Development of a Novel
Co-vaccination Approach for
Pneumococcal and Influenza Infections

Rachelle Babb, B. Sc. (Hons)
A thesis submitted for the fulfilment of the
Degree of Doctor of Philosophy

School of Biological Sciences
The University of Adelaide
Adelaide, South Australia, Australia

(May 2016)
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF FIGURES AND TABLES</td>
<td>v</td>
</tr>
<tr>
<td>ABBREVIATIONS</td>
<td>vii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>x</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>xi</td>
</tr>
<tr>
<td>PATENTS, PUBLICATIONS AND CONFERENCE PRESENTATIONS ARISING FROM THIS THESIS</td>
<td>xiii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>xiv</td>
</tr>
</tbody>
</table>

Chapter 1: Introduction

1.1 *Streptococcus pneumoniae* ... 2
 1.1.1 Significance ... 2
 1.1.2 Pneumococcal carriage and disease ... 3
 1.1.3 Antibiotic treatment ... 4
 1.1.4 Pathogenesis ... 4
 1.1.5 Immunity ... 6
 1.1.5.1 Innate immunity ... 6
 1.1.5.2 Adaptive immunity ... 8
 1.1.5.3 Complement and antibody-mediated immunity 9
 1.1.6 Pneumococcal vaccines ... 10
 1.1.6.1 Capsular Polysaccharide vaccines ... 10
 1.1.6.2 Experimental vaccines ... 12

1.2 Influenza A Virus ... 14
 1.2.1 Biology and pathogenesis .. 15
 1.2.2 Immunity ... 17
 1.2.2.1 Innate immunity ... 17
 1.2.2.2 Adaptive immunity .. 18
 1.2.3 Influenza Vaccines ... 20

1.3 Co-infection with influenza and *S. pneumoniae* 21
 1.3.1 Mechanisms underlying synergism ... 22
 1.3.2 Vaccination strategies against co-infection 24

1.4 Combination vaccines .. 25

1.5 Intranasal vaccination .. 26

1.6 Adjuvants for intranasal delivery ... 28
 1.6.1 Enterotoxins ... 28
 1.6.2 TLR agonists .. 29
 1.6.3 Natural killer T (NKT) cell agonists ... 31
 1.6.4 Delivery systems ... 31
1.7 Gamma-irradiation ..32
 1.7.1 Gamma-irradiation as an inactivation method for vaccines32
 1.7.2 Advantages of gamma-irradiation for pathogen inactivation34
1.8 Research project ..35
 1.8.1 Project rationale ..35
 1.8.2 Hypotheses and Aims ..37

Chapter 2: Material and methods ...39
 2.1 Bacterial strains and growth conditions ..40
 2.2 Viral stocks ..40
 2.3 Construction of the Rx1[PdT/ΔLytA] vaccine strain ..40
 2.4 Generation of the gamma-irradiated Rx1[PdT/ΔLytA] vaccine41
 2.5 Generation of the gamma-irradiated influenza vaccine ..43
 2.6 Western blotting ...43
 2.7 Hemolysis Assay ..43
 2.8 Gram staining ...43
 2.9 Scanning electron microscopy ...43
 2.10 Focus forming inhibition assay ..44
 2.11 Ethics statement ..44
 2.12 Vaccination ...44
 2.13 Adjuvants ..45
 2.14 Infection models ...45
 2.15 IFN-γ/IL-17 neutralization in vivo ...46
 2.16 CD4 depletion in vivo ..46
 2.17 Measurement of antibody responses ..46
 2.18 Splenocyte stimulation ...47
 2.19 Lung digestion to retrieve lymphocytes for flow cytometric analysis48
 2.20 Intracellular cytokine staining and flow cytometry ...48
 2.21 In vivo cytotoxic T cell assay ..48
 2.22 Statistics ..49

