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Abstract

Optical spectroscopy provides a window into the world of molecules and their environment

by the absorption of electric dipole radiation with frequencies characteristic to each molec-

ular species. The temperature, concentration, and pressures of molecules in a gas sample

can theoretically be obtained through examination of optical absorption spectra. This is

provided the spectrum is of high enough resolution and sufficient bandwidth that the com-

plicated molecular absorption spectrum may be observed, particularly in cases with multi-

ple molecular species present in a sample.

The invention of a fully-stabilised optical frequency comb in recent decades has revolu-

tionised molecular spectroscopy. It provides a near-ideal spectral interrogation source for

the high-resolution study of molecules, combining absolute frequency accuracy, broad single-

shot bandwidth, and dense spectral sampling. The comb light is contained within a sin-

gle beam, and must be dispersed into its component frequencies in order for a molecular

spectrum to be extracted. There are numerous methods to perform this, with the tech-

nique employed in this thesis utilising a dispersive spectrometer based on a virtually im-

aged phased array. The spectrometer spreads the comb light from a single beam into a

two-dimensional array of its component frequencies, allowing the power of each comb fre-

quency to be measured.

This thesis details the development and construction of a virtually imaged phased array

spectrometer system for use with an optical frequency comb. Additionally, code that ex-

tracts the traditional absorption spectrum from the two-dimensional arrays of frequencies

produced by the spectrometer were developed and demonstrated, along with a model to

extract physical parameters of molecules. The theoretical basis to model the characteris-

tic absorption fingerprints is presented for each of the molecules examined in the course of

this thesis (hydrogen cyanide, carbon dioxide, and acetylene), as well as the differences in

spectra caused by changes to the pressure, temperature, and concentration of molecules in

the sample. The results chapters walk through the development of the spectrometer into

a reliable system capable of rapidly acquiring high-quality molecular spectra from which

highly accurate and precise measurements of concentration and temperature were demon-

strated. The capability of the system to easily differentiate between isotopologues of the

same species in the same sample makes this spectrometer a powerful spectroscopic tool

that, with further development, may find use in out-of-lab applications such as medical

breath analysis and environmental monitoring. Additionally, the demonstrated capability

to measure extremely high-resolution spectra beyond the resolution limit of the spectrome-

ter may find use in measurements of the thermodynamic properties of molecules.
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Preface

Spectroscopy provides a window into the structure of molecules and their local environment.

In contrast to their atomic constituents, the optical spectra of molecules alludes to a com-

plex energy level structure with numerous additional levels due to molecular vibrations and

rotations unavailable to lone atoms. With a deep knowledge of the mechanisms that deter-

mine such spectra, the local molecular environment may be ascertained. However, this will

only be possible with if the spectra are acquired with sufficient resolution and bandwidth.

The realisation of optical frequency combs in recent years has provided a near-ideal spectral

interrogation source for studying electric dipole radiation transitions in molecules, combining

absolute frequency accuracy, broad single-shot bandwidth, and dense spectral sampling. In

order to produce a molecular absorption spectrum using an optical frequency comb as the

interrogation source, a way must also be found to unravel the hundreds of thousands of si-

multaneous frequencies of the comb. Numerous methods exist, each with their own pros and

cons as will be explored during the course of the thesis.

The first part of the thesis presents motivation for the study of molecules and existing

technologies for doing so. Chapter 1 introduces applications of molecular spectroscopy, with

a focus on medical breath analysis and environmental monitoring as motivators for the work

presented in later chapters. Existing methods for the detection of molecules are explored in

Chapter 2, along with their benefits and detractions.

A significant amount of theoretical background is required to understand the shapes and

behaviour of molecular spectra, as well as to extract the parameters of interest. The second

part of the thesis presents a general physics introduction and overview into the nature of

the spectra of molecules presented in later chapters. Chapter 3 provides an introduction to

the spectra of molecules seen in this thesis, beginning with conventions and units of the

field. The chapter is focused on how the spectra of diatomics and small (less than four-

atom) linear polyatomic molecules arise. Rotational spectroscopy and the concept of rotors

and their energy level structure is introduced before moving onto vibrational spectra. The

harmonic and anharmonic oscillator approximations for vibrational spectra are presented,

along with the vibrational transition naming conventions followed throughout the thesis.

The combination of rotational and vibrational concepts to produce rotational-vibrational

spectra of molecules are then introduced before finishing with discussion of the allowed types

of rotational-vibrational transitions and some intensity modifiers that present in spectra

examined during the course of this thesis.

The shapes of each line in a molecular spectrum is examined in detail in Chapter 4. The

commonly-used Voigt profile is introduced, before the physical cause of the width of each line
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is examined. We specifically examine the influences of pressure, temperature, and concen-

tration changes to the shape of the spectral lines. The chapter concludes with consideration

of the ways in which these parameters may be extracted from measured spectra using an

efficient spectral model, and the effects of the spectral measurement device on the widths of

lines.

The experimental part of the thesis is split into three chapters. Chapter 5 describes the

generation of the optical frequency comb as used in this thesis. The concepts of mode-

locked lasers and mode-locking with non-linear polarisation rotation are introduced before

extension to the stabilisation and creation of an optical frequency comb by a self-referencing

scheme. The parameters of the base model comb used in this thesis are presented, before the

comb spectral bandwidth is increased by the addition of a highly non-linear fibre to target

additional molecular species.

Chapter 6 explores the components of a Virtually-Imaged Phased Array (VIPA) spec-

trometer and its use in unravelling the optical frequency comb into its spectral components.

Diffraction gratings and VIPAs are described before their combined output is explained with

regards to the broadband comb source. The final component of the spectrometer - an InGaAs

camera - is characterised with methods presented to correct the dark current and non-linearity

of the camera response within the captured images. Finally, the method by which the imaged

comb is converted into a traditional absorption spectrum by this home-built spectrometer is

detailed.

The comb rarefication cavity necessary to produce a calibrated frequency axis for the

measured molecular spectra is presented in Chapter 7. The construction and stability of this

cavity is detailed before discussion of the filtering capabilities and characteristics of the cavity.

The chapter concludes with brief discussion of stabilisation for this cavity.

The results section of the thesis is split into chapters based upon individual publications.

Each of the publications make use of the optical frequency comb, rarefication cavity, and

spectrometer as previously described. The first publication presented in Chapter 8 describes

the proof-of-concept demonstration of the VIPA spectrometer system with direct frequency

comb spectroscopy as applied to a sample of hydrogen cyanide. This paper describes the first

time the system presented in this thesis achieved quantitative detection of a molecular system,

comparing favourably with previously published measurements and competing techniques.

Additionally, this paper describes how the rarefication cavity may be used to ensure resolution

of individual comb modes without loss of the optical frequency comb’s dense spectral sampling

when the VIPA spectrometer lacks sufficient spectral resolution, while maintaining absolute

frequency accuracy.

Chapter 9 details how an additional image containing interference fringes may be used

to extract both the phase and absorption data of the molecular sample simultaneously with

a Michelson interferometer as demonstrated with hydrogen cyanide. Additionally, this pub-

lication describes the matched-filtering techniques that allows the spectrometer to be used



without prior cavity rarefication, and marks the shift towards using the rarefication cavity as

a calibrator for the frequency axis.

The publication presented in Chapter 10 describes measurement of the local molecular

environment with the undecimated optical frequency comb with high precision and accuracy.

It details the use of an efficient molecular model fit based on the Voigt profile and HITRAN

spectroscopic parameter database to extract the varied concentration of carbon dioxide along

with its temperature from measured spectra all in under a second. The measured concen-

trations matched those predicted using the Virial-corrected Ideal Gas Law for all examined

values. This manuscript is the first demonstration of the system to produce rapid, quantita-

tive results, achieved with a large amount of experimental interfacing and automation. These

advancements also opened up the ability to average numerous spectra to improve the signal-

to-noise ratio of measurements and allowed measurements of weaker molecular absorption

features to be attempted in further work.

Equipping the molecular model fit developed in Chapter 10 to handle multiple isotopo-

logues of carbon dioxide combined with rapid averaging is the basis of the publication pre-

sented in Chapter 11. In this paper, the total concentration of carbon dioxide was altered

while the absolute concentration of each isotopologue was measured. The linearity of the

entire measurement system over a large concentration range is additionally able to be es-

tablished owing to the drastic difference between the natural abundances of the two fitted

isotopologues of carbon dioxide and the disparate depths of their absorptions.

Chapter 12 details how to combine sequential stepping of the comb’s repetition rate with

a rarefication cavity to produce high-resolution spectroscopic measurements of acetylene be-

yond the resolution limit of the VIPA spectrometer. In this paper, a low-pressure acetylene

cell was probed directly with a rarefied version of the comb as produced by the rarefication

cavity detailed in Chapters 7 & 8. This allowed full resolution of the comb frequencies by

the spectrometer at the expense of the majority of comb modes. In order to return the

missing frequencies, the repetition rate of the comb was sequentially increased. This resulted

in a shift of the comb modes at the observed frequency range with the cavity tracking this

new comb. This manuscript details the first use of this method with an optical frequency

comb and VIPA spectrometer to perform high-resolution spectroscopy, as demonstrated on

the narrow features of acetylene.

The final chapter of this thesis presents a summary of the work and planned future work

to continue developing the spectrometer system into one suitable for out-of-lab applications

such as medical breath analysis or environmental monitoring.





Part I

Introduction and Literature Review





Chapter 1

Motivation

The study of light-matter interaction provides great insights into the physical world. An

important subset of this field is the unique interactions between light and the molecules that

surround us. Measurement of the characteristic ways in which different species of molecules

interact with light enables numerous applications. For example, a number of small volatile

(airborne at room temperature) molecules can be linked to specific disease states in humans

when detected in the breath, while determining the sources of other characteristic molecules

that contribute to the pollution and changing climate of Earth can result in a less polluted

planet. This chapter aims to introduce some of these important molecules to motivate the

necessity of a broadly-applicable detection scheme for such particles [2–10].

1.1 Molecules as Indicators of Disease

It has been known since ancient times that the human breath provides insights into the

physiological and pathophysiological processes within the human body [10–12]. For example,

A fruity-sweet smell is associated with uncontrolled diabetes, while a fishy smell accompanies

liver disease [13,14]. Evidently certain volatile molecules contained within the breath of these

patients are characteristic of these diseases, and these molecules are then known as biomarkers

for that disease [5]. However neither liver disease nor diabetes stem from dysfunction of the

lungs or airways, so the presence of these biomarkers in the breath must be explained by

another mechanism [15,16].

1.1.1 Physiological Mechanism

In order for a biomarker to be found within the breath, it must have passed through the

respiratory system. Excluding inhalation, if the biomarker does not originate directly from

disease within the mouth cavity, upper airway, or the lungs themselves, it will have entered

the respiratory system by diffusion through the lungs. The lungs are a collection of millions of

small expandable air sacs called alveoli [17–19]. The alveoli walls are surrounded by capillaries

fed by pulmonary arterial blood returning from the tissues of the body, with the blood and

alveoli separated by a thin barrier called the pulmonary alveolar membrane, also more simply

known as the ‘blood-air barrier’ [17–20]. Oxygen drawn into the alveoli during inhalation is

then diffused into the surrounding capillaries, while at the same time carbon dioxide diffuses

into the alveoli for exhalation [18,19,21]. However, if the molecule is small enough, it may

3



4 Motivation

cross the alveolar membrane and be exhaled along with carbon dioxide [16,22,23]. A cross-

sectional diagram of an alveolus depicting gas exchange is shown in Fig 1.1.

O2 CO2

(Air)

Alveolar–capillary 
membrane

Capillary

Capillary
walls

Oxygenated blood 
to pulmonary vein

De-oxygenated blood from 
pulmonary artery

Red blood
cell

Alveolar
wall

Surfactant
film

Figure 1.1: Cross-section of an alveolus depicting gas exchange in the lung. Inhaled oxy-
gen is diffused through the alveolar-capillary membrane, oxygenating red
blood cells carried in the surrounding capillary on their way to the pulmonary
vein. Simultaneously, de-oxygenated blood from the pulmonary artery diffuses
carbon dioxide - and biomarkers - through the alveolar-capillary membrane
into the air cavity for exhalation [24–26].

1.1.2 Biomarkers

An ever-growing number of biomarkers are being correlated to particular disease states as seen

in Table 1.1 [27]. Additionally, some diseases are now able to be diagnosed via a commercially-

available breath test e.g. the presence of Helicobacter pylori (H. pylori) - the cause of several

gastrointestinal diseases - can be ascertained based on the 13C/12C ratio of carbon dioxide

[28–31].

Analysis of the exhaled breath is an appealing method for disease diagnostics as it is inher-

ently non-invasive. In addition, these techniques have the potential to detect diseases in their

early stages in a painless manner, as well as in critical care scenarios [16,58,59]. The human

breath is a mixture of predominantly nitrogen, oxygen, carbon dioxide, water vapour, and

other inert gases with trace concentrations of biomarkers [60,61]. However, the wide-spread

adoption of breath analysis for disease diagnostics is hampered by the expense, accuracy,

sensitivity, technical difficulty and time required by current methods. These current methods

include selected ion flow tube mass spectrometry or gas chromatographymass spectrome-

try [62,63]. Another class of detectors - electrochemical-based sensors - are an active area of

research but are typically specialised to a specific target species and do not provide a true
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Disease Related exhaled biomarker Reference(s)

Asthma, COPD*,
oxidative stress

(Fractional) nitric oxide, carbon monoxide [32–36]

H. pylori infection 13C/12C ratio of carbon dioxide [37,38]
Lung cancer Benzene, ethane, formaldehyde, isoprene,

propanol, etc.
[39–43]

Renal disease Ammonia, isoprene [44–47]
Diabetes Acetone [48,49]
Oesophageal cancer Phenols [50–52]
Liver disease Carbonyl disulfide, methanol, limonene etc. [53–56]

Table 1.1: Common diseases and their correlated exhaled biomarkers [27]. *Chronic
Obstructive Pulmonary Disease (COPD) is an umbrella term that includes
numerous long-term lung conditions such as chronic bronchitis and emphy-
sema [57].

broad-scale detection technique. In addition, many suffer from molecular cross-sensitivities or

non-specificity issues [64–66]. A broad-scale breath-screening device requires high sensitivity,

low response time, species selectivity of biomarkers in the complex human breath, relatively

low cost, and ease of use with minimal specialised training to find widespread adoption in a

clinical setting [16,50,60,61,67].

1.2 Pollution and the Environment

Anthropogenic sources and absolute levels of volatile pollutants and greenhouse gases are

of major concern to the environmental monitoring and medical communities [68,69]. Both

are linked with reduced life expectancy and detrimental effects on the environment [69].

Additionally, with increasing global industrialisation, the levels of airborne pollutants and

greenhouse gases are growing [70,71]. Unfortunately, the long term effects of such emissions

are now becoming apparent in the human environment in regards to the health of the global

population and climate.

1.2.1 Pollution

The levels of particular volatile molecules in the environment can be indicative of anthro-

pogenic pollution, many of which have detrimental effects to the health of the human pop-

ulation. This is particularly important in urban environments, where exhaust fumes from

engines and burning of fossil fuels leads to higher incidences of respiratory, cardiovascular,

and central nervous system disease from the release of carbon monoxide, sulphur dioxide and

nitrogen dioxide [6,35]. Additionally, an increased likelihood of cancer is linked with elevated

pollution levels [72–75]. It is estimated that the yearly death toll from air pollution is in

the millions, with the majority of deaths in rapidly industrialising areas such as Asia [76,77].
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Global food supply is also at risk, with groundwater and soil also affected by contamination

from anthropogenic pollution sources [78]. Sources of air pollution may be traced by detec-

tion of characteristic molecules, for example leak detection in natural gas pipelines, industrial

emissions, and automotive fumes [79–82]. Once traced back to their source, polluters may be

encouraged to implement solutions to reduce the pollution toll on the environment [83–85].

1.2.2 Anthropogenic Global Warming

In addition to the more immediate human health effects of pollution, emission of large volumes

of greenhouse gases such as carbon dioxide and methane are major causes of anthropogenic

global warming [86]. The majority of Earth’s atmosphere is comprised of three major gases -

oxygen, nitrogen, and argon. [87]. Trace amounts of other gases such as water vapour, carbon

dioxide, nitrogen dioxide, and methane can have a large impact on the climate of the planet,

owing to their effective capture of infrared radiation [88,89]. Water vapour, carbon dioxide,

nitrogen dioxide, and methane are the major greenhouse gases, with the latter three most

heavily influenced in their atmospheric concentrations by anthropogenic activities [89,90].

Solar radiation passes through the Earth’s atmosphere and heats the terrestrial surface,

which re-emits this energy as infrared radiation. Greenhouse gases are very effective at

absorbing and re-emitting this infrared radiation in all directions - including back into the

atmosphere - and act as a ‘blanket’ around the planet by preventing the escape of this

transformed solar energy [89,90]. While this is a natural process, known as the greenhouse

effect, rising levels of greenhouse gases from anthropogenic sources increases the amount of

infrared radiation trapped in the atmosphere, heating the planet as a whole [88,90]. This

increase in global mean temperature then evaporates surface water, increasing the amount

of atmospheric water vapour and causing more warming [88,89]. Unchecked, emissions of

greenhouse gases and the consequent global warming is expected to produce severe climate

change, rising sea levels with the melting of glaciers and permafrost, ocean acidification and

warming, and an increase in the frequency and severity of extreme weather events such as

storms systems, heat waves, and droughts [89,91–100].

To reduce emissions globally, an effort must be made to monitor the levels at which an-

thropogenic activity is releasing these greenhouse gases and identify the specific practices that

are the main contributors. Industry was responsible for approximately 20% of greenhouse

gas emissions in 2010 from the burning of fossil fuels for energy and industrial process-

ing [97,101,102]. Production of electricity and heat by burning of fossil fuels was the largest

contributor in the same year, accounting for the greatest source of emissions [97,102]. Agri-

culture and deforestation is also responsible for a large proportion of emissions (25%), while

transportation and fuel refining are the predominant remaining sources of anthropogenic

greenhouse gas emissions [97,101–103].
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1.3 The Ideal Measurement Device

Both applications explored in Sections 1.1 and 1.2 share similar requirements for an ideal

detection system. A non-invasive measurement technique for disease diagnostics and patient

monitoring would inherently benefit all patients, in particular those that are critically or

chronically ill. Similarly, industrial monitoring or environmental applications benefit from a

stand-off detector that does not need to be exposed directly to possibly hazardous environ-

ments. In addition, detection of multiple gas species and their isotopologues simultaneously

with high specificity in a complex mixture reduces the need for multiple detectors in either

application. The ideal detection system would also be small in physical size, highly sensi-

tive, relatively cost-effective, and produce high-resolution and rapid results. While there are

many established detection systems and yet more in development, all have both benefits and

shortcomings as will be explored in the next chapter.
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Chapter 2

Molecular Measurement Techniques

The ideal molecular detector would rapidly produce highly accurate and precise results for

the concentration of each molecular species in the sample. Ideally, other characteristics such

as the temperature and pressure of the sample would be returned simultaneously, and the

detector would have no cross-sensitivities between molecular species. For use in industrial

environments, an ideal detector would avoid direct exposure to the environment under test.

These characteristics would also benefit biomedical applications such as breath testing, be-

ing inherently non-invasive in nature. There are a number of techniques used to measure

the properties and contents of gas samples. Some methods such as electrochemical sensors

measure the electrochemical reactions of the target molecule with the sensor, while oth-

ers utilise the absorption of light by the molecular sample, such as in Fourier Transform

Infrared (FTIR) spectroscopy, Cavity Ring Down Spectroscopy (CRDS), and Dual-Comb

Spectroscopy (DCS) [104–107]. The most commonly used lab-based technique, Mass Spec-

trometry, is also examined together with the complimentary technique of Gas Chromatog-

raphy. A distinction will be made between optical spectroscopy-based techniques and other

common methods of interrogating gas samples.

2.1 Non-Optical Measurement Techniques

2.1.1 Electrochemical Sensors

Electrochemical sensors return information about the sample by interaction of a chemically-

selective layer (containing an electrolyte) to some form of electrochemical transducer to pro-

duce a measurable current or other measurable change. These changes are then proportional

to the amount of target chemical in the sample [108–110]. While these type of sensors are

quite common (including in blood glucose detectors), cheap, and can be extremely sensitive,

there are some applications in which such sensors are unsuitable. Additionally, the chemically-

selective layer has a finite lifetime and becomes less sensitive over time [111–114]. Another

major downfall of electrochemical sensors is their cross-sensitivity of target and non-target

species [115–117]. These combine to make electrochemical sensors useful for specifically-

targeted applications rather than a broad-scale detector.

9
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2.1.2 Gas Chromatography - Mass Spectrometry

Gas Chromatography - Mass Spectrometry (GC-MS) is a combination of two techniques. The

first technique, gas chromatography, involves injecting the sample into the gas chromatograph

where it is vaporised. A carrier gas, known as the mobile phase, sweeps the vaporised sample

into a chromatographic column of which the inner surface is specially-coated (the stationary

phase). The carrier gas is often an inert gas, most commonly helium. The compounds of

interest are separated by their relative interactions with the stationary phase due to their

differing chemical and physical properties. This leads to a chemically-specific retention time

in the column. The compounds emerge from the end of the column, where the amount of

each compound is detected. Each compound is then identifiable by the time taken to reach

the outlet. In a GC-MS instrument, the gases emerging from the column are then sent to the

inlet of the mass spectrograph, bypassing this detector [118,119].

The second technique folded into GC-MS is mass spectrometry, which uses the differential

deflection of charged particles to separate them based on their mass-to-charge ratio for com-

positional analysis [120]. In a typical mass spectrometer, a solid, liquid, or gaseous sample

is ionised by bombardment with electrons, which may fragment molecules of the sample into

charged pieces. After ionisation, the charged particles are first accelerated then deflected by

an applied electric or magnetic field, with the amount of deflection dependent on their charge

and mass. A charged particle detector such as an electron multiplier detects the landing

points - and therefore the amount of deflection - of each ionised fragment, with results dis-

played as the number of detections (relative abundance) as a function of mass-to-charge ratio.

The composition of the original sample is then inferred using known masses of molecules or

by characteristic fragmentation patterns [120,121].

The two techniques of gas chromatography and mass spectrometry are combined to form

the final GC-MS instrument. The gas chromatography segment of the spectrometer provides

a continuous flow of molecules to be analysed by the mass spectrometer component. GC-

MS is capable of high sensitivities and isotopic detection, and may produce high resolution

spectra. However, GC-MS machines are relatively expensive to procure and maintain, and

require training to operate correctly. In addition, care must be taken not to contaminate the

column of the gas chromatograph portion, or allow the carrier gas to become ionised and

introduced to the mass spectrometer part of the instrument. For similar reasons, the sample

may also require some degree of pre-treatment prior to its injection into the chromatograph,

and the mass spectrometer must be maintained at a high vacuum. Finally, and in particular

for biochemical samples, the sample itself may decompose or chemically react during the gas

chromatography phase of the spectrometer [120–122]. A GC-MS device is not suited for use

outside of a laboratory setting, and cannot be used in-situ for applications such as continuous

critical patient monitoring.
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2.2 Optical Measurement Techniques

Optical measurement techniques are extremely useful for probing molecular systems, particu-

larly in cases where remote measurements are required. In addition, optical measurements can

be rapid and performed in situ as they require only optical access. This allows applications of

optical detectors in environments where sample extraction is unwanted or hazardous condi-

tions, as well as continuous monitoring applications. The most common optical measurement

techniques including Fourier Transform Infrared (FTIR) spectroscopy, Cavity Ring-Down

Spectroscopy (CRDS), and systems based on optical frequency combs. Each have their own

advantages and disadvantages which must be explored.

2.2.1 Fourier Transform Infrared (FTIR) Spectroscopy

Fourier Transform Infrared (FTIR) spectroscopy uses the interference of a collimated broad-

band infrared light source in combination with an optical beam splitter and two mirrors -

one fixed and one movable - in an arrangement known as a Michelson interferometer. The

sample to be interrogated is placed in the infrared beam, typically just prior to a detector.

A typical FTIR apparatus may be seen in Fig. 2.1. As the movable mirror is scanned, the

detector observes a complex interference pattern as the wavelengths of the broadband light

interfere constructively and destructively. A Fourier transform is used to convert the signal

(consisting of the absorption of light by the sample as a function of mirror position) into a

frequency-dependent absorption of light.

Source 

Fixed 
Mirror

CP

BS
DetectorSample

Movable
Mirror

Figure 2.1: A typical FTIR setup. A collimated broadband infrared light source is evenly
split by a beam splitter (BS). Half of the light is directed toward the fixed
mirror, and the other half towards the movable mirror. A compensation plate
(CP) is often present in one or both arms to compensate for the phase de-
lay that one arm of the spectrometer acquires by travelling through the beam
splitter material twice. Both paths are recombined before passing through the
sample. The interference signal of the two beams is encoded with the absorp-
tion spectrum of the sample, which is revealed after a Fourier transform is
performed [123].

These spectrometers are capable of providing high-resolution and broadband spectra.
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The spectrometer resolution is mainly defined by the maximum path difference between the

interferometer arms, while the total spectral width depends on the spectral width of the

source [105,120]. However, these devices are limited by the speed of data collection, as the

signal must be sampled at a rate at least twice as high as the highest-frequency component

as dictated by the Nyquist criterion to prevent aliasing of the spectrum. Additionally, high

spectral resolution requires a relatively large scan range, and the incoherent nature of the

light often used in these spectrometers precludes the use of common sensitivity enhancement

techniques such as the use of optical enhancement cavities [123–125].

2.2.2 Cavity Ring-Down Spectroscopy

Cavity Ring-Down Spectroscopy (CRDS) exploits the coherent nature of laser light to increase

sensitivity of molecular measurements by utilising an optical enhancement cavity. Such cavi-

ties increase the sensitivity of detection by increasing the effective path length of the system

by bouncing light between the cavity mirrors many times. The simplest optical cavity is

formed of two opposing mirrors. A coherent light source of wavelength λ is introduced to the

cavity through the input mirror. In CRDS, a tunable laser source is used with a high finesse

optical cavity. If the mirror separation is equal to an integer multiple of λ/2, the light will

be resonant with the cavity, and the intensity of light within the cavity builds as it circulates

due to constructive interference while the input light source continues to feed the cavity.

The light bounces back and forth between the mirrors, with a small portion of the light

leaking out of the output mirror each time the circulating light strikes the output mirror.

A fast photodetector is placed behind this mirror and monitors the light leaking from the

cavity. Once a certain signal threshold is met at this detector, the laser source is deactivated.

The detector continues to monitor the light as the signal follows an exponential decay while

the remaining light leaks out of the cavity. CRDS measures the time taken for the output

light to decay to 1/e of its initial output intensity - known as the ringdown time.

If a gaseous sample is introduced to the space between the cavity mirrors, a new loss

mechanism (absorption by the sample) is introduced. This shortens the ringdown time com-

pared to the empty cavity, with the intensity of light measured at the detector decaying more

rapidly as the light makes fewer bounces between the mirrors. The ringdown time for the

empty cavity and sample run are then used to calculate the concentration of the gas in the

sample at λ. The laser is then tuned to a new wavelength, the cavity length adjusted to suit,

and the two required runs repeated for as many wavelength points as desired.

While CRDS is extremely sensitive due to its long path lengths, and capable of very

high resolution measurements, it is limited by the speed of spectral acquisition. In order

to cover a broad bandwidth with sufficient resolution, long acquisition times are required.

Additionally, the tunability of the laser source and spectral bandwidth of the mirror coatings

affect the bandwidth of achievable results. These factors usually make CRDS unsuited to

rapid, spectrally-broad out-of-lab measurements [106,126–128].
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2.2.3 Dual Comb Spectroscopy

Dual-comb spectroscopy (DCS) is a powerful technique that utilises the unique properties of

optical frequency comb lasers. An in-depth description of combs and their properties appears

in Chapter 5, but the output of a comb can be essentially described as many hundreds to

thousands of individual lasers appearing simultaneously at very well-defined frequencies or

comb ‘teeth’ over a large frequency span. These individuals lasers have a high degree of

spectral coherence. The separation of each frequency from its neighbour is known as the

repetition rate of the comb, frep. In DCS, two combs of slightly different repetition rates

frep and frep + ∆frep are interfered and detected on a photodiode as seen in Fig. 2.2. The

mixing of the two optical combs in this way produces a new comb in the radio-frequency (RF)

domain with a repetition rate equal to the difference in repetition rates between the optical

combs, ∆frep. To perform spectroscopy, either one or both of the optical combs are passed

through the sample prior to their interference, encoding an absorption (or phase) signature

onto the teeth of the RF comb [105,129–131].

frep

Optical Frequencyfrep + ∆frep

Optical Frequency

Sample

Detector

∆frep

Radio Frequency

Absorption
Feature

Signal Comb

Local Comb

Figure 2.2: The concept of dual-comb spectroscopy. Two combs of slightly different rep-
etition rates frep and frep + ∆frep are mixed and detected on a photodetec-
tor. The mixing of the two optical combs produces a new comb in the radio-
frequency (RF) domain with teeth spaced by ∆frep. To perform spectroscopy,
either one or both combs are passed through the sample, encoding an absorp-
tion signature onto the teeth of the resulting RF comb.

Dual-comb spectroscopy is a burgeoning field, with demonstrations in both enhancement-

cell and open-air paths, trace gas analysis, and gas turbine exhaust [130,132–138]. The

increasing availability and recent reductions in the expense and size of optical frequency

combs make DCS and comb spectroscopy in general a popular choice. However, the need

for two optical frequency combs can make DCS a relatively costly and complex technique.

Additionally, there is a trade off between the optical bandwidth and acquisition speed for

DCS, with increased speed coming at the cost of single-spectrum signal-to-noise ratios. In

practice this issue is overcome by averaging numerous spectra together, however it makes

time-critical measurements difficult. Furthermore, the stability of ∆frep, and hence the sta-
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bility and synchronisation of the original optical combs, must be precisely controlled. Despite

this, DCS is an extremely powerful technique capable of high-resolution broadband spectra,

which contributes to its popularity [105,139–141]. We note that recent work aimed at de-

veloping compact chip-based combs can remove some of the cost and complexity of this

technique [142].

2.2.4 Direct Frequency Comb Spectroscopy

Direct Frequency Comb Spectroscopy (DFCS) uses the properties of optical frequency combs

to measure the absorption signatures of molecules. As optical frequency combs are coherent

sources, optical tricks such as enhancement cavities may be used to increase the sensitivity of

such systems [139,143]. In the simplest architecture the comb is shone through a gas sample

which leaves a characteristic absorption fingerprint on the comb teeth. The transmitted comb

light that has passed through the sample is compared to comb light (originating from the same

comb) that did not interact with the sample. Comparison of these two paths then extracts

the absorption fingerprint of the molecule, usually employing a spectrometer to disperse the

comb light into its component frequencies before measurement by a detector [144–147].

Molecular 
Absorption 

Optical Frequency 
Comb Spectrum

Transmitted 
Spectrum

ff f

Figure 2.3: The principle of direct frequency comb spectroscopy. The comb is directed
through a molecular sample, which absorbs frequencies characteristic to the
sample composition. The transmitted light is compared to light that has not
passed though the sample and unravelled into its frequency components using
a spectrometer, producing an absorption spectrum.

A commonly-used type of spectrometer is based on a Virtually-Imaged Phased Array

(VIPA) as will be described further in Chapter 6. These spectrometers are based on two

spatially-dispersive elements - the virtually imaged phased array and a diffraction grating

- which work in conjunction to spread the comb frequencies into a two-dimensional array

of light. This array is then imaged by a sensitive camera, and analysed to produced the

absorption fingerprint. Such spectrometers have the capability to be quite high-resolution,

and benefit from the requirement of only a single comb, simplicity of operation, and lack of

moving parts [143,144]. It is for these reasons and the general benefits that follow the use an

optical frequency comb that the DFCS technique combined with a VIPA-based spectrometer

was chosen as the spectroscopic method of choice throughout the course of this thesis.
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Chapter 3

Molecular Spectroscopy

Spectroscopy with electromagnetic radiation has provided important insights into the struc-

ture and dynamics of the molecules that surround us. If the energy of light incident on

a molecule corresponds to a difference in energy between two states of the molecule, the

molecule may be excited to the higher state through the absorption of a photon [148,149].

This absorption of photons with specific energies leaves a characteristic modulation in the

intensity of the light. Molecular absorption features are more complex than those of their in-

dividual atomic constituents, due to the bonds between the atoms that make up the molecule.

Because of these bonds, the energy levels of the molecule are numerous, formed from a com-

bination of many related molecular vibrational and rotational states. Correspondingly, the

patterns produced by looking at the energies missing from a broadband incident light source

- an optical absorption spectrum - are also complex in nature. This chapter aims to provide

a guide for the reader to understanding basic molecular spectroscopy through the physical

phenomena behind the unique absorption spectra of some simple linear molecules.

3.1 Foundations of Molecular Spectroscopy

It is important to first define the commonly used conventions in the field of molecular spec-

troscopy. Firstly, the relations between energy and frequency of the photons used to excite

the molecules must be defined.

3.1.1 Molecular Spectroscopy Unit Conventions

For historical reasons, there are a variety of units used to measure the frequencies and wave-

lengths of light in the field of molecular spectroscopy. It is common to see a mixture of units

depending on the field of scientific study utilising spectroscopic methods. Laser physicists

often prefer working with frequency, f , in Hz due to its direct link with the energy of each

photon:

E = hf [J] (3.1)

where h is Planck’s constant and the energy is measured in Joules [120,148,149]. Another

favoured unit is wavelength, λ, as it is easily linked with frequency through:

λ =
c

f
[m] (3.2)

17
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where c is the speed of light in vacuum [120,148,149]. Another unit commonly used in

molecular parameter databases is wavenumber, ν̃, which has units cm−1 and is related to

wavelength and frequency in Hz by:

ν̃ =
1

λ
=
f

c

[
cm−1

]
(3.3)

where caution must be taken to ensure correct unit propagation [120,148–150]. Energy may

also be expressed with units of cm−1, with widespread use due to ease of incorporation into

molecular parameter databases. Throughout this thesis a preference for SI units will be used,

excepting where use of databases based in cgs units is required.

3.1.2 Fundamentals of Molecular Spectroscopy

Due to the presence of bonds between the atoms constituting a molecule, there are additional

ways in which a molecule may absorb energy compared to those available to its individual

atoms. An incident photon’s energy and momentum may be transferred to the molecule,

exciting it through an optical transition into a higher rotational, vibrational, and/or electronic

state. The molecule may rotate in space, appearing different to the incoming light depending

on its orientation at time of the photon collision. The bonds between the atoms in the

molecule also may vibrate in a number of ways depending on the arrangement and strength

of these bonds in the molecule. Finally the molecule’s electrons may be excited directly

to a higher state by a high-energy photon. The state of a molecule is then described by

its molecular quantum numbers, with selection rules governing the allowed changes to these

numbers during an optical transition.

To a good approximation, the total wavefunction or excitation energy of the molecule may

be expressed as the sum of its individual rotational, vibrational, and electronic excitations

[151–153]. This is known as the Born-Oppenheimer approximation, and is most commonly

used to express the total excitation energy of a molecule as the sum of its rotational, vibration,

and electronic energies:

E = Eel + Evib + Erot (3.4)

where the subscripts ‘el’, ‘vib’, and ‘rot’ refer to electronic, vibrational, and rotational exci-

tations of the molecule respectively [149,154]. This approximation also implies the existence

of three types of optical spectra:

� Rotational spectra are transitions between different rotational levels in a given electronic

and vibrational state. Only the rotational quantum number, J , changes in such tran-

sitions. This type of spectrum is usually in the microwave or far-infrared, consisting

of a large number of densely-packed spectral features, and are observable with Raman

spectroscopy [149,155,156].

� Rotational-vibrational spectra or ro–vibrational spectra are those consisting of transi-

tions between rotational levels of one vibrational state to another set of rotational

levels of another vibrational state in the same electronic level. The rotational, J , and
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vibrational, v, quantum numbers change in a quantised manner following selection rules.

These transitions are typically in the infrared (IR) spectral region, and form absorption

‘bands’ – spectra containing a structure of closely-spaced absorption lines. These bands

may be examined with either IR or Raman spectroscopy [149,155,156].

� Electronic spectra are those consisting of transitions between the rotational and vibra-

tional energy levels of one electronic state and the electronic and vibrational states of

another electronic state. All three quantum numbers may change in such transitions,

with this type of spectra normally occurring in the near-infrared, visible, or ultraviolet

regions [149,155,156].

It is conventional in molecular spectroscopy to list the upper state before the lower state

when referring to a particular transition [150,156]. The lower state is denoted by a double-

prime superscript, e.g. J ′′ or v′′, while the upper state is denoted by a single prime, e.g.

J ′ or v′ [149,156,157]. A transition or change between states is denoted by a ∆ symbol

[150,156,158], for example:

∆J = J ′ − J ′′. (3.5)

Returning to our consideration of the types of transitions, the following conditions hold

[152,155]:

∆Eel � ∆Evib � ∆Erot. (3.6)

In this thesis, the spectra presented are all results of ro–vibrational transitions in small

(less than five-atom) linear polyatomic molecules, occurring in the near-infrared (NIR). The

spectra of such molecules are often explained though selection rules derived from the rotating

anharmonic oscillator model [155]. We will firstly consider the rotational component of this

model.

3.2 Rotational Spectroscopy of Diatomic and Linear Poly-

atomic Molecules

The first and simplest approach to explaining rotational features of in spectra of linear poly-

atomics is the rigid rotor approximation or ‘dumbbell’ model of a diatomic molecule. As

will be shown in the coming sections, this approximation cannot fully explain the observed

features of such spectra. However, it remains a good starting point to understanding the

more complicated systems.

3.2.1 Rigid Rotor Approximation

The rigid rotor approximation of a linear molecules, including diatomics and linear poly-

atomics, is the first step to understanding the rotational spectra of such molecules. The

approximation assumes that the molecules are formed by rigid bonds connecting the nuclei
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together, with the molecule in its entirety being free to rotate about its centre of mass [159].

In order to discuss the rotational motion and spectra of any molecule, the principal axes and

moments of inertia must first be defined.

3.2.1.1 Principal Axes and Inertia

The moment of inertia I of any molecule about any axis through the molecule’s centre of

mass is given by

I =
∑

i

miri
2 (3.7)

where mi and ri are the mass and distance of atom i from the axis [153,156,160]. By conven-

tion one of these axes, labelled the c axis, will have the largest moment of inertia about it. A

second axis, known as the a axis, is the axis about which the moment of inertia is minimum

and is perpendicular to the c axis. The final axis with the label b is then perpendicular

to the other two. These three axes together are known as the principal axes of inertia and

correspond to the principal moments of inertia Ia, Ib, and Ic [150,153,156,159]. According to

these definitions the general rule is then

Ic ≥ Ib ≥ Ia. (3.8)

For a linear polyatomic molecule, this can be further refined to

Ic = Ib > Ia = 0 (3.9)

by Eq. 3.7 since ri = 0 for the a axis as can be seen for the case of hydrogen cyanide in

Fig. 3.1 [153,159]. The inertia of molecules about their principal axes is then directly relatable

to the rotational energy levels and transition frequencies.

c
b

a

r2 m1m2m3

r3

r1

Figure 3.1: A molecule of hydrogen cyanide (HCN) showing its principal axes through
the centre of mass. Hydrogen, carbon, and nitrogen atoms are light grey, dark
grey, and dark blue respectively. As is true for all linear polyatomics, Ia = 0
as ri = 0 [155].
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3.2.1.2 Rotational Energy Levels

The solution of the Schrödinger equation for the rigid rotor model of a linear polyatomic

gives quantised values for the rotational energy levels Er of

Er =
h2

8π2I
J(J + 1) (3.10)

where J = J ′′ = 0,1,2... is the rotational quantum number, and each energy level is (2J + 1)-fold

degenerate in the absence of an electric or magnetic field [159,161]. Note that as the moment

of inertia of the molecule I is proportional to mass (Eq. 3.7), this indicates that the energy

levels of a rigid rotor are further apart for a diatomic molecule compared to a higher-mass

linear polyatomic. Additionally, different isotopologues - molecules that differ only in their

isotopic composition - will have a slightly different mass and so slightly different energy lev-

els, allowing differentiation between isotopologues [155,162]. However the wavenumbers or

frequencies of rotational transitions are what is actually measured rather than the energy

levels directly, and are represented by (rotational) term values, F (J), given by

F (J) =
Er
hc

=
h

8π2Ic
J(J + 1) = BJ(J + 1) (3.11)

where

B =
h

(8π2Ic)

[
cm−1

]
(3.12)

is the rotational constant [153,155,157,158]. This representation of B has units of wavenum-

ber
(
cm−1

)
, while if it is defined as h/

(
8π2I

)
, the units are of frequency (Hz) [157,159].

Unfortunately, the same symbol is used for two different quantities with different units, but

this use is now widespread. This thesis will define the particular units of B on each occasion

it is used.

3.2.1.3 Transition Intensities

The intensities of each line in the rotational spectrum depends on three factors: the degen-

eracy of each rotational energy level; the selection rules of each transition; and the thermal

occupation probabilities of each rotational level [149,152,153,155,158,159,163]. In the ab-

sence of an external electric or magnetic field, each rotational level of quantum number J

is (2J + 1)-fold degenerate, and the statistical weight of the state corresponds to this value

providing the degeneracy is not lifted [163]. Without delving too far into symmetries and

time-dependent perturbation theory, the selection rules for infrared rotational transitions

may be understood in the following ways:

� The molecule must posses a non-zero dipole moment, whether permanent or induced

by molecular vibrations [120,153,155,161].

� Only rotational transitions with ∆J = ±1 are allowed so that conservation of angular
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momentum is obeyed. This is because one photon must carry one unit of angular mo-

mentum, and can therefore transfer one unit to a molecule in a single-photon transition.

This selection rule is obeyed unless the photon momentum is transformed into another

type of molecular momentum (cf. Section 3.4.2) [155,163,164].

As a side note, the first condition forbids homonuclear diatomics such as N2 from possessing a

pure rotational (or for that matter ro-vibrational) infrared spectrum [165]. This makes them

excellent buffer gases for spectroscopic experiments in which an additional transparent gas is

required for concentration adjustment purposes. More widely, it also forbids centrosymmetric

linear polyatomic molecules such as carbon dioxide (CO2) or acetylene (C2H2) from having

purely rotational infrared spectra [155].

