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1 Introduction

Neutrino masses and the missing mass in the Universe are among the most important

evidence for physics beyond the Standard Model (SM). Some of the most prominent

proposed explanations for them are radiative neutrino mass models (see ref. [1] for a recent

review) and particle dark matter (DM) (see ref. [2] for a review), respectively. A simple and

elegant candidate of the latter are weakly interacting massive particles (WIMPs). In this

work, we study a simple model that has the interesting feature of explaining simultaneously

both neutrino masses and dark matter. In particular, we study a generalised version of the

Scotogenic Model (ScM) with a global U(1)DM symmetry. We denote it the Generalised1

Scotogenic Model (GScM), because the global U(1)DM symmetry contains as a subgroup

the discrete Z2 symmetry of the original ScM proposed in ref. [3] by E. Ma. In the last

years there have been several studies of the phenomenology of the ScM [4–13]. A systematic

study of one-loop neutrino mass models with a viable DM candidate which is stabilised

by a Z2 symmetry has been presented in ref. [14]. A similar model to the GScM with a

gauged U(1)DM symmetry has been introduced in ref. [15]. Several variants of the ScM

with a U(1) symmetry instead of a Z2 symmetry have been proposed [16, 17] after the

original ScM model.

The GScM involves two scalar doublets and one Dirac fermion, all charged under the

global U(1)DM symmetry. Masses for two neutrinos are generated at the one-loop level,

with a flavour structure different from that involved in processes with charged lepton flavour

violation (CLFV). The model has some definite predictions, as the flavour structure of the

Yukawa couplings is completely determined by the neutrino oscillation parameters and the

Majorana phase. This allows to draw predictions for CLFV processes and decays of the

new scalars, as we discuss in detail. The constraints from the non-observation of CLFV

processes are complementary to the limits from direct detection experiments.

In contrast to the models in refs. [16, 17] (and some variants in ref. [15]) the U(1)DM

symmetry is not broken in the GScM, which leads to several changes in the phenomenol-

ogy of the model. This makes the study of WIMPs scattering off nuclei in direct detection

experiments very interesting, as it is generated via the DM magnetic dipole moment at

one loop. The limits from direct detection experiments already imply the need of coanni-

hilations of the Dirac fermion DM and the new scalars in the early Universe to explain the

observed DM relic abundance. Scalar DM is disfavoured, because of a generically too large

DM-nucleus cross section mediated by t-channel Z-boson exchange. We focus on the case

of fermionic DM, which in this model is a Dirac fermion, unlike the original ScM.

The paper is structured as follows. In section 2 we introduce the GScM and discuss

the scalar mass spectrum and neutrino masses. In section 3 we discuss the most relevant

phenomenology of the model, especially CLFV, the DM abundance as well as collider

searches. In section 4 we show the results of a numerical scan of the parameter space

of the model. In section 5 we discuss variants of the model with the dark global U(1)

symmetry being gauged or replaced by a Z2, Z3 or Z4 symmetry, and the case where the

1The term Generalised should be understood in reference to the original proposal of the ScM. Other

symmetry groups are also possible and will be briefly discussed in section 5.
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Field SU(3)C SU(2)L U(1)Y U(1)DM

H 1 2 1/2 0

Lα ≡ (ναL, `αL)T 1 2 −1/2 0

αR 1 1 −1 0

Φ ≡ (φ+, φ0)T 1 2 1/2 1

Φ′ ≡ (φ′0, φ
′−)T 1 2 −1/2 1

ψ 1 1 0 1

Table 1. Particle content and quantum numbers of the GScM. The upper block corresponds to

the SM Higgs doublet and the SM leptons, with flavour index α = e, µ, τ . The lower part shows

the dark sector of the model: two scalar doublets Φ and Φ′, and one Dirac fermion ψ. In the last

column we provide the transformation properties under the global U(1)DM symmetry.

singlet is substituted by a triplet of the electroweak gauge group. A comparison to the

original ScM is presented in section 6. Finally, we conclude in section 7. Further details

of the model are given in the final appendices. We discuss the stability of the potential in

appendix A and neutrino masses and lepton mixing in appendix B. The parametrisation

of the Yukawa couplings in terms of the former is presented in appendix C. Loop functions

relevant for different processes and input for the computation of the µ− e conversion ratio

are provided in appendix D. Expressions for the electroweak precision tests (EWPT) are

given in appendix E.

2 The generalised scotogenic model

The particle content of the model and its global charges were first outlined in ref. [15]. It can

be viewed as the generalisation of the ScM, since it is based on a global U(1)DM symmetry,

while the ScM possesses a Z2 symmetry. The SM is augmented by two additional scalar

doublets and one vector-like Dirac fermion, all charged under the U(1)DM symmetry. The

particle content and quantum numbers are given in table 1. Without loss of generality we

choose the U(1)DM charge of the new particles as q = +1. All new particles are SU(3)C

singlets in order to have a viable DM candidate.2 In section 5 and ref. [15] variants of the

model are presented. A comparison to the ScM can be found in section 6.

We denote the SM Higgs doublet by H, which is given in unitary gauge after elec-

troweak symmetry breaking by H ≡ (0, (h + vH)/
√

2)T , with vH = 246 GeV the vacuum

expectation value (VEV) and h the Higgs boson. Without loss of generality we work in

the charged lepton mass basis. The Lagrangian for the Dirac fermion ψ reads3

Lψ = i ψ /∂ ψ − mψ ψ ψ −
(
yαΦ ψ Φ̃† Lα + (yαΦ′)

∗ ψ Φ̃′†L̃α + H.c.
)
, (2.1)

2Alternatively, DM may be a bound state of coloured octet Dirac fermions [18] (see also ref. [19] for a

realisation in a radiative Dirac neutrino mass model). In this case all new particles are SU(3)C octets.
3It is convenient to use the conjugate for the Yukawa couplings to Φ′, i.e. (yαΦ′)

∗, so that the expressions

for neutrino masses and CLFV are symmetric under simultaneous interchange of yαΦ′ ↔ yαΦ and the physical

masses (mη′0
,mη′+)↔ (mη0 ,mη+).

– 3 –
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where L̃ ≡ iσ2CL
T

, C the charge conjugation matrix, and Φ̃ ≡ iσ2Φ∗. The neutrino

Yukawa couplings yαΦ, y
α
Φ′ are three-component vectors

yΦ ≡
(
yeΦ, y

µ
Φ, y

τ
Φ

)T
and yΦ′ ≡

(
yeΦ′ , y

µ
Φ′ , y

τ
Φ′
)T

. (2.2)

Four phases in the Yukawa vectors yΦ and yΦ′ can be removed by phase redefinitions of

the lepton doublets L and the fermion ψ. In section 2.2 we discuss neutrino masses and

estimate the size and form of neutrino Yukawa couplings for the case of a neutrino mass

spectrum with normal ordering (NO) and inverted ordering (IO).

The scalar potential invariant under the U(1)DM symmetry is given by

V = − m2
HH

†H + λH(H†H)2 + m2
ΦΦ†Φ + λΦ(Φ†Φ)2 + m2

Φ′Φ
′†Φ′ + λΦ′(Φ

′†Φ′)2

+ λHΦ(H†H)(Φ†Φ) + λHΦ′(H
†H)(Φ′†Φ′) + λΦΦ′(Φ

†Φ)(Φ′†Φ′)

+ λHΦ,2(H†Φ)(Φ†H) + λHΦ′,2(H†Φ̃′)(Φ̃′†H) + λΦΦ′,2(Φ†Φ̃′)(Φ̃′†Φ)

+ λHΦΦ′

[
(H†Φ̃′)(H†Φ) + H.c.

]
.

(2.3)

The coupling λHΦΦ′ can be chosen real and positive by redefining the scalar doublets Φ

or Φ′. In our numerical analysis we apply the stability conditions outlined in appendix A,

which allow for the potential to be bounded from below.

The lightest neutral particle of the dark sector is stabilised by the global U(1)DM

symmetry, which remains unbroken, and thus is a potential DM candidate. If the DM is

identified with the lightest neutral scalar coming from the new scalar doublets Φ and Φ′,
as it carries non-zero hypercharge, neutral current interactions mediated the Z boson give

scattering cross sections off nuclei well above current DM direct detection limits and thus

disfavour this possibility.4 This is expected for a scalar doublet with a mass of about 1

TeV, whose relic abundance is set by gauge interactions. The only viable DM candidate

is the SM singlet Dirac fermion ψ. We study in detail the allowed parameter space of the

model. This, indeed, is the most interesting scenario, as there is a connection between

DM phenomenology, neutrino masses, CLFV and searches at colliders. The experimental

constraints on the model coming from neutrino masses and CLFV select the scalar mass

spectrum and the possible mechanisms to obtain the correct DM abundance.

2.1 Scalar mass spectrum

We assume in the following that none of the neutral components of Φ and Φ′ takes a VEV,

so that the global U(1)DM symmetry is unbroken.

