade reagent with DAPI 
(Molecular Probes).

Image analysis.  Low resolution images were recorded on an SZX10 stereo microscope (Olympus) 
equipped with a Micropublisher 3.3 digital camera (Q-Imaging) and processed with OpenLab 2.2 soft-
ware (Improvision). High resolution images were captured on a LSM700 confocal microscope (Zeiss). 
All figures were constructed in Adobe Photoshop CS3 (Adobe Systems, Inc.). Quantification of DAT and 
TH expression from confocal immunofluoresecence images was completed as described previously61. 
Briefly, images were split into separate channels for TH or DAT, converted to binary images and used 
for fluorescence intensity calculations with an Image J area calculator macro designed to detect staining 
in confocal image slices.

Immunoblotting.  Nitrocellulose membranes were blocked with 2% skim milk powder in PBST and 
immunoblotted with Rat anti-DAT (1:500, Santa Cruz) and Mouse anti-14-3-3ζ  (1:1000, Santa Cruz) 
(Ramshaw et al., 2013). Rabbit polyclonal against β -actin (1:5000, Millipore) was used as a loading con-
trol. Bound antibodies were detected with HRP-conjugated secondary antibody (1:5,000, Pierce-Thermo 
Scientific). Immunoreactive proteins were visualized by ECL (Luminescent Image Analyzer LAS-4000, 
Fujifilm, Japan). The images were analysed with Multi Gauge Ver3.0 (Fujifilm, Japan).

Detection of Dopamine.  Dopamine and DOPAC levels in the striatum, hypothalamus and cortex 
were determined using HPLC as previously described62. For tissue preparation, small biopsies were dis-
sected out on a chilled plate, weighed, and placed in 200 μ l 0.4 M perchloric acid (HClO4) containing 
0.05% sodium metabisulphate (Na2S2O5) and 0.01% disodium EDTA. The sample tissue was homoge-
nized, cellular and vesicular membranes disrupted using a sonicator and finally stored at 70 °C. On the 
day of analysis, all samples were centrifuged at 10,500 g for 10 minutes and filtered though minispin 
filters for an additional 3 minutes at 10,000 rpm. The resultant supernatant was transferred to HPLC 
vials and placed in an autosampler for injection onto the HPLC. The HPLC consisted of a LC-20AT 
pump (Shimadzu), SIL-20A Autosampler (Shimadzu) and C18 reverse phase column (Bio-Rad, Hercules, 
USA). Detection was via a 3 mm VT-03 flow cell with glassy carbon working electrode (Antec Leyden) 
and Decade II Electrochemical Detector (Antec Leyden). The mobile phase consisted of 17% v/v metha-
nol in purified deionized water containing 70 mM KH2PO4 (Merck), 0.5 mM EDTA (Merck) and 8.0 mM 
sulfonic acid (Merck), pH 3.0 and was run at a flow rate of 0.5 ml/min.
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Biolistic gene gun labelling and quantitation of dendritic spines.  Perfused brain samples were 
sliced at 200 μ m with a Leica VT1200 vibratome (Leica) and shot with 30 μ m gold particles labelled with 
lipophilic tracers DiI and DiO as previously described63. Images were acquired at 100X magnification on 
an LSM 700 Zeiss confocal microscope (Zeiss) using z-stack settings overlapping at least 10% between 
images. Spines were counted from over 50 3D reconstructed images from between 100–500 um from 
the cell body from each mouse using Neuron Studio and confirmed by manual counting64. Spines were 
counted from both the CA3 subfield and dentate gyrus from 3 adult mice/genotype. The CA3 subfield 
and dentate gyrus regions were identified through gross morphology after staining with DAPI.

Quantitative RT-PCR.  Total RNA was isolated from total brains using Trizol (Ambion) and single 
stranded cDNA synthesised using the QuantiTect Reverse transcription kit (Qiagen). qPCR was performed 
with SYBR Green reagent (Qiagen) using the Rotor-Gene 6000 real-time PCR system (Corbett Life Science). 
Primers used were: GAPDH F: ACCCAGAAGACTGTGGATGG, R: CAGTGAGCTTCCCGTTCA; 14-
3-3ζ F: AACTGTATGGTGCCCTTCTGTGG, R: CATTCGTAGTTGTTGTTGCCCCG. Relative mRNA 
levels were quantified using the comparative quantitation method in Rotor-Gene 6000 Series Software. 
Relative mRNA levels were normalised to GAPDH. Each PCR was performed in technical triplicates, and 
each experiment was performed in at least three biological replicates for each genotype.