Chapter 3: The efficacy of the γ-PN vaccine ...51
 3.1 Introduction ..52
 3.2 Results ...53
 3.2.1 Characterization and optimization of the γ-PN vaccine ...53
 3.2.2 Immunisation with γ-PN provides serotype-independent protection61
 3.2.3 γ-PN efficacy is dependent on B cell responses ..64
 3.2.4 IL-17 plays an essential role in the protective efficacy of γ-PN66
 3.2.5 Vaccination with γ-PN induces CD4-independent IL-17 immunity66
3.3 Discussion ..74

Chapter 4: The role of adjuvants in γ-PN vaccine efficacy79
4.1 Introduction ..80
4.2 Results ..81
 4.2.1 Intranasal vaccination with γ-PN + CT elicits optimal protection against
 pneumococcal challenge ...81
 4.2.2 Intranasal vaccination with γ-PN + CT enhances pneumococcal-specific antibody
 levels and induces Th17 cells ...82
 4.2.3 Intranasal vaccination with γ-PN + MC ..90
4.3 Discussion ..91

Chapter 5: Intranasal co-vaccination with γ-PN + γ-FLU99
5.1 Introduction ..100
5.2 Results ...101
 5.2.1 The immunogenicity and protective efficacy of γ-FLU101
 5.2.2 Co-immunisation enhances the protective efficacy of the γ-PN vaccine107
 5.2.3 Cellular immunity plays a major role in the observed enhanced protection elicited
 by co-immunisation. ..111
 5.2.4 Co-immunisation enhances pneumococcal-specific memory Th17 and Th1 cell
 responses ..114
 5.2.5 Co-immunisation promotes tissue-resident memory cell development114
 5.2.6 Co-immunisation promotes Th17 and CD4+ TRM IL-17+ cell responses to live
 pneumococcal challenge ..115
 5.2.7 Co-immunisation enhances IFN-α levels following live pneumococcal challenge
 ...120
 5.2.8 Co-immunisation does not compromise the protective efficacy of γ-FLU120
 5.2.9 Co-immunisation elicits significant protection against co-infection129
5.3 Discussion ...132

Chapter 6: Final discussion ...137
 6.1 Future directions ...140

References ...143

Appendix ...173
LIST OF FIGURES & TABLES

Figure 1.1 *S. pneumoniae* structure and virulence factors.
Figure 1.2 Influenza structure.
Figure 1.3 Mechanisms underlying influenza and bacterial co-infection.
Figure 1.4 Intranasal administration and induction of mucosal immune responses.
Table 2.1 PCR primers.
Figure 3.1 Expression of PdT and LytA and hemolytic activity of the vaccine strain Rx1[PdT/ΔLytA].
Figure 3.2 Sterility testing of the gamma-irradiated vaccine strain Rx1[PdT/ΔLytA].
Figure 3.3 High doses of gamma-irradiation may affect the integrity of the cell membrane.
Figure 3.4 Gamma-irradiation does not affect the morphology of *S. pneumoniae*.
Figure 3.5 Higher doses of gamma-irradiation appear to affect the immunogenicity of vaccine preparations.
Figure 3.6 Protection against sepsis elicited by immunization with γ-PN.
Figure 3.7 Protection against focal pneumonia elicited by immunization with γ-PN.
Figure 3.8 The efficacy of the γ-PN vaccine is dependent on B cell responses.
Figure 3.9 Depletion of IL-17, but not IFN-γ abrogates protection induced by γ-PN.
Figure 3.10 γ-PN does not induce antigen-specific Th17 cells.
Figure 3.11 γ-PN does not induce tissue-resident memory cells.
Figure 3.12 Vaccination with γ-PN induces IL-17 via γδ T cells, not CD4+ T cells.
Figure 4.1 Intranasal vaccination with γ-PN + CT enhances the protective efficacy of the γ-PN vaccine.
Figure 4.2 Intranasal vaccination with γ-PN + CT does not elicit protection against nasopharyngeal colonization.
Figure 4.3 Intranasal vaccination with γ-PN + CT is associated with enhanced pneumococcal-specific antibody titres.
Figure 4.4 Intranasal vaccination with γ-PN + CT induces antigen-specific Th17 cells.
Figure 4.5 Intranasal vaccination with γ-PN + CT promotes the development of TRM cells.
Figure 4.6 Intranasal vaccination with γ-PN + MC does not alter γ-PN vaccine efficacy.
Figure 4.7 Using a reduced dose of MC is not associated with significant enhancement in γ-PN vaccine efficacy.
Figure 4.8 Intranasal vaccination with γ-PN + MC does not have a significant impact on γ-PN vaccine immunogenicity.
Figure 5.1 Intranasal vaccination with γ-FLU provides homotypic protection against A/PR8 challenge.