The physical scalar states of the theory are given by (i) one real field h, which corre-

sponds to the SM Higgs boson, (ii) two complex neutral scalar fields η0 and η′0, which are

linear combinations of φ0 and φ′0 (see table 1), and (iii) two charged scalars η+ ≡ φ+ and

η′+ ≡ φ′+ and their charged conjugates. The SM Higgs boson mass is given by

mh =
√

2λH vH , (2.4)

4For the specific case of maximal mixing between the neutral scalars, the contributions from Z-boson

exchange cancel. The Higgs portal contributions could also be tuned to be small by suppressing the relevant

quartic couplings. A study of the case of scalar DM will be presented in a future work.
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which we set to mh = 125 GeV in the numerical scan. The neutral mass eigenstates are

defined as

η0 = sθ φ0 + cθ φ
′
0 , (2.5)

η′0 = − cθ φ0 + sθ φ
′
0 , (2.6)

with sθ ≡ sin θ and cθ ≡ cos θ. The mixing angle θ is defined in terms of

tan 2θ =
2 c

b − a
(2.7)

with

a = m2
Φ +

1

2
v2
H (λHΦ + λHΦ,2) ,

b = m2
Φ′ +

1

2
v2
H

(
λHΦ′ + λHΦ′,2

)
,

c = − 1

2
λHΦΦ′ v

2
H .

(2.8)

The corresponding mass eigenvalues are

mη0 =

√
1

2

(
a + b +

√
(a − b)2 + 4 c2

)
,

mη′0
=

√
1

2

(
a + b −

√
(a − b)2 + 4 c2

)
.

(2.9)

The minimum of the potential implies the relation a b − c2 > 0. Notice that, by definition,

the scalar η0 is always heavier than η′0, i.e. mη0 ≥ mη′0
. The two charged scalars of the

model do not mix among themselves, so that their masses are simply

mη+ =
√
m2

Φ + 1
2λHΦ v2

H and mη′+ =

√
m2

Φ′ +
1

2
λHΦ′ v

2
H . (2.10)

For values of λHΦΦ′ small compared to the other quartic couplings λi motivated by light

neutrino masses (see section 2.2), the charged scalar masses are related to the neutral

ones as

m2
η0
' m2

η+ + 1
2λHΦ,2 v

2
H and m2

η′0
' m2

η′+ +
1

2
λHΦ′,2 v

2
H . (2.11)

Hence in this case the couplings λHΦ,2 and λHΦ′,2 determine the relative hierarchy of the

neutral scalars with respect to the charged ones. For positive λHΦ,2 > 0 the neutral scalar

η0 is heavier than the corresponding charged scalar, mη0 > mη+ , and vice versa. Similarly,

η′0 is heavier than η′+ for positive λHΦ′,2. Both λHΦ,2 and λHΦ′,2 can be either positive

or negative, but there are constraints from the stability of the scalar potential which are

discussed in detail in appendix A, that is λHΦ,2 ≥ −λHΦ and λHΦ′,2 ≥ −λHΦ′ . These are

sufficient conditions which are imposed in the numerical scan.

– 5 –
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L L

H H

Φ′Φ

ψ

Figure 1. Diagram generating neutrino masses at the one-loop level.

2.2 Neutrino masses

From the Lagrangian for the Dirac fermion ψ in eq. (2.1) and the scalar potential in eq. (2.3)

we see that the total lepton number is violated by the simultaneous presence of the Yukawa

couplings yΦ,Φ′ , the quartic coupling λHΦΦ′ , and the fermion mass mψ. Thus Majorana

neutrino masses need to be proportional to all of these parameters. They are generated

after electroweak symmetry breaking at the one-loop level from the schematic diagram

shown in figure 1, which generates the Weinberg operator after integrating out the Dirac

fermion ψ and the scalars Φ and Φ′. In the mass basis, η0, η′0 and the Dirac fermion ψ run

in the loop. The Majorana mass term for the neutrinos is −1/2 νcLMννL + H.c., with the

neutrino mass matrix given by

(Mν)αβ =
sin 2θmψ

32π2

(
yαΦ y

β
Φ′ + yαΦ′ y

β
Φ

)
F (mη0 ,mη′0

,mψ) , (2.12)

where we introduced the loop function

F (x, y, z) ≡ x2

x2 − z2
ln
x2

z2
− y2

y2 − z2
ln
y2

z2
. (2.13)

There is always a suppression induced by the quartic coupling λHΦΦ′ 6= 0, which can be

further enhanced by a small splitting of the neutral scalar masses m2
η′0
− m2

η0
, which is

approximately given by |a− b| for λHΦΦ′ � 1, see eqs. (2.8) and (2.9).

The resulting neutrino mass matrix is of rank two, provided the Yukawa vectors yΦ

and yΦ′ are not proportional to each other. Hence, the neutrino mass spectrum consists

of one massless neutrino and two (non-degenerate) Majorana fermions with masses

m±ν =
|sin 2θ| mψ

32π2
(|yΦ| |yΦ′ | ± |yΦ

∗ · yΦ′ |) F (mη0 ,mη′0
,mψ) , (2.14)

where |y| ≡
√∑

α |yα|2 denotes the norm of y. As mη0 ≥ mη′0
, the loop function

F (mη0 ,mη′0
,mψ) ≥ 0. The flavour structure is determined by the product yαΦ y

β
Φ′ .

For vanishing solar mass squared difference we can estimate the form of the Yukawa

couplings yαΦ and yαΦ′ with the help of the formulae given in appendix C. Indeed, from

eq. (C.14) and taking m2 = 0, we find both yαΦ and yαΦ′ to be proportional to the complex

conjugate of the third column of the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing

matrix, as shown in eq. (B.3). In particular, for neutrino masses with NO we have

yµΦ ≈ yτΦ and yµΦ′ ≈ yτΦ′ , (2.15)

– 6 –
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`α `β
ψ

η(′)+ γ

Figure 2. Diagram contributing to `α → `βγ.

taking θ23 ≈ π/4 and neglecting θ13. The Yukawa couplings yeΦ and yeΦ′ are expected to be

smaller in magnitude than the other ones, since they are proportional to θ13. Plugged into

the formulae for the two non-vanishing neutrino masses m±ν in eq. (2.14), we confirm that

m−ν ≈ 0 whereas m+
ν does not vanish.

For IO we use eq. (C.15) with m1 ≈ m2 and find that yαΦ and yαΦ′ are proportional to

the sum and difference of the complex conjugate of the first two columns u1 and u2 of the

PMNS mixing matrix, respectively, i.e.

yΦ ∝

 c12 ± i e−i γ s12

−(s12 ∓ i e−i γ c12)/
√

2

(s12 ∓ i e−i γ c12)/
√

2

 and yΦ′ ∝

 c12 ∓ i e−i γ s12

−(s12 ± i e−i γ c12)/
√

2

(s12 ± i e−i γ c12)/
√

2

 (2.16)

for c12 ≡ cos θ12, s12 ≡ sin θ12, θ13 ≈ 0 and θ23 ≈ π/4. This clearly shows that

yµΦ ≈ −yτΦ and yµΦ′ ≈ −yτΦ′ (2.17)

as well as yeΦ and yeΦ′ of similar magnitude, but not the same. For the proportionality

constant in eq. (2.16) being real and positive, as it is assumed in our numerical analysis,

we expect the real part of both yeΦ and yeΦ′ to be positive, since c12 > s12. Furthermore,

the imaginary parts of yeΦ and yµΦ (yτΦ) are proportional to each other with a positive

(negative) proportionality constant, determined by the ratio s12/c12. The same holds for

the imaginary parts of the Yukawa couplings yeΦ′ and yµΦ′ (yτΦ′). When plugged into the

formula for m±ν in eq. (2.14), we find m−ν ≈ m+
ν , as expected for neutrino masses with

IO. The expectations for the Yukawa couplings yαΦ and yαΦ′ are confirmed in our numerical

analysis to a certain extent,5 as shown in figures 13 and 14 in appendix C.

3 Phenomenology

3.1 `α → `β γ

The most general amplitude for the electromagnetic CLFV transition `α(p)→ `β(k) γ∗(q)
can be parameterised as [20]

Aγ = e ε∗ρ(q)u(k)
[
q2 γρ

(
AL1 PL + AR1 PR

)
+ mα i σ

ρσ
(
AL2 PL + AR2 PR

)
qσ

]
u(p) , (3.1)

5For NO the approximation m2 = 0 is oversimplifying, since we neglect in the estimate for ye
Φ(′) the con-

tribution proportional to the second column of the PMNS mixing matrix, which is relatively suppressed by

(∆m2
21/∆m

2
31)1/4 ≈ 0.41 compared to the contribution coming from the third column, which is suppressed

by θ13 ≈ 0.15.