The thermal occupation of the initial state in a transition is the final factor in determining

the intensities of each rotational line. The thermal occupation is described by the Boltzmann

distribution at a temperature T [153,155,163]. At room temperature in thermal equilibrium

many rotational states are occupied, with the occupation probability NJ of the rotational

state with quantum number J given by

NJ

N0
=

gJ
g0
e−(EJ−E0)/kT (3.13)

= (2J + 1)︸ ︷︷ ︸
Degeneracy

e−BhcJ(J+1)/kT

︸ ︷︷ ︸
Thermal

(3.14)

where gJ = (2J + 1) is the degeneracy of the J th level for a non-symmetric linear molecule

[149,152,153,155,158,161]. The two bracketed terms are opposing factors - the degeneracy

term increasing with increasing J while the thermal term decreases rapidly. This means

the NJ/N0 increases at low values of J until the exponential thermal factor becomes more

dominant at high J values and NJ/N0 approaches zero [159,163]. A theoretical maximum

intensity occurs at J = Jmax which corresponds to

d (NJ/N0)

dJ
= 0 (3.15)

which yields

Jmax =

(
kBT

2hB

) 1
2

− 1

2
(3.16)

when B has units of frequency [155,157,162]. However, the Jmax predicted by Eq. 3.16 pro-

duces incorrect results for the maximum intensity value for J when compared to experimental

results, due to effects so far neglected in the rigid rotor approximation [155].

3.2.1.4 Transition Frequencies or Wavenumbers

The transition wavenumbers are given by considering the difference in term values for ∆J = ±1

[157,158]:

ν̃ (or f) = F (J + 1)− F (J) = 2B (J + 1) . (3.17)
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Equation 3.17 indicates that the spacing of the rotational transitions should be constant

and equal to 2B with increasing J values as seen in Fig. 3.2 [161]. However, the spacing of

0

2B

4B

6B

8B

10B

12B

cm-1

Figure 3.2: The equidistant 2B spacing of rotational energy levels as predicted by the
rigid rotor approximation and Eq. 3.17.

rotational lines (and rotational energy levels) observed in experimental data is not constant,

again due to additional effects that are neglected in the rigid rotor approximation [155].

3.2.2 Centrifugal Distortion and the Nonrigid Rotor

Experimentally it is observed that the line spacings decrease with increasing values of J . As

the molecule rotates, particularly as J increases, centrifugal forces tend to throw the con-

stituent atoms outwards from the centre of mass [160,166]. A more accurate representation

of the rotating molecule is that of a nonrigid rotor, in which the solid bonds between atoms

are instead represented by springs connecting the nuclei. As the nuclei are thrown outward

by the centrifugal forces, the ‘springs’ stretch, the bond lengths ri in Eq. 3.7 increase, and B

decreases (Eq. 3.12). The effects of the centrifugal forces may be included in the term values

by addition of the centrifugal distortion constant, D [157,159]:

F (J) = BJ(J + 1)−DJ2 (J + 1)2 . (3.18)

The transition wavenumbers or frequencies are also modified from Eq. 3.17 to

ν̃ (or f) = F (J + 1)− F (J) (3.19)

= 2B (J + 1)− 4D (J + 1)3 . (3.20)

The value of D is dependent upon the stiffness of the spring/bond. The effects of the cen-

trifugal distortion on the spacing of the rotational energy levels is summarised in Fig. 3.3.

As previously mentioned in discussion about the intensities of rotational transitions,

molecules that do not posses a dipole moment - such as centrosymmetric carbon dioxide

and acetylene - are forbidden from having purely rotational spectra in the infrared. Yet these

molecules do display infrared spectra with rotational features. This is because a temporary

dipole moment may be induced by molecular vibrations [155,166].



24 Molecular Spectroscopy

0 2B 4B 6B 8B 12B

J

0

2

3

4

5

6

7

8

9

10

Rigid rotor Nonrigid rotor

20B16B

Rigid

Nonrigid

Figure 3.3: Comparison diagram of the spacing of rotational energy levels between the
rigid and nonrigid rotor approximations, as reproduced from Ref. [155]. Un-
like the equidistant 2B spacing predicted by the rigid rotor approximation,
energy levels for the nonrigid rotor show a shift towards lower energies (and
closer lines) with the amount of shift increasing with increasing J [155].

3.3 Vibrational Spectroscopy of Diatomic and Linear Poly-

atomic Molecules

In contrast to individual atoms, molecules posses an additional degree of freedom - the ex-

citation of vibrational states about their equilibrium positions. The complicated nature of

molecular vibrations is most easily understood by first considering the case of a diatomic

molecule, which produces results that also apply to linear polyatomics as considered in this

thesis. The simplest of model of a diatomic is that of the harmonic oscillator.

3.3.1 The Harmonic Oscillator Approximation

A good first approximation to aid in the understanding of the vibrations of molecules is

the one-dimensional harmonic oscillator, or ‘ball and spring’ model, in which the two nuclei,

separated by their equilibrium bond length re are joined by a spring representing the bond

between them, as seen in Fig. 3.4 [148,149,167].

The spring freely stretches and contracts, and for small displacements of the bond, the

spring obeys Hooke’s Law:

F =
−dV (x)

dx
= −kx (3.21)
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re

m1 m2

Figure 3.4: The ‘ball and spring’ model of a diatomic harmonic oscillator, in which the
two nuclei of masses m1 and m2 are separated by a spring equal to the equi-
librium bond length re [148,149,164,167].

where x = r − re is the displacement from the equilibrium bond length, r is the bond length,

V (x) is the potential energy at x, and k is the spring constant, with the magnitude of k

proportional to the bond strength [148,149,153,155,167]. Integration of Eq. 3.21 gives the

potential energy curve of the oscillator:

V (x) =
1

2
kx2 (3.22)

which is evidently parabolic in nature [148,149,155,167]. This potential can be used in com-

bination with the time-independent Schrödinger equation to find the quantised vibrational

energy levels of the harmonic oscillator [149]. Firstly, the quantum mechanical Hamiltonian

Ĥ for a one-dimensional harmonic oscillator is given by

Ĥ = − ~
2µ

d2

dx2
+

1

2
kx2 (3.23)

where µ is the reduced mass of the system of two masses m1 and m2 and

µ =
m1m2

m1 +m2
. (3.24)

Note that by Eq. 3.23 and 3.24, different isotopologues will produce slightly differing final

spectra owing to their slightly differing masses [148,149,167]. Substituting Ĥ into the one-

dimensional time-independent Schrödinger equation - also known as the ‘wave equation’

Ĥψ (x) = Eψ (x) (3.25)

gives

− ~
2µ

d2ψv (x)

dx2
+ V (x)ψv (x) = Evψv (x) (3.26)

which when combined with Eq. 3.22 and rearranged, becomes:

d2ψv (x)

dx2
+

(
2µEv
~2
− µk

~2

)
ψv (x) = 0 (3.27)

in which Ev are the quantised vibrational energy levels, and ψv (x) are the vibrational wave-

functions of the harmonic oscillator [148,153,168]. The energy eigenvalues of this equation,
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and hence the (quantised) energy levels of the harmonic oscillator, are found to be

Ev = hf

(
v +

1

2

)
(3.28)

in which v = 0, 1, 2, 3... is the vibrational quantum number and f is the classical oscillator

frequency:

f =
1

2π

√
k

µ
. (3.29)

Equation 3.28 may also be written in terms of wavenumber as

Ev = hcν̃

(
v +

1

2

)
(3.30)

or angular frequency:

Ev = ~ω
(
v +

1

2

)
(3.31)

where ω is related to the classical oscillator frequency f through [148,153,155,164]

ω = 2πf =

√
k

µ
. (3.32)

Equation 3.28 predicts an even spacing of the allowed vibrational energy levels [149,153].

Another interesting feature of this equation is that it predicts a non-zero energy for v = 0,

which is known as the zero-point energy [149,155,164,167]. This zero-point energy is the

minimum energy a molecule may possess - even at absolute zero of temperature, and is a

consequence of the Heisenberg uncertainty principle [148,169] .

3.3.1.1 Wavefunctions of the Harmonic Oscillator Approximation

The wavefunctions in Eq. 3.27 take the form of increasing orders of Hermite polynomi-

als, Hv (z) (where in this formalism we have performed the coordinate transformation of

z =
√
αx), multiplied by a Gaussian factor e−

αx2

2 , and the normalisation constant
(
α
π

) 1
4

[153,164,167]:

ψn (x) =
(α
π

) 1
4
Hn

(√
αx
)
e−

αx2

2 . (3.33)

The Hermite polynomials up to v = 4 are given in Table. 3.1, and may be computed with the

recursion relation [170]:

zHm (z) = mHm−1 (z) +
1

2
Hm+1 (z) . (3.34)

It is important to note for future discussion of the vibrational transition selection rules

for the harmonic oscillator (Appendix A) that the Hermite polynomials form an orthonormal
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Hv (z)

H0 (z) = 1
H1 (z) = 2z
H2 (z) = 4z2 − 2
H3 (z) = 8z3 − 12z
H4 (z) = 16z4 − 48z2 + 12

Table 3.1: The first five Hermite polynomials, where z =
√
αx. Hermite polynomials form

the solutions, when multiplied by a Gaussian term, for the allowed wavefunc-
tions ψv (x) in the differential equation (Eq. 3.27) for the quantum harmonic
oscillator [157,164,167].

vector space. That is:
∫ ∞

−∞
ψi (x)ψj (x) = δij =




1, if i = j

0, if i �= j
(3.35)

and δij is the Kronecker delta [166,170,171]. The harmonic oscillator potential with its

quantised energy levels, wavefunctions ψv (x), and occupation probabilities |ψv (x) |2 of each

state up to v = 3 may be seen in Fig. 3.5.

υ = 0
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υ = 3

υ = 1φ1
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|φ0|
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|φ1|
2

|φ2|
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|φ3|
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Wavefunction (φυ) Probability (|φυ|
2) 

Figure 3.5: The first four wavefunctions ψv (x) (left) that are the solutions to (Eq. 3.27)
and quantised vibrational energy levels in the harmonic oscillator approxi-
mation. The dashed grey line shows the equilibrium position of the harmonic
oscillator. The occupation probability (|ψv (x) |2) for each vibrational state is
seen on the right [153,155,157,164].

3.3.1.2 Harmonic Oscillator Term Values

Just as in the discussion of rotational spectroscopy, division of Eq. 3.28 by hc yields the

vibrational term values, G (v), in units of cm−1:

G (v) =
Ev

hc
= ωe

(
v +

1

2

)
(3.36)
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and ωe is then known as the harmonic vibrational constant, and is equal to the harmonic

vibrational wavenumber ν̃ [153,155].

3.3.1.3 Harmonic Oscillator Approximation Vibrational Selection Rules

In order for a vibrational transition between an initial vibrational state ψm and final vibra-

tional state ψn to be allowed for a single photon transition, there must be an associated

change to the molecule’s dipole moment [120,153,160]. Whether or not this is the case for a

particular vibrational transition may be found by evaluation of the dipole transition moment

〈µ〉nm:

〈µ〉nm =

∫
ψ∗nµψmdτ = 〈ψn|µ|ψm〉 6= 0. (3.37)

in which µ is the dipole operator and Eq. A.1 is evaluated over all space (τ) [148]. The

asterisk implies complex conjugation. To be an allowed transition Eq. 3.37 must be non-

zero [120,153,160]. Consideration of the dipole transition moment for transitions between

two vibrational states described by the wavefunctions introduced in Subsection 3.3.1.1 gives

rise to the selection rule for vibrational transitions of

∆v = ±1. (3.38)

For a full derivation of the vibrational selection rule for the harmonic oscillator approxima-

tion, see Appendix A [155,167,171]. Equation 3.38 indicates that vibrational transitions in

the harmonic oscillator approximation are only allowed if the vibrational quantum number

changes by one unit, i.e. adjacent vibrational energy levels. However, molecular spectra in

which this rule is broken are routinely observed in experiment due to anharmonicity of the

molecular oscillator [120,133,172].

3.3.2 The Anharmonic Oscillator

Certain aspects of measured molecular spectra cannot be explained by application of the

harmonic oscillator approximation to the potential. Namely, the presence of higher harmonic

vibrational transitions and the non-equal spacing of the observed vibrational energy levels.

These effects may only be explained when the anharmonicity of the true potential energy

curve is taken into account [173]. The harmonic oscillator approximation is actually the

result of truncation of a Taylor expansion around x = r − re of V (x):

V (x) = V (0) + x

(
dV

dx

) ∣∣∣∣
x=0

+
1

2
x2

(
d2V

dx2

) ∣∣∣∣
x=0

+ ... (3.39)

where we have made the assumption that x is small so that the second term goes to zero,

and the first term is an arbitrary constant taken to be zero [166,174,175]. In the harmonic

approximation, we then truncate the Taylor series at cubic terms and above, leaving the third
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term to be written in the familiar form of the harmonic oscillator potential:

1

2
x2

(
d2V

dx2

) ∣∣∣∣
x=0

=
1

2
kx2. (3.40)

However for larger displacements - and higher vibrational excitations - the higher-order terms

of the potential have an increasing importance, and introduce anharmonicity into the system

[148]. A more physical and better approximation is the Morse potential :

V (x) = hcDe

(
1− e−ax

)2
(3.41)

where

a =

(
k

2hcDe

) 1
2

, (3.42)

x = r − re, De is the equilibrium dissociation energy, also known as the depth of the molecule’s

potential well, at r = re, and V (x)→ 0 as re→∞ [155,166,176,177]. The true energy re-

quired for dissociation, D0, is equal to De with the anharmonic oscillator zero-point energy

subtracted [149,166]. A comparison between the harmonic oscillator and Morse potentials is

seen in Fig. 3.6. The Morse potential predicts energy levels that become less widely spaced
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Figure 3.6: The harmonic oscillator potential (dark grey) and the Morse potential (light
purple). In contrast to the evenly-spaced energy levels of the harmonic oscil-
lator, the energy level spacing decreases with increasing excitation in the case
of the Morse potential [149,157].

as the level of vibrational excitation increases. This is shown by solving the Schrödinger
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equation analytically using perturbation theory, giving energy levels of:

Ev =

(
v +

1

2

)
~ωe −

(
v +

1

2

)2

~ωeχe + ... (3.43)

in which χe is the unitless first anharmonic vibrational constant:

χe ≈
~ωe
4De

(3.44)

which is always positive and may also be seen as ωeχe in units of cm−1 [149,155,166]. We

can also then define De with the introduction of χe:

De ≈ D0 +
1

2
~ωe +

1

4
~ωeχe. (3.45)

The quadratic term in Eq. 3.43 acts to lower the energy levels compared to the harmonic

oscillator, with the levels getting more closely spaced as v increases as seen in Fig. 3.6 [157].

Division of Eq. 3.43 by hc yields the vibrational term values, G (v), with anharmonicity

included in units of cm−1 [157]:

G (v) = ωe

(
v +

1

2

)
− ωeχe

(
v +

1

2

)2

+ ... (3.46)

Additionally to perturbing the energy levels, the anharmonicity affects the selection rules for

vibrational transitions. This is because the wavefunctions of the anharmonic oscillator are

no longer symmetric or antisymmetric with respect to the equilibrium position re [148]. The

selection rule is modified to allow higher harmonics:

∆v = ±1,±2,±3... (3.47)

where those transitions with ∆v = ±2,±3, ... are called ‘overtone’ transitions, and occur with

increasingly weaker intensities as ∆v increases [149,155,157]. Those transitions with ∆v = ±1

are termed ‘fundamental’ transitions are and the strongest in intensity [149]. Transitions to

a higher vibrational state originating from states other than the ground state are termed

hotbands, as the probability of a non-ground vibrational state having appreciable population

- and therefore the strength of the hotband originating from that state - is related to the

temperature of the system [148,149,157]. These three types of vibrational transitions are

summarised in Fig. 3.7. The theory of both rotational and vibrational transitions for diatomic

molecules introduced so far in the course of this thesis may also be applied to the case of simple

linear polyatomics, and extended more generally into three dimensions [149,155]. However, in

contrast to diatomics wherein there is only one possible mode of vibration, linear polyatomic

molecules have additional bonds as the number of atoms increase, and will therefore have a

number of new possible vibrations which must be classified for broader discussion.
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Figure 3.7: The types of vibrational transitions observed within this thesis and their
names [157].

3.3.3 Vibrational Transition Naming Conventions

In order to describe the vibrational motions of larger molecules, we will define the normal

modes of vibration. These normal modes are vibrations of the total molecule that can be

considered to be orthogonal - that is, any of the normal modes of vibration may be excited

without causing excitation to any of the other normal modes provided the level of excitation

is not so great as to introduce nonlinearities [148,166]. The ith normal mode of vibration

of a molecule is denoted vi [156]. Depending on the composition and shape of the (linear)

molecule, two types of vibration may occur: bending vibrations in which the bond angles

between the atoms comprising the molecule change, and stretching vibrations, in which the

bond angles do not change, but rather stretch as the atoms move along a line joining their

nuclei [148,149,153,155,162].

υ
1
: Symmetric Stretch υ

3
: Asymmetric Stretchυ

2
: Bending

Figure 3.8: The normal modes of vibration of CO2 [149,153,155,162]. Oxygen atoms are
red, carbon atoms are dark grey. The bending mode is doubly degenerate and
may occur in the plane of the page or perpendicular to it.

In a system of N uncoupled point masses, the number of normal modes (also known as

the degrees of freedom of the system), fN , is simply given by 3N [148,160]. If the masses are

coupled however, as they are in a molecule, then there are 3 translational degrees of freedom
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(in which the centre of mass of the whole molecule moves) together with three degrees of

freedom for rotations. It is important to note that there are only two degrees of freedom for

a linear molecule, as rotation about the cylinder axis is not counted [151,178]. Therefore the

number of normal modes of vibration for a molecule is fN = 3N − 6, or fN = 3N − 5 in the

case of a linear molecule [148,155,160].

Consider the CO2 molecule in which N = 3. As this is a linear molecule, we expect

to describe the molecular motion by the superposition of fN = 9-5 = 4 normal modes of

vibration. Note that in this particular case that the bending mode is doubly degenerate

(two modes with the same energy) as the bending motion may occur within the plane of the

molecule or perpendicular to it [149]. The remaining two modes are the symmetric stretch

and antisymmetric stretch [149,162]. The normal modes of vibration of CO2 are summarised

in Fig. 3.8.

υ
1
: C-H Stretch υ

3
: C-N Stretchυ

2
: Bending

Figure 3.9: The normal modes of vibration of HCN [153]. Hydrogen atoms are light grey,
carbon atoms are dark grey, and nitrogen atoms in blue. The bending mode
is doubly degenerate and may occur in the plane of the page or perpendicular
to it.

The naming conventions of the vibrational modes of a molecule are unfortunately rather

species-dependent, and relate to the molecule’s structure (linear, trigonal planar, tetrahedral

etc.), whether the molecule possesses a centre of symmetry, effects of Fermi resonance, and

the symmetry of the vibration [150,156,179–181]. In some cases, such as for HCN, it does

not make physical sense to describe the stretching motions along the internuclear axis as

symmetric or antisymmetric as was the case for CO2 where there is a centre of symmetry. In

this case the convention is to denote the motion as a stretching vibration whilst also describing

the particular atoms involved. For example, v1 of HCN corresponds to the C-H stretch, while

it corresponds to the symmetric stretching mode in CO2. The naming conventions for the

molecules seen in this thesis are summarised in Fig. 3.9 and Fig. 3.10 for HCN and C2H2

respectively.
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Figure 3.10: The normal modes of vibration of C2H2 [149,153]. Hydrogen atoms are

light grey, carbon atoms are dark grey. Both the symmetric and asymmetric
bending mode are doubly degenerate and may occur in the plane of the page
or perpendicular to it. Also shown are the symmetries of each normal mode
of vibration - explained further in Section 3.5.1 - which gives rise to the sym-
metric (subscript g) or antisymmetric (subscript u) vibration classification
(cf. Appendix B).

The HITRAN database used in this thesis has its own nomenclature for naming vibra-

tional transitions, though their normal mode labelling follows the conventions laid out in

Fig. 3.8, 3.9, and 3.10. HITRAN separates molecules into classes based on their structure

and some cases, such as CO2, by the effects of Fermi resonance (see Section 3.4.2.2). The

labelling conventions of HITRAN for each of these classes are summarised in Table 3.2.
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HITRAN Molecular Class Definitions Upper/Lower State Global Quanta

Class 4: Linear triatomic (HCN) v1v2`2v3

Class 5: Linear triatomic with large Fermi
resonance (CO2)

v1v2`2v3r

Class 7: Linear tetratomic (C2H2) v1v2v3v4v5`± r

Table 3.2: A summary of the HITRAN class definitions of the molecules mentioned in
this thesis, and their associated state-labelling conventions. vi is the vibra-
tional quantum number of a molecule associated with the normal mode of vi-
bration i, where i = 1, 2, 3... and specific mode labelling and range of i values
is molecular species-dependent. `i is the vibrational angular momentum quan-
tum number associated with the degenerate bending mode vi. ` is the absolute
value of the sum of the vibrational angular momentum quantum numbers `i.
r is the ranking index for vibrational states that are members of a Fermi reso-
nance polyad. r = 1 for the highest-energy vibrational state involved, with de-
creasing rank (2,3,4...) as the energy values decrease. ± is the symmetry type
for Σ vibrational states (` = 0) as explained in Appendix B [150,156,179–181].

For example, a member of a CO2 Fermi tetrad is examined closely in Chapter 10, in

which the transition is denoted in HITRAN notation as 30012← 00001, which corresponds

to a transition from the vibrational ground state of CO2 (in which r= 1 as it is not a member

of a Fermi polyad) to the 3v1 + v3 excited vibrational state and the second-highest energy

member of the associated Fermi tetrad. Note that transitions are denoted with the excited

state first followed by the ground or initial state, with the direction of the arrow indicating

the direction of the transition (emission to the right, absorption to the left) [156,182].

As mentioned previously in Section 3.2, molecular vibrations may induce temporary dipole

moments, allowing rotational transitions to occur. This indicates that both rotational and

vibrational excitations should not be looked at in isolation, but instead together in rotational-

vibrational or ro-vibrational spectroscopy.

3.4 Rotational-Vibrational Spectroscopy

Spectra arising from transitions involving both a change in rotational and vibrational state

of a molecule are called rotational-vibrational or ro-vibrational spectra [183]. This type of

spectroscopy allows observation of rotational characteristics in molecules that do not posses

permanent dipole moments such as CO2 in which pure rotational spectra are forbidden. A

vibrational transition may induce a temporary dipole moment, allowing a coupled rotational-

vibrational transition to occur even in these molecules [120,153,155]. As the separation

between rotational energy levels is small in comparison to both the thermal population dis-

tribution and to the vibrational energy levels, the vibrational ground state is often the most

populous at room temperature with a number of rotational levels filled [155]. This produces

a stack of rotational energy levels associated with each vibrational state, and of vibrational

transitions being accompanied by rotational ones.
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The result is a spectrum showing a vibrational transition with fine structure from the

accompanying rotational transitions which is collectively called a band. The rotational tran-

sitions are arranged into ‘branches’ classified depending on the change in rotational quantum

number [162]. Ro-vibrational transitions with ∆J = −1 occur to the lower-wavenumber side

of the band centre are termed the P -branch [151,153,166]. Those transitions with ∆J = +1

form the R-branch are to the higher wavenumber side of the band centre, while ∆J = 0

transitions are known as the Q branch clustered around the band centre [153,162,163]. Note

that the same rotational and vibrational selection rules so far derived are still applicable to

ro-vibrational spectra, and so the Q-branch is not always observed. Additionally, individual

lines in a band are defined by their branch and lower-state J value as P(1), R(1) etc [163].

Recalling that the lower state in a transition is indicated by a double prime superscript

and the upper by a single prime, an example transition diagram showing these conventions

omitting the Q-branch may be seen in Fig. 3.11.

The term values of ro-vibrational spectra are given by addition of the term values for the

rotational and vibrational cases previously derived [157]:

S (v, J) = G (v) + F (J) . (3.48)

Some modification is required however, owing to the fact that the rotations and vibrations

of a molecule are not completely separable, but are instead coupled together [148].

3.4.1 Rotational-Vibrational Coupling

Along with centrifugal distortion as discussed in Section 3.2.2, there is another effect that

modifies the spacing of the rotational lines in a ro-vibrational spectrum. It can be seen in

Fig. 3.11 that the R-branch lines get closer together as J increases, while the spacing increases

with J for the P -branch. This is due to rotational-vibrational coupling, and demonstrates the

breakdown of the Born-Oppenheimer approximation. Essentially, as the molecule vibrates,

the lengths of the bonds comprising the molecule change. Recalling Eq. 3.7, the moment of

inertia I is dependent on the length of this bond. By definition (Eq. 3.12), the rotational

constant B is inversely proportional to the inertia. This means that B is coupled to any

molecular vibrations, leading to rotational-vibrational coupling of the ro-vibrational lines

[148,166]. This is accounted for by modification of the definition of B to become:

Bv = Be − αe
(
v +

1

2

)
+ .... (3.49)

in which αe is the vibration-rotation coupling constant and Be is the rotational constant

for a rigid rotor [153,155,157]. Note that this changes slightly if the vibration involved is

degenerate to include a degeneracy factor that is unity for non-degenerate transitions [153].
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Figure 3.11: A portion of an example ro-vibrational energy level schematic for a simple
linear molecule showing the peak labelling conventions (top) and the ob-
served ro-vibrational spectrum (bottom). Energy is increasing with increas-
ing J . Recalling that the double prime indicates the lower energy state of
the transition, and a single prime for the upper state. The R-branch con-
tains transitions in which ∆J= +1, while the P -branch contains transitions
in which ∆J= −1. Some molecules may additionally posses a Q-branch,
in which ∆J= 0, falling between the P and R branches in the spectrum.
By convention, the lower state J value is used for a transition’s P , Q, or R
branch numerical designation [155].
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The centrifugal distortion constant D is also affected by the coupling, and is redefined as

Dv = De + βe

(
v +

1

2

)
+ ... (3.50)

where βe is the centrifugal distortion vibrational coupling constant, and De is the centrifugal

distortion constant at the equilibrium state of the molecule on the potential energy curve

[151,155,157]. This means the final rotational-vibrational term values are given by [155]:

S (v, J) = G (v) + F (J) (3.51)

= ωe

(
v +

1

2

)
− ωeχe

(
v +

1

2

)2

+ ...+BvJ(J + 1)−DvJ
2 (J + 1)2 . (3.52)

3.4.2 Types of Bands

To understand which ro-vibrational bands are allowed for a particular molecular species, and

indeed the variation in the structure of such bands, the symmetry of each vibrational mode

must be considered. The symmetries of a particular vibrational state is summarised in a

molecule’s molecular term symbol. For homonuclear diatomics and linear molecules with an

inversion centre (known as belonging to symmetry point group D∞h), the molecular term

symbol is of the form:
(2S+1)Λ

(+/−)
Ω,(g/u) (3.53)

where S is the nuclear spin of the molecule; Λ is the projection of the orbital angular momen-

tum along the internuclear axis and may take values of 0, 1, 2, 3... which are represented by

their corresponding symbols Σ,Π,∆,Φ...; Ω is the projection of the total angular momentum

along the internuclear axis; g/u, +/− are types of symmetry/parity of the molecule (See

Appendix B) [156,159,166,184]. If there is no centre of inversion of the molecule, such as in

the symmetry point group C∞h (linear molecules), the g/u subscript is dropped [165].

There is an additional classification of bands related to the vibrational angular momentum

quantum number `, and whether ` is changed in the transition. If ∆` = 0, the band is

a parallel band, while if ∆` = ±1, it is a perpendicular band [171,185]. The vibrational

energy states in which ` = 0, 1, 2, 3, ... are classified as species or term symbols as being of

type Σ, Π, ∆, Φ,... respectively [166,184]. The selection rules for vibrational transitions

are derivable by calculation of the transition dipole moment integral (see Appendix A.1), but

may be summarised as ∆` = 0,±1, g ↔ u, and Σ+ = Σ− (see Appendix B) [153,166]. The

three types of bands for a linear polyatomic are:

1. ∆` = 0 with ` = 0. This is termed a parallel transition of Σ+ − Σ+ type. This type of

transition produces parallel bands with both P and R branches (∆J = ±1) [153,157].

2. ∆` = ±1. This is termed a perpendicular transition, such as Π− Σ, ∆−Π etc.

This type of transition produces perpendicular bands with both P and R branches

(∆J = ±1), along with a strong Q branch (∆J = 0) [153,157].
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3. ∆` = 0 with ` 6= 0. This includes transitions of the type Π−Π, ∆−∆ etc. These bands

posses both P and R branches (∆J = ±1), along with a weak Q branch (∆J = 0).

These bands are also known as parallel bands [153,157].

Additionally, only rotational transitions for which of ∆J = 0,±1, s= a, and + = − are

allowed [153,157]. There are also cases in which a particular vibrational transition is forbidden

for symmetry reasons. In such cases, a combination band or the effects of Fermi resonance

may be observed.

3.4.2.1 Combination Bands

A combination band is observed when two or more of the normal modes of vibration are

excited simultaneously, combining to form a single vibrational transition [148,149,153]. There

are two types of combination bands depending on how the vibrations combine. The first

type is a sum band, such as the 3v1 + v3 excited vibrational state of CO2, in which the

excited state occurs at a frequency of approximately the sum of the 3v1 overtone and v3

fundamental levels [186]. The other type of combination band is the difference band, where

as the name suggest the band centre will occur at approximately the difference between

the two vibrations involved [148,186]. The transition moment integral may again be used

to determine whether a combination band may occur, using the appropriate excited state

vibrational wavefunction that sums (or subtracts) the involved vibrations. Another method

is to consider the direct products of the irriducible representations of the involved vibrations,

which will not be explored in this thesis [171].

3.4.2.2 Fermi Resonance

Another way in which typically forbidden vibrational transitions may be observed is through

the effects of Fermi resonance. If a molecule contains vibrational states that are accidentally

degenerate or nearly degenerate (of very similar energy) and possessing the same symmetry,

the states may mix, share population, and perturb the positions of the energy levels by forcing

them apart [148,149,152,153,162]. These interacting states are then known as members of a

Fermi polyad. As the states are mixed, they cannot be assigned to any of the original states,

and are instead assigned according to their energy/wavenumber position of the Fermi polyad

of which they are a part [149,159,163,187].

For example, the lower-energy member of the (2v2), (v1) dyad in CO2 is denoted v−, and

the higher as v+ (see Fig. 3.12), while in the tetrad formed of the (3v1 + v3), (2v1 + 2v2 + v3),

(v1 + 4v2 + v3) and (6v2 + v3) vibrational states, the resulting mixed states are labelled with

the Fermi ranking index r [163,187]. The highest-energy vibrational state involved has rank

r = 1, with decreasing rank for each state (2,3,4...) as the energy/wavenumber values decrease

as seen in Fig. 3.13 [163,187] . Some transitions, such as the symmetric stretch vibration (v2)

in the aforementioned Fermi dyad, which is forbidden in the infra-red due to its lack of
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Figure 3.12: The vibrational energy level diagram of CO2, showing the Fermi resonance
mixing and splitting of the 2v2 bending overtone and v1 symmetric stretch
fundamental vibrational excited states, and the resulting mixed states. The
symmetric stretch is IR-inactive in isolation, but contributes as part of the
Fermi resonance dyad [148,149].
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Figure 3.13: A spectrum of the 12CO2 Fermi tetrad centred at ∼ 6300 cm−1 generated by
SpectralCalc commercial molecular modelling software at 296 K at 1 atm
over 6 m for 100 % 12CO2. The ranking index of each of the members of
the tetrad is shown. This thesis has a particular focus on the two strongest
members with r = 2 and r = 3.
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dipole moment, may interact and contribute as part of a Fermi resonance [148,149,153].

Additionally, the mixing of the states has somewhat of an equalising effect on the intensities

of the involved transitions, with weaker transitions ‘borrowing’ intensity from the stronger

ones [148,149,153]. Additionally, Fermi resonance may only occur between vibrational levels

of the same molecular species [153].

3.5 Intra-band Intensity Modifiers

Another influence on the spectra of linear polyatomic molecules is that of nuclear spin statis-

tics. More generally, the effects of nuclear spin statistics are apparent in the spectra of

molecules that posses a centre of inversion symmetry, such as CO2 [166]. Molecules with-

out a centre of inversion symmetry such as hydrogen cyanide (HCN) are unaffected [154].

Affected ro-vibrational spectra display characteristic intensity variations between transitions

arising from either even or odd values of the rotational quantum number J . The effect may

produce alternating intensity patterns as is the case in acetylene (C2H2), or cause lines orig-

inating from even or odd-numbered J rotational levels to be absent entirely as is the case

with carbon dioxide (CO2) [153,166,188]. The cause of the observed intensity variations is

an alteration of the relative probability with which particular molecular states occur. To

understand these effects, we must again consider the Born–Oppenheimer approximation in-

troduced in Subsection 3.1.2 which states that the total wavefunction of the molecule may

be written as a product of its separate spatial functions [153,189]. That is, in terms of the

electronic (ψel), vibrational (ψvib), rotational (ψrot), and nuclear spin (ψns) wavefunctions:

Ψtotal = ψelψvibψrotψns. (3.54)

The parity behaviour of the various components of Ψtotal under certain symmetry operations

give rise to these intra-band intensity modifications. Extended discussion of the concepts of

parity and nuclear spin statistics for molecular spectra presented in this thesis are explored

in more detail in Appendix B for the interested reader, but a short summary is presented

here.

3.5.1 Nuclear Spin Statistics

Nuclear spins of identical nuclei may couple together and form either symmetric or antisym-

metric net spin states. The number of symmetric and antisymmetric spin states possible

from the exchange of two identical nuclei is dependent on the nuclear spins of the individ-

ual particles [189]. The Pauli exclusion principle requires that the total wavefunction of a

molecular state be symmetric or antisymmetric with respect to the exchange of two identical

nuclei depending if the exchanged nuclei are bosons or fermions respectively [162,190].
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3.5.1.1 Bosonic and Fermionic Nuclei

If the identical nuclei to be exchanged are bosons, which have integer nuclear spin quantum

numbers I, then the total wavefunction is symmetric with respect to the exchange. For

fermions, with half-integer I, the total wavefunction must be antisymmetric with respect to

exchange of the identical nuclei [166]. So we have

P̂12 (ψelψvibψrotψns) = + (ψelψvibψrotψns) (3.55)

for bosons and

P̂12 (ψelψvibψrotψns) = − (ψelψvibψrotψns) (3.56)

for fermions, where P̂12 is the pseudo-symmetry operator that describes the exchange of

identical nuclei [191]. Nucleons (protons and neutrons) are fermions, with the total amount

of nucleons composing the atomic nucleus being equal to its mass number [192,193]. Three

scenarios are then possible [194]:

� The mass number is even, with even number of protons and even number of neutrons,

resulting in bosonic nuclei with I= 0 such as for 16O and 12C.

� The mass number is even, with odd number of protons and odd number of neutrons,

produces bosonic nuclei with integer spin (I= 1, 2, 3...) such as 14N where I=1.

� The mass number is odd, indicating fermionic nuclei with half-integral nuclear spins

(I = 1/2,3/2,5/2...) such as 1H where I = 1/2.

The nuclear spins of some common nuclei are summarised in Table 3.3. For molecules

with a centre of symmetry, such as those belonging to the D∞h molecular point group like

CO2 and C2H2, the even-J rotational levels are symmetric, and the odd-J rotational levels

are antisymmetric for vibrational levels of g symmetry (Σ+
g , Σ−g , Πg,...) [153,159,165]. The

reverse is true for vibrational levels of u symmetry (Σ+
u , Σ−u , Πu,...) [152,153].

Spin I Nuclei Statistics

0 12C, 14C, 16O, 18O, 32S Bose-Einstein
1
2

1H, 3H, 13C, 13N, 15N, 15O, 31P, 19F Fermi-Dirac

1 2H (D), 14N Bose-Einstein
3
2

11B, 33S, 35Cl, 37Cl Fermi-Dirac
5
2

17O Fermi-Dirac

3 10B Bose-Einstein

Table 3.3: Some common nuclei, their spin quantum numbers, and statistics classification
[154,189].
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3.5.1.2 Statistical Weights of States

For the spin quantum number I of the identical nuclei, the number of symmetric and anti-

symmetric final states are given by:

total symmetric states = (I + 1) (2I + 1) (3.57)

total antisymmetric states = (2I + 1) I (3.58)

where the number (or statistical weights) of symmetric and asymmetric states are known as

gs and ga respectively [166,189]. The ratio of ga to gs gives the intensity ratio variation

observed in some spectra [153,155]:

ga
gs

=
I

(I + 1)
(3.59)

In general, the electronic ground states of most molecules (with which we are working in

this thesis) are symmetric with respect to exchange of identical nuclei [154]. The vibrational

state symmetry is dependent on the symmetry of the vibrational mode being excited, and to

what excited state it is elevated. The final consideration is the symmetry of the rotational

wavefunction with respect to exchange of identical nuclei, and is determined by the lower

state rotational quantum number, J . Quite simply: If J = even, the rotational wavefunction

is symmetric with respect to exchange, and for J = odd, the wavefunction is antisymmet-

ric [189]. Centrosymmetric acetylene for example, shows a 1:3 variation in ro-vibrational

absorption peak heights for the 101000← 0000000 vibrational band under exchange of iden-

tical H1 nuclei from ro-vibrational transitions originating from even-J and odd-J rotational

levels [153]. For some transitions and molecules such as CO2, lines originating from entire

subsets of rotational levels may be forbidden entirely by the effects of nuclear spin statis-

tics [152,153,155,162,189].



Chapter 4

Molecular Modelling

In the previous chapter the fundamental origins of the band shapes in molecular absorption

spectra were derived. However, the shapes of the individual tens to hundreds of ro-vibrational

lines comprising such a band was not discussed. Additionally, the effects of the local molecular

environment - temperature, pressure, and concentration for example - were not discussed. In

order to extract the physical properties of the molecular system from an absorption spectrum,

it is typical to construct a model of the spectrum which is then fit to the data. Provided

the model is based on physical phenomena, the fitted parameters may then be related to

properties of interest of the system. This chapter will explore the lineshapes of the individual

ro-vibrational lines in an absorption band and their physical origins, before delving into the

effects of pressure, temperature and concentration on the molecular spectrum. Finally, the

HITRAN database and its usefulness in fitting the numerous lines in a molecular absorption

spectrum will be discussed.

4.1 Lineshapes

While the individual ro-vibrational absorption features in molecular spectra are known as

lines, they are not delta-functions, rather they have a frequency width related to fundamental

physical properties of the molecular species as well as the local environment of the molecule

[161]. An important consideration in any spectral model - molecular or otherwise - is the

shape of each line, known as the lineshape. In the case of molecules, this refers to the

lineshapes of each of the ro-vibrational feature that comprise the absorption band. There

are numerous approximations to the real lineshapes, and most are derived from fundamental

physical effects. One such lineshape often used for molecular spectra is the Voigt profile.

This profile takes a large number of physical effects into account and is comprised of the

convolution of two profiles: the Lorentzian and Gaussian lineshapes. Unfortunately, there

are a number of varying definitions for these profiles. The functions used in this thesis are

normalised such that the integral of the final Voigt profile is unity. The following definitions

of each profile will be used in this thesis unless stated otherwise.

43
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4.1.1 Lorentzian Profile

The Lorentzian profile, L (x− x0, γ), is defined as:

L (x− x0, γ) =
γ

π
(

(x− x0)2 + γ2
) (4.1)

where γ is defined as the half-width-at-half-maximum (HWHM) value of L (x− x0, γ), and

x0 is the centre [195–197]. The Lorentzian profile is shown in Fig. 4.1. The full-width-at-

half-maximum (FWHM), ∆fL, of this profile is simply given by ∆fL = 2γ. This definition

of the Lorentzian is area-normalised to one, e.g.:

∫ ∞

−∞
L (x− x0, γ) dx = 1.

x

Figure 4.1: The area-normalised Lorentzian profile with γ = 1 and x0 = 0.

4.1.2 Gaussian Profile

The Gaussian profile, G (x− x0, σ), is defined as:

G (x− x0, σ) =
1

σ
√

2π
e
−(x−x0)2

2σ2 (4.2)

where σ is the standard deviation (square root of the variance) and x0 is the centre of the

Gaussian profile [167,195,196]. A comparison between the Gaussian and Lorentzian profiles

is shown in Fig. 4.2. Again, this definition is area-normalised to one:

∫ ∞

−∞
G (x− x0, σ) dx = 1.
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While this definition uses the standard deviation, the FWHM (∆fG) is also commonly used

to describe the Gaussian profile, and is related to σ by ∆fG = 2σ
√

2ln2.

x

Figure 4.2: The area-normalised Lorentzian profile with γ = 1 (purple solid line) and
area-normalised Gaussian profile (blue dashed line) of the same HWHM (σ =

(2ln2)−
1
2 ). Both profiles are centred on x0 = 0.

4.1.3 Voigt Profile and the Faddeeva Function

The normalised Voigt profile, V (x− x0, γ, σ), is a convolution of the previously defined unity-

area-normalised Lorentzian and Gaussian profiles [196,197]:

V (x− x0, γ, σ) = G (x− x0, σ) ∗ L (x− x0, γ) (4.3)

=

∫ ∞

−∞
G
(
x′ − x0, σ

)
L
(
x− x′, γ

)
dx′. (4.4)

A comparison between the Voigt, Gaussian, and Lorentzian profiles is shown in Fig. 4.3. Once

again, the integral of this profile is unity as it is a convolution of normalised profiles:

∫ ∞

−∞
V (x− x0, γ, σ) dx = 1. (4.5)

This definition is required for compatibility with several spectral databases, including HI-

TRAN as presented in this thesis [195]. However, computation of the Voigt profile, par-

ticularly in cases where multiple Voigt profiles are required such as in molecular spectra,

is computationally expensive [196,198,199]. To improve computation times the Faddeeva

function, w (z), where

z =
x+ iγ

σ
√

2
,



46 Molecular Modelling

is often employed due to the availability of rapid computational packages. The Faddeeva

function is a scaled complex complementary error function that is decomposable into real

and imaginary parts:

w (x+ iy) = V (x, y) + iLV (x, y) (4.6)

Where V (x, y) and LV (x, y) are the real and imaginary Voigt functions, up to prefactors

[199,200]. The Faddeeva function and Voigt profile, prefactor included, are related through

V (x, γ, σ) =
Re [w (z)]

σ
√

2π
. (4.7)

x

Figure 4.3: The area-normalised Lorentzian profile (purple solid line) and Gaussian pro-
file (blue dashed line) of the same width. The grey dot-dashed line is the cor-
responding area-normalised Voigt profile as calculated using the Faddeeva
function. All profiles are centred on x0 = 0.

