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Abstract 

Cylindrical/ring-shaped permanent magnets with diametrical magnetization can be 

found in many applications, ranging from electrical motors to position sensory systems. 

In order to calculate the magnetic field generated by a permanent magnet of this kind 

correctly and with low computational cost, several studies have been reported in the 

literature providing analytical expressions. However, these analytical expressions are 

either limited for an infinite cylinder or for computing the magnetic field only on the 

central axis of a finite cylinder. The others are derived to calculate the magnetic field at 

any point in three-dimensional (3D) space but only with low accuracy. This thesis 

presents an exact analytical model of the magnetic field generated by a diametrically 

magnetized cylindrical/ring-shaped permanent magnet with a limited length, which can 

be used to calculate the magnetic field of any point in 3D space fast and with very high 

accuracy. The expressions were analytically derived, based on geometrical analysis 

without calculating the magnetic scalar potential. Also, there is no approximation in the 

derivation steps that yields the exact analytical model. Three components of the 

magnetic field are analytically represented using complete and incomplete elliptical 

integrals, which are robust and have low computational cost. The accuracy and 

efficiency of the developed analytical model was validated using Finite Element 

Analysis and compared against existing models. 
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Nomenclature 

 

Throughout this thesis, bold font letters denote vectors (e.g. vector H), and standard font 

letters (H) denote scalar values (e.g. H is the scalar value of vector H). 

 

Symbols Descrtpttons Untts  

B Magnetic flux density T 

D Electric flux density C/m2 

E Electric field intensity V/m 

H Magnetic field strength A/m 

J Magnetic Polarization T 

M Magnetization A/m 

T Torque N.m 

m Magnetic moment A.m2 

Hc Coercivity A/m 

I Current A 

Ѐ Flux Wb 

∆V Elemental volume m3 ∇f Gradient of  scalar function f  ∇�∙�A Divergence of vector A  ∇ x A Curl of vector A  

σ Conductivity S/m 

ρ Electric charge density C/m3 

µ  Permeability H/m 

µ0 Permeability of free space H/m 

µr Relative permeability   

χm Susceptibility  
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ε Permittivity F/m 

ε0 Permittivity of free space F/m 

c Velocity of light m-1 
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Chapter 1 

Introduction 

 

Permanent magnets have been widely utilised in various applications [1 – 10]. Amongst 

them, diametrically magnetised cylindrical/annular permanent magnets are widely 

utilised in electrical motors [11-14]. For instance, diametrically magnetised rotors have 

been used in high speed permanent magnet synchronous machines (PMSMs) [13] (Fig. 

1.1) and [14] (Fig. 1.2).  

 

 

  

 

 

Ftg. 1.1 Appltcattons of dtametrtcally magnettsed permanent magnets tn electrtcal machtnes: (a) tron 

or atr cored types; (b) full-rtng magnet types [13] 
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Ftg. 1.2 Conftguratton of 3-phase/24-slots/60000 rpm htgh speed machtne wtth atr-cored dtametrtcally 

magnettzed rotor [14] 

 

These magnets have also been used in non-contact position sensory systems [15-20], 

mainly due to their ability to produce a sinusoidal air gap magnetic field distribution. 

For example, a permanent magnet of this kind is used with an array of two Hall effect 

sensors (Fig. 1.3) [16], whose outputs are sinusoidal, as formulated in Eq. (1.1). These 

outputs are further processed to obtain a rotation angle of θ [16]. In addition, a 

diametrically magnetised permanent magnet is used with an array of four Hall effect 

sensors (Fig. 1.4) [18], as well as with the eccentrically arranged Hall effect sensors 

(Figs. 1.5, 1.6 and 1.7) [19] for contactless measurement of the rotation angle. 
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Ftg. 1.3 Magnettc fteld dtstrtbutton of the magnet rtng wtth dtametrtcal magnettzatton [16] 

 

The output voltage of Hall A and B in Fig. 1.3 are given respectively, as follows [16]: 

 

	
�

� Va�=� RH

I�B�stnθ

δH

 x 10
-8�=�V stnθ

Vb�=� RH

I�B�cosθ

δH

 x 10
-8�=�V cosθ

 

 

In this formula (Eq. (1.1)), V is the constant of the sensor. RH is the Hall material 

coefficient; I is the exciting current; δH is the thickness of the Hall element; B is the 

magnetic flux density. 

 

(1.1) 
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Ftg. 1.4 Functtonal dtagram of cycltc dtsplacement converter [18]: HAS – array of Hall effect sensors 

H1–H4 wtth dtfferenttal ampltfters DA1 and DA2; FDOS – former of dtgttal orthogonal components of 

dtsplacement; ADC1 and ADC2 – analog-to-dtgttal converters; DSP – dtgttal stgnal processor; AGC – 

automattc gatn control ctrcutt. 

 

 

Ftg. 1.5 Eccentrtcally arranged Hall effect sensors and dtametrtcally magnettsed permanent magnet 

[19]: Wtth one sensor 

 

Diametrically magnetised permanent magnet 
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Ftg. 1.6 Eccentrtcally arranged Hall effects sensors and dtametrtcally magnettsed permanent magnet 

[19]: Wtth two sensors 

 

 

Ftg. 1.7 Eccentrtcally arranged Hall effects sensors and dtametrtcally magnettsed 

permanent magnet [19]: Wtth three sensors 
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Furthermore, a system of Hall effect senor and annular magnets with diametrical 

magnetization is also used in the flexion-torsion joint (Fig. 1.8), which is implemented 

in the Trackhold – A novel passive arm-support device (Fig. 1.9) [20].   

 

Ftg. 1.8 CAD model of a flexton-torston jotnt and one of tts secttons [20] 

 

Ftg. 1.9 CAD model of the Trackhold [20] 
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A design for a contactless sensory system, based on Hall effect sensors (Fig. 1.4), which 

can potentially replace conventionally developed sensory systems based on 

electromyography (EMG) [21-26], electroencephalography (EEG) [27-33] and force 

sensors [34-38], to recognise intended motions of the human elbow and forearm, has 

been proposed by Nguyen et al. [39]. In this system, a ring-shaped magnet, that consists 

of two semi-ring shaped diametrically magnetised permanent magnet (Fig. 1.10), is 

implemented and mounted on the user’s forearm.  

 

The requirement for an accurate and fast-computed analytical expression of the 

magnetic field generated by a diametrically magnetised permanent magnet, which can 

facilitate the parametric design optimization of magnetic devices and model dynamical 

systems [40 – 41], leads to various ways of expressing the magnetic field of a permanent 

magnet of this kind. Since it can be time-consuming to use the Finite Element Method, 

analytical expressions with minimal computational effort have been attracting attention. 

This is very useful, especially when modelling dynamic systems, such as the movement 

of magnetic nanoparticles in a magnetic field gradient [42]. Moreover, a fast-computed 

analytical expression of the magnetic field can help save computational time to solve an 

optimization problem with variations over a large number of parameters [43].     

 

The aim of this thesis is to develop an accurate and fast-computed analytical model that 

is simpler and more efficient than those developed in the current literature, to calculate 

the magnetic field generated by a diametrically magnetised cylindrical/annular 

permanent magnet at any point of interest in three dimensional space.  
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Ftg. 1.10 The arrangement of Hall effect sensors and magnets [39]: 1 – Human forearm; 2 - Semt-rtng 

shape dtametrtcally magnettsed S-N; 3 - Semt-rtng shape dtametrtcally magnettsed N-S; 4, 5, 6, and 7 - 

ltnear Hall effect sensors; 8 – Exoskeleton sensors’ support; 9 – Atr gaps. 

 

The exact analytical expressions of the magnetic field, created by a diametrically 

magnetised cylindrical- and ring- shaped permanent magnet at any point of interest in 

3D space, are derived in this thesis based on the Coulombian approach [44], which has 

been used to analytically model the magnetic fields created by arc-shaped permanent 

magnets with radial magnetization [45 – 46], ring-shaped permanent magnets with axial 

and radial magnetization [47, 48], tile permanent magnets with radial magnetization [49] 

and tangential magnetization [50, 51]. The exact final model of the magnetic field was 

analytically derived, based on geometrical analysis; and there was no approximation in 
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the derivation steps. All three components of the magnetic field can be expressed using 

complete and incomplete elliptic integrals that are robust and their computational efforts 

are minimal [42], [52 – 55]. The accuracy and efficiency of the developed analytical 

model were validated against currently existing models.  

 

This thesis is organized in six chapters. The current chapter discusses the background 

of the research topic, the aim of the study, as well as the outline of this thesis. The rest 

of this thesis is organized as follows: 

 

Chapter 2 presents a review of the current studies for modelling magnetic fields 

generated by a diametrically magnetised permanent magnet. Chapter 3 provides a   

theoretical, technical background related to the research topic and the fundamental 

mathematics used in this thesis. Chapter 4 describes the derivation steps of the analytical 

expressions of the magnetic field generated by a permanent magnet with diametrical 

magnetization. Chapter 5 demonstrates the accuracy and efficiency of the derived 

analytical expressions, compared with the existing models and Finite Element Analysis. 

Chapter 6 draws together the conclusions from the project and indicates further studies 

and applications of the currently developed model. 
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Chapter 2  

Literature review 

 

 

2.1 Current models to calculate the magnetic field generated by a permanent 

magnet with diametrical magnetization  

 

The mathematical models existing in the current literature to compute the magnetic field 

generated by a permanent magnet with diametrical magnetization are reviewed in this 

chapter.  

Even though Finite Element Analysis (FEA) can be a method used to predict the 

magnetic field correctly, it remains time consuming. Some research has focused on 

analytical modelling of the magnetic field created by a diametrically magnetised 

permanent magnet in two dimensional (2D) planes [11-14] to compute the field 

distribution and provide insights into the magnetic field. However, these 2D models are 

only suitable for calculating the magnetic field for electrical motors at a point within a 

boundary condition on the plane under consideration.  
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Ftg. 2.1 Used geometry of a rtng-shaped permanent magnet wtth axtal magnettzatton: z ts an axts of 

symmetry, tts tnner radtus ts rtn, tts outer radtus ts rout, tts hetght ts h [47] 

 

Currently, based on elliptic integral functions, three dimensional (3D) analytical 

expressions of a magnetic field created by a ring-shaped permanent magnet [47] with 

axial (Fig. 2.1) and radial (Fig. 2.2) magnetization and by a radially magnetized tile 

permanent magnet (Fig. 2.3) [49] have been derived. For these magnets, the surface 

charge density is constant because the magnetization vectors of these magnets are 

normal to the corresponding surface of the permanent magnets.  