Figure 5.2 Intranasal vaccination with γ-FLU provides heterosubtypic protection against A/PC challenge.

Figure 5.3 γ-FLU induces effective antibody responses.

Figure 5.4 γ-FLU induces effective cytotoxic T cell responses.

Figure 5.5 Co-vaccination with γ-PN + γ-FLU does not affect the protective efficacy of γ-PN vaccine against D39 challenge.

Figure 5.6 Co-vaccination with γ-PN + γ-FLU enhances the vaccine efficacy of γ-PN.

Figure 5.7 Co-vaccination with γ-PN + γ-FLU mediates protection against nasopharyngeal colonization.

Figure 5.8 Co-vaccination with γ-PN + γ-FLU enhances pneumococcal-specific antibody titres.

Figure 5.9 The protective efficacy of the combination vaccine is dependent on CD4⁺ responses.

Figure 5.10 Co-immunisation with γ-PN + γ-FLU enhances memory pneumococcal-specific Th17 and Th1 cells.

Figure 5.11 Co-vaccination with γ-PN + γ-FLU induces CD4⁺ and CD8⁺ TRM cells.

Figure 5.12 Co-vaccination with γ-PN + γ-FLU induces Th17 and CD4⁺ TRM cells following live D39 challenge.

Figure 5.13 Co-vaccination with γ-PN + γ-FLU enhances IFN-I levels following live D39 challenge.

Figure 5.14 Co-immunisation with γ-PN + γ-FLU does not compromise vaccine-induced anti-influenza immunity.

Figure 5.15 Co-immunisation with γ-PN + γ-FLU enhances influenza-specific memory Th17 cells.

Figure 5.16 Co-immunisation with γ-PN + γ-FLU does not affect the level of influenza-specific humoral responses.

Figure 5.17 Co-vaccination with γ-FLU + γ-PN does not compromise the neutralising ability of influenza-specific antibodies.

Figure 5.18 Co-infection with influenza and S. pneumoniae enhances bacterial loads.

Figure 5.19 Co-immunisation with γ-PN + γ-FLU provides significant protection against co-infection.
ABBREVIATIONS