– 7 –
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where e > 0 is the proton electric charge, p (k) is the momentum of the initial (final)

charged lepton `α (`β), and q = p− k is the momentum of the photon and mα is the mass

of the decaying charged lepton `α. The form factors in eq. (3.1) are radiatively generated at

one-loop level via the diagram shown in figure 2 and receive two independent contributions

from the charged scalars running in the loop. For the transition `−α → `−β γ
∗ they are

given by

AL2 = AR1 = 0 ,

AR2 = − 1

32π2

[
yβ∗Φ yαΦ
m2
η+

f

(
m2
ψ

m2
η+

)
+
yβ∗Φ′ y

α
Φ′

m2
η′+

f

(
m2
ψ

m2
η′+

)]
,

AL1 = − 1

48π2

[
yβ∗Φ yαΦ
m2
η+

g

(
m2
ψ

m2
η+

)
+
yβ∗Φ′ y

α
Φ′

m2
η′+

g

(
m2
ψ

m2
η′+

)]
,

(3.2)

where the loop functions f(x) and g(x) are reported in eq. (D.1) in appendix D. They are

approximately equal to 1/6 for small x.

As is well known, the radiative LFV decays are mediated by the electromagnetic dipole

transitions in eq. (3.1) and are thus described by the form factors A
L/R
2 . The monopole,

which is given by the form factors A
L/R
1 , does not contribute to processes with an on-shell

photon. Thus, the corresponding branching ratio (BR) is given by

BR(`α → `β γ) =
48π3 αem

G2
F

[ ∣∣AL2 ∣∣2 +
∣∣AR2 ∣∣2 ]× BR (`α → `β να νβ) (3.3)

with the fine-structure constant αem = e2/(4π), the Fermi coupling constant GF and the

branching ratios BR (`α → `β να νβ) are BR (µ→ e νµ νe) ≈ 1, BR (τ → e ντ νe) ≈ 0.178

and BR (τ → µ ντ νµ) ≈ 0.174 [21].

Notice that in the branching rations of these CLFV processes, which set the most

stringent constraints on the parameters of the model, there is a different dependence on

the neutrino Yukawa couplings yαΦ, y
α
Φ′ than in neutrino masses, where the product of both

enters, cf. eq. (2.12). This is different from the original ScM, where there is only one type

of Yukawa interaction, and therefore a very similar combination enters in both neutrino

masses and CLFV [3, 5]. In section 6 we review the structure of the neutrino mass matrix

in the ScM and comment on results for branching ratios of CLFV processes.

The branching ratios of the different radiative decays µ→ eγ, τ → eγ and τ → µγ are

tightly correlated. Using the estimates for the Yukawa couplings yαΦ and yαΦ′ for neutrino

masses with NO and IO given in section 2.2, respectively, we expect that

BR(τ → e γ)

BR(µ→ e γ)
≈ 0.2 and

BR(τ → µγ)

BR(µ→ e γ)
≈ 5 , (3.4)

since yµΦ (yµΦ′) and yτΦ (yτΦ′) are of the same size, whereas yeΦ and yeΦ′ are suppressed by θ13

for the case of neutrino masses with NO. For IO we instead expect both of the radiative

τ -lepton decays to be of similar size and

BR(τ → e γ)

BR(µ→ e γ)
≈ BR(τ → µγ)

BR(µ→ e γ)
≈ 0.2 , (3.5)

– 8 –
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as none of the Yukawa couplings yαΦ and yαΦ′ is suppressed. Since the experimental bound

on BR(µ → e γ) is several orders of magnitude stronger than the one on radiative τ -

lepton decays, once the constraint BR(µ → eγ) < 4.2 × 10−13 at 90% CL [22] has been

imposed on the parameter space of the model, the branching ratios of the radiative τ -

lepton decays are automatically below the current limits, i.e. BR(τ → eγ) < 3.3 × 10−8

and BR(τ → µγ) < 4.4 × 10−8 at 90% CL [23], as well as future experimental sensitivity

≈ O(3× 10−9) [24].

As the neutrino oscillation parameters are already tightly constrained, it is possible

to derive a constraint on the undetermined parameter ζ which affects the relative size of

the Yukawa vectors yΦ and yΦ′ , see eqs. (C.14) and (C.15), as a function of the masses

mη+ and mψ. For large |ζ| the branching ratios are dominated by the diagram with η+ in

the loop and for small |ζ| by the diagram with η′+ and we can always neglect the other

contribution. The loop function f(x) in eq. (3.2) takes values between 1/12 and 1/6 in the

relevant parameter range 0 < x < 1. After conservatively approximating f(x) ≈ 1/12 and

the loop function in the expression for neutrino masses F with one, we find

αem|ζ|4|yβ∗Φ′ y
α
Φ′ |2

3072πm4
η′+G

2
F

BR(`α → `βναν̄β)

BR(`α → `βγ)
. |ζ|4 .

3072πm4
η+G

2
F |ζ|4

αem|yβ∗Φ yαΦ|2
BR(`α → `βγ)

BR(`α → `βναν̄β)
, (3.6)

which, using the Yukawa couplings expressed in terms of the lepton mixing angles given in

appendix C, translates for µ→ eγ into the following ranges for any neutrino mass ordering

3× 10−4

(
100 GeV

mη′+

)(
100 GeV

mψ sin 2θ

)1/2

. |ζ| . 4× 103
( mη+

100 GeV

)(mψ sin 2θ

100 GeV

)1/2

. (3.7)

In the estimates above we have used the best-fit values for the lepton mixing parameters

and neutrino masses and marginalised over the two possible solutions for the Yukawas (see

appendix C) and the Majorana phase γ. The lower (upper) bounds on |ζ| stemming from

τ → eγ and τ → µγ are weaker, of the order of 10−5 (105). The stronger limits from

eq. (3.7) apply unless there are fine-tuned cancellations among the contributions involving

η+ and η′+ to the branching ratio for µ→ eγ.

In the numerical scan we take ζ as real and positive and vary it in the range of 10−3

to 103. We obtain a wide range of values, i.e. values for BR(µ → eγ) as small as 10−32

and as large as the current experimental bound are obtained, depending on the Yukawa

couplings and the quartic coupling λHΦΦ′ , see figure 10. Similar ranges apply for radiative

CLFV τ -lepton decays, as shown in figure 11.

3.2 `α → `β `γ `γ

This type of process receives in general three independent contributions, shown in figure 3,

i.e. from (i) γ-penguin, (ii) Z-penguin and (iii) box-type diagrams. We follow the notation

of ref. [20]. The γ-penguin amplitude for the transition `α(p) → `β(k1) `γ(k2) `γ(k3) is

described by

Aγ = u(k1)
[
q2 γρ

(
AL1 PL + AR1 PR

)
+ mα i σ

ρσ
(
AL2 PL + AR2 PR

)
qσ

]
u(p)

× e
2

q2
u(k3) γρ v(k2) − (k1 ↔ k3) , (3.8)

where q = p− k1 and the form factors A
L/R
1,2 are reported in eq. (3.2).
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`α `β
ψ

η(′)+
γ

`γ
`γ

(a) γ-penguin.

`α `β
ψ

η(′)+

Z

`γ
`γ

(b) Z-penguin.

`α `β
ψ

ψ

`γ `γ

η(′)+η(′)+

`α `β

ψ ψ

`γ `γ

η(′)+

η(′)+

(c) Selection of box diagrams.

Figure 3. Diagrams contributing to `α → `β ¯̀
γ`γ .

The leading order contribution from the Z-penguin is proportional to the square of the

charged lepton masses and thus negligible compared to the γ-penguin contribution. There

are also box-type diagrams whose contributions are given by

ABOX = e2B u(k1) γα PL u(p)u(k3) γα PL v(k2) , (3.9)

where for the decay `−α → `−β `
−
γ `

+
γ the form factor B reads

e2B =
1

16π2

[
yαΦy

β∗
Φ yγ∗Φ yγΦ
m2
η+

h1

(
m2
ψ

m2
η+

)
+
yαΦ′y

β∗
Φ′ y

γ∗
Φ′ y

γ
Φ′

m2
η′+

h1

(
m2
ψ

m2
η′+

)

+

(
yβ∗Φ yγ∗Φ′ + yγ∗Φ yβ∗Φ′

) (
yγΦ′y

α
Φ + yγΦy

α
Φ′
)

m2
ψ

h2

(
m2
ψ

m2
η+

,
m2
ψ

m2
η′+

)]
,

(3.10)

and for `−α → `−γ `
−
γ `

+
β it is given by

e2B =
1

16π2

[
yαΦy

β
Φ(yγ∗Φ )2

m2
η+

h1

(
m2
ψ

m2
η+

)
+
yαΦ′y

β
Φ′(y

γ∗
Φ′ )

2

m2
η′+

h1

(
m2
ψ

m2
η′+

)

+ 2

(
yγ∗Φ yγ∗Φ′

) (
yβΦ′y

α
Φ + yβΦy

α
Φ′

)
m2
ψ

h2

(
m2
ψ

m2
η+

,
m2
ψ

m2
η′+

)]
,

(3.11)

where all external momenta and masses have been neglected. The loop functions h1(x)

and h2(x, y) are given in eq. (D.2) in appendix D.