The FWHM of the Voigt profile, ∆fV , may be approximated by the widths of the

Lorentzian and Gaussian profiles to an accuracy of 0.02 % by the relation [201]

∆fV ≈ 0.5346∆fL +
√

0.2166∆fL2 + ∆fG2. (4.8)

4.2 Line Width

As flagged in Section 4.1, using the term ‘line’ to describe a peak in observed optical spec-

tra is historical. The lines forming absorption spectra are not infinitely narrow, even in the

case where the instrument measuring the spectrum can be assumed to have no broadening

effect on the lines. Firstly, a distinction between homogeneous and inhomogeneous broaden-

ing mechanisms must also be made. As suggested by their names, homogeneous broadening

mechanisms are those in which each molecule’s frequency response is broadened in exactly
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the same way in the entire ensemble, while inhomogeneous broadening mechanisms affect

different groups of molecules in the ensemble in differing ways. Homogeneous broadening

results in Lorentzian profiles, while inhomogeneous broadening results in Gaussian line pro-

files [124,202,203]. We will now consider several effects that contribute to the line width and

shape of the absorption features observed.

4.2.1 Natural Line Width

The natural line width is the result of a fundamental quantum mechanical limit to the pre-

cision to which the energy (E) and natural lifetime (t) of a particular state of a particle can

be known. This is known as the Heisenberg uncertainty principle:

∆t∆E ∼ ~
2

(4.9)

where ∆ refers to the uncertainty in that variable and ~ = h/2π is the reduced Planck

constant (h) [158,167]. This uncertainty or ‘fuzziness’ in the energy of a state translates to

an uncertainty or range in the frequency of a photon (FWHM) that is exciting a transition

of [204]:

∆fN ∼
∆E

~
∼ 1

2π∆t
. (4.10)

This ‘smearing out’ of the energy levels results in homogeneous broadening of an optical

transition also known as lifetime broadening, and a Lorentzian line shape characterised by

the natural line width, ∆fN , or equivalently the natural lifetime, of the state involved in the

transition [124,151,157,158,204]. The direct consequence of Eq. 4.10 is that a shorter-lived

state will correspond to a larger natural line width.

4.2.2 Pressure Broadening

The effects of pressure broadening, also known as collisional broadening, on molecular spectra

may be modelled in a variety of ways, depending on assumptions made about the nature of

the collisions as well as properties of the molecules themselves [205]. Collisional broadening

is so named as collisions between absorbers, or with other perturbing molecules, interrupts

the natural absorption or emission process [124,206,207]. This shortens the effective lifetime

of the energy states involved in the transition, increasing uncertainty in the energy states

and broadening of the lines via the Heisenberg uncertainty principle. Additionally, the close

proximity of molecules creates a shift in the position of the absorption lines. When a molecule

A approaches another molecule B, the energy levels of both A and B are shifted by the inter-

action of their electrons, with the degree of shift depending on their electron configurations

and the separation of their centres of mass during the collision [197,202,208]. As the density

of the gas increases, the effects of these collisions becomes more pronounced, leading to the

alternate name of pressure broadening [202]. Additionally, the degree of pressure broadening

and shift is different for each ro-vibrational line in the spectrum, owing to the non-constant
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spacing of rotational lines. Collisional broadening is homogeneous, resulting in a Lorentzian

line shape [202,209]. The combination of the collisional and natural broadening profiles is

then characterised by the homogeneous FWHM line width, ∆fH , as seen in Fig. 4.4.

ff
0

Δ f
H

Figure 4.4: The Lorentzian line shape showing the homogeneous line width, ∆fH , that is
the combination of the natural and collisional broadening.

4.2.3 Doppler Broadening

Doppler broadening, also known as thermal broadening for reasons that will become apparent,

is broadening caused by the relative velocities of the molecules with respect to the photons

with which they will interact in either absorption or emission [151]. Consider a photon of

frequency f being absorbed by a molecule that is at rest. From the previous discussion of

the natural line width, we expect to see a Lorentzian absorption profile centred at f . Now

consider a single molecule and photon travelling toward one another, with the molecule having

velocity va toward the direction of laser propagation. The molecule sees the photon as having

a higher frequency through the Doppler effect, and if the photon is absorbed by the molecule,

an observer in the laboratory rest frame would see a Lorentzian profile centred at that higher

frequency:

fa = f0

(
1− va

c

)
(4.11)

where c is the speed of light and f0 is the transition frequency of the stationary molecule

[158,197]. Conversely, if the molecule was moving away from the laser, the photon appears

to have lower energy and frequency, causing another Lorentzian profile to be observed at this

new lower frequency. Now consider the entire system of molecules in motion with a spread of

velocity values as dictated by the Maxwell-Boltzmann distribution. As each molecule in the

sample behaves individually the broadening is inhomogeneous, resulting in a Gaussian line
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shape characterised by the standard deviation

σD =

√
kBT

mc2
f0 (4.12)

where kB is the Boltzmann constant, T is the temperature of the sample, and m is the mass

of the particle [202,204]. It may also be characterised by its FWHM:

∆fD =

√
8kBT ln 2

mc2
f0 (4.13)

as shown in Fig. 4.5 [157,204,210]. It can be seen from Eq. 4.13 that the governing factor for

the extent of Doppler broadening is the temperature of the sample, with higher temperatures

inducing more broadening. It should also be noted that it is the component of velocity

parallel to the observer that should be considered in regards to Doppler broadening. Those

particles with no parallel velocity component, such as molecules travelling perpendicular to

the observer or not at all, will not show the effects of Doppler shift [157,206].

ff
0

Δ fD
Δ fH

Δ fV

Figure 4.5: The Doppler profile (dark grey) of FWHM ∆fD around f0 as weighted by the
Gaussian Maxwell-Boltzmann temperature-velocity distribution. Molecules
with components of velocity toward the incoming photon encounter a higher-
frequency (‘blue-shifted’) photon and produce an absorption feature at a fre-
quency higher than f0 due to the Doppler effect. Those particles with veloc-
ity components away from the incoming photon encounter a lower-frequency
(‘red-shifted’) photon and produce an absorption feature at a frequency lower
than f0. Particles with velocity perpendicular to the direction of photon
travel, or lacking velocity at all, are unaffected by the Doppler effect, and
produce an absorption feature at f0. The Voigt profile (light grey, FWHM of
∆fV ) is the cumulative result of a near-continuum of overlapping Lorentzian
profiles of width ∆fH (red to blue) convolved with a Gaussian profile due to
Doppler broadening [157].
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The width of the Gaussian profile derived from Doppler broadening ∆fD is much larger

than that of the homogeneous line width ∆fH at room temperature and atmospheric pressure

[203]. All broadening mechanisms are convolved with the natural line width to produce the

final lineshape - a Voigt profile of width ∆fV as seen in Fig. 4.5 [203]. However, broadening is

not the only mechanism in which a molecule’s local environment impacts upon its spectrum.

4.3 Pressure, Temperature, and Concentration Influence on

Spectra

As was first introduced in Section 4.2, the local environment in which the molecules reside

impact upon their absorption spectrum. Once the underlying physical phenomena behind

these changes to the spectrum are understood, they provide a window through which the

local environment may be monitored. Of particular interest are the spectroscopic changes

induced by variations in temperature, concentration, and pressure.

4.3.1 Temperature

Changes in the local temperature of the sample can have dramatic effects on the shape of the

absorption spectrum. In particular, the relative peak heights have a strong dependence on the

absolute temperature of the sample. Recalling the discussion about population distribution

amongst rotational levels and the effect on ro-vibrational line intensities in Section 3.2.1.3, it

was noted that the equation predicting relative populations of the rotational levels (Eq. 3.14)

included a thermal term:

NJ

N0
=

gJ
g0
e−(EJ−E0)/kT

= (2J + 1)︸ ︷︷ ︸
Degeneracy

e−BhcJ(J+1)/kT

︸ ︷︷ ︸
Thermal

.

This thermal term is the Maxwell-Boltzmann distribution of the population, and governs

the probability of a particle occupying a particular state at a temperature T [162,211]. Recall-

ing also that the energy separation between rotational states is much less than that between

vibrational states, changes in temperature are unlikely to produce a change in vibrational

state, but may much more readily produce a change in the rotational population distribution.

This leads to a shift of the population towards higher rotational states as T increases [207].

This results in stronger molecular absorption towards the wings and lessening absorptions in

the band centre as the population in redistributed at higher temperatures. This effect may

be seen in the spectrum of 12CO2 as the temperature is changed in Fig. 4.6.
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 P(18)

Figure 4.6: 12CO2 spectra generated by SpectralCalc commercial molecular modelling
software at 296 K (grey) and 396 K (blue) at 1 atm over 6.5 m for 100 %
12CO2 (bottom) for the 30012← 00001 and 31112← 01101 main and hot-
band transitions respectively. Also shown (top) is the difference between the
two spectra, showing the shift of population to higher ro-vibrational levels
and the resultant shift of absorption to the wings of the spectra with increas-
ing temperature for the main transition. The hotband transition also follows
this trend, along with the expected relative increase in absorption as the
lower state of the hotband transition garners more of the population due to
the temperature change. This is clearly seen in Fig. 4.7.

The origin and type of band is also an important factor. We have so far been considering

the effects on the absorption spectra for a vibrational transition originating in the ground

state - a fundamental or overtone (combination) band. However, hotbands - vibrational

transitions originating from a vibrational state other than the ground state and exciting to a

higher vibrational state - actually increase in overall intensity as the temperature is increased.

This is because there is usually a small amount of the molecular population that is excited

into a hotband’s originating vibrational state as the temperature is increased [207]. This is

seen in Fig. 4.7, in which the P(18) line of the 30012← 00001 band shown in Fig. 4.6 is seen

to decrease with increasing temperature, while the adjacent 31112← 01101 hot band (P27)

line increases in intensity with increasing temperature.
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Figure 4.7: Mid-P-branch peaks (P18) and (P27) of 12CO2 spectra seen in Fig. 4.6 gener-
ated by SpectralCalc commercial molecular modelling software between 296 K
and 396 K at 1 atm over 6.5 m for 100 % 12CO2 for the 30012← 00001 and
31112← 01101 main (larger peak) and hotband (smaller peak) transitions re-
spectively. The main peak decreases in height with increasing temperatures
as the vibrational ground state population shifts to higher rotational levels,
increasing the magnitude of the far wings of the spectrum while decreasing
magnitude of the central lines. The hotband peak shows a reversed trend in-
creasing in magnitude with increasing temperature as thermal redistribution
means a larger population in the higher vibrational level from which the hot
band originates.

Finally, as mentioned previously in Section 4.2.3, a change in temperature will affect

the widths of each ro-vibrational line through the effects of Doppler broadening. As the

temperature is increased, so too is the Doppler width of each ro-vibrational line ∆fD as

defined by Eq. 4.13.

4.3.2 Concentration and the Beer-Lambert Law

The concentration of the absorber in a sample determines the integrated absorptions of each

line over the whole band. Before analysing the effect of concentration on the sample, first we

must consider a laser of frequency f and intensity I0 (f, 0) on its passage through a sample of

length l. After passing through the sample, some of the light is absorbed, with an intensity

I (f, l) remaining at the far side of the sample. The loss of intensity due to passage through
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the sample is described by the Beer-Lambert Law:

I (f, l) = I0 (f, 0) e−αl = I0 (f, 0) e−uσl (4.14)

where α is the frequency-dependent linear absorption coefficient of the sample [120,157,158,212].

Additionally, the ratio I/I0 is known as the transmittance of the sample, T (f) [120]. The

absorption coefficient itself is the result of the multiplication of the concentration or number

density of molecules of the absorber, u, and the frequency-dependent cross section, σ [120].

Equation 4.14 indicates that as either the concentration or path length of absorbers (or both)

is increased, the amount of light transmitted by the sample decreases exponentially as a

greater proportion of the input light is absorbed. This corresponds to deeper features in an

absorption spectrum when considered in transmission, as can be seen in Fig. 4.8.
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Figure 4.8: The effect on spectra of changing absorber concentration on the R-branch
of the 30012← 00001 transition of CO2 with 31112← 01101 hotband, for a
fixed path length (6.5 m) and temperature (296 K). As the concentration of
the absorber increases, the absorption of all types of bands become deeper
until saturation conditions. These spectra are the result of fitting some of the
measured spectra presented in Chapter 10.

4.3.3 Pressure

Changes in pressure affect molecular absorption spectra through collisional or pressure broad-

ening, and the associated pressure shift as described in Section 4.2.2. However, this effect is

dominated by Doppler broadening until relatively high pressures are considered [160,203].

This is evident by observation of Fig. 4.5.
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4.4 The HITRAN Database and Modelling Molecular Spectra

The HITRAN database, short for HIgh-resolution TRANsmission molecular absorption database,

is an online compilation of spectroscopic parameters of molecules with atmospheric signifi-

cance. The parameters available on the HITRAN database are a mixture of direct observa-

tions, theoretical calculations, and semi-empirical values [1,213]. These parameters are used

in a variety of computer codes for simulation of the transmission or emission of light in the

atmosphere, and are also used in the course of this thesis to create and fit models of 12CO2,
13CO2, and 12C2H2 to allow extraction of physical parameters of interest.

4.4.1 The HITRAN Database: Line Strength

HITRAN spectroscopic parameters are available for each ro-vibrational line and isotopologue

of molecules included in the database. Additionally, the online interface allows one to sort

by vibrational mode, allowing for identification of molecular absorptions when there is some

uncertainty. The parameters are provided at a reference temperature (Tref) of 296 K and

pressure (pref) of 1 atm. Some of the most important parameters available on the database

are the line strength Sηη′ of a ro-vibrational transition between lower and upper states η and

η′ respectively, along with the wavenumber of that transition ν̃ηη′ . Values of (Tref) come pre-

weighted by the natural terrestrial isotopic abundances as listed in Ref. [214]. It is important

to note that as with the previously mentioned HITRAN parameters Sηη′ is provided at Tref,

but may be converted to any other temperature T by:

Sηη′ (T ) = Sηη′ (Tref)
Q (Tref)

Q (T )

e−c2E
′′/T

e−c2E′′/Tref

(
1− e−c2ν̃ηη′/T

)

(
1− e−c2ν̃ηη′/Tref

) (4.15)

where Q (T ) is the total internal partition sum at temperature T , E′′ is the lower state energy

of the transition, and c2 is the second radiation constant (c2 = hc/kB = 1.4387770 cm K)

[153,215]. It is at this point useful to note that the native units of HITRAN are cgs rather

than SI. To simplify the modelling, this preference has been maintained in the fitting code and

resulting spectra that are derived from it. Equation 4.15 introduces temperature dependence

to the model. Furthermore, in order to calculate the correct line strength in Eq. 4.15, the

temperature dependence of Q (T ) must be calculated. The full equation for Q (T ) for linear

polyatomics in the ground electronic state is given by

Q (T ) =
1

σ

∑

all levels

(2J + 1) (gn) e
− E
kBT (4.16)

were σ is 2 for homonuclear diatomics and 1 otherwise, gn is the full nuclear spin degeneracy

factor, and the summation is over all ro-vibrational levels of the molecule [216]. As this is

quite time-consuming to calculate in full, the authors of the HITRAN database recommend
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utilising a cubic polynomial approximation:

Q (T ) = a+ bT + cT 2 + dT 3 (4.17)

where the coefficients a, b, c, d are species and isotopologue-dependent and listed in Ref. [216].

This approximation is accurate to within 1% in the 70− 500 K temperature range [213,216].

However, Sηη′ is not the only HITRAN parameter which has a temperature dependence.

4.4.2 The HITRAN Database: Shifts and Broadening

The width of each ro-vibrational absorption line is also temperature dependent, due to the

physical phenomena discussed in Section 4.2. This leads to another of the HITRAN parame-

ters - the line halfwidth γ (p, T ) - needing adjustment when considered away from Tref:

γ (p, T ) =

(
Tref

T

)nself

[γair (pref, Tref) (p− ps) + γself (pref, Tref) ps] , (4.18)

where p is the pressure of the system in atmospheres, pref is the reference pressure (1 atm),

γair is the air-broadened half-width-at-half-maximum (HWHM), γself is the self-broadened

half-width-at-half-maximum (HWHM), nself is the coefficient of the temperature dependence

of the self-broadened half-width, and ps is the partial pressure of the gas [213].

Additionally, if the system is not at atmospheric pressure, Eq. 4.18 introduces a pres-

sure dependence into the model. Additionally, the line position is shifted by this change in

pressure, with the new shifted position given by

ν̃ηη′
∗ = ν̃ηη′ + δair (pref) p (4.19)

where δair is the pressure shift of the line position in units of
[
cm−1/atm

]
and is another

parameter provided in the database. Doppler broadening of each line must also be included.

All width contributions must be included prior to the calculation of the Voigt profile, with

Lorentzian widths combined via direct summation, and Gaussian widths added in quadrature

[217].

4.4.3 Molecular Modelling and Fitting

The final consideration when using the HITRAN database is how to convert the shifts, line

strengths, and broadening values so far discussed into a model which may be compared to a

measured quantity. The HITRAN lineshape function for each ro-vibrational line forming the

absorption band, f
(
ν̃, ν̃ηη′ , T, p

)
, includes the widths and shifts discussed in Section 4.4.21.

Multiplication of f
(
ν̃, ν̃ηη′ , T, p

)
by the corrected linestrength Sηη′ (T ) from Section 4.4.1 and

1While this thesis makes use of a Voigt lineshape, more recent iterations of HITRAN are now beginning
to include parameters for use with more sophisticated lineshape functions that account for subtle collisional
dynamics, such as the Hartmann-Tran profile [218,219].
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u, the number density of absorbers results in the unitless quantity of optical depth, τ :

τ (ν̃, T, p) = u× Sηη′ (T )× f
(
ν̃, ν̃ηη′ , T, p

)
(4.20)

where u has an overall depth scaling effect on the spectrum. The optical depth is then related

to a measured transmission spectrum T (ν̃) simply through

τ (ν̃, T, p) = −ln (T (ν̃, T, p)) . (4.21)

Therefore if the transmission spectrum is able to be measured, a fitting function may be

constructed out of parameters sourced from the HITRAN database. In this case the only

free parameters of the fit are the temperature, pressure, and (essentially) concentration in

the form of u. Multiple overlapping spectral bands from the same molecular species and

isotopologue are simply included in the fit as extra lines. Inclusion of differing isotopologues

of the same species, or indeed differing species, requires that they be considered separately

before being combined in the final stages of the fitting procedure. This method was used to

extract T and u from the measured spectra in the papers presented in Chapters 10 & 11.
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Experimental





Chapter 5

Molecular Spectroscopy with an Optical

Frequency Comb

One important factor of note in performing molecular spectroscopy is the spectral width

and complexity of molecular absorption bands. As seen in Part I, there is an abundance of

information to be gained about a molecular species from its absorption spectrum, including

its pressure, temperature, and concentration. However, recovery of this information is reliant

upon the use of a densely-sampled and broadband spectral source able to acquire molecular

spectra on rapid time scales with large enough spectral coverage to cover the majority of the

targeted vibrational band. High-resolution spectra are also required to provide differentiabil-

ity between molecular species or isotopologues of the same species in more complex samples

more akin to those found in real-world applications. There are a number of ways to achieve

these requirements, though all have their drawbacks to some extent. A widely tunable source

may require too much time to acquire or lack the tuning range required for a broadband

spectrum, making it unsuited to rapid measurements of complex spectra [220]. A broadband

source such as an incandescent light bulb is incoherent and unable to be efficiently coupled

into an enhancement cavity for trace gas analysis [221,222], while Fourier transform infrared

(FTIR) requires an impractically-long scanning distance of the moveable arm to achieve high

resolution results [124]. The invention of the optical frequency comb has however provided

an elegant solution to these problems.

Optical frequency combs are highly stabilised lasers with a spectrum formed of a series of

equally-spaced, discrete and coherent frequency lines or comb modes occurring at extremely

well-defined frequencies. Additionally, they posses a large bandwidth on the order of tens to

hundreds of nanometres, making them near-ideal interrogation sources in laser spectroscopy

[223].

There are a number of known methods to create such a comb, including four-wave mixing,

periodic phase or amplitude modulation, and via the stabilisation of the output of a mode-

locked laser [223,224]. The latter method is utilised to generate the frequency comb used

throughout this thesis (Menlo Systems FC1500). It was the development of this method

that garnered one half of the 2005 Nobel Prize in Physics shared between John L. Hall and

Theodor W. Hänch [225,226]. To understand the generation of a frequency comb created

using a mode-locked laser, one must first understand the general operating principles of a

laser resonator.

59
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5.1 Frequency Comb Generation: Mode-Locked Lasers

The simplest laser resonator is constructed of a pump beam as an input to a laser cavity

of some sort such as two opposing mirrors. The input mirror is partially transmissive to

the pump wavelength, while the output mirror is partially transmissive to the wavelength

generated within the resonator itself. This results in the amount of light present in the cavity

steadily building over time [227,228]. This may be understood as a multitude of standing

waves existing within the cavity, constructively interfering to a pulse that circulates around

the resonator cavity as the standing waves evolve in time. Each time the circulating pulse

strikes the output mirror, a small amount of light is transmitted. Within a laser cavity, there

is also a gain medium present to generate the coherent photons via population inversion

that form the laser. Finally, modulator of some sort is typically present within the cavity to

control the output of the laser [204,224,229].

For now we ignore the gain medium and modulator, and return to consideration of the

longitudinal modes within the cavity. In such a cavity, each of the longitudinal modes is

independently oscillatory, with no relation between each mode. Similarly, the phase of each

mode has no fixed relation to any other longitudinal mode of the cavity [204,224]. If only a

few such modes are considered, the time-evolving phase differences between them will cause

uncontrolled interference effects leading to a resonator output that varies in intensity as the

cavity - and hence the phases of the longitudinal modes - are affected by external forces such

as thermal expansion of the cavity components [224]. The result of this process may be seen

in Fig. 5.1. When many longitudinal modes of the cavity are considered, the output tends

towards a relatively constant intensity as the modes interfere toward an average value.
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Figure 5.1: Time-dependent evolution of the intracavity longitudinal modes (top) with
random phases creates an electric field at the output (bottom) which evolves
in time as the modes interfere without a fixed phase relation. A relatively
constant intensity may result with enough contributing longitudinal modes
[224].
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In a mode-locked laser by contrast, the phase relation between the longitudinal modes of

the cavity are locked to a fixed value. Instead of the near-constant output of the non-mode-

locked laser resonator with thousands of longitudinal modes of random phase, the output

of a mode-locked laser is a series of periodic light pulses corresponding to times when the

longitudinal modes all constructively interfere with each other, as seen in Fig. 5.2. That laser

is then termed to be mode locked or phase locked, with the process of ensuring the fixed phase

difference between the interfering longitudinal modes termed mode locking [204,224].

I = (E1 + E2 + ...)2
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Figure 5.2: The phase-locked intracavity longitudinal modes (top) interfere constructively
at multiples of the cavity round-trip-time, τ , resulting in pulsed intensity out-
put (bottom) characteristic of mode-locked operation. The output pulses are
separated by τ in the temporal domain [224,229].

The output of a mode locked laser is a periodic series of pulses separated by a time

τ =
2L

c
(5.1)

where L is the length of the cavity, c is the speed of light, and τ is known as the round trip

time or the time taken for a pulse to circulate around the cavity once [224,228,229]. This

round trip time is also inversely related to the frequency spacing or repetition rate of the

pulses:

frep =
1

τ
, (5.2)

where the cavity length is also stabilised to maintain frep [223,224,228,229]. Additionally, just
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as in any other laser cavity, a gain medium is also present. The purpose of the gain medium

is to act as an amplifier of the light within the cavity. Amplification of the light is achieved

through incoming photons - normally from a pump diode or laser - driving stimulated emission

from the gain media by creating a population inversion [204,230]. There are a number of

ways to achieve mode locking, including active mode locking and the method used for the

comb used in this thesis, passive mode locking [231–235].

5.1.1 Passive Mode Locking: Nonlinear Polarisation Rotation

Nonlinear Polarisation Rotation (NPR) is the result of the nonlinear Kerr effect in non-

polarisation-maintaining fibre, and is a popular method to mode-lock a laser. In essence,

high intensity light, such as that confined to the core of an optical fibre, causes an intensity-

dependent refractive index variation and birefringence within the fibre proportional to the

intensity of the light. The medium in which this occurs is then referred to as a Kerr medium

[224].

A series of waveplates can be used to optimise the maximum transmission of the cav-

ity (minimum loss conditions) for the highest optical intensity i.e. the peak of the desired

circulating pulse within the cavity. The addition of a polarising optical element, such as a

polarising beam splitter, allows the power-dependent polarisation change to be converted into

a power-dependent transmission through the polariser [224]. As the polarisation rotation is

intensity-dependent, the un-rotated wings of the pulse to either side of the peak encounter

more loss than the high-intensity peak, and are suppressed at the polariser. This has the

effect of shortening the circulating pulse or pulse-shaping. This produces an ultra-short,

high-intensity circulating pulse that is sampled each time upon striking the output coupler,

leading to a mode-locked pulsed output [204,233,234,236–238] .

When considered in the frequency domain, the pulse train output of the mode locked laser

is seen to be a series of discrete lines occurring at frequencies separated by frep [223]. Addi-

tionally, shorter pulse durations result in wider spectral bandwidths, so it is advantageous to

target a short pulse duration on femtosecond or shorter time-scales when aiming to produce

a frequency comb [224,229].

5.2 Frequency Comb Stabilisation

A frequency comb built around a mode-locked laser requires additional stabilisation to enable

the frequency of each of its modes to be known. This requires control of the cavity dispersion

whose origin lies in the differing dependence upon frequency of two important intracavity

velocities - the group and phase velocities.
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5.2.1 Intracavity Velocities

Within any resonator cavity there are two important velocities that must be considered. The

origin of these two velocities is related to the formation of the pulses from a superposition

of the lasing longitudinal modes (resonant waves) of the laser cavity. Each pulse therefore

contains a multitude of light waves and a spread of frequencies, each of which travel at slightly

different speeds through different media - a phenomenon known as dispersion - depending

on the frequency of the wave. As discussed in Section 5.1, the crest of the pulse envelope

will occur each time the longitudinal modes are in phase. In a cavity without dispersion all

waves travel at the same speed, and so the maxima of the pulse envelopes, and the pulses

themselves, travel at the same speed. With dispersion however, the conditions for constructive

interference are now dependent upon the speeds and phase differences between the various

waves [124].

The group velocity, vg, is the speed at which the overall envelope of a wave travels through

space and is related to the angular frequency of the wave, ω = 2πf , and angular wavenumber,

k = (2π) /λ, by:

vg ∼=
dω

dk
. (5.3)

The phase velocity, vp, is the speed at which the phase and carrier frequency ωc of the wave

travels is given by:

vp ∼=
ωc
k
. (5.4)

In a dispersive medium such as the laser cavity vp 6= vg, leading to a ‘slipping’ between the

output pulse envelope and the carrier wave whose peaks and troughs form the envelope of

each pulse [223]. This slipping is known as the carrier-envelope phase shift, ∆φCE , and is

shown in Fig. 5.3. The carrier-envelope phase shift may be related to ωc along with the phase

and group velocities through

∆φCE =

(
1

vg
− 1

vp

)
Lcωc (5.5)

where Lc is the round-trip length of the laser cavity [223,224]. Without stabilisation ∆φCE

will be unstable on a pulse-to-pulse basis subject to external factors affecting the laser cavity

such as thermal expansion [239]. When considered in the frequency domain via the shift

theorem of Fourier transforms, ∆φCE results in each of the comb modes deviating from

falling on exact harmonics of the pulse repetition rate. This is known as the carrier-envelope

offset frequency f0 as described by [223,224,240]:

f0 =
∆φCE

2π
frep. (5.6)

Thus in the frequency domain we have a ‘comb’ around ωc - the lasing frequency in the

angular domain - with discrete lines separated by frep [241]. The frequency of the nth mode

can be described by:

fn = nfrep + f0 (5.7)
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where n is a large, positive integer [223,224,229]. A full derivation of this result may be found

in Appendix D for the interested reader. This equation is extremely powerful if f0 can be

stabilised, providing knowledge of the absolute frequency of every line in the spectrum of the

comb. Stabilisation of ∆φCE , and hence f0, is what differentiates the optical frequency comb

from a mode-locked laser, and is achieved through what is known as f -2f locking [223,242].

E(t)

t

∆φCE 2∆φCE

τ =1/frep

νg

νp

Figure 5.3: The τ -periodic pulsed output of a mode-locked laser. The envelope of the
pulse (purple) travels at the group velocity vg while the carrier wave of travels
at the phase velocity vp (black). This representation shows a constant pulse-
to-pulse phase ‘slippage’ between the envelope and carrier wave known as the
carrier-envelope phase shift ∆φCE .

5.2.2 Carrier-Envelope Offset Stabilisation: f -2f Locking

An optical frequency comb may be measured and ∆φCE stabilised through a feedback loop

by means of an f -2f self-referencing scheme. In such a scheme, a beat note is created between

a comb mode from the lower-frequency end of the spectrum at a frequency nfrep+f0 that is

frequency-doubled via second harmonic generation to 2(nfrep + f0) and a comb mode from

the higher-frequency end of the spectrum (2nfrep+f0) as seen in Fig. 5.4. As an aside, it

must be noted that this is only possible if the comb spans what is known as an ‘octave’

(a factor of two in frequency) as the second comb mode that forms the beat signal must

be one octave away from the first [223,242–245]. This is often performed by the addition

of a nonlinear photonic crystal fibre to broaden the initial output into the octave-spanning

regime [223,242–244].

Returning to the f -2f stabilisation scheme, the result of the beat note is [223,242,244,245]:

2 (nfrep + f0)− (2nfrep + f0) = f0. (5.8)

This allows direct measurement of f0 using a fast photodetector. The signal from this pho-

todetector is then used as the input to a feedback loop to actuate a dispersion-compensating

component within the laser cavity, maintaining ∆φCE on a pulse-to-pulse basis and results

in the production of a fully stabilised optical frequency comb as seen in Fig. 5.5 [242].
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Figure 5.4: Operating principle of an f -2f lock in an optical frequency comb to stabilise
the carrier-envelope offset f0.
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Figure 5.5: The output of a fully-stabilised optical frequency comb in the temporal (top)
and spectral domains (bottom). The comb spectrum is a series of equidistant
lines spaced by the repetition rate frep offset from DC by f0. The frequency
of the nth comb modes is described by Eq. 5.7 [223,229].
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5.3 Menlo Systems FC1500 Optical Frequency Comb

The optical frequency comb used throughout the course of this thesis is a commercial comb

from Menlo Systems (FC1500) and is based on a NPR mode-locked femto-second (fs) erbium-

doped (Er3+) fibre laser. The mode-locked laser is generated in a ring cavity depicted in

Fig. 5.6, and has an adjustable repetition rate via intracavity electro-optic modulator (EOM)

and mirror equipped with both a translation stage and piezoelectric transducer (PZT) for

cavity length control. The Er3+-doped fibre acts as the laser gain medium, with the pump

supplied by multiple 980 nm laser diodes. This produces a comb spectrum centred around

1550 nm. The entire fibre laser is temperature-controlled for additional stability and an

intracavity wedge allows active control of f0.

Er3+

Pump 

WDM

Iso.

Output

EOM
Wedge

PBS QWP

WPs

Monitor

Mirror

WPs

PBS

Figure 5.6: Schematic of the optical frequency comb’s ring cavity. Fibre paths shown in
dark blue, free-space optical paths in light blue, WPs: Waveplates, EOM:
Electro-Optic Modulator, PBS: Polarisation Beam Splitter, QWP: Quarter-
Wave Plate, Iso: Optical Isolator, WDM: Wavelength Division Multiplexer.
Note that the QWP is a fixed element, while the remaining waveplates are
computer-controllable. The Er3+-doped fibre amplifies the intensity of the cir-
culating pulse (driven by multiple 980 nm diodes), while the laser is passively
mode-locked using NPR.

The pulse duration of this comb is ∼100 fs, which produces a broad-bandwidth frequency

envelope (∼ 10THz, ∼ 50 nm). The round-trip time of the cavity is ∼4 ns, or equivalently

frep = 250MHz, which is stabilised by adjusting the comb cavity length as part of a phase lock

between a single nearby comb mode and a cavity-stabilised CW laser [223]. The stability

of the laser (∼2Hz with 1 s of averaging) is imposed onto each comb mode, which are in

turn exceedingly narrow (∼ kHz) [246]. The carrier-envelope offset frequency f0 is locked

at 20MHz after being referenced to a caesium beam clock (Datum CsIII) with a frequency

instability of 0.2mHz with 1 s of averaging [243,244]. The end result is a comb spanning

approximately 100 nm between 1500-1600 nm. While this spectral bandwidth is adequate to

observe some transitions of HCN and CO2 as seen in Chapters 8, 9 & 10, there is a relatively

easy way to extend the spectrum of the comb to target additional molecular absorption bands.
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5.4 Extending the Comb Spectrum: Highly Non-Linear Fibre

While the output of the frequency comb is quite broad, there are additional interesting

molecular absorptions from molecules such as methane (CH4) and acetylene (C2H2) that fall

outside its natural spectral band. The addition of a highly nonlinear optical fibre at the output

of the comb broadens the spectral output to cover from below 1480 nm to above 1700 nm as

may be seen in Fig. 5.7 in which the comb spectrum was measured on an optical spectrum

analyser [247–250]. The broad spectral coverage of the optical frequency comb, along with its

dense spectral sampling and absolute frequency accuracy as described by Eq. 5.7 makes the

comb a nearly-ideal spectral interrogation source. When fully stabilised, it allows massively-

parallel spectroscopy without the need for a widely-tunable laser source [223].
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Figure 5.7: The measured spectral-broadening effect of the highly-nonlinear fibre allows
access to additional molecular absorption bands and species depending on
applied amplifier diode currents within the comb.

One complication is that all of the comb’s frequencies are contained within a single beam.

In order to obtain the frequency-dependent absorption of a sample, this beam must be un-

ravelled into its component frequencies using a spectrometer.
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Chapter 6

Virtually-Imaged Phased Array

Spectrometers

The optical frequency comb is a nearly-ideal light source for molecular spectroscopy, with

its broad bandwidth, dense spectral sampling, and absolute frequency accuracy. However,

all of the comb’s frequency components are contained within one laser beam. This poses a

problem for spectroscopic measurement, in which the absorption of light of each frequency

must be carefully measured. This necessitates a method of unravelling the multi-frequency

laser beam into its component frequencies. Additionally, to take full advantage of the dense

frequency spacing of the comb, this unravelling must be of sufficiently high-resolution so that

the individual comb modes are, ideally, separable. The experimental method to perform the

unravelling in this thesis uses a home-built spectrometer based on a Virtually Imaged Phased

Array in combination with a diffraction grating to spatially disperse the comb frequencies

prior to imaging with an Indium Gallium Arsenide (InGaAs) camera. The arrangement of

components that form the VIPA spectrometer may be seen in Fig. 6.1. Firstly, it is crucial

to consider the design of the diffraction grating and its fundamental limitations with regards

to spatial dispersion of multi-wavelength light.

Computer 

processing

InGaAs

Camera

GratingVIPACyl. Lens

 (VIPA)

Frequency 

Comb

Imaging

Lenses

3:1 x-axis 

Beam Expansion

Figure 6.1: Top-down view of the spectrometer, showing the arrangement of the diffrac-
tion grating, VIPA etalon, and InGaAs camera.
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6.1 Diffraction Gratings

Diffraction gratings are often used to disperse multi-wavelength optical beams into their

component wavelengths by means of optical interference. Gratings are available in optically

transmissive and reflective varieties which are comprised of a glass plate with periodic, par-

allel etchings into the specialised coating on its surface. The structure embedded within the

grating surface affects the phase and/or amplitude of the incident light, which causes interfer-

ence in the output light. A third type of grating - the blazed or echelette diffraction grating

- is a specific type of reflective or transmissive grating specially optimised for maximum effi-

ciency in a particular diffraction order. The diffraction order and the wavelength-dependent

dispersive properties of all gratings may be described by the grating equation as discussed

below [124,251,252].

6.1.1 The Grating Equation

A diffraction grating disperses multi-wavelength light incident at an input angle θi spatially

into angles θm as a function of wavelength. The diffraction gratings used in the course of

this thesis are all of the blazed reflection-type variety, which are manufactured to have a high

efficiency for a particular diffraction order and wavelength range. The large grating used

predominantly in this thesis has a blaze angle, γB, of 29◦, highest efficiency at a wavelength

of 1.6µm, and has 600 grooves/mm. Angular definitions for diffraction gratings may be seen

in Fig. 6.2.


B

 
i


B  

m

d

Groove face
normal

Grating
normal

Figure 6.2: A section of the blazed face of a reflection-type diffraction grating. the blaze
angle, γB, incident light angle, θi, diffraction angle, θm, grating period, d, and
the two surface normals are shown [252,253].

The relation between the grating period, d (the distance between adjacent grooves on the

grating face) and the incident (θi) and diffracted output (θm) angles is given by the grating

equation:

d (sin (θi) + sin (θm)) = mλ (6.1)

where all parameters are as defined in Fig. 6.2 and m = 0,±1,±2, ... is the order of diffraction

[124,167,253]. Note that there is a sign convention associated with the angles θm and θi. When
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θm and θi are on opposite sides of the grating normal, as in Fig. 6.2, θm is negative [253].

Additionally, in order to ensure the highest efficiency is achieved, the blaze angle must obey

the relation γB = 1
2 (θi − θm) [124,253]. While the setup of the spectrometer was modified

over the duration of experiments covered in this thesis, it was endeavoured to fulfil this

high-efficiency criterion in all cases.

6.1.2 Resolving Power

Another important parameter of diffraction gratings in the resolving power (R), which is the

ability of the grating to resolve closely-spaced wavelengths of incident light. The resolving

power is dependent on the central wavelength to be resolved λ, the minimum resolvable

wavelength separation ∆λmin (as defined by the Rayleigh criterion), and the illuminated

area of the grating through its definition of:

R =
λ

∆λmin
(6.2)

= mNG (6.3)

where m is again the order of diffraction, and NG is the number of illuminated grating

lines [252–254]. This can be rewritten in terms of the input and output angles θi and θm by

substitution of the grating equation (Eq. 6.1) for m:

R =
NGd (sin (θi) + sin (θm))

λ
(6.4)

where NGd is the illuminated area of the grating. It is important to note however that ∆λmin

is defined by the Rayleigh criterion, which allows for a relatively large overlap between ad-

jacent diffraction signals as seen in Fig. 6.3 [124]. This is undesirable when performing

quantitative spectroscopy, particularly with a dense spectral sampling as when using a fre-

quency comb, as preferably each come mode should be individually resolvable with no or very

little overlap. Therefore for quantitative spectroscopy, the resolving power of a grating must

ideally be greater than that predicted by Eq. 6.4.

+Δ
min




P

Figure 6.3: The Rayleigh criterion for the limit of resolution for two adjacent diffraction
patterns. The peaks are spaced by the minimum resolvable wavelength sepa-
ration ∆λmin.
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6.1.3 Angular Dispersion

The final parameter that requires consideration when choosing a diffraction grating is its angu-

lar dispersion, D. This parameter describes the angular spread of an input multi-wavelength

beam as a function of wavelength by the grating, and is defined as [124,253,254]:

D =
dθm
dλ

. (6.5)

When combined with the grating equation, Eq. 6.5 can be written as [124,254]:

D =
m

cos (θm) d
(6.6)

in which d is again the grating period [124,254]. It can be seen from examination of the

equations governing the angular dispersion, grating efficiency, and resolving power that these

parameters are dependent on the physical characteristics of the grating, the illuminated grat-

ing area, and the input and output angles. When using a blazed grating, the diffraction order

m is fixed to a specific diffraction order, and so this contribution to the equations is essentially

fixed. The illuminated area and input/output angles are therefore the only variables, and are

chosen for all experiments such that the angular dispersion, grating efficiency, and resolving

power were maximised. However it must be noted that these equations are interdependent

upon shared parameters, so not all may be maximised to their full extent. To increase R,

which by Eq. 6.4 has a direct dependence on the width of the grating illuminated, the hori-

zontal beam width was expanded by a factor of three prior to reaching the grating. However,

even once fully optimised, the angular dispersion of the diffraction grating is not adequate to

disperse the densely-packed modes of the frequency comb, necessitating the introduction of

a greater angular dispersion element - the Virtually Imaged Phased Array.

6.2 Virtually-Imaged Phased Arrays

A Virtually Imaged Phased Array (VIPA) consists of a cylindrical lens and a tilted plane-

parallel glass plate as seen in Figures 6.4 and 6.5. The front face of the VIPA etalon is coated

with an ∼ 100% reflective optical coating, with the exception of an anti-reflection (AR)-

coated input window at the bottom of the plate, while the back face is completely coated by

a relatively high reflectivity coating (≥ 95%) [255]. The cylindrical lens is used to line-focus

the beam of multi-wavelength light into the VIPA etalon, such that the beam waist is located

at the back face of the VIPA etalon. Additionally, focusing with the cylindrical lens provides

the multiple input angles for every wavelength required for the VIPA to function [255,256].

