STRUCTURAL AND METAMORPHIC INVESTIGATION OF THE CATHEDRAL ROCK – DREW HILL AREA, OLARY DOMAIN, SOUTH AUSTRALIA.

Jonathan Clark (B.Sc.)

Department of Geology and Geophysics
University of Adelaide

This thesis is submitted as a partial fulfilment for the Honours Degree of a Bachelor of Science

November 1999

Australian National Grid Reference
(SI 54-2) 1:250 000
ABSTRACT

The Cathedral Rock – Drew Hill area represents a typical Proterozoic high-grade gneiss terrain, and provides an excellent basis for the study of the structural and metamorphic geology in early earth history. Rocks from this are comprised of Willyama Supergroup metasediments, which have been subjected to polydeformation.

The highly strained nature of the area has been attributed to three deformations. These have been superimposed into a single structure, the Cathedral Rock synform, which represents a second-generation fold that refolds the F₁ axial surface.

Pervasive deformation with a northwest transport direction firstly resulted in the formation of a thin-skinned duplex terrain. Crustal thickening in the middle to lower crust led to the reactivation of basement normal faults in a reverse sense. Further compression, led to more intense folding and thrusting associated with the later part of the Olarian Orogeny.

Strain analysis has shown that the region of greatest strain occurs between the Cathedral Rock and Drew Hill shear zones. Cross section restoration showed that this area has undergone approximately 65% shortening. Further analysis showed that strain fluctuated across the area and was affected by the competence of different lithologies and the degree of recrystallisation.
Contents

Abstract (ii)
List of Plates, Tables and Figures (v)
Acknowledgments (vi)

CHAPTER 1: INTRODUCTION
1. Review of Structural and Strain Analysis in High-Grade Gneiss Terrains 1
2. Location of Study Area 2
3. Aims and Research methods 3

CHAPTER 2: REGIONAL GEOLOGY
4. Regional Geology and Tectonic Setting 4
5. Stratigraphy 5
6. Structural History 7
7. Metamorphic History 7
8. Alteration 9

CHAPTER 3: LITHOLOGICAL VARIATION
10. Metasediments 10
11. Intrusives 15

CHAPTER 4: STRUCTURAL DESCRIPTIONS
18. Origin of Layering 18
19. First Deformation (OD_1) 18
20. Second Deformation (OD_2) 22
21. Third Deformation (OD_3) 24
22. Shearing 25
23. Discussion 25

CHAPTER 5: METAMORPHISM AND ALTERATION
30. Metamorphism 30
31. Migmatite Formation 32
32. Alteration 33
LIST OF PLATES, TABLES AND FIGURES

Chapter 1

1.1 Location of study area 2

Chapter 2

2.1 Stratigraphic correlation between the Olary and Broken Hill Domains 5
2.2 Distribution of metamorphic zones 3
2.3 Timing and grade of Olarian and Delamerian deformation events 8

Chapter 3

Plate 1 17

Chapter 4

4.1 Geological map of sub-areas (bedding and schistosity) 19
4.2 Geological map of sub-areas (cleavage) 20
4.3 Fabric develop in calc-albite 21
4.4 Geological map of sub-areas (lineations) 23
4.5 Grid sketch in fold hinge zone 26
4.6 Folding and migmatite formation 28
Plate 2 29

Chapter 5

5.1 Petrogenetic P.T. grid showing metamorphic reactions 31

Chapter 6

Plate 3 35
Table 6.1 R_f/ϕ and ellipsoid data and associated k-values 37
6.1 Flinn diagram displaying the strain fields of samples 38
6.2 Geometric features arising from the intersection of two planes 39
6.3 δ- angle data within field area 40
6.4 δ- and σ- type kinematic indicators 41
6.5 Cross section and restored equivalent, of transect $A-A'$ 43
6.6 Calculation of depth of folding 44
6.7 Representation of strain across major structures along transect $A-A'$ 45
Plate 4 46
Plate 5 47

Chapter 7

7.1 Tectonic model for Olary Domain 49
7.2 Schematic 3D representation of structures in the Olary Domain 50