One can express the trilepton branching ratios in terms of form factors. Following

ref. [25], the branching ratio of `α → `β `β `β reads

BR(`α → `β `β `β) =
6π2α2

em

G2
F

[ ∣∣AL1 ∣∣2 +
∣∣AR2 ∣∣2(16

3
ln
mα

mβ
− 22

3

)
+

1

6
|B|2 − 4 Re

(
AL∗1 AR2 −

1

6

(
AL1 − 2AR2

)
B∗
)]

× BR (`α → `β να νβ) .

(3.12)
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µ

N

e

N

η(′)+η(′)+

ψ

γ

(a) γ-penguin.

µ

N

e

N

η(′)+η(′)+

ψ

Z

(b) Z-penguin.

Figure 4. Diagrams contributing to µ− e conversion in nuclei.

For `−α → `−β `
−
γ `

+
γ , with β 6= γ, the branching ratio is given by

BR(`α → `β `γ `γ) =
6π2α2

em

G2
F

[
2

3

∣∣AL1 ∣∣2 +
∣∣AR2 ∣∣2(16

3
ln
mα

mγ
− 8

)
+

1

12
|B|2 − 8

3
Re

(
AL1A

R∗
2 −

1

8

(
AL1 − 2AR2

)
B∗
)]

× BR (`α → `β να νβ) .

(3.13)

For `−α → `+β `
−
γ `
−
γ , as there are only box-type contributions, we get [25]

BR(`α → `β `γ `γ) =
π2α2

em

G2
F

|B|2 × BR (`α → `β να νβ) . (3.14)

In the dipole dominance approximation, we can express µ→ 3e in terms of µ→ eγ as

BR(µ→ 3e) ≈ αem

8π

(
16

3
ln
mµ

me
− 22

3

)
× BR(µ→ e γ)

≈ 0.006 × BR(µ→ e γ) .

(3.15)

We have checked in the numerical analysis that the above estimate is fulfilled to great

precision, confirming that the box-type contributions are not relevant. As the latter involve

two extra Yukawa couplings which are smaller than one, the box-type contributions are

suppressed with respect to the dipole AL,R2 and the monopole AL,R1 contributions given

in eq. (3.2).

The current experimental limit is BR(µ → 3e) < 1.0 × 10−12 [26], with an expected

future sensitivity of ∼ O(10−16) [27]. The other trilepton decays involve τ leptons, and the

upper limits on their branching ratios are O(10−8) [28], with future expected sensitivities

of ∼ O(10−9) [24].

3.3 µ− e conversion in nuclei

The conversion of a muon to an electron in a nucleus also imposes stringent constraints on

the parameter space of the model. This process is dominated by coherent conversions in

which initial and final states of the nucleus N are the same. In this case the matrix elements

of the axial-vector 〈N |q γα γ5 q|N 〉, pseudoscalar 〈N |q γ5 q|N 〉, and tensor quark currents

〈N |q σαβ q|N 〉 vanish identically [29]. Similar to the leptonic decay of τ and µ leptons, the
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Z-penguin contribution to µ − e conversion in nuclei is proportional to the square of the

charged lepton masses and thus negligible compared to the γ-penguin contribution. See

figure 4 for the relevant Feynman diagrams. Moreover, the contribution involving the SM

Higgs boson is suppressed by the small Yukawa couplings of the first generation of quarks.

Thus µ − e conversion is dominated by photon exchange and the relevant terms in the

effective Lagrangian contributing to µ− e conversion can be parameterised as [29]

Lµ−e conv = −e
2

(
mµA

L
2 `e σ

µνPL `µFµν +mµA
R
2 `e σ

µνPR `µFµν + H.c.
)

−
∑

q=u,d,s

[(
gγLV (q) `eγ

αPL`µ

)
qγαq + H.c.

]
. (3.16)

The long-range interaction mediating the process is given by the electromagnetic dipole

transitions, whose form factors A
L/R
2 are introduced in eq. (3.2), taking into account the

appropriate flavour indices of the Yukawa couplings. The short-range interaction through

the γ-penguin diagrams generate the vector current operator with

gγLV (q) = e2Qq A
L
1 , (3.17)

where Qq is the electric charge of the quark q in units of e and AL1 is the electromagnetic

form factor given in eq. (3.2) for the flavour indices µ and e. A right-handed leptonic vector

current is not induced at one-loop level because all new particles exclusively couple to the

left-handed lepton doublets Lα. Accordingly, the µ− e conversion rate is given in terms of

the overlap integrals D and V (p,n) as

ωconv = 4

∣∣∣∣e8AR2 D + g̃
(p)
LV V

(p) + g̃
(n)
LV V

(n)

∣∣∣∣2 , (3.18)

where the effective vector couplings g̃
(p,n)
LV for the proton and the neutron are

g̃
(p)
LV ≈ 2 gγLV (u) + gγLV (d) = e2AL1 , g̃

(n)
LV ≈ g

γ
LV (u) + 2 gγLV (d) = 0 . (3.19)

Notice that the neutron contribution is in our case approximately zero, as we neglected the

Z-penguin contribution.

We can express ωconv in terms of BR(µ→ e γ) using that

AL1 ≈
2

3
rg/f A

R
2 , (3.20)

where rg/f parametrises the difference due to the different loop functions with 1 . rg/f .
1.5 for x . 1 (mψ is always smaller than mη(′)+ , since ψ is the DM candidate), see eqs. (3.2)

and (D.1). In this case we can derive the allowed ranges for

CRconv ≡
ωconv

ωcapt

≈ G2
F

192π2 ωcapt

∣∣∣∣D +
16

3
rg/f e V

(p)

∣∣∣∣2 × BR(µ→ e γ)

≈ [0.0077, 0.011] ([0.010, 0.015]) {[0.013, 0.019]} × BR(µ→ e γ) , (3.21)
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for Al (Au) {Ti}. Here we used the numerical values of the overlap integrals D and V (p,n)

and the total capture rate ωcapt reported in table 5 in appendix D. We have checked that

the numerical results for the µ− e conversion ratio (CR) are in very good agreement with

the estimates in eq. (3.21), see figures 10 and 12.

The currently best experimental limits are set by the SINDRUM II experiment [30]:

CRconv(Au) < 7·10−13 and CRconv(Ti) < 4.3·10−12 at 90 % CL. Future experiments are ex-

pected to improve the sensitivity by several orders of magnitude: the COMET experiment

at J-PARC [31, 32] may improve down to O(10−17), Mu2e experiment at Fermilab using

Al [33–35] 6 · 10−17 and at Project X (Al or Ti) O(10−19), and PRISM/PRIME [36, 37]

may reach O(10−18).

3.4 Lepton dipole moments

Contributions to the electric dipole moments of charged leptons arise in the model only at

the two-loop level.6 However, non-zero contributions to leptonic magnetic dipole moments

are generated, similarly to contributions to radiative CLFV decays, at one-loop level. The

relevant Feynman diagram is shown in figure 2 for α = β. They receive two independent

contributions from the charged scalars η± and η′± running in the loop. They are given by

(see also refs. [39, 40])

∆a` ≡
g` − 2

2
= 2m2

` Re[AR2 ]` , (3.22)

where [AR2 ]` is the diagonal part (α = β ≡ `) of the coefficient AR2 given in eq. (3.2).

In the case of the anomalous muon magnetic dipole moment ∆aµ, the discrepancy

between the measured value and the one predicted within the SM is larger than zero (see

ref. [41] for a recent review), and therefore the model cannot explain it, as it gives a

negative contribution, see eq. (3.2) together with the loop function f(x) > 0. In any case,

the predictions for |∆aµ| are always small, |∆aµ| . 10−12, as long as limits imposed by

the non-observation of CLFV decays are fulfilled. The magnetic dipole moments of the

electron and the τ lepton are subject to very weak limits.

3.5 Dark matter relic abundance

We study the case where the DM candidate is the Dirac fermion ψ. There are several

possible production channels in the early Universe. In particular the value of the Yukawa

couplings of the fermionic singlet control the different regimes, see also ref. [42]: (i) If

the Yukawa couplings are very small (� 1), direct annihilations of the scalars dominate

the relic abundance. (ii) For intermediate values, fermion-scalar coannihilations dominate

and set the relic abundance. (iii) For larger values, annihilations of the fermion would in

principle dominate.

In the next subsection we argue that DM annihilations to SM leptons ψψ̄ → `¯̀, νν̄

(regime 3) are too small due to constraints from CLFV processes. We show in figure 5a

the t-channel annihilations mediated by η±, η′0. The correct relic abundance is set by

coannihilations (regimes 1 and 2), see the diagrams in figures 5b and 5c. The latter are

6See ref. [38] for the calculation of the electric dipole moments in the minimal ScM which has two new

Majorana fermions.
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ψ̄

ψ

`±/ν

`∓/ν

η±/η(′)0

(a) Annihilations of dark matter into leptons.

