NOVEL RECOMBINANT DNA AND LIVE VIRUS VACCINES TO PREVENT OR CONTROL HIV-1 INFECTION

KHAMIS TOMUSANGE
BSc. BBLT (Hons). MSc. Med.Mol.Micro

Submitted in total fulfilment of the requirements of the degree of Doctor of Philosophy
June 2016

Virology Laboratory,
Basil Hetzel Institute for Translational Medical Research
School of Medicine, Discipline of Surgery
Faculty of Health Sciences
University of Adelaide
Table of contents

Table of contents ... i

List of figures .. xi

List of tables .. xiii

Abstract .. xiv

Declaration ... xvii

Acknowledgments ... xviii

List of abbreviations and acronyms ... xix

Chapter 1.0: Literature review ... 1

1.1 General introduction ... 1

1.2 HIV classification .. 1

1.3 The structure and organisation of the HIV genome ... 1

1.3.1 The major genes ... 2

1.3.1.1 The gag gene ... 2

1.3.1.2 The env gene .. 2

1.3.1.3 The pol gene .. 3

1.3.2 Regulatory genes ... 3

1.3.2.1 The tat gene .. 3

1.3.2.2 The rev gene .. 3

1.3.3 The auxiliary genes ... 4

1.3.3.1 The nef gene .. 4

1.4 The origin of HIV/AIDS ... 4
1.5 Epidemiology of HIV ...4
1.6 HIV distribution and the global epidemic5
1.7 Transmission of HIV ..6
1.8 Reducing HIV transmission ..7
1.9 HIV life cycle ..7
 1.9.1 Binding and entry into the host cell7
 1.9.2 Reverse transcription of viral genome8
 1.9.3 Integration of viral DNA and translation of viral genes8
 1.9.4 Assembly of viral proteins and release of progeny virus9
1.10 The natural history of HIV infection ..10
 1.10.2 The chronic stage of HIV infection11
 1.10.3 The late stage of HIV infection ...13
 1.10.3.1 Typical progressors, rapid progressors, and long-term survivors.....13
 1.10.3.2 Long-term non-progressors and elite controllers14
1.11 Innate protection against HIV infection15
1.12 Adaptive immunity and correlates of protection against HIV16
 1.12.1 Non-neutralizing antibodies ..17
 1.12.2 Neutralizing antibodies (NAbs) ..17
 1.12.2.1 Challenges in inducing broadly neutralizing Env antibodies by vaccination..18
 1.12.3 Tat neutralizing antibodies ..19
 1.12.4 Cell-mediated immunity (CMI) ..20
1.13 Treatment of HIV infection ... 21
1.14 Vaccine evolution .. 22
1.14.1 Licensed vaccines against human viral infections 23
1.14.1.1 Live-attenuated vaccines .. 23
1.14.1.2 Killed or inactivated vaccines .. 24
1.14.1.3 Subunit vaccines ... 24
1.14.1.4 Virus-like particles vaccines .. 24
1.15 HIV vaccine development .. 25
1.15.1 Previous HIV vaccine clinical trials .. 25
1.15.1.1 The AIDSVAX HIV vaccine trial .. 26
1.15.1.2 The Merck™ STEP and Phambili trials ... 26
1.15.1.3 The Thai trial: RV144 ... 27
1.16 Improving HIV vaccine efficacy ... 28
1.16.1 Mucosal vaccination .. 28
1.16.2 Adjuvants .. 29
1.16.2.1 The C4-binding protein (C4-bp) .. 30
1.16.2.1.1 The C4-bp as an adjuvant .. 31
1.17 New HIV vaccine development strategies ... 33
1.17.1 HIV-VLP-based vaccines .. 33
1.17.2 Recombinant plasmid DNA-based HIV vaccines 34
1.17.2.1 Improving DNA vaccine efficacy .. 35
1.17.3 Recombinant virus vector-based HIV vaccines .. 36
1.17.3.1 Pox viruses as vaccine vectors ... 38
1.17.3.2 Adenoviruses as vaccine vectors .. 38
1.17.3.3 Herpes viruses as vaccine vectors 39
1.17.3.4 Alphavirus vectors .. 41
1.17.3.5 Rhabdovirus vectors .. 41
1.17.3.6 Paramyxovirus vectors ... 42
1.17.3.7 Poliovirus as vaccine vectors ... 43
1.17.4 Human rhinoviruses (HRVs) .. 44
1.17.4.1 HRV genotypes and serotypes ... 44
1.17.4.2 HRV structure and genome .. 45
1.17.4.3 Human rhinoviruses as vectors for HIV vaccines ... 47