 



 

 

12 
 

 

 

Ftg. 2.2 Used geometrtes; A ts a rtng whose symmetry axts ts z, tts tnner radtus ts rtn, tts outer radtus ts 

rout, tts hetght ts h, tts magnettc polartzatton ts radtal: B ts an tnftnttely long paralleptped, tts hetght ts 

h, xtn equal rtn [47] 

 

However, in the case of a diametrically magnetised permanent magnet, this parameter 

is dependent on the angle θ (Fig. 2.4) between the magnetization vector J and the normal 

unit vector n�to the cylindrical surface which is equal to Jcosθ [42]. Therefore, the non-

constant surface charge density needs to be taken into account when deriving the 

analytical expressions of the magnetic field generated by a permanent magnet with  
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Ftg. 2.3 Representatton of the geometry of a radtally magnettzed ttle permanent magnet. The ttle tnner 

radtus ts r1; the ttle outer radtus ts r2; tts hetght ts h = z2 – z1 and tts angular wtdth ts θ2 – θ1 [49] 

 

diametrical magnetization. There are some analytical expressions of the magnetic field 

produced by a diametrically magnetised permanent magnet. However, they are only 

developed for an infinite cylinder [56 – 57], or for computing the magnetic field on the 

central axis of a finite cylinder Eq. (2.1) and at the cylinder’s centre (z = 0) Eq. (2.2) 

[58].  

 

 

 

(2.1) 
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In Eqs. (2.1) and (2.2), 2δ ts the thtckness of the cyltndrtcal magnet, the vector magnettzatton Mx ts 

along X axts; R ts the radtus of the cyltnder [58]. 

 

In order to address these limitations, most recently, Caciagli et al. [42] presented an 

analytical model, based on complete elliptic integrals, to calculate the magnetic field 

created by a diametrically magnetised cylindrical permanent magnet with a finite length, 

at any point in (3D) space.  Nonetheless, in the derivation steps, the scalar potential is 

expressed approximately with the complete elliptic integrals; this caused an error 

associated with the final expressions of the magnetic field, because these final 

expressions were derived by taking the derivatives of the approximated scalar potential 

directly. 

 

 

(2.2) 
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Ftg. 2.4 Cyltndrtcal permanent magnet wtth dtametrtcal polartzatton J along axts Y 

 

Other models to calculate the magnetic field were developed and described in the study 

by Fontana et al. [19]. This study presented the double integration expression (Eq. (2.7), 

h – thickness of the cylinder), which can be used to calculate the magnetic field created 

by a permanent magnet with diametrical magnetization at any point of interest in 3D 

space (Fig. 2.5). However, the double integration expression can only be solved 

numerically. This can be time-consuming when high accuracy needs to be achieved. 
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Ftg. 2.5 Dtametrtcally magnettsed permanent magnets [19]: (a) Scheme of the dtstrtbutton of the 

equtvalent magnettc charge on the cyltndrtcal surfaces of the cyltndrtcal and annular magnets, (b) 

Scheme of the geometry and tts parameters, σ* - magnettc charge denstty. 
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H(ρ, φ, z)=
1

4πµ
0

� � QP�QP�3
�(�)∗

zQ=
h
2

zQ= - 
h
2

θ=π

θ=-π

RcdzQdθ  

= 
M

4πµ
0

� � QP�QP�3
sin�(θ)zQ=

h
2

zQ= - 
h
2

θ=π

θ=-π

RcdzQdθ                            (2.7) 

 

The computation of the double integral expression can also be time consuming if the 

model is used for the optimization process [45]. Recently, single integral expressions 

(Eq. (2.8)) have been used to calculate the magnetic field at a point on the symmetrical 

plane of the diametrically magnetised cylindrical permanent magnet and were presented 

in the study by Fontana et al. [19].  

 

Hρ= ��
��MhRc

4πµ
0

� ρ cos�θ
*� -Rccos2�θ

*�
�Q'

P�2��h
2
�2

+�Q'
P�2

dθ
*

θ
*
=π

θ
*
=-π � 

 ! sin(φ) 

Hφ= ��
��MhRc

4πµ
0

� -Rcsin
2�θ

*�
�Q'

P�2��h
2
�2

+�Q'
P�2

dθ
*

θ
*
=π

θ
*
=-π � 

 ! cos(φ) 

Hz=0 

 

(2.8) 
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Nevertheless, in this application, the axial component Hz�of the field is equal to zero 

(Eq. (2.8)) and the model can thus only be considered as 2D because its application is 

limited to the symmetry plane. In other words, the current single integral model cannot 

be used to compute the magnetic field generated by a cylindrical/ring-shaped permanent 

magnet with diametrical polarization at any point of interest in the 3D space. 

 

2.2 Gap Statement 

 

Based on the literature review, the knowledge gap can be formulated as follows: 

 

There are no three dimensional (3D) analytical expressions, which are simpler and more 

efficient than those with double integrals and the current analytical models in the 

literature, to calculate the magnetic field generated by a diametrically magnetised 

cylindrical/ring-shaped permanent magnet at any point of interest in the 3D space.  

 

2.3 Aims and Obcectives 

 

The general aim of the proposed research is as follows: 

 

The aim of the proposed research is to develop 3D analytical expressions, which are 

simpler and more efficient than those with double integrals and the current analytical 
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models in the literature, of the magnetic field generated by a diametrically magnetised 

cylindrical/ring-shaped permanent magnet at any point of interest in the 3D space. 

 

In order to achieve the aim, the following objectives will be addressed: 

Obcective 1:  To derive the single integral 3D expressions of the magnetic field 

generated by a diametrically magnetised cylindrical/ring-shaped permanent magnet at 

any point of interest in 3D space. 

Obcective 2: To validate the single integral models both analytically and numerically. 

Obcective 3: To derive the 3D analytical expressions of the magnetic field generated by 

a diametrically magnetised cylindrical/ring-shaped permanent magnet at any point of 

interest in 3D space. 

Obcective 4: To validate the derived analytical model and analyse its efficiency. 

 

 

 

 

 

 

 



 

 

20 
 

Chapter 3 

Technical background 

 

 

This chapter presents fundamental mathematics which is used throughout this thesis. 

The basic concepts of magnetism and magnetic materials, as well as the Finite Element 

Analysis and different software used in this thesis are also presented. 

The organization of this chapter is summarized in Fig. 3.1. 
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3.1 Fundamental mathematics 

 

In this section, the Gradient, Divergence and Curl of a vector, which are essential 

elements for analysis of the magnetic field generated by a permanent magnet, are 

introduced in both Cartesian and Cylindrical coordinate systems.  

 

 

 

Ftg. 3.2 Cartestan coordtnate system 

 

3.1.1 The Gradient, Divergence and Curl of a vector in a Cartesian coordinate 

system 

 

A vector A with components Ax, Ay, Az in a Cartesian coordinate system, OXYZ (Fig. 

3.2) can be described as follows: 
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A = Axx + Ayy + Azz                                   (3.1) 

and magnitudes  

|A| = �Ax
2
+ Ay

2
+ Az

2
                                       (3.2) 

Assuming that f(x, y, z) and A(x, y, z) are scalar and vector-valued functions 

respectively, the vector differential ∇ (del) operator in ��Cartesian coordinate system�is 

presented as follows: 

����&�∇ = 
∂

∂x
x+  

∂

∂y
y+  

∂

∂z
z        ���������������������������� (3.3) 

and the definitions of the gradient, divergence and curl are follows. 

The gradient of scalar function f in a Cartesian coordinate system is: 

������r�����&�∇� = 
∂�
∂x

x+  
∂�
∂y

y+  
∂�
∂z

z        ���������������������������� (3.4) 

The gradient of a scalar function plays a vital role in physics and engineering in 

expressing the relationship between a force field and a potential field (V) (Eq. (3.4.1)) 

[59] 

Force F = −�∇�(potential V)                                 (3.4.1) 

The divergence of vector-valued function A in a Cartesian coordinate system is the dot 

product as follows:  

divA�&�∇�∙�A = 
∂Ax

∂x
�+  

∂Ay

∂y
�+  

∂Az

∂z
        �����(3.5) 
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The physical meaning of the divergence of vector field A at point G can be regarded as 

the measurement of how much the vector field diverges from the given point. 

 

In the case where A flows out of G divA > 0 (Fig. 3.3 (a)); A flows into G divA < 0 

(Fig. 3.3 (b)); A flows in and out of G equally divA = 0 (Fig. 3.3 (c)) 

  

 

 

 

 

 

 

Ftg. 3.3 Flow of the vector fteld A towards potnt G: (a) A flows out of G, (b) A flows tnto G, (c) A flows 

tn and out of G 
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The curl of vector-valued function A in a Cartesian coordinate system is the cross 

product as follows: 

curlA�&�∇ x A �=�� *
x       y        z

∂

∂x
 �� ∂

 ∂y
  � ∂

 ∂z

Ax�����Ay����Az�* 

 & +∂Az

∂y
−�∂Ay

∂z
, x�+� +∂Ax

∂z
−�∂Az

∂x
, y + � +∂Ay

∂x
−�∂Ax

∂y
, z     ����������(3.6) 

The physical meaning of Curl of the vector field A at point G can be regarded as the 

measurement of the tendency of the vector A to circulate around point G (and the axis 

of the circulation). 