ψ

η′0

`±/ν

W∓/Z

ν

ψ

η′0

`±/ν/ν

W∓/Z/h

η±/η(′)0 /η
(′)
0

ψ

η±

`±/ν/`±

Z/W±/h

`±
ψ

η±

`±/ν/`±

Z/W±/h

η±/η(′)0 /η
±

(b) Coannihilations of dark matter with a new scalar.

η∓/η′∗0

η±/η′0

h

h

η∓/η′∗0

η±/η′0

SM

SM

γ/Z
η0

η±

SM

SM

W±

`∓/ν̄

`±/ν

η∓/η′∗0

η±/η′0

ψ

ν/ν̄

`+/`−

η′∗0 /η
′
0

η+/η−

ψ

(c) Annihilations of the scalar coannihilation partners.

Figure 5. Illustration of the relevant annihilation (top panel) and coannihilation (middle panel)

channels of the dark matter ψ involving the scalars η±, η′0. We also show diagrams of the annihila-

tion channels of the coannihilating partners η±, η′0 (bottom panel). More diagrams exist involving

the other new scalars.

possible if the relative mass splitting between the fermion and the scalars is smaller or

equal than 5%.

3.5.1 Dark matter annihilations

The dominant DM annihilation channels are into a pair of charged leptons or a pair of

neutrinos, shown in figure 5a. In the non-relativistic limit the s-wave annihilation cross
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sections to neutrinos and charged leptons are given by

〈
vσ(ψψ̄ → `−α `

+
β )
〉
' 1

32πm2
ψ

∣∣∣∣∣yαΦyβ∗Φ

m2
ψ

m2
η+ +m2

ψ

− yαΦ′yβ∗Φ′

m2
ψ

m2
η′+ +m2

ψ

∣∣∣∣∣
2

, (3.23)

〈
vσ(ψψ̄ → νανβ)

〉
' 1

64πm2
ψ(1 + δαβ)

∣∣∣∣∣yαΦyβ∗Φ

(
m2
ψs

2
θ

m2
η0

+m2
ψ

+
m2
ψc

2
θ

m2
η′0

+m2
ψ

)
(3.24)

−yαΦ′yβ∗Φ′

(
m2
ψc

2
θ

m2
η0

+m2
ψ

+
m2
ψs

2
θ

m2
η′0

+m2
ψ

)∣∣∣∣∣
2

.

The minus sign between the different contributions originates from the presence of t- and u-

channel diagrams mediated by η and η′, respectively. As neutrinos are Majorana particles,

the corresponding cross section is smaller by a factor of two. For identical neutrinos in the

final state δαβ = 1 which leads to another factor of 1/2.

Next we conservatively estimate these cross sections in the limit of large and small |ζ|
using the obtained limits on |ζ| in eq. (3.7). In the limit of equal masses, denoted by m, the

cross sections only depend on whether primed or unprimed Yukawa couplings are present.

Larger scalar masses only further suppress the annihilation cross section. Thus we obtain

the following conservative limit

∑
α,β

〈
vσ(ψψ̄ → `−α `

+
β , νανβ)

〉
.
∑
α,β

∣∣∣yα
Φ(′)y

β∗
Φ(′)

∣∣∣2
256πm2

3 + 2δαβ
1 + δαβ

. (3.25)

This allows us to use the limit on |ζ| from eq. (3.7). A comparison to the typical freeze-out

annihilation cross section, 〈vσ〉th ' 2.2×10−26 cm3/s, yields that the DM annihilation cross

section is always too small in order for the Dirac fermion ψ to account for the observed

relic density. Using the experimental upper limit on the branching ratio for µ→ eγ on the

parameter |ζ| in eq. (3.7), we obtain

∑
α,β

〈
vσ(ψψ̄ → `−α `

+
β , νανβ)

〉
. 2× 10−4

( 〈vσ〉th
2.2× 10−26 cm3 s−1

)(
m

100 GeV

)4

(3.26)

for any neutrino mass ordering, which is valid unless cancellations occur.

An interesting way to break the correlation of BR(`α → `β γ) and DM annihilation

cross section is to have the DM relic abundance set by
〈
vσ(ψψ̄ → νν̄)

〉
. This can be

achieved if the charged scalars η± and η′± are much heavier than at least one neutral

scalar (η′0 in this model), leading therefore to suppressed contributions to all radiative

CLFV processes, and also to
〈
vσ(ψψ̄ → `−`+)

〉
. In this scenario the mass of the Dirac

fermion DM ψ is typically in the MeV range to obtain the correct DM relic density, with

slightly heavier neutral scalar η′0. However, gauge invariance relates the interactions of

neutrinos and charged leptons, and therefore this scenario requires some tuning of the

parameters in order to circumvent experimental constraints from Z-boson decays, the T

parameter and CLFV processes. We thus do not consider it any further. Examples of

similar scenarios have been studied in refs. [43–46].
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3.5.2 Dark matter coannihilations

As DM annihilation into charged leptons and neutrinos is strongly constrained by experi-

mental limits on CLFV observables, coannihilation processes may become important. The

explanation of the correct DM relic abundance requires a small mass splitting between the

DM candidate ψ and the scalars η′0 and η(′)+. While this is perfectly plausible in the model,

in which the particles naturally are at the TeV scale, in its current version there is no sym-

metry or dynamic reason to generate similar scalar and fermion masses. Another option is

a variant of the model with an fermionic electroweak triplet instead of a singlet, discussed in

section 5.3. This allows to have the relic abundance set by annihilations, without the need

of coannihilations. The relative contribution of (i) annihilations of the DM particle with

the coannihilation partner into a lepton and a gauge boson or Higgs boson (see figure 5b),

and (ii) annihilations of the coannihilation partner(s) via gauge interactions (γ/Z/W ) into

SM particles, direct annihilations to Higgs bosons or DM-mediated t-channel annihilations

into leptons (shown in figure 5c), depends on the size of the Yukawa couplings and the mass

splitting. The coannihilation channels dominate the abundance, because the corresponding

cross sections only depend on the square of one of the Yukawa couplings yαΦ, y
α
Φ′ compared

to the annihilation cross section, see eq. (3.23) and (3.24), which involves four Yukawa

couplings. In our numerical scan we use micrOMEGAs 4.3.5 [47] to calculate the DM

relic abundance and thus take all relevant (co)annihilation channels into account. See the

seminal work [48] by K. Griest and D. Seckel for an analytic discussion of coannihilation.

3.6 Dark matter direct detection

One of the interesting features of the GScM is that the fermionic DM candidate ψ is a Dirac

fermion rather than a Majorana fermion as in the original ScM. A direct detection (DD)

signal can not be generated at tree level, but there are sizeable long-range contributions

at the one-loop level via photon exchange.7 It can be parameterised by the magnetic (and

electric) dipole interactions, namely

LDD = µψ
e

8π2
ψ̄σµνψF

µν + dψ
e

8π2
ψ̄σµνiγ5ψF

µν . (3.27)

In this model the electric dipole moment dψ vanishes at one-loop level, because ψ only

couples to left-handed lepton doublets and not to right-handed charged leptons simultane-

ously [49]. The magnetic dipole moment µψ is given by

µψ =
−1

4mψ

∑
α

(
|yαΦ|2 fDD(mψ,mη+ ,m`α)− |yαΦ′ |2 fDD(mψ,mη′+ ,m`α)

)
. (3.28)

The loop function fDD(x, y, z) is defined in eq. (D.3) in appendix D. We checked our

result against the well-known expressions for the magnetic dipole moment for a Yukawa

interaction found in ref. [50]. Similar results are given in refs. [9, 49, 51–55]. In figure 12 in

section 4 we show how results from the latest Xenon experiments XENON1T [56], PandaX-

II [57], and LUX [58] constrain the parameter space of the model using LikeDM [59].

7In the case of Majorana DM these long-range interactions can occur among different fermionic states

and give rise to inelastic scattering if the mass splitting among them is sufficiently small, see ref. [9].
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3.7 Electroweak precision tests

The dominant contribution from new physics to electroweak radiative processes is generally

expected to affect the gauge boson self-energies which are parameterised by the oblique

parameters S, T , and U [60, 61]. The limits on the oblique parameters are obtained

from a global fit to electroweak precision data. The Gfitter collaboration finds the values:

S = 0.05±0.11, T = 0.09±0.13 and U = 0.01±0.11, with correlation coefficients ρST = 0.90,

ρSU = −0.59 and ρTU = −0.83 [62]. The strongest constraints on the parameter space of

the model are set by the T parameter, which is sensitive to the mass splitting between

the neutral and charged scalar components of the two inert doublets Φ and Φ′. We use

the expressions for the oblique parameters found in refs. [63–65]. Details are reported in

appendix E.