1.19 Aims of the studies in thesis ... 49

Chapter 2.0: Materials and Methods ... 50

2.1 Vaccines .. 50
2.2 Cell culture and DNA transfection... 51
2.3 Western blot analysis .. 51
2.4 Animals and immunisations ... 51
2.5 Enzyme-linked immunosorbent spot assay (ELISpot) .. 52
2.6 Fluorescent target array (FTA) assay ... 53
2.7 Intracellular cytokine staining (ICS) and flow cytometry .. 54
Chapter 2.0: HIV-Tat based DNA vaccine platform

2.1 Introduction to HIV-Tat

2.2 Expression vectors for Tat

2.3 DNA vaccines encoding Tat

2.4 Immunological assays

2.5 Vaccine formulation and administration

2.6 Preclinical efficacy studies

Chapter 3.0: A novel candidate HIV-Tat based DNA vaccine

3.1 Abstract

3.2 Introduction

3.3 Results

3.3.1 Tat oligomerisation

3.3.2 DNA vaccines encoding Tat induce anti-Tat antibody responses

3.3.3 Higher titer anti-Tat responses were induced by multiple vaccine doses

3.3.4 DNA vaccines encoding Tat control EcoHIV viral load post-challenge

3.4 Materials and Methods

3.4.1 DNA plasmids

3.4.2 Western blot analysis

3.4.3 Animal immunisations

3.4.4 Enzyme-linked immunosorbent spot assay (ELISpot)

3.4.5 Fluorescent target array (FTA) assay

3.4.6 Enzyme-linked immunosorbent assay (ELISA)
3.4.7 Anti-Tat neutralisation assay ..69
3.4.8 EcoHIV/NL4-3 challenge 3.4.9 Statistical analysis ...69
3.5. References ..70
3.6 Acknowledgements ..71
3.7 Author contributions ..71
3.8 Additional information ..71
3.9 Competing financial interests ..71

Chapter 4.0: Human rhinovirus-A1 as an expression vector72

4.1 Summary ..75
4.2 Introduction ..76
 4.2.1 Classification of human rhinoviruses (HRVs) ..76
 4.2.2 Virion structure and genome organisation ..76
 4.2.3 HRV genotypes and serotypes...77
 4.2.4 Viral replication ...77
 4.2.5 Human rhinoviruses serotype A1 (HRV-A1) as vaccine vectors78
4.3. Materials ...80
 4.3.1 Cells ..80
 4.3.2 Enzymes ..80
 4.3.3 Growth Media ...80
 4.3.4 Preparative Kits ..80
 4.3.5 Reagents, General Materials and Instrumentation ..81
4.4 Methods ... 83