A₄₀₅ | Absorbance at 405 nm
A₄₅₀ | Absorbance at 450 nm
ABC | ATP-binding cassette
ANT3 | Adenine nucleotide translocator 3
APC | Antigen presenting cells
A/PC | A/Port Chalmers/1/73 [H3N2]
A/PR8 | A/Puerto Rico/8/34 [H1N1] influenza strain
CbpA | Choline-binding protein A
CD | Cluster of differentiation
CFU | Colony forming unit
ChoP | Phosphorylcholine
CPG ODN | Cytosine phosphate guanosine oligodeoxynucleotides
CPS | Capsular polysaccharides
CRP | C-reactive protein
CTL | Cytotoxic T lymphocytes
CT | Cholera toxin
DC | Dendritic cell
DI | Dry ice
DMEM | Dulbecco’ Modified Eagle’s Medium
DTaP | Diphtheria-tetanus-acellular pertussis vaccine
Eno | Enolase
FACS | Fluorescent activated cell sorting
FCS | Foetal Calf Serum
FcR | Fc Receptor
FFI | Focus forming inhibition
Foxp3 | Forkhead box P3
HA | Hemagglutinin
Hep B | Hepatitis B virus
Hib | Haemophilus influenza type b
HPV | Human papilloma virus
HRP | Horse Radish Peroxidase
IFN-I | Type I Interferon (α/β)
IF- | Interleukin
IFN | Interferon
IFN-γ | Interferon gamma
Ig | Immunoglobulin
IN | Intranasally
IP | Intraperitoneally
IPD | Invasive pneumococcal disease
IPV | Inactivated poliovirus
IRF | Interferon regulatory factors
IV | Intravenously
KO | Knock out
kGy | kiloGray
LAIIV | Live attenuated influenza vaccines
LT | Labile toxin
LytA | Autolysin
M1/2 Matrix protein 1/2
MARCO Macrophage receptor with collagenous structure
M cells Microfold cells
MC Mannosylated Chitosan
MFI Mean fluorescence intensity
mg milligram/s
MHC Major histocompatibility complex
mL millilitre/s
MMR Measles, Mumps and Rubella vaccine
MPL Monophosphoryl lipid A
NA Neuraminidase
NALT Nasopharynx-associated lymphoid tissue
NEP Nuclear Export Protein
NF- Nuclear Factor
NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells
NK Natural Killer cell
NKT Natural Killer T cell
NLR Nod-like receptor/s
NP Nucleoprotein
NPP Nucleoprotein peptide
NS1 Non-structural protein 1
OD Optical density
PA Acidic polymerase
PAFr Platelet-activating factor receptor
PAMPs Pathogen associated molecular patterns
PavA Pneumococcal adhesion and virulence A
PB1/2 Basic polymerase protein 1/2
PBS Phosphate buffered saline
PBPss Penicillin Binding proteins
PCR Polymerase chain reaction
PCVs Pneumococcal conjugate vaccines
PdT Pneumolysin mutant
PhtD Pneumococcal histidine triad D
PhtE Pneumococcal histidine triad E
Ply Pneumolysin
PKR Protein Kinase R
PsaA Pneumococcal surface antigen A
PspA Pneumococcal surface protein A
PspC Pneumococcal surface protein C
RNA Ribonucleic acid
RNP Ribonucleoprotein
PRR Pattern recognition receptor
RT Room temperature
RIG Retinoic acid–inducible gene like receptors
S. pneumoniae Streptococcus pneumoniae
S. aureus Staphylococcus aureus
SD Standard deviation
SFV Semliki Forest Virus
ssRNA Single-stranded ribonucleic acid
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCID<sub>50</sub></td>
<td>50% tissue culture infective dose</td>
</tr>
<tr>
<td>TCR</td>
<td>T Cell receptor</td>
</tr>
<tr>
<td>Tfh</td>
<td>Follicular CD<sup>4</sup> T helper</td>
</tr>
<tr>
<td>Th17</td>
<td>CD<sup>4</sup> T helper 17</td>
</tr>
<tr>
<td>Th1</td>
<td>CD<sup>4</sup> T helper 1</td>
</tr>
<tr>
<td>THY</td>
<td>Todd-Hewitt broth</td>
</tr>
<tr>
<td>TLR</td>
<td>Toll-like receptor</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumour Necrosis Factor</td>
</tr>
<tr>
<td>TRM</td>
<td>Tissue resident memory</td>
</tr>
<tr>
<td>WC</td>
<td>Whole-cell</td>
</tr>
<tr>
<td>WCV</td>
<td>Whole-cell vaccine</td>
</tr>
<tr>
<td>WT</td>
<td>Wild type</td>
</tr>
<tr>
<td>α-GalCer</td>
<td>Alpha-galactosylceramide</td>
</tr>
<tr>
<td>μg</td>
<td>microgram/s</td>
</tr>
<tr>
<td>μL</td>
<td>microlitre/s</td>
</tr>
<tr>
<td>γδ T</td>
<td>Gamma-delta T</td>
</tr>
<tr>
<td>γδ T<sub>17</sub></td>
<td>Gamma-delta T cells secreting IL-17<sup>+</sup></td>
</tr>
<tr>
<td>γ-FLU</td>
<td>Gamma-irradiated influenza vaccine</td>
</tr>
<tr>
<td>γ-PN</td>
<td>Gamma-irradiated Streptococcus pneumoniae vaccine</td>
</tr>
<tr>
<td>γ-SFV</td>
<td>Gamma-irradiated Semliki Forest vaccine</td>
</tr>
</tbody>
</table>
DECLARATION