Statistical analysis.  All data were presented as mean ±  SEM. Behavioural experiments were analysed 
using two-way analysis of variance (ANOVA) with repeated measures where appropriate (Systat, version 
9.0, SPSS software; SPSS Inc., USA). Neurochemical data and expression analyses were analysed using 
ANOVA and Student’s t-test. In all studies a p value of < 0.05 was considered to be statistically significant.
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Clozapine is an atypical antipsychotic drug used in the treatment of schizophrenia, which has been shown to re-
verse behavioural and dendritic spine deficits in mice. It has recently been shown that deficiency of 14-3-3ζ has
an association with schizophrenia, and that a mouse model lacking this protein displays several schizophrenia-
like behavioural deficits. To test the effect of clozapine in this mouse model, 14-3-3ζ KOmice were administered
clozapine (5mg/kg) for twoweeks prior to being analysed in a test battery of cognition, anxiety, and despair (de-
pression-like) behaviours. Following behavioural testing brain samples were collected for analysis of specific an-
atomical defects and dendritic spine formation. We found that clozapine reduced despair behaviour of 14-3-3ζ
KO mice in the forced swim test (FST) and altered the behaviour of wild types and 14-3-3ζ KO mice in the Y-
maze task. In contrast, clozapine had no effects on hippocampal laminar defects or decreased dendritic spine den-
sity observed in 14-3-3ζKOmice. Our results suggest that clozapinemay have beneficial effects on clinical behav-
iours associated with deficiencies in the 14-3-3ζmolecular pathway, despite having no effects onmorphological
defects. These findings may provide mechanistic insight to the action of this drug.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Clozapine is an atypical antipsychotic and is considered themost ef-
fective treatment for schizophrenia (Leucht et al., 2013). Due to its high
risk of serious side effects and the need for clinical monitoring, it is only
used in patients who are resistant or intolerant to other antipsychotic
drugs (Essali et al., 2009; Meltzer, 2010; Fakra and Azorin, 2012). The
exact pharmacological, morphological, and molecular mechanisms
throughwhich clozapine exerts its antipsychotic action are not fully un-
derstood. It is clear that in addition to its known neurochemical activity
at several dopaminergic, serotonergic and cholinergic sites (Fakra and
Azorin, 2012), additional effects on molecular pathways and brain cell
morphology contribute to clozapine's superior clinical efficacy
(Ertugrul et al., 2009) (Ozcelik-Eroglu et al., 2014) (Sharp et al., 2013)
(Rizig et al., 2012).

Recent evidence from animalmodels of schizophrenia-like disorders
(Jones et al., 2011; Pratt et al., 2012) suggests that trophic effects on
dendritic spine morphology and function could represent an important
ity of Adelaide, Adelaide, South

. Baune).
authors.
and clinically relevant mechanism of clozapine action. Dendritic spine
deficits are a neuropathological hallmark of schizophrenia and related
disorders in humans (Glantz and Lewis, 2000; Penzes et al., 2011;
Konopaske et al., 2014). Clozapine has been shown to rescue the den-
dritic spine deficiency observed in cultured neurons of Erb/B2/B4-
deficient mice (Barros et al., 2009), increases dendritic spine density
in rat hippocampal neurons in vitro (Critchlow et al., 2006), and en-
hances neurite growth in PC12 cells (Lu andDwyer, 2005). Additionally,
clozapine appears to reverse some behavioural deficits observed in
mouse models associated with dendritic spine deficits, including the
Erb/B2/B4- and Kalirin-knock out models (Barros et al., 2009; Cahill
et al., 2009).

Our group has recently developed the 14-3-3ζ knock-out (KO)
model of schizophrenia-like disorders. The 14-3-3 family of proteins
consist of seven isoforms (β, γ, ε, η, ζ, σ and θ) that are abundantly
expressed in the developing and adult brain. 14-3-3 proteins lack enzy-
matic activity but exert their effects by binding to specific phospho-
serine/threonine residues on target proteins to modulate their
activity and/or localisation. Several studies have shown that the
isoform14-3-3ζ has an association with schizophrenia and related
neurodevelopmental disorders on the gene- (Jia et al., 2004; Fromer
et al., 2014; Toma et al., 2014), gene expression- (Middleton et al.,
2005; Wong et al., 2005), and protein level (Sivagnanasundaram et al.,
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2007; English et al., 2009; Focking et al., 2011; Schubert et al., 2015).We
found that 14-3-3ζ KO mice display several schizophrenia-like behav-
ioural deficits such as hyperactivity and disrupted sensorimotor gating,
impaired novel object recognition, impaired learning in a water cross-
maze escape task, and lower levels of anxiety in the elevated plus
maze (Cheah et al., 2012). As previously reported, we found that cloza-
pine ameliorated hyperactivity in 14-3-3ζ KO mice (Ramshaw et al.,
2013). Anatomically, we have identified neuronal migration defects,
disrupted mossy fibre circuits, and aberrant synaptic terminals in the
hippocampi of 14-3-3ζ KOmice (Cheah et al., 2012). Molecular investi-
gations suggest that 14-3-3ζ forms a central hubwithin the schizophre-
nia protein interaction network through interactions with
schizophrenia risk genes including disrupted-in-schizophrenia 1
(DISC1), Ndel1, Lis1 and tyrosine hydroxylase (Toyo-oka et al., 2003;
Cheah et al., 2012; Tomaet al., 2014), and that 14-3-3ζ plays anessential
role in dopamine neurotransmission by controlling the abundance of
the dopamine transporter DAT (Ramshaw et al., 2013).