Consider the case where the back face of the etalon is 95% reflective, and we have a

single-wavelength input beam. Upon striking the back face, 5% of the incident light will

be transmitted out of the etalon and diverges after the beam waist. The remaining 95%

of the light is internally reflected from the back face and strikes the front face, is 100%
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Figure 6.4: The principle of wavelength dispersion by a VIPA, showing the locations
of the various optical coatings. The cylindrical lens line-focuses collimated
multi-wavelength light in the horizontal plane into the glass plate through the
AR-coated window section. The vertical angle of the output light is a func-
tion of wavelength [255,257].

reflected, and the light again strikes the back face displaced by a vertical distance d as seen

in Fig. 6.5. This process repeats up the VIPA etalon, yielding an exponentially decreasing

amount of transmitted light as the number of reflections increases for a single wavelength.

When considered with a plane wave ray-tracing approach neglecting beam divergence, the

output light is a series of beams separated by d. However, as the input light was focused by

the cylindrical lens into the back face of the VIPA, the transmitted light is also diverging,

resulting in a series of divergent virtual images of the beam waist. These virtual images

are spaced by a distance 2t, where t = 2 mm is the thickness of the etalon, along a line

normal to the glass plate as seen in Fig. 6.5. The transmitted beams then undergo either

constructive or destructive interference depending on the relative phases of the transmitted

beams. In regions where the beams are in-phase with one another, constructive interference

occurs and these beams continue on into the far field, while if the beams are out of phase,

destructive interference occurs and these portions of the beam are removed. The end result

is a collimated output consisting of the in-phase portions, as can be seen in Fig. 6.5.

6.2.1 VIPA Multiple Input Wavelength Behaviour - Wavelength-Dependent

Dispersion

When considering multi-wavelength input light it is more convenient to think in terms of

the ray-tracing perspective on beam propagation through the VIPA. In the case where only

one wavelength at a specific angle is incident on the VIPA, the only restriction was that
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Figure 6.5: Side view of the VIPA system for a single input wavelength, showing the in-
ternal reflections of the etalon. The glass plate creates many beams diverging
from many virtual images of the beam waist. These multiple beams interfere,
leaving a collimated beam to be seen in the far-field [255,258].

the transmitted beams must be in phase in order to yield a non-zero output in the far field.

When multi-wavelength light is considered, such as that supplied by an optical frequency

comb, the input angle of the light is also important. In general, a new wavelength incident

at the same angle as the wavelength considered in the single-wavelength case will not satisfy

the phase condition, and will destructively interfere away to nothing at the output. However,

when presented with a collimated beam, the cylindrical lens provides a large number of

incident angles for every wavelength in the beam, and there will therefore be a new set of

input and output angles such that the phase criterion is satisfied for the new wavelength

and is transmitted. The VIPA therefore acts as a wavelength-dependent dispersion element,

in the case of the experimental work presented here arranged to disperse in the vertical

direction. The angular dispersion of a solid VIPA etalon of refractive index nr as a function

of wavelength, discussed in a more in-depth manner in Appendix F.1, is given by

2kt

(
nrcos (θin)− tan (θin) cos (θi) θλ −

1

2nr
cos (θin) θλ

2

)
= 2πm for m = 1, 2, 3... (6.7)

where k = (2π) /λ is the angular wavenumber, m is the resonance order, nrsin (θin) = sin (θi)

(Snell’s Law), θin is the internal angle inside the solid etalon resulting from the refraction, θi

is the VIPA tilt angle, and θλ is the angle of the transmitted ray from horizontal as per Xiao

et al. [259] (c.f. Fig. 6.5). Equation 6.7 describes the phase criterion for a specific wavelength

to be transmitted by a solid VIPA etalon, and thus describes the spectral dispersion of the

VIPA with angle, with a unique output angle assigned to each wavelength per VIPA Free

Spectral Range (FSR).
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6.2.2 VIPA Multiple Input Wavelength Behaviour - VIPA Free Spectral

Range

The VIPA Free Spectral Range (FSR) is important when interpreting the frequency response

in the far-field. Again consider the single-wavelength input into the VIPA system. With

enough angular range on the input, it is possible to achieve the phase-matching condition of

the transmitted beams for multiple angles of incidence (and hence multiple output angles) as

is shown for comb modes A and B in Fig. 6.6 [144,260]. The span of frequencies for a single

input angle for a change in VIPA mode order by one ∆m = 1 is then known as the VIPA

FSR, given by

FSR =
c

2t
(
nrcos (θin)− tan (θin) cos (θi) θλ − 1

2nr
cos (θin) θλ2

) (6.8)

as derived from the VIPA dispersion relation (Eq. 6.7) (see Appendix F.2 for derivation). The

VIPA FSR may be estimated by sending a single-frequency source, such as a continuous-wave

(CW) laser, through the VIPA system. The CW source will appear once per mode order m,

and produce multiple vertical spots at the output of the system corresponding to values of θλ

that fulfil Eq. 6.8, allowing an estimate of the VIPA FSR. For an input beam with a spectral

bandwidth greater than the VIPA FSR, the VIPA output orders are spatially superimposed

on one another, leading to a bright vertical stripe of overlapping modes. This peculiarity of

the VIPA is dealt with by the introduction of an orthogonally-positioned secondary dispersive

element - the diffraction grating - as introduced in Sec. 6.1 at the output of the VIPA etalon.

For frequencies separated by one VIPA FSR, the diffraction grating disperses them in the hor-

izontal dimension, converting the superimposed frequencies into many parallel, slightly-tilted

stripes separated horizontally by one VIPA FSR. The combination of VIPA and diffraction

grating converts the optical frequency comb beam into a two-dimensional spectrograph with

complex ‘wrapping’ behaviour as summarised in Fig. 6.6 [144,257,260].

In the ideal case, each comb mode within a vertical stripe is separated and fully resolved

into the repetition rate of the comb (250 MHz in the case of this thesis). Additionally,

each of the modes in the horizontal direction is separated by one VIPA FSR (∼50 GHz for

these experiments). Each comb mode appears once per VIPA FSR, per VIPA order. One

consequence of this is the presence of additional comb modes above those shown in Fig. 6.6,

however, this is merely repeated information [144,260].

The comb modes with frequencies f0 and f0 + FSR as shown in Fig. 6.6 are modes with the

same input (and hence output) angles with regards to the VIPA etalon. Both frequencies (f0

and f0 + FSR) fulfil the VIPA dispersion relation (Eq. 6.7) simultaneously and are spatially

superimposed until their separation by the diffraction grating in the horizontal dimension.

Additionally, the mode of frequency f0 + FSR appears for a second time in the vertical

direction as a member of the next VIPA order as shown. The drastically different scales

for the VIPA FSR in the horizontal and vertical axes is due to the much higher dispersion
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Figure 6.6: The output of the spectrometer system for a frequency comb input is a two-
dimensional array of comb modes with frequency indexing as shown. The y-
axis, dictated by the VIPA, has a much higher angular dispersion than the x-
axis, controlled by the diffraction grating. The comb modes labelled A and B
are the same mode, with the same frequency, separated by one VIPA FSR. In
this case, full resolution of each comb mode has been assumed for clarity. It
has also been assumed that the VIPA FSR is an integer multiple of the comb
repetition rate [144,257,260].

of the VIPA compared to the diffraction grating. This shows the reason for including the

VIPA etalon in the spectrometer over two orthogonal diffraction gratings. Additionally, the

wrapping behaviour of the VIPA precludes the use of two etalons arranged orthogonally, as

unravelling the coupled behaviour of two etalons for the sheer number of frequencies in an

optical frequency comb would be problematic. Discussion so far has focused on a system

in which each comb mode is individually resolvable. Though the dispersion of the VIPA is

much larger than that of the diffraction grating by a factor of 10-20, the comb modes spaced

by 250 MHz are not able to be resolved by the VIPA, with an experimentally measured

resolution of 2 GHz [255,257,259]. For this reason the modes of the frequency comb are often

rarefied during the course of this thesis by use of an optical cavity as will be discussed in

Chapter 7 to produce fully-resolved modes. After the combination of VIPA and diffraction

grating disperses the comb light into a two-dimensional array, the dispersed beam is sent to

the final element of the spectrometer - the InGaAs camera.
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6.3 InGaAs Camera

The camera is the final component of the spectrometer, and is used to record the images

that are later processed into spectrographs. Care must be taken with the calibration and

use of the camera to ensure accuracy of the images and the final results, and the camera

chosen carefully to ensure high sensitivity in low photon-count regimes. The camera used

throughout this thesis is a Xenics XEVA-1.7-320 InGaAs Charged-coupled Device (CCD)

array, with sensitivity between 0.9− 1.7µm. The distance between the centres of each pixel,

known as the pixel pitch, is 30µm for this camera [261]. Each of the 320× 256 pixels is formed

of a InGaAs photodiode bonded to a CCD. The InGaAs photodiode converts an incoming

photon into charge, which is then collected in the potential ‘well’ of the CCD. This collection

continues for an amount of time known as the integration time, which may be changed to

suit the amount of light falling on the camera. After this integration phase the charges are

read out of the wells of the CCD [262].

Readout of CCD arrays is performed either column-wise or row-wise depending on the

arrangement of electrodes within the array. Assuming the CCD is read column-wise beginning

with the right-most row, the readout begins with the charges being shifted one well to the

right, pushing the right-most column off of the array and onto the serial register column.

The serial register column is then amplified and read one pixel at a time by an Analogue-to-

Digital Converter (ADC). The process is repeated, shifting and reading out one column at

a time, until all pixels have been read out [263,264]. Each pixel well is capable of handling

only a certain amount of charge, known as the full-well capacity, and exceeding this amount

leads to imaging problems that are discussed in the next section [264,265].

6.3.1 Pixel Saturation and Leakage

The CCD of each pixel may only collect up to the full-well capacity of charge. If the amount

of charge exceeds this amount, then the extra charge may leak into adjacent pixels in the

row [265]. This scenario should be avoided particularly when imaging high-contrast scenarios

within a confined number of pixels as is the case in this thesis.

In addition to this type of saturation, the readout ADC may also become saturated when

the conversion of the analogue number to a digital one requires a digital number larger than

is able to be stored in the available number of bits [264]. The camera used in this thesis

is 12-bit. The maximum number able to be stored in an n-bit unsigned integer is 2n − 1

assuming counting beginning at zero [266]. Therefore the maximum digital number able to

be handled by the camera used in this thesis is 212 − 1 = 4095. Care must be taken to avoid

these two saturation scenarios, with the integration time adjusted to ensure operation away

from these regimes. Conversely, the integration time should not be drastically reduced, as

this compromises the signal-to noise ratio of results. However, even with no photons falling

onto the camera there is signal recorded across the CCD array, due to what is known as dark
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current.

6.3.2 Dark Current

Dark current is the result of operating a CCD at a temperature above 0 K, and occurs

without the presence of light on the camera. Thermal excitation causes electrons from the

bulk material part of the CCD array to become free, and some may be collected in the

potential wells of the pixels [265]. This results in a charge in each pixel even in the absence

of light, and is indistinguishable from the real photo-electrons. There is typically some spatial

variation across the array with regards to this dark current, which results in a background

pattern overlay on the measured image for a constant temperature and integration time [264].

As this dark current is thermal in nature, cooling the CCD array reduces the generation of

free electrons and therefore the dark current [265,267]. For this reason the camera used in

this thesis makes use of active cooling. Additionally, a reduction in integration time gives less

time for this charge to accumulate, but must be balanced with adequate signal to noise [264].

In order to remove the residual effects of the dark current from images, dark frames - those

in which no light falls onto the camera - were acquired with integration times matching the

‘bright’ image. The dark image was subtracted from the bright image, resulting in a dark-

current corrected final image [264]. This process is shown in Fig. 6.7. Additionally, there

is some variation between the response of each pixel, and a certain proportion will respond

abnormally. These pixels are known as dead or bad pixels.

cba

Figure 6.7: a) The raw bright image from the experiment, b) the raw dark image ac-
quired at the same integration time, c) the bright image with the dark im-
age subtracted to remove the effects of the dark current. Some dead and bad
pixels may be seen in all three images, highlighted in pink in b). A graph of
the horizontal cross section for vertical pixel 150 (bottom) shows the effects of
dark current and its correction.
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6.3.3 Dead Pixels and Bad Pixels

Each CCD array will posses some pixels that respond abnormally. If a pixel is completely

unresponsive to light falling upon it, it is known as a dead pixel. Such pixels often return zero

or infinite values when readout is attempted. Another type of abnormal pixel is commonly

referred to as a bad pixel. These pixels are those that still respond to photons, but not in

a consistent manner that is useful. Such pixels include those that flicker rapidly between

random values, or have such high background values that the dynamic (useful) range of the

pixel is reduced to little worth [265]. The native software of the camera attempts to remove

these pixels in a ‘bad pixel map’ and replaces their values with the average of the surrounding

pixels [268]. When the camera was interfaced with the acquisition code, this was abandoned

in favour of removing the dead pixels from the final spectral results, as their location is

extremely evident at that stage. In addition to dealing with the dead pixels, the acquisition

code also corrects for slight nonlinearities in pixel response.

6.3.4 Nonlinearity Correction - Averaged Correction

CCD arrays have extremely good linearity over the majority of their range, with the degree

of nonlinearity increasing as saturation conditions are approached [265,267]. However, for

quantitative imaging such as that performed in this thesis, the degree of linearity must be

exceptionally high so that the molecular absorption features are of the correct depth. This

is particularly an issue in regions of the camera where the absorption features are strong.

For single-shot images and the spectra generated from them, a ‘screen-averaged’ linearity

correction is adequate to ensure the correct depths of the absorption features.

To determine the correction curve, many images were acquired (bright along with their

dark counterparts with matched integration times) for different laser powers directed at the

camera with the same integration time. The camera was equipped with a Teflon diffusion

screen and the laser was directed out of a fibre with no collimator connected, such that

the laser light was relatively evenly spread across the CCD array. A fibre-coupled variable

attenuator allowed control of the beam power incident on the camera, and was measurable

with a photodetector. As energy is defined as power multiplied by time, the average pixel

value recorded may be assigned an energy value, resulting in the correction curve seen in

Fig. 6.8. Note that the dark background removal reduces the dynamic range of the camera.

If the camera response was linear, this response function would be a straight line. However,

a fifth-order polynomial fit to this line makes the nonlinearity apparent. In order to correct

the images with this averaged correction, as is performed in Chapter 10, the dark background

must first be subtracted. A custom program then takes the dark current corrected images

and uses the fit to Fig. 6.8 to return the corrected energy for each pixel value. This results in

a high degree of linearity, as is also demonstrated by the linearity of returned concentration

values of 12CO2 over the entire concentration (and hence absorption depth) range as examined
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Figure 6.8: The camera nonlinearity correction curve resulting from taking a screen-
average of pixel values for each measured optical power and a fixed integra-
tion time. Note that the dark background subtraction makes the graph pass
through zero, but reduces the dynamic range of the camera.

in Chapter 10. It is only when averaging many hundreds to thousands of results that the noise

is suppressed to levels in which the failure of this type of nonlinearity correction becomes

apparent, pointing to the need for a pixel-by-pixel approach.

6.3.5 Nonlinearity Correction - Pixel-By-Pixel

Each pixel in the CCD array responds in a slightly different manner. While an average

nonlinearity correction is adequate in most scenarios, the different responses of each pixel

becomes apparent in the spectra produced from many images averaged together, where dif-

fering the molecular absorption relative peak heights become distorted on the ∼ 0.5% level.

Again returning to the definition of energy as power multiplied by time, the nonlinearity

correction curve may be acquired for each pixel by maintaining the power level on the cam-

era during calibration and changing the camera integration time. This method was applied,

producing 1400 calibration points for each pixel from 1400 images taken over the entire range

of integration times used with the camera (100 − 140, 000µs). The response for each pixel

was then fitted with a seventh-order polynomial. This resulted in 320× 256 linearity correc-

tion polynomials, with their coefficients stored in a matrix for later correction computation

efficiency.
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Top Row
Middle Row
Bottom Row
Camera Average

Figure 6.9: Nonlinearity correction curves for 15 pixels spread across the CCD array com-
pared to the screen-average correction (black solid line). Each pixel is colour
coded to its correction graph (inset), shown with the top row (solid line),
middle row (short dash) and bottom row (long dash) corrections. Each pixel
requires a different correction for nonlinearity, applied after dark background
subtraction.

The correction is then applied in the same way as for the averaged case, except with each

pixel having its own correction polynomial. The pixel-to-pixel variation in the nonlinearity

correction is appreciable, as can be seen in Fig. 6.9, which shows the correction polynomials for

15 individual pixels spread across the CCD array compared to the old correction. The pixel-

by-pixel correction to the nonlinearity was applied to achieve the results in Chapter 11. Now

that the final piece of the spectrometer has been introduced, operation of the spectrometer

as a whole and may be considered, particularly how the individual pictures are converted

into more traditional absorption spectra.

6.4 Converting 2D Images into Spectra

The three vital components of the VIPA spectrometer introduced in this Chapter - the

diffraction grating, VIPA etalon, and the InGaAs camera, combine together to form the

VIPA spectrometer as seen in Fig. 6.1. Communication with the camera and control of

light reaching the spectrometer is coordinated by a series of wrapper functions called by an

overarching Matlab script. This script controls the optical shutters on each of the possible

spectrometer paths and all communications with the camera including automatic integration

time adjustment and image acquisition. The set of images are then converted into a traditional

spectrum. At a minimum, four images are required to produce this spectrum - a bright and
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dark image of the comb passing through the gas sample (the signal path) with matched

integration times, and the same for a reference path that bypasses the gas and is used for

optical comparison.
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Figure 6.10: a) A reference path image after background subtraction and nonlinearity
correction. b) The same image after matched filtering, with each VIPA ver-
tical stripe collapsed down into one horizontal pixel. c) The signal path im-
age after the same filtering has been applied. d) The filtered transmission
image created by the division of the filtered signal image by the filtered ref-
erence image. Any errant optical aberrations and background issues com-
mon to the reference and signal paths are removed by this division, result-
ing in a clear molecular absorption signature (dark regions) against a clean
background (white). This image may then be unwrapped into a traditional
absorption spectrum as seen in Fig. 6.11.

As mentioned in Subsection 6.3.2, the first step is to subtract the dark images to reduce

the effects of dark current. Each image must then be corrected for nonlinearities in the pixel

response, either by a screen-averaged correction (Subsection 6.3.4) or the pixel-by-pixel case

(Subsection 6.3.5). What happens next depends exactly on the comb light presented to the

spectrometer and whether the spectrometer is able to fully resolve the frequency comb. In

the case where the full comb is presented and the spectrometer is not able to resolve the

individual comb modes, the images consist of a series of bright slightly-tilted vertical stripes.

The tilt of the stripes is found using a spatial Fourier transform, from which the centres of

each stripe may be found across the entire image. Fitting indicates that the horizontal cross-

section of each stripe is well approximated by a Gaussian profile that spans several pixels,

centred on the previously found stripe centres. A series of Gaussian functions are created for
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each stripe in each pixel row, and are used as matched filters for both the signal and reference

images. This results in one representative brightness point for each row of each stripe as seen

in Fig. 6.10b. The use of matched filtering minimises any possible cross-talk effects between

adjacent stripes to below the level of measurement noise, and maximises the signal to noise

ratio.

The set of matched filters derived from the reference path image are then applied to the

corresponding background and nonlinearity-corrected signal path image (Fig. 6.10c), resulting

in a filtered image for each path. Division of the filtered signal image by the filtered reference

image divides out optical aberrations that are common to both paths. This results in a

transmission image with clear molecular absorption features, and a clean background as seen

in Fig. 6.10d. The final filtered transmission image may then be unwrapped and plotted to

deliver the traditional molecular transmission spectrum. This image analysis process converts

the bright vertical VIPA stripe images into an absorption spectrum, with each VIPA stripe

contributing 50 GHz of the spectrum as seen in Fig. 6.11.

This chapter has focused on acquiring a correctly calibrated absorption measurement of

the gas. In the next chapter we consider how to obtain a high quality mapping of position

on the CCD array to frequency.
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Figure 6.11: Each VIPA stripe contributes one VIPA FSR (50GHz) to the final trans-
mission spectrum. Each VIPA stripe has been colour-coded to match the
segment of transmission spectrum it becomes after the image analysis pro-
cess. Every second FSR segment is dashed for clarity. There are typically on
the order of 60 VIPA stripes in one image.



Chapter 7

Frequency Axis Calibration and Comb

Decimation: Fabry-Pérot Optical Cavities

Optical cavities are useful tools for both spectral absorption enhancement by increasing the

interaction path length or, as used in this thesis, to perform spectral filtering [269]. The

physical arrangement of the cavity mirrors that form the optical resonator along with their

reflectivity are of particular importance to understand the spectral filtering behaviour of an

optical cavity. This chapter focuses on the design and behaviour of Fabry-Pérot (FP) cavities,

and their application as spectral filters to enable relative frequency calibration of the VIPA

spectrometer when used with an optical frequency comb.

7.1 Cavity Construction and Stability

In a similar fashion to the resonant cavities discussed in the creation of an optical frequency

comb in Chapter 5, the FP cavity is constructed of two high-reflectivity mirrors spaced by

a specific distance L [227,228,230]. A partially-reflective input coupler (one of the mirrors)

allows light into the cavity, which then traverses the cavity length, and strikes the far mirror.

At this point a portion of the light leaks out the far mirror while the majority is reflected back

toward the input mirror, interfering with the oncoming light. In order for light to resonate

within the cavity this interference must be constructive, which occurs when the cavity length

is equal to an integer number of half-wavelengths. That is, when

L = m
λ

2n
, (7.1)

where m is a positive integer (the resonant longitudinal mode order) and n is the refractive

index of the intracavity medium [204,224,227,230].

7.1.1 Resonator Stability

The stability of an optical cavity is related to the divergence of light within the cavity.

Consider a cavity with two opposing flat mirrors. Initially, resonant light bounces between

the mirrors. However, due to diffraction the beam diverges, growing wider with every pass

of the optical cavity. Eventually its width exceeds the dimensions of the mirrors and is

lost [162,204]. The use of two curved mirrors with radii of curvature R1 and R2 respectively

ensure that the beam is periodically refocused within the cavity and so never exceeds the
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mirror dimensions. If this is the case, the resonator is called stable [204]. The stability of a

FP optical cavity is summarised by its stability criterion:

0 ≤ g1g2 ≤ 1 (7.2)

in which g1 and g2 are the stability parameters of the two mirrors that form the cavity

[202,204,228,230]. The stability parameters are related to the mirror separation and radii of

curvature through

g1 = 1− L

R1
, g2 = 1− L

R2
. (7.3)

In the case of a symmetric cavity where the mirrors are identical (R1 = R2), this simplifies

further to 0 ≤ g2 ≤ 1. Any resonator design that fulfils Eq. 7.2 will be stable.

7.1.2 Construction

The cavity used throughout this thesis is of symmetric construction with L = 1.58 cm, which

may be finely tuned by use of a piezoelectric transducer affixed to one mirror, and coarsely

tuned by screwing the second mirror in and out of the main cavity housing. Both mirrors have

a radius of curvature of R =50 mm and a reflectance r2 = 98± 0.75 %, yielding a stability

criterion of a g2 = 0.468. Both mirrors are plano-concave with a 12.7 mm diameter. Now

that a stable optical cavity has been created, we must now consider the behaviour of such a

cavity in terms of its output.

7.2 Output of a Fabry-Pérot Optical Cavity

When considered in the frequency domain, the transmission function of a FP cavity, T (f), is

a series of peaks with strictly defined width and frequency-separation [124]. There are two

important parameters that govern T (f), the first of which is the free spectral range.

7.2.1 Free Spectral Range

The free spectral range (FSR) is the separation in frequency between adjacent transmission

peaks (or longitudinal modes) of the cavity [124]. Equivalently, it is the difference between

adjacent longitudinal mode orders m in Eq. 7.1, which when converted to frequency gives the

defining equation of the FSR:

FSR =
c

2nL
(7.4)

in which n is the intracavity refractive index, c is the speed of light in vacuum, and L is the

cavity length [227]. The rarefication cavity is specifically-designed to have an FSR of 9.5 GHz

for optimal spectral filtering of the frequency comb. The final parameter required to under-

stand the transmission function of the optical cavity is the bandwidth of each transmission

mode, which is determined by the finesse.
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7.2.2 Cavity Full-width-at-half-maximum and Finesse

The finesse F of an optical cavity is the ratio of the separation between the transmittance

peaks of the optical cavity - i.e. the FSR - to the full-width-at-half-maximum (FWHM)

of said peaks [124]. For a spectral filter, we are interested in the FWHM of the cavity

transmission function at different mode orders more so than F , so the equation for F is often

seen as [228,229]:

FWHM =
FSR

F . (7.5)

The finesse and hence FWHM is related to the reflectance of the mirrors, assuming a sym-

metric cavity, by

F =
πr

1− r2
. (7.6)

The relation between the FSR, F , and FWHM of the transmission peaks for a FP optical

cavity may be seen in Fig. 7.1 [204,228,229].
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Figure 7.1: The normalised Fabry-Pérot transmission function T (f) for various F values
for cavity longitudinal mode order m. Increasing F produces narrower trans-
mission features. The FSR is also shown.

The optical cavity must therefore be carefully designed in terms of the length, curvature

and coatings of the mirrors, and refractive index of the intracavity medium in order to

achieve the desired result. For the required comb rarefication presented in this thesis, the

finesse must be relatively low, while the FSR must be carefully controlled to equal a specific

integer multiple of the optical frequency comb’s repetition rate.



88 Frequency Axis Calibration and Comb Decimation: Fabry-Pérot Optical Cavities

7.2.3 Optical Cavity Transmission Function - Spectral filtering

One of the major uses of optical cavities is their ability to act as spectral filters, whereby they

only transmit those frequencies that are resonant with the cavity. As seen in Chapter 6, the

VIPA spectrometer does not have sufficient resolution to resolve individual comb modes. This

prevents accurate assignment of the frequencies of the comb to positions on the camera, and

precludes a calibrated frequency axis. However, use of an optical cavity to sufficiently rarefy

the comb such that the spectrometer may resolve individual comb modes restores this ability.

With such knowledge, a relative frequency may then be assigned to each comb mode on the

rarefied image captured by the spectrometer, and an accurate frequency approximation made

for the non-rarefied images. In order to achieve this, the FSR of the cavity must be set to an

integer multiple of the comb’s repetition rate frep:

FSR = nfrep (7.7)

where n is a positive integer [269]. Through experimental investigation, it was found that

there are two values of n for which optimum comb mode separation occurs with minimum

cross-talk with the current apparatus: n = 36 and n = 38, corresponding to FSRs of 9GHz

and 9.5GHz respectively. Other values of n such as n = 37 and n = 40 that are within

tuning range of the cavity produce inadequate separation of transmitted modes with respect

to adjacent VIPA stripes. The cavity-rarefication process and result is summarised in Fig. 7.2.

Cavity Rarefication (n = 3)

Unfiltered Comb Modes

frep 

n = 36

Figure 7.2: The process and imaged results of rarefying the frequency comb using an op-
tical cavity.

Additionally, the finesse of the cavity must be carefully chosen. As seen in Fig. 7.1, if

F is too low, the large wings of the cavity transmission function do not approach zero. If

such as low finesse cavity were used with the comb, adjacent comb modes would not be

completely suppressed, leading to adjacent comb modes leaking through together with the

targeted modes. Conversely, increasing F reduces the range of comb modes simultaneously

resonant with the cavity (see AppendixE).
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7.2.4 Cavity Transmission Function

The full expression for T (f) of a Fabry-Pérot cavity is known as the Airy Function:

T (f) =
Tmax

1 +
(
2F
π

)2
sin2

(
πf
FSR

) (7.8)

where Tmax is the maximum transmission fraction of the cavity at resonance [124,221,269].

Equation 7.8 may be used to determine the minimum value for F to achieve adjacent comb

mode rejection is at least 98%. Setting T (f) = 0.02 (2% in transmission) at a frequency

f = 250MHz, with Tmax = 1 and FSR = 9.5GHz gives F = 133. Therefore a finesse of at

least 133 is required to achieve 98% rejection of adjacent comb modes. Rearrangement of

Eq. 7.6 indicates this is achieved with a mirror reflectance of r2 ≥ 97.7%. The mirrors that

form the cavity have a stated reflectance of r2= 98%± 0.75%, producing an expected finesse

of F = 155+92
−42 within the wavelength range of 1450-1650± 10 nm, which falls within the errors

of the experimentally measured value of F= 192± 5 [270]. This results in an optical cavity

with suitable adjacent comb mode extinction and allows rarefication of the optical frequency

comb, with the result at the spectrometer shown in Fig. 7.3. The frequency spacing between

each transmitted comb mode is then the FSR of the cavity. Combined with knowledge of

the spatial locations of unrarefied VIPA lines this can then be used to generate a calibrated

frequency axis across the whole image, and therefore the transmission spectrum. However, in

order for the cavity to be used to generate a rarefied frequency comb the FSR of the cavity

must be maintained. This is achieved by active stabilisation of the length of the cavity.

n = 36

Figure 7.3: The rarefied optical frequency comb with n = 36 as imaged by the spectrom-
eter (greyscale), with the positions of unrarefied VIPA lines overlayed. The
rarefied image, combined with knowledge of the VIPA line position in the un-
rarefied case, allows generation of a calibrated frequency axis in transmission
spectra.
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7.3 Rarefication Cavity Stabilisation

In order to ensure maximum and stable transmission through the rarefication cavity, an

active feedback loop is employed to maintain its length. As mentioned in Sec. 7.1, one of

the cavity mirrors is mounted on a voltage-controlled piezo-electric transducer, which allows

rapid control of the length of the cavity over a short range. If the length of the cavity is

then slowly swept, a characteristic envelope with fine structure may be measured using a

photodetector at the output of the cavity. The output of the photodetector during one such

scan is shown in Fig. 7.4.
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Figure 7.4: Rarefication-cavity transmission as a function of cavity length detuning from
L = c/ (2FSR) for FSR= 9.5 GHz. Positions A and B denote transmission
of the 1560 nm laser by the cavity, and there are 38 local maxima between
A and B corresponding to optimal transmission of the 38 unique decimated
comb subsets with 9.5 GHz mode separation. Position C corresponds to the
maximum number of comb modes being resonant with the optical cavity at
an FSR of exactly 9.5 GHz.

In order to deduce the FSR of the cavity, a 1560 nm laser (Koheras Adjustik) is introduced

to the cavity along with the comb, producing obvious disruptions to the smoothly varying
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fine structure features in Fig. 7.4. The regions between two such disruptions is the FSR of

the cavity, and there are 38 such peaks between each transmission of the 1560 nm laser. A

detailed discussion about the generation of this envelope and its fine structure may be found in

AppendixE. In simpler terms and assuming a perfect filter cavity, the fine structure observed

in Fig. 7.4 corresponds to the 38 individual comb subsets (for a cavity FSR of 9.5GHz) each

separated by frep.

Optical Frequency

Optical Frequency

High 
Signal

Low 
Signal

Figure 7.5: Top: matching every 3rd mode of the optical frequency comb (dotted) with
the modes of an idealised filter cavity (solid), in a position corresponding to
good alignment, a high signal at the photodetector at the cavity output, and
a peak in Fig. 7.4. Bottom: the filter cavity’s passbands shifted to poor align-
ment and low photodetector signal, corresponding to a trough in Fig. 7.4.

As seen in Fig. 7.5, when the modes of the frequency comb align well with the maxima of

the idealised cavity transmission function for every nth comb mode, a high signal is produced

at the photodetector. This corresponds to a peak in the fine structure and the majority of

a cavity-rarefied image being ‘bright’ (though still decimated). Conversely, when the cavity

length is changed slightly, producing a poor alignment between the comb modes and cavity

transmission function, the photodetector signal is low and a trough in Fig. 7.4 results. There

will be 38 such peaks in the case of a cavity FSR of ∼ 9.5GHz, with an optimally tracking

FSR of 9.5GHz corresponding to position C in Fig. 7.4. In order to achieve the largest

number of rarefied modes simultaneously resonant with the cavity for the chosen FSR, the

photodetector signal at the output of the cavity is used to generate an error signal for a

cavity dither lock to maintain cavity transmission around the global maximum (labelled C)

in Fig. 7.4. The slow scan is disabled while locking and the drop off of the overall envelope

in Fig. 7.4 is explained in AppendixE.

The length of the FP cavity is dithered around the global maximum position using a

10 kHz signal generated by an Arduino Due board. We use this board to also implement

the cavity stabilisation. A photodetector at the output of the cavity detects the cavity

transmission power, which is directed through a band-pass filter before sampling by the

Arduino board. The Arduino then digitally mixes this signal with a copy of the 10 kHz dither

to demodulate the photodetector signal before a low-pass filter is applied. This generates an

error signal with zero crossings at each of the 38 cavity transmission maxima of Fig. 7.4. This
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error signal is then passed through a proportional-integral (PI) loop filter in the Arduino

before being combined with the 10 kHz dither signal, which are then sent together to the

piezo-electric transducer on which one of the cavity mirrors is mounted. In this way, any

deviation from the maxima of cavity transmission is corrected via the feedback loop moving

the cavity mirror, maintaining a high and stable cavity transmission.

This rarefication cavity and its stabilisation system is used for each of the experiments

presented in Part IV, though the manner in which the cavity is utilised in each experiment

differs greatly. It was most commonly used to generate a calibrated frequency axis, but

has also seen use to effectively produce a comb with a larger frep for fully-resolved comb

spectroscopy. The stabilisation code running on the Arduino is presented in Appendix G.

7.3.1 Spectrometer Instrumentation Broadening

Until now, we have assumed that the measured spectrum is determined by the molecules

themselves responding to their local environment. The experiment actually measures the con-

volution of the molecular response with that of the instrumental response function [271,272].

The rarefication cavity allows the instrumental response function to be measured and quanti-

fied by fitting each comb mode as analysed by the image analysis code with a 2D Voigt profile

across the entire CCD array. In this thesis, the instrumental broadening was measured to

have both Gaussian and Lorentzian components of 0.01± 0.001 cm−1 (1/e half-width) and

0.006± 0.001 cm−1 (half-width-at-half-maximum) respectively, as measured by this fitting of

rarefied comb images.
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Chapter 8

A Quantitative Mode-resolved Frequency

Comb Spectrometer

This chapter is based on the published article:

N. Bourbeau Hébert, S. K. Scholten, R. T. White, J. Genest, A. N. Luiten, and J. D. Anstie,

“A Quantitative Mode-Resolved Frequency Comb Spectrometer”, Optics Express 23, 13991-

14001 (2015).

8.1 Overview and Motivation

The aim of this paper was to demonstrate the direct comb spectroscopy technique described

in Chapter 6. Additionally, new image processing software was needed and developed in the

course of this paper to convert images of the optical frequency comb as they appeared at

the output of the spectrometer into more traditional molecular absorption spectra. VIPA

spectrometers had been used previously with optical frequency combs spanning different

spectral regions [144,260,273], however the larger repetition rate of such combs allowed for

immediate resolution of individual comb modes. This paper used a tunable rarefied version

of the comb to interrogate the sample by use of a Fabry-Pérot optical cavity. This allowed us

to overcome the VIPA resolution limit and provide higher-resolution spectra. Other cavity-

comb systems known as Vernier comb spectrometers had seen use previously, with a dispersive

spectrometer based on moving optical elements rather than a VIPA spectrometer [146,147].

Additionally, the cavity-stabilisation procedure used in this paper and many that follow

was developed. More papers performing spectroscopy with a rarefied optical frequency comb

as described in this paper were published [274] and it remains an active field of research. The

performance of the spectrometer in terms of the expected line centres and line widths of the

hydrogen cyanide sample was verified by comparison to previous high-precision absorption

measurements in the same molecular absorption band. Additionally, the rapidity of direct

comb spectroscopy was demonstrated, with a full spectrum of 250 MHz resolution acquired

in under 8.2 seconds.

The stabilisation procedure for the optical cavity and knowledge of the spatial dispersion

behaviour of the VIPA spectrometer were utilised in future papers presented in upcoming

chapters. Additionally, the analysis code from this paper was developed further after the

publication of this paper so that the rarefied optical frequency comb could be used to cali-
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brate the frequency axis in measurement cases below the VIPA resolution limit. This is also

demonstrated in future papers.

8.2 Statement of Contribution

8.2.1 Conceptualisation

The idea of using a tunable optical cavity to produce a rarefied optical frequency comb with

an essentially increased repetition rate was conceptualised by James Anstie. The method to

achieve this was conceptualised by James Anstie and Sarah Scholten.

8.2.2 Realisation

The first iteration of the spectrometer and analysis code was created by James Anstie and

Richard White. The bulk amount of construction, design, and characterisation of the re-

maining optical experiment was performed by Sarah Scholten, with modification by Nicolas

Bourbeau Hébert. The initial stabilisation system was joint effort between James Anstie and

Sarah Scholten, with the final Arduino-based locking system the work of Nicolas Bourbeau

Hébert under the supervision of Jérôme Genest and James Anstie. The theory of the cav-

ity filtering behaviour as to how the cavity-rarefication functions was a joint effort between

James Anstie, Richard White, and Sarah Scholten. The data acquisition procedure, initial

camera interface, and a significant addition to the data analysis code was written by Nicolas

Bourbeau Hébert under the guidance of Jérôme Genest and James Anstie. Nicolas Bourbeau

Hébert additionally acquired the data that appears in the published manuscript.

8.2.3 Documentation

This paper was written primarily by Nicolas Bourbeau Hébert, James Anstie, and Jérôme

Genest, with editing by all other authors.
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Sarah K. Scholten
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Abstract:
We have developed a frequency-comb spectrometer that records 35-nm
(4 THz) spectra with 2-pm (250 MHz) spectral sampling and an absolute
frequency accuracy of 2 kHz. We achieve a signal-to-noise ratio of ∼400 in
a measurement time of 8.2 s. The spectrometer is based on a commercial
frequency comb decimated by a variable-length, low-finesse Fabry Pérot
filter cavity to fully resolve the comb modes as imaged by a virtually imaged
phased array (VIPA), diffraction grating and near-IR camera. By tuning the
cavity length, spectra derived from all unique decimated combs are acquired
and then interleaved to achieve frequency sampling at the comb repetition
rate of 250 MHz. We have validated the performance of the spectrometer
by comparison with a previous high-precision absorption measurement of
H13C14N near 1543 nm. We find excellent agreement, with deviations from
the expected line centers and widths of, at most, 1 pm (125 MHz) and 3 pm
(360 MHz), respectively.
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1. Introduction

Molecular absorption spectroscopy has many applications, including: environmental monitor-
ing [1, 2, 3], measurement of contaminants in industrial processes [4, 5], human breath analy-
sis [6, 7, 8], detection of contraband and warfare agents [9] and fundamental science [10]. There
are several mature competing techniques for measuring molecular absorption spectra, includ-
ing tunable laser spectroscopy, cavity-ringdown spectroscopy (CRDS) and Fourier-transform
infrared spectroscopy (FTIR). The best approach depends on the requirements of the applica-
tion and there is usually a trade-off between measurement parameters such as spectral coverage,
sensitivity, spectral resolution, spectral accuracy, measurement speed, simplicity and cost.



In recent years, frequency combs have been demonstrated to be ideal sources for absorption
spectroscopy because they combine broad spectral coverage, dense spectral sampling, high
accuracy and fast measurement [11]. Frequency combs allow simultaneous interrogation at
thousands of precisely known optical frequencies and – as they are coherent sources – resonant
enhancement within a high-finesse cavity can be employed for high sensitivity [12].

Several methods have been developed to measure absorption spectra using frequency combs;
most notably: multiheterodyne detection using two frequency combs with slightly different
repetition rates [13, 14, 15, 16, 17]; vernier detection using a resonant optical cavity to scale
the comb’s repetition rate [18, 19, 20, 21]; and using dispersive elements such as a diffraction
gratings and virtually imaged phase arrays (VIPAs) [22, 7]. These three methods offer similar
performance in terms of spectral coverage, spectral sampling density and measurement time.
The figure of merit introduced by Newbury et al. [23] (the product of the SNR, normalized
by the square root of the acquisition time, and the number of resolved frequency elements) is
typically ∼ 106−107 for these spectrometers.

The combination of a VIPA, a diffraction grating and an imaging array is attractive because
it requires only a single frequency comb and it minimizes the number of moving parts. To date;
however, VIPA-based spectrometers have only been able to resolve decimated comb modes [22,
24] or have been unable to resolve comb modes at all [7, 3]. For the latter, the spectrometer
cannot take advantage of the inherent accuracy and stability of the comb mode frequencies,
negating that benefit of using a comb.

We have developed a quantitative frequency-comb absorption spectrometer that delivers
broad spectral coverage (∼4 THz) and utilises the full spectral sampling and frequency accu-
racy available from a stabilised optical frequency comb. It is based on a commercial frequency
comb in conjunction with an imaging system consisting of: VIPA, diffraction grating and near-
IR camera. The imaging system has a resolution of 1.2 GHz; so, in order to fully resolve the
250-MHz-spaced comb modes, an external resonant optical cavity with a free spectral range
(FSR) of ∼9.5 GHz is used as a tunable spectral filter to decimate the frequency comb modes,
producing a 2-dimensional array of well separated bright spots when imaged by the camera. A
fully automatic control system dynamically locks the filter cavity to the frequency comb and
sequentially measures all unique decimated comb subsets, which are interleaved to produce
complete spectra with 250-MHz spectral sampling over ∼4 THz in a total measurement time
of 8.2 s. The comb is locked to an ultra-stable laser that gives stability and accuracy of the
frequency axis of <10 Hz and <2 kHz, respectively, for measurement times of 1 – 10 s.

The spectrometer requires only one frequency comb, unlike similarly performing dual-comb
spectrometers, and its only moving part is a PZT-scanned filter-cavity mirror, making it a useful
tool for applications requiring fast, quantitative spectra. In conjunction with new portable high-
performance frequency combs [25], this automated system may easily evolve into a useful
tool for field applications and is consistent with world-wide efforts to bring frequency-comb
applications out of the metrology laboratory.

The spectrometer’s performance was evaluated by measuring the 2ν3 vibrational overtone
band of H13C14N centered at ∼1543 nm. The measured line centers and widths are in excellent
agreement with a previous high-precision measurement.

2. Methods

2.1. Optical System

Figure 1 shows the experimental setup. The frequency comb (Menlo Systems FC1500) has a
repetition rate of 250 MHz and spans ∼1500 – 1600 nm. Its carrier-envelope-offset frequency
( fCEO) and repetition rate ( fRR) are locked to a cesium beam clock and a cavity-stabilized
continuous-wave reference laser (NKT Koheras BoostiK E15), respectively. The resulting sta-



bility of each comb mode is ∼10 Hz for an observation time of 1 –10 s and its absolute fre-
quency is known to ∼2 kHz.