3.8 Production and decay of the new scalars at colliders

Searches for neutral and charged scalars at colliders set constraints on the scalar mass

spectrum of the model. In fact, from the precise measurement of the W and Z boson decay

widths at LEP-II, the following kinematical bounds can be derived: m
η

(′)
0

+ mη(′)+ > mW

and 2mη(′)+ , 2m
η

(′)
0

,mη0 +mη′0
> mZ for mW (Z) being the W (Z) boson mass.

At the LHC the production of these states proceeds mainly via neutral and charged

current Drell-Yan processes. Other production channels are via an off-shell Z/W boson.

A sub-leading contribution is given by Higgs mediated gluon fusion, provided the relevant

couplings in the scalar potential in eq. (2.3) are sizeable [4, 66].

In the case one of the charged scalars is the next-to-lightest particle in the dark sector,

the expected signature at the LHC consists in the pair production of η(′)± followed by the

prompt decay η(′)± → ψ`±α (α = e, µ, τ).8 The DM particle ψ escapes the detector and is

revealed as missing transverse energy. The decay branching ratios of η(′)± into the different

leptons only depend on the neutrino Yukawa couplings, namely

BR(η(′)± → ψ `±α ) =
Γ(η(′)± → ψ`±α )∑
β Γ(η(′)± → ψ `±β )

=
|yα

Φ(′) |2∑
β |y

β

Φ(′) |2
. (3.29)

Using the estimates for yαΦ and yαΦ′ reported in section 2.2 we expect for neutrino masses

with NO that both charged scalars η± and η′± have very similar branching ratios with the

one to e± being suppressed by two powers of the reactor mixing angle θ13 with respect

to those to µ± and τ±. Since θ23 ≈ π/4, the branching ratios to the two flavours µ±

and τ± are expected to be very similar for both NO and IO, see eqs. (2.15) and (2.17),

respectively. Moreover, for neutrino masses with IO the branching ratios of both charged

scalars η± and η′± to µ± and τ± are expected to be very similar, whereas the ones to

e± are expected to be different, but of similar size. In particular, we note that for IO

BR(η± → ψ e±) ≈ 2 BR(η′± → ψ µ±(τ±)) and BR(η′± → ψ e±) ≈ 2 BR(η± → ψ µ±(τ±)).

A measurement of at least one of the branching ratios may allow to extract information

8The signature of this process at the LHC is similar to the one predicted in simplified supersymmetric

models with light sleptons and weakly decaying charginos, which are searched for by the ATLAS [67] and

CMS [68] collaborations.
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on the neutrino mass ordering and the Majorana phase γ, while there is only a weak

dependence on the Dirac phase δ.

In the coannihilation region corresponding to m
η

(′)
0

> mη(′)+ & mψ, the decay width of

the charged scalar is kinematically suppressed. As we discuss in the numerical analysis in

section 4, in this case the lightest charged scalar may be long-lived, leaving ionising tracks

in the detector [4, 42].

3.9 Decays of the Higgs and Z bosons

If the scalars are sufficiently light, the Higgs and Z bosons can decay into them at tree

level which is strongly experimentally constrained. In specific cases some of the limits

on the neutral scalar masses from Z decays can be evaded by tuning the mixing angle

θ, see eq. (2.7). For instance, the Z-boson decay rate into the lightest neutral scalar,

Γ(Z → η′0η
′∗
0 ), is proportional to cos2(2θ) and therefore vanishes in the case of maximal

mixing, θ = π/4.9 In this case the mass of the lightest neutral scalar, mη′0
, can be smaller

than mZ/2. For the Higgs boson the decay to the lightest neutral scalar can be suppressed

for sufficiently small quartic couplings and/or a suitable choice of the mixing angle θ.

There can also be Higgs and Z-boson decays at one-loop level. The charged scalars

couple to the Higgs boson and thus modify the decay of the Higgs boson to two photons.

The relative change of the Higgs partial decay width to two photons compared to the SM

prediction can be parameterised as [69–71]

Rγγ =
BR(h→ γγ)GScM

BR(h→ γγ)SM
'

∣∣∣∣∣∣∣∣1 +

λHΦ v
2
H

2m2
η+

A0

(
4m2

η+

m2
h

)
+

λHΦ′v
2
H

2m2
η′+

A0

(
4mη′+

m2
h

)
A1

(
4m2

W

m2
h

)
+ 4

3A1/2

(
4m2

t

m2
h

)
∣∣∣∣∣∣∣∣
2

, (3.30)

where λHΦ, λHΦ′ are the couplings of the charged scalars η+, η′+ to the Higgs boson, see

eq. (2.3). Ai(x) are loop functions for scalars, fermions and gauge bosons with (i = 0, 1/2, 1)

respectively, given in eq. (D.4) in appendix D. mt is the top quark mass. The ATLAS and

CMS experiments have measured the partial width of h → γγ and reported it in terms

of the signal strength µγγ ≡ Rγγσ(pp → h)/σ(pp → h)SM. As the new particles are not

coloured and thus the Higgs production cross section is unchanged the signal strength is

simply given by µγγ = Rγγ in this model. ATLAS observes µγγ = 1.14+0.27
−0.25 [72], and

CMS µγγ = 1.11+0.25
−0.23 [73] which can be interpreted as a constraint on the charged scalars.

The combined measurement is µγγ = 1.14+0.19
−0.18 [74]. If the charged scalar masses are light

enough, deviations in the h→ γγ channel are generically expected, but their size crucially

depends on parameters in the scalar potential, see eq. (2.3) As observed in the numerical

scan, this constraint can be fulfilled in the GScM.

In principle, there can be new invisible decay channels of the Higgs and Z bosons to

the DM particle ψ as well as of the Higgs to neutrinos. Generically, the new scalars are

constrained to be heavier than ∼ 100 GeV due to a combination of collider searches, the

limits from the invisible decay width of the Z boson, and EWPT. Consequently, also the

9This is also relevant for direct detection, if the DM particle is the scalar η′0.
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Observable NO IO

sin2 θ12 [0.272, 0.347] [0.272, 0.347]

sin2 θ23 [0.401, 0.628] [0.419, 0.628]

sin2 θ13 [0.01971, 0.02434] [0.01990, 0.02437]

∆m2
21/10−5 [eV2] [6.80, 8.02] [6.80, 8.02]

∆m2
3`/10−3 [eV2] [2.408, 2.621] [−2.589,−2.379]

δ [◦] [0, 30] ∪ [128, 360] [0, 7] ∪ [182, 360]

γ [◦] [0, 180] [0, 180]

Table 2. The 3σ ranges for the lepton mixing parameters and mass-squared differences from

NuFIT 3.1 (November 2017) [76, 77]. Here ∆m2
3` = ∆m2

31 > 0 for normal ordering (NO) and

∆m2
3` = ∆m2

32 < 0 for inverted ordering (IO). We scan over these using flat priors.

Parameter Range

λi ±[10−3, 4π]

λHΦΦ′ [10−8, 4π]

mΦ(′) [GeV] [100, 105]

mψ [GeV] [10, 105]

ζ [10−3, 103]

Table 3. Priors on the 12 free real parameters used in the scan. λi includes the following 8

quartic couplings of the potential: λΦ(′) , λHΦ(′) , λHΦ(′),2, λΦΦ′ , λΦΦ′,2. The parameter ζ is defined

in appendix C. We scan over these parameters using logarithmic priors.

DM particle ψ cannot be light in the case of coannihilations, see section 3.5, and thus the

Higgs and the Z bosons cannot decay into ψ, which would otherwise occur at one-loop

level, see ref. [49].

Other possible processes are CLFV (and lepton flavour universality violating) Higgs

and Z-boson decays, like h → τµ and Z → τµ. These, however, are very suppressed by a

loop factor and due to experimental constraints arising from other CLFV processes (like

τ → µγ). They are therefore well beyond the expected sensitivity of future experiments [75].

4 Numerical analysis

The Yukawa couplings of the model are determined by neutrino oscillation data, the Majo-

rana phase γ and the parameter ζ (which can be taken positive without loss of generality),

as explained in appendix C. We scan over the 3σ range of the neutrino oscillation parame-

ters using the results from NuFIT 3.1 (November 2017) [76, 77], reproduced for convenience

in table 2, as well as over the rest of the parameters of the model and ζ as outlined in

table 3. The points indicate the currently allowed parameter space. The varying density of

points is mostly due to the efficiency of the scan and does not have a meaningful statistical

interpretation.