 

 

 

 

 

 

 

 

Ftg. 3.4 Flow of vector A around potnt G: (a) vector A tends to swtrl around G; (b) vector A has no 

tendency to swtrl around G 
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In the case where vector A tends to swirl around G, curlA # 0 (the sign of curlA is 

defined based on the right hand rule; in Fig. 3.4 (a) curlA > 0); on the other hand, if 

there is no tendency for A to swirl around G, curlA = 0 (Fig. 3.4 (b)) 

The right hand rule: 

Place the right hand at point O (Fig. 3.5). Point the fingers toward the tail of vector N 

and curl the fingers around in the direction of the tip of the vector. If the thumb points 

toward Z+, the curl of vector N possesses positive value and vice versa.  

 

 

 

Ftg. 3.5 Prtnctple of the rtght hand rule 
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3.1.2 Gradient, Divergence and Curl of a vector in a Cylindrical coordinate system 

 

In a cylindrical coordinate system, vector A is presented as follows (Fig. 3.6): 

A = Arr + Aαα + Azz                                   (3.7) 

with magnitude 

A = �Ar2+ Aα2+ Az
2
                                       (3.8) 

 

 

 

Ftg. 3.6 A cyltndrtcal coordtnate system 
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Assuming that f(x, y, z) and A(x, y, z) are scalar and vector-valued functions 

respectively. The vector differential ∇ (del) operator in a cylindrical coordinate system 

is presented as follows: 

∇ = 
∂

∂r
r �+  

1

r

∂

∂α
α�+ 

∂

∂z
z                                     (3.9) 

and the definitions of the gradient, divergence and curl are as follows: 

The gradient of ����scalar function f in ��cylindrical coordinate system�is:  � 
∇� = 

∂f

∂r
r �+  

1

r

∂f

∂α
α�+ 

∂f

∂z
z        ���������������������������� (3.10) 

The divergence of ����vector-valued function A in ��cylindrical coordinate system�is:  

∇�∙�A = 
1

r

∂(rAr)
∂r

 +  
1

r

∂Aα

∂α
 +  

∂Az

∂z
        (3.11) 

and 

The curl of ����vector-valued function A in ��cylindrical coordinate system�is:    

∇ x A = *r       rα        z
∂

∂r
   

∂

 ∂α
   

∂

 ∂z
Ar���� rAα����Az�*

& +1

r

∂Az

∂α
−�∂Aα

∂z
, r + +∂Ar

∂z
−�∂Az

∂r
,α +  

1

r
+∂(rAα)

∂r

−�∂Ar

∂α
, z                 (3.12) 
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3.1.3 Summary 

 

The Gradient, Divergence and Curl of scalar f and vector A in Cartesian and cylindrical 

coordinate systems is summarized in Table 3.1 below: 

Table 3.1 Gradtent, Dtvergence and Curl of a vector 

Operators Symbols Cartesian coordinate system Cylindrical coordinate 

system 

Gradient ∇f 
 

∂�
∂x

x+  
∂�
∂y

y+  
∂�
∂z

z 
∂f

∂r
r �+  

1

r

∂f

∂α
α�+ 

∂f

∂z
z    

Divergence ∇�∙�A 
  

∂Ax

∂x
�+  

∂Ay

∂y
�+  

∂Az

∂z
 

1

r

∂(rAr)
∂r

 +  
1

r

∂Aα

∂α
 +  

∂Az

∂z
 

Curl ∇ x A *
x       y        z

∂

∂x
 �� ∂

 ∂y
  � ∂

 ∂z

Ax�����Ay����Az�*
& +∂Az

∂y
−�∂Ay

∂z
, x�+� +∂Ax

∂z

−�∂Az

∂x
, y + � +∂Ay

∂x

−�∂Ax

∂y
, z        

*r       rα        z
∂

∂r
   

∂

 ∂α
   

∂

 ∂z
Ar���� rAα����Az�*

& +1

r

∂Az

∂α

−�∂Aα

∂z
, r + +∂Ar

∂z

−�∂Az

∂r
, α +  

1

r
+∂(rAα)

∂r

−�∂Ar

∂α
, z   

 

3.2 Unit systems 

The three systems of units [44], which are broadly utilised in magnetism, are the CGS 

or Gaussian system, MKS and SI systems (International System of Units) referred to as 
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the Kennelly and Sommerfeld conventions, respectively. As presented in Table 3.2, the 

flux density B is measured in Tesla (T) in SI and in Gauss in CGS; the magnetic field 

intensity H is measured in A/m in SI and in Oe in CGS; the magnetization M is 

measured in A/m in SI and in emu/cm3 in CGS; the magnetic flux Ѐ is measured in 

Webers in SI and in Maxwells in CGS. Table 3.3 presents the conversion factors for 

these systems. 

Table 3.2 Untts used tn magnettsm 

Symbol Description SI CGS 

H 
Magnetic 

field strength 
A/m 

Ampere/

meter 
Oe Oersted 

B Flux density T Tesla G Gauss 

M 
Magnetizatio

n 
A/m 

Ampere/

meter 
emu/cm3 

Electro-

magnetic 

unit/ 

centimeter3 

Ѐ Flux Wb Weber Mx Maxwell 

σ Conductivity S/m 
Siemens/

meter 
abS/cm 

Absiemens/

centimeter 

µ0, µ, µr Permeability H/m 
Henry/m

eter 
emu 

Electro-

magnetic 

unit 

m 
Magnetic 

moment 
A.m2 

Ampere.

meter2 
abA.cm2 

Abampere.

centimeter2 

I Current A Ampere abA abampere 

ε Permittivity F/m 
Farad/me

ter 
esu 

Electro-

static unit 

c 
Velocity of 

light 
m-1 Meter-1 cm/s 

Centimeter/

second 
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Table 3.3 Converston factors 

1 Oe = 1000/4π A/m 

1 H/m = 107/4 π emu 

1 Gauss = 10-4 T 

1 S/m = 10-11 abS/cm 

1 emu/cm3 = 1000 A/m 

1 Maxwell = 10-8 Webers 

1 F/m = 4π10-7 c2 esu 

 

3.3 Magnetic materials 

3.3.1 Magnetization, susceptibility and permeability  

 

The fundamental element in magnetism is the magnetic dipole [44]. The magnetic dipole 

can be considered as a pair of closely spaced magnetic poles (Fig. 3.7) or a small current 

loop (Fig. 3.8). A magnetic dipole generates a moment m (Figs. 3.7 and 3.8) which is 

measured in A.m2 in the SI unit system. Let B denote the Flux density and H denote the 

Field strength of the magnetic field. 

 

 

 

 



 

 

31 
 

 

 

 

 

 

 

 

Ftg. 3.7 Magnettc dtpole: Magnettc charge model and H-fteld [44] 

 

 

 

 

 

 

 

Ftg. 3.8 Magnettc dtpole: Current loop and B-fteld [44] 

The net magnetic dipole moment per unit volume is defined as magnetization M. This 

parameter can be numerically presented as follows: 

H 

B 
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M�=� lim
ȂV→0

Ȃ mii

ȂV
��������������(3.13) 

where  Ȃ mii   is a sum of the dipole moment vectors residing in the elemental volume 

ȂV. 

When an external B-field is applied to a magnetic dipole, it obtains energy as follows: 

E = - m . B                (3.14) 

and yields a torque T: 

T = m x B               (3.15) 

Eqs. (3.14) and (3.15) can be written in the Kennelly and CGS systems with H as 

follows: 

E = - m . H                  (3.16) 

and T = m x H             (3.17) 

The relationship between the magnetic flux density B and the magnetic field strength H 

is described in the Sommerfeld convention in the following equation (Eq. 3.18): 

B = µ0(H + M)              (3.18) 

here, µ0  = 4π x 10-7 T.m/A is the permeability of free space. 

This relationship can be written in the Kennelly convention, as in following equation 

(Eq. 3.19) 

B = µ0H + J               (3.19) 
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here, J is the magnetic polarization whose unit is Tesla. It can be noted that: 

J = µ0M             (3.20) 

In case of linear, homogeneous and isotropic materials, B and M are proportional to H, 

as illustrated in Eqs. (3.21) and (3.22): 

B = µH                    (3.21) 

and 

M = χmH              (3.22) 

The constant µ is the permeability and χm  is the susceptibility of the material. From Eqs. 

(3.18), (3.21) and (3.22), the relationship between µ and χm  can be drawn as represented 

in Eqs. (3.23) or (3.24) 

µ = µ0(χm + 1) = µ0 µr,            (3.23) 

or  

χ1 &� µ

µ
0

− 1��&��µr�� − 1��������������������(3.24) 

where µr is the relative permeability of the material. 

A material, which has µ depending on H (Fig. 3.9), is called nonlinear. For this type of 

material the relationship between B, M and H can be described as in the following 

equations: 

B =  µ(H)H              (3.25) 
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and  

M = χm(H)H               (3.26) 

 

 

Ftg. 3.9 Relattve permeabtltty µr for stltcon steel vs H [44] 

 

3.3.2 Classification of magnetic materials 

 

Based on the magnetic susceptibility (i.e. the behaviours of magnetic dipole moments 

when magnetic materials are subjected to a magnetic field [60]), magnetic materials can 

be classified into following five categories [44]:  

Diamagnetism: These materials have no net atomic or molecular magnetic moment (to 

illustrate this phenomenon, there are no arrows, which represent the magnetic moments, 

in Fig. 3.10). When these materials are subjected to an applied field, atomic currents are 
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generated that give rise to a bulk magnetization that opposes the field. Bismuth (Bi), 

Mercury (Hg), Silver (Ag) are examples of diamagnetic materials. 

 

 

Ftg. 3.10 Dtamagnettc matertals  

 

Paramagnetism: These materials have a net magnetic moment at the atomic level, but 

the coupling between neighbouring moments is weak (this phenomenon is illustrated in 

Fig. 3.11; the arrows representing the magnetic moments are randomly aligned as a 

result of the weak coupling between neighbouring moments). These moments tend to 

align with an applied field, but the degree of alignment decreases at higher temperatures 

due to the randomizing effects of thermal agitation. Tungsten (W), Caesium (Cs), 

Aluminium (Al) are examples of paramagnetic materials.   