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968. The author acknowledges that copyright of published works contained within this thesis resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

__
Rachelle Babb

Date
ACKNOWLEDGEMENTS

Firstly, I would like to thank my principle supervisor Dr Mohammed Alsharifi for the continuous support you have provided me from the very beginning when I started as an honours student in your lab in 2011. I have greatly appreciated your guidance and encouragement throughout the years. Thank you also for your compassion, motivational chats and your reassurance at times when I was feeling overwhelmed.

Secondly, I would also like to sincerely thank Professor James Paton for your continuous guidance with experimental designs, your willingness to answer my questions, your advice and overall supervision throughout the project. I would also like to extend my gratitude to my other co-supervisor Dr David Ogunniyi for your supervision and for teaching me my very first techniques in bacteriology.

I would also like to especially thank Dr Austen Chen, I have thoroughly enjoyed working with you over the years and greatly appreciate all the help you have provided me not only scientifically but emotionally as well. Thank you for always making me laugh amongst the many hours spent in the animal house. Your inability to remember my colour coding for mice experiments to this day still amazes me.

A special thanks to Professor Tim Hirst and Gamma Vaccines Pty Ltd for providing me with funding for the project and for the continuous support over the years. I am very fortunate to be part of the gamma-irradiated pneumococcal vaccine team and sincerely thank you for taking me on board.

To all past and present members of the Alsharifi lab, especially Josy, Nikki, Sha, Jenny, Shannon, Eve and Cheng. Thank you for your support, friendship and lovely company. It has been a great pleasure sharing this experience with all of you. Particularly Josy and Nikki, thank you for your friendship, offering me a helping hand, providing me emotional support on those difficult experimental days, providing endless amount of food and for overall making the lab environment a lot of fun. The memories we have shared will be remembered always. In addition I would also like to thank Rethish from the Connor lab for the great company, motivational chats and friendship.

To all past and present members of the Paton lab especially Claudia, Catherine, Richard, Charlie, Layla, Danny and Brock. Thank you for all being so friendly, welcoming me into the
lab and for helping me with experimental techniques. A special thanks to Claudia, Richard and Brock for your assistance in mice challenge studies.

I would also like to extend my thanks to Prof Shaun McColl for your assistance in experimental designs and to Lynn Waterhouse for the help provided with SEM.

Most importantly, a big thank you goes to my parents, and my siblings Anthony and Belinda. Thank you for your patience and understanding during the difficult times I endured over the years and the continuous support. Mum and Dad you have been so supportive of me not only these past few years but from a very young age. I am very fortunate to have such loving parents and want to let you know I greatly appreciate you both being there for me. I love you dearly. To my other dear friends (you know who you are), thank you for your emotional support throughout these past few years and for being so understanding when I had mice experiments I needed to attend to at all hours of the day.