The first aimof the present studywas to determinewhether 14-3-3ζ
KO mice display the dendritic spine pathology found in other animal
models of schizophrenia-like disorders, and whether such changes
could be rescued by clozapine. Secondly, we explored the effect of 14-
3-3ζ deficiency on a comprehensive battery of behavioural tests for
cognition-, anxiety- and depression-like behaviours, and examined
whether clozapinewould reverse any changes seen in these behaviour-
al tests.We hypothesised that wewould find changes in dendritic spine
morphology in 14-3-3ζ KOmice, and that clozapinewould reverse both
the neurobehavioural and anatomical defects demonstrated in these
animals.

2. Materials and methods

2.1. Mice

14-3-3ζGt(OST062)Lex(14-3-3ζ KO) mice on a SV129 background car-
rying a gene trap construct that contains the βGeo reporter gene
disrupting 14-3-3ζ expression, have been described previously (Cheah
et al., 2012). 14-3-3ζ genotype was determined by PCR amplification
of genomic tail DNA as described (Cheah et al., 2012). 37 mice were
used for drug treatment experiments of which all took part in behav-
ioural studies and 24 used for structural analyses. A parallel non-drug
treatment and non-behavioural tested cohort of 8 (WT, n = 4, 2 male
and 2 female; KO, n = 4, 2 male and 2 female) animals was also used
to quantitate dendritic spines. The mean age of each treatment group
was 28.8 ± 3.8, 31.4 ± 3.4, 25.9 ± 4.3 and 31.8± 4.0weeks old respec-
tively for WT-vehicle, WT-clozapine, KO-vehicle and KO-clozapine. All
experimental mice were housed in groups of 2–6 in individually venti-
lated cages during the experimental period, with food and water avail-
able ad libitum. Ambient temperature of the housing and testing rooms
was 22 ± 1 °C. Mice were housed under a 12-h light–dark cycle, lights
on at 07:00 h, and all behavioural testing was conducted between
08:00 and 16:00 h. All experimentationwas approved by and conducted
in accordance with the guidelines of the University of Adelaide Animal
Ethics Committee and Animal Ethics Committee of the SA Pathology/
Central Adelaide Local Health Network (CALHN) and followed the
Australian code of practice for the care and use of animals for scientific
purposes.

2.2. Drug preparation

Clozapine was obtained from Sigma Aldrich (St Louis, MO) and was
dissolved in HCl and diluted in sterile water (Williams et al., 2012). Ve-
hiclewas prepared in an identicalmannerwithout the addition of cloza-
pine. Concentrated aliquots of both clozapine and vehiclewere stored at
−20 °C. Aliquots were thawed and diluted to their final concentration
in sterile saline on the day of dosing. Solutions were buffered with
NaOH to achieve a final pH of 6.5–7.5.
2.3. Experimental plan

Mice were given clozapine (5 mg/kg) or vehicle (i.p. at a dose vol-
ume of 10 ml/kg) daily for 14 days prior to behavioural testing based
on previous papers which showed similar doses were able to decrease
motor activity (Wolf et al., 2007; Dawe et al., 2010), while higher
doses can lead to increased inflammation which could produce illness
behaviour and interfere with behavioural testing (Wang et al., 2008).
Dosing was continued for a further 11 days throughout the behavioural
testing period, with dosing always conducted between 3:30 and 5 pm,
following any behavioural testing. Of the 37 mice used 10 WT (3 male
+7 female) and 9 KO (3 male +6 female) mice were given vehicle
while 10 WT (4 male +6 female) and 8 KO (4 male +4 female) mice
were given clozapine.Micewere tested in a variety of cognition, anxiety
and depression-like behavioural tests in the order open field, elevated
zero maze (EZM), Y-maze, tail suspension test (TST) and forced swim
test (FST), withmore stressful tests completed at the end, similar to pre-
vious studies (Jaehne and Baune, 2014). All mice underwent testing in
each behavioural test, with 1–2 days of rest between each test. An imag-
ing programme (ANY-maze, USA) was used to track movements, and
was used for all behavioural testing. All behavioural equipment was
purchased from Stoelting Co (USA). Following behavioural testing
mice were culled and brains collected for analysis of anatomical defects
in the hippocampus (WT, n = 6, 3 vehicle, 3 clozapine treated, 1 male
and 2 females per group; KO, n = 6, 3 vehicle, 3 clozapine treated, 1
male and 2 females per group) or dendritic spine analysis (WT, n = 6,
3 vehicle, 3 clozapine treated, 1 male and 2 females per group; KO,
n = 6, 3 vehicle, 3 clozapine treated, 1 male and 2 females per group).
2.4. Histology and immunohistochemistry

Following behavioural analyses, all mice were perfuse fixed with
fresh 4% paraformaldehyde (PFA) dissolved in PBS as previously de-
scribed (Cheah et al., 2012). Brains were rapidly dissected free from
other tissue and post fixed in 4% PFA for an additional 24 h at 4 °C. Tissue
was cryopreserved in 20% sucrose at room temperature (RT) overnight
and frozen in Tissue-Tek O.C.T. (Sakura Finetek, Torrance, CA). Sections
were cut at a thickness of 10 μm on a CM1850 cryostat (Leica) and air-
dried for 60 min before staining.

