Thermal Mavericks in Australia: A Study of Occupant Preferences in Dwellings of Atypical Construction

Lyrian Rose Daniel

A thesis submitted to The University of Adelaide in fulfilment of the requirements for the degree of Doctor of Philosophy

School of Architecture and Built Environment

February 2016
Table of contents

Chapter 1. Introduction .. 1
 1.1 Overview .. 1
 1.2 A study of occupants of atypical housing in Australia .. 2
 1.3 Research hypothesis .. 5
 1.4 Aim of the thesis .. 5
 1.5 Methodological approach ... 6
 1.6 Organisation of the thesis ... 8

Chapter 2. Literature review ... 9
 2.1 Introduction ... 9
 2.2 Design of houses for thermal performance in Australia .. 10
 2.3 International standards for thermal environments ... 22
 2.4 Environmental concern .. 27
 2.5 Examination of key themes within the Australia context .. 29
 2.6 Summary ... 32

Chapter 3. Research methodology .. 35
 3.1 Introduction ... 35
 3.2 National surveys .. 35
 3.3 In-depth individual dwelling case studies ... 36
 3.4 Thermal comfort survey ... 45
 3.5 Environmental Attitudes Inventory survey .. 46

Chapter 4. Results: national surveys ... 49
 4.1 Introduction ... 49
 4.2 Overview ... 49
 4.3 Construction ... 58
8.2 Development of design assessment methodology ... 178
8.3 Describing the thermal preference of occupants of atypical forms of housing 184
8.4 Verification of the AccuRate simulation engine .. 197
8.5 Application of the VURB process ... 207
8.6 Summary .. 211

Chapter 9. Conclusions .. 215

9.1 Findings ... 216
9.2 Recommendations ... 220
9.3 Theoretical implications ... 221
9.4 Opportunities for future research .. 221
9.5 Closing remarks .. 221

References .. 225

Appendices .. 249
List of figures

Figure 1.1. Predominant housing stock in Australia: generic design, unresponsive to local climate and context ... 3

Figure 2.1. NCC Australia Wide Climate Zone Map (ABCB, 2014) ... 16

Figure 3.1. Location of Darwin and Melbourne (Nillumbik Shire) in Australia .. 38

Figure 3.2. Location of the earth construction case study dwellings and weather station in Nillumbik Shire .. 38

Figure 3.3. Location of the naturally ventilated case study dwellings and weather station, Darwin .. 39

Figure 3.4. HOBO U30 weather station, Nillumbik Shire ... 44

Figure 3.5. Anemometer system and HOBO U12-13 logger, Darwin .. 44

Figure 4.1. Distribution of responses from each State and Territory ... 51

Figure 4.2. Distribution of age brackets of members of the surveyed households .. 51

Figure 4.3. Type of dwelling ... 52

Figure 4.4. Age of dwellings ... 52

Figure 4.5. Location of dwellings .. 53

Figure 4.6. Reasons given for choosing to live in a dwelling incorporating earth construction .. 54

Figure 4.7. Reasons given for choosing to live in a naturally ventilated dwelling .. 55

Figure 4.8. Configuration of dwellings ... 59

Figure 4.9. Flooring type in the earth construction dwellings .. 59

Figure 4.10. Flooring types in the naturally ventilated dwellings .. 60

Figure 4.11. Earth wall configuration and type of construction .. 61

Figure 4.12. Wall type and ceiling configuration in the naturally ventilated dwellings ... 62

Figure 4.13. Roof and ceiling configurations ... 62

Figure 4.14. Issues or concerns with naturally ventilated houses .. 63

Figure 4.15. Modifications made to improve thermal comfort in the earth construction dwellings .. 65

