THE UNIVERSITY OF ADELAIDE

A GEOCHEMICAL AND ISOTOPIC STUDY OF MAFIC AND INTERMEDIATE ROCKS IN THE OLARY PROVINCE, SOUTH AUSTRALIA - MAGMA SERIES DISCRIMINATION AND GEOCHRONOLOGICAL FRAMEWORK.

by HSR FREEMAN

November, 1995
A GEOCHEMICAL AND ISOTOPIC STUDY OF MAFIC AND INTERMEDIATE ROCKS IN THE OLARY PROVINCE, SOUTH AUSTRALIA-MAGMA SERIES DISCRIMINATION AND GEOCHRONOLOGICAL FRAMEWORK.

Hamish Stewart Rees Freeman B. Sc.

The University of Adelaide
The Department of Geology and Geophysics

This thesis is submitted as partial fulfilment for the Honours Degree of Bachelor of Science.
November 1995

Australian National Grid Reference
(S1 54-2) 1:250 000
Abstract

Sampling and analysis of the mafic and intermediate igneous rocks from the Olary Block in South Australia has revealed eight geochemically distinct rock types. The Outalpa Amphibolite is characterised by low concentrations of Fe(total), Ti, P, LREE and HFSE relative to the Cathedral Rock samples of Pierini (1994). The Antro and Poodla granitoids have intermediate compositions and exhibit remarkable geochemical similarity except for alkali abundances. Three types of apparently later greenschist facies dolerites can be distinguished by geochemical means. The HPT (high phosphorous & titanium) dolerites have higher concentrations of LREE and HFSE than the LPT (low phosphorous & titanium) dolerites. The Rainy Day dolerite has low phosphorous and high titanium concentrations, and has HFSE and LREE concentrations intermediate between the HPT and LPT dolerites.

The Maldorky Lamprophyre that crops out south of the Olary township has lamproitic affinities, and is geochemically similar to the post-Delamerian Ordovician lamprophyres near Truro and Anabama Hill.

ɛNd(T) values are generally higher for the Outalpa amphibolite, LPT dolerites and Rainy Day dolerites, indicating derivation from a more depleted source or greater crustal interaction. The Poodla Granitoid has significantly lower ɛNd(T) than the Antro Granitoid: this is consistent with petrographic and geochemical evidence that suggests a greater level of crustal contamination of the former.

A Pb/Pb zircon date for the Antro Granitoid was obtained using the evaporation ('Kober') method. A magmatic age of 1679±13Ma is comparable to SHRIMP ages from the Broken Hill Block (e.g. Page and Laing, 1992). Significantly, this age may constrain the intrusion of the Outalpa Amphibolite to post ~1700Ma and pre- ~1680Ma.
Contents

Abstract (ii)
List of Plates, Tables, Figures and Maps (v)
Abbreviations (vii)
Acknowledgements (viii)

Chapter 1 Introduction 1
 Preamble 1
 1.1 Aims 1
 1.2 Method 2

Chapter 2 Regional Geology 4
 2.1 Introduction 4
 2.2 Regional Geology 4
 2.3 Stratigraphy 5
 2.4 Structure and Metamorphism in the Olary Block 7
 2.5 Geochronological Constraints 8

Chapter 3 Petrographic and Field Description of the Mafic and Intermediate Rocks 10
 3.1 Outalpa Amphibolite 10
 3.2 Antro Granitoid 13
 3.3 Poodla Granitoid 13
 3.4 Olary Block Dolerites and Gabbros 16
 3.5 Maldoryk Lamprophyre 17

Chapter 4 Geochemistry 20
 4.1 Introduction 20
 4.2 Outalpa Amphibolite 20
 4.2.1 General 20
 4.2.2 Comparison of Outalpa and Cathederal Rock Samples 21
 4.3 Antro and Poodla Granitoics 25
 4.3.1 General 25
 4.3.2 Trace Element Comparison 27
 4.3.3 Tectonic Discrimination 27
 4.4 Olary Block Dolerites 28
 4.4.1 General 28
Chapter 5 Isotopes
5.1 Introduction to Isotope Systematics 38
5.2 Isotopic Data 39
 5.2.1 Comparison of the Mafic Suites 40
 5.2.2 Interregional Comparison 42
 5.2.3 Isochrons 42
5.3 Pb/Pb Zircon Evaporation 42
5.4 Conclusion 45