4.4.1 General procedure to generate recombinant HRV (rHRV) 83

4.4.2 PCR amplification of HIV Gag or Tat inserts .. 87

4.4.3 Preparing the HRV vector .. 88

4.4.4 Dephosphorylating the vector ... 89

4.4.5 Preparing the HIV inserts ... 89

4.4.6 Ligating the vector and insert ... 89

4.4.7 Transforming bacterial cells ... 90

4.4.8 Colony screening ... 90

4.4.9 Preparing rHRV-gag/tat plasmid DNA mini-preps 91

4.4.10 Linearizing plasmid HRV-gag/tat plasmid DNA 92

4.4.11 Transcription of rHRV-Gag/Tat mRNA ... 93

4.4.12 Transfecting H1-HeLa cells with HRV-Gag/Tat mRNA 94

4.4.13 Harvesting rHRVs .. 94

4.4.14 Large scale preparation of rHRVs ... 95

4.4.15 RT-PCR .. 96

4.4.16 Immunofluorescence .. 98

4.4.17 Concentrating, titrating and storing rHRVs ... 99

4.5 Notes .. 101

Chapter 5.0: Engineering human rhinovirus serotype-A1 as a vaccine vector 107

Abstract .. 110
Introduction ... 110

5.3 Methods .. 110

5.3.1 Constructing rHRVS ... 110

5.3.2 Virus culture .. 111

5.4 Results ... 112

5.5 Discussion .. 112

5.6 Conflict of interest .. 113

5.7 Acknowledgement ... 113

5.8 References .. 113

Chapter 6.0: An innovative HIV-1 vaccination regimen ... 115

6.1 Abstract .. 119

6.2 Importance ... 120

6.3 Introduction .. 121

6.4 Material and Methods .. 123

6.4.1 Recombinant HRV-Gag/Tat production and purification ... 123

6.4.2 DNA vaccines ... 123

6.4.3 Animals and immunisations .. 123

6.4.4 Enzyme-linked immunosorbent spot assay (ELISpot) ... 124

6.4.5 Intracellular cytokine staining (ICS) and flow cytometry .. 125

6.4.6 H-2Kd-Gag197-205 tetramer and antibody staining .. 125

6.4.7 Enzyme-linked immunosorbent assay (ELISA) ... 126
6.4.8 EcoHIV/NL4-3 challenge .. 126
6.4.9 Statistical analysis .. 126
6.5 Results .. 128
6.5.1 rHRV-DNA prime-boost vaccination elicits robust CMI .. 128
6.5.2 rHRV-DNA elicits superior systemic poly-functional CMI 131
6.5.3 rHRV-DNA vaccination elicits superior poly-functional CMI in the mesenteric lymph nodes .. 134
6.5.4 rHRV-DNA vaccination elicits superior Tat-specific humoral responses 135
6.5.5 rHRV-DNA controls the EcoHIV viral load post-challenge 137
6.6 Discussion ... 140
6.7 Conflict of interest .. 143
6.8 Acknowledgements ... 143
6.9 References .. 144

Chapter 7.0: General Discussion .. 151
7.1. A novel highly immunogenic Tat DNA-based HIV vaccine 152
7.2 Vaccination strategies to induce mucosal immunity against HIV 154
 7.2.1 Human rhinovirus serotype A1 as a HIV vaccine vector 156
 7.2.2 A live recombinant human rhinovirus-based HIV vaccine 159
7.3 Pre-clinical evaluation of potential HIV vaccine efficacy using the EcoHIV challenge model .. 159
7.4 Limitations and future studies .. 161
7.5 Conclusions ... 164
List of figures

Chapter 1. Introduction

Figure 1: The structure of a HIV virion ... 2
Figure 2: Global prevalence of HIV ... 6
Figure 3: The replication cycle of HIV ... 9
Figure 4: The natural history of HIV infection The infection proceeds in three phase viz.
primary (acute) phase, chronic (latent) and AIDS (final) phases. 11
Figure 5: Structure of the C4-bp: Structure of the C4-bp 31
Figure 6: Schematic illustration of the structure of the human rhinovirus genome 46
Figure 7. Vaccine constructs and Tat expression ... 63

Chapter 3. A novel candidate HIV-Tat based DNA vaccine

Figure 8. Tat DNA vaccination induces Th cell responses and humoral immunity 64
Figure 9. Humoral responses and CMI are increased after 5 doses of Tat DNA vaccine 66
Figure 10. pVAX-sTat-IMX313 vaccinated mice exhibit superior control against EcoHIV
challenge .. 67

Chapter 4. Human rhinovirus-A1 as an expression vector

Figure 11. Cloning strategy and production of replication-competent recombinant HRVs 86
Figure 12. Agarose gel electrophoresis of RT-PCR products to examine the genetic stability
of rHRVs and immunofluorescence to detect expression of Gag-1 to Gag-5 and Tat. 97
Figure 13. Cloning strategy and production of replication-competent recombinant HRVs ... 111

Chapter 5. Engineering human rhinovirus serotype-A1 as a vaccine vector

Figure 14. HIV protein expression and 2Apro Autocleavage site sequences 112
Figure 15. Agarose gel electrophoresis and RT-PCR ... 113
Figure 16. rHRV-DNA vaccination elicits robust CMI in the spleen 130
Chapter 6. An innovative HIV-1 vaccination regimen

Figure 17. rHRV-DNA elicits superior systemic poly-functional CMI ..132

Figure 18. rHRV-DNA vaccination elicits superior poly-functional CMI in the mesenteric lymph nodes ..134

Figure 19. rHRV-DNA vaccination elicits superior Tat-specific humoral responses136

Figure 20. rHRV-DNA vaccination controls EcoHIV viral load post-challenge138
List of tables