Figure 4.16. Modifications made to improve thermal comfort in the naturally ventilated dwellings .. 66
Figure 4.17. Features of both cohorts’ outdoor living spaces ..68
Figure 4.18. Type of indoor window covering of both cohorts ..69
Figure 4.19. Type of outdoor window shading for both cohorts ..69
Figure 4.20. Type of heating appliances present in the earth dwellings71
Figure 4.21. Main heating appliances used in the earth dwellings72
Figure 4.22. Rooms heated in earth construction dwellings ...72
Figure 4.23. Times of the day that heating appliances are used in cold weather73
Figure 4.24. Types of fans and cooling appliances in earth construction dwellings75
Figure 4.25. Rooms cooled in earth construction dwellings ...75
Figure 4.26. Times of the day that cooling appliances are used in hot weather76
Figure 4.27. Rooms that were designed to be naturally ventilated78
Figure 4.28. Location of fixed ceilings fans ...78
Figure 4.29. Rooms where air-conditioning is operated ...80
Figure 4.30. Times of the day that the air-conditioning is operated81
Figure 5.1. Typical setting of Melbourne houses; semi-suburban bushland87
Figure 5.2. Typical setting of Darwin houses; highly vegetated suburban blocks87
Figure 5.3. Post and beam construction with mud brick infill predominantly used in Melbourne houses ..87
Figure 5.4. More contemporary examples of earth construction; left house built in 2001 & right house built in 2010, Melbourne ...88
Figure 5.5. Left image, an example of heavyweight construction & right image, an example of light weight construction, Darwin ...88
Figure 5.6. Dwelling configuration and setting ..88
Figure 5.7. Distribution of age brackets of members of the case study households89
Figure 5.8. Concerns of the Darwin cohort about living in a naturally ventilated house ...91
Figure 5.9. Reasons given for choosing their respective types of housing91
Figure 5.10. Verandah and deck extension to standard government housing, Darwin92
Figure 5.11. Outdoor living spaces, Darwin ...93
Figure 5.12. Common responses to cold conditions within the Melbourne households95
Figure 5.13. Types of heating appliances in the Melbourne households95
Figure 5.14. Rooms heated in cold weather ..96
Figure 5.15. Times of the day and night heating used in cold weather96
Figure 5.16. Common responses to hot conditions within the Melbourne households97
Figure 5.17. Fan and cooling appliance type in Melbourne households97
Figure 5.18. Rooms air-conditioned and times of day air-conditioning used in the Melbourne households .. 97
Figure 5.19. Elevated verandah, deep shade, Darwin... 99
Figure 5.20. Common responses to hot conditions within the Darwin households............... 99
Figure 5.21. Fan and cooling appliance type in Darwin households .. 100
Figure 5.22. Rooms air-conditioned and times of day air-conditioning used in the Darwin households .. 100
Figure 5.23. Monthly outdoor minimum, maximum and mean temperature from the weather station installed in Nillumbik Shire for the monitoring period.. 104
Figure 5.24. Monthly outdoor minimum, maximum and mean relative humidity from the weather station installed in Nillumbik Shire for the monitoring period................................. 104
Figure 5.25. Monthly outdoor minimum, maximum and mean temperature from the Darwin Airport weather station 014015 (BOM, 2014) for the monitoring period......................... 105
Figure 5.26. Monthly outdoor minimum, maximum and mean relative humidity from the Darwin Airport weather station 014015 (BOM, 2014) for the monitoring period 105
Figure 5.27. Average hourly temperatures and humidity of all Melbourne houses during the winter (June 2013 – August 2013) compared with the ASHRAE acceptable comfort zone for conditioned spaces (0.5 and 1.0 clo zones combined).. 109
Figure 5.28. Average hourly temperatures and humidity of all Melbourne houses during the summer (December 2013 – January 2014) compared with the ASHRAE acceptable comfort zone for conditioned spaces (0.5 and 1.0 clo zones combined).. 109
Figure 5.29. Comparison of average indoor and outdoor air temperature in the Melbourne houses during winter ... 110
Figure 5.30. Comparison of average indoor and outdoor air temperature in the Melbourne houses during summer ... 110
Figure 5.31. Comparison of average indoor and outdoor relative humidity levels in the Melbourne houses during winter ... 111
Figure 5.32. Comparison of average indoor and outdoor relative humidity levels in the Melbourne houses during summer ... 111
Figure 5.33. Average hourly temperatures and humidity of all Darwin houses during the dry season (June 2013 – August 2013) compared with the ASHRAE acceptable comfort zone for conditioned spaces (0.5 and 1.0 clo zones combined).. 112
Figure 5.34. Average hourly temperatures and humidity of all Darwin houses during the wet season (December 2013 – February 2014) compared with the ASHRAE acceptable comfort zone for conditioned spaces (0.5 and 1.0 clo zones combined) ... 112