– 19 –



J
H
E
P
1
1
(
2
0
1
8
)
1
0
3

Observable Upper bound Observable Measurement

Br(µ+ → e+γ) 2.55 · 10−13 [22] S 0.05± 0.11 [62]

Br(τ− → µ−γ) 4.4 · 10−8 [21] T 0.09± 0.13 [62]

Br(τ− → e−γ) 3.3 · 10−8 [21] U 0.01± 0.11 [62]∑
mi [eV] 0.23 [78] ΩDM h2 0.1198± 0.0026 [78]

Table 4. The current experimental upper bounds (two left columns) at 90% CL and the measure-

ments with their errors (two right columns) used in the parameter scan. They are required to lie

within the 3σ range for the measurements. The correlation coefficients for the oblique parameters

are ρST = 0.90, ρSU = −0.59 and ρTU = −0.83. [62]

Figure 6. The lighter and heavier neutral scalar masses, mη′0
and mη0 , in red and blue, respectively,

versus the dark matter mass mψ in the left panel, and versus the charged scalar mass mη+ in the

right panel.

We impose several constraints directly in the scan: (i) Direct searches for singly-

charged scalars from LEP II imply mη(′)+ & 100 GeV, with some dependence on the search

channel; (ii) constraints from the Higgs or Z-boson decay widths and (iii) 3σ constraints

from EWPT, see section 3.7. These constraints restrict the mass splittings of the scalars,

specially the one from the T parameter; thus we also impose a lower bound of 100 GeV

for all the new scalars; (iv) we apply the stability conditions on the scalar potential given

in appendix A; (v) we use the experimental limits on the branching ratios from radiative

`α → `βγ; (vi) we assume that the Dirac fermion ψ constitutes all of the DM in the Universe

and thus require its relic abundance to lie within the 3σ range of the latest results from

Planck [78], ΩDMh
2 = 0.1198±0.0026. All the observables for which we impose constraints

in the numerical scan are provided in table 4.

In the following subsections we show the results of a numerical scan with about 104

random points, using the input parameters in tables 2 and 3. Most of the results are shown

for NO. Those for IO, unless explicitly shown, are basically identical.

4.1 Masses and lifetimes of the new scalars

We show in figure 6 (left panel) the lightest and the heaviest neutral scalar masses, mη′0
and mη0 , versus the DM mass mψ, in red and blue, respectively. The lightest neutral scalar

mass is close to the DM mass. This is driven by the fact that coannihilations need to be
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Figure 7. Normalised mass splitting δ(mx) = (mx − mψ)/mψ of the charged scalar η′+ versus

η+, in blue, and of the neutral scalar η′0 versus η0, in red. Notice that the red region of points is

superimposed over part of the blue one.

0.5 ≤ λHΦΦ′ ≤ 4π
0.01 ≤ λHΦΦ′ < 0.5
10−8 ≤ λHΦΦ′ < 0.01

Figure 8. Left panel: lifetime of the neutral scalars η′0 (blue) and η0 (red) versus the normalised

mass splitting δ(mx) = (mx − mψ)/mψ. Right panel: lifetime of the charged scalar η+ versus

δ(mη+) for different ranges of λHΦΦ′ . We indicate with a horizontal dotted black line the minimum

lifetime needed for the charged scalar to be long-lived at collider scales. A similar plot is obtained

for the charged scalar η′+.

0.5 ≤ λHΦΦ′ ≤ 4π
0.01 ≤ λHΦΦ′ < 0.5
10−8 ≤ λHΦΦ′ < 0.01

10−5 ≤ | sin 2θ| ≤ 0.001
0.001 ≤ | sin 2θ| < 0.05

0.05 ≤ | sin 2θ| < 1

Figure 9. Left panel: |yΦ′ | versus |yΦ| for different ranges of λHΦΦ′ . Right panel: |yΦ||yΦ′ | versus

the mass splitting of the new neutral scalars mη0 −mη′0
for different ranges of| sin 2θ|.
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efficient enough in order to obtain the correct relic abundance. In figure 6 (right panel),

we show the neutral scalar masses versus the charged scalar mass mη+ . We observe that η0

is always the heaviest state. Roughly in 50% (30%) of the points the mass of the lightest

neutral (one of the charged) scalar(s) is very degenerate with the mass of the DM particle

(with a normalised mass splitting smaller than 5%) and contributes to coannihilations. In

addition, there are significant regions of the parameter space of the model (18% of the

points) where both masses of lightest neutral and one of the charged scalars (η± or η′±)

are nearly degenerate with the DM mass. Only in around 1% of the points the masses

of the three new scalars η′0, η
±, η′± are very degenerate with the DM mass. There is no

difference between the cases with neutrinos with NO and IO.

In figure 7 we show the normalised mass splitting δ(mx) = (mx − mψ)/mψ of the

charged scalars, η′+ versus η+, in blue, and of the neutral scalars, η′0 versus η0, in red.

Notice that the red region of points is superimposed over part of the blue one. The

normalised mass splitting δ(mx) = (mx−mψ)/mψ needs to be below ∼ 50%, and typically

∼ 5%, for at least one of the scalars η′0, η± and/or η′± in order for coannihilations to be

efficient. It is typically much larger for the heaviest neutral scalar η0, as can be seen in

figure 7.

In figure 8 (left panel) we plot the lifetime of the neutral scalars, η′0 (blue) and η0

(red), versus the normalised mass splitting δ(mx) = (mx − mψ)/mψ. One can observe

how the lifetime of η′0 can be much larger than that of η0. Indeed, when the splitting

δ(mη′0
) with the DM mass is small, the only decays of η′0 are into charged leptons, and even

those can be impossible for very small mass splittings and/or suppressed for small Yukawa

couplings. In figure 8 (right panel) we plot the lifetime of the charged scalar η+ versus

δ(mη+), for different ranges of λHΦΦ′ : 10−8 . λHΦΦ′ . 0.01 in red, 0.01 . λHΦΦ′ . 0.5 in

blue, and 0.5 . λHΦΦ′ . 4π in green. The plot for the charged scalar η′+ is analogous to

that of η+. We observe two effects: firstly, for large mass splittings, δ(mη+) & 0.1 which

corresponds to mη+−mψ & 80 GeV, the main decay channel is η+ →W+η′0, and the larger

the quartic coupling λHΦΦ′ , the larger the neutral scalars mixing cos θ, see eq. (2.7), and

the larger this decay; secondly, the larger the normalised mass splitting with the DM mass,

the smaller the lifetime. Indeed, the charged scalar can be long-lived at collider scales,

meaning τη+ & 10−8 s, as shown with a horizontal dotted black line for mass splittings

mη+ −mη′0
smaller than ∼ 80 GeV, when the decay channel η+ →W+η′0 is closed. In that

region, the decays η+ → `+αψ, that are mediated by the Yukawa couplings yαΦ, dominate.

Therefore, the larger the quartic coupling λHΦΦ′ , the smaller the Yukawa couplings, and

the larger the lifetime, see blue and green points in figure 8 (right panel).

4.2 Neutrino Yukawa couplings

In the left panel of figure 9 we show |yΦ′ | versus |yΦ| for fixed intervals of λHΦΦ′ : 10−8 .
λHΦΦ′ . 0.01 in red, 0.01 . λHΦΦ′ . 0.5 in blue, and 0.5 . λHΦΦ′ . 4π in green.

The Yukawa couplings are inversely proportional to each other as expected from neutrino

masses, see eq. (2.12). Also, the larger the quartic coupling λHΦΦ′ , the smaller the Yukawa

couplings. For λHΦΦ′ . 0.5 the product of the Yukawa couplings is constrained to 10−9 .
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0.5 ≤ λHΦΦ′ ≤ 4π
0.01 ≤ λHΦΦ′ < 0.5

10−8 ≤ λHΦΦ′ < 0.01

Figure 10. Branching ratio of µ→ eγ (left axis) and the µ− e conversion ratio in Al (right axis)

versus |yΦ| for different ranges of λHΦΦ′ .

Figure 11. Branching ratios of τ → eγ (left panel) and τ → µγ (right panel) versus that of µ→ eγ

for neutrino masses with normal ordering (in red) and inverted ordering (in blue).

|yΦ||yΦ′ | . 10−7 as shown in the plot. This is a direct consequence of the appearance of

these couplings in the expression for the neutrino masses, see eqs. (2.12) and (2.14).

We show in figure 9 (right panel) the product of the absolute values of the neutrino

Yukawa couplings |yΦ||yΦ′ | versus the mass splitting of the neutral scalars mη0 −mη′0
for

different ranges of | sin 2θ|: 10−5 . | sin 2θ| . 0.001 in red, 0.001 . | sin 2θ| . 0.05 in blue,

and 0.05 . | sin 2θ| . 1 in green. We observe that the larger the mixing | sin 2θ| among the

neutral scalars, the smaller the Yukawa couplings. This is expected as |yΦ||yΦ′ || sin 2θ| is

proportional to the scale of neutrino masses, see eqs. (2.12) and (2.14). In addition, we see

that neutrino masses are also proportional to the mass splitting of the neutral scalars, and

for a given range of | sin 2θ|, the larger the product of the neutrino Yukawa couplings, the

smaller this mass splitting has to be.