Fig. 1. Simplified schematic of the experimental system.

The frequency comb is combined with the reference laser, which provides a marker for cal-
ibrating the frequency scale. We use two optical paths alternately: a sample path that contains
a H13C14N reference cell at 100 Torr, and an empty reference path for calibration. Light from
the two paths is passed through an optical fiber to ensure they are colinear before introduction
to the imaging optics. The light is line-focused into the AR-coated access window of the VIPA
(Light Machinery). The VIPA is a specialized étalon with a free spectral range (FSR) of 50 GHz
and a finesse of ∼100 that disperses the comb light vertically [26]. To avoid frequency ambi-
guity, it is used in combination with a 600 lines/mm diffraction grating (Thorlabs GR25–0616)
oriented to disperse the light horizontally [22]. The resulting beam is imaged on an InGaAs
camera (Xenics Xeva-1.7-320). The camera captures just over one VIPA FSR in the vertical
direction and ∼35 nm (∼4 THz) of spectral width in the horizontal direction. The algorithm
used to extract the absorption spectrum from the image is described in detail in Section 2.3.

By measuring the vertical width of an imaged spot due to the reference laser, we estimated
the resolution of the VIPA spectrometer to be ∼1.2 GHz, which is significantly larger than the
comb mode separation (250 MHz). In order to resolve the comb modes, we use a variable-
length, low finesse (∼200) Fabry-Pérot cavity to decimate the comb. We chose a cavity FSR
(νFSR) of 9.5 GHz (transmitting every 38th comb mode) because it is significantly larger than
the spectrometer resolution and produces the optimum two-dimensional distribution of imaged
modes on the camera (see Fig. 5). A longer cavity would result in closer spacing of imaged
modes, leading to cross-talk in the extracted spectra. Scanning the cavity length allows access
to all unique subsets of 9.5 GHz-spaced decimated combs. However, as demonstrated in Fig. 2,
when detuned from the best match between comb and cavity, the pass-bands of the cavity
transfer function acquire an accumulating offset from the comb mode frequencies that reduces
the transmitted optical power of modes far from the center of the camera image. The finesse
of the cavity was chosen to provide enough selectivity to suppress unwanted comb modes, yet
was low enough to transmit sufficient optical power (P > 0.1Pmax) for all imaged modes when
maximally detuned from the best match.
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Fig. 2. Depiction of overlap of comb modes (blue vertical lines) with modes of a Fabry-
Pérot cavity with a FSR of 4× fRR, showing transmission of every fourth comb mode (c.f.
every 38th in the experiment). The red curve describes the best possible match between
comb and cavity. Scanning the cavity length allows transmission of the adjacent subset of
comb modes (orange), but transmission of modes far from the optimally matched mode (*)
is reduced.

2.2. Cavity Locking and Data Acquisition
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Fig. 3. Filter-cavity transmission as a function of cavity length detuning from
L = c/(2×νFSR). Positions A and B indicate reference laser transmission by the filter cav-
ity. The 38 local maxima between A and B correspond to optimal transmission of the 38
unique decimated comb subsets with 9.5 GHz mode separation.

Figure 3 shows the integrated cavity transmission (measured by the photodetector positioned
after the Fabry-Pérot cavity) as a function of cavity length. This curve is similar to previous ob-
servations [27, 28]. Local maxima occur when cavity resonances (separated by ∼9.5 GHz) are
optimally aligned with a 9.5 GHz subset of comb modes. The peak of the envelope corresponds
to νFSR = 38× fRR and, as the cavity is detuned from this optimum length, the increasing mis-
match between fRR and νFSR leads to lower transmission of some modes and thus a reduction
in the amplitude of successive maxima. The asymmetry of the envelope is due to dispersion



in the mirrors combined with an asymmetric distribution of comb power around the central
wavelength.

To measure a complete spectrum, we record two camera images (one for the sample and one
for the reference path) for each of the central 38 adjacent peaks in the cavity transmission pat-
tern in Fig. 3. A dither lock stabilizes the cavity length during the acquisition of each image to
ensure that the cavity transmission intensity profile for each image pair is identical which allows
accurate normalization. Coordinating the acquisition requires control of the cavity length, the
dither locking electronics and the camera triggering. Our control system is based on an Arduino
Due board, which provides sufficient flexibility to create a completely automated acquisition
system.

Figure 4 shows a schematic of the cavity length control and dither locking system. The Ar-
duino Due board has a program loop rate of 20 kHz. It generates a 10 kHz dither signal by
toggling a digital output at each program loop. The signal is filtered, amplified and sent to a
piezoelectric transducer (PZT) behind one filter-cavity mirror (also shown on Fig. 1). The am-
plitude of the resulting oscillation in the transmitted optical power is proportional to the local
derivative of the pattern in Fig. 3 and its phase indicates the sign of the same derivative. The sig-
nal from the photodetector (D) is band-pass filtered (BPF) and sampled by the Arduino, which
performs digital demodulation and low-pass filtering (LPF) to generate an error signal with
zero crossings at cavity transmission peaks. The error signal is passed to a digital proportional-
integral (PI) loop filter in the Arduino, the output of which is passed through an on-board 12-bit
digital-to-analog converter (DAC), attenuated to give fine control, and summed with the dither
signal. A second 12-bit DAC coarsely controls the cavity length to ensure the servo control
stays within its range. It is also used to step between cavity resonances.

Arduino Comb

FP
BPF D
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PZT

I

LPF
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Fine
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Fig. 4. Schematic of the locking system. The length of the Fabry-Perot (FP) filter cavity
is dithered at 10 kHz and the transmitted comb power is detected. The resulting signal is
used to lock the cavity length via a proportional-integral (PI) controller implemented on an
Arduino Due microcontroller.

The Arduino board also controls the automatic acquisition of the 38 consecutive pairs of
camera images. Digital outputs are used to cycle the position of the shutter between the sample
and reference paths (shown in Fig. 1) and trigger the camera. Sample and reference images
are acquired alternately using a camera integration time of 8 ms. Successive images are sep-
arated by intervals of 100 ms, dominated by the shutter settling time. The measurement time
for a complete spectrum (38 image pairs) is 8.2 s. By using a high-speed shutter, we expect the
measurement time would be reduced to less than 2 s.

2.3. Image Analysis

The modes of each decimated comb subset are dispersed vertically (by the VIPA) and horizon-
tally (by the diffraction grating) before being focused onto the InGaAs camera, yielding images
similar to that shown at the top left of Fig. 5. For the sample-path images, each bright spot



corresponds to a cavity-resolved comb mode with brightness dependent of the degree of ab-
sorption by the gas sample. The reference path image is required to normalize common-mode
brightness variations in the optical system. A sample image normalized by its corresponding
reference image is shown on the top right of Fig. 5 with the characteristic absorption finger-
print clearly visible. Each image pair (sample and reference) is analysed to extract a traditional
one-dimensional absorption spectrum.
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Fig. 5. Top left: Raw camera image showing resolved comb modes. The two brightest
spots correspond to the reference laser and horizontal yellow lines mark out one VIPA FSR
containing unique spectral data. Top right: Sample image normalized by its corresponding
reference image. Bottom: Interleaving multiple spectra derived from filtered comb subsets.
Eight adjacent subsets are shown here, with different colors for clarity. Adjacent points are
spaced by fRR = 250 MHz and points of the same color are spaced by νFSR = 9.5 GHz. The
fully reconstructed spectrum is outlined in grey.

The integrated power of each comb mode was determined by applying a matched filter to
the images. This step can be understood as a cross-correlation of the images with a kernel
based on a single imaged mode that best approximates the profile of all modes. The cross-
correlation is a weighted integration at all possible kernel positions, and thus the amplitude of
the maxima are proportional to the power of the respective comb modes. It can be shown that
the matched filter is the optimal linear technique to detect the presence of a signal contaminated
by white noise [29]. Therefore, the spots that are only partially transmitted by the cavity and
appear dimmer on the image are easily extracted from the image. The filter also serves to reduce
cross-talk from adjacent spots. For each image pair, the ratio of corresponding cross-correlation
maxima is computed to find the normalized transmittance of the corresponding comb mode.

The local maxima of the cross-correlation image closely correspond to the centroid positions
of the spots, allowing a very accurate determination of the position of each comb mode in an im-
age. Knowing the dispersion in both the vertical and horizontal directions, and keeping in mind
that adjacent modes are separated by precisely 38 fRR, allows the relative frequency of each im-
aged mode to be determined and an absorption spectrum for a single frame to be constructed.
Also, knowing that the subset of modes in each successive image pair is offset fRR from the
last, allows us to interleave a set of 38 consecutive spectra to reconstruct a full absorption spec-



trum, as shown in the bottom panel of Fig. 5. Due to environmental fluctuations affecting the
free-space beams, slight power fluctuations occur during the time interval separating the acqui-
sition of the reference and sample images. A robust (bi-square), first-order polynomial fit was
used to individually renormalize individual spectra before interleaving. Using a faster shutter
or reducing alignment fluctuations would eliminate the need for this step.

Finally, within each set of 38 consecutive image pairs there is a single pair that also shows
the reference laser (see Fig 5). If the position of the reference laser is used as a proxy for
the nearest comb mode, and the optical frequency of this mode is known, then an absolute
frequency can be assigned to every imaged mode. The optical frequency νref of the reference
laser was independently measured using a wave meter (HighFinesse WS/7) and the optical
frequency of the nearest comb mode, νn, was deduced by minimizing |νre f −νn| where: νn =
n× fRR + fCEO and n is the mode index. A measurement of fCEO and fRR using a frequency
counter referenced to a Cs beam clock (Datum CsIII) allowed the optical frequency of each
comb mode to be determined with an absolute accuracy of ∼2 kHz.
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Fig. 6. The complete spectrum formed by interleaving the 38 individual spectra obtained
by varying the cavity length.

The full reconstructed spectrum is shown in Fig. 6. It spans ∼4 THz (35 nm) with
250-MHz (2 pm) spectral sampling and 2-kHz (10 am) absolute accuracy. The signal to noise
ratio varies slightly across the interleaved spectrum primarily because individual modes have
a range of intensities when imaged by the camera. Data points are therefore limited either by
relative intensity noise for the brighter spots or by additive noise from the camera for dimmer
spots. At all intensities the noise is white with an average signal-to-noise ratio across the inter-
leaved spectrum of ∼400. This gives a figure of merit [23] of 2.2×106

√
Hz, which compares

well with other comb spectroscopy techniques.

3. Spectral Analysis

The full spectrum presented in Fig. 6 was used to determine the line centers and the Lorentzian
components of the linewidths of 48 2ν3 rotational-vibrational absorption lines of H13C14N.
The sample was contained in a nominally 100±10 Torr, 50 mm long reference cell (Wavelength
References; HCN-13-100) at room temperature (22.5±1◦ C).

Regions of the absorption spectrum were approximated by fitting functions of the form:
(

j

∑
i=0

aiν i

)
exp

(
−

m

∑
n=1

bnV [ν ; νn,σn,γn]

)
(1)



where V [ν ; νn,σn,γn] represents a Voigt profile centered on νn, with Gaussian (Doppler)
component FWHM,

√
8ln(2)σ (determined by calculation [30]), and Lorentzian component

FWHM, 2γ .
An initial estimate of the parameter set was found by moving to each absorption line, win-

dowing the spectrum to include the immediately adjacent lines, and performing a linear least-
squares fit using Eqn. 1 with j = 2 and m = 3 (m = 2 for the edge cases). Parameters ν , σ
and γ for the line of interest for each fit were retained. This initial parameter set was used to
suppress the main absorption lines in the spectral data, revealing the residual broadband back-
ground structure. A robust (bi-square) fourth-order polynomial fit to this structure allowed it to
be removed before performing a final linear least-squares fit of all lines simultaneously using
Eqn. 1 with j = 0 and m = 51, seeded by the initial parameter set. Fig. 7 shows a closeup of the
fitted spectrum around the P(16) feature.

1.00

0.98

0.96

0.94

0.92

0.90

0.88

 T
ra

ns
m

itt
an

ce

192.88192.84192.80
Frequency (THz)

-1.0
-0.5
0.0
0.5
1.0

x1
0-2

 

1555.0 1554.5 1554.0
Wavelength (nm)

Fig. 7. Close-up of the spectrum presented in Fig. 6 near the P(16) absorption line. The
background structure has been removed and the fit (blue) and residuals (top panel) are also
shown. Hot-band absorption lines can be seen either side of the main line.

To validate the quality of the spectrometer, line centers and widths derived from the fit were
compared with those expected at 100 Torr (calculated from [31]). Significant deviation from
the expected Lorentzian linewidth (up to ∼8 pm or 1 GHz) suggested that the reference cell
pressure was lower than than the nominal pressure of 100 Torr. Least-squares optimization was
used to minimize deviation from the expected linewidths, giving an estimate of 92.5±0.8 Torr,
which is within the±10% tolerance quoted by the manufacturer. Fig. 8 displays a comparison of
selected line centers and linewidths to expected values at 92.5 Torr. Measurement uncertainties
are the 2σ confidence intervals obtained from the least-squares fit.

We find good agreement with the expected values predicted by [31]. Line center and width
measurements using this analysis exhibited repeatability consistent with the 2σ confidence
intervals derived from the fit. Repeatability also corresponded well to the uncertainty in these
parameters predicted by a modelled spectrum with added Gaussian noise of SNR = 400. We
do, however, see deviations from calculated expected values of up to ∼1 pm and up to ∼3 pm,
respectively – exceeding the 2σ confidence intervals and thus presenting a strong indication of
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Fig. 8. Deviation of our line centers and widths from expected values at 92.5 Torr. Dis-
played uncertainties are 2σ confidence intervals. Solid grey regions indicate uncertainties
estimated according to [31]. Small wavelength shifts due to nearby hot-band features can
be seen for the P(2), P(7) and P(20) features.

underlying systematic errors. One source of such errors are the smaller hot-band features visible
in the spectrum. These were not included in this analysis and, consequently, some of the main
absorption lines experienced small shifts from the expected line centers. This was particularly
noticeable for the P(2), P(7) and P(20) features, which was also noted by [31]. We also observe
broader structure that may indicate pressure shifts and pressure broadening introduced by a
buffer gas in the reference cell. We are confident that a more detailed analysis will result in
closer agreement with previous work.

4. Conclusion

We have demonstrated a quantitative frequency comb spectrometer with 35-nm (4 THz) band-
width around 1543 nm, 2-pm (250 MHz) spectral sampling and an absolute frequency accuracy
of 2 kHz. We achieve a signal-to-noise ratio ∼400 in 8.2 seconds, giving a figure of merit of
2.2×106

√
Hz, which compares favourably with other comb spectroscopy techniques. We have

validated the performance of the spectrometer by comparing our measurement of the 2ν3 vi-
brational overtone of H13C14N to a previous high-precision measurement; finding excellent
agreement with line centers and Lorentzian linewidths exhibiting deviation of, at worst, 1 and
3 pm, respectively.

Our approach has demonstrated a practical spectrometer that harnesses the full potential of
a stabilized frequency comb and can be easily deployed for a range of high-precision spectro-
scopic measurements.
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Chapter 9

Complex Direct Comb Spectroscopy With

A Virtually Imaged Phased Array

This chapter is based on the published article:

S. K. Scholten, J. D. Anstie, N. Bourbeau Hébert, R. T. White, J. Genest, and A. N. Luiten,

“Complex Direct Comb Spectroscopy With A Virtually Imaged Phased Array”, Optics Letters

41, 1277-1280 (2016).

9.1 Overview and Motivation

The aim of this paper was to demonstrate simultaneous capture of both absorption and phase

information using direct optical frequency comb spectroscopy combined with a Michelson

interferometer. Dual-comb spectroscopy may capture both in certain configurations, while

this was the first demonstration of acquiring the same information with a single optical

frequency comb to construct the sample’s full optical transfer function using a stabilised

Michelson interferometer and VIPA spectrometer [105,275]. In addition, it was also the first

demonstration of the newer analysis code designed to function with the full, unrarefied comb.

This code utilised the Faddeeva function as introduced in Sec. 4.1.3 for the rapid generation

of Voigt profiles. The method described in this paper required four images in total - one

each for the sample and reference paths, one interferogram, and a cavity-rarefied image. The

rarefication cavity was also re-purposed in this paper to act as a frequency calibration for

the unrarefied images. The results maintain their high-resolution and broadband character,

being acquired and analysed within a rapid time frame.

An important change to the spectrometer performed in the course of this experiment

was the replacement of the original imaging lenses to physically-larger and longer focal-

length lenses to remove aberrations. At the same time, the spectral width of results was

reduced from ∼ 35 nm to ∼ 25 nm to increase the spacing between adjacent VIPA stripes

on the spectrometer images. Additionally, the diffraction grating was changed to a double-

pass arrangement to improve the resolution of VIPA stripes in the horizontal dimension

under grating control. Both of these changes were necessary to prevent leakage of adjacent

VIPA stripes and an associated zero-error. It was also during the course of this paper that

the nonlinearity of the spectrometer camera response using the built-in camera software

first became apparent. This was rectified in future publications with the addition of dark

background and nonlinearity correction procedures.
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9.2 Statement of Contribution

9.2.1 Conceptualisation

The idea of applying using the undecimated system to simultaneously measure both the phase

and transmission spectrum of hydrogen cyanide was a joint effort between James Anstie and

Sarah Scholten, as was the conceptualisation of the method with which to achieve these

measurements.

9.2.2 Realisation

James Anstie and Richard White developed the spectrometer analysis code further to function

with the undecimated optical frequency comb output, with assistance from Sarah Scholten.

The construction of the experiment detailed in this paper was primarily performed by Sarah

Scholten. Literature review, the mathematics, and the code required to extract the phase

was also the work of Sarah Scholten under the guidance of James Anstie.

9.2.3 Documentation

This paper was primarily written by Sarah Scholten, with editing by all other authors, mainly

James Anstie, Richard White, and Andre Luiten. The data presented in the paper was ac-

quired and analysed by Sarah Scholten.
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We demonstrate a simple interferometric technique to
directly measure the complex optical transmittance over
a large spectral range using a frequency-comb spectrometer
based on a virtually imaged phased array. A Michelson
interferometer encodes the phase deviations induced by a
sample contained in one of its arms into an interferogram
image. When combined with an additional image taken
from each arm separately, along with a frequency-calibra-
tion image, this allows full reconstruction of the sample’s
optical transfer function. We demonstrate the technique
with a vapor cell containing H13C14N, producing transmit-
tance and phase spectra spanning 2.9 THz (∼23 nm) with
∼1 GHz resolution. © 2016 Optical Society of America
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Optical frequency combs have been a revolutionary develop-
ment for spectroscopy, allowing fast measurements, broad spec-
tral coverage, dense spectral sampling, and absolute frequency
accuracy [1]. Further, in contrast to many other broadband
sources, frequency combs are also spatially and temporally co-
herent, making comb sources useful for measurements of both
a sample’s amplitude and phase response. In this Letter, we
exploit these properties to make direct, high quality measure-
ments of the complex transmittance of a molecular sample.

The magnitude of the optical response of some samples,
whether transmittance, absorbance, or reflectance, is the most
commonly reported spectroscopic measurement. It is much
easier to obtain than the phase response, and it is convention-
ally held that the Kramers–Kronig relations [2,3] provide a
means to derive both the real and imaginary components of
the complex transfer function from the magnitude measure-
ment. However, this is only formally true for causal, linear,
and time-invariant systems that have the property of minimal
phase [4]. For nonminimal phase systems, the spectral phase

cannot be retrieved from the amplitude spectrum, and thus
a distinct measurement of the phase response is required to
determine the complete optical transfer function. There are
numerous optical measurements that can benefit from the sep-
arate acquisition of phase, including: dispersion measurements
of optical fibers and components [5], reflectivity characteriza-
tion of optical thin films [6], detailed lineshape perturbation
analysis [7], and the probing of certain cavity configurations,
most notably microresonators [8,9].

Interferometric spectrometers, such as Fourier-transform
[10,11], dual-comb [12] and frequency modulated continuous
wave (FMCW) spectrometers [5,13,14] can be configured to
yield complex measurements; however, spectrometers based
on spatial dispersion are in general simpler and more robust.
Gohle et al. [15] have achieved phase measurements using a
Fabry–Perot (FP) cavity-based discriminator but, to our knowl-
edge, high-quality direct phase measurements with a spatially
resolved spectrometer have yet to be demonstrated.

In this Letter, we demonstrate a technique suitable for
simultaneously measuring both amplitude and phase spectra
using a comb in conjunction with a virtually imaged phased
array (VIPA) spectrometer [16,17]. The 2ν3 vibrational over-
tone band of H13C14N is used as a minimal-phase optical sys-
tem to demonstrate accurate phase retrieval. Measurement of
the full optical transfer function is achieved with the addition
of a Michelson interferometer. One arm of the interferometer is
actively length-stabilized, such that a λ∕4 offset from the path
matched condition is maintained. Working at this point en-
sures that all comb modes experience essentially the same phase
shift due to the length mismatch (to within a small linear factor)
and leaves the phase shift due to molecular interaction simply
encoded within three camera images.

The experimental setup is shown in Fig. 1. The frequency
comb (Menlo Systems FC1500) spans ∼1500–1600 nm. Its
carrier-envelope-offset frequency (f CEO) is locked to a cesium
beam clock (Datum CsIII), while the comb repetition rate
(f RR) of ∼250 MHz is stabilized by locking the nearest comb
mode to a cavity-stabilized reference laser (NKT Koheras
Boostik E15). The comb is combined with the reference laser,
which acts as a marker for optical frequency calibration. The
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light then follows one of two paths: either it travels through a
stabilized low finesse (∼200) FP cavity (gray dashed path), or it
bypasses the cavity (solid path) and enters the rest of the experi-
ment. The cavity, with a free spectral range (FSR) of 35 ×
f RR � 8.75 GHz is set to transmit every 35th comb mode and
is used to calibrate the optical frequency axis. The beam is then
sent, via a four-port 50:50 coupler and Glan-Thompson polar-
izer (to ensure identical beam polarizations), into a wedged
beam splitter (WBS) that feeds the two arms of a Michelson
interferometer.

One arm of the interferometer (sample path) contains a
50 mm-long cell of H13C14N at 100� 10 Torr (Wavelength
References HCN-13-100) at room temperature (22.5� 1°C).
The second arm (reference path) controls the interference con-
dition between the two arms of the interferometer via a mirror
on a piezoelectric (PZT) stage (PZTI). After recombination,
light from the retroreflected output port (P2) is directed back
to a photodetector (PDI) for use in locking the interferometer.
Light from the other output port (P1) is directed through an
optical fiber to enforce beam overlap, before being line-focused
into the AR-coated input window of a VIPA etalon (Light
Machinery). The VIPA is a specialized étalon with a FSR of
∼50 GHz and a finesse of ∼100 that disperses the comb light
vertically as a function of wavelength [18]. To avoid frequency
ambiguity [19], the VIPA is used in combination with a
600-lines/mm diffraction grating, oriented to disperse the light
horizontally. The grating is double-passed to provide higher
angular resolution [20]. The resulting beam is imaged on
an InGaAs camera (Xenics Xeva-1.7-320) with a ∼2.9 THz
(∼23 nm) spectral range in the horizontal direction and just
over one VIPA FSR in the vertical direction.

Retrieval of the transmittance and phase data may be under-
stood by considering the recombination of a single comb mode
at the imaged output of the interferometer (P1). For a light
field of form: E0 exp�i�ωt � ϕ��, where E0 is the electric field
amplitude, ϕ is the optical phase, and ω is the angular optical
frequency, feeding the interferometer through an ideal 50:50
beam splitter. In this case, the magnitude of the interference
(P1) is

P1 � E2
1 � E2

2 − 2E1E2 cos

�
Δϕ −

2πΔl
λ

�
; (1)

where E1 � αE0∕
ffiffiffi
4

p
, α2 is the attenuation from a double pass

through the sample, E2 � E0∕
ffiffiffi
4

p
, Δl is the change in round-

trip optical path length of the sample arm with respect to the
reference arm, λ is the wavelength, and Δϕ is the phase shift
from a double pass through the sample. Δϕ is thus

Δϕ � arccos

�
E2
1 � E2

2 − P1

2E1E2

�
� 2πΔl

λ
: (2)

In order to obtain the largest unambiguous phase range and
highest phase sensitivity, the interferometer should be tuned
such that Δl � λ∕4. If we now consider the full ensemble
of comb modes, then this length tuning can only be exact
for one central wavelength (λc). If the interferometer is locked
such that it satisfies Δl � λc∕4, an additional term dependent
on detuning from λc is required to fully describe the phase shift
of an individual comb mode. When working with optical fre-
quency combs, it is more natural to use optical frequency, so we
introduce Δν � �ν − νc� with νc � c∕λc . Expressed in terms of
frequency, and with the additional detuning dependent term,
the equation for the sample phase shift becomes

Δϕ�ν� � arcsin

�
E2
1 � E2

2 − P1

2E1E2

�
�Φ�Δν�; (3)

where Δϕ�ν� is the phase shift of an individual comb mode due
to interaction with the sample, and Φ�Δν� � �π∕�2νc��Δν is
the additional term due to the mode’s deviation from νc , which
dominates linear dispersion effects from other optical compo-
nents. Note that Eqs. (1)–(3) imply that deviation from a 50:50
split ratio does not impact phase recovery.

We now describe the process for deriving the complex trans-
mittance. First, we measure two separate VIPA images from the
sample and reference paths alone (by blocking the alternative
path), which yield E2

1 and E
2
2, respectively. We then measure an

interferogram image when operating at Δl � λc∕4 to find P1.
The transmittance (T ) is found from T � E2

1∕E2
2 � α2 and

the phase from Eq. (3).
As previously stated, to obtain a high quality interferogram

image, the interferometer length imbalance must be tuned and
stabilized such that Δl � λc∕4. This is achieved by measuring
the retroreflected interferometer output port (P2 on Fig. 1)
using a photodetector (PDI), which is used to lock the inter-
ferometer at half of its global maximum, as shown in Fig. 2.
The error signal is then passed to a proportional-integral (PI)
filter, the output of which is passed via a piezo controller to the
PZT actuator (PZTI) to stabilize the reference-arm length.

Fig. 1. Simplified schematic of the experiment. Also shown is the
power at the two output ports of the interferometer, P1 and P2,
as a function of length detuning �Δl� from the global interference
maximum at P2 at the path-matched condition.

Fig. 2. Output of both ports (P1 and P2 in Fig. 1) of the interfer-
ometer as a function of length detuning �Δl� from the path-matched
condition (dashed vertical line).
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With the interferometer length locked, the interferogram
image is recorded [Fig. 3(a)]. The interferometer lock is then
disabled, and the reference and sample paths are alternately
blocked, recording a sample and reference image, respectively.
The interferogram image is acquired with 1 ms of integration
time, while the sample and reference images are integrated for
2 ms in order to make best use of the available camera intensity
resolution. In the current configuration, switching among
the three image states is done manually, but this can easily be
automated to reduce acquisition times to ∼100 ms.

In order to ensure frequency accuracy of the measurement, a
final frequency calibration image is acquired by imaging the
decimated, fully resolved, comb that results from passing
through the FP cavity. This image is taken with the sample path
blocked, and with the FP cavity length stabilized such that it
transmits only the subset of comb modes containing the mode
nearest to the reference laser, as well as the reference itself. This
point is found by scanning the cavity length and monitoring
the photodetector (PDC), stopping at the appropriate local
maximum. The cavity length is dithered around this point and
the demodulated transmission signal is used as an error signal to
lock the cavity length [21]. This delivers a decimated version of
the comb with every 35th mode transmitted through the cavity,
as shown in Fig. 3(b). The VIPA resolution is sufficient to fully
resolve the decimated comb, and thus allows us to identify and
assign a frequency to every imaged comb mode. This in turn
allows us to make a high-quality calibration of the frequency at
every location on the images.

The reference, sample, and interferogram images contain
a series of near vertical stripes [see Fig. 3(a)], with each stripe
encoding just over one VIPA FSR of spectral information lim-
ited by the VIPA resolution (∼1 GHz). The vertical stripes are
spaced horizontally by one VIPA FSR (∼50 GHz). The use of
the double-pass grating confers sufficient horizontal resolution
to ensure that these features are well separated, minimizing
potential cross talk between adjacent stripes. It is possible to
calculate the transmittance and (uncorrected) phase directly
from the image data, shown in Fig. 4, which may be useful
for optical fingerprinting applications, where a detailed under-
standing of the spectra is not so important. For more quanti-
tative applications we have developed a process to reconstruct
the underlying spectra in a more robust way.

The reference image is used as a key to extract the spectral
information from all three images. The horizontal cross section

of each stripe within the reference image is essentially Gaussian,
with each pixel contributing a signal proportional to the
amount of optical power falling within its borders. By averaging
a large number of these cross sections, we can find an approxi-
mation to the underlying Gaussian intensity profile (point
spread function). We use this width approximation, along with
an estimate of the center position, to construct a set of matched
filters that mimic the observed cross sections. We then calculate
the sum of the pixel-by-pixel products between each cross
section and its corresponding filter, producing a weighted sum
that maximizes the available signal-to-noise ratio and suppresses
any residual cross talk between adjacent stripes to well below
the noise floor of the measurement. Applying this process to the
entire image allows efficient extraction of the spectral data, with
one data point per row per stripe. The set of matched filters
derived from the reference image is also used to extract spectral
information from the sample and interferogram images.

As mentioned previously and shown in Fig. 3(b), an image
of the decimated comb and reference laser is used to generate an
optical frequency axis for the spectral data extracted from each
image. Measurements of the wavelength of the reference laser
(HighFinesse WS/7, accurate to ∼10 MHz), comb repetition
rate, and carrier-envelope-offset frequency, allow for each im-
aged mode to be identified [21]. Least-squares fitting of the
identified modes to a mapping function determines the rela-
tionship between optical frequency and position on the image.

Finally, the transmittance (T � E2
1∕E2

2) and phase [Eq. (3)]
are calculated with E2

1, E
2
2, and P1 supplied by the spectral

data determined from the sample, reference, and interferogram
images, respectively. The central frequency (νc) for the phase
correction can be estimated by choosing νc such that the
off-resonance phase is zero; in this case, ∼176.2 THz. For non-
minimal phase systems, determination of νc is more difficult,
leading to uncertainties in phase offset and slope, governed by
Eq. (3). In this case νc may be determined, for example, by
using a CW laser of known λ to lock the path length imbalance
and thus set νc .

Figure 5 shows the measured transmittance and phase for a
single measurement of the P1–P24 and R0–R4 lines of the 2ν3
vibrational overtone band of H13C14N, and Fig. 6 shows a
close-up of the P8 and P9 features. Also visible in these spectra
are a series of smaller hot-band features [22]. The recorded
transmittance spectrum has a signal-to-noise ratio of ∼500
(with sensitivity of ∼1000 ppm at 1 atm). It corresponds well
to a model based on previous high-resolution measurements of
H13C14N [21,23], represented by the solid red curve, with the
optical path length through the sample and a linear background

Fig. 3. Left: a typical raw interferogram. The two brightest spots
correspond to the reference laser, and the yellow horizontal lines mark
out one VIPA FSR containing unique spectral data. The horizontal
separation of adjacent bright vertical stripes is also one VIPA FSR
[19]. Right: raw cavity-decimated image showing fully resolved comb
modes.

Fig. 4. Two-dimensional molecular fingerprints for absorption (left)
and phase (right). The effects of the phase ramp are evident in the
phase data.
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correction as the only free parameters. The phase spectrum
exhibits a slightly reduced signal-to-noise ratio (phase sensitiv-
ity of ∼1 mrad ), primarily due to nonlinearity of the camera. It
also corresponds well to the expected phase response (blue solid
curve) modeled by a Faddeeva function approximation to the
complex Voigt profile applied to the high-resolution data.
Instrumental broadening of the measured features with respect
to the high-resolution measurement is due to the resolution
limit of the VIPA.

In conclusion, we have demonstrated a direct interferomet-
ric measurement of the complex transmittance of H13C14N
using a VIPA-based frequency comb spectrometer. Though
powerful in its current form, this technique is best suited
to phase variations of <1 rad, which can be overcome by lock-
ing to a range of path imbalances to determine relative phase
unambiguously. It is also currently limited by the VIPA reso-
lution, which can be improved by fully resolving individual
comb modes and thus taking advantage of the intrinsic
frequency accuracy of the stabilized optical frequency comb.
This technique demonstrates a simple, fast, accurate, and prac-
tical way to directly extract broadband amplitude and phase
spectra, with potential application to a diverse range of optical
systems.

Funding. Australian Research Council (ARC)
(LP120200605, LP140100674); Department of Further
Education, Employment, Science and Technology,
Government of South Australia (DFEEST) (Catalyst
Research Grant, Premiers Science and Research Fund).

REFERENCES

1. F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, Annu. Rev. Anal.
Chem. 3, 175 (2010).

2. R. de L. Kronig, J. Opt. Soc. Am. 12, 547 (1926).
3. H. A. Kramers, in Atti Cong. Intern. Fisica (Transactions of Volta

Centenary Congress) (1927), pp. 545–557.
4. J. Bechhoefer, Am. J. Phys. 79, 1053 (2011).
5. T. Ahn, Y. Jung, K. Oh, and D. Kim, Opt. Express 13, 10040 (2005).
6. P. Grosse and V. Offermann, Appl. Phys. A 52, 138 (1991).
7. J. Wang, P. Ehlers, I. Silander, and O. Axner, J. Opt. Soc. Am. B 28,

2390 (2011).
8. H. Bergeron, J. R. Carrier, V. Michaud-Belleau, J. Roy, J. Genest, and

C. Allen, Phys. Rev. A 87, 063835 (2013).
9. V. Michaud-Belleau, J. Roy, S. Potvin, J. Carrier, L. Verret, M.

Charlebois, J. Genest, and C. Allen, Opt. Express 20, 3066 (2012).
10. J. Birch, Mikrochim. Acta 93, 105 (1987).
11. J. Mandon, G. Guelachvili, and N. Picqué, Nat. Photonics 3, 99

(2009).
12. I. Coddington, W. C. Swann, and N. R. Newbury, Phys. Rev. Lett. 100,

013902 (2008).
13. A. Cygan, P. Wcisło, S. Wójtewicz, P. Masłowski, J. T. Hodges,

R. Ciuryło, and D. Lisak, Opt. Express 23, 14472 (2015).
14. A. Foltynowicz, F. M. Schmidt, W. Ma, and O. Axner, Appl. Phys. B

92, 313 (2008).
15. C. Gohle, B. Stein, A. Schliesser, T. Udem, and T. W. Hänsch, Phys.

Rev. Lett. 99, 263902 (2007).
16. L. Nugent-Glandorf, T. Neely, F. Adler, A. J. Fleisher, K. C. Cossel,

B. Bjork, T. Dinneen, and S. A. Diddams, Opt. Lett. 37, 3285 (2012).
17. L. Nugent-Glandorf, F. R. Giorgetta, and S. A. Diddams, Appl. Phys. B

119, 327 (2015).
18. M. Shirasaki, Opt. Lett. 21, 366 (1996).
19. S. A. Diddams, L. Hollberg, and V. Mebele, Nature 445, 627 (2007).
20. D. Derickson, Fiber Optic Test and Measurement, 1st ed. (Prentice-

Hall, 1998).
21. N. B. Hébert, S. K. Scholten, R. T. White, J. Genest, A. N. Luiten, and

J. D. Anstie, Opt. Express 23, 13991 (2015).
22. H. Sasada and K. Yamada, Appl. Opt. 29, 3535 (1990).
23. S. L. Gilbert, W. C. Swann, and C. Wang, NIST Spec. Publ. 260, 137

(2005).

Fig. 5. Extracted transmittance and phase spectra for the P1–P24 and R0–R3 features of H13C14N. The solid lines show the modeled trans-
mittance (red) and phase (blue) based on a previous high-resolution absorption measurement [21,23]. Small (unmodelled) hot-band features can also
be seen in both the transmission and phase data.

Fig. 6. Close-up of the P8 and P9 features of H13C14N of Fig. 5.
Smaller (unmodelled) hot-band features and instrumental broadening
can be seen in both spectra and residuals.
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Chapter 10

Rapid Number Density Measurements of

CO2 with an Optical Frequency Comb

This chapter is based on the published article:

S. K. Scholten, C. Perrella, J. D. Anstie, R. T. White, W. Al-Ashwal, N. Bourbeau Hébert,

J. Genest, and A. N. Luiten, “Rapid Number Density Measurements of CO2 with an Optical

Frequency Comb”, Physical Review Applied 9, 054043 (2018).

10.1 Overview and Motivation

The aim of this paper was firstly to determine if molecular parameters of interest could be

extracted from spectra acquired using the VIPA spectrometer in a quantitative manner. Sec-

ondly, it was of interest to determine the accuracy and precision of the returned parameters.

In doing so, many improvements were made to the spectrometer system overall. Carbon

dioxide was chosen as the demonstration sample gas due to its importance to both medical

breath analysis as a major component of the human breath, and to environmental monitoring

as a greenhouse gas and anthropogenic pollutant.

This paper describes the method to rapidly acquire and analyse spectra acquired us-

ing direct optical frequency comb spectroscopy with a VIPA spectrometer to extract the

absolute concentration and temperature of a pure sample of carbon dioxide as the concen-

tration was deliberately changed. This was achieved in part by improving the efficiency of

the code responsible for converting spectrometer images into absorption spectra, along with

full automation of the spectrometer system and data acquisition. This included interfacing

of the spectrometer camera and newly-implemented high-speed optical shutters with the ac-

quisition algorithms. As the 6.5 m optical path length of the cell was of sufficient length to

observe beam-alignment fluctuations when gas was injected into the cell, the sample path was

equipped with a computer-controlled two-stage spatial stabilisation system formed of a two

mirrors: one mounted on a piezo-electric transducer for correction of fast alignment fluctua-

tions and a second affixed to a stepper motor for slow corrections. The stabilisation system

utilised a second laser at 780 nm in order to avoid influencing the spectroscopic results.

Additionally, as was identified soon after the publication of the previous paper, the na-

tive camera software was deemed unsuitable for continued use for two reasons. Firstly, the

software was unable to be utilised when automation of the spectrometer was required, and
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secondly, did not produce a linear camera response in relation to the power of incoming light.

The second point in particular required a solution as a linearity error will directly translate

into a retrieved concentration error as the spectral peaks become more affected as the ab-

sorption features deepen. In addition, dark current effects were not taken into account by

the native software correctly. These two issues were corrected as described in Sections 6.3.2

and 6.3.4 with the introduction of dark frames and a screen-averaged camera nonlinearity

correction respectively.

This paper also saw the introduction of an efficient spectral modelling code based on

parameters from the HITRAN database combined with the previously introduced rapid com-

putation package for the Faddeeva function as described in Section 4.4 [1,179,213,276]. This

was the first demonstration of the continuous-monitoring capability of a DFCS system based

on a VIPA spectrometer, with data acquisition, spectral analysis, and parameter extraction

all performed in under one second. In addition, the results were highly precise and accurate,

with returned concentrations having accuracy within 1% and precision of 0.04% in under a

second.

10.2 Statement of Contribution

10.2.1 Conceptualisation

The concept of applying the spectrometer system to rapidly measure the concentration of

carbon dioxide was a joint effort between Sarah Scholten, James Antie, Richard White,

Christopher Perrella, and Andre Luiten. The idea of applying spectral fitting to the aqcuired

spectra in the manner presented in the paper was that of Sarah Scholten.

10.2.2 Realisation

James Anstie was responsible for the design and realisation of the sample cell that is presented

in this paper, along with the initial experimental design and construction. Sarah Scholten,

Christopher Perrella, and James Anstie began work on the path-stabilisation system, with

Sarah Scholten and Christopher Perrella finalising this system with the inclusion of 780 nm

light paths and components. Characterisation of the spectrometer camera’s non-linearity,

interfacing of the camera and other components using MATLAB, image correction procedures,

and data acquisition were performed by Sarah Scholten with guidance from Christopher

Perrella and Andre Luiten. Creation and implementation of the fitting code was primarily

the work of Sarah Scholten, with assistance from Christopher Perrella.
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Real-time and accurate measurements of gas properties are highly desirable for numerous real-world
applications. Here, we use an optical-frequency comb to demonstrate absolute number-density and
temperature measurements of a sample gas with state-of-the-art precision and accuracy. The technique is
demonstrated by measuring the number density of 12C16O2 with an accuracy of better than 1% and a
precision of 0.04% in a measurement and analysis cycle of less than 1 s. This technique is transferable to
numerous molecular species, thus offering an avenue for near-universal gas concentration measurements.

DOI: 10.1103/PhysRevApplied.9.054043

I. INTRODUCTION

Many industrial applications have an acute need for
rapid, accurate, and precise measurements of gas properties
such as density, temperature, concentration, and pressure.
Examples can be found in liquid natural-gas processing
and quality assurance [1], medical breath analysis [2–4],
and environmental monitoring of greenhouse gases or air
quality [5–8]. A particular example in this latter category is
the current call to develop atmospheric CO2 measurements
with a precision in the 10−3–10−4 range [9–12].