Figure 5.35. Comparison of average indoor and outdoor air temperature in the Darwin houses during the dry season ... 113

Figure 5.36. Comparison of average indoor and outdoor air temperature in the Darwin houses during the dry season ... 113

Figure 5.37. Comparison of average indoor and outdoor relative humidity levels in the Darwin houses during the dry season ... 114

Figure 5.38. Comparison of average indoor and outdoor relative humidity levels in the Darwin houses during the wet season ... 114

Figure 5.39. Indoor average air speed in the Darwin houses during the dry season 115

Figure 5.40. Indoor average air speed in the Darwin houses during the wet season 116

Figure 6.1. Mean and standard deviation of the thermal sensation votes of each household in Melbourne cohort ... 124

Figure 6.2. Mean and standard deviation of the thermal sensation votes of each household in Darwin cohort ... 125

Figure 6.3. Mean and standard deviation of globe temperature when subjects vote 3, 4 or 5 on the thermal sensation scale for each household in Melbourne cohort compared to neutral temperature calculated from the regression equation in Figure 6.6 ... 125

Figure 6.4. Mean and standard deviation of globe temperature when subjects vote 3, 4 or 5 on the thermal sensation scale for each household in Darwin cohort compared to neutral temperature calculated from the regression equation in Figure 6.6 ... 126

Figure 6.5. Frequency of TSV responses for Melbourne and Darwin cohorts 127

Figure 6.6. Mean TSV of Melbourne and Darwin cohorts at temperatures binned in 1k increments ... 127

Figure 6.7. Percentage of TSV responses binned by indoor operative temperature for the Melbourne cohort ... 128

Figure 6.8. Percentage of TSV responses binned by indoor operative temperature for the Darwin cohort ... 128

Figure 6.9. Frequency of TPV responses for Melbourne and Darwin cohorts 129

Figure 6.10. Mean TPV of Melbourne and Darwin cohorts at temperatures binned in 1k increments, where 1=cooler, 2=no change and 3=warmer ... 130
Figure 6.11. Modified mean TPV of Melbourne and Darwin cohorts at temperatures binned in 1k increments, where 1=no change and 2=change

Figure 6.12. Percentage of TPV responses binned by indoor operative temperature for the Melbourne cohort

Figure 6.13. Percentage of TPV responses binned by indoor operative temperature for the Darwin cohort

Figure 6.14. Frequency of TCV responses for Melbourne and Darwin cohorts

Figure 6.15. Mean TCV of Melbourne and Darwin cohorts at temperatures binned in 1k increments

Figure 6.16. Percentage of TCV responses binned by indoor operative temperature for the Melbourne cohort

Figure 6.17. Percentage of TCV responses binned by indoor operative temperature for the Darwin cohort

Figure 6.18. Frequency of clothing level response for the Melbourne and Darwin cohorts

Figure 6.19. Mean clothing level response of Melbourne and Darwin cohorts at temperatures binned in 1k increments

Figure 6.20. Percentage of clothing level binned by indoor operative temperature for the Melbourne cohort

Figure 6.21. Percentage of clothing level binned by indoor operative temperature for the Darwin cohort

Figure 6.22. Frequency of metabolic rate response for Melbourne and Darwin cohorts

Figure 6.23. Mean activity level response of Melbourne and Darwin cohorts at temperatures binned in 1k increments

Figure 6.24. Percentage activity level binned by indoor operative temperature for the Melbourne cohort

Figure 6.25. Percentage activity level binned by indoor operative temperature for the Darwin cohort

Figure 6.26. Frequency of window and fan operation for Melbourne and Darwin cohorts

Figure 6.27. Percentage window operation binned by indoor operative temperature for the Melbourne cohort

Figure 6.28. Percentage window operation binned by running weighted mean outdoor air temperature for the Melbourne cohort