For immunohistochemistry, hippocampal sections were blocked in
10% non-immune goat serum or 1% bovine serum albumin in PBST
(0.1 M PBS, 0.3% Triton X-100, 1% BSA) for 1 h at RT and subsequently
incubated with primary antibodies for 1 h at RT. Primary antibodies
and dilutions: rabbit polyclonal to calbindin (1:500;Millipore). Sections
were washed several times with PBST and then incubated with 1:200
dilution of Alexa Fluor labelled secondary antibodies (Molecular
Probes) for 1 h at RT. After 3 washes in PBST, fluorescent sections
weremounted in Prolong®Gold antifade reagentwith DAPI (Molecular
Probes).

Golgi stains were completed using the FD Rapid GolgiStain kit
(NeuroTechnologies), according to the manufacturer's protocol. Briefly,
brains were rapidly dissected from animals and placed into impregna-
tion solution for 2 weeks before being sliced at 200 μm with a Leica
VT1200 vibratome (Leica). Hippocampal tissue slices were stained and
mounted in Leica CV mount (Leica). Images were captured with a 40×
objective plus 1.6× magnification on an IX81 inverted microscope
(Olympus) with bright field settings. For spine density quantification,
the number of spines along equivalent lengths of dendritic segments
proximal to the cell body was counted on layer V cortex neurons. All
counts were performed on de-identified samples. The hippocampal
brain region was chosen for these analyses as prior studies had identi-
fied structural defects in this region in the absence of gross anatomical
defects in other regions of the brain (Cheah et al., 2012). In addition,
the hippocampus plays central roles in cognition and emotion-like be-
haviour (Sweatt, 2004).
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2.5. Biolistic labelling and quantitation of dendritic spines

Perfused brain samples were sliced at 200 μm with a Leica VT1200
vibratome (Leica) and shot with 30 μmgold particles labelledwith lipo-
philic tracers DiI, DiA or DiO as previously described (Gan et al., 2000).
Images were taken at 100×magnification on an LSM 700 Zeiss confocal
microscope (Zeiss). Spineswere counted fromover 30 3D reconstructed
images from between 100 and 500 μm from the cell body from each
mouse.

2.6. Behavioural testing procedures

2.6.1. Emotion-like behaviour

2.6.1.1. Tail suspension test: despair (depression-like) behaviour. The TST
consists of a horizontal bar with a large hook hanging below which
the mouse is attached to by the tail using tape. Mice, which climb
their tail, are excluded from results. Mice are attached to the apparatus
for 6 min, and immobility is measured as an indication of despair and
depression-like behaviour according to published protocols (O'Leary
and Cryan, 2009).

2.6.1.2. Forced swim test: despair (depression-like) behaviour. The FST
consists of a circular container, 45 cm high, with a diameter of 20 cm,
which is filled with water to approximately halfway. Mice were placed
in the water for 6 min and immobility timewas measured as an indica-
tion of despair and depression-like behaviour according to published
protocols (Porsolt et al., 1977; Petit-Demouliere et al., 2005).

2.6.1.3. Open field. Mice were placed into a brightly lit square arena,
40×40 cm,with clearwalls 35 cmhigh for 5min according topublished
protocols (Gould et al., nd; Baune et al., 2008; Hart et al., 2010). The floor
was divided into inner and outer zones. Time spent in the centre of the
open field was measured as an indication of anxiety-like behaviour.

2.6.1.4. Elevated zero maze: anxiety-like behaviour. Mice were placed in
an open quadrant of the EZM, which is an elevated circular platform,
50 cm diameter, with a 5 cm wide platform 40 cm above ground. 2
quadrants are open, and 2 are enclosed with walls 15 cm high. Mice
were allowed to explore the apparatus for 5min according to published
protocols (Shepherd et al., 1994), and time spent in the open quadrants
was measured as an indication of anxiety-like behaviour (time in open
arms is calculated as: time in open arm — latency to enter closed
arm). Mice that spend more time in the open arms are considered to
be less anxious. Distance travelled and number of head dips, defined
as mice stretching their head out of a closed arm and dipping it over
the edge of an open arm toward the floor, were also measured.

2.6.2. Cognition-like behaviour

2.6.2.1. Y-maze: spatial recognitionmemory.Micewere placed in the start
arm of the Y-maze, which is a Y-shaped apparatus, with three arms
(start arm and 2 test arms), each 35 cm long and 5 cm wide, with
walls 10 cm high. The arms are at a 120° angle from each other, and
the 2 test arms have different coloured pieces of tape on the inside
walls. The left arm had horizontal, black stripes while the right arm
had vertical yellow stripes of tape on the light grey walls. Testing was
conducted according to published protocols (Dellu et al., 1992). During
the training phase, one of the test arms was blocked off, and mice were
allowed to explore the start arm and open test arm for 10 min. Half of
themice had access to the right test arm,while the other half had access
to the left test arm to control for any possible side preference. 30 min
later, they were placed back in the Y-maze for 5 min, with all 3 arms
open. Time spent in the novel armwas used as a measure of spatial rec-
ognition memory. A preference index, a ratio of the amount of time
spent in the novel test arm over the total time spent in the novel and
familiar test arms, was used to measure recognition memory. A prefer-
ence index approaching 1 was regarded as successful learning and re-
tention memory. As all mice started the test in the same arm (start
arm) time spent in this arm was not analysed.