 



 

 

36 
 

 

Ftg. 3.11 Paramagnettc matertals  

 

Ferromagnetism:  These materials have a net magnetic moment at the atomic level but, 

unlike paramagnetic materials, there is a strong coupling between neighbouring 

moments (this phenomenon is illustrated in Fig. 3.12; the arrows representing the 

magnetic moments are aligned in the same direction as a result of the strong coupling 

between neighbouring moments). This coupling gives rise to a spontaneous alignment 

of the moments over macroscopic regions called domains. The domains undergo further 

alignment when the material is subjected to an applied field. Cobalt (Co), Iron (Fe), 

Nickel (Ni) are examples of ferromagnetic materials. 
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Ftg. 3.12 Ferromagnettc matertals 

 

Antiferromagnetism and ferrimagnetism: These materials have oriented atomic 

moments with neighbouring moments antiparallel to one another. 

In antiferromagnetic materials, the parallel and antiparallel magnetic moments, which 

are represented by blue and orange colours in Fig. 3.13, are equal. This results in zero 

net magnetic moment in these materials.  

In contrast, the parallel and antiparallel magnetic moments in ferrimagnetic materials, 

which are represented by blue and orange colours in Fig. 3.14, are unequal. Therefore, 

there are some net magnetic moment in these materials. 
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Ftg. 3.13 Anttferromagnettc matertals 

 

 

Ftg. 3.14 Ferrtmagnettc matertals 
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In brief, the classification of magnetic materials can be illustrated in Fig. 3.15, as 

follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ftg. 3.15 Classtftcatton of matertals by thetr altgnment of thetr magnettc dtpole moments [60] 

 

All materials 

Uncompensated orbital and 

spin moments present 

No magnetic moments 

(Vacuum or air, µr = 1) 

Independent magnetic 

dipole moments 

Exchange coupling in 

magnetic moments 

Diamagnets 

No net moment 

Aligned opposed to 

applied field 

 (Bismuth, µr = 

0.99983) 

Paramagnets 

Low net moment 

Aligned with applied 

field 

 (Aluminium, µr = 

1.0002) 

 

Ferromagnets 

Strong net moment 

Aligned with applied 

field 

 (Iron, µr = 5000) 

 

Antiferromagnets 

No net moment 

Moments aligned 

antiparallel 

 (Manganese oxide, µr ≈ 1) 

 

Ferrimagnets 

Net moment 

Unequal moments 

aligned antiparallel 

 (Nickel ferrite, µr = 

3000) 
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Currently ferromagnetic materials are most practically utilised in science and industry 

[60]. For that reason, this thesis mainly focused in these materials and their basic 

properties including coercivity, remanence and hysteresis of ferromagnetic materials are 

outlined in the following sub-sections. 

 

3.3.3 Coercivity and remanence 

Coercivity (also called coercive force or the coercive field) for ferromagnetic materials 

is defined as the strength of the applied magnetic field that is necessary to reduce the 

magnetisation of the materials to zero. In other words, coercivity determines the 

resistance of a ferromagnetic material to becoming demagnetized. The unit of coercivity 

is called an oersted (CGS system) or Ampere/meter (SI system), and it is denoted Hc. 

  Coercivity can be expressed phenomenologically as follows [61]: 

Hc= αk

2K1

µ
0
Ms

- DeffMs- ȂH(T, η)             (3.27) 

where K1 denotes the anisotropy constant, αk is the Kronmuller parameter, Ms = �2�, 
Deff is a magnetostatic interaction parameter, and ∆H is the fluctuation-field contribution 

caused by thermal activation. The term ∆H means that the coercivity depends on the 

sweep rate η = dH/dt [61]. 

Based on the coercivity, ferromagnetic materials are divided into hard magnetic 

materials (or permanent magnets) which possess high coercivity, and soft magnetic 

materials which possess low coercivity. The progress in expanding the range of 
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coercivity of magnetic materials during the twentieth century is described in Fig. 3.16 

[62]; from the softest soft iron to the hardest magnet steel, and now ranges over eight 

orders of magnitude. 

 

 

 

Ftg. 3.16 Progress tn expandtng the range of coerctvtty of magnettc matertals durtng the twentteth 

century [62] 

 

 Contrary to the coercivity, the remanence (or residual magnetization) is the remaining 

magnetic induction left behind in a ferromagnetic material after an external field applied 

to the material is removed. This parameter is represented by the residual flux, which is 

denoted by Br. The properties of some ferromagnetic materials can be found in Table 

3.4. 
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Table 3.4 Properttes of some ferromagnettc matertals [44] 

 SmCo5 Sm2Co17 Alnico 

(cast) 2 

Alnico 

(cast) 5 

Ceramic 

1 

Ceramic 

5 

Br 

(T) 

(G) 

 

0.83 

8300 

 

1.0 

10000 

 

0.75 

7500 

 

1.24 

12400 

 

0.23 

2300 

 

0.38 

3800 

Hc 

(kAm-1) 

(Oe) 

 

600 

7500 

 

480 

6000 

 

44.6 

560 

 

50.9 

640 

 

147 

1850 

 

191 

2400 

µr 1.05-1.1 1.05 6.4 4.3 1.1 1.1 

Density 

(kg/m3) 

8200 8100 7086 7308 4982 4706 

Curie temp. 

(ºC) 

700 750 810 900 450 450 

 

3.3.4 Hysteresis loop 

The plot of the magnetic induction B or the magnetization M as a function of H, which 

can be based on Eq. (3.18) (B = µ0(H + M)), yields a nonlinear graph called an hysteresis 

loop (Fig. 3.17). The word hysterests is derived from the Greek word meaning “to lag” 

[44]. Fig. 3.9 depicts the hysteresis loop which describes the relationship between the 

magnetization M and the magnetic field H. In brief, the hysteresis loop presents the 

irreversible nonlinear response of magnetization M to an applied field H [62]. In an 

unmagnetized state, the magnetization M is equal to zero. When applied an external 

field H, the magnetization appears, modifies and eventually eliminates the 

microstructure of ferromagnetic domains magnetized in different directions [62], to 

reveal the spontaneous magnetization Ms. After the applied field is reduced to zero, the 
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magnetization is not equal to zero but obtains the value of the remanence Mr. In order 

to decrease the magnetization to zero again, the reverse field, which has the strength of 

the coercivity Hc, is needed.   

 

 

Ftg. 3.17 Hysterests loop of a ferromagnet [62] 

For a hard magnetic material which has high coercivity, the hysteresis loop is wide; in 

contrast, the hysteresis loop of a soft magnetic material is narrow due to its low 

coercivity (Fig. 3.18).  
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Ftg. 3.18 Hysterests loops for soft and hard magnettc matertals [63] 

 

3.4 MAXWELL’S Equations  

Maxwell’s equations are well-known to be a set of four equations including Gauss’s 

law, Gauss’s magnetism law, Faraday’s law and Ampere’s law, which serve as 

fundamentals for understanding the behaviour of electromagnetic fields. The equations 

are presented as follows [44]: 
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Gauss’s law:                                    ∇�∙�D�= ρ                                          (3.28) 

Gauss’s law for magnetism:             ∇�∙�B�= 0                                          (3.29) 

Faraday’s law:                                   ∇ x E = -
∂B

∂t
                                     (3.30) 

Ampere’s law:                                    ∇���H= J + 
∂D

∂t
                                  (3.31) 

 

here, J (A/m2) and ρ (C/m3) are the electric current density and the electric charge 

density, respectively; E is the electric field intensity (V/m); D is the electric flux density 

(C/m2); H is the magnetic field intensity (A/m) and B is the magnetic flux density (T). 

In order to provide a complete set of equations for the electric and magnetic fields [44], 

the constitutive relationships which describe the behaviours of an electromagnetic 

material are included as follows: 

 

B�&�45(H�+�M)��������(3.32) 

D = 65E + P          ��(3.33) 

J = σE���������������������(3.34)  

 

here, ε0 = 8.854 x 10-12 F/m is the permittivity of free space; σ (A/V.m) is the 

conductivity; P represents the net electric dipole moment per unit volume: 
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P�=� lim
ȂV→0

Ȃ Pii

ȂV
��������������(3.35) 

 

where  Ȃ Pii   is a sum of the dipole moment vectors residing in the elemental volume 

ȂV 

 

Under static conditions, the time-dependent terms in Maxwell’s equations are ignorable:  

∂D

∂t
&�∂B

∂t
& 0�������������������(3.36) 

Hence, Maxwell’s equations reduce to: 

∇���H= J���������������������(3.37) 

∇�∙�B�= 0��������������������������(3.38) 

∇ x E�= 0�����������������������(3.39) 

∇�∙�D�= ρ���������������������������(3.40) 

Eqs. (3.37) and (3.38) are called magnetostatic equations; Eqs. (3.39) and (3.40) are 

electrostatic equations. 

 

The constitutive relations Eqs. (3.32) – (3.34) in stationary, linear, homogeneous and 

isotropic media reduce to: 
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B�&�4H��������(3.41) 

D = 6E     ��(3.42) 

where µ and ε are the permeability and permittivity of the media, respectively. 

 

3.5 Computation of the magnetic field 

 

To compute the magnetic field created by a magnetized material, there are three 

common approaches which can be applied [62]: 

(1) The first approach is to integrate over the volume distribution of magnetization 

M(r); 

(2) The second approach is the Amperian approach, which replaces the magnetization 

by an equivalent distribution of current density jm; 

(3) The third approach is the Coulombian approach, which replaces the magnetization 

by an equivalent distribution of magnetic charge qm, which is represented by “-“ and 

“+” signs in Fig. 3.19(c). 
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Ftg. 3.19 Calculatton of the magnettc fteld outstde a untformly magnettzed cyltnder by summtng: (a) the 

ftelds produced by volume dtstrtbutton of magnettc moments, (b) the ftelds produced by the dtstrtbutton 

of currents, and (c) the ftelds produced by the dtstrtbutton of magnettc charge [62] 

 

 

To illustrate the three approaches, the magnetic field, generated by a cylinder uniformly 

magnetized along its axis (Fig. 3.19) [62] at point P, can be computed using the 

following expressions: 

(1)  The flux density B(r) is computed by integrating over the volume distribution of 

magnetization M(r) (Eq. (3.43)). 