Figure 6.29. Percentage window operation binned by indoor operative temperature for the Darwin cohort
Figure 6.30. Percentage fan operation binned by indoor operative temperature for the Melbourne cohort.................................142
Figure 6.31. Percentage fan operation binned by indoor operative temperature for the Darwin cohort ..142
Figure 6.32. Frequency of heating or cooling appliance operation for Melbourne and Darwin cohorts ..143
Figure 6.33. Percentage heating or cooling appliance operation binned by indoor operative temperature for the Melbourne cohort ...144
Figure 6.34. Percentage heating or cooling appliance operation binned by running weighted mean outdoor air temperature for the Melbourne cohort ...144
Figure 6.35. Percentage cooling appliance operation binned by indoor operative temperature for the Darwin cohort ..145
Figure 6.36. Frequency of discomfort for Melbourne and Darwin cohorts ...146
Figure 6.37. Cross tabulation of TSV and TPV of Melbourne cohort ...147
Figure 6.38. Cross tabulation of TSV and TPV of Darwin cohort ...147
Figure 6.39. Cross tabulation of TSV and TCV of Melbourne cohort ...148
Figure 6.40. Cross tabulation of TSV and TCV of Darwin cohort ...148
Figure 6.41. Cross tabulation of TSV and CLO level of Melbourne cohort ...149
Figure 6.42. Cross tabulation of TSV and CLO level of Darwin cohort ...150
Figure 6.43. Cross tabulation of TSV and MET rate of Melbourne cohort ...150
Figure 6.44. Cross tabulation of TSV and MET rate of Darwin cohort ...151
Figure 6.45. Proportion of dissatisfied votes at each binned indoor temperature for the Melbourne cohort ...153
Figure 6.46. Proportion of dissatisfied votes at each binned indoor temperature for the Darwin cohort ...153
Figure 6.47. Percentage predicted dissatisfied for Melbourne data ...154
Figure 6.48. Predicted percentage of dissatisfied for Darwin data ...154
Figure 6.49. Proportion of votes at each 'zone' for Melbourne data ...155
Figure 6.50. Proportion of votes at each 'zone' for Darwin data ...155
Figure 6.51. Proportion of votes within the neutral zone for Melbourne data ...156
Figure 6.52. Proportion of votes within the neutral zone for Darwin ...156
Figure 6.53. Comparison of the mean TSV and mean calculated PMV when binned by indoor operative temperature in 1k intervals for the Melbourne cohort ...159
Figure 6.54. Comparison of the mean TSV and mean calculated PMV when binned by indoor operative temperature in 1k intervals for the Darwin cohort...159

Figure 6.55. Mean TSV when SET binned in 1k increments for the Melbourne cohort.......160

Figure 6.56. Mean TSV when SET binned in 1k increments for the Darwin cohort160

Figure 6.57. Comparison of the ‘slightly cool’, ‘neutral’ and ‘slightly warm’ TSVs from the collected data when parameters are within those described in ASHRAE55-2013 (section 5.4.1) with the acceptable operative temperature ranges for naturally conditioned spaces, where the prevailing mean outdoor air temperature is based on the running weighted 7-day mean..161

Figure 6.58. Votes where the subjects prefer ‘No change’ and the dwellings are operated as free-running compared with the acceptable operative temperature ranges for naturally conditioned spaces, where the prevailing mean outdoor air temperature is based on the running weighted 7-day mean ..162

Figure 6.59. Comparison of the ‘slightly cool’, ‘neutral’ and ‘slightly warm’ TSVs from the collected data when parameters are within those described in EN 15251 (2007) with the design values for the indoor operative temperature for buildings without mechanical cooling systems as a function of the exponentially-weighted running mean of the outdoor temperature ..163

Figure 6.60. Votes where subjects prefer ‘No change’ and dwellings are operated as free-running compared with the design values for the indoor operative temperature for buildings without mechanical cooling systems as a function of the exponentially-weighted running mean of the outdoor temperature ..164

Figure 7.1 EAI survey mean preservation and utilisation scores for individual case study cohort and control group respondents from Melbourne ...175

Figure 7.2. EAI survey mean preservation and utilisation scores for individual case study cohort and control group respondents from Darwin..175

Figure 7.3. EAI survey mean preservation and utilisation scores for the case study and control group samples ..176

Figure 8.1. Aggregated “No change” votes cast by the Melbourne and Darwin cohorts when no heating and/or cooling appliances were operating ..183

Figure 8.2. Total proportion of thermal preference votes at each thermal sensation vote scale for the Melbourne cohort ..186

