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Abstract

Cylindrical/ring-shaped permanent magnets with diametrical magnetization can be
found in many applications, ranging from electrical motors to position sensory systems.
In order to calculate the magnetic field generated by a permanent magnet of this kind
correctly and with low computational cost, several studies have been reported in the
literature providing analytical expressions. However, these analytical expressions are
either limited for an infinite cylinder or for computing the magnetic field only on the
central axis of a finite cylinder. The others are derived to calculate the magnetic field at
any point in three-dimensional (3D) space but only with low accuracy. This thesis
presents an exact analytical model of the magnetic field generated by a diametrically
magnetized cylindrical/ring-shaped permanent magnet with a limited length, which can
be used to calculate the magnetic field of any point in 3D space fast and with very high
accuracy. The expressions were analytically derived, based on geometrical analysis
without calculating the magnetic scalar potential. Also, there is no approximation in the
derivation steps that yields the exact analytical model. Three components of the
magnetic field are analytically represented using complete and incomplete elliptical
integrals, which are robust and have low computational cost. The accuracy and
efficiency of the developed analytical model was validated using Finite Element

Analysis and compared against existing models.
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Nomenclature

Throughout this thesis, bold font letters denote vectors (e.g. vector H), and standard font

letters (H) denote scalar values (e.g. H is the scalar value of vector H).

Symbols Descriptions Units
B Magnetic flux density T
D Electric flux density C/m?
E Electric field intensity V/m
H Magnetic field strength A/m
J Magnetic Polarization T
M Magnetization A/m
T Torque N.m
m Magnetic moment A.m?
H. Coercivity A/m
1 Current A
D Flux Wb
a4V Elemental volume m’
78 Gradient of scalar function f

V-A Divergence of vector A

Vx A Curl of vector A
o Conductivity S/m

Electric charge density C/m?

u Permeability H/m
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€0 ‘ Permittivity of free space F/m

c ‘ Velocity of light m
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Chapter 1

Introduction

Permanent magnets have been widely utilised in various applications [1 — 10]. Amongst
them, diametrically magnetised cylindrical/annular permanent magnets are widely
utilised in electrical motors [11-14]. For instance, diametrically magnetised rotors have
been used in high speed permanent magnet synchronous machines (PMSMs) [13] (Fig.

1.1) and [14] (Fig. 1.2).

__ Srator core __

_ Diametrically __ -
; magnetized PM
———Airgap —____
-—
Sleeve
.\_ s ¥ B "
\ Lol —T
T~ Shaft core

(iron- or air-cored type)

(a) (b)

Fig. 1.1 Applications of diametrically magnetised permanent magnets in electrical machines: (a) iron
or air cored types, (b) full-ring magnet types [13]
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. Sleeve ~

~~__ Stator [

S —r

Fig. 1.2 Configuration of 3-phase/24-slots/60000 rpm high speed machine with air-cored diametrically
magnetized rotor [14]

These magnets have also been used in non-contact position sensory systems [15-20],
mainly due to their ability to produce a sinusoidal air gap magnetic field distribution.
For example, a permanent magnet of this kind is used with an array of two Hall effect
sensors (Fig. 1.3) [16], whose outputs are sinusoidal, as formulated in Eq. (1.1). These
outputs are further processed to obtain a rotation angle of 0 [16]. In addition, a
diametrically magnetised permanent magnet is used with an array of four Hall effect
sensors (Fig. 1.4) [18], as well as with the eccentrically arranged Hall effect sensors

(Figs. 1.5, 1.6 and 1.7) [19] for contactless measurement of the rotation angle.



Hall A

ra

B B

rb

Vs

Hall B

Fig. 1.3 Magnetic field distribution of the magnet ring with diametrical magnetization [16]

The output voltage of Hall A and B in Fig. 1.3 are given respectively, as follows [16]:

1|B|sin & 8
V,= Rg————x 10" =Vsin ¢
On

(

|

4 I|B|cos & 3

LVb = RH§— x 10 =V cos 0
H

(1.1)

In this formula (Eq. (1.1)), V is the constant of the sensor. Ry is the Hall material

coefficient; I is the exciting current; ou is the thickness of the Hall element; B is the

magnetic flux density.



Diametrically magnetised permanent magnet

|H|

N R —— e
l - h ADCI_l

{ }j — DAl = A < sin

I I I

} H4 3 H2 g N : ADC2 = DSP
[ H > = N cos

} | |

| l — 1S

| I > C

|

HAS ___FDOS |

Fig. 1.4 Functional diagram of cyclic displacement converter [18]: HAS — array of Hall effect sensors
HI1-H4 with differential amplifiers DAl and DA2; FDOS — former of digital orthogonal components of
displacement; ADC1 and ADC?2 — analog-to-digital converters;, DSP — digital signal processor; AGC —

automatic gain control circuit.

Fig. 1.5 Eccentrically arranged Hall effect sensors and diametrically magnetised permanent magnet

[19]: With one sensor



Fig. 1.6 Eccentrically arranged Hall effects sensors and diametrically magnetised permanent magnet
[19]: With two sensors

Fig. 1.7 Eccentrically arranged Hall effects sensors and diametrically magnetised

permanent magnet [19]: With three sensors



Furthermore, a system of Hall effect senor and annular magnets with diametrical
magnetization is also used in the flexion-torsion joint (Fig. 1.8), which is implemented

in the Trackhold — A novel passive arm-support device (Fig. 1.9) [20].

Ball bearings

Hall sensor \-
Torsion Axis /_‘
/ Annular magnet

Hall sensor
Annular magnet

D

Hall sensor Ball bearings Hall sensor Ball bearings

Annular magnet Annular magnet

' - i s '
Hexion Axis i
\ Rexion Axis

Fig. 1.8 CAD model of a flexion-torsion joint and one of its sections [20]

1° flexion-
torsion joint
Counterweights

2° flexion- *— @
torsion joint

Remote center__

of rotation
mechanism

Arm support

Fig. 1.9 CAD model of the Trackhold [20]



A design for a contactless sensory system, based on Hall effect sensors (Fig. 1.4), which
can potentially replace conventionally developed sensory systems based on
electromyography (EMG) [21-26], electroencephalography (EEG) [27-33] and force
sensors [34-38], to recognise intended motions of the human elbow and forearm, has
been proposed by Nguyen et al. [39]. In this system, a ring-shaped magnet, that consists
of two semi-ring shaped diametrically magnetised permanent magnet (Fig. 1.10), is

implemented and mounted on the user’s forearm.

The requirement for an accurate and fast-computed analytical expression of the
magnetic field generated by a diametrically magnetised permanent magnet, which can
facilitate the parametric design optimization of magnetic devices and model dynamical
systems [40 —41], leads to various ways of expressing the magnetic field of a permanent
magnet of this kind. Since it can be time-consuming to use the Finite Element Method,
analytical expressions with minimal computational effort have been attracting attention.
This is very useful, especially when modelling dynamic systems, such as the movement
of magnetic nanoparticles in a magnetic field gradient [42]. Moreover, a fast-computed
analytical expression of the magnetic field can help save computational time to solve an

optimization problem with variations over a large number of parameters [43].

The aim of this thesis is to develop an accurate and fast-computed analytical model that
is simpler and more efficient than those developed in the current literature, to calculate
the magnetic field generated by a diametrically magnetised cylindrical/annular

permanent magnet at any point of interest in three dimensional space.



Forearm pronation Forearm supination

&Y

-

1|

I Elbow flexion

l Elbow extension

Fig. 1.10 The arrangement of Hall effect sensors and magnets [39]: 1 — Human forearm; 2 - Semi-ring
shape diametrically magnetised S-N,; 3 - Semi-ring shape diametrically magnetised N-S; 4, 5, 6, and 7 -
linear Hall effect sensors; 8 — Exoskeleton sensors’ support, 9 — Air gaps.

The exact analytical expressions of the magnetic field, created by a diametrically
magnetised cylindrical- and ring- shaped permanent magnet at any point of interest in
3D space, are derived in this thesis based on the Coulombian approach [44], which has
been used to analytically model the magnetic fields created by arc-shaped permanent
magnets with radial magnetization [45 — 46], ring-shaped permanent magnets with axial
and radial magnetization [47, 48], tile permanent magnets with radial magnetization [49]
and tangential magnetization [50, 51]. The exact final model of the magnetic field was

analytically derived, based on geometrical analysis; and there was no approximation in



the derivation steps. All three components of the magnetic field can be expressed using
complete and incomplete elliptic integrals that are robust and their computational efforts
are minimal [42], [52 — 55]. The accuracy and efficiency of the developed analytical

model were validated against currently existing models.