2.7. Statistical analysis

Analyses were completed with GraphPad Prism statistical software
(version 5.01). Comparisons between groups for results of behavioural
data were performed using two-way ANOVA, with Bonferroni post
hoc analysis when a significant effect was seen, as stated throughout
the results. Histology and immunohistochemistry results were com-
pared using Student's t-test. Results are presented as mean ± SEM
and p b 0.05 taken as significant.

3. Results

3.1. 14-3-3ζ KO mice display dendritic spine defects and
neurodevelopmental changes in the CA3 and dentate gyrus regions of the
hippocampus and cortex

To analyse spinemorphologywe labelled individual neurons infixed
vibratome sections with biolostic delivery of lipohilic fluorescent dyes
(DiI, DiD and DiO). Spines from secondary apical dendrites on hippo-
campus CA3 pyramidal neurons were quantitated from 3D reconstruct-
ed confocal images. Consistent with 14-3-3ζ KO mice modelling the
phenotype of schizophrenia and related disorders, our analysis identi-
fied significant decreases in spine formation at P45 (Fig. 1A-B; WT,
n = 4; KO, n = 4; P = 0.002). Neuronal complexity was also visualised
by golgi stain in thick vibratome sections. Our analysis confirmed synap-
tic defects in the hippocampus and further revealed notable spine dif-
ferences in cortical layer V pyramidal neurons (Fig. 1C).

We have previously shown that 14-3-3ζ KO mice have mild neuro-
nal positioning and axonal guidance defects that are restricted to the
hippocampus (Cheah et al., 2012), and confirmed these findings in the
hippocampus of 14-3-3ζ KO mice examined for the present study.

3.2. In-vivo treatment with clozapine does not rescue dendritic spine defi-
cits and neuronal lamination defects in 14-3-3ζ KO mice

As clozapine has been hypothesised to rescue dendritic spine deficits
in some animal models of schizophrenia-like disorders (Barros et al.,
2009) we examined the drug's effects on spine morphology in 14-3-3ζ
KO mice. Our analysis of hippocampal pyramidal neurons shows that a
25-day treatment regimewith clozapine does not modify spine density
in either WT or KO neurons (Fig. 2A–B).

Additionally, analysis of Nissl staining (Fig. 3A) and immunostaining
of calbindin (Fig. 3B) found that misplaced pyramidal neurons and
mossy fibre navigation are not affected by clozapine treatment in either
WT (n = 6, vehicle 3, clozapine treated 3, 1 male and 2 females per
group) or KO mice (n = 6, vehicle 3, clozapine treated 3, 1 male and 2
females per group).

3.3. Despair (depression-like) behaviour is not affected by 14-3-3ζ KO; clo-
zapine affects despair behaviour in 14-3-3ζ KO but not in WT mice

3.3.1. Despair (depression-like) behaviour: tail suspension and forced swim
tests

Two-way ANOVA of TST immobility time (Interaction F(1,27) = 0.62,
P = 0.44, treatment F(1,27) = 2.76, P = 0.11, Genotype F(1,27) = 0.50,
P = 0.49) showed no significant differences in despair-type behaviour
between groups (Fig. 4A). However, two-way ANOVA of FST immobility
time (Fig. 4B) showed significant effects of interaction (F(1,30) = 6.04,
P = 0.02), treatment (F(1,30) = 4.39, P = 0.04) and genotype
(F(1,30) = 5.89, P = 0.02). Bonferroni post hoc analysis of treatment ef-
fect showed that clozapine decreased immobility time in KOmice (P=



Fig. 1. A) Pyramidal neurons in the cornu ammonis layer 3 (CA3) of the hippocampus have reduced dendritic spines in 14-3-3ζ KO mice. Scale bar = 5um. B) Quantitation of data in
A) shows that 14-3-3ζ KO mice (open bar; n = 4, 2 female, 2 male, over 30 dendrites counted/mouse) have significantly reduced dendritic spines compared to WT (closed bar; n = 4,
2 female, 2 male). C) High magnification of dendritic spines of layer V cortical pyramidal neurons with golgi stain reveals reduced spine numbers. Scale bar = 5um.
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0.0076) but notWTmice (P N 0.99), while post hoc analysis of genotype
effect showed that clozapine treated KO mice had a significantly lower
immobility time than clozapine treated WT mice (P = 0.0026). These
results indicate that clozapine may reduce despair behaviours specifi-
cally in 14-3-3ζ KO mice; however, we found significant effects only
in one of the two despair tests carried out.