In this paper we demonstrate an optical spectroscopic
technique that meets this desired precision. Optical spec-
troscopy comes with a number of other advantages in that it
can be rapid, performed in situ, and allow the equipment to
be some distance from the system under test. These can be
highly beneficial when compared with conventional gas
measurement techniques such as mass spectrometry and
gas chromatography—particularly when operating in envi-
ronments in which sample extraction is unwanted or where
conditions are hazardous.
The field of optical molecular spectroscopy is proceeding

rapidly, with major developments in dual-comb, Fourier-
transform infrared (FTIR), and direct-comb spectroscopy
techniques occurring in the past decade. Dual-comb tech-
niques have been used to measure molecular spectra in both
enhancement-cell and open-air paths, as well as measure-
ments of gas turbine exhaust, trace gas analysis, and
spectroscopy of near-infrared frequency [7,8,13–18].
However, this technique typically requires two optical-
frequency combs, making them relatively costly and

complex systems. FTIR measurements of air with optical-
frequency combs have also been demonstrated [19]. Direct-
frequency comb spectroscopy has been successfully applied
to temperature measurements of CO2 on the time scale of
milliseconds [20]. The direct-frequency comb spectroscopy
method used in this paper has the benefits of requiring only a
single comb, operation in the eye-safe spectral band, and use
of a simple, fixed, and robust spectrometer based on spatial
dispersion. This reduction in complexity makes the system
appealing for use outside of the laboratory.
Measurements in real-world environments typically involve

numerous molecular species. Each species presents a com-
plicated absorption spectrum, with a large number of rovibra-
tional transitions observable under typical conditions [21].
Related absorption lines (arising from transitions from one
vibrational state to another) in the unique spectra of amolecule
are categorized into “bands” [22]. The relative intensities of
rovibrational molecular absorption features within such bands
are predominantly governed by temperature as a result of
population distribution in the quantized rotational energy
levels of the molecular system [23]. Overall scaling of the
total absorption envelope is a function of absorber concen-
tration in the sample, while pressure dependence results in
shifting of line centers and line-shape broadening.
In principle, it is possible to simultaneously extract the

temperature, pressure, and number density of molecules in a
single spectrum provided the measurement has sufficient
spectral range and resolution to resolve the individual
absorption line shapes across the majority of a band. The
particular properties of optical-frequency combs (OFCs)
deliver a nearly ideal interrogation source for molecular
spectroscopy. The broadband nature of an OFC’s spectrum
allows for interrogation of a large number of the quantized*sarah.scholten@adelaide.edu.au
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energy levels of a molecule simultaneously, producing a
characteristic rovibrational absorption spectrum specific to
the molecular species under examination. Additionally, they
also allow rapid measurements with dense spectral sampling
and absolute frequency accuracy [24]. This allows multiple
absorption peaks to be examined simultaneously, resulting in
fast and accurate measurements.
In this paper we demonstrate a technique for accurate and

real-time 12C16O2 number-density determination using an
OFC measured with a virtually imaged phased array (VIPA)
spectrometer. An approximately 25-nm high-resolution
12C16O2 transmission spectrum is extracted from six images
acquired by the spectrometer. A model of the expected
spectrum using parameters from the high-resolution trans-
mission molecular absorption (HITRAN) database [25] is
combined with an efficient approximation of the total
molecular partition function [26]. The model is used in a
fitting procedure to rapidly extract concentration and temper-
ature from themeasured spectra.The process is demonstrated
with the 30012 ← 00001 spectral band of 12C16O2 in a flow
cell containing varying partial pressures of CO2 and N2.
The entire measurement and fitting procedure generates a
number density on average every 0.9 s with a concentration
precision of 0.04%. Results are shown to be accurate by
comparison with the ideal gas law, while the precision of
the measurement is at least as good as the precision of the
mass flow controllers that control the gas mixture.

II. EXPERIMENTAL METHODS

A. Optical system and stabilization

The experimental setup is displayed in Fig. 1. The OFC
(Menlo Systems FC1500) used to interrogate the gas
sample spans approximately 1500–1600 nm, with a rep-
etition rate ðfrepÞ of 250 MHz. The carrier-envelope-offset
frequency ðfCEOÞ of the comb is locked to a cesium beam
clock (Datum CsIII), while frep is stabilized by locking the

nearest comb mode to a cavity-stabilized reference laser
(NKT Koheras Boostik E15) at 1560 nm (fractional
frequency stability below 10−14).
The stabilized comb light is split with a four-port 50∶50

fiber coupler (S1) into two paths. The first path is used for
spectroscopy of CO2 and is split via a wedged beam splitter
(WBS) into the reference and sample paths of the experi-
ment. The reference path is used for optical comparison to
the sample path that contains a double-passed 3.25-m-long
gas cell at room temperature (296� 1 K) and atmospheric
pressure. The sample cell is connected to a gas mixing
system (Environics Series 2000) that mixes CO2 and N2

to deliver a set CO2 concentration while maintaining a
constant gas flow rate. N2 is used as the buffer gas due to its
optical transparency in the examined spectral region. Both
sample and reference paths are coupled into a single-mode
fiber to ensure stable spectrometer alignment.
The 6.5-m path length through the free-space sample

cell is sufficiently long to produce deleterious effects
from beam-alignment fluctuations, particularly when the
CO2=N2 concentration ratio is altered. The alignment is
thus actively controlled using a mirror equipped with a
piezoelectric transducer (PZTM). The correction of long-
term drifts are beyond the range of PZTM, so the PZTM
actuation is augmented with a mirror mounted on wide-
range stepper motors (SMM) to ensure the system stays
within range of PZTM. An alignment error signal is
constructed by dithering the angle of PZTM while syn-
chronously detecting the retroreflected signal on an
avalanche photodetector (APD). The alignment system
depends on the injection of an additional 780-nm laser that
has been chosen so that no alignment light is transmitted
into the spectrometer, and that little comb light is detected
by the APD.
The second output path of the four-port 50∶50 coupler

(S1) is directed through a stabilized low finesse (about 200)
Fabry-Perot (FP) cavity with a bandwidth of approximately
50 MHz. The cavity length is stabilized such that every
36th comb mode is transmitted, as seen in Fig. 2(b). This
rarefied comb is sufficiently well spaced such that each
comb mode may be independently detected by the spec-
trometer [27,28]. This allows identification and assignment
of a relative frequency to every comb mode imaged by the
spectrometer camera, granting high-quality calibration of
the relative frequency.
All paths are sent to the spectrometer for imaging via a

four-port 50∶50 coupler (S2), ensuring colinearity of the
three paths at the spectrometer input [27]. A VIPA etalon
(Light Machinery) forms the basis of the spectrometer.
Automated shutters are used to select light from the sample,
reference, and cavity paths. The selected beam then enters
a cylindrical lens which line focuses the light into the
antireflective-coated input window of the VIPA. The VIPA
is an etalon with a finesse of about 100 and free spectral
range (FSR) of about 50 GHz that disperses the comb light
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FIG. 1. A simplified diagram of the experiment. APD, ava-
lanche photodectector; Si, fiber splitter; FP, Fabry-Perot (cavity);
WBS, wedged beam splitter; PZTM, mirror with piezoelectric
transducer; SMM, mirror with stepper motor. Fiber-coupled paths
are shown in solid black, gas connections in dashed gray, and
free-space optical paths in red and blue for the frequency-doubled
version of the continuous-wave reference laser (doubled to
780 nm) and optical-frequency comb, respectively.
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vertically as a function of wavelength, as seen in Fig. 2 [29].
The VIPA is used in combination with a 600-lines/mm
diffraction grating to remove frequency ambiguity by pro-
viding a lower-resolution spatial dispersion in the horizontal
plane [30]. The grating is double passed to improve hori-
zontal angular resolution, ensuring the potential cross talk
between adjacent VIPA stripes is minimized. The resulting
dispersed beam is focused onto an (In,Ga)As camera (Xenics
XEVA-1.7-320) to form images as seen in Figs. 2(a) and 2(b)
with approximately 2.9-THz (approximately 25-nm) spectral
range in the horizontal and just over one VIPA FSR in the
vertical direction.
Six VIPA images are required per calibrated spectrum

where we use shutters to open one particular path through
the optical system at a time: (a) sample, (b) reference, and
(c) a rarefied comb path. In addition, we take one associated
dark image for each of the three configurations with all
shutters closed. These dark images are used for camera
background subtraction, with each of these images acquired
with an integration time that matches its bright counterpart.

B. Image analysis

The 12C16O2 absorption signal is extracted from the six
images that are generated by the VIPA spectrometer. First,
the three dark images (from each of the three possible
optical paths) are used to perform background correction of
the three bright images. The nonlinearity of the camera
response is then corrected using a calibration based on a set
of previously obtained gray images. The VIPA resolution
(approximately 1 GHz) is not high enough to resolve the
frequency comb modes (frep ¼ 250 MHz), resulting in the
continuous bright vertical stripes seen in Fig. 2(a). Each
stripe holds just over one VIPA FSR of spectral information
and the horizontal spacing between adjacent stripes is equal
to one VIPA FSR.
The reference image is used as the basis for extracting

spectral information from each set of three images [28].
The horizontal cross section of each vertical stripe in the
reference image is well approximated by a Gaussian profile
spanning several pixels. Averaging a large number of these

cross sections results in an accurate approximation of the
underlying stripe line profile. This profile is used together
with stripe center position to produce a set of matched
filters. We correlate (pixel-by-pixel products) the entire
image using the matched filters along the stripes to produce
one representative brightness point for each row along a
stripe. The same matched filters are applied to the corre-
sponding sample and cavity images. Division of the
processed signal image data by the processed reference
image data produces a final transmission spectrum for
fitting. The use of matched filtering minimizes the potential
effects of cross talk between adjacent stripes to below the
measurement noise, while maximizing the available signal-
to-noise ratio.
In the final step, the processed rarefied comb image is

used to generate an accurate mapping of position on the
image to relative optical frequency. Measurements of the
cavity FSR, frep and fCEO allow the frequency of each mode
to be identified relative to every other comb mode.
An absolute frequency axis may be attained with the use
of an appropriate cw laser [28], though for this work the
HITRAN spectral positions are used to set the absolute axis.

C. Spectral fitting and number-density extraction

To extract an estimate of the number density we fit each
experimental spectrum with a model 12C16O2 absorption
spectrum [23] built upon parameters from the HITRAN
2012 database [25]. We include an additional third-
order polynomial in our model to allow for broad back-
ground variations. In this work, the demonstration of
12C16O2 concentration retrieval is accomplished via inter-
rogation of the 30012 ← 00001 spectral band centered at
6347.880 cm−1 (approximately 1575.33 nm or 190.44 THz)
[31], along with the smaller 31112 ← 01101 hot band that
falls within the observed spectral region.
The 126 largest spectral absorption features from the two

bands are modeled as Voigt line shapes. The parameters
for each peak are extracted from the HITRAN database
including: line strength [Sηη0 ðTrefÞ], lower state energy of
the transition (Eη), line center (νηη0 ), pressure shift, and
pressure-broadened line half-widths (both due to air and self-
broadening) where η and η0 denote the lower and upper states
of each transition, respectively. Spectrometer broadening
terms are also included, and are measured by observation
of the rarefied comb images. This shows a Voigt-like
profile for each mode with a Lorentzian half-width-at-half-
maximum of 0.01� 0.001 cm−1 and Gaussian 1=e half-
width of 0.006� 0.001 cm−1. Doppler broadening of each
absorption line is also included, and is calculated to be
0.007 cm−1 (1=e half-width) at laboratory conditions.
The HITRAN parameters are provided at a reference

temperature of Tref ¼ 296 K, which requires a temperature
dependence of some parameters, such as Sηη0 ðTrefÞ, to be
included in the fit
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FIG. 2. (a) Typical signal image, showing the 2D fingerprint of
12C16O2. The blue horizontal lines mark one VIPA FSR contain-
ing unique spectral data. The horizontal separation of adjacent
bright vertical stripes is also one VIPA FSR. (b) Typical cavity-
rarefied image showing fully resolved comb modes.
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Sηη0 ðTÞ ¼ Sηη0 ðTrefÞ
QðTrefÞ
QðTÞ

e−c2Eη=T

e−c2Eη=Tref

1 − e−c2νηη0=T

1 − e−c2νηη0=Tref
; ð1Þ

where c2 ¼ hc=kB, h is the Planck constant, c is the speed of
light, and kB is the Boltzmann constant [23]. Furthermore,
the temperature dependence of the complex molecular total
internal partition function (QðTÞ) of 12C16O2 must be
calculated and included in the fit to obtain the correct line
intensity in Eq. (1). We use a polynomial approximation to
simplify calculation of the partition function [26].
A least-squares fitting routine enables the model

spectrum to optimally fit the experimental spectra with
only the number density and temperature as free param-
eters. A representative fitted spectrum may be seen in
Fig. 3, with an enlarged portion of the spectrum shown
in Fig. 4. Acquisition time of all six VIPA images is
typically on the order of 0.1 s. Spectral extraction
and fitting take an average time of 0.8 s, with the time
required for image analysis and fitting being approxi-
mately equal.
Also displayed in Fig. 3 are the residuals for a single

shot and 600 sample (1 min) average. The averaged
residuals allow resolution of absorption features of less
than 0.5% in transmission. The features in both sets of
residuals marked with gray arrows are associated with
absorption lines not included in the model spectra as they
are comparatively small, and have a negligible effect on
measurement of concentration. The remaining residual

features are associated with subtle effects that are only
evident due to the high resolution of the measurements.
The majority of these are associated with the use of a
Voigt line shape in the fit model which does not take
complex collisional dynamics into account [33–36].
These non-Voigt-like residual features appear across the
full spectrum in Fig. 3, and are more clearly seen as the
M-shaped residuals in Fig. 4.

FIG. 3. A typical single-shot experimental 30012 ← 00001 transition spectrum (blue markers) for 100% CO2, with spectral fit (gray
solid line) and fit residuals (middle graph). This fit returns a density of 2.41� 0.09 × 1019 molecules=cm3 and a temperature of 295.9 K.
A complete spectrum with fit is acquired in an average of 0.9 s. A video demonstration of fitting to each spectrum at an increased frame
rate may be seen in the Supplemental Material [32]. Also included are fit residuals for a 600-measurement average fit (top). Smaller hot-
band transitions excluded from the fit appear more clearly in the averaged residuals as symmetric peaks (gray arrows), while asymmetric
spectrometer broadening and use of a Voigt line shape results in the remainder of residuals.
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FIG. 4. Close-up of the R16 and R18 features of the 30012 ←
00001 spectral band of CO2. Spectrometer broadening asymme-
try unaccounted for by the fit and known issues from using a
Voigt line shape produces slightly asymmetric M-shaped struc-
tures in the residuals.
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III. RESULTS

The analysis is applied to extract number density and
temperature from a two-hour data set in which the CO2=N2

concentration in the flow cell is varied with the gas mixer
(see Fig. 5). The initial concentration of CO2 is 100%,
and is decreased incrementally until reaching 0%. A video
demonstration of the fitting and concentration extraction
from each spectrum may be found in the Supplemental
Material [32]. Throughout the experiment the extracted
temperatures remain in the range 295.5� 1 K, in agree-
ment with laboratory conditions. The extracted number
density of absorbers at the 100% CO2 setting is found to be
2.41� 0.02 × 1019 molecules=cm3. A third-order corrected
ideal-gas-law calculation [37] shows a number density of
2.419 × 1019 molecules=cm3 for the natural isotopic abun-
dance (98.4%) of 12C16O2 [38] at the temperature (296 K)
and pressure (1010 hPa) [39] of the measurement. This
demonstration shows that the accuracy of the measurements
is in agreement with the ideal gas law to within 0.6%.
The precision of the single-shot number-density mea-

surements is excellent showing a standard deviation of
approximately 0.04% (9.6 × 1014 molecules=cm3 refer-
enced to the 100% data) during measurements in which
the CO2=N2 ratio is held constant (the plateaus of Fig. 5).
The first plateau (A) is excluded from calculations of
the precision as purging of remnant N2 gas created a drift.
The precision may be improved by averaging multiple
number-density measurements. For example, the preci-
sion of a 20-s (20-spectra) average improves to approx-
imately 0.01% (2.4 × 1014 molecules=cm3).
The experimentally derived 12C16O2 number densities

are plotted as a function of set values in Fig. 6. A linear
fit produces a slope of 1.005� 0.003 with an offset
of −2.65� 0.03 × 1016 molecules=cm3, showing close
agreement with the expected 1∶1 slope. The gas mixer
used to create the varying CO2=N2 ratios has a stated

accuracy of 0.75% of the set concentration of each gas,
which is consistent with the deviation of the fitted slope
from the expected 1∶1 line, and accounts for the majority
of residuals in Fig. 6. Other contributors to the vertical
error bars in Fig. 6 are the stated uncertainties in the line
strengths as provided by HITRAN (see Table I). HITRAN
reports the errors derived for each line from the original
source. On the assumption that these errors are uncorre-
lated, we estimate the weighted standard error in the
ensemble of Sηη0 to be 0.4% [40,41]. Improved error bounds
on line strengths provided by HITRANwould thus improve
fitting and retrieved number-density accuracy.
An additional uncertainty in the overall accuracy arises

from the variation in spectrometer broadening across the
spectral range observed. For simplicity, constant values are
used in this analysis, although the spectrometer broadening

FIG. 5. Extracted 12C16O2 density as a function of time. Avideo
demonstration of the density extraction for each spectrum may be
seen in the Supplemental Material [32]. Labels correspond to set
CO2 densities listed in Table II. The discontinuity between labels
A and B corresponds to an alignment control servo error.

FIG. 6. Absolute 12C16O2 number density as extracted fromthe fits
as a function of set density (blue markers) as retrieved from the
plateaus of Fig. 5 and listed in Table II. Vertical error bars of both
graphs are conservatively estimated as 0.95%, derived from a
quadrature combination of uncertainties as summarized in Table I.
Residuals are differences from the error-weighted linear fit (gray
dashed line) of slope 1.005� 0.003 and offset−2.65�0.03×1016.

TABLE I. Sources of uncertainty and their relative effect on
number-density measurements.

Effect Uncertainty (%)a

Gas mixer concentration uncertainty 0.75
HITRAN 2012 Sηη0 ðTrefÞ uncertainty 0.4
Spectrometer broadening variation 0.3
Spectrometer asymmetry 0.3

Combined uncertainty 0.95
aUncertainties listed are percentages of measured number

density at the 1σ level. The combined uncertainty value of
0.95% results from combining the tabulated errors in
quadrature. Detailed discussion of the derivation of the above
values is found in text. The stated gas-mixer concentration
uncertainty dominates as the main source of error.
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using rarefied comb images [Fig. 2(b)] displays a variation
of 6% for both the Gaussian and Lorentzian components
across the image. The effect of ignoring these variations in
the analysis produces an uncertainty of 0.3% in extracted
number densities. This error may be reduced by using
frequency-dependent broadening values. We note also that
the measured spectrometer broadening is slightly asym-
metric. Ignoring this gives rise to some of the residual
effects that can be seen on Fig. 3, with the net effect of
this on the density estimated at 0.3%. This is estimated
by comparison between fits to a selected CO2 line—one in
which the asymmetry is accounted for, and the other the
symmetric Voigt line shape used in this paper. It is possible
to remove these errors by using the rarefied comb to
interrogate the gas. In this case, all spectrometer broad-
ening is eliminated and we are able to reobtain the same
spectral sampling by sequentially interrogating the gas with
various independent rarefied combs at the cost of a slightly
longer integration period [27].
Another potential error in the number-density estimate

arises from the use of a Voigt molecular line shape [33,42].
The Voigt line shape is commonly used in fitting high-
resolution spectral measurements, but has been shown to
lead to underestimates of line intensities [34–36]. However,
as we have used HITRAN data designed for use with a
Voigt line shape, the effect of this on the overall concen-
tration estimation is minimal.

IV. CONCLUSION

The VIPA-based technique presented in this paper
produces number-density measurements that demonstrate
high accuracy and precision over the full measurement
range. The single-shot measurement precision (approxi-
mately 1 s) is 0.04% over the range of measurements, while
averaging for 20 s can yield a precision of 0.01%.
The current limiting factors and means to further increase
precision, if required, have been identified. The accuracy

of the measurements is in agreement to within 0.6%
of a Virial-corrected ideal gas law, inside the combined
measurement uncertainty range of 0.95%. The precision
and accuracy of the technique allows its use in applica-
tions requiring high sensitivity and low noise, such as
in atmospheric monitoring of greenhouse gases. It is also
important to note that it is relatively simple to extend the
approaches expounded in this paper to measure other
molecules, including greenhouse gases such as H2O and
CH4, and means this technique is highly likely to find
numerous real-world applications.
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Chapter 11

Isotopic CO2 Determination

This chapter is based on the submitted article:

S. K. Scholten, C. Perrella, J. D. Anstie, R. T. White, and A. N. Luiten, “Rapid optical

measurement of 12CO2 and 13CO2 number density with direct optical frequency comb spec-

troscopy” (2019).

11.1 Overview and Motivation

This paper describes extension of the fitting code as seen in Chapter 10 to retrieve the con-

centrations for the two most common isotopologues of carbon dioxide: 12C16O2 and 13C16O2.

The 13C/12C ratio of CO2 is important to environmental sciences such as paleoclimatology,

carbon cylcing studies, oceanography, atmospheric science, and monitoring of greenhouse

gas emissions, sequestration and storage integrity [277–283]. Isotopic analysis is additionally

used in biomedical applications such as metabolic flux analysis, Helicobactor pylori bacterium

detection, liver function assessment, and pancreatic function, among others [37,284]. While

this isotopic ratio has been measured previously with DFCS and other methods, this is the

first verification of isotopologue specificity for this system and the first for such a system

without an enhancement cavity [37,273,285].

The architecture of the physical experiment is identical to that seen in Chapter 10, ex-

cepting the introduction of the extended comb source as described in Section 5.4. This was

required in order to observe absorption features from both isotopologues in the same spectral

region. In addition, the large dynamic range of results when comparing the smaller-magnitude
13C16O2 absorption features to the much larger 12C16O2 features demonstrated a linearity

gradient response across the spectrometer camera. This was rectified by moving to a pixel-

by-pixel nonlinearity correction as described in Section 6.3.5. This paper aimed to retrieve

the natural isotopic abundances from measured spectra. Additionally, by using nitrogen as a

buffer gas to change the overall concentration of carbon dioxide in the sample cell, the linear-

ity of the spectrometer system as whole could be examined and was found to be exceptionally

linear over three orders of magnitude in concentration.
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Accurate optical number density measurement of 12CO2 and 13CO2 with direct
frequency comb spectroscopy
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We report on the use of direct frequency comb spectroscopy to accurately measure the concen-
trations of 12C16O2 and 13C16O2 isotopologues within a gas sample. We demonstrate an accuracy
of 0.5% and 12% for concentration measurements of 12C16O2 and 13C16O2 respectively, with the
measured isotopic ratio in excellent agreement with that expected from their natural abundances.
Precision of the concentration measurements is also high, at 0.03% and 1.24% for 12C16O2 and
13C16O2 respectively. The measurement technique is also verified to be highly linear for concentra-
tions ranging over three orders of magnitude. Direct frequency comb spectroscopy can be applied
to numerous molecular species, and is therefore a promising technique for measurements in environ-
mental monitoring and biomedical sciences.

I. INTRODUCTION

Accurate measurement of the isotopic composition of
a gas sample is useful in a wide variety of applications.
The 13C/12C ratio of CO2 is particularly important
within the environmental sciences including paleoclima-
tology [1, 2], carbon cycling studies [3–5], oceanography
[6], atmospheric science [7], and monitoring of greenhouse
gas emissions, sequestration and storage integrity [8, 9].
Isotopic analysis is also used in biomedical applications
including metabolic flux analysis [10, 11], detection of He-
licobacter pylori bacterium (which cause gastric ulcers
and gastric cancers) [11], assessment of liver function and
disease, gastric emptying, bacterial overgrowth, and pan-
creatic function [11].

To correctly measure the relative concentrations of iso-
topologues, techniques with high precision, high accu-
racy, large dynamic range, and of course isotopologue dif-
ferentiability are required. A commonly-used technique
is mass spectrometry, which fulfills most of these require-
ments but typically suffers an inability to differentiate be-
tween species of similar atomic mass (e.g. 13C16O2 and
16O12C17O). More recently, instruments based on optical
spectroscopy have been developed to measure isotopic ra-
tios by exploiting the nuclear-mass dependent frequency
shifts of the ro-vibrational absorption peaks [12].

These optical techniques include Cavity Ring-Down
Spectroscopy (CRDS) [11–13], Fourier Transform In-
frared (FTIR) [14, 15], Dual Comb [16], and Direct Fre-
quency Comb Spectroscopy (DFCS) [17, 18]. While pos-
sessing excellent precision and accuracy, CRDS requires
many sequential measurements as the interrogation laser
frequency is scanned, and makes complex gas analysis
cumbersome when it is necessary to have a large scan
range. FTIR overcomes this by measuring many chem-
ical absorption signatures at once, however this comes

∗ sarah.scholten@adelaide.edu.au

at the expense of long data acquisition times. With-
out careful calibration, FTIR can yield inaccurate wave-
length determination due to imperfections in their me-
chanical scans. Dual-comb techniques have measured
CO2 molecular spectra for 13C and 12C in open-air paths,
however, this technique requires two optical frequency
combs, making them relatively costly and complex sys-
tems. Nonetheless, recent work on shrinking frequency
combs to chip-sized devices might eventually offer a ra-
tional way forward in this area [19–21].

In this paper we use direct frequency comb spec-
troscopy without an enhancement cavity to analyse the
12C16O2 and 13C16O2 isotopologues of CO2. We demon-
strate accurate, highly precise and linear extraction of
the concentration of both isotopologues over a large dy-
namic range. DFCS has been used for isotopic analysis
of CO2 before but only with an enhancement cavity [17].
The spectroscopy method used in this paper operates in
the eye-safe NIR spectral band, and has the additional
benefits of requiring only a single frequency comb as a
light source, which is measured with a fixed and robust
spectrometer based on spatial frequency dispersion. This
reduction in complexity makes the system appealing for

Frequency 
Comb 50:50

Shutter

50:50

Polarizer

InGaAs
Camera

VIPA
Grating

Imaging
Lenses

FP Cavity
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N2 CO2
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FIG. 1. A simplified diagram of the experiment. FP: Fabry-
Perot (Cavity); WBS: Wedged Beam Splitter; Fibre-coupled
paths are shown in solid grey, and free space optical paths in
blue for the optical frequency comb.
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applications oustide the laboratory.

II. EXPERIMENTAL METHODS

A. Optical Experiment

The experimental setup is shown in Fig. 1. An op-
tical frequency comb (OFC) (Menlo Systems FC1500)
was used as the interrogation source which spans
∼1500 - 1600 nm. The carrier-envelope-offset frequency
(fCEO) of the comb is locked to a cesium beam clock
(Datum CsIII), while the repetition rate, frep≈ 250 MHz,
is stabilised by locking one comb mode to a cavity-
stabilized reference laser (NKT Koheras Boostik E15)
at 1560 nm. The comb light is split into two paths via
a 50:50 fibre coupler. The first path is used for spec-
troscopy and is further split into two paths, using a
wedged beam splitter (WBS), into the reference (for opti-
cal comparison) and sample path that contains a double-
passed 3.25 m-long sample cell (296± 1 K) at atmospheric
pressure. A gas mixer (Environics Series 2000) uses N2 as
a buffer gas to adjust the CO2 concentration within the
sample cell, with the CO2 gas containing a natural abun-
dance of CO2 isotopologues. The second fibre coupler
output is sent to a length-stabilized low finesse (∼200)
Fabry-Perot (FP) cavity with bandwidth of ∼ 50 MHz
that transmits every 36th comb mode. The filtered OFC
is sufficiently sparse that the spectrometer can isolate
each mode which allows identification and assignment of
a relative frequency to each comb mode, allowing calibra-
tion of the relative frequency axis (to within an overall
frequency offset) [22–24].

Automated shutters select light from the sample, ref-
erence and cavity paths, with the co-linearity of all three
paths ensured by coupling via a four-port 50:50 coupler.
The spectrometer is based on a virtually imaged phased
array (VIPA) etalon (Light Machinery), with a finesse of
∼100 and free spectral range (FSR) of ∼ 50 GHz, that
spreads the comb light vertically as a function of wave-
length [25]. The VIPA is followed by a 600-lines/mm
diffraction grating to remove frequency ambiguity of the
VIPA by dispersing the beam horizontally [26]. This re-
sults in a 2D array of comb modes imaged on an In-
GaAs IR camera (Xenics XEVA-1.7-320), with∼ 2.9 THz
(∼ 25 nm) spectral range in the horizontal and just over
one VIPA FSR in the vertical direction. Two images
were acquired for both the reference and sample paths;
one bright, followed by a dark image with matched inte-
gration time for camera dark field subtraction.

B. Image Analysis

To extract the CO2 absorption signature from the im-
ages taken by the spectrometer [24], the dark frames are
first subtracted from each bright image, before a pixel-
by-pixel camera non-linearity correction is applied. To

reduce noise, 100 measurements of each of the sample and
reference images were averaged together. In order to as-
certain the accuracy and precision of the measurements,
10 nominally identical sets of 100 images were taken for
statistical purposes. The procedure to extract the ab-
sorption signature from these averaged images may be
found in more detail in Refs. [23] and [24]. As described
in Ref [24], we use the optically filtered comb image (with
an effective mode spacing of 9 GHz), together with the
known repetition rate and offset frequency of the comb,
to derive an accurate mapping from position on the de-
tector to relative optical frequency.

C. Spectral Fitting and Number Density
Extraction

A concentration measurement of 12C16O2 and
13C16O2, and hence isotopic ratio, is obtained by fitting
the experimental spectrum with a model absorption spec-
trum based upon parameters from the HITRAN 2012
database [28, 29]. There are differences in the optical
transfer function of the signal and reference paths due to
effects such as beam divergence, etalons, and polarisation
rotation between paths. To remove the broad-scale back-
ground variations that are a result of this difference in
optical transfer function between paths, the background
was measured by filling the sample cell with N2 to re-
move any absorption features. This background was well-
fitted by an eighth-order Fourier series, which was used
as a model for this persistent background. Any slight
shot-to-shot variations from this background, originat-
ing from alignment fluctuations, were accounted for with
an additional third-order polynomial. There are three
absorption bands that fall within the observed spectral
region: the 30012←00001 overtone band of 13C16O2 and
the 30013←00001 and 31113←01101 overtone and hot
band respectively of 12C16O2, totalling 307 ro-vibrational
features that are all modelled as Voigt line-shapes. Pa-
rameters of each peak are available from the HITRAN
database including: line strengths (Sηη′ (Tref)) where η
and η′ denote the lower and upper states of the tran-
sition respectively, line centres (νηη′), lower state en-
ergy of the transition (Eη), pressure shifts, and pressure-
broadened line half-widths due to both air and self-
broadening. The spectrometer imposes an instrumen-
tal broadening on the spectrum, the shape of which is
close to that of a Voigt function with a Lorentzian half-
width-at-half-maximum of 0.01±0.001 cm−1 and Gaus-
sian 1/e half-width of 0.012± 0.001 cm−1. We obtain
this through observation of individual comb modes us-
ing the optically-filtered frequency comb image. Doppler
broadening of 0.06841±0.00002 cm−1 for each absorption
line was also included in the model. We note that HI-
TRAN parameters are provided at a reference tempera-
ture of Tref = 296 K. This requires a temperature correc-
tion to be included for certain parameters including the
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and the 12C16O2 30013←00001 and 31113←01101 overtone and hot band respectively. A fit (grey) to the 307 ro-vibrational
features is shown. Fit residuals (top) show peak height issues due to the use of the HITRAN-recommended Voigt line-profile
and some broad-scale structure as the spectrum and background are not separable during fitting.
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FIG. 3. Close-up of the R16 - R22 features of the
30012←00001 spectral band of 13C16O2 amongst the much
larger R40 - R46 lines of the 30013←00001 band of 12C16O2.
Note the odd-numbered transitions are forbidden due to
molecular symmetry [27]. Main graph: total fit in solid grey,
data in blue markers, 13C16O2 fit in purple dot-dashed line,
and 12C16O2 in pink dashed line. Fits are offset by +0.02.
Residuals graph: blue dots are residuals of data from total
fit; pink dots are residuals of data from total fit with the
13C16O2 contributions omitted.

line strength:

Sηη′ (T ) = Sηη′ (Tref)
Q (Tref)

Q (T )

e
−c2Eη
T

e
−c2Eη
Tref

1− e
−c2νηη′

T

1− e
−c2νηη′
Tref

(1)

where c2 = hc/kB , h is the Planck constant, c is the speed
of light and kB is the Boltzmann constant [29]. The to-
tal internal partition function (Q (T )) of each isotopo-
logue must also be altered for temperature, with the full
calculation simplified by use of a polynomial approxima-
tion [30].

We performed a least-squares optimised fitting of the
model to the experimental spectrum with the only free
parameters being the two isotopologue number densities,
temperature, and background terms. The fitted and ex-
perimental spectrum for a pure sample of CO2 is shown
in Fig. 2 for 1000 averages, with a zoomed portion shown
in Fig. 3. Under-estimation of the peak heights is appar-
ent as seen in the blue residuals and is a known problem
with using the Voigt line-shape recommended for use by
the HITRAN database which does not take into account
more complex collisional dynamics [32–36].

III. RESULTS

To demonstrate the spectrometer’s ability to accu-
rately measure the ratio of isotopologues over a wide
range of absorption strengths (or concentrations), we pre-
sented the spectrometer with gas mixtures made up of
CO2 and N2. Measurements were made at CO2/N2 con-
centration ratios within the sample cell of 100%, 75%,
50%, 25%, and 10%. The analysis was applied to extract
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FIG. 4. Average measured densities of 13C16O2 (open red
markers) and 12C16O2 (filled blue markers) for 10 sets (refer-
ence and signal) of 100 images against densities predicted by
the Virial-corrected Ideal Gas Law. The expected 1:1 density
line is shown in dashed grey [31].

the number density of the two targeted isotopologues for
the five total CO2 concentrations examined. Figure 4
shows the measured number density of both isotopo-
logues against those predicted by a third-order corrected
Ideal Gas Law calculation (grey dashed line) [31, 37]. Iso-
topic ratio measurements are shown in Fig. 5 which are
in excellent agreement with the natural abundance val-
ues of 98.420% and 1.106% for 12C16O2 and 13C16O2

respectively, with the remaining isotopologues present in
trace amounts [31]. The measurements have a precision
of 0.03% and 1.24% for the 100% CO2 measurement for
12C16O2 and 13C16O2 respectively. The measurement
precision is taken to be the standard deviation of 10
concentration measurements, each of which are retrieved
from fits to a spectrum containing 100 spectra averaged
together.

The accuracy of the 12C16O2 density measurements
are in agreement with the Virial corrected Ideal Gas Law
to within 0.5%, while the 13C16O2 measurements agree
to within 12%. The discrepancy for 13C16O2 arises from
the small absorption (only ∼1%) when compared to the
12C16O2 peaks, as seen in Fig. 3. The accuracy of our op-
tical concentration measurements, shown in Fig. 4, is lim-
ited by four major contributors: the residual background
transmission structure, uncertainties in the known ab-
sorption strengths and shape of the spectral lines, and
spectral broadening from the VIPA. Residual background
structure was unable to be adequately fitted as the back-
ground and absorption spectra are not completely separa-
ble. This contributes uncertainties of 0.2% and 8% to the
measured concentrations of 12C16O2 and 13C16O2 respec-
tively. The uncertainties in the absorption line strengths
were taken from HITRAN [36]. Assuming the errors for

each peak are uncorrelated, we estimate the weighted
standard error in the ensemble of Sηη′ to be 0.1% for
12C16O2 and 0.3% for 13C16O2 [38, 39]. These uncertain-
ties set the ultimate accuracy limit of the spectrometer,
and form the limit for all optical spectroscopy isotopo-
logue concentration measurements. Another contribu-
tor to the error is the use of the HITRAN-recommended
Voigt molecular line-shape, which has been shown to lead
to underestimates of line intensities in high resolution
spectral measurements [32, 36]. Slight asymmetry and
frequency dependence in the VIPA spectrometer broad-
ening is not accounted for when fitting, with the net ef-
fect of each on the density estimated at 0.4% for both
isotopologues [24]. This issue can be removed by using
the rarefied comb to interrogate the gas, which com-
pletely eliminates spectrometer broadening [22]. These
optical uncertainties, listed in Table I, were combined in
quadrature with the measurement precision to yield to-
tal uncertainties of 0.5% and 12% for the 12C16O2 and
13C16O2 absolute number density measurements respec-
tively, which are displayed as the error bars in Fig. 4 and
Fig. 5. The gas mixer has a specified accuracy of 0.75%
of the requested concentration for both N2 and CO2; this
is displayed as the horizontal error bars of Fig. 4 for both
isotopes.

TABLE I. Optical uncertainties and their relative ef-
fect on number density measurements

Effect 12CO2 (%) 13CO2 (%)

HITRAN 2012 Sηη′ (Tref) uncertainty 0.1 0.3

Spectrometer broadening/asymmetry 0.4 0.4

Residual background structure 0.2 8.0

Combined Optical Uncertainty 0.5 8.0

Uncertainties listed are percentages of measured number
density at the 1σ level for 12CO2 and 13CO2. Detailed
discussion of the derivation of the above values are found
in-text.

Agreement of the measured isotopic ratio to the nat-
ural abundance value (Fig. 5) over the full range of
CO2 concentrations examined demonstrates the excel-
lent linearity of the concentration measurements using
the DFCS technique. Deviations from a linear measure-
ment, ∆L, were quantified by taking the ratio of two
concentrations u1 and u2, scaled by their known CO2/N2

ratios, r1 and r2:

∆L = 1− u1
r1

/
u2
r2

. (2)

If the measurement is linear, each ratio u1/r1 and
u2/r2 should produce the same measured concentra-
tion. Taking all possible comparisons such that r1>r2,
and u1>u2, gave a deviation from a linear measure-
ment of −0.15±0.47% for 12C16O2 measurements. The
13C16O2 concentration measurements gave a deviation
from linearity of −2.6±8.6% with increased error due
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FIG. 5. The measured 13C16O2/12C16O2 isotopic ratio de-
rived from 10 sets (reference and signal) of 100 images for
each CO2 concentration against gas mixer concentration (blue
markers). Error bars are a quadrature sum (see main text).
The ratio predicted by the HITRAN database is shown in
dashed grey for the natural abundances of the isotopologues
in question.

to lower signal-to-noise ratio. Comparison between
12C16O2 and 13C16O2, over a concentration range of
three orders of magnitude, gave a deviation of linearity
of −4.9±8.5%, again limited by the signal-to-noise ratio
of the 13C16O2 absorption peaks. This demonstrates a
large dynamic range of highly-linear concentration mea-

surements, which can be improved upon with more aver-
aging and/or longer absorption path length.

IV. CONCLUSION

We have demonstrated accurate concentration re-
trieval of the 12C16O2 and 13C16O2 isotopologues of CO2.
Agreement between concentration measurements and the
Virial-corrected Ideal Gas Law is shown to be within
0.5% for 12C16O2 and 12% for 13C16O2, with the mea-
sured ratio in excellent agreement with that expected
from the natural abundance of both isotopes. The mea-
surement technique is demonstrated to be highly lin-
ear, with deviation from a linear measurement being
−4.9±8.5% over a concentration range of three orders
of magnitude. These results demonstrate the ability of
DFCS to correctly measure the relative concentrations
of isotopologues with high precision, accuracy, and large
dynamic range, making it a promising technique for mea-
surements for environmental monitoring and biomedical
sciences.
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W. Al-Ashwal, N. B. Hébert, J. Genest, and A. N.
Luiten, Phys. Rev. Applied 9, 054043 (2018).

[25] M. Shirasaki, Opt. Lett. 21, 366 (1996).
[26] S. A. Diddams, L. Hollberg, and V. Mebele, Nature 445,

627 (2007).
[27] R. Kakkar, Atomic and Molecular Spectroscopy: Basic

Concepts and Applications (Cambridge University Press,
2015).

[28] L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe,
D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi,
V. Boudon, L. R. Brown, A. Campargue, K. Chance,
E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin,
A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison,
J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart,
A. Jolly, J. Lamouroux, R. J. L. Roy, G. Li, D. A. Long,
O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko,
H.S.P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal,
V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard,
M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun,
J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wag-
ner, J. Quant. Spectrosc. Radiat. Transfer 130, 4 (2013).

[29] L. S. Rothman, C. P. Rinsland, A. Goldman, S. T.
Massie, D. P. Edwards, J. -M. Flaud, A. Perrin, C. Camy-
Peyret, V. Dana, J. -Y. Mandin, J. Schroeder, A. Mc-
Cann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V.
Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and
P. Varanasi, J. Quant. Spectrosc. Radiat. Transfer 60,
665 (1998).

[30] R. R. Gamache, R. L. Hawkins, and L. S. Rothman, J.
Mol. Spectrosc. , 205 (1990).
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Chapter 12

High-Resolution Measurements of 12C2H2

This chapter is based on the article under preparation:

F. Karim†, S. K. Scholten†, C. Perrella, and A. N. Luiten, “High-resolution spectroscopy of
12C2H2 with a tunable rarefied optical frequency comb and virtually imaged phased array

spectrometer” (2019).

†These authors contributed equally to this work.

12.1 Overview and Motivation

The aim of this paper was to improve the frequency-resolution of the VIPA spectrometer, as

demonstrated on the narrow absorption features of low-pressure acetylene (12C2H2). High-

resolution, broad-bandwidth spectroscopy with absolute frequency accuracy is an invaluable

tool to provide precision parameters for spectral databases to facilitate models by which future

measurements are compared [133,286,287]. In such cases, a lack of or reduced instrumentation

broadening is beneficial, removing the need for deconvolution of the resulting spectra from

the instrument function of the spectrometer [288,289]. This is particularly true for cases

where the molecular spectrum is crowded with an abundance of absorption features or in low

pressure scenarios [138,181,290].

This paper describes use of the rarefication cavity as introduced in Chapters 7 & 8. As in

Chapter 8 the rarefied comb was used directly to probe the sample in order to fully resolve

the modes of the comb. However instead of stepping the cavity through the peaks of the

filter-cavity transmission function as described in Chapter 8, the repetition rate of the comb

was instead sequentially increased by 10 Hz, with the cavity tracking this new comb. A small

change in repetition rate results in a shift at the observed frequency, resulting in new comb

slightly offset from the previous. Sequential stepping of the repetition rate then fills in the

entirety of the sample spectrum. This manuscript details the first use of this method with

an optical frequency comb and VIPA spectrometer to perform high-resolution spectroscopy,

as demonstrated on the narrow features of acetylene. The experimental apparatus is similar

to that seen in Chapters 10 & 11, excepting the removal of the gas mixer, rarefication of the

comb by the FP cavity prior to sample interrogation, a change from the 6.5 m flow cell to a

5 cm double-passed 12C2H2 at 50 Torr, and switching the comb to a radio-frequency locking

scheme for repetition rate flexibility. In addition, the image analysis code was changed to

a box-summation method as described in the following paper. The model fit discussed in
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the paper is the same as that presented in Chapters 10 & 11, as appropriately modified for

low-pressure acetylene, and compares favourably with the measured spectrum.