This thesis is organized in six chapters. The current chapter discusses the background
of the research topic, the aim of the study, as well as the outline of this thesis. The rest

of this thesis is organized as follows:

Chapter 2 presents a review of the current studies for modelling magnetic fields
generated by a diametrically magnetised permanent magnet. Chapter 3 provides a
theoretical, technical background related to the research topic and the fundamental
mathematics used in this thesis. Chapter 4 describes the derivation steps of the analytical
expressions of the magnetic field generated by a permanent magnet with diametrical
magnetization. Chapter 5 demonstrates the accuracy and efficiency of the derived

analytical expressions, compared with the existing models and Finite Element Analysis.

Chapter 6 draws together the conclusions from the project and indicates further studies

and applications of the currently developed model.



Chapter 2

Literature review

2.1 Current models to calculate the magnetic field generated by a permanent

magnet with diametrical magnetization

The mathematical models existing in the current literature to compute the magnetic field
generated by a permanent magnet with diametrical magnetization are reviewed in this
chapter.

Even though Finite Element Analysis (FEA) can be a method used to predict the
magnetic field correctly, it remains time consuming. Some research has focused on
analytical modelling of the magnetic field created by a diametrically magnetised
permanent magnet in two dimensional (2D) planes [11-14] to compute the field
distribution and provide insights into the magnetic field. However, these 2D models are
only suitable for calculating the magnetic field for electrical motors at a point within a

boundary condition on the plane under consideration.

10
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Fig. 2.1 Used geometry of a ring-shaped permanent magnet with axial magnetization. z is an axis of
symmetry, its inner radius is ri, its outer radius is Yo, its height is h [47]

Currently, based on elliptic integral functions, three dimensional (3D) analytical
expressions of a magnetic field created by a ring-shaped permanent magnet [47] with
axial (Fig. 2.1) and radial (Fig. 2.2) magnetization and by a radially magnetized tile
permanent magnet (Fig. 2.3) [49] have been derived. For these magnets, the surface
charge density is constant because the magnetization vectors of these magnets are

normal to the corresponding surface of the permanent magnets.

11
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Fig. 2.2 Used geometries; A is a ring whose symmetry axis is z, its inner radius is r, its outer radius is
Tous its height is h, its magnetic polarization is radial: B is an infinitely long parallepiped, its height is
h, xinequal ri, [47]

However, in the case of a diametrically magnetised permanent magnet, this parameter
is dependent on the angle 6 (Fig. 2.4) between the magnetization vector J and the normal
unit vector n to the cylindrical surface which is equal to JcosO [42]. Therefore, the non-
constant surface charge density needs to be taken into account when deriving the

analytical expressions of the magnetic field generated by a permanent magnet with

12
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Fig. 2.3 Representation of the geometry of a radially magnetized tile permanent magnet. The tile inner
radius is ry; the tile outer radius is r2; its height is h = z; — z; and its angular width is 8, — 0; [49]

diametrical magnetization. There are some analytical expressions of the magnetic field
produced by a diametrically magnetised permanent magnet. However, they are only
developed for an infinite cylinder [56 — 57], or for computing the magnetic field on the
central axis of a finite cylinder Eq. (2.1) and at the cylinder’s centre (z = 0) Eq. (2.2)

[58].
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(2.2)

In Egs. (2.1) and (2.2), 20 is the thickness of the cylindrical magnet, the vector magnetization M, is
along X axis; R is the radius of the cylinder [58].

In order to address these limitations, most recently, Caciagli et al. [42] presented an
analytical model, based on complete elliptic integrals, to calculate the magnetic field
created by a diametrically magnetised cylindrical permanent magnet with a finite length,
at any point in (3D) space. Nonetheless, in the derivation steps, the scalar potential is
expressed approximately with the complete elliptic integrals; this caused an error
associated with the final expressions of the magnetic field, because these final
expressions were derived by taking the derivatives of the approximated scalar potential

directly.
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Surface charges -
Os

Fig. 2.4 Cylindrical permanent magnet with diametrical polarization J along axis Y

Other models to calculate the magnetic field were developed and described in the study
by Fontana et al. [19]. This study presented the double integration expression (Eq. (2.7),
h — thickness of the cylinder), which can be used to calculate the magnetic field created
by a permanent magnet with diametrical magnetization at any point of interest in 3D
space (Fig. 2.5). However, the double integration expression can only be solved

numerically. This can be time-consuming when high accuracy needs to be achieved.
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Fig. 2.5 Diametrically magnetised permanent magnets [19]: (a) Scheme of the distribution of the
equivalent magnetic charge on the cylindrical surfaces of the cylindrical and annular magnets, (b)
Scheme of the geometry and its parameters, o* - magnetic charge density.
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The computation of the double integral expression can also be time consuming if the
model is used for the optimization process [45]. Recently, single integral expressions
(Eq. (2.8)) have been used to calculate the magnetic field at a point on the symmetrical
plane of the diametrically magnetised cylindrical permanent magnet and were presented

in the study by Fontana et al. [19].
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17



Nevertheless, in this application, the axial component H, of the field is equal to zero
(Eq. (2.8)) and the model can thus only be considered as 2D because its application is
limited to the symmetry plane. In other words, the current single integral model cannot
be used to compute the magnetic field generated by a cylindrical/ring-shaped permanent

magnet with diametrical polarization at any point of interest in the 3D space.

2.2 Gap Statement

Based on the literature review, the knowledge gap can be formulated as follows:

There are no three dimensional (3D) analytical expressions, which are simpler and more
efficient than those with double integrals and the current analytical models in the
literature, to calculate the magnetic field generated by a diametrically magnetised

cylindrical/ring-shaped permanent magnet at any point of interest in the 3D space.

2.3 Aims and Objectives

The general aim of the proposed research is as follows:

The aim of the proposed research is to develop 3D analytical expressions, which are

simpler and more efficient than those with double integrals and the current analytical

18



models in the literature, of the magnetic field generated by a diametrically magnetised

cylindrical/ring-shaped permanent magnet at any point of interest in the 3D space.

In order to achieve the aim, the following objectives will be addressed:

Objective 1: To derive the single integral 3D expressions of the magnetic field
generated by a diametrically magnetised cylindrical/ring-shaped permanent magnet at
any point of interest in 3D space.

Objective 2: To validate the single integral models both analytically and numerically.
Objective 3: To derive the 3D analytical expressions of the magnetic field generated by
a diametrically magnetised cylindrical/ring-shaped permanent magnet at any point of
interest in 3D space.

Objective 4: To validate the derived analytical model and analyse its efficiency.
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Chapter 3

Technical background

This chapter presents fundamental mathematics which is used throughout this thesis.
The basic concepts of magnetism and magnetic materials, as well as the Finite Element

Analysis and different software used in this thesis are also presented.

The organization of this chapter is summarized in Fig. 3.1.

Technical Background

3.1
Fundamental
mathematics

3.4
Maxwell’s
equations

3.5
Computation
of the
magnetic field

3.3
Magnetic
materials

3.6 Finite element
analysis and used
software

Fig. 3.1 Chapter organization
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3.1 Fundamental mathematics

In this section, the Gradient, Divergence and Curl of a vector, which are essential
elements for analysis of the magnetic field generated by a permanent magnet, are

introduced in both Cartesian and Cylindrical coordinate systems.

7 A
A A A(x,y, 2)
0 Z]
77777 J'//y Y

Fig. 3.2 Cartesian coordinate system

3.1.1 The Gradient, Divergence and Curl of a vector in a Cartesian coordinate

system

A vector A with components Ax, Ay, Az in a Cartesian coordinate system, OXYZ (Fig.

3.2) can be described as follows:
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A=AxX+Ayy+AzZ (31)

and magnitudes

_ 2 2 2
A| = / AL+ A2+ A (3.2)

Assuming that f(x, y, z) and A(x, y, z) are scalar and vector-valued functions
respectively, the vector differential V (del) operator in a Cartesian coordinate system is

presented as follows:

dl__8+8+8 33
“= ox 6yy 02" (3-3)

and the definitions of the gradient, divergence and curl are follows.

The gradient of scalar function f in a Cartesian coordinate system is:

df=vi= Tgr Ly & 3.4
gradi=vi= x* ayy 02" 34)

The gradient of a scalar function plays a vital role in physics and engineering in
expressing the relationship between a force field and a potential field (V) (Eq. (3.4.1))

[59]
Force F = — V (potential V) (3.4.1)

The divergence of vector-valued function A in a Cartesian coordinate system is the dot

product as follows:

foA oy al O, OAy oA, is
WAV AT T oy T oz (3-3)
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The physical meaning of the divergence of vector field A at point G can be regarded as

the measurement of how much the vector field diverges from the given point.