3.4. Anxiety-like behaviours are not affected by 14-3-3ζ KO or clozapine
treatment

3.4.1. Open field: anxiety-like behaviour
In the openfield test (Fig. 4C) therewere no significant differences in

time spent in the centre of the open field between any groups as
analysed by two-way ANOVA (Interaction F(1,29) = 0.54, P = 0.47,
Treatment F(1,29) = 0.30, P = 0.59, Genotype F(1,29) = 0.78, P = 0.38),
indicating no differences in anxiety levels in this test.

3.4.2. Elevated zero maze: anxiety-like behaviour
In the EZM, no differences were seen in anxiety levels as shown by

(Fig. 4D) two-way ANOVA of time in open arms (Interaction F(1,33) =
1.16, P = 0.29, Treatment F(1,33) = 0.001, P = 0.97, Genotype
F(1,33) = 0.05,P = 0.83). There was also no difference in total distance
travelled (WT-vehicle 11.1 ± 0.93, WT-clozapine 10.8 ± 1.06, KO-
vehicle 12.3 ± 1.21, KO-clozapine 10.7 ± 1.12m; two-way ANOVA: In-
teraction F(1,33) = 0.39, P = 0.54, Treatment F(1,33) = 0.76, P = 0.39,
Fig. 2. A) Pyramidal neurons in the cornu ammonis layer 3 (CA3) of the hippocampus have re
deficiency in spine formation of KO mice. B) Quantitation of data in a) shows that while 14-3-3
dendritic spines compared toWT (closed bar; n= 3). Clozapine treatment does not affect spine
(light grey bar; n = 3, 1 male, 2 females). Scale bar = 5um.
Genotype F(1,33) = 0.31, P=0.58). Number of head dips did show a sig-
nificant effect of genotype (WT-vehicle 22.6 ± 3.51, WT-clozapine
18.8 ± 1.98, KO-vehicle 32.2 ± 4.14, KO-clozapine 28.6 ± 5.15; two-
way ANOVA: Interaction F(1,33) = 0.01, P = 0.92, Treatment F(1,33) =
1.28, P = 0.27, Genotype F(1,33) = 7.58, P = 0.0095), however
Bonferroni post hoc analysis of genotype effect showed no significant
differences. These results indicate no overall differences in anxiety be-
tween both vehicle groups and treatment groups in this test.

3.5. Clozapine treatment affects spatial recognitionmemory differentially in
wild type and 14-3-3ζ KO mice

Fig. 5A compares the time spent in the novel compared to familiar
arm of the Y-maze. Repeatedmeasures two-wayANOVA shows a signif-
icant Interaction effect (F(3,31)= 6.35, P=0.0017) but no significant ef-
fect of other measures (Group F(3,31) = 1.13, P = 0.35, Arm F(1,31) =
0.05, P = 0.83). Bonferroni post hoc tests show that only clozapine
treated WT mice spend significantly more time in the novel arm com-
pared to the familiar (P= 0.033). Further information about the prefer-
ence of mice can be gained from looking at the preference index for
novel arm compared to familiar arm (Fig. 5B). Vehicle treated WT
mice and clozapine treated KO mice have a preference index b0.5
(WT-vehicle 0.36 ± 0.07, KO-clozapine 0.39 ± .07), indicating a prefer-
ence for the familiar arm, while clozapine treated WTmice and vehicle
treated KO mice have a preference index N0.5 (WT-clozapine 0.78 ±
duced dendritic spines in 14-3-3ζ KOmice. Treatment with clozapine does not rescue the
ζ KOmice (open bar; n = 3 over 30 dendrites counted/mouse) have significantly reduced
density in eitherWT (dark grey hashed bar; n= 3, 1 male, 2 females) or 14-3-3ζ KOmice



Fig. 3. A) Nissl staining highlights mispositioning of pyramidal neurons in the cornu ammonis region 2 (CA2) and 3 (CA3) of 14-3-3ζ KOmice (black arrowheads). Clozapine treatment is
unable the rescue this positioning defect. B) Calbindin staining (green) identifiesmossy fibre navigation defects in the CA3 of 14-3-3ζ KOmice (white arrowheads) that are not rescued by
clozapine treatment.
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0.06, KO-vehicle 0.69± 0.10), indicating a preference for the novel arm.
Two-way ANOVA of preference index (Interaction F(1,31) = 20.0, P b

0.0001, Treatment F(1,31) = 0.55, P = 0.46, Genotype F(1,31) = 0.20,
P = 0.60) with Bonferroni post hoc analysis of genotype effect shows
that vehicle control KO mice had a higher preference than WT control
mice (P = 0.017). Bonferroni post hoc analysis of treatment effect
showed that this difference between WT and KO mice was reversed
by clozapine (KO vehicle vs clozapine P = 0.033), and that clozapine
also significantly increased preference index in WT mice (P =
0.0011), suggesting clozapine had opposing effects onWT and KOmice.