Chapter 1. Introduction

Table 1. Summary of ARVs in clinical practice .. 23

Table 2. Summary of virus vectors in vaccine development 37

Chapter 4. Human rhinovirus-A1 as an expression vector

Table 3. HIV Gag-1 to Gag-5 fragment length ... 84

Table 4. Generating gag/tat inserts. ... 88

Table 5. Colony PCR ... 91
Abstract

Background
Vaccination is the most cost effective and long-term solution to the global human immunodeficiency virus (HIV) pandemic. The HIV Gag and Tat proteins are attractive components of a HIV vaccine as immune responses targeting these proteins confer protective benefits against HIV infections in humans. This thesis has developed two innovative candidate HIV vaccines viz. a DNA vaccine encoding oligomerised and secreted Tat (pVAX-sTat-IMX313), and a recombinant live human rhinovirus serotype A1 (HRV-A1)-based vaccine encoding Gag and Tat (rHRV-Gag/Tat).

Methods
To construct pVAX-sTat-IMX313, Tat was fused with the oligomerisation domain of IMX313 to form Tat heptamers and linked to the leader sequence of tissue plasminogen activator to ensure that the bulk of oligomerised protein is secreted. To develop the rHRV-Gag/Tat vaccine, initially, the full length tat gene and 5 discrete overlapping fragments corresponding to the full length gag gene were individually inserted into the junction between the HRV-A1 genes encoding structural and non-structural proteins (P1/P2 junction) to ensure that the exogenous HIV Gag or Tat proteins were separated from the recombinant polyprotein using the HRV encoded 2Aprotease enzyme. Thus, one recombinant HRV encoding Tat (rHRV-Tat) and 5 rHRVs each encoding a unique Gag fragment (rHRV-Gag1-5) were generated. The individual rHRVs were then mixed into a single cocktail vaccine (rHRV-Gag/Tat), purified and titrated for inoculation in mice.

The immunogenicity of these vaccines was evaluated in female BALB/c mice that received up to five intradermal injections of pVAX-sTat-IMX313 (50 μg per dose) at 2 weekly intervals in one study. In another study, mice were vaccinated intranasally with 2 doses (5x10^6
TCID50/dose) of the rHRV-Gag/Tat followed by a single 50 μg booster dose of a cocktail DNA vaccine containing pVAX-sTat-IMX313 and pVAX-Gag-Perforin. Vaccine-induced immune responses were examined 2 weeks after the last dose by antibody ELISA, in-vitro Tat transactivation neutralization, IFN-γ ELISpot, KdGag197-205 tetramer staining and intracellular cytokine staining assays.

Results

Data showed that fusing Tat with IMX313 results in complete heptamerisation of Tat. Furthermore, the data suggested that pVAX-sTat-IMX313 vaccination elicited higher titers of serum neutralizing Tat-specific IgG, secretory IgA (sIgA) in the vagina and CMI responses, and showed superior control of ecotropic HIV (EcoHIV) infection, a surrogate murine HIV challenge model, compared with animals vaccinated with other DNA vaccines tested in this study. Human rhinovirus serotype A1 (HRV-A1) was successfully engineered into a replication-competent genetically stable recombinant vector to deliver a mucosally-targeted vaccine, rHRV-Gag/Tat, by inserting exogenous HIV gag and tat sequences into the HRV-A1 genome. Finally, intranasal administration of 2 doses of rHRV-Gag/Tat followed by a single DNA booster dose induced superior poly-functional Gag-specific CD8 T cell responses in the spleen (systemic) and mesenteric lymph nodes (mucosal), higher Tat-specific serum IgG and sIgA in the vagina, and effective control of EcoHIV infection compared to other vaccination regimens tested in this study.

Conclusion

First, the data support the inclusion of IMX313 as a molecular adjuvant for Tat-based HIV DNA vaccines. Second, the data demonstrated that intranasal vaccination with rHRV-Gag/Tat followed by a single DNA booster dose is effective in eliciting HIV-specific immunity pan-mucosally and systemically. Collectively, the data support further testing of the pVAX-sTat-
IMX313 and rHRV-Gag/Tat vaccines in macaques, preferably in a heterologous prime-boost vaccination strategy, and results from these studies might influence future HIV clinical trials.
Declaration

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968. I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Khamis Tomusange.
Acknowledgments

Firstly, I would like to thank The Hospital Research Foundation (THRF) and Mr. Paul Flynn (Chief Executive Officer, THRF) for the financial support they extended to me in form of a scholarship that supported my PhD candidature. My PhD candidature would not have been possible, if not for their generosity.