Figure 8.3. Total proportion of thermal preference votes at each thermal sensation vote scale for the Darwin cohort..186
Figure 8.4. 90% percentile preference boundaries for the Melbourne cohort188
Figure 8.5. 90% percentile preference boundaries for the Darwin cohort188
Figure 8.6. 90% percentile preference boundaries for the aggregated data from both cohorts ..189
Figure 8.7. Comparison of the “Slightly cool”, “Neutral” and “Slightly warm” thermal sensation votes when no heating or cooling appliances were in use with the proposed thermal preference model ..189
Figure 8.8. Diagram of the process to determine a model for the cooling effect of air movement ..192
Figure 8.10. Coefficient & relative humidity ...193
Figure 8.11. Comparison of the calculated cooling effect of air movement with Szokolay’s proposed function (Szokolay, 2000, p147) ..193
Figure 8.12. Proportion of votes during the day where fans are on or off196
Figure 8.13. Proportion of votes during the year that fans are on or off196
Figure 8.14. Comparison of external, measured internal and predicted internal temperatures for Dwelling 15 in a summer period 1st – 4th January 2014 ..200
Figure 8.15. Comparison of external, measured internal and predicted internal temperatures for Dwelling 15 in a winter period 8th – 11th July 2013 ...201
Figure 8.16. Comparison of external, measured internal and predicted internal temperatures for Dwelling 15 in a transition season 19th – 22nd March 2013 ..201
Figure 8.17. Comparison of external, measured internal and predicted internal temperatures for Dwelling 18 in a summer period 3rd – 6th January 2014 ...203
Figure 8.18. Comparison of external, measured internal and predicted internal temperatures for Dwelling 18 in a winter period 1st – 4th July 2013 ...203
Figure 8.19. Comparison of external, measured internal and predicted internal temperatures for Dwelling 18 during a transition season 8th – 11th March 2014 ...204
Figure 8.20. Comparison of external, measured internal and predicted internal temperatures for Dwelling 34 in the wet season 1st – 4th January 2014 ..205
Figure 8.21. Comparison of external, measured internal and predicted internal temperatures for Dwelling 34 in the dry season 1st – 4th July 2013 ..205
Figure 8.22. Comparison of external, measured internal and predicted internal temperatures for Dwelling 35 in the wet season 10th – 13th January ...206
Figure 8.23. Comparison of external, measured internal and predicted internal temperatures for Dwelling 35 in the dry season 1st – 4th July 2013 ...207
List of tables

Table 1.1. Summary of methodological steps ... 7
Table 2.1. NatHERS fixed occupancy and user assumptions .. 18
Table 3.1. Selection criteria for case study households .. 39
Table 3.2. Equipment schedule .. 43
Table 3.3. Twelve attitudinal scales for use in EAI survey (Milfont & Duckitt, 2007)........ 47
Table 4.1. Perception of the climate in which the respondents are located (1= “Dislike very much”, 7= “Like very much”) ... 57
Table 4.2. Perception of thermal comfort in different seasons within dwellings incorporating earth construction components (1= “Very uncomfortable”, 7= “Very comfortable”) 57
Table 4.3. Perception of thermal comfort in different seasons within naturally ventilated houses in a hot humid climate (1= “Very uncomfortable”, 7= “Very comfortable”) 58
Table 4.4. Percentage of external wall openable for ventilation in the living areas and bedrooms .. 62
Table 4.5. Roof/ceiling insulation type in both cohorts of dwellings 64
Table 4.6. Insulation within walls and roofs/ceilings (ABS, 2011) 64
Table 4.7. Management of thermal conditions within the earth construction dwellings 68
Table 4.8. Proportion of types of heating appliances used in Victoria and Australia wide (ABS, 2011) ... 71
Table 4.9. Proportion of heating days for earth construction cohort, Victoria and Australia (ABS, 2011) ... 71
Table 4.10. Types of cooling appliances used in Victorian and Australian households (ABS, 2011) ... 74
Table 4.11. Proportion of cooling days for earth construction cohort, Victoria and Australia (ABS, 2011) ... 74
Table 4.12. Proportion of time that rooms are naturally ventilated 77
Table 4.13. Proportion of respondents who operate their homes as naturally ventilated during the different seasons and times of day .. 77
Table 4.14. Perception of air flow within the naturally ventilated houses when windows and doors are open (1= “Too much”, 4= “About right” and “7= “Too Stagnant”) 77
Table 4.15. Proportion of respondents who operate fans during the different seasons and times of day...77