4. Discussion

In-depth investigations of medication effects on anatomical and be-
havioural characteristics in animal models of psychiatric disorders have
the potential to unveil novel biological processes contributing to treat-
ment efficacy. Here, we demonstrate that 14-3-3ζ KO mice,
representing a novel mouse model of schizophrenia, display dendritic
spine abnormalities similar to other animal models of the disease. Clo-
zapine, the most effective antipsychotic used for the treatment of
schizophrenia, does not reverse these changes in our model, contrary
Fig. 4. A) Total time spent immobile during the tail suspension test and, B) total time spent im
spent in open arms of the elevated zeromaze. Data compared using two-wayANOVAwith Bonfe
10/group).
to our initial hypothesis. On a behavioural level, clozapine reduced
despair-like behaviour in 14-3-3ζ KOmice but not inwild-type animals.
In a spatial recognition memory task (Y-maze), we found that 14-3-3ζ
KO mice behave differently to WT mice on the Y-maze memory task,
and that clozapine reversed these behavioural differences. We show
that 14-3-3ζKOor clozapine treatment have noeffect on anxiety behav-
iours, or exploratory behaviour.

The loss of hippocampal dendritic spines in the 14-3-3ζ KOmodel is
consistent with findings in human schizophrenia post-mortem brain
(Garey et al., 1998; Harrison, 1999; Glantz and Lewis, 2000; Glausier
and Lewis, 2013) and in other animal models of schizophrenia-like dis-
orders (Barros et al., 2009; Cahill et al., 2009), and supports the utility of
the 14-3-3ζ model for the study of these conditions. Our finding is also
consistent with the fact that transgenic mice overexpressing 14-3-3ζ
have increased spine density (Angrand et al., 2006) and that 14-3-3ζ
KO mice in the BalBC genetic background have spine deficiency (Xu
et al., 2015). Spine deficits in experimentalmodels are thought to be as-
sociated with impairments in working memory, attention, sensory-
motor processing, and sociability (Liston et al., 2006; Cahill et al.,
2009; Hains et al., 2009; Brennaman et al., 2011), We have previously
demonstrated that 14-3-3ζ KO mice also display deficits in several of
mobile during the forced swim test. C) Time spent in the centre of the open field. D) Time
rroni post hoc test. **P b 0.01 c.f.WT (same treatment), # c.f. vehicle (same strain) (n=8–



Fig. 5. A) Time spent in the novel and familiar arms in the retention phase of the Y-maze, B) preference index for novel arm, C) time spent interacting with familiar and novel object in
retention phase of NOR test and D) preference index for novel object. Data compared using repeated measures two-way ANOVA with Bonferroni post hoc test. ^P b 0.05 c.f. novel arm.
Data for preference index compared using two-way ANOVA with Bonferroni post hoc test. *c.f. WT, #c.f. vehicle. * P b 0.05, ** P b 0.01. (n = 8–10/group).
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these cognitive domains (Cheah et al., 2012). It is therefore possible that
dendritic spine abnormalities contribute to the behavioural phenotype
observed in the 14-3-3ζ model.

The formation and stabilisation of dendritic spines is heavily depen-
dent on many signalling events that modify the actin cytoskeleton
(Schubert andDotti, 2007). 14-3-3ζ has previously been shown tomod-
ulate actin polymerisation by binding to cofilin (Gohla and Bokoch,
2002), a molecule that has recently been implicated as a central media-
tor of dendritic spine dynamics (Shi et al., 2009). Consistent with the
idea that 14-3-3ζ plays a role in regulating spine dynamics, cell fraction-
ation experiments have shown that it is located in the synapse (Rajan
et al., 2002), and biochemical studies have shown that it complexes
with proteins required for stability of the postsynaptic density such as
SPIN90 (Heverin et al., 2012). Spine density has also been analysed in
a number of mouse mutants lacking proteins that interact with 14-3-
3ζ. Consistent with our findings, DAT, Ndel1 and Lis1 deficient mice
have reduced dendritic spine density (Berlanga et al., 2011; Sudarov
et al., 2013). A detailed analysis of 14-3-3ζ localisation in pre- and
post-synaptic neurons, and the analysis of spine development in 14-3-
3ζ KO mice, is now required to define the mechanisms through which
it controls spine formation.

In the present study, the in-vivo administration of clozapine for
25 days did not rescue or reverse dendritic spine abnormalities in 14-
3-3ζ KOmice. This finding contrasts previous in- vitro experiments sug-
gesting trophic effects of clozapine on dendritic spine morphology (Lu
and Dwyer, 2005; Critchlow et al., 2006; Barros et al., 2009). It is possi-
ble that the in vivo environment examined in our study prevented or
procrastinated the morphological changes seen in vitro. Differences be-
tween in vivo and in vitro observations of dendritic spine function are
well recognised in the field (Rochefort and Konnerth, 2012). Alterna-
tively, a longer treatment period or higher doses of clozapine may
have led to different results.