In the case where A flows out of G divA > 0 (Fig. 3.3 (a)); A flows into G divA <0

(Fig. 3.3 (b)); A flows in and out of G equally divA = 0 (Fig. 3.3 (¢))

A
A\ 7/ A
'/
—— () — — O -
G 7 O»
/ \
!
() (b)
A
- O -
——————————— G B —

(c)

Fig. 3.3 Flow of the vector field A towards point G: (a) A flows out of G, (b) A flows into G, (c) A flows
in and out of G
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The curl of vector-valued function A in a Cartesian coordinate system is the cross

product as follows:

X y z
o 0 0
curlA =Vx A = x E oz
Ay Ay A,
0A, O0Ay OAx OA, OAy  OAx
:(Gy_g)x-l_(@z_ 6x>y+ (g_ 6y>z (3.6

The physical meaning of Curl of the vector field A at point G can be regarded as the

measurement of the tendency of the vector A to circulate around point G (and the axis

of the circulation).

A
\ N N
4 I
r PN
N
o N
oD P N
\ N\ :
(a) (b)

Fig. 3.4 Flow of vector A around point G: (a) vector A tends to swirl around G, (b) vector A has no
tendency to swirl around G
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In the case where vector A tends to swirl around G, curlA # 0 (the sign of curlA is
defined based on the right hand rule; in Fig. 3.4 (a) curlA > 0); on the other hand, if

there is no tendency for A to swirl around G, curlA = 0 (Fig. 3.4 (b))

The right hand rule:

Place the right hand at point O (Fig. 3.5). Point the fingers toward the tail of vector N
and curl the fingers around in the direction of the tip of the vector. If the thumb points

toward Z+, the curl of vector N possesses positive value and vice versa.

Fig. 3.5 Principle of the right hand rule
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3.1.2 Gradient, Divergence and Curl of a vector in a Cylindrical coordinate system

In a cylindrical coordinate system, vector A is presented as follows (Fig. 3.6):
A = Arr + Aaa + Azz (37)

with magnitude

A= /A$+ AZ+ A? (3.8)

A 7 A, o, 7)

Fig. 3.6 A cylindrical coordinate system
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Assuming that f(x, y, z) and A(x, y, z) are scalar and vector-valued functions
respectively. The vector differential V (del) operator in a cylindrical coordinate system

is presented as follows:

0 +18 +8 39
_6rr r&aa azz (3.9)

and the definitions of the gradient, divergence and curl are as follows:

The gradient of the scalar function f in a cylindrical coordinate system is:

vi= Ty 10 2 3.10
_6rr r&aa azz (3.10)

The divergence of the vector-valued function A in a cylindrical coordinate system is:

1 0(rAr) 1 0A, OA;
A=- + - +
r or r oo 0z

(3.11)

and

The curl of the vector-valued function A in a cylindrical coordinate system is:

r o Z
o 8 0
VXA=13 20 a2
A, 1A, A,

10A, 0OAq OA:  OA, 1 (8(tAq)
(- G- e o

r oo 0z 1574 or r or
8Ar) 312
) - (3.12)
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3.1.3 Summary

The Gradient, Divergence and Curl of scalar f and vector A in Cartesian and cylindrical

coordinate systems is summarized in Table 3.1 below:

Table 3.1 Gradient, Divergence and Curl of a vector

Operators Symbols | Cartesian coordinate system Cylindrical coordinate
system
Gradient % of of of of 1 of 6f
—Xxt+ —y+ —z —r+ ——a+
Ox oy 0z or r oo, "
Divergence V-A O0Ax N O0Ay N 0A; 10(rAr) N 1 0Aq N OA,
ox oy 0z r or r oo 0z
Curl Vx A X y Y/ r ro y/
o 0 0 o o0 0
Ox E oz or oo 0z
A A Az A I‘Aa Az
~ <aAZ aAy) (an _ (l 0
~\oy oz oz r O
0 Az) . ( d Ay _ aAa) (aAr
ox ox
P Ax) 3 aAZ> <a(rAa)
oy g f
8Ar>

3.2 Unit systems

The three systems of units [44], which are broadly utilised in magnetism, are the CGS

or Gaussian system, MKS and SI systems (International System of Units) referred to as
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the Kennelly and Sommerfeld conventions, respectively. As presented in Table 3.2, the
flux density B is measured in Tesla (T) in SI and in Gauss in CGS; the magnetic field
intensity H is measured in A/m in SI and in Oe in CGS; the magnetization M is
measured in A/m in SI and in emu/cm® in CGS; the magnetic flux ® is measured in
Webers in SI and in Maxwells in CGS. Table 3.3 presents the conversion factors for

these systems.

Table 3.2 Units used in magnetism

Symbol | Description SI CGS
Magnetic Ampere/
H field strength A/m meter Oe Oersted
B Flux density T Tesla G Gauss
Electro-
ot magnetic
M Magnetizatio A/m Ampere/ emu/em’ ugn -
n meter
centimeter?
o Flux Wb Weber Mx Maxwell
c Conductivity | S/m Siemens/ abS/cm Abs1§mens/
meter centimeter
Henrv/m Electro-
Wo, W, e | Permeability | H/m . te}; emu magnetic
unit
m Magnetic A m? Ampere. abA cm? Abampere.
moment meter? centimeter?
I Current A Ampere abA abampere
€ Permittivity | F/m Farad/me esu Electro-
ter static unit
c Velqcny of ! Meter! cm/s Centimeter/
light second
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Table 3.3 Conversion factors

1 Oe =1000/4w A/m

1 H/m=10"/4 1 emu

1 Gauss=10*T

1 S/m=10" abS/cm

1 emu/cm® = 1000 A/m

1 Maxwell = 10 Webers

1 F/m=4n10" ¢? esu

3.3 Magnetic materials

3.3.1 Magnetization, susceptibility and permeability

The fundamental element in magnetism is the magnetic dipole [44]. The magnetic dipole
can be considered as a pair of closely spaced magnetic poles (Fig. 3.7) or a small current
loop (Fig. 3.8). A magnetic dipole generates a moment m (Figs. 3.7 and 3.8) which is
measured in A.m? in the SI unit system. Let B denote the Flux density and H denote the

Field strength of the magnetic field.
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Fig. 3.7 Magnetic dipole: Magnetic charge model and H-field [44]

Fig. 3.8 Magnetic dipole: Current loop and B-field [44]

The net magnetic dipole moment per unit volume is defined as magnetization M. This

parameter can be numerically presented as follows:
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M= fim 20 (3.13)

where }};m; is a sum of the dipole moment vectors residing in the elemental volume

AV.

When an external B-field is applied to a magnetic dipole, it obtains energy as follows:

E=-m.B (3.14)

and yields a torque T:

T=mxB (3.15)

Egs. (3.14) and (3.15) can be written in the Kennelly and CGS systems with H as

follows:
E=-m.H (3.16)
and T=mx H (3.17)

The relationship between the magnetic flux density B and the magnetic field strength H

is described in the Sommerfeld convention in the following equation (Eq. 3.18):
B =uo(H+M) (3.18)
here, 1o = 4m x 107 T.m/A is the permeability of free space.

This relationship can be written in the Kennelly convention, as in following equation

(Eq. 3.19)

B=uH+J (3.19)
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here, J is the magnetic polarization whose unit is Tesla. It can be noted that:

J=uM (3.20)

In case of linear, homogeneous and isotropic materials, B and M are proportional to H,

as illustrated in Egs. (3.21) and (3.22):

B=uH (3.21)

and

M= ){mH (3 22)

The constant x is the permeability and y, is the susceptibility of the material. From Egs.
(3.18),(3.21) and (3.22), the relationship between x and y,» can be drawn as represented

in Egs. (3.23) or (3.24)

H= po(m + 1) = po pr, (3.23)
or
2= 1=y —1 (3.24)
Hy

where p is the relative permeability of the material.

A material, which has u depending on H (Fig. 3.9), is called nonlinear. For this type of
material the relationship between B, M and H can be described as in the following

equations:

B= y(H)H (3.25)
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Fig. 3.9 Relative permeability u, for silicon steel vs H [44]

3.3.2 Classification of magnetic materials

Based on the magnetic susceptibility (i.e. the behaviours of magnetic dipole moments
when magnetic materials are subjected to a magnetic field [60]), magnetic materials can

be classified into following five categories [44]:

Diamagnetism: These materials have no net atomic or molecular magnetic moment (to
illustrate this phenomenon, there are no arrows, which represent the magnetic moments,

in Fig. 3.10). When these materials are subjected to an applied field, atomic currents are
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generated that give rise to a bulk magnetization that opposes the field. Bismuth (Bi),

Mercury (Hg), Silver (Ag) are examples of diamagnetic materials.