12.2 Statement of Contribution

12.2.1 Conceptualisation

The idea of performing ultra-high resolution spectroscopy of acetylene was a joint effort

between Sarah Scholten, Christopher Perrella, and Andre Luiten as a way to extend the

applications of the molecular modelling code demonstrated in Chapter 10. The need for and

solution to interfacing between the data acquisition code, rarefication cavity, and optical

frequency comb was a joint idea between all four authors. The need for change and solution

to the analysis code modification to work with the new spectrographs was also a collaborative

affair between all four authors.

12.2.2 Realisation

This paper used the extended comb source, model fitting code and rarefication cavity system

described in previous papers and as previously attributed. In addition, the data acquisition,

model fitting and interfacing code was built upon previous work by Sarah Scholten. Faisal

Karim modified the acquisition code to interface with the optical frequency comb and se-

quentially change its repetition rate to acquire the interleaved spectra under guidance from

the remaining authors. In addition, Faisal Karim constructed the optical setup as well as

performing data acquisition and analysis on the data that appears in this paper.

12.2.3 Documentation

This paper was primarily written by Faisal Karim with assistance from Sarah Scholten and

under the guidance of Christopher Perrella and Andre Luiten. Editorial support was provided

by all authors.

Candidate overall percentage contribution: 45%.

Sarah K. Scholten
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12.2.4 Co-author Contributions

By signing below, each co-author certifies that:

� The candidate’s stated contribution to the publication is accurate (as stated above).

� Permission is granted for the candidate to include the publication in the thesis.

Co-author certifications are in order of published authorship unless otherwise specified. Faisal

Karim is joint first-author for this manuscript.

Faisal Karim

Christopher Perrella

Andre N. Luiten



High-resolution spectroscopy of 12C2H2 with a tunable rarefied optical frequency comb
and virtually imaged phased array spectrometer

Faisal Karim,1, ∗ Sarah K. Scholten,1, ∗ Christopher Perrella,1 and Andre N. Luiten1

1Institute for Photonics and Advanced Sensing (IPAS), School of Physical Sciences,
The University of Adelaide, Adelaide SA 5005, Australia

(Dated: July 17, 2019)

Molecular spectra possess a large number of narrow absorption features spread across a relatively
wide spectral bandwidth. To obtain correct line shapes and widths of these narrow absorption
features, one needs to perform high-resolution spectroscopy that is ideally free from spectrometer
instrumentation broadening. Here we demonstrate a technique for acquiring high-resolution spectra
of gas molecules with spectral sampling of between a few kHz to a few MHz with 3.3 THz (25 nm)
spectral bandwidth. In addition, the acquired spectra are free from spectrometer instrumentation
broadening and not limited by the spectrometer resolution. This is achieved via tuning the repetition
rate of an optical frequency comb in combination with an optical rarefication cavity that resolves
each comb mode individually. The technique is demonstrated with a 7.88 MHz frequency-sampled
spectrum of 12C2H2 at 50 Torr with more than 500,000 data points.

I. INTRODUCTION

High-resolution broadband spectroscopy of molecules
is vital for performing analytic gas phase research, and
has yielded essential information on material structure
for physical, chemical and biological sciences [1]. A new
and exciting tool for probing molecular systems is the op-
tical frequency comb (OFC), which has enabled real-time
detection [2] and identification of gases in mixtures [3],
with applications in the oil and gas industry [4], environ-
mental monitoring [5], breath analysis [6], and defence.
OFCs are near-ideal interrogation sources for molecular
spectroscopy as they deliver a light source with dense
spectral sampling over a broad spectral bandwidth, en-
abling precise, high-resolution spectroscopy with abso-
lute frequency accuracy [7–9].

The development of a broadband and high-resolution
OFC-based spectrometer has been the subject of in-
tense interest over recent years. OFCs have previ-
ously been used in conjunction with Fourier transform
spectroscopy [10], micro-resonator based frequency comb
spectroscopy [11, 12], cavity ring-down spectroscopy [13],
dual-comb spectroscopy [14], and single-comb heterodyn-
ing techniques [15]. However, in all cases the resolution
was limited to tens of MHz at best. A key challenge in all
of these techniques is unravelling the comb into its com-
ponent frequencies without negatively affecting the shape
of narrow spectral features. Additionally if a dispersive
spectrometer is used there is a trade-off between measur-
able spectral resolution by the spectrometer and density
of comb modes and hence spectral sampling [16–19].

In this paper we demonstrate a technique to ac-
quire high-resolution molecular spectra using a cavity-
rarefied optical frequency comb and dispersive spectrom-
eter based on a virtually imaged phased array (VIPA).
An approximately 25 nm spectrum of isotopically-pure

∗ These authors contributed equally to this work

acetylene (12C2H2) with 7.88 MHz frequency-resolution
was acquired, and agrees favourably with a model of the
absorption spectrum without spectrometer instrumen-
tation broadening based on parameters from the high-
resolution transmission molecular absorption (HITRAN)
database.

II. EXPERIMENTAL METHODS

A. Optical Experiment

The experimental setup is shown in Fig. 1. An OFC
(Menlo Systems FC1500) is used as the sample interro-
gation source and spans 1500-1700 nm. It has a tunable
repetition rate (fr) of 250 MHz, with both fr and the
carrier-envelope offset frequency (f0) stabilised to a Cae-
sium beam clock (Datum CsIII). Comb modes of spacing
fr are unable to be directly resolved by the available spec-
trometer. To resolve the densely packed comb modes, the
light from the OFC is first rarefied by a length-stabilised
low-finesse (∼200) Fabry-Pérot (FP) cavity that has a
free spectral range (FSR) of 9 GHz (36×fr), which allows
every 36th comb mode to be transmitted. This generates
a new comb with fr = 9 GHz which is sufficiently sparse
for complete resolution by the spectrometer [18, 20].

The rarefied comb first passes through a polariser be-
fore being split into the reference and sample paths of
the experiment via a 50/50 wedged beam splitter (WBS).
The reference arm is used for optical comparison while
the sample arm contains a double-passed 5 cm 12C2H2

gas cell (50 ± 5 Torr, Wavelength References) at room
temperature. Each path is equipped with an automated
shutter and both paths are directed to the spectrometer
via optical fibre to ensure colinearity at the spectrometer
input.

The spectrometer is based upon a Virtually Imaged
Phased Array (VIPA) etalon that disperses the beam as a
function of frequency in the vertical direction [21]. Light
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FIG. 1. Diagram of the experimental setup for high-resolution
spectroscopy of acetylene. Blue: free-space path of the opti-
cal frequency comb; grey: optical fibres; FP: Fabry Pérot
(cavity); WBS: wedged beam splitter.

from the reference or sample path is directed through
a cylindrical lens which line focuses the light into the
antireflective-coated input window of the VIPA. The
VIPA has an FSR of about 50 GHz and finesse of ap-
proximately 100. When used in isolation the VIPA dis-
plays self-wrapping behaviour, sending frequencies sep-
arated by multiples of the VIPA FSR to the same spa-
tial location. This creates bright stripes of overlapping
comb modes. In order to remove this ambiguity, the
VIPA is used in conjunction with a 600 lines/mm diffrac-
tion grating arranged orthogonally to disperse the over-
lapped modes in the horizontal direction [8]. The grating
is double passed to improve horizontal angular resolu-
tion and ensures potential cross talk between adjacent
VIPA stripes is minimized. This results in a 2D array of
comb modes that are then focused onto and imaged by an
InGaAs camera (Xenics XEVA-1.7-320) [7]. Each image
spans approximately 2.9 THz (approximately 25 nm) of
spectral range in the horizontal and just over one VIPA
FSR in the vertical direction. A typical rarefied-comb
sample-path image is shown in Fig. 2.

When considered in the spectral domain, the frequency
of the nth comb mode is related to fr and f0 through

fn = nfr + f0 (1)

where n is a large positive integer [7]. In order to acquire
high-resolution spectra of acetylene, which at low pres-
sure possesses a crowded absorption spectrum of narrow
features, fr was increased in steps of ∆fr = 10 Hz, while
f0 was maintained at 20 MHz. At the spectral region of
measurement for acetylene (1510 nm− 1540 nm), n is ap-
proximately 7.885 × 105. By Eq. 1, a change of ∆fr =
10 Hz to fr corresponds to a shift of 7.88 MHz in the ob-
served spectral range. This shift in frequency also defines
the effective resolution of the measurement, with greater
resolution also increasing measurement times. The rar-
efication cavity is able to automatically track this change
via length adjustment, and produces a new rarefied comb
with an effective repetition rate of 36× (fr + ∆fr) [18].
This is demonstrated for the comb subsets with effective
repetition rates of 36× fr and 36× (fr + ∆fr) in Fig. 3.
The repetition rate of the comb is sequentially increased

V
IP

A
 F

SR

C
av

ity
 F

SR

FIG. 2. A typical sample path image showing the rarefied
comb (inverted colours). The blue horizontal lines mark one
VIPA FSR containing unique spectral data, while the red hor-
izontal lines denote one cavity FSR of 36× fr. The horizon-
tal separation of adjacent vertical stripes with the centres as
mapped from the unrarefied image (overlayed in light grey
stripes) is also one VIPA FSR. There are typically five to six
comb modes per vertical VIPA stripe. Several comb modes
have been absorbed by acetylene (green arrows).

by ∆fr until the final frequency shift at the observed
frequency range has increased by 9 GHz from the initial
comb, forming a complete spectrum.

fr + ∆frfr 

36 � fr 

36 � ( fr+ ∆fr )

f0

6549.2 6549.25 6549.3 6549.35 6549.4 6549.45
Wavenumber (cm-1)

FIG. 3. Interleaving the high-resolution spectrum obtained
by stepping fr while the being tracked by the FP cavity. The
original mode spacing subset 36× fr is shown in red, while a
‘new’ comb subset (blue) with repetition rate 36× (fr + ∆fr)
is obtained by shifting the repetition rate by ∆fr. The result-
ing spectral data points from the comb-cavity system gener-
ated by the stepping of fr are shown in corresponding colours.
All comb subsets have the offset frequency f0 = 20 MHz.

B. Image Analysis

A set of four images is taken with matching integration
times using the optical shutters: a bright reference image
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FIG. 4. High-resolution acetylene spectrum (blue markers) with fit results using parameters from the HITRAN database (grey
line). The strongest transition (101000← 000000, see Ref. [22] for notation) - though saturated - shows the characteristic 3:1
intensity variation that arises due to nuclear spin statistics [23]. Owing to the large number of 12C2H2 absorption lines in
this spectral region, only the four strongest vibrational transitions are included in the fit (101000← 000000, 101011← 000011,
101101← 000101, 110110← 000000), and some unfitted ro-vibrational transitions appear in the residuals [24].

and sample path image pair, along with a matching dark
image for each path. Each dark image is subtracted from
the corresponding bright image to remove dark back-
ground effects, followed by a pixel-by-pixel camera non-
linearity correction based upon a previously obtained set
of grey images. An unrarefied image with the comb by-
passing the FP cavity captured during initialisation of
the system is used to locate the centres of VIPA stripes,
which allows for accurate frequency assignment of each
comb mode location on the rarefied reference image and
its corresponding sample path image. The power of
each mode is calculated using a box-summation approach
wherein pixels surrounding each mode are summed to
capture all available signal per mode, and collapses each
comb mode to a single data point.

The reference and sample data for each comb subset
is averaged with 100 like images to improve the signal to
noise ratio of the final spectrum. Division of the sample’s
comb modes by the reference modes yields absorption for
that subset of comb modes. This additionally removes
irregularities in the power envelop of the comb and any
common-mode optical effects. The process is repeated for
each comb subset of sequentially differing repetition rate
to completely sample the spectrum of C2H2. This pro-
cess is shown in Fig. 3. Finally, the individual absorption
spectra from each comb subset are stitched together to
obtain the complete high-resolution absorption spectrum
of C2H2 as seen in Fig. 4.
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 Resolved Data
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FIG. 5. Zoomed portion of the spectrum (blue markers) with
corresponding HITRAN fit (solid grey) and residuals. A spec-
trum acquired under the same conditions for the unresolved
case is shown in black, with the effects of instrumentation
broadening apparent [25]. Use of a Voigt line shape during
fitting results in structure in the residuals and an underesti-
mate of line strengths [26–29].

III. RESULTS

Fig. 4 demonstrates the technique with a spectrum of
sub-10 MHz (7.88 MHz) spectral resolution, much below
the 2 GHz resolution limit of the spectrometer [25]. The
spectrum is normalised using comb modes with zero ab-
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sorption common to all repetition rates. As can be seen
more clearly on a zoomed portion of the spectrum shown
in Fig. 5, results acquired without the cavity-rarefication
process suffer the effects of instrumentation broaden-
ing from not individually resolving comb modes. In
particular for low pressure acetylene, which possesses a
multitude of exceedingly narrow absorption features in
this spectral range, instrumentation broadening from the
VIPA spectrometer results in the reduction of absorption
depths, along with the merging or smearing of adjacent
peaks. In addition, the broadening can suppress small
transitions into the noise of the measurement as seen in
Fig. 5 at ∼ 6568 cm−1, which becomes apparent by com-
parison with the fully-resolved case.

Obtaining the correct width and strengths of absorp-
tion features is crucial for extracting valuable spectro-
scopic information such as the temperature and pressure
of a sample, along with fundamental parameters of the
molecule. The width of an individual absorption fea-
ture is a combination of the natural linewidth, Doppler
broadening, and collisional broadening, and so an ac-
curate width must be used to extract the pressure of
a gas sample from each line without requiring knowl-
edge about an instrumentation function [30]. Addition-
ally, the relative heights of the features in an absorption
band reflects the population distribution among various
rotational states of the molecules, revealing the sample
temperature [31, 32]. To this end, the four strongest ab-
sorption bands of the spectrum comprising 222 individual
ro-vibrational absorption features were simultaneously
fit with a model derived from parameters available on

the HITRAN database using a Voigt lineshape [25]. The
Doppler full-width-at-half-maximum was also included in
the fit (7.167 cm−1). The fit returned a temperature of
19.5◦ and pressure of 51.8 Torr, in agreement with lab-
oratory conditions and manufacturing tolerances. The
signal-to-noise ratio of the rarefied spectra may be im-
proved by increasing the power per comb mode, reduc-
ing the need for averaging over multiple spectra for the
purposes of noise reduction.

IV. CONCLUSION

The combined tunable comb rarefication and VIPA
spectrometer technique as demonstrated in this paper
provides a method for broadband, sub-10 MHz fre-
quency resolution while removing the instrumentation
broadening of the spectrometer. This method is highly
suited to perform high resolution spectroscopy for the
purposes of acquiring precision molecular parameters
for spectral databases and for acquiring low pressure or
densely-packed absorption spectra.
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Chapter 13

Conclusion and Future Work

The goal of this project was the development of a direct frequency comb spectroscopy ap-

proach for future applications in biomedical and environmental fields. The system needed

to be reliable, rapid, sensitive, accurate, precise, broadband, and have isotopic and species

selectivity. Each of these factors has been demonstrated in turn throughout the course of this

thesis. A spectrometer was constructed and we developed an initial analysis code to extract

broadband absorption spectra from spectrometer images. This was created in the course of

preparing the paper described in Chapter 8. In the same chapter, the rarefication cavity that

allows both sub-VIPA-resolution measurements and accurate frequency-axis measurements

was described. The next chapter marked the improvement of the spectrometer to function

with the unrarefied frequency comb and several changes to several optical elements to cap-

ture the full optical transfer function of the sample gas. Additionally, Chapter 9 included the

introduction of the rapid computation package for Voigt profiles by inclusion of the Faddeeva

package.

Chapter 10 saw the introduction of a spectral fitting code to extract parameters of interest

from the molecular system. Namely, the concentration and temperature. Importantly, this

paper marked the demonstration of a highly robust, accurate, precise, and rapid spectroscopic

system. Several changes to the analysis, interfacing, and acquisition codes made this possible,

as well as a substantial effort to correct the nonlinear response and backgrounding issues of the

spectrometer CCD array. Chapter 11 saw the improvement of the camera corrections further,

with the development of a pixel-by-pixel camera correction improving the linearity of the

camera over three orders of concentration magnitude. At the same time, isotopic specificity

was demonstrated, with the extension of the molecular fitting code to cover multiple species

simultaneously. Chapter 12 demonstrated ultra-high resolution spectroscopy of acetylene by

combining the rarefication cavity first introduced in Chapter 8 with tuning of the comb’s

repetition rate and the molecular model initially described in Chapter 10.

While much improvement and characterisation of the spectroscopic system was made

during the course of this thesis, there is always more work to be done. Future work is primarily

focused on development and demonstrations for more specialised applications, as well as

introducing more complex gas samples involving multiple gas species, liquid components and

more challenges as would be faced in real-world scenarios. These applications follow two main

streams: biomedical and environmental monitoring.

147
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The road to medical breath analysis is a long one and will require several developments to

the system, as well as the relevant clinical trials. Development would first focus on accurate

quantitative detection of known complex (dry) gas samples in the concentrations present in

the human breath. This is a method similar to testing of capnography machines, in which

the exhalation of carbon dioxide of a patient is monitored for use during anaesthesia and in

intensive care [291–294]. In addition, the human breath contains a significant amount of wa-

ter vapour that would be hazardous to any optical instrument, necessitating a simultaneous

stream of research involving the extraction of water vapour from a sample while leaving the

remaining gases intact. A first attempt at this has already been demonstrated with the spec-

troscopic system presented in this thesis by monitoring the total carbon dioxide respiration

product of baker’s yeast in a closed system. Preliminary results may be seen in Fig 13.1. This

demonstration required the use of a drying column to remove the water vapour from the cir-

culating air, proving the efficacy of the preliminary moisture handling system and represents

the first test on a biological sample. Future work still remains however to make moisture

handling more robust in the system, potentially by either a removable sample chamber sep-

arate to the optical elements and/or by inclusion of a controlled condensation system. In

addition to further trials on yeast, additional biological sources should be investigated before

moving onto efficacy trials with human subjects.
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Figure 13.1: Preliminary results of the system measuring the total carbon dioxide re-
leased during respiration by Baker’s yeast held at 30◦ over a five hour pe-
riod.

The second easily-identifiable set of applications and future work is in the field of en-

vironmental monitoring. While the system has been used to detect carbon dioxide in a

laboratory-based setting, it would be of interest to acquire atmospheric point-to-point mea-

surements of carbon dioxide and other important molecules. This not only has applications to
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monitoring of greenhouse gas levels, but to pollution monitoring, air quality monitoring, and

in industrial processing environments, which would all benefit from point-to-point sensing.

Similar dual-comb systems have been demonstrated recently in such capabilities with great

success [132,133,295,296].

For both applications, more complex samples containing gases of multiple species must

also be tested and accurate retrieval of concentrations of each component demonstrated.

Though the system has demonstrated the ability to differentiate between isotopologues of

the same species and it is theoretically a relatively simple extension, it still remains to be

demonstrated that this is also true for molecules of different species in practice. In addition,

the entire system is not currently portable and requires sizable amounts of miniaturisation

work. The miniaturisation of optical frequency combs has come a long way in the years

since their invention, with briefcase-sized combs and smaller appearing at time of writing.

Additionally, micro-combs based on microresonators and ‘combs on a chip’ are active fields of

study that may provide even smaller comb technologies [129,142,297–300]. The spectrometer

and sampling systems are realistically able to be miniaturised to a portable size and is more

of an engineering puzzle.

For more complex samples, several factors require additional development and exploration.

Rotation of the diffraction grating that forms a part of the spectrometer allows access to a

wider spectrum, as the main limitation to the spectral bandwidth is currently the physical size

of the camera CCD array, which limits the single-shot optical bandwidth to approximately

25 nm. However, the 200 nm-wide spectral bandwidth of the comb is still present at the

output of the spectrometer, but does not land on the CCD array. Rotation of the grating

directs a different 25 nm section of the comb light to the camera, and in this way the entire

bandwidth of the optical frequency comb may be used for spectroscopy. Alternatively, the

spectrometer may be reconstructed based around a camera with a larger CCD array, though

the cost could be high.

Another aspect with more complex samples is the increased computation time in fitting to

spectra. At present, fitting to the spectrum requires pre-knowledge about the contents of the

gas sample, which may not be feasible in out-of-lab applications. Additionally, in a typical

25 nm spectrum of a single molecule it was not uncommon to be fitting 200-300 absorption

features simultaneously. As the number of molecular species increases this number will grow

drastically, including the need to cope with overlapping of absorption peaks from different

species. These factors combine to make the current method of parameter extraction an

infeasible long-term solution. A better solution would be to include an element of machine

learning to extract the parameters from many training spectra or, at the very least, to

identify the molecular species present in the sample to inform the starting parameters of a

more traditional fitting code.

In future it may also be beneficial to investigate the absorption of molecules in the mid-

infrared, where the fundamental ro-vibrational transitions of these small molecules are typi-

cally located. The absorption features are much stronger in this region which allows improved
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sensitivity of measurements. Additionally, it reduces the path lengths and hence total gas

volumes required. Research using mid-infrared dual-comb spectroscopy has recently demon-

strated this to be a viable technique for measurements in the environmental field, with a VIPA

spectrometer suitable for the mid-IR also demonstrated in a laboratory setting [144,145,296].

Alternatively, the permanent inclusion of a multi-pass enhancement cell to improve the in-

teraction path length of the sample should be considered.
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Appendix A

Harmonic Oscillator Vibrational Selection

Rule Addendum

In the interest of space, the full derivation of the vibrational transition selection rule in the

harmonic oscillator approximation was not introduced in Section 3.3.1.2. It is presented here

for the interested reader in its entirety.

A.1 The Dipole Transition Moment

In order for a transition to occur in a molecular system by way of encountering electromag-

netic radiation, two important factors must be considered. Firstly, the incoming radiation

must posses an energy - and hence frequency - that corresponds to some energy difference

between states of the molecular system. Secondly and most importantly from a transition

rule perspective, the dipole transition moment 〈µ〉nm between an initial state ψm and a final

state ψn must be non-zero [153,157,166]:

〈µ〉nm =

∫
ψ∗nµψmdτ = 〈ψn|µ|ψm〉 6= 0. (A.1)

Initial and final state wavefunctions ψm and ψn are associated with energy levels of the

system n and m respectively, µ is the dipole operator, and Eq. A.1 is evaluated over all

space. The asterisk implies complex conjugation. Equation A.1 is particularly important to

ro-vibrational molecular spectroscopy as it gives rise to, amongst other results, the selection

rules for allowed vibrational transitions [166,171].

A.2 The Harmonic Oscillator Approximation Vibrational Se-

lection Rule

The selection rules for allowed transitions of the diatomic quantum harmonic oscillator are

derivable by application of Eq. A.1. That is, the transition between initial vibrational state

ψm and final vibrational state ψn must produce a nonzero dipole transition moment:

〈µ〉nm =

∫
ψ∗nµψmdτ = 〈ψn|µ|ψm〉 6= 0

153
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in order for the transition to be allowed [153,157,171]. Consider the transition moment

evaluated for the harmonic oscillator wavefunctions presented in Eq. 3.33:

ψn (x) =
(α
π

) 1
4
Hn

(√
αx
)
e−

αx2

2

for Hermite polynomials of order n:

〈µ〉nm =

∫
ψ∗n (x)µψm (x) dτ (A.2)
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) 1
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) 1
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= q

∫
Hn (x)xHm (x) dx (A.5)

in which ∫ ∞

−∞
e−αx

2
=
(π
α

) 1
2
,

were we have set α = 1, and the dipole moment operator for a single charged particle of

charge q in one dimension is µ = qx [301].

At this point it is important to note the parity of the wavefunction components within

the integrand and more generally. A function f (x) is called even if f (−x) = f (x) or odd if

f (−x) = −f (x) [302]. Multiplication of parity components is straightforward: even×even =

even, odd × even = odd, and odd × odd = even [303]. When a product function within an

integrand is odd, integration along the x-axis yields a zero result, while integrands with even

parity, such as the Gaussian components of the transition moment integral, integrate to a

non-zero value.

Examples of this can be seen graphically in Fig. A.1. Figures A.1(a) and A.1(b) show the

products of ψ0 (x) with ψ1 (x) and ψ1 (x) with ψ2 (x) respectively. In both cases an odd func-

tion results, leading to a net area of zero when integrated along x due to the orthonormality

of the Hermite polynomials and even parity of the Gaussian contributions. Note that Her-

mite polynomials with n = 0, 2, 4... have even parity, while those with n = 1, 3, 5... have odd

parity [304]. Figure A.1(c) shows the first two wavefunctions, along with the dipole moment

operator µ. As the dipole moment operator is odd, the product function of the operator with

the two wavefunctions is even and positive for both positive and negative values of x, as seen

in Fig. A.1 [212]. This leads to a non-zero integration result along the x-axis. As it is the odd

functions that can change the parity of an integrand, even components may be effectively

ignored qualitatively. This method can be used to check quickly whether a transition moment

is zero, and hence whether the transition is allowed. Returning to Eq. A.5 and recalling the

recursion relation for Hermite polynomials (Eq. 3.34):

zHm (z) = mHm−1 (z) +
1

2
Hm+1 (z) , (A.6)
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Figure A.1: A graphical representation of the orthonormal properties of the vibrational
wavefunctions and transition moment in the harmonic oscillator approxima-
tion, as reproduced from Ref. [171]. (a) The product of ψ0 and ψ1. The light
and dark grey areas under the curves are of equal area, resulting in a zero
net area when integrated and confirming the result predicted by Eq. 3.35 of
zero as the wavefunctions are orthogonal. (b) The product of ψ1 and ψ2 is
also zero as the wavefunctions are still orthogonal. (c) Plot of ψ0 (dark grey),
ψ1 (light grey), and the dipole operator µ = ex (black dashed line). (d) Inte-
gration of 〈ψn|µ|ψm〉 along the x-axis leads to a non-zero net area and transi-
tion moment, indicating an allowed transition.
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the term xHm (x) can be substituted into Eq. A.5 to give

〈µ〉nm =

∫
Hn (x)

[
mHm−1 (x) +

1

2
Hm+1 (x)

]
dx (A.7)

= m

∫
Hn (x)Hm−1 (x) dx+

1

2

∫
Hn (x)Hm+1 (x) dx. (A.8)

As mentioned previously, the Hermite polynomials form an orthonormal set (Eq. 3.35), and

so the two integrals in Eq. A.8 are nonzero if and only if:

∫
Hn (x)Hm−1 (x) dx = δn,m−1 =





1, if n = m− 1.

0, if n 6= m− 1.
(A.9)

and
∫
Hn (x)Hm+1 (x) dx = δn,m+1 =





1, if n = m+ 1.

0, if n 6= m+ 1.
(A.10)

Therefore vibrational transitions in the harmonic oscillator approximation are only allowed

if the vibrational quantum number changes by one unit (∆n = ±1), that is

∆v = ±1. (A.11)

This means only transitions between adjacent vibrational energy levels are allowed in the

harmonic oscillator approximation [166,167]. However, higher harmonic transitions (∆v =

±2,±3...) are also observed in practice, and may only be explained by introducing anhar-

monicity to the vibrational system.



Appendix B

Effects of Parity and

Rotational-Vibrational Selection Rules

As briefly discussed in Section 3.5, intra-band intensities may be modified depending on

the parity of the molecular species in question. Of particular interest are centrosymmetric

molecules such as some of the isotopologues of acetylene and carbon dioxide as examined in

this thesis. To understand the effects of nuclear spin statistics and further modifiers such

as l-type doubling, along with the origin of ro-vibrational transition selection rules, it is

important to first differentiate between the varied types of parity or symmetry a molecule

may possess.

B.1 Types of Parity

Extreme care must be taken when defining the parity of diatomic or linear polyatomic

molecules. This is because there are several types of parity including +/−, e/f , u/g, and a/s,

which all depend upon different symmetry operations and in which components of the wave-

function are assessed. In essence, if the Hamiltonian operator Ĥ commutes with a symmetry

operator ÔS , then a set of simultaneous eigenfunctions (wavefunctions) of the two operators

may be found [157]. In mathematical terms:

[
Ĥ, ÔS

]
= 0 (B.1)

implies

Ĥψ± = Eψ± (B.2)

and that

ÔSψ± = ±ψ±. (B.3)

The effect of the associated symmetry operator may be used to label the wavefunctions and

energy levels of a molecule with a particular symmetry. However, both the part of the total

Hamiltonian operator and the symmetry operator under consideration must be specified in

order to avoid confusion. Each of the types of parity will now be explained explicitly.

157
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B.1.1 Total (+/−) Parity

The total parity of a molecule is obtained when considering the electronic, vibrational, and

rotational (but not nuclear spin) components of the total Hamiltonian operator with the

inversion symmetry operator, Ê∗. The Ê∗ operator inverts the coordinates of all nuclei and

electrons in the laboratory frame that originates at the centre of mass, and is also known as

the reflection symmetry of a molecule. In Cartesian coordinates this would be

Ê∗ψ (xi, yi, zi) = ψ (−xi,−yi,−zi) (B.4)

= ±ψ (xi, yi, zi) . (B.5)

The Ê∗ symmetry operator is used to divide molecular energy states into two classes:

Ê∗ψ = Ê∗ (ψelψvibψrot) = ±ψ (B.6)

where energy levels that transform as +ψ have positive (+) total parity, and those that trans-

form as −ψ have negative (-) total parity [157,203]. The effects of Ê∗ must be considered on

each part of ψ individually. The orbital and nuclear spin parts of the electronic wavefunction

ψel are affected by the application of Ê∗, and the +/− superscript on the molecular term

symbol for a state indicates the effect of Ê∗ on the orbital part of ψel. For Π states and

higher (` > 0) this superscript is not used as the rotational levels always occur as a +/− pair

due to `-type doubling (see Section B.4). The effect on the vibrational wavefunction is also

relatively simple as this inversion relation leaves ψvib unchanged, as ψvib relies only upon the

magnitude of the internuclear separation and not the particular coordinates. The rotational

wavefunction ψrot transforms as

Ê∗ψrot = (−1)J ψrot (B.7)

so that each rotational energy level alternates total parity as J increases [153,157]. This

means that for all totally symmetric vibrational species Σ+ in the electronic ground state,

even-J rotational levels are positive parity, while odd-J levels are negative parity [153,159,165].

In Σ− vibrational states, the opposite is true as the electronic part of the wavefunction is

now antisymmetric, with even-J rotational levels having negative parity, and odd-J rota-

tional levels having even parity to compensate [152,153]. In Π,∆, ... vibrational levels, there

are two sublevels for each J of slightly different energy and of differing parity [153]. The

parity ordering alternates either as +−, −+, +−, ... or −+, +−, −+,... as can be seen in

Fig. B.1(a) [153].

The selection rules for total parity are again derived by the transition moment integral

〈µ〉nm =

∫
ψ∗nµψmdτ (B.8)

needing a symmetric integrand to be non-zero [160,166]. Noting that the transition moment
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Figure B.1: Summary of the symmetry properties of rotational levels in various species
of vibrational levels of linear molecules as seen in this thesis. (a) shows the
symmetries for molecules in point group C∞h for linear molecules that are
not centrosymmetric such as HCN, while (b) shows symmetries of point
group D∞h for molecules possessing a centre of inversion symmetry such as
CO2 and C2H2 [153]. In (b) the symmetry properties for vibrational levels
that are antisymmetric with respect to the centre of symmetry (u) are listed
in brackets [153].

operator µ has (-) parity as

Ê∗µ = −µ (B.9)

this implies that only +↔ − transitions are allowed in the case of single-photon electric

dipole transitions:

+↔ −, + = +, −= −. (B.10)

B.1.2 Rotationless (e/f) Parity

As the total parity always alternates with J , it can be useful to define a new parity with this

rotational dependence factored out, with the e and f parities defined for integer J as

Ê∗ψ = + (−1)J ψ (B.11)
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and

Ê∗ψ = − (−1)J ψ (B.12)

respectively. That is, if the total parity is described by Eq. B.11, it is e parity, while if it is

described by Eq. B.12, it is f parity [157,162]. In this case, ψ is ψelψvibψrot. The rotationless

parity is sometimes also referred to as Kronig parity. All rotational levels associated with a

vibration of type 1Σ+ have e parity, while all those associated with a 1Σ− type have f parity.
1Π vibrational states have rotational energy levels that are split into e/f sublevel pairs due

to `-type doubling (see Subsection B.4), which results in an extra term in the ro-vibrational

term value. Another effect of ` 6= 0 for Π states (and higher) is the lack of a J = 0 rotational

state. This is because J actually refers to the total angular momentum, and J ≥ |`| [153].

The +↔ − selection rule for the total parity becomes

e↔ e, f ↔ f, e= f for ∆J = ±1 (B.13)

and, when not forbidden,

e= e, f = f, e↔ f for ∆J = 0 (B.14)

where these rules are again derived by requiring a symmetric integrand in the transition

moment integral as done for the total parity case [157].

B.1.3 Gerade/Ungerade (u/g) Parity

For homonuclear diatomics or other molecules with a centre of inversion symmetry, such as

CO2, there is an additional parity known as g/u parity, where g stands for the german ‘gerade’

meaning positive parity; u is ‘ungerade’ meaning negative parity [156]. This type of parity

relates to the inversion of the molecular electronic orbital part of the wavefunction through the

centre of symmetry, a process described by the inversion operator, î. In contrast to the total

parity which is evaluated in the laboratory frame, the effects of î are considered in the frame

of the molecule. Additionally, î acts only on the spatial coordinates of the electrons, leaving

the vibrational, rotational, and nuclear spin components of the wavefunction unchanged. If

inversion through the centre of symmetry results in a molecular orbital indistinguishable

from the original molecular arrangement, then it is symmetric to inversion and the molecular

orbital is symmetric (g). Conversely, if the molecule is distinguishable as being in a new

state after inversion with respect to the inversion centre, the resulting molecular orbital is

antisymmetric (u) [157]. The selection rules are

g ↔ u, g = g, u= u (B.15)
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again derived by satisfying the dipole transition moment integral, noting that the transition

dipole moment operator µ is of u parity, and [156,157,166]

u× u = g × g = g, u× g = g × u = u. (B.16)

As one might expect, if the molecule has no centre of inversion, g/u is not included in the term

symbol [157]. Transition diagrams of molecular species then summarise the term symbols for

each vibrational state, such as for 12CO2 in Fig. B.2.

B.1.4 Antisymmetric/Symmetric (a/s) Parity

The final type of parity relates to the total wavefunction of a centrosymmetric molecule

including nuclear spin, separating the rotational levels into antisymmetric (a) or symmetric

(s) character [156]. This parity is described with the pseudo-symmetry operator P̂12 and the

selection rules

s↔ s, a↔ a, s= a. (B.17)

This type of parity arises due to the Pauli exclusion principle, which requires that the to-

tal wavefunction be symmetric or antisymmetric with the exchange of two identical nuclei

depending if the exchanged nuclei are bosons or fermions respectively [162,190]. If the iden-

tical nuclei are bosons, which have integer nuclear spin quantum numbers I, then the total

wavefunction is symmetric with respect to the exchange. For fermions, with half-integer

I, the total wavefunction must be antisymmetric with respect to exchange of the identical

nuclei [162,190]. So we have

P̂12 (ψelψvibψrotψns) = + (ψelψvibψrotψns) (B.18)

for bosons and

P̂12 (ψelψvibψrotψns) = − (ψelψvibψrotψns) (B.19)

for fermions [157]. Nucleons (protons and neutrons) are fermions, with the total amount

of nucleons composing the atomic nucleus being equal to its mass number [192,193]. Three

scenarios are then possible [194]:

� The mass number is even, with even number of protons and even number of neutrons,

results in bosonic nuclei with I= 0 such as for 16O and 12C.

� The mass number is even, with odd number of protons and odd number of neutrons,

produces bosonic nuclei with integer spin (I= 1, 2, 3...) such as 14N where I=1.

� The mass number is odd, indicating fermionic nuclei with half-integral nuclear spins

(I = 1/2,3/2,5/2...) such as 1H where I = 1/2.

The nuclear spins of some common nuclei are summarised in Table B.1. For molecules with a

centre of symmetry, such as those belonging to the D∞h point group like CO2 and C2H2, the
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Figure B.2: Reproduction of the vibrational energy level diagram of the centrosymmetric
12CO2 molecule as seen in Refs. [153,305]. Only Σ+ and Π levels are shown.
Observed levels are shown by horizontal heavy full lines, predicted levels by
broken lines. Observed transitions are indicated by light vertical lines.
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positive rotational levels are symmetric, and the negative rotational levels are antisymmetric

for vibrational levels of g symmetry (Σ+
g , Σ−g , Πg,...) [153,159]. The reverse is true for

vibrational levels of u symmetry (Σ+
u , Σ−u , Πu,...) [153]. Examples of this behaviour may be

seen in Fig. B.1(b).

Spin I Nuclei Statistics

0 12C, 14C, 16O, 18O, 32S Bose-Einstein
1
2

1H, 3H, 13C, 13N, 15N, 15O, 31P, 19F Fermi-Dirac

1 2H (D), 14N Bose-Einstein
3
2

11B, 33S, 35Cl, 37Cl Fermi-Dirac
5
2

17O Fermi-Dirac

3 10B Bose-Einstein

Table B.1: Some common nuclei, their spin quantum numbers, and statistics classifica-
tion [154,189].

Consider the exchange of identical nuclei of CO2 in its vibrational ground state as seen

in Fig. B.3. This operation can also be thought of in terms of a 180o rotation about its

centre of symmetry (the 12C atom). In the vibrational ground state, this rotation produces a

state indistinguishable from the original state prior to rotation, and therefore the vibrational

ground state is symmetric. A similar condition occurs when considering any of the excited

states of the symmetric stretch, as the two C=O bonds stretch or contract simultaneously.

Figure B.3: A diagram of the 12CO2 molecule in its vibrational ground state, showing the
centre of symmetry (grey dashed line) passing through the 12C atom (dark
grey). The identical oxygen atoms are shown in red. The vibrational ground
state is symmetric under inversion or the equivalent 180o rotation about its
centre of symmetry.

The asymmetric stretching vibration is a different matter. After a 180o rotation, the

molecule is not indistinguishable from its starting state, making the final state asymmetric

as seen in Fig. B.4.

B.2 Nuclear Spin Statistics: Acetylene

Now consider centrosymmetric acetylene (C2H2) as seen in Fig. B.5 and the exchange of

identical 1H (I = 1
2) nuclei. As 1H are fermions, Ψtotal must be antisymmetric [188]. The

ground electronic state is symmetric, as are most of the vibrational wavefunctions (Σ+
g type)
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Figure B.4: A diagram of the 12CO2 molecule in an excited state of the asymmetric
stretch vibration mode. The molecule is asymmetric under exchange of the
two identical oxygen nuclei (red) or the equivalent inversion through or 180o

rotation about its centre of symmetry (grey dashed line) passing through the
12C atom (dark grey), making this vibrational state asymmetric.

Figure B.5: A diagram of a C2H2 molecule in its vibrational ground state. This type of
acetylene possesses a centre of symmetry at the midpoint of the triple bond
between the two carbon atoms (dark grey), greatly affecting its ro-vibrational
spectrum. Hydrogen atoms are light grey.

[154]. By Eq. 3.57 and 3.58, there are three symmetric and one antisymmetric nuclear spin

states. In order to make Ψtotal antisymmetric, the odd J rotational states must combine

with the even nuclear spin states, and the even J with the odd nuclear spin states. So the

following situations may occur:

Ψtotal = ψel × ψvib × ψrot × ψns

ODD = EVEN × EVEN × ODD (J = 1, 3, 5...) × EVEN
ODD = EVEN × EVEN × EVEN (J = 0, 2, 4...) × ODD

Table B.2: Summary of the symmetry of each component of the final wavefunction Ψtotal

of centrosymmetric 12C2H2. As 1H are fermions, the individual spatial wave-
functions must combine to make Ψtotal odd under inversion.

Equation 3.59 predicts a 3:1 symmetric:antisymmetric spin state (3:1 odd:even J) in-

tensity variation as there are three times as many allowed nuclear spin states resulting in

Ψtotal being odd [152,160,188]. This is indeed what observed in the spectrum of acetylene’s

101000← 0000000 vibrational transition in Fig. B.6.

B.3 Nuclear Spin Statistics: Carbon Dioxide

Now consider the spin statistics of carbon dioxide as seen in Fig. B.3, in particular the

30012← 00001 vibrational transition. The symmetry of Ψtotal must be must be even with

respect to exchange of the two bosonic 16O nuclei (I = 0) [188,189]. There are no predicted

antisymmetric nuclear spin states, and one symmetric nuclear spin state. The electronic
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Figure B.6: A simulated ro–vibrational spectrum of 12C2H2 arising from the
101000← 0000000 vibrational transition, showing the expected 1:3 (even:odd
J) intensity variation due to nuclear spin statistics [306]. Note the existence
of additional, smaller-intensity bands at mid-to-higher wavelengths.

ground state and the initial vibrational state (Σ+
g type) are symmetric according to Fig. B.2,

while the final vibrational state (Σ+
u type) is asymmetric [152,154]. The lack of asymmetric

nuclear spin states has a profound impact on the spectrum of this transition. In order to

make Ψtotal even in the ground state, the only allowed nuclear spin state is symmetric, and

must combine with only even rotational levels as summarised in Table B.3 [188].

Ψtotal = ψel × ψvib × ψrot × ψns

EVEN = EVEN × EVEN × EVEN (J = 0, 2, 4...) × EVEN

Table B.3: Summary of the symmetry of each component of the wavefunction Ψtotal of
centrosymmetric CO2. As 16O are bosons, the individual spatial wavefunctions
must combine to make the ground state Ψtotal even under inversion. The lack
of antisymmetric nuclear spin states leads to lines originating from odd-J lev-
els being absent entirely.

That is, only rotational levels that are symmetric (even J) are allowed to exist. This

leads to the complete absence of half of the 30012← 00001 lines in spectra of centrosym-

metric species of CO2, leading to a spectrum that appears free of intensity variations due

to nuclear spin statistics as seen in Fig. B.7 [162,166,188]. If the symmetry of the molecule

was destroyed, for example by replacing one of the 16O nuclei with any other oxygen isotope,

the missing states would be re-instated in the spectrum as oxygen atoms would no longer

be subject to the Pauli principle, with 18OC16O being observed to retain all its rotational

lines [152,153,155,162,189].
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Figure B.7: A simulated ro–vibrational spectrum of 12CO2 arising from the
30012← 00001 vibrational transition. While it appears there is no intensity–
variation due to nuclear spin statistics, the transitions originating from odd-J
states are missing entirely. Note the existence of additional, smaller-intensity
bands at lower-to-mid wavelengths.