Chapter 6 Petro-Tectonic Models for Continental Tholeiite Generation
6.1 Possible Sources of Continental Tholeiites 46
6.2 Lithospheric Thickness and Mantle Temperature 46
6.3 Plume Impact versus Plume Incubation 47
6.4 Implications for the Ola Bay Block Mafic Rocks 48

Chapter 7 Conclusion 49

References 52

Appendix A: Analytical Techniques
Appendix B: Thin Section Descriptions
Appendix C: Normalisation Factors and XRF Whole Rock Data
Appendix D: Normalised REE Data
Appendix E: Isotope Data and Isochron Plots
Appendix F: Results from Three Pb/Pb Zircon Evaporation Analyses on the Antro Granitoid at 'Rainy Day'
Appendix G: Alteration of the Intermediate Granitoids:
 A Discussion
Appendix H: Tectonic Discrimination Diagrams
List of Figures, Tables, Plates and Maps

Figure 1.1 Olary district locality map
Figure 2.2.1 Stratigraphic correlation
Figure 2.4.1 Metamorphism in the Olary Block
Figure 4.2.1 Zr/TiO$_2$ v Nb/Y classification of volcanic rocks
Figure 4.2.3 Ce/Y v TiO$_2$ discrimination of Olary Block amphibolites
Figure 4.2.4 Nd v P discrimination of Olary Block amphibolites
Figure 4.2.2 (a) & (b) Primitive mantle-normalised trace element diagrams; amphibolites.
Figure 4.2.5 Y/Nb v Zr/Nb for the Olary amphibolites
Figure 4.3.1 Major oxides v SiO$_2$ for the Antroo and Poodla Granites
Figure 4.3.2 (a) & (b) Primitive mantle-normalised trace element diagrams; Poodla and Antroo Granites.
Figure 4.3.3 Nb v Y tectonic discrimination of granitoids
Figure 4.4.1 P$_2$O$_5$ v Fe$_2$O$_3$ discrimination between the three types of dolerites
Figure 4.4.2 Bivariate trace element and oxide plots for the Olary Block dolerites
Figure 4.4.4 (a) & (b) Primitive mantle-normalised trace element diagrams; HPT dolerites.
Figure 4.4.5 (a) Primitive mantle-normalised trace element diagram; LPT/Rainy Day dolerites.
(b) REE patterns: Olary Block dolerites.
Figure 4.4.6 Source characteristics and crustal contamination of the Olary Block amphibolites and dolerites
Figure 4.4.7 OIT-normalised incompatible element diagram for the dolerites
Figure 4.5.1 (a) & (b) Bivariate plots for Maldorky Lamprophyre.
Figure 4.5.2 Incompatible trace element pattern for the Maldorky Lamprophyre
Figure 4.5.3 Tectonic discrimination of Maldorky Lamprophyre
Figure 5.1.1 Isotopic evolution of Nd in a chondritic uniform reservoir and depleted mantle
Figure 5.2.1 Epsilon Nd v time for the Olary Block mafic rocks
Figure 5.3.1 Histogram for zircon evaporation analyses
Figure 6.2.1 Relationship between lithospheric thickness, mantle potential temperature and magma volume
Table 1.1 Nominated outcrops
Table 2.4.1 Timing of events in the Olary Block
Table 4.2.1 Major element comparison of amphibolites

Plate 1 11 & 12
Plate 2 14 & 15
Plate 3 18 & 19

Map I: THE GEOLOGY OF THE AREA WEST OF AMEROO HILL, OLARY BLOCK (1:5000).

Map II: THE GEOLOGY OF THE AREA 2km NE OF ANTRO WOOLSHED, OLARY BLOCK 'Rainy Day' (1:2500).