Secondly, I would like to acknowledge and thank my principal supervisor Professor Eric James Gowans and co-supervisor Dr. Branka Grubor-Bauk for their advice and mentorship throughout my PhD candidature in designing the experiments and analysing the data presented in this thesis, and for their extensive help with editing manuscripts and this thesis.

I would also like to thank the past and present members of the Virology Laboratory especially Jason Gummow (fellow student) and Dr. Danusha Wijesundara (post-doc research fellow) for their technical advice in performing key experimental assays which I used to generate the data presented in this thesis and all my manuscripts.

I would also like to thank my collaborators Drs. Nathan Bartlett, Lachlan Gray and Melissa Churchill for contributing reagents and technical advice for setting up key assays. I would also like to thank Mathew Smith for technical assistance at the Queen Elizabeth Hospital animal house for caring and looking after animals used during my PhD candidature.

Finally, I thank my parents, siblings, friends and wife, Asha Nabbale, for their endless support throughout my PhD candidature.
List of abbreviations and acronyms

AIDS: acquired immune deficiency syndrome
Ad5: Adenovirus serotype 5
APCs: Antigen presenting cells
ADCVI: Antibody-dependent cell-mediated virus inhibition
ADCC: Antibody-dependent cellular cytotoxicity
ADCP: Antibody-dependent cellular phagocytosis
ADCD: Ab-dependent complement deposition
Ad5: Adenovirus serotype 5
APOBEC-3G: Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like-type 3G
~: Approximately
cDNA: Complementary DNA
CCR5: Chemokine receptor 5
CCR5 Δ32: CCR delta 32
CD4+: Cluster of differentiation 4 positive
CD8+: Cluster of differentiation 8 positive
Δ Nef: delta Nef
DNA: Deoxyribonucleic acid
DCs: Dendritic Cells
DC-SIGN: Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin
ELISA: Enzyme-linked immunosorbent assay
ELISpot: Enzyme-linked immunosorbent spot assay
eIF-4GI: Eukaryotic initiation factor 4GII
ESCRTs: Endosomal sorting complexes required for transport
gp120: Glycoprotein 120
gp41: Glycoprotein 41

g: Gram

≥: Equal to or greater than

HIV-1 or HIV-2: Human immunodeficiency virus type 1 or 2

HIV LTR: HIV long terminal repeats

HLA: Human leukocyte antigen

HAART: Highly active anti-retroviral therapy

HeLa cells: Henrietta Lacks cells

HEK cells: Human embryo kidney cells

HCV: Hepatitis C Virus

IRES: Internal ribosome entry site

IN: Intra nasal

IFN-γ: Interferon gamma

IL-2: Interleukin-2

IL4: Interleukin-4

IL-7: Interleukin-7

ISCOMs: Immune stimulating complexes

IAVI: International AIDS Vaccine Initiative

sIgA: Secreted immunoglobulin A

IgG: Immunoglobulin G

IgE: Immunoglobulin E

i.e: That is to say

Kb: kilo base

kDa: kilo dalton

<: Less than
LRAs: Latency reversing agents

LEDGF/p75: Lens epithelium-derived growth factor/p75

MHC-I/II: Major histocompatibility complex class I or II

MHC-E: Major histocompatibility complex class E

MPER: Membrane proximal external region

ml: millilitre

mg: milligram

µl: micro litre

mRNA: messenger RNA

MSM: Men-who have-sex with men

Nabs: Neutralizing antibodies

NF-kB: Nuclear factor NF-κB

NFAT: Nuclear factor of activated T-cells

NK cell: Natural killer cells

%: Percentage

/: Per

RNA: Ribonucleic acid

STDs: Sexually transmitted diseases

SIV: Simian immunodeficiency

SIVmac251: Simian immunodeficiency for macaques strain 251

SIVmac239: Simian immunodeficiency for macaques strain 239

SIVsm E660: Simian immunodeficiency for macaques strain E660

SIVsmm: Simian immunodeficiency virus for sooty mangabeys

Th1 and 2: Type 1 and Type 2 immune responses

TNF-α: Tumor necrosis factor-alpha
UTR: untranslated region
UNAIDS: United Nations Programme on HIV and AIDS
Viz: namely
WHO: World Health Organisation