 

B(r)= 
µ

0

4π
8�93M(r')�.�(r - r')�r - r'�5

(r - r') −� M(r')�r - r'�3

+�2
3

µ
0
M(r');(r - r')< �3r'>         (3.43) 
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(2) In the Amperian approach, the equivalent distributions inside and at the surface 

of the magnetized material are considered (Eq. (3.44)) and the magnetic flux 

density at point P can be computed using Eq. (3.45) as follows: 

 

c
m

= ∇ x M and c
ms

=�M x en                        (3.44) 

 

B(r)�= 
µ

0

4π
9�(∇ x M)�x�(r - r')�r - r'�3

d
3
r' +��(M x en)�x�(r - r')�r - r'�3

d
2
r'<         (3.45) 

 

(3) The Coulombian approach uses the equivalent distributions of the magnetic 

charge inside (the volume charge) and at the surface (the surface charge) of the 

magnetized material (Eq. (3.46)). The magnetic field intensity at point P can be 

computed using Eq. (3.47) as follows: 

  

σv�= -�∇ ∙ M �(volume charge)�and� σs�=�M . en �(surface charge)             (3.46) 

 

H(r)�= 
1

4π
A− �(∇ ∙ M)�(r - r')�r - r'�3B d

3
r' +��(M . en)�(r - r')�r - r'�3C d

2
r'D ���(3.47) 

 

Amongst the three approaches, the Coulombian approach is considered as the easiest 

method, from a computational perspective, to calculate the magnetic fields generated by 
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a permanent magnet [62]. This method has also been utilised to produce exact analytical 

expressions of the magnetic field created by permanent magnets with different 

magnetizations, as mentioned in the introductory section. Recognising the advantages 

of this approach, this thesis implements the Coulombian approach to derive the exact 

analytical model to compute the magnetic field produced by a diametrically magnetised 

permanent magnet. The details of the implementation are described in Chapter 4. 

3.6 Finite element analysis and software used 

 

In the literature, comparing analytical models against the Finite Element model is 

common practice in this field, even though it does not provide the same level of ground-

truth as experimental data can, but a fair comparison can still take place without the 

need to address possible experimental errors. Therefore, in this study, the calculated 

results of analytical models were compared with the results of Finite Element Analysis 

but not with the experimental results. 

Finite Element Analysis or the Finite Element Method is a numerical method used to 

obtain approximate solutions of boundary value problems in engineering and 

mathematical physics. 

The method is characterized by the following features [64]: 

1.  The problem is divided into smaller domains which are represented by a 

collection of simple subdomains, called finite elements. This collection of finite 

elements is called the finite element mesh. 
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2. Over each finite element, the physical process is approximated by functions of 

the desired type (polynomials or otherwise), and algebraic equations relating 

physical quantities at selective points or so-called nodes of the element are 

developed. 

3. The element equations are assembled using the continuity and/or “balance” of 

the physical quantities. 

The cycle of solving a problem using Finite Element Analysis is divided into three major 

phases: 

1. Pre-processing: This phase includes modelling the problem geometry, 

developing an appropriate finite element mesh, assigning the required 

materials, (assigning the magnetized direction in the case of electromagnetic 

analysis) and applying boundary conditions.  

2. Solution of the problem: At this step, the governing differential equations 

are assembled into matrix form and numerically solved. 

3. Post-processing: The obtained results are visualized and analysed at this step.  

 

In this thesis, to assist the Finite Element Analysis, electromagnetic simulation software 

(EMS) from EMWORKS® [65] is utilised. EMS is an effective modelling and 

simulation software, which has been developed by EMWORKS® to help engineers and 

academics study numerous problems related to electromagnetic theories and 

applications; such as calculating the magnetic and electric field and flux, electric 

potential, voltage, and so forth. The CAD modelling geometries can be done using 
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SOLIDWORKS®, AUTODESK® or SPACECLAIM, which integrate EMS as a whole 

to perform the simulation and result analyses easily. 

Other software such as MATLAB® and MATHEMATICA® can also be applied to 

assist in the development and verification of the exact analytical model. 
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Chapter 4   

The derivation of the analytical expressions of the magnetic 

field generated by a permanent magnet with diametrical 

magnetization 

 

 

The derivation steps for the analytical expressions of a magnetic field created by a 

cylindrical/ring-shaped permanent magnet with diametrical magnetization are divided 

into two major parts. Firstly, single integral expressions of the magnetic field are 

derived. Then, the analytical expressions of the magnetic field are derived, based on 

those single integral expressions.  

 

4.1 Derivation of single integral expressions 

A diametrically magnetized cylindrical permanent magnet with parameters is illustrated 

in Figs. 4.1 and 4.2; its radius is R; its thickness is h; its magnetic polarization J�is 

assumed to be uniformly diametrical and along axis Y. 
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Ftg. 4.1 Dtametrtcally magnettzed cyltndrtcal permanent magnet: Isometrtc vtew 

 

Ftg. 4.2  Dtametrtcally magnettzed cyltndrtcal permanent magnet: front vtew 
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Ftg. 4.3 Dtametrtcally magnettzed cyltndrtcal permanent magnet: ftcttttous volume and surface charges 

from top vtew 

 

The derivations are based on the Coulombian model in a cylindrical coordinate system 

(r, α, z) with an azimuth coincident with axis X (Fig. 4.1).  According to the Coulombian 

model, the magnetic field intensity at any observation point K (Fig. 4.1) produced by a 

permanent magnet in the 3D space can be expressed as follows [45]: 

HK = 
1

4πµ
0

EF σs�i - i' �3

s

(i - i' )ds + G σv�i - i' �3

v

(i - i' )dv�H                     (4.1) 

The volume charge (Fig. 4.3) can be defined as σv & �- ∇�∙�J, the divergence of the 

polarization vector J is equal to zero because it is uniformly diametrical; hence, the 

magnetic field intensity can be calculated using only the surface charge component, 

which is the first part of equation in the larger parentheses of Eq. (4.1). The surface 

charge can be calculated as σs & �J.n  = Jcos θ & Jsin(α+β); here θ is the angle between 
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the polarization vector J and the normal unit vector n to the cylindrical surface (Fig. 

4.1), α is the azimuthal angle and β = π/2 - θ - α. 

After taking the projection of (i −  i' ) on the radial, azimuthal and axial directions (ir, 

iα and iz��are the unit vectors respectively), with the consideration that the volume 

charge makes no contribution to the magnetic field, Eq. (4.1) can be rewritten in the 

double integration form as follows [19]:  

 

HK = 

JR

4πµ
0

� � (r - Rcosβ)ir + (�- Rsinβ)iα + (zK�- z)iz�R2 + r2�- 2Rr cos β  + (zK - z)2�3
2

sin(α + β)z=
h
2

z= - 
h
2

β=π

β=-π

dzdβ                (4.2)    

 

After analytically integrating (Appendix A) the double integral form of each component 

of the magnetic field along the axial, azimuthal and radial directions in Eq. (4.2), with 

the parameterisation shown in Fig. 4.1, the axial, tangential (azimuthal) and radial 

components of the magnetic field intensity HK(z)
(3D), HK(α)

(3D)
, and HK(r)

(3D)
 along the three 

directions  iz, iα,�and�ir, respectively, can be expressed as detailed in the following 

sections. 
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 4.1.1 The axial component HK(z)
(3D)(r, α, z) 

The expression of the axial component HK(z)
(3D)(r, α, z)� was obtained as follows: 

 

HK(z)
(3D)(r, α, z)�= K

L JR

4πµ
0

� K
L 1

��h
2

− zK�2

+��P'KMMMMMMN�2

β=π

β=-π

− 1

��h
2

 + zK�2

+ �P'KMMMMMMN�2O
P cos(β) dβO

P sin(α)              (4.3) 

 

where �P'KMMMMMMN�2
 = R2+r2 − 2Rr cos(β). 

4.1.2 The tangential (Azimuthal) component HK(α)
(3D)(r, α, z) 

The expression of the tangential component HK(α)
(3D)(r, α, z)� was obtained as follows: 

HK(α)
(3D)(r, α, z)�= Q JR

4πµ
0

� G ��P'KMMMMMMN�2�β=π

β=-π

�−Rsin
2
(β)� dβR cos(α)                            (4.4) 

with, 

G ��P'KMMMMMMN�2� =
�h
2

− zK�
�P'KMMMMMMN�2��h

2
− zK�2 +��P'KMMMMMMN�2

+
�h
2

 + zK�
�P'KMMMMMMN�2��h

2
 + zK�2 +��P'KMMMMMMN�2

������������������(4.4.1) 
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4.1.3 The radial component HK(r)
(3D)(r, α, z) 

The expression of the radial component HK(r)
(3D)(r, α, z)� was obtained as follows: 

HK(r)
(3D)

 (r, α, z) = Q JR

4πµ
0

� G ��P'KMMMMMMN�2�β=π

β=-π

(rcos(β)

− Rcos2(β)) dβR sin(α)                        (4.5) 

Here, G ��P'KMMMMMMN�2� is calculated with (4.4.1).  

For point K lying on the cylindrical surface (when the radial distance is equal to the 

radius of the cylinder r = R), Equation (4.5.1) is simplified to 

HK(r)
(3D)

 (r = R, α, z) = 

K
L J

8πµ
0

� K
L �h

2
− zK�

��h
2

− zK�2

+ �P'KMMMMMMN�2

+
�h
2

 + zK�
��h

2
 + zK�2

+ �P'KMMMMMMN�2O
Pβ=π

β=-π

cos(β) dβO
P sin(α)  (4.5.1) 

 

4.2 Verification of the single integral expressions 

4.2.1 Analytical verification 

 

In the study by Fontana et al. [19], the single integral expressions of the axial, tangential 

and radial components of the magnetic field were derived only for point K belonging to 

the symmetrical plane of the cylinder; that is, for zK & 0. Hence, one of the criteria to 
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verify the accuracy of the derived single integral expressions is to compare them with 

those derived by Fontana et al. [19]. 