Table 4.16. Types of cooling appliances used in the Northern Territory and Australian households (ABS, 2011)..79

Table 4.17. Proportion of cooling days for naturally ventilated cohort, the Northern Territory and Australia (ABS, 2011)..80

Table 5.1. Perception of thermal comfort in different seasons of the Melbourne households (1 = “Very uncomfortable” and 7 = “Very comfortable”) ...93

Table 5.2. Perception of thermal comfort in different seasons of the Darwin households (1 = “Very uncomfortable” and 7 = “Very comfortable”) ...94

Table 5.3. Average daily energy usage for the Melbourne households ...102

Table 5.4. Average daily energy usage for the Darwin households ..103

Table 5.5. Monthly outdoor minimum, maximum and mean temperature and relative humidity from the weather station installed in Nillumbik Shire for the monitoring period...106

Table 5.6. Monthly outdoor minimum, maximum and mean temperature and relative humidity from the Darwin Airport weather station 014015 (BOM, 2014) for the monitoring period ..106

Table 5.7. Monthly indoor minimum, maximum and mean of the average hourly measurements of temperature, globe temperature and relative humidity from all of the Melbourne houses ..108

Table 5.8. Monthly indoor minimum, maximum and mean of the average hourly measurements of temperature, globe temperature, relative humidity and air speed from all of the Darwin houses ..108

Table 6.1. Subject demographic information ..122

Table 6.2. Descriptive statistics of the comfort votes survey responses from the Melbourne cohort ..122

Table 6.3. Descriptive statistics of the comfort votes survey responses from the Darwin cohort ..123

Table 6.4. Summary of neutral, comfort and preferred temperatures calculated from thermal sensation votes ..157

Table 6.5. Percentage of ‘slightly cool’, ‘neutral’ and ‘slightly warm’ TSVs outside of the ASHRAE adaptive upper and lower limits ..161

Table 6.6. Percentage of votes where the subjects prefer ‘No change’ outside of the ASHRAE adaptive upper and lower limits ..162
Table 6.7. Percentage of ‘slightly cool’, 'neutral' and ‘slightly warm’ TSVs outside of the EN15251 adaptive design values ...164
Table 6.8. Percentage of votes where the subjects prefer ‘No change’ outside of the EN15251 adaptive design values ...165
Table 7.1. Sample size and demographic ..170
Table 7.2. Mean score and standard deviation for each EAI item for the case study cohorts and control samples (1= “Strongly disagree”, 7= “Strongly agree) ..171
Table 7.3. Mean scores for the 12 first-order factors for the case study cohorts and control samples ..173
Table 7.4. Mean scores for the two second-order factors, preservation and utilisation, for the case study cohorts and control samples ..174
Table 8.1. Comparison of the existing VURB process and the modified VURB process 180
Table 8.2. The average humidity and coefficient of cooling effect (^°K) vs air speed (m/s) for each humidity bin ..192
Table 8.3. The CV(RMSE) of the predicted internal temperatures compared to the measured internal temperatures for the main living spaces of Dwellings 15, 18, 34 and 35........199
Table 8.4. NatHERS star rating, and heating and cooling loads (regulation mode), note: current provisions require a minimum 6.0 Star Rating for compliance certification (see section 2.2.2) ..209
Table 8.5. Modifications made to dwelling models to fulfil the deemed-to-satisfy provisions (see Performance Requirement P2.6.2 – Option 2 Elemental Provisions of the NCC Volume 2, 2015) ..209
Table 8.6. Proportion of hourly temperatures outside of the respective limits of thermal acceptability ..210
Table 8.7. Proportion of hourly temperatures outside of the respective limits of thermal acceptability of improved proposed model ..211
Table 8.8. Example of how the results of the modified VURB process may be presented ... 212
Abstract

The preferences and behaviour of occupants are critically important in the environmental performance assessment of proposed and existing dwellings. Performance assessment should respond to both the needs of the occupants as well as societal goals, and when used as a tool in energy efficiency regulation should allow individuals to make informed choices that align with their particular housing aspirations. Within Australia, the existing approaches to meeting societal goals, expressed through the Energy Efficiency provisions in the National Construction Code (NCC), are intended to meet the perceived needs of a standardised population. This causes an incongruity when used to assess dwellings designed to meet alternative needs.