Map III: THE GEOLOGY OF THE AREA 5km EAST OF ANTRO WOOLSHED, OLARY BLOCK (1:2500).
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.E.</td>
<td>Bulk Earth</td>
</tr>
<tr>
<td>bt</td>
<td>biotite</td>
</tr>
<tr>
<td>CFB</td>
<td>continental flood basalt</td>
</tr>
<tr>
<td>CHUR</td>
<td>chondritic uniform reservoir</td>
</tr>
<tr>
<td>cpx</td>
<td>clinopyroxene</td>
</tr>
<tr>
<td>DM</td>
<td>depleted mantle</td>
</tr>
<tr>
<td>EMI</td>
<td>enriched mantle type I</td>
</tr>
<tr>
<td>EMII</td>
<td>enriched mantle type II</td>
</tr>
<tr>
<td>ϵNd(T)</td>
<td>epsilon neodymium value at time, T</td>
</tr>
<tr>
<td>E-type MORB</td>
<td>enriched mid ocean ridge basalt</td>
</tr>
<tr>
<td>feld</td>
<td>feldspar</td>
</tr>
<tr>
<td>Ga</td>
<td>Giga-anna (billions of years before present)</td>
</tr>
<tr>
<td>HFSE</td>
<td>high field strength element</td>
</tr>
<tr>
<td>HPT</td>
<td>Olary Block high phosphorous & titanium dolerite</td>
</tr>
<tr>
<td>HREE</td>
<td>heavy rare earth element</td>
</tr>
<tr>
<td>LIL</td>
<td>large ion lithophile (element)</td>
</tr>
<tr>
<td>LOI</td>
<td>Loss on ignition</td>
</tr>
<tr>
<td>LPT</td>
<td>Olary Block low phosphorous & titanium dolerite</td>
</tr>
<tr>
<td>LREE</td>
<td>light rare earth element</td>
</tr>
<tr>
<td>Ma</td>
<td>Mega-anna (millions of years before present)</td>
</tr>
<tr>
<td>Mg#</td>
<td>magnesium number ($=\frac{Mg^{2+}}{Mg^{2+}+Fe^{2+}}$)</td>
</tr>
<tr>
<td>MORB</td>
<td>mid-ocean ridge basalt</td>
</tr>
<tr>
<td>mu</td>
<td>muscovite</td>
</tr>
<tr>
<td>OIB</td>
<td>ocean island basalt</td>
</tr>
<tr>
<td>OIT</td>
<td>ocean island tholeiite</td>
</tr>
<tr>
<td>plag</td>
<td>plagioclase</td>
</tr>
<tr>
<td>P.M.</td>
<td>primordial mantle</td>
</tr>
<tr>
<td>P-T-t</td>
<td>pressure-temperature-time</td>
</tr>
<tr>
<td>qtz</td>
<td>quartz</td>
</tr>
<tr>
<td>REE</td>
<td>rare earth element</td>
</tr>
<tr>
<td>TDM</td>
<td>depleted mantle model age</td>
</tr>
<tr>
<td>tour</td>
<td>tourmaline</td>
</tr>
<tr>
<td>XRF</td>
<td>X-ray fluorescence</td>
</tr>
<tr>
<td>zir</td>
<td>zircon</td>
</tr>
</tbody>
</table>
Acknowledgments

This has been a year of highs and lows, and I would not have survived without the help of many people. Many thanks firstly go to my supervisor John Foden, for invaluable discussion and help during a hectic year. And to Leigh Schmidt and Colin Rothnie from North Exploration, for organising the project, and for help with drafting, field supplies, and geological assistance. On the technical side, I would like to thank John Stanley (for running XRF samples), David Bruce (for help with the mass spec. and isotope lab), JDP and Bruce Schaefer (for zircon preparation, loading and running) and Geoff Trevely who was always in good humour. Others in the department that have made my life a lot easier include Annette, Jon, Martin, Jo, Soph and Gerald. Thankyou also to Ross Both, Fran Parker and JDP for organising and supervising the Kalgoorlie field trip; definitely a highlight of the year.

The biggest thanks go to my family, for all their love and support throughout the year. The Honours crowd, without whom I would have died in a corner quite some time ago, is a group of people I will miss immensely next year. Special thanks must go to Kelli, for many valuable discussions throughout the year; and to Justin and Dawn, for all the geological speculation in the field, and for subsequent discussion. Outside of Uni, thanks must go to James, Tim, Stefan and Matt.

Last of all, I must thank Dina, for putting up with me this year, and trying to understand those long hours at Uni. I promise I will make up to you.