 

4.2.1.1 Analytical verification of the axial component 

 

For point K belonging to the symmetrical plane of the cylinder zK & 0, expression 

(4.3) can be simplified to HK(z)
(Fontana)

(r, α, zK = 0)  = 0, as presented by Fontana et al. 

[19]. 

 

4.2.1.2 Analytical verification of the tangential component 

 

For point K belonging to the symmetrical plane of the cylinder zK & 0, expression (4.4) 

can be simplified to 

HK(α)
(Fontana)

 (r, α, zK = 0) = K
L JhR

4πµ
0

� − Rsin
2(β)

 �P'KMMMMMMN�2��h
2
�2

+ �P'KMMMMMMN�2

dβ

β=π

β=-π O
P cos(α) 

as presented by Fontana et al. [19]. 
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4.2.1.3 Analytical verification of the radial component 

 

For point K belonging to the symmetrical plane of the cylinder zK & 0, expression 

(4.5) can be simplified to  

HK(r)
(Fontana)

 (r, α, zK = 0) & K
L JhR

4πµ
0

� r cos(β) −  Rcos2(β)
 �P'KMMMMMMN�2��h

2
�2

+ �P'KMMMMMMN�2

dβ

β=π

β=-π O
P sin(α) 

as presented by Fontana et al. [19]. 

 

4.2.2 Numerical verification of the single integral expressions 

 

Evaluated in MATLAB R2016b (MATHWORKS), the magnetic field created by 

diametrically magnetised permanent magnets with different parameters at different 

points were computed using double integral (Fontana et al. [19]) and the single integral 

derived in this paper. Table 4.1 shows that the results of the single integral derived in 

this paper are in very good agreement with those of the double integral presented by 

Fontana et al. [19]. 
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Table 4.1 Computed magnettc fteld created by dtametrtcally magnettsed permanent magnet wtth 

dtfferent parameters at dtfferent potnts ustng the double and stngle tntegrals 

 

Magnet 

parame

ters 

(J Tesla,  

h mm, R 

mm) 

Comput

ed 

points 

(r mm, z 

mm, αº) 

Axial component 

(Tesla) 

Double integral 

(Fontana et al. [19]) 

Single integral derived 

in this paper 

Radial component 

(Tesla) 

Double integral 

(Fontana et al. [19]) 

Single integral 

derived in this paper 

Tangential 

component (Tesla) 

Double integral 

(Fontana et al. [19]) 

Single integral 

derived in this 

paper 

(0.6, 7, 

3) 

(2, 4, 

30º) 

4.302514711017279e-02 

4.302514691094643e-02 

-0.048312471317562 

-0.048312471920847 

0.012192343565707 

0.012192344061685 

(0.6, 7, 

3) 

(1, 4, 

45º) 

6.313500232306083e-02 

6.313500234337720e-02 

0.359334310992969 

0.359334310748609 

0.372800862928376 

0.372800862943067 

(3, 10, 8) (3, 5, 

60º) 

6.306407742139330e+01 

6.306407655730165e+01 

1.150489775197868 

1.150489773290190 

1.988313138676867 

1.988313138889635 

(4, 6, 15) (6, 7, 

90º) 

3.523554555045794e+01 

3.523554555532005e+01 

2.288816392687009e-

16 

2.281035013194687e-

16 

3.852052523096182 

3.852052523165251 

(11, 5, 

12) 

(9, 12, 

38º) 

1.147492435815113e+01 

1.147492438278891e+01 

-0.104000288626235 

-0.104000288708199 

-0.008341933576704 

-0.008341933587258 

(5, 6, 8) (9, -2.5, 

30º) 

-0.058344205216474 

-0.058344205063139 

-0.128877649496994 

-0.128877649248214 

0.134143797427450 

0.134143798415742 

 

The developed expressions were implemented in MATLAB R2016b to calculate the 

three components of the magnetic flux density, both in the air space and inside the 

magnet, generated by a diametrically magnetised rare earth permanent magnet cylinder 

(Fig. 4.1 and 4.2) with radius R = 2.5 mm and thickness h = 5 mm; and magnetic 

remanence J = 0.87 T. In order to verify the results of the analytical models, Finite 

Element Analysis was built into the Electromagnetic simulation software (EMS) from 

EMWORKS and integrated with 3D CAD INVENTOR (AUTODESK).  The boundary 
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condition was set to the Normal Flux boundary condition, and the magnet and its close 

surrounding air region were assigned fine mesh to obtain precise results (Fig. 4.4). 

 

Ftg. 4.4 Mesh used for the ftntte element analysts 

 

Figs. 4.5, 4.6 and 4.7 show that the three components of the magnetic flux density 

calculated using the developed analytical models are in good agreement with those 

computed using FEA. The red vertical lines in Figs. 4.5 and 4.6 show a discontinuity of 

the tangential and radial field components when the radial distance r is equal to the 

cylinder radius R, due to the discontinuity of the solution that occurs on the surface of 

the cylinder (Rakotoarison et al. [45]) (the radial component in this case can be 
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computed using Eq. (4.5.1), and Eq. (4.4) can be used to compute the tangential 

component). It should be noted that there is an FEA marker point lying on the top end 

of the line around 2.5 in Fig. 4.7, but there is no marker point lying on the bottom end 

of the line in the same region. This is due to the inaccuracy of the FEA, as it is time-

consuming to set the mesh fine enough to calculate the field component at the exact 

point r = R. Also, as a result, the analysis confirms that the volume charge in the 

Coulombian model makes no contribution to the magnetic field generated by a 

diametrically magnetised cylindrical/annular permanent magnet. 

 

 

 

Ftg. 4.5 Stngle tntegral vs FE model: Axtal component 
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Ftg. 4.6 Stngle tntegral vs FE model: Tangenttal component 

 

 

 

 

Ftg. 4.7 Stngle tntegral vs FE model: Radtal component 
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4.3 Derivation of the analytical expressions of the magnetic field generated by a 

permanent magnet with diametrical magnetization 

 

With the help of MATHEMATICA® to analytically solve the above derived single 

integral expressions (Eqs. 4.3, 4.4, 4.5 and 4.5.1), the analytical expressions of the axial, 

azimuthal and radial components of the magnetic field were obtained as follows:   

 

4.3.1 The axial component 

 

Table 4.2  Parameters used tn Eq. (4.6) 

Parameters Definition  

a +zK - 
h

2
,2

+�R2+r2 

b +zK + 
h

2
,2

+ R2+r2 

c 2Rr 

p 
2c

c - a
 

u 
2c

c - b
 

 

The analytical expression of the axial component HK(z)
(3D)(r, α, zK)�was obtained with 

the parameters illustrated in Table 4.2: 
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HK(z)
(3D)(r, α, zK) & JRsinα

πµ
0

Q(aKSpT + (c - a)ESpT)
cȂa - c

�- (bKSuT + (c - b)ESuT)
cȂb - c

R          (4.6) 

Here, VSmT= � dθW1-msin
2
θ
�is the complete elliptic integral of the first kind,    (4.6a)�π

2

0

 

XSmT= � W1-msin
2
θ�is the complete elliptic integral of the second kind.      (4.6b)

π
2

0

 

 

4.3.2 The azimuthal component 

 

Table 4.3  Parameters used tn Eq. (4.7) and Eq. (4.8) 

Parameters Definition 

a R2+r2 

b 2Rr 

c 
h

2
 - zK 

d 
h

2
 + zK 

t cos β 

ζ W1-t2 

η Y b(t + 1)
a + b + c2

 

κ Y b(t - 1)
a - b + c2
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λ Ya - bt + c2

a + b + c2
 

ν ArcSin 8Ȃt + 1Ȃ2
> 

ξ 
2b

c2 + a + b
 

ς 
2b

a + b
 

χ ArcSin ZYc2 + a - bt

c2 + a + b
[ 

ψ 
c2 + a + b

c2 + a - b
 

̀ 
4r2

c2 + 4r2
 

 

The analytical expression of the tangential component HK(α)
(3D)(r, α, zK)� was obtained with 

the parameters illustrated in Table 4.3 as follows: 

 

HK(α)
(3D)(r, α, zK) & JR2cosα

2πµ
0

�δ(t2,a,b,c)�- δ(t1,a,b,c) + δ(t2,a,b,d)�- δ(t1,a,b,d)��������(4.7) 

where, the auxiliary function δ is as follows: 

δ(t,a,b,c) &� -   2cλ

b
2
ζWa-bt+c2

�-aζFSν,ξT+(a-b)ζPiSς,ν,ξT+(t+1)bκFSχ,ψT+(t+1) �-(-a+b-

c2)� κESχ,ψT� ; 
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Here,�\Sφ, mT= � dθW1-msin
2
θ

 is the incomplete elliptic integral of the first kind,  

φ

0

 (4.7a) 

XSφ, mT= � W1-msin
2
θ�is the incomplete elliptic integral of the second kind,    (4.7b)��φ

0

 

]^Sn, φ, mT= � dθ�1-nsin
2
θ�W1-msin

2
θ

φ

0

�is the incomplete elliptic integral of the third kind.   (4.7c) 

 

4.3.3 The radial component 

 

The analytical expression of the radial component HK(r)
(3D)(r, α, zK)was obtained with 

parameters, as illustrated in Table 4.3: 

HK(r)
(3D)

 (r, α, zK) = 

JRsinα

2πµ
0

�γ(t2,a,b,c,r,R)�- γ(t1,a,b,c,r,R) + γ(t2,a,b,d,r,R)�- γ(t1,a,b,d,r,R)�����(4.8) 

where, the auxiliary function γ is as follows: 

γ(t,a,b,c,r,R) = �2cλ�(� + b)(� − b + cc)Rκ(1 + �)XSχ,ψT + (� + b)(br −
�R)ηζ\Sν, ξT + (� + b + �� + b�)bRκ\Sχ, ψT + (�R − br��ηζ]^Sς, ν, ξT�/�ηζbc(� +
b)Ȃ� + cc − b��;       

For the point K on the cylindrical surface, or when r = R, the radial component can be 

calculated as follows: 
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HK(r)
(3D)

 (r = R, α, zK) = 
Jsinα

4πµ
0

�cf(r,c) + df(r,d)�������������(4.8a) 

where, the auxiliary function f is expressed as follows: 

f(r,c) = 
(c2+2r2)K[̀] - (c2+4r2)E[̀]

r2Ȃc2+4r2
������������ 

The complete elliptic integrals of the first and second kinds K[m], E[m] are calculated 

using Eq. (4.6a) and Eq. (4.6b). 