To investigate these issues this research studied the preferences and behaviour of occupants within two distinct forms of housing; dwellings incorporating earth construction elements in a cool temperate climate and naturally ventilated dwellings in a hot humid climate. A review of the literature provided anecdotal evidence indicating that these occupants have alternative performance expectations of their dwellings which are not currently being met by existing thermal performance assessment methods. The research was conducted through national surveys to confirm that the cohorts’ attitudes, behaviours and preferences were distinguishable from those of the broader population. These surveys were followed by a longitudinal comfort study of 40 households from these cohorts; 20 in Melbourne and 20 in Darwin. The comfort study was complimented by the analysis of long-term household energy use records, an exploration of dwelling operation in relation to thermal conditions and, importantly, an assessment of the individuals’ environmental attitudes.

Results of the national surveys confirmed that occupants of the two forms of atypical housing are identifiable cohorts whose perception and operation of their dwelling is different when compared to those of the broader population. These trends were similarly reflected across the 40 case study households. Notably, the type of fuels used and the operation of heating and/ or cooling appliances were dissimilar to typical houses in the same locations. This was seen in the considerably lower average energy consumption of the two case study cohorts when compared to the figures for households generally in those areas. Rather than choosing to
control the internal temperature by using heating and/or cooling appliances the occupants demonstrated a range of means of adapting to and modifying their thermal environment across a wide range of conditions. Their acceptance and preference for diversity within their thermal environment was further revealed through acceptable thermal sensation votes cast outside of the range of the adaptive comfort model. This illustrates the disadvantage imposed upon occupants when standard methods of design assessment are applied. The occupants displayed significantly higher levels of environmental concern than the broader population, likely motivating their preferences and behaviour in relation to the operation of their dwellings. Despite the uniqueness of the two cohorts (e.g. construction characteristics of the houses, climate and use of heating and/or cooling) the relationships between prevailing outdoor conditions and the occupants’ subjective response to internal conditions were similar, as were their overall levels of environmental concern.

Based on the collected data, this research offers an alternative process by which to judge the potential thermal performance of new dwellings of these typologies. The method developed is aimed at reducing energy use by demonstrating that an acceptable level of comfort is achieved without heating and/or cooling. Whilst the applicability of the proposed method is confined to the types of houses presently studied, it is expected that its application could be broadened to other forms of housing, where occupants demonstrate comparable levels of environmental concern.

This research is the first in Australia of residential buildings that combines both the use of traditional thermal comfort and post occupancy evaluation methods with a measure from environmental psychology to provide contextual information about the actual operation and performance of two distinct forms of housing. Importantly, this research supports broadening the boundaries of thermal comfort parameters in situations where occupants have access to a wide range of adaptive opportunities. The implications of these findings are theorised in the proposal of alternative building performance assessment methodology in the Australian context. On an international scale, this work offers an exciting pathway towards the creation of less energy intensive built environments, not just through the rationalisation of technical systems, but also through consideration of how individuals’ thermal preferences may be informed by their value system.
Statement of originality

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Lyrian Rose Daniel

Date:

Associated publications

Acknowledgements

I would like to express my gratitude to all of those who have supported me throughout the completion of this thesis. It has been constantly challenging, but foremost, it has been an immense pleasure that I will always be so grateful I have had the opportunity to pursue.

I would like to thank the households that participated in the research, who kindly gave their time and opened their homes to all sorts of questions and equipment. Thank you to CSIRO for generously funding my fieldwork and to the organisations that assisted with recruitment; Earth Building Association Australia, The Nillumbik Mudbrick Association and COOLmob.

I would like to offer my special thanks to my supervisory panel that have given so much of their time and sound guidance. I am particularly grateful to Dr Terry Williamson for nurturing my interest in research and for providing me with a quiet appreciation for a precise use of language. Thank you to Dr Veronica Soebarto who has contributed vast amounts of enthusiasm, energy and ideas, always perfectly timed to reinvigorate my own motivation. The technical advice and critical feedback provided by Dr Dong Chen is also very much appreciated.

My thanks also extend to the School of Architecture and Built Environment academic and support staffs, and to the invaluable community of scholars who have lent critique and perspective on much of my work.

Finally, I would like to express my very great appreciation and thanks to my immediate and extended family. To Josh, Ann and Ric, I am truly fortunate to have your patience and unfailing encouragement.