Fig. 3.10 Diamagnetic materials

Paramagnetism: These materials have a net magnetic moment at the atomic level, but
the coupling between neighbouring moments is weak (this phenomenon is illustrated in
Fig. 3.11; the arrows representing the magnetic moments are randomly aligned as a
result of the weak coupling between neighbouring moments). These moments tend to
align with an applied field, but the degree of alignment decreases at higher temperatures
due to the randomizing effects of thermal agitation. Tungsten (W), Caesium (Cs),

Aluminium (Al) are examples of paramagnetic materials.
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Fig. 3.11 Paramagnetic materials

Ferromagnetism: These materials have a net magnetic moment at the atomic level but,
unlike paramagnetic materials, there is a strong coupling between neighbouring
moments (this phenomenon is illustrated in Fig. 3.12; the arrows representing the
magnetic moments are aligned in the same direction as a result of the strong coupling
between neighbouring moments). This coupling gives rise to a spontaneous alignment
of the moments over macroscopic regions called domains. The domains undergo further
alignment when the material is subjected to an applied field. Cobalt (Co), Iron (Fe),

Nickel (Ni) are examples of ferromagnetic materials.
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Fig. 3.12 Ferromagnetic materials

Antiferromagnetism and ferrimagnetism: These materials have oriented atomic

moments with neighbouring moments antiparallel to one another.

In antiferromagnetic materials, the parallel and antiparallel magnetic moments, which
are represented by blue and orange colours in Fig. 3.13, are equal. This results in zero

net magnetic moment in these materials.

In contrast, the parallel and antiparallel magnetic moments in ferrimagnetic materials,
which are represented by blue and orange colours in Fig. 3.14, are unequal. Therefore,

there are some net magnetic moment in these materials.
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Fig. 3.13 Antiferromagnetic materials
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Fig. 3.14 Ferrimagnetic materials
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In brief, the classification of magnetic materials can be illustrated in Fig. 3.15, as

follows:

Uncompensated orbital and
spin moments present

No magnetic moments

(Vacuum or air, p, = 1)

!

Independent magnetic \ l Exchange coupling in
dipole moments - — magnetic moments

!

Diamagnets
No net moment

Aligned opposed to
applied field

(Bismuth, p, =
0.99983)

Paramagnets
Low net moment

Aligned with applied
field

(Aluminium, y, =
1.0002)

Ferromagnets
Strong net moment

Aligned with applied
field

(Iron, p. = 5000)

Ferrimagnets
Net moment

Unequal moments
aligned antiparallel

(Nickel ferrite, p, =

3000)

Antiferromagnets
No net moment

Moments aligned
antiparallel

(Manganese oxide, p, ~ 1)

Fig. 3.15 Classification of materials by their alignment of their magnetic dipole moments [60]
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Currently ferromagnetic materials are most practically utilised in science and industry
[60]. For that reason, this thesis mainly focused in these materials and their basic
properties including coercivity, remanence and hysteresis of ferromagnetic materials are

outlined in the following sub-sections.

3.3.3 Coercivity and remanence

Coercivity (also called coercive force or the coercive field) for ferromagnetic materials
is defined as the strength of the applied magnetic field that is necessary to reduce the
magnetisation of the materials to zero. In other words, coercivity determines the
resistance of a ferromagnetic material to becoming demagnetized. The unit of coercivity

is called an oersted (CGS system) or Ampere/meter (SI system), and it is denoted He.

Coercivity can be expressed phenomenologically as follows [61]:

Ky
HoM;

ch Ol - Defst' AH(T, ﬂ) (327)

where K; denotes the anisotropy constant, oy is the Kronmuller parameter, Ms= |M|,
Defris a magnetostatic interaction parameter, and AH is the fluctuation-field contribution
caused by thermal activation. The term AH means that the coercivity depends on the

sweep rate ) = dH/dt [61].

Based on the coercivity, ferromagnetic materials are divided into hard magnetic
materials (or permanent magnets) which possess high coercivity, and soft magnetic

materials which possess low coercivity. The progress in expanding the range of
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coercivity of magnetic materials during the twentieth century is described in Fig. 3.16
[62]; from the softest soft iron to the hardest magnet steel, and now ranges over eight

orders of magnitude.

Hard Sm_C =107
mM-Copna
TONEFe )
. Ba 1errit—q,,»'60_Cr 10 L
nico. -,
.- YFe,0, I PRVELS
Lodestone ......... ------=""Co steel g
W, Cr steel —10° >
Ir_qn_‘_'q’_teel Steel o %
7 -lron _ , —110° 8
NiZn ferrite .3
NI—Fe — 10" O
“--Ni-Fe-Mo i
"---aFe-Co-B
Soft S DY
1 1 1
1000 1900 2000
Year

Fig. 3.16 Progress in expanding the range of coercivity of magnetic materials during the twentieth
century [62]

Contrary to the coercivity, the remanence (or residual magnetization) is the remaining
magnetic induction left behind in a ferromagnetic material after an external field applied
to the material is removed. This parameter is represented by the residual flux, which is
denoted by B:. The properties of some ferromagnetic materials can be found in Table

3.4.

41



Table 3.4 Properties of some ferromagnetic materials [44]

SmCos Sm>Coi7 | Alnico Alnico Ceramic | Ceramic
(cast) 2 (cast) 5 1 5
Br
(T) 0.83 1.0 0.75 1.24 0.23 0.38
(G) 8300 10000 7500 12400 2300 3800
Hc
(kAm™) 600 480 44.6 50.9 147 191
(Oe) 7500 6000 560 640 1850 2400
e 1.05-1.1 | 1.05 6.4 4.3 1.1 1.1
Density 8200 8100 7086 7308 4982 4706
(kg/m’)
Curie temp. | 700 750 810 900 450 450
®)
3.3.4 Hysteresis loop

The plot of the magnetic induction B or the magnetization M as a function of H, which
can be based on Eq. (3.18) (B = uo(H + M)), yields a nonlinear graph called an hysteresis
loop (Fig. 3.17). The word hysteresis is derived from the Greek word meaning “to lag”
[44]. Fig. 3.9 depicts the hysteresis loop which describes the relationship between the
magnetization M and the magnetic field H. In brief, the hysteresis loop presents the
irreversible nonlinear response of magnetization M to an applied field H [62]. In an
unmagnetized state, the magnetization M is equal to zero. When applied an external
field H, the magnetization appears, modifies and eventually eliminates the
microstructure of ferromagnetic domains magnetized in different directions [62], to

reveal the spontaneous magnetization M. After the applied field is reduced to zero, the
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magnetization is not equal to zero but obtains the value of the remanence M;. In order
to decrease the magnetization to zero again, the reverse field, which has the strength of

the coercivity Hc, is needed.

Fig. 3.17 Hysteresis loop of a ferromagnet [62]

For a hard magnetic material which has high coercivity, the hysteresis loop is wide; in
contrast, the hysteresis loop of a soft magnetic material is narrow due to its low

coercivity (Fig. 3.18).
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M |

Soft materials

Hard materials

Fig. 3.18 Hysteresis loops for soft and hard magnetic materials [63]

3.4 MAXWELL’S Equations

Maxwell’s equations are well-known to be a set of four equations including Gauss’s
law, Gauss’s magnetism law, Faraday’s law and Ampere’s law, which serve as
fundamentals for understanding the behaviour of electromagnetic fields. The equations

are presented as follows [44]:
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Gauss’s law: V:-D=p (3.28)

Gauss’s law for magnetism: V-B=0 (3.29)
) OB
Faraday’s law: VXE= -3 (3.30)
oD
Ampere’s law: VxH=J+ > (3.31)

here, J (A/m?) and p (C/m?®) are the electric current density and the electric charge
density, respectively; E is the electric field intensity (V/m); D is the electric flux density

(C/m?); H is the magnetic field intensity (A/m) and B is the magnetic flux density (T).

In order to provide a complete set of equations for the electric and magnetic fields [44],
the constitutive relationships which describe the behaviours of an electromagnetic

material are included as follows:

B=u,(H+M) (3.32)
D=¢E+P (3.33)

J=0oF (3.34)

here, &9 = 8.854 x 102 F/m is the permittivity of free space; o (A/V.m) is the

conductivity; P represents the net electric dipole moment per unit volume:
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where ); P; is a sum of the dipole moment vectors residing in the elemental volume

AV

Under static conditions, the time-dependent terms in Maxwell’s equations are ignorable:

8_D = 8_B =0 (3.36)
ot ot
Hence, Maxwell’s equations reduce to:
VxH=J (3.37)
V:-B=0 (3.38)
VXE=0 (3.39)
V:-D=p (3.40)

Egs. (3.37) and (3.38) are called magnetostatic equations; Eqs. (3.39) and (3.40) are

electrostatic equations.

The constitutive relations Egs. (3.32) — (3.34) in stationary, linear, homogeneous and

isotropic media reduce to:
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B=uH (3.41)
D=¢E (3.42)

where p and ¢ are the permeability and permittivity of the media, respectively.