The incomplete elliptic integrals of the first, second and third kinds F, E and Pi are 

calculated using Eqs. (4.7a), (4.7b) and (4.7c).  

The values of t1 and t2 in Eq. (4.7) and Eq. (4.8) can be set to be 0.999999999 or closer 

to 1 and -0.999999999 or closer to -1 respectively to avoid indefinite values, whilst 

evaluating the expressions. 

 

4.4   Calculation of the magnetic field created by a diametrically magnetized ring 

shaped permanent magnet 

 

For a ring shaped permanent magnet with the parameters shown in Fig. 4.8, its inner 

radius is Rin; its outer radius is Rout; its thickness is h; its magnetization J�is assumed to 

be uniformly diametrical and along axis Y, the magnetic field HK(ring) at point K can 

be computed using the principle of superposition Eq. (4.9): 
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Ftg. 4.8 Dtametrtcally magnettzed rtng shaped permanent magnet 

 

HK(ring) &�HK(Rout) −�HK(Rin)���������������(4.9) 

where HK(Rout) is the magnetic field at point K created by a cylinder with the radius 

Rout and HK(Rin) is the magnetic field at point K created by another cylinder with the 

radius Rin. These two cylinders have the same J and thickness as those of the ring. Using 

the above expressions from Eq. (4.6) to Eq. (4.8), the axial, azimuthal and radial 

components of the magnetic field of a diametrically magnetized ring shaped permanent 

magnet can be calculated.   

  

Knowing the magnetic field intensity, the magnetic flux density can be computed as 

follows: 
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 BK = µ
0
HK����������   (in the air space)             (4.9)    

             

                 and              BK = µ
0
HK + J      (inside the magnet)       (4.10) 
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Chapter 5 

Verification results of the derived analytical expressions of the 

magnetic field generated by a permanent magnet with 

diametrical magnetization 

 

The developed analytical expressions (Eq. (4.6) to Eq. (4.8)) were implemented in 

MATLAB R2016b of MATHWORKS to calculate the axial, azimuthal and radial 

components of the magnetic flux density, both in the air space and inside the magnet, 

generated by a cylinder diametrically magnetised rare earth permanent magnet (Figs. 

4.1 and 4.2) with a radius R = 2.5 mm and thickness h = 5 mm; and magnetic remanence 

J = 1 T, which is generated by a scalar coercivity of 800000 A.m-1 [42]. The Finite 

Element Analysis was carried out using Electromagnetic simulation software (EMS) 

from EMWORKS and integrated with 3D CAD INVENTOR software from 

AUTODESK. 

 

The error between the results of the analytical expressions (BAnalytical) and those of the 

Finite Element (FE) model (BFE model) is calculated using Eq. (5.1) 

 

Error = nBAnalytical �−   BFE model

BFE model

n x100 %         (5.1) 
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In Figs. 3(a), 4(a) and 5(a), the magnetic field components are presented with a solid 

line for those computed using the derived analytical expressions of this paper, with 

circles for those computed using the FE model and with a dotted line for those computed 

using the model by Caciagli et al [42]. In Fig. 5.2, 5.4 and 5.6, the errors are presented 

with a solid line for those derived from the analytical expression of this paper, and with 

a dashed line for those derived from the model by Caciagli et al. [42]. 

 

Table 5.1 Errors of the analyttcal model dertved tn thts paper and those of Cactaglt et al [42] tested 

agatnst the Ftntte Element (FE) model wtth r tn the tnterval from 0 mm to 12.5 mm: * denotes the errors 

tnstde the magnet, ** denotes the errors tn the atr space 

 

Components 

of the 

magnetic 

field 

Maximum error (%) Average error (%) Minimum error (%) 

Model 

derived 

in this 

paper 

Model by 

Caciagli 

et al. [42] 

Model 

derived in 

this paper 

Model by 

Caciagli et 

al. [42] 

Model 

derived in 

this paper 

Model by 

Caciagli 

et al. [42] 

* ** * ** * ** * ** * ** * ** 

Axial 

component 

28

.9 
5.4 

916.

5 
154 

less 

than 

2.5 

less 

than 

2 

362.2 97.9 
0.06

8 
0.16 47.1 39.1 

Azimuthal 

component 

0.

16 
3.36 

828.

5 

254.

9 

less 

than 

0.16 

less 

than 

1.5 

249.4 112 
0.00

7 
0.49 

24.0

4 

34.2

4 

Radial 

component 

0.

2 
1.8 

819.

7 

174.

3 

less 

than

0.2 

less 

than 

1.5 

237.8 91.2 
0.00

5 
0.002 2.6 

47.6

7 
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Table 5.2 Computattonal ttmes 

Components 

of the 

magnetic 

field 

Time-consumption (seconds) 

Double 

integration 

model 

[19] 

Analytic

al model 

in this 

paper 

Analytical 

model by 

Caciagli et 

al. [42] 

Axial 

component 
0.33 4.6x10-3 0.08x10-3 

Azimuthal 

component 
0.045 0.15 0.018 

Radial 

component 
0.24 0.15 0.018 

Total 0.615 0.3046 0.03608 

 

Table 5.3 Compartson of the axtal component of the magnettc fteld computed by the analyttcal model 

dertved tn thts paper and those of double tntegratton form [19] 

 

Computed 

points K(r 

mm, αo, z 

mm) 

Analytical model in this 

paper 
Double integration model [19] 

(1, 30º,1) 2.157769964794315e+02 2.157769964794310e+02 

(2,60º,1) 6.708086824080323e+02 6.708086824080297e+02 

(2,90º,2) 2.090489643938749e+03 2.090489643938752e+03 

(3,60º,2) 1.642034971824546e+03 1.642034971824547e+03 

(7,45º,3) 1.285267148068441e+02 1.285267148068443e+02 

(8,45º,2) 64.672428644072369 64.672428644071971 

(9,0º,3) 0 

    -1.663901291691562e-14 when 

the integration increment is 

increased to the square root of the 

minimum; indefinite with the 

minimum integration increment 

 

 



 

 

75 
 

Table 5.4  Compartson of the aztmuthal component of the magnettc fteld computed by the analyttcal 

model dertved tn thts paper and those of double tntegratton form [19] 

 

Computed 

points K(r 

mm, αo, z 

mm) 

Analytical model in this paper Double integration model [19] 

(1, 30º,1) 2.075341353118272e+03 2.075342030279546e+03 

(2,60º,1) 6.883383752352425e+03 6.883383655587118e+03 

(2,90º,2) 10000 

    10000 when the integration 

increment is increased to the square 

root of the minimum; indefinite with 

the minimum integration increment 

(3,60º,2) -9.414782387941905e+02 -9.414783284170040e+02 

(7,45º,3) -1.249742783341035e+02 -1.249742322552511e+02 

(8,45º,2) -97.645377896016626 -97.645374376110695 

(9,0º,3) -91.127178430913247 -91.127228807875156 

 

 

Table 5.5 Compartson of the radtal component of the magnettc fteld computed by the analyttcal model 

dertved tn thts paper and those of double tntegratton form [19] 

 

 

Computed 

points K(r 

mm, αo, z 

mm) 

Analytical model in this 

paper 
Double integration model [19] 

(1, 30º,1) 3.254215441314990e+03 3.254090873644084e+03 

(2,60º,1) 5.171522650531067e+03 5.170893368858451e+03 

(2,90º,2) 6.548622537747931e+03 6.547984542927014e+03 

(3,60º,2) 2.665756882192566e+03 2.666260855598413e+03 

(7,45º,3) 1.951738642613515e+02 1.951864669091654e+02 

(8,45º,2) 1.772092192324710e+02 1.772204783074605e+02 

(9,0º,3) 0 

    -5.507071531793312e-14 when the 

integration increment is increased to the 

square root of the minimum; indefinite 

with the minimum integration 

increment 
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Figs. 5.1 and 5.2 show that the developed analytical expressions can compute the 

magnetic field precisely, with an average error of less than 2.5 % for the axial 

component inside the magnet, except for the field point near the centre of the cylinder 

(the radial distance r is less than 1 mm) where the error is up to 30%. This could be due 

to the mesh-based approach of the finite-element solver [42], for example, the mesh 

could not be fine enough to yield exact results such as some nodes of the calculated 

point were located in the negative field when the point is close to the centre of the 

cylinder. The average error decreases to below 2% in the air space and it continues to 

decline with the increase in the radial distances. In contrast, the model developed by 

Caciagli et al [42] yields inaccurate results with a minimum error of 39.1 % and this 

error increases for the other field points inside the magnet and in the air space. Figs. 5.3, 

5.4, 5.5 and 5.6 show that using the derived analytical expressions, the average errors 

are lower than 0.2 % for the azimuthal and radial components inside the magnet. The 

errors increase for the magnetic field close to the cylindrical surface of the magnet (r ≈ 

R), where a discontinuity of the magnetic field is observed (Fig. 5.3 and Fig. 5.5 show 

the discontinuity value of the radial component can be calculated using Eq. 4.5.1). This 

is, however, as mentioned before, due to the mesh-based approach of the finite-element 

solver [42]. The average errors of these components drop below 1.5 % for the field 

points in the air space and they keep decreasing with the increase in the radial distances. 

On the other hand, using the model by Caciagli et al. [42] produces a minimum error of 

24.04 % for the azimuthal component and 2.6 % for radial component and they go up 

for the other field points both inside the magnet and in the air space. The inaccuracy of 

the model by Caciagli et al [42] can be explained, as, in the derivation steps, the 
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magnetic scalar potential was approximately presented with the complete elliptic 

integrals. Then, the final expressions were derived by taking derivatives of this scalar 

potential directly, which causes the error when using them to compute the magnetic 

field. Table 5.1 presents more details about the maximum, average and minimum errors 

of the analytical model derived in this paper and those by Caciagli et al [42]. 