B.4 `-type Doubling

One of the final considerations for intra-band intensity modification is that of `-type doubling

for Π vibrational states or higher in which |`| > 0. This additional vibrational angular

momentum causes each rotational level to be split into +/− symmetry pairs for each J

as ` = ±1 [159]. This is because when considering the molecule in a bending vibration

without rotation, the bend may occur in two perpendicular planes with the same oscillation

frequency, and are exactly degenerate. However once rotation is included, the two bending

modes will have slightly different effective moments of inertia about the axis of rotation, and

the two bending modes see different Coriolis forces [153,160,307]. This results in the two

components for the same J begin to separate in energy as the rotational and vibrational

angular momenta interact, leading to a doubling-up of rotational energy levels. This can be

seen in the ro-vibrational transition diagram for the 31113← 01101 hotband transition of

centrosymmetric CO2 in Fig. B.8, which is a Πu −Πg type vibrational transition.

This splitting of the rotational levels is termed `-type doubling. The amount of splitting,

∆νsplitting, is given by

∆νsplitting = qiJ (J + 1) (B.20)

where qi is the `-type doubling constant [153,155,157]. Therefore, as J increases the magni-

tude of the splitting will also increase. Another thing to note is that the two components of

the Π state will have slightly different rotational constants as these constants are inversely



§B.4 `-type Doubling 167

Πu

1

2

3

4

J’’

-
+

-

+

-

+

-

+

e s

f a

e a

f s

e s

f a

e a

f s

1

2

3

4

J’

-
+

-

+

-

+

-

+

e a
f s

e s

f a

e a

f s

e s

f a

P
(2
)

P
(3
)

P
(4
)

R
(2
)

R
(1
)

R
(3
)

Q
(1
)

Q
(2
)

Q
(3
)

Q
(4
)

Πg

Figure B.8: Some of the rotational levels involved in a Πu − Πg vibrational transition,
such at for the 31113← 01101 hotband transition of centrosymmetric CO2.
This is an example for the C∞h point group. For a molecule in the D∞h
point group, the u/g and a/s labelling should be dropped. The rotational
levels of both the upper and lower vibrational states are split by `-type dou-
bling, and the J = 0 rotational states are missing as ` = 1 for Π vibrational
levels [153,159]. Not to scale.



168 Effects of Parity and Rotational-Vibrational Selection Rules

proportional to the moment of inertia. This can lead to what looks like aliasing effects in the

ro-vibrational spectrum as seen in Fig. B.9 [308]. The different types of parity are then quite

useful to differentiate the split rotational levels. Due to the split levels having differing parity

values, some interesting spectra with at first unexpected features that may be explained by

the symmetry considerations presented.

623062206210620061906180617061606150

Wavenumber (cm
-1

)

Figure B.9: A simulated ro–vibrational spectrum of centrosymmetric 12CO2 arising from
the 31113← 01101 hotband transition, showing the effects of `-type dou-
bling. Note the existence of a weak Q-branch at the band centre of approx-
imately 6197 cm−1, and the aliasing effect due to the differing rotational con-
stants.

Consider the 31113← 01101 hotband transition of centrosymmetric CO2 depicted in

Fig. B.8. Unlike the 30012← 00001 transition evaluated in Section B.3, all J-values are rep-

resented due to the splitting. According to the transition rules relating to parity derived

earlier, the lower vibrational state allows only e parity levels for odd-J , and f parity levels

for even-J , while the upper vibrational state allows only e levels for even-J and f levels for

odd-J . According to Section 3.4.2, this is a parallel vibrational transition in which ∆` = 0

but ` 6= 0, and we see a weak Q-branch accompanying the R and P branches. According to

Section B.1, the ro-vibrational transitions must, and do, fulfill the selection rules:

+↔ −, u↔ g, s↔ s, a↔ a (B.21)

for all transitions, and

e↔ e, f ↔ f, e= f for ∆J = ±1 (B.22)
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for the P and R branches, and

e= e, f = f, e↔ f for ∆J = 0 (B.23)

for the Q branch. This results in a spectrum in which half of the split states are forbidden

but all J-values are represented, and the differing rotational constants result in what appears

to be aliasing in R and P branches of the final spectrum in Fig. B.9. Finally, the ground

rotational state with J = 0 does not exist in either Π state, as J actually refers to the total

angular momentum, and so cannot be less than `, so J ≥ |`| [159,307].
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Appendix C

HITRAN Uncertainty Codes

Uncertainties are provided with each parameter requested from the HITRAN database using

defined error codes. The uncertainty codes as used by HITRAN are listed in Ref. [1], and

are reproduced here. Two types of uncertainty codes are used corresponding to uncertainty

in cm−1, which is used for the line position and air pressure-induced line shift parameters,

and relative uncertainty in %, which is used for the line intensity and broadening parameters.

The error codes are as follows:

Code Absolute Uncertainty Range Code Relative Uncertainty Range

0 ≥ 1 or Unreported 0 Unreported or unavailable
1 ≥ 0.1 and < 1 1 Default or constant
2 ≥ 0.01 and < 0.1 2 Average or estimate
3 ≥ 0.001 and < 0.01 3 ≥ 20 %
4 ≥ 0.0001 and < 0.001 4 ≥ 10 % and < 20%
5 ≥ 0.00001 and < 0.0001 5 ≥ 5 % and < 10%
6 ≥ 0.000001 and < 0.00001 6 ≥ 2 % and < 5%
7 ≥ 0.0000001 and < 0.000001 7 ≥ 1 % and < 2%
8 ≥ 0.00000001 and < 0.0000001 8 < 1%
9 ≥ 0.000000001 and < 0.00000001

Table C.1: The uncertainty codes as used by HITRAN as listed in Ref. [1]

171



172 HITRAN Uncertainty Codes



Appendix D

Optical Frequency Comb: Mathematical

Background

This appendix is intended to provide the mathematical background to the creation and

stabilisation of an optical frequency comb as presented in Chapter 5. It is not intended

as a comprehensive overview of the complex mathematics behind optical frequency combs,

but as an introduction to the controlling equations of comb operation.

D.1 Frequency Spectrum of an Identical Pulse Train

In order to understand the output mode structure of an optical frequency comb based on a

femto-second fibre laser, it is useful to consider the case of a pulse circulating within the laser

cavity with (angular) carrier frequency ωc. The output of such a laser is a series of identical

pulses separated by the round-trip time (τ) of the cavity:

τ =
2L

vg
(D.1)

where L is the cavity length and vg is the mean group velocity of the cavity respectively

[224,228,229]. The electric field at a time t of such a pulse, Ep (t), is given by multiplication

of the oscillatory carrier signal by the envelope function of the pulse, Ê (t):

Ep (t) = Ê (t) ei(ωct+φCE). (D.2)

where φCE is the phase between the carrier and envelope, and the square of the envelope

function gives the intensity profile of the pulse [224,239]. If the pulse propagates through a

dispersive material (one in which the the refractive index varies as a function of frequency),

then φCE will evolve as the group and phase velocities (vp) are different. The carrier propa-

gates at vp while the envelope propagates at vg. This causes the carrier to ‘slip’ through the

envelope, with the slipping causing the evolution of φCE as the pulse circulates within the

laser cavity. The phase of the intra-cavity pulse is sampled each time the pulse strikes the

partially reflective output coupler of the cavity, leading to φCE evolving on a pulse-to-pulse

basis at the output. In the absence of other perturbations to the laser, φCE evolves by a fixed

amount ∆φCE between each output pulse [239]. However, only ∆φCE modulo 2π matters in

terms of the mathematics, which will be designated as simply ∆φCE . This means that the

output of the laser is a series of pulses - a ‘pulse train’ - with each successive pulse differing
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by ∆φCE from the last, and in the case of an optical frequency comb, ∆φCE must be tightly

controlled to a fixed value.

In order to understand the resulting frequency spectrum of this pulse train, it is useful to

firstly ignore ∆φCE altogether. This results in all pulses in the pulse train being identical,

and the electric field E (t) of a train of n pulses may be written as

E (t) =
∑

n

Ep (t− nτ) . (D.3)

The round trip time of the cavity τ is also the time between output pulses, and is equal to

the inverse of the repetition rate frep (frep = 1/τ). It is also assumed that the duration of

Ep (t) is less that τ so that the output pulses do not overlap. Such a periodic function may

be represented as a Fourier series, as is embodied in the Poisson Sum formula from Fourier

analysis:
∞∑

m=−∞
f (x−mp) =

∞∑

k=−∞

1

p
F

(
k

p

)
e

2πikx
p (D.4)

where F (y) is the Fourier transform of f (x). Application of the Poisson Sum formula to

Eq. D.3 (with p = τ and x = t) gives:

∑

n

Ep (t− nτ) =
∑

k

1

τ
F

(
k

τ

)
e

2πikt
τ

=
∑

k

frepF

(
k

τ

)
ei(2πktfrep)

= frep

∑

k

F

(
k

τ

)
ei(2πktfrep).

The spectrum of the periodic train of pulses is therefore a ‘comb’ of discrete frequencies that

are integer multiples of frep, with the amplitude of each comb line given by the the spectrum

of a single pulse [223].

D.2 Frequency Spectrum of a Pulse Train with Varying Phase

Shift

If the pulse-to-pulse phase shift ∆φCE is included, the pulses are not all identical and the

spectrum of the pulse train becomes more complex. The electric field of the pulse train

E (t) may be written in terms of the electric field of a single pulse Ep (t) (Eq. D.2) with the

carrier-envelope phase of each pulse given by

φCE = n∆φCE + φ0
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for the nth pulse and φ0 is the initial phase offset. The electric field for the pulse train is

then given by

E (t) =
∑

n

Ep (t− nτ) ei(ωc(t−nτ)+φCE)

=
∑

n

Ep (t− nτ) ei(ωct−nωcτ+φCE)

=
∑

n

Ep (t− nτ) ei(ωct−nωcτ+n∆φCE+φ0)

=
∑

n

Ep (t− nτ) ei(ωct+n(∆φCE−ωcτ)+φ0).

Recall that the Fourier transform of a function f (x) is given by

F [f (x)] =

∫ ∞

−∞
f (x) e−iωxdx (D.5)

where the Fourier transform of f (x), F [f (x)], is also often represented by alternative F (ω),

f̃ (ω), or f̂ (ω) notations [157,254]. If we take the Fourier transform of the electric field of

the train of pulses, E (t), from above:

E (ω) =

∫ ∞

−∞

∑

n

Ê (t− nτ) ei(ωct+n(∆φCE−ωcτ)+φ0)e−iωtdt

=

∫ ∞

−∞

∑

n

Ê (t− nτ) ei(ωct+n(∆φCE−ωcτ)+φ0−ωt)dt

=

∫ ∞

−∞

∑

n

Ê (t− nτ) ei(n(∆φCE−ωcτ)+φ0)e−i(ω−ωc)tdt

= ei(n(∆φCE−ωcτ)+φ0)

∫ ∞

−∞

∑

n

Ê (t− nτ) e−i(ω−ωc)tdt

where E (ω) is the Fourier transform of our pulse train E (t). Let the Fourier transform of a

single pulse be:

Ẽ (ω) =

∫ ∞

−∞
Ê (t) e−iωtdt.

However the pulses at the cavity output are time-shifted by a constant factor nτ . This time

shift can be included by recalling the Fourier transform time-shift property [229]:

∫ ∞

−∞
f (x− a) e−iαxdx = e−iαa

∫ ∞

−∞
f (x) e−iαxdx (D.6)
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which may be applied to give

E (ω) =
∑

n

ei(n(∆φCE−ωcτ)+φ0)e−i(ω−ωc)nτ
∫ ∞

−∞
Ê (t) e−i(ω−ωc)tdt

=
∑

n

ei(n(∆φCE−ωcτ)+φ0)e−inτ(ω−ωc)Ẽ (ω − ωc)

=
∑

n

e(in∆φCE−inωcτ+iφ0−inωτ+inωcτ)Ẽ (ω − ωc)

= Ẽ (ω − ωc) eiφ0
∑

n

ei(n∆φCE−nωτ).

Now if the Poisson Sum formula is applied in reverse, and noting that the Fourier transform

of a delta function (δ (t)) is a constant:

E (ω) = eiφ0Ẽ (ω − ωc)
∞∑

m=−∞
δ (∆φCE − ωτ − 2πm) (D.7)

where in the reverse application of the Poisson Sum formula p = 2π, x = ∆φCE − ωτ ,

and f (x−mp) = δ (∆φCE − ωτ − 2πm). Equation D.2 describes a comb spectrum with

frequencies:

ωm =
2πm

τ
− ∆φCE

τ

or, converting from angular frequency

fm = mfrep + f0

where δ = f0 = (−∆φCEfrep) / (2π) (noting that it is common to drop the minus sign in this

expression, which simply changes the sign in the definition of ∆φCE) [223,224,229,254]. Hence

we see that the position of the comb is offset from integer multiples of the repetition rate by

a frequency f0, which is determined by the pulse-to-pulse phase shift (∆φCE) [223,224,240]:

f0 =
∆φCEfrep

2π
.

The connection between the time and frequency domain pictures of the frequency comb

is summarised in Fig. 5.5. In the absence of active laser stabilisation, f0 is sensitive to

fluctuations of the laser, causing ∆φCE to change on a pulse-to-pulse basis [224,309]. It is

the effective stabilisation of this parameter that separates the optical frequency comb from a

mode-locked laser.



Appendix E

Rarefication Cavity Addendum

The explanation of the characteristic cavity envelope introduced in Section 7.3 is a simplifica-

tion of a more complex interaction between the optical frequency comb and the rarefication

cavity - the ‘walking-off’ between the modes of the frequency comb and the cavity transmis-

sion function. Additional information is provided in this appendix to explain the details of

this interaction, and the resultant effects on imaging.

E.1 Comb-Cavity Walk-Off

The characteristic cavity envelope presented in Section 7.3 is the result of the change in cavity

transmission function with respect to the stationary comb modes as the rarefication cavity

length is altered. This change to the cavity transmission function may be separated into two

related parts: the small change to the cavity FSR and the shift of the cavity passbands. In

reality both factors are the result of stretching the passband separation around DC, which

manifests as a large frequency offset with a small change in cavity FSR at the frequency range

of operation.

Firstly, consider the peak of the photodetector envelope as seen in Fig. E.1 (labelled C as

seen previously in Section 7.3) which corresponds to a cavity FSR of 9.5 GHz. As the modes

of the frequency comb are separated by 250 MHz, this FSR corresponds to the condition in

which the the cavity Airy function lines up optimally with integer multiples of frep, resulting

in the largest possible cavity transmission signal being observed on the photodetector. This

corresponds to every 38th comb mode being transmitted, across a large span of comb modes.

Now consider a slight shrinking of the cavity length by just enough to move to the adjacent

fine structure peak 250 MHz away in Fig. E.1. This corresponds to a slight increase to the

cavity FSR and resonance with a new subset of comb modes shifted 250 MHz away from the

previous subset, as seen in Fig. E.2.

This explains the fine structure of the cavity envelope: as the cavity length is changed, the

cavity FSR is altered and so too is the alignment between the cavity transmission function and

the modes of the comb. Good alignment will result in a maximum in the fine structure within

the envelope, while poor alignment between the passbands will result in a minimum. However,

as changing the cavity length causes a change to the cavity FSR, there is an additional offset

of mδ (m =1,2,3... is an integer) on top of the 250MHz shift intended - a stretch around the

optimally-tracking cavity mode. This additional offset may be seen in Fig. E.3 for the cases
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Figure E.1: The characteristic cavity envelope as the cavity length is altered. The enve-
lope peak (C), fine structure peak spacing and CW laser deformations of the
fine structure may be seen.

of m = 0, 1, and 2.

Note that there will exist an ‘optimally-tracking’ mode (denoted with mode index q)

which, in the transition between the central maximum and the adjacent maximum, maps

perfectly onto the adjacent comb mode without additional offset (m = 0). This perfectly-

tracking mode is in actuality the result of many thousands of δ factors, such that they have

accumulated to push the cavity filter mode exactly on top of its nearest neighbour. From this

it may be seen that the shift of the blue cavity modes in Fig. E.3 is in fact many thousands

of cumulative green shifts. The next filter cavity mode in sequence (the q + 1 mode) will be

offset by δ, q + 2 by 2δ and so on as shown.

Although δ is small, the cumulative effect is to cause the cavity filter modes to align

increasingly poorly with the corresponding modes of the comb, until there is no overlap

and the cavity loses resonance with the next comb mode in sequence. Furthermore, the

cumulative factors of δ ensure that there is no longer optimised alignment of cavity and comb

modes across the whole range of comb modes, leading to a drop in the total amplitude of

the envelope. This explains the tailing-off of the envelope in Fig. E.1 to the left of 9.5GHz

central maximum. Note that lengthening of the cavity or moving to the comb mode to the

right of the central maximum, and the tailing off of the envelope on this side, is due to the

same mechanism with the exception that the δ shift is in the opposing direction.
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Cavity Mode 
Number

frep 

0 q+1/38 q+2/38 q+1 q+2q

Figure E.2: A slight cavity length change (shortening) results corresponds to moving the
cavity transmission Airy functions to a subset of comb modes (grey dashed
lines) offset by frep = 250MHz. The grey Airy function is the cavity pass-
band prior to alteration of the cavity length, while the blue Airy function is
the passband after length adjustment. The cavity mode number is denoted
by q.

Cavity Mode 
Number

frep 

0 q+1/38 q+2/38 q+1 q+2q

m = 0 m = 1 m = 2
δ 2δ

Figure E.3: The cavity Airy function showing the full effects of stretching around DC
(green). The optimally-tracking mode of index q is shown.

E.2 Effects on Imaging

The tailing-off of the characteristic envelope on either side of the central maximum has an

effect on the output images of the cavity filter system, as the resulting images display a

sequentially reduced number of comb modes efficiently transmitted by the optical cavity.

In applications where the cavity-filtered image is used for calibration of the frequency axis

only, and not as the laser interrogation source, this is not too problematic. Care must be

taken to ensure the cavity is locked to the global maximum of the envelope, where the cavity

FSR is exactly 9.5MHz and is easily discernible. This results in uniform illumination of the

cavity-rarefied VIPA image and corresponds to the highest signal of the photodetector.

However, in applications where summation of the 38 (or 36) individual subsets is required

such as in Chapter 8, this tailing-off manifests as a horizontal gradient across VIPA images,

with the central region being the brightest and a reduction in brightness to either side. While

a horizontal gradient is removed from final transmission data by division of the sample path

image by that of the reference path, this gradient will have a detrimental effect on the signal

to noise ratio of the outer parts of the images for the affected comb subsets.
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E.2.1 Proportion of Frequency Comb Subsets Affected

To understand when the tail-off becomes detrimental, the amount by which the FSR changes

in moving between adjacent maxima of the characteristic fine structure must be found. Con-

sider Eq. 7.4 re-arranged to give the periodic resonant frequencies of the cavity [221]:

f q =
qc

2nL
= qFSR. (E.1)

for cavity mode number q. From this it may be seen that the amount the FSR changes

between adjacent maxima is δFSR. For simplicity, assume that the optimally-tracking cavity

mode q is the cavity mode that corresponds to the centre of the comb output at 1560 nm

(192 THz). Therefore q = 192 THz/9.5 GHz ≈ 20000, which will give an order-of-magnitude

indication. Now let ∆f be the change in frequency experienced by the optimally-tracking

mode when the cavity length is changed to move to an adjacent fine structure maximum.

This may be expressed in terms of the change in FSR between adjacent maxima: ∆f =

q (FSR + δFSR) − q (FSR) = qδFSR. As we have defined the optimally-tracking mode q as

the mode which almost perfectly maps to the adjacent comb mode with this change, it can

be seen that ∆f = 250 MHz. Thus δFSR = ∆f/q = 250 MHz/20000 = 12.5 kHz = δ.

This means that every time the cavity length is tuned to change the optimally-tracking

cavity mode’s frequency by one 38th of an FSR (250 MHz), equivalent to moving to the

adjacent fine structure maximum to the right in the photodetector envelope, an additional

shift of 12.5 kHz per cavity mode is acquired along with the one 38th of an FSR shift. I.e.

mδ worth of detuning around the optimally-tracking cavity mode. With this knowledge the

point at which the dimming of the sides of images for certain subsets becomes detrimental

may be found. Recall Eq. 7.5:

FWHM =
FSR

F .

Knowing that the cavity finesse and FSR are ∼ 200 and 9.5 GHz respectively, this results

in a FWHM of ∼ 50 MHz. This can be converted into a change of cavity mode index ∆q

by dividing the FWHM value by δ: ∆q = 50 MHz/ (m× 12.5 kHz) = 4000 for m = 1. This

corresponds to the width in cavity passband mode index before the transmission of a comb

mode falls to its half-maximum value due to accumulated δ factors.

This may be converted into the bandwidth of comb modes transmitted by the cavity when

the cavity length is tuned to any fine structure maximum adjacent to the central fine structure

peak via ∆q × (9.5 GHz +mδ). For the peak directly adjacent to the central maximum this

is 38 THz, compared to the ∼ 3 THz of comb modes able to be imaged in a single frame

by the camera. This results in the entirety of the camera image being filled with bright

comb modes. however, when m = 12 (12 maxima away from the centre of the envelope), the

width of the transmitted comb modes is ∼ 3 THz. For maxima further out (m > 12), the

brightness of the comb modes is reduced to half-power or less at the horizontal edges of the

images, producing reduced signal-to-noise ratios for the comb modes on the outer edges of
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these distant maxima. In the very furthest maxima, the proportion of the screen that is filled

with bright comb modes may be so small as to preclude its use within a stitched spectrum.
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Appendix F

VIPA Extended Mathematical Treatment

F.1 VIPA Dispersion Relation

The dispersive properties of a VIPA etalon are most easily understood by first considering

the phase matching conditions for a tilted air-spaced etalon of thickness t. As the etalon

is air-spaced, light rays do not undergo refraction at interfaces unlike when an interface

between two materials of differing refractive index is considered. This greatly simplifies the

mathematics and is a good starting point.
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Figure F.1: A diagram of an air-spaced VIPA of thickness t, showing the geometry for a
single incident ray of wavelength λ [258].

For a ray incident upon the back face of the VIPA at an angle (θi + θλ), it can be seen

from Fig. F.1 that

cos (θi + θλ) =
t

AB

where θλ, the transmission angle for wavelength λ, and θi - the angle the incident ray makes
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with the VIPA normal (i.e. the VIPA tilt angle) - are as shown in Fig. F.1. Note that over-

lining indicates a distance between the over-lined points. Additionally, it can be seen that

the lengths AB and BC are equal, and so the total distance ABC = AB +BC is given by

ABC =
2t

cos (θi + θλ)
. (F.1)

It may also be seen that

tan (θλ + θi) =
h

2t

where h = AC. Rearrangement for h yields

h = 2ttan (θi + θλ) (F.2)

and from Fig. F.1 it can also seen that

sin (θi + θλ) =
AD

h
.

After rearranging this expression for AD, it may be combined with Eq. F.2 to give

AD = 2tsin (θi + θλ) tan (θλ + θi) . (F.3)

In order for the two transmitted beams shown in Fig. F.1 to constructively interfere, it is a

requirement that the path length difference between the two adjacent beams AD is equal

to an integer multiple of the incident wavelength λ. That is, the two adjacent beams are

required to be in phase with one another to prevent destructive interference. This is stated

mathematically as

ABC = AD +mλ for m = 1, 2, 3... (F.4)

Substitution of Eqs. F.1 and F.3 into Eq. F.4 gives

2t

cos (θt)
= 2tsin (θt) tan (θt) +mλ (F.5)

where θt = θi + θλ. After further rearrangement and using the definition of the angular

wavenumber, k = (2π) /λ, Eq. F.5 may be written as

2t

(
1

cos (θt)
− sin (θt) tan (θt)

)
=

2πm

k
. (F.6)

Using the definition of the tangent function and a common trigonometric identity:

tan (θt) =
sin (θt)

cos (θt)

1− sin2 (θt) = cos2 (θt) ,
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Eq. F.6 may be written

2ktcos (θt) = 2ktcos (θi + θλ) = 2πm. (F.7)

In the case of an air-spaced etalon, the ray does not experience refraction at either of the

entrance or exit faces, that is, only θt = 0 is physically allowed [310]. In such a case the

dispersion relation is that given by Eq. F.7 for a standard Fabry-Pérot etalon. However, in

the case of a VIPA etalon the beam is focused by a semi-cylindrical lens, and so is presented

with input rays of many angles. Following the approach set by Xiao et al. in Ref. [259], the

angle of the central ray in the input beam with respect to the VIPA normal is denoted θi

and θi + θλ as the angle of the ray elsewhere in the focused beam with respect to the VIPA

normal as seen in Fig. F.2.
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Figure F.2: Geometry of the air-spaced VIPA etalon, showing the angular definitions of
important rays with respect to the VIPA normal [258].

Rays within the focused input beam are selectively transmitted by the VIPA provided

they satisfy the dispersion relation, the mathematical description of the etalon’s resonance

condition. In the case of the air-spaced etalon, the input angle is equal to that of the output

angle for such rays. Again following the work of Xiao et al., now consider a Taylor expansion

about θλ = 0 of Eq. F.7 to second order in θλ. This yields the approximate dispersion relation

for the air-spaced etalon of:

2kt

(
cos (θi)− sin (θi) θλ −

1

2
cos (θi) θλ

2

)
= 2πm.

Though this derivation was based on an air-spaced etalon, Xiao et al. have shown in Ref. [259]

that this result is applicable to a solid etalon with minor modifications. The dispersion
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relation for a solid VIPA etalon of refractive index nr is given by

2kt

(
nrcos (θin)− tan (θin) cos (θi) θλ −

1

2nr
cos (θin) θλ

2

)
= 2πm (F.8)

where nrsin (θin) = sin (θi) (Snell’s Law) and θin is the internal angle inside the solid etalon

resulting from the refraction as seen in Fig. 6.5. The dispersion relation in Eq. F.8 describes

the phase criterion for a specific wavelength to be transmitted by the VIPA etalon, and thus

describes the spectral dispersion of the VIPA as a function of angle.

F.2 VIPA Free Spectral Range

The FSR of a solid VIPA may again be derived following the example set by Xiao et al. for

an air-spaced VIPA in Ref. [259]. Again considering a solid etalon of refractive index nr, the

angular wavenumber may be rewritten in terms of frequency as

k =
2π

λ
=

2πf

c

where c is the speed of light in vacuum. This expression for k may then be substituted into

the dispersion relation derived for a solid etalon (Eq. F.8) to give:

2t

(
2πf

c

)(
nrcos (θin)− tan (θin) cos (θi) θλ −

1

2nr
cos (θin) θλ

2

)
= 2πm. (F.9)

After cancellation of common factors, Eq. F.9 may be rearranged for f to give

f =
mc

2t
(
nrcos (θin)− tan (θin) cos (θi) θλ − 1

2nr
cos (θin) θλ2

) .

The VIPA FSR is defined as the frequency interval between two adjacent transmission modes

of the tilted etalon, i.e. ∆m = 1. Thought of another way, the VIPA FSR can also be

defined as the distance in frequency that must be moved before a new wavelength satisfies

the dispersion relation for the same set of input and output angles as the original wavelength.

Note that this is distinct from the spatial FSR which describes the distance or angle between

two adjacent transmission modes on an imaging plane placed at some distance from the

output of the etalon. Using the definition of FSR in frequency, the final expression for the

VIPA FSR may be derived from Eq. F.9 to be

FSR =
c

2t
(
nrcos (θin)− tan (θin) cos (θi) θλ − 1

2nr
cos (θin) θλ2

)

in which ∆m has been set to one in keeping with the definition for the FSR. This expression

defines the FSR of a solid VIPA etalon in accordance with paraxial wave theory.
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Rarefication Cavity Arduino Code

The rarefication or decimation optical cavity used in this thesis to calibrate the relative fre-

quency axis of acquired spectra is stabilised using an Arduino Due microcontroller board

programmed with the following code. The output of the optical cavity is monitored by a

photodetector which is interpreted by the Arduino system as per Chapter 8, maintaining the

high cavity output. It is important to note that this code and the stabilisation system incor-

porating the microcontroller was produced by visiting student Nicolas Bourbeau Hébert, but

it presented here for completeness.

// All inputs and outputs operate in the 0-3.3V range for the

// Arduino Due (digital and analog) When using a 12-bit

// resolution , values are restrained between 0 -4095.

//Load a useful library for time management (uses interrupts)

#include <DueTimer.h>

// ***********************************************************

// Declare variables

// Hardware settings

int PinServo = 42; //Pin which turns the servo ON or OFF.

int PinModulation = 52; // Modulation output

int sampleFreq = 20000; // Update rate [Hz]

int DCLevel = 2048; // DC level to center all the values within

the PI loop around 0

int errorLevel = 0; // Latest error level (0 -4095)

int PIoutLevel = DCLevel; // Current output level of the PI

controller (0 -4095)

int statePinServo = LOW; // Current state of the Servo Pin

bool recenter = 0; //When recenter ==1, the coarse output is

incremented until the fine output comes back within its range

float coarseValue = 2048; // Current value for the coarse

adjustment

//PI algorithm
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float PIout = 0; // Current output value of the PI controller

float error = 0; // Latest error value

float sum = 0; // Holds the sum of all error values (integral

of the error signal)

//PI parameters

float fPI = 600; //PI corner frequency [Hz]

float Gp = -0.085; // Proportional gain [-]

float Gi = Gp * 2 * 3.141593 * fPI / sampleFreq; // Integral

// gain [-]

// Define a vector for square modulation

int square [2] = {LOW , HIGH}; // Square wave obtained from

// flipping a bit

int i = 0; // Index to pick a value in vector "square"

// Variable to store the past inputs and use them for filtering

float x[2] = {0, 0};

// ***********************************************************

// Initialization

void setup () {

Timer0.attachInterrupt(PIiteration).setFrequency(sampleFreq).

start (); // Set the timer

analogWriteResolution (12); // Set the analog output resolution

to 12 bit (4096 levels)

analogReadResolution (12); // Set the analog input resolution

to 12 bit (4096 levels)

pinMode(PinServo , INPUT_PULLUP); // Acts as a switch to turn

the Servo ON.

pinMode(PinModulation , OUTPUT); // Square modulation will come

from that digital pin (filtered later on by a RC low -pass

filter)

}

// ***********************************************************

void loop() {

// Useless here I guess ...

}

// ***********************************************************
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void PIiteration () { // Function to be called every 1/

sampleFreq (each time Timer0 "rings ").

//Read the current errorLevel and convert it to float and

remove DCLevel

delayMicroseconds (0); // Adjust the delay to sample on top of

the sine wave. It is important because we sample exactly at

Nyquist

errorLevel = analogRead(A0) - DCLevel;

error = (float)(errorLevel);

// Square demodulation

if (i == 0) {

error = -1 * error;

}

// Low -pass filter the demodulated error signal (simple

averaging 2-tap filter)

x[0] = x[1];

x[1] = error;

error = 0.5 * x[1] + 0.5 * x[0];

// Increment index for modulation

i++;

if (i == 2) {

i = 0;

}

// ***********************************************************

statePinServo = digitalRead(PinServo); // Checks if the Servo

Switch is on.

if (statePinServo == LOW) { //If Servo Switch is turned off ,

outputs the DCLevel

PIoutLevel = DCLevel;

coarseValue = 2048;

sum = 0; // Reset sum value while the servo is turned off

}

else if (statePinServo == HIGH) { //If Servo Switch if turned
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on, outputs the calculated control value

// Recenter the fine control ouput by modifying the coarse

output , to prevent it to go out of range.

if (recenter == 1) {

if (PIoutLevel > (DCLevel + 500)) {

coarseValue = coarseValue + 0.05; // Fractional increments to

let time for the PI to adjust between each integer step

}

else if (PIoutLevel < (DCLevel - 500)) {

coarseValue = coarseValue - 0.05; // Fractional increments to

let time for the PI to adjust between each integer step

}

else {

recenter = 0;

}

}

// Update the error sum only if output is within bounds. Avoids

integrator windup.

if (PIout > -2048 && PIout < 2047)

{

sum = sum + error;

}

// Compute the PI output (float)

PIout = (Gp * error) + (Gi * sum);

// Put min and max limits on the output

if (PIout > 2047)

{

PIout = 2047;

recenter = 1; //Turn on the coarse control.

}

if (PIout < -2048)

{

PIout = -2048;

recenter = 1; //Turn on the coarse control.

}
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//Make sure that PIoutLevel is an integer.

// Casting from float to integer truncates instead of rounding

PIoutLevel = (int)(PIout);

//Add the DCLevel

PIoutLevel = PIoutLevel + DCLevel;

}

// ***********************************************************

// Write the PI output level on DAC0

analogWrite(DAC0 , PIoutLevel);

// Write the coarse value on DAC1

if (coarseValue > 4095) { //Set the maximum value for

coarseValue (comes from the limited number of voltage levels)

coarseValue = 4095;

}

analogWrite(DAC1 , (int)(coarseValue));

// Square modulation for the Fabry -Perot cavity. Gets low -pass

filtered with a simple RC circuit at output for a smoother

modulation

digitalWrite(PinModulation , square[i]);

}
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Appendix H

Long-path Cell Alignment Servo Code

The 6.5 m sample cell used in Chapter 10 is of sufficient length to suffer from beam wan-

der due to turbulence effects as gas is injected into the cell. Additionally, as the output is

coupled into optical fibre, the magnitude of beam wander required to completely lose signal

is relatively small. To maintain output power, the cell path is actively corrected via the

use of a mirror connected to a piezo-electric transducer for rapid correction. Additionally,

a stepper-motor mirror - known as PicoMotor in the upcoming code - is used for coarse

correction of alignment and to keep the system within range of the piezo mirror. In order to

not interfere with the spectroscopic measurement, an additional 780 nm laser is introduced

collinear to the sample path, with the retro-reflected 780 nm light detected upon return by an

avalanche photodetector that is the input to Fig. H.1. This signal is then fed to a lock-in am-

plifier, and the system attempts to maintain the photodetector signal at its maximum value

corresponding to good alignment. The photodetector output is continuously monitored and

then interpreted by the following code, with the stepper motor mirror activated to keep the

applied voltage within range of the piezo-controlled mirror. This is mentioned very briefly in

the article forming Chapter 10, and the full correction code is presented here for completeness.

Photodetector 
Output

Lock-in Amplifier Lockbox

To Stepper 
Motor Mirror

To PZT 
Mirror

Computer 
Software

DVM

Figure H.1: Schematic of the stepper motor and PZT-controlled mirrors as presented in
Chapter 10. The 780 nm beam collinear to the frequency comb beam is de-
tected by an avalanche photodetector and is the input to the stabilisation
loop.

RELATE TO THE DIAGRAM

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

using System.Threading;

using InterfaceSystem;

using System.Diagnostics;
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using System.IO;

namespace PicomotorControl

{

class Program

{

static void Main(string [] args)

{

InterfaceManager im = new InterfaceManager ();

// im.ShowLogWindow ();

// Find the DVM (and confirm by displaying id to console)

im.SearchForInstruments ();

Agilent344xxA dvm =

(Agilent344xxA)im.GetInstrumentsByDriver(typeof(

Agilent344xxA))[0];

Console.WriteLine("DVM id:");

Console.WriteLine(dvm.Identification);

// Find + setup the Picomotor (and confirm by displaying the

firmware version to console)

NewFocusPicomotor875x pico = new

NewFocusPicomotor875x("10.32.98.116");

Console.WriteLine("Picomoter Firmware Version:");

Console.WriteLine(pico.FirmwareVersion ());

pico.LoadDefaultsParameters ();

pico.DisableAllDrivers ();

pico.SetJoystickMode(NewFocusPicomotor875x.JoystickMode.Off);

pico.EnableDriver(NewFocusPicomotor875x.Driver.a1);

pico.EnableMotor(NewFocusPicomotor875x.Motor.m0 ,

NewFocusPicomotor875x.Driver.a1);

int Position =

pico.GetPosition(NewFocusPicomotor875x.Driver.a1);

Console.WriteLine("Position");

Console.WriteLine(Position);

// Definitions

double errorVoltage = dvm.Voltage;

double Integratorgain = -0.0004;

double ProportionalGain = -4;

double Offset = 5; // Offset of the DVM (point we aim for)

int dt = 75; // In ms

double correctionPosition = 0;// What we want the picomotor to

do

double Integrator = 0;

int absolutePosition =

pico.GetPosition(NewFocusPicomotor875x.Driver.a1);
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int relativePosition = absolutePosition;// What pico motor

reports it has done

long loopTime = 75; // Keeps track of the time the loop takes

long absoluteTime = 0; // Keeps track of the total time the

program has been running

long startTime = 0;

Stopwatch loopTimer = new Stopwatch (); // Initialise the timer

loopTimer.Start();

// Commence loop

Console.WriteLine("DVM Error Voltage (V), Correction Position ,

Relative Position , Absolute Position , Absolute Time (ms),

Loop Time (ms)");

StreamWriter fileSave = new

StreamWriter(@"C:\ Users\Optical.pmg\Desktop\Sarah\Programs\

PicomotorControl\LogFiles\Log2.txt", true);

fileSave.WriteLine("DVM Error Voltage (V), Correction Position ,

Relative Position , Absolute Position , Absolute Time (ms),

Loop Time (ms)");

while (Console.KeyAvailable == false)

{

startTime = loopTimer.ElapsedMilliseconds;

errorVoltage = dvm.Voltage - Offset;

Integrator = Integrator +

errorVoltage*loopTime*Integratorgain;

correctionPosition = Integrator + errorVoltage *

ProportionalGain;

pico.SetPosition(NewFocusPicomotor875x.Driver.a1 , (int)

correctionPosition);

relativePosition =

pico.GetPosition(NewFocusPicomotor875x.Driver.a1);

while (relativePosition != (int) correctionPosition)

{

relativePosition =

pico.GetPosition(NewFocusPicomotor875x.Driver.a1);

Thread.Sleep (1);

}

absolutePosition = absolutePosition + relativePosition;

loopTime = loopTimer.ElapsedMilliseconds - startTime;

absoluteTime = loopTimer.ElapsedMilliseconds;

// Debugging and logging

string errorVoltage1 = errorVoltage.ToString("f6");

string correctionPosition1 =
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correctionPosition.ToString("f6");

string relativePosition1 = relativePosition.ToString ();

string absolutePosition1 = absolutePosition.ToString ();

string absoluteTime1 = absoluteTime.ToString ();

string loopTime1 = loopTime.ToString ();

Console.WriteLine("{0},\t{1},\t{2},\t{3},\t{4},\t{5}",

errorVoltage1 ,correctionPosition1 ,relativePosition1 ,

absolutePosition1 ,absoluteTime1 , loopTime1);

fileSave.WriteLine("{0},\t{1},\t{2},\t{3},\t{4},\t{5}",

errorVoltage1 , correctionPosition1 , relativePosition1 ,

absolutePosition1 , absoluteTime1 , loopTime1);

}

// Shutdown

loopTimer.Stop();

fileSave.Close ();

Console.ReadLine ();

im.Shutdown ();

}

}

}
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KOALA), 2015.
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accurate and sensitive optical frequency comb spectroscopy with a virtually imaged

phased array spectrometer. Optics Letters, 41(5):974–977, 2016.

[275] I. Coddington, W. C. Swann, and N. R. Newbury. Coherent dual-comb spectroscopy

at high signal-to-noise ratio. Physical Review A, 82(4):043817, 2010.

[276] L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath,

M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Co-

hen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Faytl, J. M. Flaud, R. R. Gamache,

J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly,

J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T.

Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal,

V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova,

K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner. The

HITRAN2012 molecular spectroscopic database. Journal of Quantitative Spectroscopy

& Radiative Transfer, 130:4–50, 2013.

[277] R. J. Francey, C. E. Allison, D. M. Etheridge, C. M. Trudinger, I. G. Enting, M. Le-

unberger, R. L. Langenfelds, E. Michel, and L. P. Steele. A 1000-year high precision

record of delta13C in atmospheric CO2. Tellus B, 51(2):170–193, 1999.

[278] T. K. Bauska, D. Baggenstos, E. J. Brook, A. C. Mix, S. A. Marcott, V. V. Petrenko,

H. Schaefer, J. P. Severinghaus, and J. E. Lee. Carbon isotopes characterize rapid

changes in atmospheric carbon dioxide during the last deglaciation. Proceedings of the

National Academy of Sciences, 113(13):3465–3470, 2016.

[279] D. Yakir and L. da S. L. Sternberg. The use of stable isotopes to study ecosystem gas

exchange. Acta Oecologia, 123(3):297–311, 2000.

[280] W. G. Mook. 13C in atmospheric CO2. Netherlands Journal of Sea Research, 20(2-

3):211–223, 1986.

[281] A. C. Mix, N. G. Pisias, R. Zahn, W. Rugh, C. Lopez, and K. Nelson. Carbon 13 in

pacific deep and intermediate waters, 0-370 ka: Implications for ocean circulation and

pleistocene CO2. Paleoceanography, 6(2):205–226, 1991.

[282] S. S. Assonov, C. A.M. Brenninkmeijer, T. J. Schuck, and P. Taylor. Analysis of 13C

and 18O isotope data of CO2 in CARIBIC aircraft samples as tracers of upper tropo-

sphere/lower stratosphere mixing and the global carbon cycle. Atmospheric Chemistry

and Physics, 10(17):8575–8599, 2010.



220 REFERENCES

[283] B. Galfond, D. Riemer, and P. Swart. Analysis of signal-to-noise ratio of δ 13 C-CO2

measurements at carbon capture, utilization and storage injection sites. International

Journal of Greenhouse Gas Control, 42:307–318, 2015.

[284] T. H. Yang, E. Heinzle, and C. Wittmann. Theoretical aspects of 13c metabolic flux

analysis with sole quantification of carbon dioxide labeling. Computational Biology and

Chemistry, 29(2):121–133, 2005.
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