3.5 Computation of the magnetic field

To compute the magnetic field created by a magnetized material, there are three

common approaches which can be applied [62]:

(1) The first approach is to integrate over the volume distribution of magnetization
Mr);

(2) The second approach is the Amperian approach, which replaces the magnetization
by an equivalent distribution of current density ju;

(3) The third approach is the Coulombian approach, which replaces the magnetization
by an equivalent distribution of magnetic charge ¢, which is represented by “-*“ and

“+” signs in Fig. 3.19(c).
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Fig. 3.19 Calculation of the magnetic field outside a uniformly magnetized cylinder by summing: (a) the
fields produced by volume distribution of magnetic moments, (b) the fields produced by the distribution
of currents, and (c) the fields produced by the distribution of magnetic charge [62]

To illustrate the three approaches, the magnetic field, generated by a cylinder uniformly
magnetized along its axis (Fig. 3.19) [62] at point P, can be computed using the

following expressions:

(1) The flux density B(r) is computed by integrating over the volume distribution of

magnetization M(r) (Eq. (3.43)).

B()- :l_;i U {3M(r') (r-r) - M(r")

Ir-r’ ITEE

+ %qu(r')S(r - r')} d3r'l (3.43)
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(2) In the Amperian approach, the equivalent distributions inside and at the surface
of the magnetized material are considered (Eq. (3.44)) and the magnetic flux

density at point P can be computed using Eq. (3.45) as follows:

j,=VxMandj =Mxe, (3.44)

K VxM)x(r-r) ,, Mxe)x(@-r) ,,
B(r)—ﬁ{f P dr+f T dr} (3.45)

(3) The Coulombian approach uses the equivalent distributions of the magnetic
charge inside (the volume charge) and at the surface (the surface charge) of the
magnetized material (Eq. (3.46)). The magnetic field intensity at point P can be

computed using Eq. (3.47) as follows:

o, =-V-M (volume charge) and o,=M . e, (surface charge) (3.46)
1 vV-M(@-r) ,, M.e)(r-r) ,,
N 3.47
H(r) 4713{ |l'-l"|3 d’r + |l'-l"|3 d’r ( )
4 S

Amongst the three approaches, the Coulombian approach is considered as the easiest

method, from a computational perspective, to calculate the magnetic fields generated by
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a permanent magnet [62]. This method has also been utilised to produce exact analytical
expressions of the magnetic field created by permanent magnets with different
magnetizations, as mentioned in the introductory section. Recognising the advantages
of this approach, this thesis implements the Coulombian approach to derive the exact
analytical model to compute the magnetic field produced by a diametrically magnetised

permanent magnet. The details of the implementation are described in Chapter 4.

3.6 Finite element analysis and software used

In the literature, comparing analytical models against the Finite Element model is
common practice in this field, even though it does not provide the same level of ground-
truth as experimental data can, but a fair comparison can still take place without the
need to address possible experimental errors. Therefore, in this study, the calculated
results of analytical models were compared with the results of Finite Element Analysis
but not with the experimental results.

Finite Element Analysis or the Finite Element Method is a numerical method used to
obtain approximate solutions of boundary value problems in engineering and

mathematical physics.

The method is characterized by the following features [64]:

1. The problem is divided into smaller domains which are represented by a
collection of simple subdomains, called finite elements. This collection of finite

elements is called the finite element mesh.
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2. Over each finite element, the physical process is approximated by functions of
the desired type (polynomials or otherwise), and algebraic equations relating
physical quantities at selective points or so-called nodes of the element are
developed.

3. The element equations are assembled using the continuity and/or “balance” of

the physical quantities.

The cycle of solving a problem using Finite Element Analysis is divided into three major

phases:

1. Pre-processing: This phase includes modelling the problem geometry,
developing an appropriate finite element mesh, assigning the required
materials, (assigning the magnetized direction in the case of electromagnetic
analysis) and applying boundary conditions.

2. Solution of the problem: At this step, the governing differential equations
are assembled into matrix form and numerically solved.

3. Post-processing: The obtained results are visualized and analysed at this step.

In this thesis, to assist the Finite Element Analysis, electromagnetic simulation software
(EMS) from EMWORKS® [65] is utilised. EMS is an effective modelling and
simulation software, which has been developed by EMWORKS® to help engineers and
academics study numerous problems related to electromagnetic theories and
applications; such as calculating the magnetic and electric field and flux, electric

potential, voltage, and so forth. The CAD modelling geometries can be done using
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SOLIDWORKS®, AUTODESK® or SPACECLAIM, which integrate EMS as a whole

to perform the simulation and result analyses easily.

Other software such as MATLAB® and MATHEMATICA® can also be applied to

assist in the development and verification of the exact analytical model.
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Chapter 4

The derivation of the analytical expressions of the magnetic
field generated by a permanent magnet with diametrical

magnetization

The derivation steps for the analytical expressions of a magnetic field created by a
cylindrical/ring-shaped permanent magnet with diametrical magnetization are divided
into two major parts. Firstly, single integral expressions of the magnetic field are
derived. Then, the analytical expressions of the magnetic field are derived, based on

those single integral expressions.

4.1 Derivation of single integral expressions

A diametrically magnetized cylindrical permanent magnet with parameters is illustrated
in Figs. 4.1 and 4.2; its radius is R; its thickness is h; its magnetic polarization J is

assumed to be uniformly diametrical and along axis Y.
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] J \ K(r, L5 ZK)
Y
Surface charges -

Os

Fig. 4.1 Diametrically magnetized cylindrical permanent magnet: Isometric view

Fig. 4.2 Diametrically magnetized cylindrical permanent magnet: front view
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Surface charges - o5 .

Fig. 4.3 Diametrically magnetized cylindrical permanent magnet: fictitious volume and surface charges
from top view

The derivations are based on the Coulombian model in a cylindrical coordinate system
(r, 0, z) with an azimuth coincident with axis X (Fig. 4.1). According to the Coulombian
model, the magnetic field intensity at any observation point K (Fig. 4.1) produced by a

permanent magnet in the 3D space can be expressed as follows [45]:

szo ff T ‘)d”fffl (-1 b

The volume charge (Fig. 4.3) can be defined as o, = - V-J, the divergence of the

polarization vector J is equal to zero because it is uniformly diametrical; hence, the
magnetic field intensity can be calculated using only the surface charge component,
which is the first part of equation in the larger parentheses of Eq. (4.1). The surface

charge can be calculated as 6, = J.n =Jcos 0 = Jsin(a+p); here 0 is the angle between
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the polarization vector J and the normal unit vector n to the cylindrical surface (Fig.

4.1), a is the azimuthal angle and B =n/2 - 0 - a.

After taking the projection of (i — i') on the radial, azimuthal and axial directions (i,
i, and i, are the unit vectors respectively), with the consideration that the volume
charge makes no contribution to the magnetic field, Eq. (4.1) can be rewritten in the

double integration form as follows [19]:

HK:

sin(a + B) dzdp (4.2)

p=n f (r - ReosP)i, + (- RsinB)i, + (zk - 2)i,
4““0 p=-n Z:‘f (R2 +12-2Rrcos B + (z - 2)2)2

After analytically integrating (Appendix A) the double integral form of each component
of the magnetic field along the axial, azimuthal and radial directions in Eq. (4.2), with

the parameterisation shown in Fig. 4.1, the axial, tangential (azimuthal) and radial
components of the magnetic field intensity Hggi, Hg(?xg, and H(3(?) along the three

directions 1i,,1i,, and i, respectively, can be expressed as detailed in the following

sections.
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4.1.1 The axial component Hg’g; (r, a,2)

The expression of the axial component Hggi (r,a,z) was obtained as follows:

= 2 [
ATl S h el
(z - ZK) + |P K|
1
— = cos(B) dB |sin(a) (4.3)

J@ )+ [PRP

2
where [P'K|” = R* % — 2Rr cos(B).

4.1.2 The tangential (Azimuthal) component Hﬁﬁ(‘?}) (rya,z)

The expression of the tangential component Hg(?l; (r,a,z) was obtained as follows:

B=n
2000~ G PRF) () )t “
0 Jp=-n
with,

G-=) . Gew

PRI G- 2) + PRI PRI +2) + PR

(4.4.1)

G (IPK[)=
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4.1.3 The radial component Hg’g; (r, a,2)

The expression of the radial component Hg(%) (r,a,z) was obtained as follows:

R (P 0
TR

— Rcos?(B)) dB) sin(or) (4.5)
—2
Here, G (|P’K| ) is calculated with (4.4.1).