Evaluated in MATLAB R2016b with the minimum integration increment (double 

precision in MATLAB), using the analytical expression derived in this paper, it took an 

average of 4.6 milliseconds on a personal computer (with Processor Intel® Core™ i7-

6700 CPU @ 3.40 GHz 3.40 GHz) to calculate the axial component at a single location 

(2000 samples with random input variables). It took less than 0.2 seconds to compute 

the azimuthal and radial components. On the other hand, using the analytical model by 

Caciagli et al. [42] in the same configuration, it took 0.08 milliseconds to calculate the 

axial component and less than 0.02 seconds to compute the azimuthal and radial 

components. Even though Caciagli’s analytical model computes slightly faster than the 

work presented in this paper, the results of the work presented are far more accurate. 

Evaluated in MATLAB with the same configuration as mentioned above, the double 

integration of the axial component (from Eq. (4.2)) took 0.33 seconds, the double 

integration of the azimuthal component took 0.045 seconds and the double integration 

of the radial component took 0.24 seconds (Table 5.2).  This can demonstrate that the 

analytical model derived in this study outperforms the double integration expression 

[19] in terms of the computational cost but remains very close in terms of the calculated 

results in most of the randomly selected points (Table 5.3, 5.4 and 5.5).  
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Ftg. 5.1 Axtal component of the magnettc fteld: Magnettc fteld 

 

 

Ftg. 5.2 Axtal component of the magnettc fteld: Error rates between the analyttcal models and the FE 

model 
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Ftg. 5.3 Aztmuthal component of the magnettc fteld: Magnettc fteld 

 

Ftg. 5.4 Aztmuthal component of the magnettc fteld: Error rates between the analyttcal models and the 

FE model 
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Ftg. 5.5 Radtal component of the magnettc fteld: Magnettc fteld 

 

Ftg. 5.6 Radtal component of the magnettc fteld: Error rates between the analyttcal models and the FE 

model 
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Chapter 6  

Conclusion and future work 

 

An exact analytical model to compute the magnetic field generated by a diametrically 

magnetised cylindrical/ring shaped permanent magnet with a limited length, at any point 

in 3D space, both inside the magnet and in the air, was developed in this thesis. Based 

on geometrical and analytical analyses, without any approximation in the derivation 

steps, the magnetic field is expressed analytically using the complete elliptic integrals 

for its axial component and incomplete elliptic integrals for its azimuthal and radial 

components. The total computational cost of the analytical model is lower than that of 

a double integration model while the two models are in very good agreement in terms 

of computed results. The results of the developed analytical expressions are in good 

agreement with those using Finite Element Analysis and far more precise than those 

obtained by Caciagli et al. [42]. 

In the future, the derived analytical expressions will be further implemented to optimize 

the permanent magnet’s parameters and to define the optimized air gap between the 

magnet and the Hall effect sensors used in the study proposed by the authors [39]. 
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Appendix A  

Derivation steps 

 

 

A.1 The axial component HK(z)
(3D)(o, p, zK) 

 

From Eq. (4.2), the axial component HK(z)
(3D)(r, α, zK) can be expressed as follows: 

 

 

 

HK(z)
(3D)(r, α, zK)=

JR

4πµ
0

� � (zK �−  z)
�R2+r2 �−  2Rr cos β +(zK �−  z)2�3

2

sin(α 

z = h/2

z = - h/2 

β = π

β = - π+  β)  dz dβ        (A.1) 
 

Integrating Eq. (A.1) based on z yields: 

 

 

HK(z)
(3D)(r, α, zK)=

K
rL JR

4πµ
0
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+�P'KMMMMMMN�2

**
z= -  

h
2

z=
h
2

β=π

β=-π

sin(α + β)dβ

O
sP        (A.2) 

Here, �P'KMMMMMMN�2
=R2+r2 − 2Rr cos(β)���(A.2.1); expanding (A.2) produces: 

 

 

HK(z)
(3D)(r, α, zK)= K

L JR

4πµ
0

� K
L 1�(zK − �2 )

2

+�P'KMMMMMMN�2

-
1�(zK +

�2 )
2

+�P'KMMMMMMN�2O
Pβ=π

β=-π

(cos(β)sin(α)

+ sin(β) cos(α))dβO
P   (A.3) 
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with consideration of periodic odd/even functions in the interval [-π; π] in equation 

(A.3), the axial component is finally expressed as follows: 

       

HK(z)
(3D)(r, α, zK)�= K

L JR

4πµ
0

� K
L 1

��h
2

 −  zK�2

+��P'KMMMMMMN�2

β=π

β=-π

− 1

��h
2

 + zK�2

+ �P'KMMMMMMN�2O
P cos(β) dβO

P sin(α)�������������(A.4) 

 

 

For point K belonging to the symmetrical plane of the cylinder zK & 0, expression 

(A.4) can be simplified to HK(z)
(Fontana)

(r, α, zK = 0)  = 0, which is presented in the study 

by Fontana et al. [19]. 

A.2 The tangential (Azimuthal) component HK(α)
(3D)(o, p, zK) 

From Eq. (4.2), HK(α)
(3D)(r, α, z) can be expressed as follows: 

 

 

HK(α)
(3D)(r, α, zK)�= JR

4πµ
0

� � (-�Rsinβ)
�R2+r2 �−  2Rr cos β +(zK �−  z)2�3

2

sin(α 

z = h/2

z = - h/2 

β = π

β = - π+  β)  dz dβ   (A.5) 

 

Integrating Eq. (A.5) based on z yields: 

 

HK(α)
(3D)(r, α, zK) & JR

4πµ
0

� (z − zK)(-�Rsinβ)
�P'KMMMMMMN�2��P'KMMMMMMN�2

+(zK − z)
2
**
z�= - 

h
2

z�=�h
2

β=π

β=-π

sin(α + β)dβ    (A.6) 
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Here, �P'KMMMMMMN�2
 is calculated using (A.2.1); expanding (A.6) produces: 

 

 

HK(α)
(3D)(r, α, zK)

& JR

4πµ
0

� K
L �h

2
− zK�

�P'KMMMMMMN�2��P'KMMMMMMN�2
+(

h
2

− zK)
2

+
�h
2

+ zK�
�P'KMMMMMMN�2��P'KMMMMMMN�2

+(
h
2

+zK)
2O
Pβ=π

β=-π

(-�Rsinβ)sin(α

+ β)dβ  
 

 

or,  

 

 

HK(α)
(3D)(r, α, zK)= Q JR

4πµ
0

� G ��P'KMMMMMMN�2�β=π

β=-π

(-�Rsin(β))(cos(β)sin(α)

+ sin(β) cos(α))dβR ����(A.7) 

 

 

Here,  

G ��P'KMMMMMMN�2� =
�h
2

− zK�
�P'KMMMMMMN�2��P'KMMMMMMN�2

+(
h
2

− zK)
2

+
�h
2

+zK�
�P'KMMMMMMN�2��P'KMMMMMMN�2

+(
h
2

+zK)
2
����(A.7.1) 

 

 

with consideration of periodic odd/even functions in the interval [-π; π] in equation 

(A.7), the tangential component is finally expressed as follows: 

 

HK(α)
(3D)(r, α, zK)�= Q JR

4πµ
0

� G ��P'KMMMMMMN�2�β=π

β=-π

�−Rsin
2
(β)� dβR cos(α)    (A.8) 

      
 

For point K belonging to the symmetrical plane of the cylinder zK & 0, expression (A.8) 

can be simplified to 
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HK(α)
(Fontana)

 (r, α, zK = 0) = K
L JhR

4πµ
0

� − Rsin
2(β)

 �P'KMMMMMMN�2��h
2
�2

+ �P'KMMMMMMN�2

dβ

β=π

β=-π O
P cos(α) 

which is presented in the study by Fontana et al. [19]. 

 

A.3 The radial component HK(r)
(3D)(o, p, zK) 

 

From Eq. (4.2), HK(r)
(3D)(r, α, zK) can be expressed as follows: 

�
HK(r)

(3D)
 (r, α, zK) = 

JR

4πµ
0

� � (r −  Rcosβ)
�R2+r2 �−  2Rr cos β +(zK �−  z)2�3

2

sin(α 

z = h/2

z = - h/2 

β = π

β = - π+  β)  dz dβ    (A.9) 

 

 

Following the same derivation steps as for the tangential component while integrating 

(A.9) yields: 

 

HK(r)
(3D)(r, α, zK)= Q JR

4πµ
0

� G ��P'KMMMMMMN�2�β=π

β=-π

(r − Rcos(β))(cos(β)sin(α)

+ sin(β) cos(α))dβR ��(A.10) 

     

Here, G ��P'KMMMMMMN�2� is calculated using (A.7.1) 

with consideration of periodic odd/even functions in the interval [-π; π] in Eq. (A.10), 

the radial component is finally expressed as follows: 

 

 



 

 

97 
 

HK(r)
(3D)

 (r, α, zK) = Q JR

4πµ
0

� G ��P'KMMMMMMN�2�β=π

β=-π

(rcos(β) − Rcos2(β)) dβR sin(α)  (A.11)    

 

Inserting r = R in equations (A.7.1) and (A.11), Eq. (A.11) is simplified to 

 

HK(r)
(3D)

 (r = R, α, 

zK) = K
L J

8πµ
0

� K
L �h

2
− zK�

��h
2

− zK�2

+ �P'KMMMMMMN�2

+
�h
2

 + zK�
��h

2
 + zK�2

+ �P'KMMMMMMN�2O
Pβ=π

β=-π

cos(β) dβO
P sin(α)�� 

 

For point K belonging to the symmetrical plane of the cylinder zK & 0, expression 

(A.11) can be simplified to  

HK(r)
(Fontana)

 (r, α, zK = 0) & K
L JhR

4πµ
0

� r cos(β) −  Rcos2(β)
 �P'KMMMMMMN�2��h

2
�2

+ �P'KMMMMMMN�2

dβ

β=π

β=-π O
P sin(α) 

which is presented in the study by Fontana et al. [19]. 

 

 

 

 

 