Last but not least, I would like to especially thank Ervin. I am so glad that I was able to experience this journey with you by my side. I have greatly appreciated your encouragement throughout all of these years, your emotional support and for always making me laugh at the best and worst of times. I look forward to sharing many more years together.
PATENTS, PUBLICATIONS AND CONFERENCE PRESENTATIONS ARISING FROM THIS THESIS

PATENTS

<table>
<thead>
<tr>
<th>Patent application No</th>
<th>Title</th>
<th>Inventors</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCT/AU2016/050231</td>
<td>Streptococcal Vaccine</td>
<td>Rachelle Babb, Mohammed Alsharifi, Austen Yannis Chen, Shannon Christa David, Timothy Raymond Hirst, Abiodun David Ogunniyi, James Cleland Paton</td>
</tr>
</tbody>
</table>

PUBLICATIONS

<table>
<thead>
<tr>
<th>Thesis chapter</th>
<th>Title</th>
<th>Publication status</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Intranasal vaccination with gamma-irradiated Streptococcus pneumoniae whole-cell vaccine provides serotype-independent protection mediated by B cells and innate IL-17 responses</td>
<td>Published</td>
</tr>
<tr>
<td></td>
<td>*Appendix</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Enhanced protective CD4+ T cell responses to a serotype independent pneumococcal vaccine when combined with an inactivated influenza vaccine</td>
<td>In submission</td>
</tr>
</tbody>
</table>

CONFERENCE PRESENTATIONS

- The 12th European Meeting on the Molecular Biology of the Pneumococcus (Oxford University, Oxford, UK, 2015).
 Poster

- School of Biological Sciences Research Symposium (University of Adelaide, Adelaide, Australia, 2013-2014).
 Presentation
ABSTRACT

Streptococcus pneumoniae and influenza are the world’s foremost bacterial and viral respiratory pathogens. In addition to their individual clinical significance, co-infection with these pathogens enhances disease progression and is associated with substantially increased mortality rates. Vaccination is the best preventative method to control disease caused by individual pathogens as well as co-infection. Gamma-irradiation is considered a safe sterilization method, used routinely to sterilize medical devices, pharmaceuticals and most commonly food products. It can also be utilised as an inactivation technique to generate whole cell bacterial and viral vaccines with minimal impact on pathogen structure and antigenic determinants. This study presents the first evidence illustrating the use of this inactivation technique for development of a mucosal *S. pneumoniae* whole cell vaccine (γ-PN). Gamma-irradiation was utilised to inactivate an unencapsulated *S. pneumoniae* strain Rx1 with an unmarked deletion of the autolysin gene and with the pneumolysin gene replaced with an allele encoding a non-toxic pneumolysoid. Intranasal administration of mice with γ-PN without an adjuvant was shown to elicit serotype-independent protection against pneumococcal challenge in models of sepsis and pneumonia. In particular, vaccine efficacy was shown to be reliant on B cells and IL-17 responses. Importantly, immunisation promoted IL-17 production by γδ T cells, as opposed to conventional Th17 cells commonly reported with other pneumococcal whole cell vaccines. Moreover, this study also illustrated that the immunogenicity and protective efficacy of the γ-PN vaccine can be enhanced in the presence of the mucosal adjuvant, cholera toxin.

In addition, this study describes a novel combination vaccine approach comprising inactivated whole bacterial cells and whole virions to *S. pneumoniae* and influenza respectively. In this study mice were co-immunised intranasally with the un-adjuvanted γ-PN vaccine and a gamma-irradiated influenza vaccine (γ-FLU). Interestingly, co-immunisation was shown to enhance γ-PN vaccine efficacy and immunogenicity against virulent pneumococcal challenge, which was dependent on CD4⁺ T cell responses. In contrast to vaccination with γ-PN alone, co-immunisation enhanced pneumococcal-specific effector Th17 and Th1 memory cells, promoted development of CD4⁺ tissue-resident memory cells, and enhanced pneumococcus-specific antibody responses. In addition, this combination approach was shown to elicit significant protection against lethal influenza challenge, as well
as against co-infection with both influenza and *S. pneumoniae*. These data support the notion that γ-FLU exhibits adjuvant-like properties to enhance immunogenicity of a co-administered vaccine without compromising pathogen-specific immune responses. Future work will be focused on clinical development of individual and combination vaccines.