For point K lying on the cylindrical surface (when the radial distance is equal to the

radius of the cylinder r = R), Equation (4.5.1) is simplified to

3D
Hg((r)) (r = R7 a, Z) =

h h
(3-) + G =) \ cos(B) dB\ sin(a) (4.5.1)

g f‘“
81ty Jpe \/(g } ZK)2+ |ﬁ{|2 \/(% n ZK)2+ |ﬁ{|2/ /

4.2 Verification of the single integral expressions

4.2.1 Analytical verification

In the study by Fontana et al. [19], the single integral expressions of the axial, tangential
and radial components of the magnetic field were derived only for point K belonging to

the symmetrical plane of the cylinder; that is, for zx = 0. Hence, one of the criteria to
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verify the accuracy of the derived single integral expressions is to compare them with

those derived by Fontana et al. [19].

4.2.1.1 Analytical verification of the axial component

For point K belonging to the symmetrical plane of the cylinder zx = 0, expression

(4.3) can be simplified to Hg((;r)“ana)(r, 0, zg = 0) =0, as presented by Fontana et al.

[19].

4.2.1.2 Analytical verification of the tangential component

For point K belonging to the symmetrical plane of the cylinder zx = 0, expression (4.4)

can be simplified to

JhR (P —Rsin’ \
Hg((;r;tana) (t, 0, zg = 0) = j 2([3) dp jcos(a)
475“() =1 1=—=12 [(h =212 /
[PK]| (5) +|PK|

as presented by Fontana et al. [19].
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4.2.1.3 Analytical verification of the radial component

For point K belonging to the symmetrical plane of the cylinder zx = 0, expression

(4.5) can be simplified to

H(Fontana) JhR fﬁ_n I'COS(B) - RCOSZ(B) dB sin((x)

s Uy =0 = -
K(r) (I' a, Zxg ) 47q,to o |ﬁ<|2 (h)2+ |ﬁ’(|2
2

as presented by Fontana et al. [19].

4.2.2 Numerical verification of the single integral expressions

Evaluated in MATLAB R2016b (MATHWORKS), the magnetic field created by

diametrically magnetised permanent magnets with different parameters at different

points were computed using double integral (Fontana et al. [19]) and the single integral

derived in this paper. Table 4.1 shows that the results of the single integral derived in

this paper are in very good agreement with those of the double integral presented by

Fontana et al. [19].
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Table 4.1 Computed magnetic field created by diametrically magnetised permanent magnet with
different parameters at different points using the double and single integrals

Magnet | Comput | Axial component Radial component Tangential
parame | ed (Tesla) (Tesla) component (Tesla)
ters points Double integral Double integral Double integral
(J Tesla, | (rmm, z | (Fontana et al. [19]) (Fontana et al. [19]) | (Fontana et al. [19])
h rn;n, R | mm, o) Single integral derived ilngle (;I.ltef(ghr? ! Single integral
mm in this paper erived 0 RS PAPET | derived in this
paper
0.6, 7, 2,4, 4.302514711017279e-02 | -0.048312471317562 0.012192343565707
3) 30°) 4.302514691094643e-02 | -0.048312471920847 0.012192344061685
0.6,7, (1,4, 6.313500232306083e-02 | 0.359334310992969 0.372800862928376
3) 45) 6.313500234337720e-02 | 0.359334310748609 0.372800862943067
(3,10,8) | (3,5, 6.306407742139330e+01 | 1.150489775197868 1.988313138676867
60°) 6.306407655730165e+01 | 1.150489773290190 1.988313138889635
4,6,15) | (6,7, 3.523554555045794e+01 | 2.288816392687009¢- | 3.852052523096182
20°) 3.523554555532005e+01 16 3.852052523165251
2.281035013194687e-
16
(11,5, 9, 12, 1.147492435815113e+01 | -0.104000288626235 -0.008341933576704
12) 387) 1.147492438278891e+01 | -0.104000288708199 -0.008341933587258
(5,6,8) 9, -25, -0.058344205216474 -0.128877649496994 0.134143797427450
30°) -0.058344205063139 -0.128877649248214 0.134143798415742

The developed expressions were implemented in MATLAB R2016b to calculate the
three components of the magnetic flux density, both in the air space and inside the
magnet, generated by a diametrically magnetised rare earth permanent magnet cylinder
(Fig. 4.1 and 4.2) with radius R = 2.5 mm and thickness h = 5 mm; and magnetic
remanence J = 0.87 T. In order to verify the results of the analytical models, Finite
Element Analysis was built into the Electromagnetic simulation software (EMS) from

EMWORKS and integrated with 3D CAD INVENTOR (AUTODESK). The boundary
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condition was set to the Normal Flux boundary condition, and the magnet and its close

surrounding air region were assigned fine mesh to obtain precise results (Fig. 4.4).

Magnet’s close
surrounding air region

Cylindrical Magnet

Fig. 4.4 Mesh used for the finite element analysis

Figs. 4.5, 4.6 and 4.7 show that the three components of the magnetic flux density
calculated using the developed analytical models are in good agreement with those
computed using FEA. The red vertical lines in Figs. 4.5 and 4.6 show a discontinuity of
the tangential and radial field components when the radial distance r is equal to the
cylinder radius R, due to the discontinuity of the solution that occurs on the surface of

the cylinder (Rakotoarison et al. [45]) (the radial component in this case can be
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computed using Eq. (4.5.1), and Eq. (4.4) can be used to compute the tangential
component). It should be noted that there is an FEA marker point lying on the top end
of the line around 2.5 in Fig. 4.7, but there is no marker point lying on the bottom end
of the line in the same region. This is due to the inaccuracy of the FEA, as it is time-
consuming to set the mesh fine enough to calculate the field component at the exact
point r = R. Also, as a result, the analysis confirms that the volume charge in the
Coulombian model makes no contribution to the magnetic field generated by a

diametrically magnetised cylindrical/annular permanent magnet.

400 T T T T T T T
O
Single integral
300 1 O  FE model
w
g 200 .
©
e
N
m 100 -
0OF J
0 2 4 6 8 10 12 3
r (m) x 10

Fig. 4.5 Single integral vs FE model: Axial component
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Fig. 4.6 Single integral vs FE model: Tangential component
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Fig. 4.7 Single integral vs FE model: Radial component
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4.3 Derivation of the analytical expressions of the magnetic field generated by a

permanent magnet with diametrical magnetization

With the help of MATHEMATICA® to analytically solve the above derived single
integral expressions (Egs. 4.3, 4.4, 4.5 and 4.5.1), the analytical expressions of the axial,
azimuthal and radial components of the magnetic field were obtained as follows:

4.3.1 The axial component

Table 4.2 Parameters used in Eq. (4.6)

Parameters | Definition
N
a <ZK - —> + 1{24'1'2
2
N
b | (motg) v
c 2Rr
2c
p [RE—
c-a
2c
u JR—
c-b

The analytical expression of the axial component Hg(lz)) (r, o, zx) was obtained with

the parameters illustrated in Table 4.2:
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(3D) JRsina ((aK[p] +(c-a)E[p]) (bKu] + (c- b)E[u])> 4.6)

Higy (1, @, zg) =
K@ h T, cva-c cvb-c¢

Here, K[m is the complete elliptic integral of the first kind, (4.6a)

- fg do
0 +/ 1-msin’6

1 ——
E[m]= f 1-msin’0 is the complete elliptic integral of the second kind.  (4.6b)
0

4.3.2 The azimuthal component

Table 4.3 Parameters used in Eq. (4.7) and Eq. (4.8)

Parameters | Definition

a RZ2+12

b 2Rr
h

C 5 - ZK
h

d E + Zg

t cosf

g 1-t?

. b(t+1)
a+b+c?