On the other hand, it is possible that spine abnormalities caused by
different molecular lesions have differential sensitivity to clozapine
treatment. For example, dendritic spine abnormalities induced by Erb/
B2/B4-deficiency may benefit from clozapine, whereas 14-3-3ζ KO-
associated abnormalities do not. Such differential response to clozapine
is plausible from a clinical perspective, since the clinical benefits to pa-
tients treated with this drug also differ vastly (Lieberman et al., 1994).
Differential findings in animal models may therefore open the door to
pharmacogenetic studies to identify potential biomarkers of clozapine
treatment response.

In the present study, we investigated the effects of 14-3-3ζ KO and
clozapine on tests for cognition-, anxiety- and despair (depression-
like) behaviours. These behaviours are relevant for schizophrenia: cog-
nitive deficits are a well-recognised feature of schizophrenia and are
thought to have particularly devastating consequences on patients'
functioning (Keefe and Harvey, 2012); depression and anxiety co-
morbidly occur in a large proportion of people with schizophrenia,
and have been shown to correlate with symptom severity and treat-
ment outcomes (Gozdzik-Zelazny et al., 2011; Braga et al., 2013).

Results of the FST indicate that clozapine may reduce despair-like
behaviours in 14-3-3ζ KO mice, but not in wild type animals. 14-3-3ζ
KO status alone did not significantly impact on baseline FST perfor-
mance. Results of the TST showed a similar pattern but did not reach
statistical significance between groups. Previous animal studies have
shown despair-reducing effects of clozapine in the FST (Weiner et al.,
2003), and reductions in anhedonia-like behaviours in the sucrose pref-
erence test (Vardigan et al., 2010). Given the negative results in wild-
type animals, our findings are only partially consistent with these stud-
ies. Therefore, it remains unclear whether clozapine indeed reduces
depression-like behaviours in rodents. At best, the results of our study
provide a preliminary indication that such effects could be mediated
by specific molecular lesions such as 14-3-3ζ deficiency.

For anxiety-like behaviours, we observed a trend toward KO mice
displaying decreased levels of anxiety, as measured by increased time
spent in open arms in the EZM. This finding contrasts the increased
time spent in the open arms of the elevated plus maze (EPM) reported
by Cheah et al. (2012). Discrepant findingsmay be at least in part due to
the differentmaze apparatus used, as KOmice also spent less time in the
centre area on the EPM (Cheah et al., 2012). The EZM and EPM appara-
tus both measure the same behavioural phenotype, however the EZM
removes the issue of ambiguity with time spent in the centre of the
EPM (Shepherd et al., 1994), whichmay lead to different anxiety results
being seen in some studies. In the current study, there were also no sig-
nificant differences in anxiety seen in the open field, as measured by
time spent in the centre of the test arena, although there was a similar
trend to that seen in the EZM. In both tests therewas also a trend for clo-
zapine to reverse the differences seen in KO mice. However, overall
these results indicate that anxiety was not a robust characteristic of
KO mice compared to WT mice and that clozapine may not exert rele-
vant effects on anxiety via 14-3-3ζ-related pathways.

Tests of cognition-like behaviours yielded unexpected results in this
study. In contrast to the expected behaviour in the Y-maze, where con-
trol mice show a preference for the novel arm, our Y-maze analysis
showed that 14-3-3ζ WTmice on the SV129 background had a prefer-
ence for the familiar arm, suggesting either experimental problems or
impaired memory in these animals. Vehicle treated KO mice showed
the expected behaviour with a significantly higher preference index
for the novel arm. Clozapine treatment decreased preference for the
novel arm in KOmice, possibly as a result of sedative side effects. Cloza-
pine also reversed the unexpected baseline behaviour in WT mice. As
these results are difficult to interpret due to the unexpected behaviour
of WT mice, further studies should now be completed with different
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cognition tests to definitively determine whether clozapine can rescue
the cognition and memory impairments previously reported in these
mice (Cheah et al., 2012).

The findings of this study underscore the importance of comprehen-
sive behavioural testing and result reporting when characterising ani-
mal models of mental diseases and their response to common
treatments. Previous studies in 14-3-3ζ -depleted mice have reported
a beneficial effect of clozapine on isolated behavioural paradigms such
as hyperactivity (Ramshaw et al., 2013; Foote et al., 2015) and pre-
pulse inhibition (Foote et al., 2015). The incorporation of a more com-
prehensive test battery in our study shows that clozapine effects are
not clear-cut in this model. In fact, the replicated finding of reversed hy-
peractivity, as well as some of the findings of the present study, could
also be explained by sedative effects, given that clozapine is themost se-
dating antipsychotic on the market (Leucht et al., 2013).

In conclusion, our study demonstrates that 14-3-3ζ KOmice display
a reduction of dendritic spines in the hippocampus, mirroring findings
in human post-mortem schizophrenia brain and in other animalmodels
of schizophrenia-like disorders. Our finding supports the utility of 14-3-
3ζKOanimalmodel in these disorders, and implicates dendritic changes
as a potential commonmorphological endpoint of variousmolecular al-
terations associated with schizophrenia. Contrary to our initial hypoth-
esis, our behavioural findings indicate that 14-3-3 proteins may play
only a modest role in mediating cognition-, depression-, and anxiety-
like behaviours and clinical responses to clozapine in schizophrenia.
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