« b(t-1)
a-b+c?
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3 a-bt+c?
a+b+c?
Vt+1
v ArcSin[ l
V2
2b
S T
cc+a+b
c 2b
at+b
ArcSi cZ+a-bt
xX resin m
v c2+a+b
c2+a-b
Y 4
c2 + 4r2

The analytical expression of the tangential component Hg(]z; (r,a, zg) was obtained with

the parameters illustrated in Table 4.3 as follows:

JR?cosa,

(3D)
H
21y,

K(a) (r, a, ZK) =

(5(t2,a,b,0) - 5(1:1 ,a,b,C) + 5(t27aab7d) - 5(tlaaab7d)) (47)

where, the auxiliary function ¢ is as follows:
2ch .
dtab.c) = - ey v (-aCF [v.€]+(a-b)CPi[g,v.E[H(t+ DbrF [y, y]+(t+1) (-(-a+b-

) KElxy]);
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¢
Here, F[p, m]|= j is the incomplete elliptic integral of the first kind, (4.7a)
0

do
vV 1-msin’0

¢
E[p, m]= j v 1-msin’0 is the incomplete elliptic integral of the second kind, (4.7b)
0

¢ do
Pi[n, ¢, m]= j is the incomplete elliptic integral of the third kind. (4.7¢)

0 (l-nsin2 9)\/ 1-msin’0

4.3.3 The radial component

The analytical expression of the radial component Hg(%) (r, a, zg )was obtained with

parameters, as illustrated in Table 4.3:

3D
H%{(r)) (ra a, ZK) =

JRsina

2 (y(t27a7bacar7R) - y(tlaaabacaraR) + y(t27a7b7dar7R) - )’(tl 7a7b7d7r7R)) (48)
TCHO

where, the auxiliary function y is as follows:

y(,ab,c,r,R)= (ZC}\((a +b)(@a—b + c?)Rk(1 + t)E[x, ¢] + (a + b)(br —
aR)nNCF[v,&] + (a + b + at + bt)bRkF[x, Y] + (aR — br)anZPi[g, 2 E])/(n(bz(a +

b)Va + cZ — bt);

For the point K on the cylindrical surface, or when r = R, the radial component can be

calculated as follows:
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Hg(?)) (r=R,a, zg)= Isina (cf(r c) + df(r,d)) (4.8a)

where, the auxiliary function f'is expressed as follows:

(SH2r)K[Y] - (P +4rH)E[Y]

f.0)= e

The complete elliptic integrals of the first and second kinds K[m], E[m] are calculated

using Eq. (4.6a) and Eq. (4.6D).

The incomplete elliptic integrals of the first, second and third kinds F, E and Pi are

calculated using Egs. (4.7a), (4.7b) and (4.7¢).

The values of t; and t2 in Eq. (4.7) and Eq. (4.8) can be set to be 0.999999999 or closer
to 1 and -0.999999999 or closer to -1 respectively to avoid indefinite values, whilst

evaluating the expressions.

4.4 Calculation of the magnetic field created by a diametrically magnetized ring

shaped permanent magnet

For a ring shaped permanent magnet with the parameters shown in Fig. 4.8, its inner
radius is Rip; its outer radius is Roy; its thickness is h; its magnetization J is assumed to
be uniformly diametrical and along axis Y, the magnetic field Hy(ring) at point K can

be computed using the principle of superposition Eq. (4.9):
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\ K(I', a, ZK)

1<

Fig. 4.8 Diametrically magnetized ring shaped permanent magnet

HK(I'll'lg) = HK(Rout) - HK(Rln) (49)

where Hg (R,,) is the magnetic field at point K created by a cylinder with the radius
Rout and Hg (R;,) is the magnetic field at point K created by another cylinder with the
radius Rin. These two cylinders have the same J and thickness as those of the ring. Using
the above expressions from Eq. (4.6) to Eq. (4.8), the axial, azimuthal and radial
components of the magnetic field of a diametrically magnetized ring shaped permanent

magnet can be calculated.

Knowing the magnetic field intensity, the magnetic flux density can be computed as

follows:
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By =, Hg (in the air space) 4.9)

and By =u,Hg +J  (inside the magnet) (4.10)

71



Chapter 5

Verification results of the derived analytical expressions of the
magnetic field generated by a permanent magnet with

diametrical magnetization

The developed analytical expressions (Eq. (4.6) to Eq. (4.8)) were implemented in
MATLAB R2016b of MATHWORKS to calculate the axial, azimuthal and radial
components of the magnetic flux density, both in the air space and inside the magnet,
generated by a cylinder diametrically magnetised rare earth permanent magnet (Figs.
4.1 and 4.2) with a radius R = 2.5 mm and thickness h = 5 mm; and magnetic remanence
J =1 T, which is generated by a scalar coercivity of 800000 A.m™' [42]. The Finite
Element Analysis was carried out using Electromagnetic simulation software (EMS)
from EMWORKS and integrated with 3D CAD INVENTOR software from

AUTODESK.

The error between the results of the analytical expressions (Banalytical) and those of the

Finite Element (FE) model (Brg model) 1s calculated using Eq. (5.1)

BAnalytical - BFE model

Error = x100 % (5.1

BFE model
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In Figs. 3(a), 4(a) and 5(a), the magnetic field components are presented with a solid
line for those computed using the derived analytical expressions of this paper, with
circles for those computed using the FE model and with a dotted line for those computed
using the model by Caciagli et al [42]. In Fig. 5.2, 5.4 and 5.6, the errors are presented
with a solid line for those derived from the analytical expression of this paper, and with

a dashed line for those derived from the model by Caciagli et al. [42].

Table 5.1 Errors of the analytical model derived in this paper and those of Caciagli et al [42] tested
against the Finite Element (FE) model with r in the interval from 0 mm to 12.5 mm: * denotes the errors
inside the magnet, ** denotes the errors in the air space

Maximum error (%) Average error (%) Minimum error (%)
Components | Model “} \pq 1001 Model Model by Model | Model by
of the derived . . . N . . -
magnetic in this Caciagli | derivedin | Caciagliet | derivedin | Caciagli
field paper etal. [42] | this paper al. [42] this paper | etal. [42]
k sk * sksk * sk * skk * skk % sk
. less | less
Axial 281 54 | 918 | 154 | than | than | 362.2 | 97.9 | %% | 0.16 | 47.1 | 39.1
component 9 5 8
2.5 2
. less | less
Azr;mu;hi ?é 3.36 8258' 2594' than | than | 249.4 | 112 O';)O 0.49 21'0 3‘;’2
compone 0.16 | 1.5
. less | less
Radial O | 18 | 319 1 17% | than | than | 237.8 [ 912 | %90 | 0.002 | 2.6 | 47°
component 2 7 3 02 15 5 7
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Table 5.2 Computational times

Time-consumption (seconds)
Components i i
of the Double Analytic | Analytical
magnetic integration | al model | model by
field model in this | Caciagli et
[19] paper al. [42]
Axial 0.33 4.6x10° | 0.08x10°
component
Azimuthal 0.045 0.15 0.018
component
Radial 0.24 0.15 0.018
component
Total 0.615 0.3046 0.03608

Table 5.3 Comparison of the axial component of the magnetic field computed by the analytical model
derived in this paper and those of double integration form [19]

Computed

points 0K(r Analytical model in this Double integration model [19]

mm, 0°, Z paper

mm)

(1,30°1) 2.157769964794315e+02 2.157769964794310e+02

(2,60°1) 6.708086824080323¢e+02 6.708086824080297e+02

(2,90°,2) 2.090489643938749¢+03 2.090489643938752e+03

(3,60°2) 1.642034971824546e+03 1.642034971824547¢+03

(7,45°,3) 1.285267148068441e+02 1.285267148068443e+02

(8,45°2) 64.672428644072369 64.672428644071971

-1.663901291691562¢-14 when

the integration increment is

(9,0°,3) 0 increased to the square root of the
minimum; indefinite with the
minimum integration increment
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Table 5.4 Comparison of the azimuthal component of the magnetic field computed by the analytical

model derived in this paper and those of double integration form [19]

Computed
Ir)r(l)rirlztsag(zr Analytical model in this paper Double integration model [19]
m,m)’
(1,30°%1) 2.075341353118272¢+03 2.075342030279546e+03
(2,60°,1) 6.883383752352425¢+03 6.883383655587118e+03
10000  when the integration
co0 e i et e st
the minimum integration increment
(3,60°,2) -9.414782387941905¢+02 -9.414783284170040e+02
(7,45°3) -1.249742783341035e+02 -1.249742322552511e+02
(8,45°,2) -97.645377896016626 -97.645374376110695
(9,0°,3) -91.127178430913247 -91.127228807875156

Table 5.5 Comparison of the radial component of the magnetic field computed by the analytical model

derived in this paper and those of double integration form [19]

Computed
points g((r Analytical model in this Double integration model [19]
mm, o°, Z paper
mm)
(1, 30°1) 3.254215441314990e+03 3.254090873644084¢+03
(2,60°,1) 5.171522650531067¢+03 5.170893368858451e+03
(2,90°,2) 6.548622537747931e+03 6.547984542927014e+03
(3,60°,2) 2.665756882192566e+03 2.666260855598413e+03
(7,45°3) 1.951738642613515e+02 1.951864669091654e+02
(8,45°,2) 1.772092192324710e+02 1.772204783074605e+02
-5.507071531793312¢-14 when the
integration increment is increased to the
(9,0°,3) 0 square root of the minimum; indefinite

with  the minimum

increment

integration
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Figs. 5.1 and 5.2 show that the developed analytical expressions can compute the
magnetic field precisely, with an average error of less than 2.5 % for the axial
component inside the magnet, except for the field point near the centre of the cylinder
(the radial distance r is less than 1 mm) where the error is up to 30%. This could be due
to the mesh-based approach of the finite-element solver [42], for example, the mesh
could not be fine enough to yield exact results such as some nodes of the calculated
point were located in the negative field when the point is close to the centre of the
cylinder. The average error decreases to below 2% in the air space and it continues to
decline with the increase in the radial distances. In contrast, the model developed by
Caciagli et al [42] yields inaccurate results with a minimum error of 39.1 % and this
error increases for the other field points inside the magnet and in the air space. Figs. 5.3,
5.4, 5.5 and 5.6 show that using the derived analytical expressions, the average errors
are lower than 0.2 % for the azimuthal and radial components inside the magnet. The
errors increase for the magnetic field close to the cylindrical surface of the magnet (r =
R), where a discontinuity of the magnetic field is observed (Fig. 5.3 and Fig. 5.5 show
the discontinuity value of the radial component can be calculated using Eq. 4.5.1). This
is, however, as mentioned before, due to the mesh-based approach of the finite-element
solver [42]. The average errors of these components drop below 1.5 % for the field
points in the air space and they keep decreasing with the increase in the radial distances.
On the other hand, using the model by Caciagli et al. [42] produces a minimum error of
24.04 % for the azimuthal component and 2.6 % for radial component and they go up
for the other field points both inside the magnet and in the air space. The inaccuracy of

the model by Caciagli et al [42] can be explained, as, in the derivation steps, the
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magnetic scalar potential was approximately presented with the complete elliptic
integrals. Then, the final expressions were derived by taking derivatives of this scalar
potential directly, which causes the error when using them to compute the magnetic
field. Table 5.1 presents more details about the maximum, average and minimum errors

of the analytical model derived in this paper and those by Caciagli et al [42].

Evaluated in MATLAB R2016b with the minimum integration increment (double
precision in MATLAB), using the analytical expression derived in this paper, it took an
average of 4.6 milliseconds on a personal computer (with Processor Intel® Core™ 17-
6700 CPU @ 3.40 GHz 3.40 GHz) to calculate the axial component at a single location
(2000 samples with random input variables). It took less than 0.2 seconds to compute
the azimuthal and radial components. On the other hand, using the analytical model by
Caciagli et al. [42] in the same configuration, it took 0.08 milliseconds to calculate the
axial component and less than 0.02 seconds to compute the azimuthal and radial
components. Even though Caciagli’s analytical model computes slightly faster than the
work presented in this paper, the results of the work presented are far more accurate.
Evaluated in MATLAB with the same configuration as mentioned above, the double
integration of the axial component (from Eq. (4.2)) took 0.33 seconds, the double
integration of the azimuthal component took 0.045 seconds and the double integration
of the radial component took 0.24 seconds (Table 5.2). This can demonstrate that the
analytical model derived in this study outperforms the double integration expression
[19] in terms of the computational cost but remains very close in terms of the calculated

results in most of the randomly selected points (Table 5.3, 5.4 and 5.5).
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Chapter 6

Conclusion and future work

An exact analytical model to compute the magnetic field generated by a diametrically
magnetised cylindrical/ring shaped permanent magnet with a limited length, at any point
in 3D space, both inside the magnet and in the air, was developed in this thesis. Based
on geometrical and analytical analyses, without any approximation in the derivation
steps, the magnetic field is expressed analytically using the complete elliptic integrals
for its axial component and incomplete elliptic integrals for its azimuthal and radial
components. The total computational cost of the analytical model is lower than that of
a double integration model while the two models are in very good agreement in terms
of computed results. The results of the developed analytical expressions are in good
agreement with those using Finite Element Analysis and far more precise than those

obtained by Caciagli et al. [42].

In the future, the derived analytical expressions will be further implemented to optimize
the permanent magnet’s parameters and to define the optimized air gap between the

magnet and the Hall effect sensors used in the study proposed by the authors [39].
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Appendix A

Derivation steps

A.1 The axial component H{ (Z)(r o, Zg)

From Eq. (4.2), the axial component HK(Z) (r, a, zx ) can be expressed as follows:

(ZK - Z) 1
g&(r a, zK)——4 - f 3sin(a
0/B=-n’z=-h/2 (R2+r2 — 2RrCOSB+(ZK - Z)z)z
+ B) dzdp (A1)

Integrating Eq. (A.1) based on z yields:

h
/ 2;2
JR (P 1
(3D) _
H z (rr Q, ZK)_ J-
K(z) 4”“0 .
(zx

—2
Here, |P'K| =R*+12 — 2Rrcos(B) (A.2.1); expanding (A.2) produces:

sin(o + B)dp (A2)
— 22+ PK[|

'
Slj=y

(cos(B)sin(a)

HGD) JR fﬁ—“ 1

4, Jp g hZ 2 h’ 5
o \/(ZK—E) +PK| \/(ZK‘F?) +|PK|

+ sin(B) cos(a))dp | (A.3)
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with consideration of periodic odd/even functions in the interval [-mt; 7] in equation

(A.3), the axial component is finally expressed as follows:

JR (P 1

HOD)
Hi(y (1, 0, 7¢) = Fuof__n - 7,
(5 - =) +[PK]

2
\ cos(B) dB\

1 .
e
2

For point K belonging to the symmetrical plane of the cylinder zx = 0, expression
(A.4) can be simplified to HKF((;r)mna)(r, 0, zg = 0) =0, which is presented in the study

by Fontana et al. [19].

A.2 The tangential (Azimuthal) component HE(I‘),)) (r,a,zg)

From Eq. (4.2), H K(a) (r a, z) can be expressed as follows:

(- Rsinp)

B=mn
Hg(?ﬁ(r Qa, Zg ) ——4 - ] §Sin(a
0YB=-n’z=-h/2 (R2+r2 — 2Rrcos B +(ZK - Z)z)z

+ B) dzdp (AS)

Integrating Eq. (A.5) based on z yields:

N
Il
[Sli=3

HOD) (1, 0, 2,) = JR f Pt (z — z¢) (- Rsinp)

K(a) sin(a + B)dB  (A.6)

T 2
BRI PR 4o - 2)

[\Slj=y
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—2
Here, |P‘K| is calculated using (A.2.1); expanding (A.6) produces:

3D
Hg{(ag (rr Q, ZK)

(G G \

= (- Rsinp)sin(o
4mp . . 2 . 2
‘ |P'K|2J |P'K|2+(% —7¢) |P'K|2J |P'K|2+(%+ZK) /
+B)dp
or,
JR (P
Hg(?x; (r,a,zg)= (FMO f B G (|P'K|2) (- Rsin(PB)) (cos(P)sin(ar)
+ sin(P) cos(a))dB) (A7)

Here,

h h

== =+

G (|PK|")- G-7) ¥ G) (A7.1)

2
PREPRHE =20 PRI PR+

with consideration of periodic odd/even functions in the interval [-m; 7] in equation

(A.7), the tangential component is finally expressed as follows:

JR
4mp,

B=n
200~ [0 (FRI) (i) e

For point K belonging to the symmetrical plane of the cylinder zx = 0, expression (A.8)

can be simplified to
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JhR (P — Rsin®
Hg(fgtana) (r, o, zg = 0) = f ® dp |cos(a)
Amy Jp—n ——2 [y =2
[PK]| (5) +|PK]
which is presented in the study by Fontana et al. [19].
. (3D)
A.3 The radial component Hg (T, , zg)
From Eq. (4.2), Hg(%) (r, a, zx ) can be expressed as follows:
JR (B=m pz=h2 r — Rcos
Hg(?)) (r, o, zg) = . f ( 2 3sin(a
0°F=-mz=-h2 (R*+12 — 2RrcosB+(zx — 2)?)?

+ B) dzdp (A9)

Following the same derivation steps as for the tangential component while integrating

(A.9) yields:

p=n

+ sin(P) cos(a))dB) (A.10)

Here, G (|ﬁ)(|2) is calculated using (A.7.1)

with consideration of periodic odd/even functions in the interval [-w; ] in Eq. (A.10),

the radial component is finally expressed as follows:
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JR

B
Hg(?)) (r, 0, zg) = (FMO j__ G (lP'Klz) (rcos(B) — Rcos?(B)) d[3> sin(a) (A.11)

Inserting r = R in equations (A.7.1) and (A.11), Eq. (A.11) is simplified to

Ho (=R, q,
- h_ h
zg) = : f (2 ZK) + (2 - ZK) \ cos(p) dB\

87[u0 Br h 2 5 h z / sin(a)
\/(Z - ZK) + |PK| \/(Z + zK) + |PK|

For point K belonging to the symmetrical plane of the cylinder zx = 0, expression

(A.11) can be simplified to

H(Fontana) JhR fﬁ_n TCOS(B) - RCOSZ(B) dB sin((x)

s Uy =0 = -
K(r) (1' a, Zxg ) 47q,to o |ﬁ<|2 (h)2+ |ﬁ’(|2
2

which is presented in the study by Fontana et al. [19].

97