4.3 Charged lepton flavour violating processes

In figure 10 we plot the branching ratio of µ → eγ versus |yΦ| for the same ranges of the

quartic coupling λHΦΦ′ used in figure 8 (right panel). The different sets of points form

V-shaped regions whose minimum value for BR(µ → eγ) is larger the smaller λHΦΦ′ . For
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Figure 12. Branching ratio of µ→ eγ (left axis) and the µ− e conversion ratio in Al (right axis)

versus the dark matter magnetic dipole moment µψ relevant for DM direct detection. We plot in

red (blue) the points that are excluded (allowed) by DM direct detection limits.

|yΦ| & 10−4, the branching ratio scales as |yΦ|4, independently of λHΦΦ′ . In this region

the contribution due to the scalar η′+ is suppressed because |yΦ′ | . |yΦ|. If, however,

|yΦ| . 10−4 the scalar η′+ dominates the branching ratio. The dependence on λHΦΦ′

again sets the scale of |yΦ′ | and thus the branching ratio of µ → eγ, i.e., the larger the

quartic coupling λHΦΦ′ the smaller BR(µ → eγ). The minimum value of the branching

ratio of these CLFV processes occurs for |yΦ| ∼ |yΦ′ | ∼ 10−4.5, when both charged scalar

contributions are of similar order, such that the overall result is suppressed.

In figure 11 we plot BR(τ → eγ) (left panel) and BR(τ → µγ) (right panel) versus

BR(µ → eγ), for neutrino masses with NO (in red) and IO (in blue). The central values

of these ratios agree with our analytical estimates given in eqs. (3.4) and (3.5), although

the entire range of these ratios is about two orders of magnitude. In particular, we see

that BR(τ → e γ) is suppressed compared to BR(τ → µγ) for neutrino masses with NO,

while they are very similar for IO. The largest branching ratio is achieved for τ → µγ for

NO, which can be larger than the one for IO. Therefore a measurement could in principle

discriminate between the neutrino mass orderings.

4.3.1 Interplay with dark matter direct detection

In figure 12 we plot the branching ratio of µ → eγ (left axis) and the µ − e conversion

ratio in Al (right axis) versus the DM magnetic dipole moment µψ, see eq. (3.28), which is

relevant for DM direct detection. The size of the magnetic dipole moment µψ is correlated

with the branching ratios of CLFV processes, because the structure of the loop diagrams

is similar, with a charged scalar in the loop and the same Yukawa couplings. The points

in red (blue), corresponding to larger (smaller) values of µψ, are excluded (allowed) by

the combined constraint from Xenon-based DM direct detection experiments, which are

implemented in LikeDM [59]. We can see the interesting complementarity between DM

direct detection and CLFV processes in constraining the parameter space of the model.

This interplay is further discussed in the generic context for a fermionic SM singlet DM

particle in ref. [49].
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5 Variants of the model

5.1 U(1)DM as gauge symmetry

The global U(1)DM symmetry is anomaly-free, because the fermion ψ is vector-like and

thus U(1)DM can be straightforwardly gauged. In fact, a similar model with a gauge

symmetry has been discussed in ref. [15]. Three scenarios can be envisaged: (i) U(1)DM is

unbroken and the corresponding dark photon γDM is massless, (ii) U(1)DM can be realised

non-linearly and the dark photon γDM obtains its mass from the Stückelberg mechanism,

or (iii) U(1)DM is spontaneously broken to a residual ZN symmetry, which stabilises the

DM candidate. In this case an additional scalar field ρ, charged under U(1)DM, has to

take a non-vanishing VEV. In case (i) γDM contributes to extra radiation and lead to large

self-interactions, see ref. [79] for a discussion. If in case (ii) and (iii) the mass of the

dark photon γDM is smaller than that of the DM candidate, the DM relic abundance is

set by annihilations into dark photons. Connections of DM phenomenology to neutrino

and flavour physics are then lost so that this case is not interesting to us. In addition,

in case (iii) the new scalar field ρ mixes with the SM Higgs doublet H. Such mixing is

experimentally constrained by invisible Higgs decays, if these are kinematically accessible,

and by DM direct detection limits, especially for sub-GeV scalar mediators, thus requiring ρ

to be either much heavier than the electroweak scale or the mixing to be small. That in turn

is in conflict with the fact that the mediator needs to decay before big bang nucleosynthesis,

basically ruling out this possibility [80].

Another effect of gauging U(1)DM is the kinetic mixing with U(1)Y , that is the term

εBµν
DMBµν with the field strength tensors Bµν (Bµν

DM) of U(1)Y (U(1)DM). Even if this is

tuned to vanish at a certain scale, it arises at one-loop level, since Φ and Φ′ are charged

under both U(1)Y and U(1)DM. This effect can be estimated as follows: assuming ΛUV >

mΦ,mΦ′ > vH and a vanishing kinetic mixing at a certain high scale ΛUV , ε(ΛUV ) = 0,

renormalisation group running can induce a sizeable kinetic mixing at lower scales. Above

the mass scales of Φ and Φ′, the opposite values of their hypercharge lead to an exact

cancellation of ε, but as soon as one of the scalar fields decouples, the kinetic mixing is

induced via renormalisation group running, giving the approximate lower bound

|ε| &
√
αY αDM

4π

∣∣∣∣ln(mΦ

mΦ′

)∣∣∣∣ , (5.1)

with the dark gauge coupling αDM = g2
DM/4π. The annihilation into dark photons is

given by 〈vσ〉ann ' πα2
DM/m

2
ψ, which implies that in order to reproduce the DM relic

abundance αDM ' 10−4 (mψ/GeV). Using the experimental value of αY (mZ) [21], and

taking the logarithm to be O(1), we can estimate a lower bound on the kinetic mixing:

|ε| & 10−4 (mψ/GeV). As in the case of scalar mediators, there are very strong upper

limits from DM direct detection, especially if the dark photon is lighter than a few GeV,

with only much smaller mixings still allowed, see the recent analysis by the PandaX-II

collaboration [80]. In this case, the mediators should decay before big bang nucleosynthesis

sets in. Therefore, a certain amount of fine-tuning is required in this case.
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5.2 Replacing U(1)DM with ZN

Instead of a continuous symmetry we can consider a ZN symmetry, being a subgroup of

U(1)DM, i.e. we regard the charge of Φ, Φ′ and ψ as given modulo N .

For N > 4 the model effectively possesses a global U(1) symmetry, as long as we

only consider renormalizable terms in the Lagrangian. Conversely, for N = 2, 3, and 4,

additional terms arise at the renormalizable level.

For N = 2, i.e. the smallest possible symmetry, we can identify ψ ↔ ψc and Φ′ ↔ Φ̃.

The model thus contains one Majorana fermion ψ and one scalar doublet Φ which are

the only particles odd under the Z2 symmetry. The Lagrangian for the Majorana fermion

Ψ = ψ + ψc reads

LΨ =
1

2

(
Ψ i /∂Ψ − mψ Ψ Ψ

)
−
(
yα Ψ Φ̃† Lα + H.c.

)
. (5.2)

The scalar potential for Φ and the SM Higgs doublet H becomes

VZ2 = − m2
HH

†H + λH(H†H)2 + m2
ΦΦ†Φ + λΦ(Φ†Φ)2 (5.3)

+ λHΦ(H†H)(Φ†Φ) + λHΦ,2(H†Φ)(Φ†H) +
λHΦ,3

2

[
(H†Φ)2 + H.c.

]
.

The model with a Z2 symmetry, a Majorana fermion and one additional scalar doublet has

the same symmetries and types of particles as the original ScM, which has been extensively

discussed in the literature [3]. We comment on similarities and differences in phenomenol-

ogy between the latter and the GScM with a global U(1) symmetry in section 6.

For N = 3 and N = 4 the Lagrangian Lψ remains the same as in eq. (2.1), but

additional quartic terms appear in the scalar potential, see also ref. [81]. For N = 3 there

are two new quartic couplings

VZ3 = λ1 (ΦΦ′)(HΦ′) + λ2 (ΦΦ′)(H̃Φ) + H.c. (5.4)

In the case in which one of the new neutral scalars is the lightest particle with non-trivial

Z3 charge, these terms give rise to DM semi-annihilations [82–85]. In principle, these new

couplings are directly testable at colliders. Furthermore, for N = 4 the following term can

be added to the scalar potential

VZ4 = λ3 (ΦΦ′)2 + H.c. (5.5)

If one of the new neutral scalars is the lightest particle with non-trivial Z4 charge, this

term gives rise to DM self-interactions.

5.3 The generalised scotogenic triplet model

We can construct an interesting variant of the GScM by replacing the fermion singlet with

a fermion triplet (we denote it the GScTM). The Lagrangian for the triplet Dirac fermion
~Σ = (Σ1,Σ2,Σ3) is

L~Σ = i ~Σ /D~Σ − mΣ
~Σ~Σ −

[
yαΦ Φ̃†

(
~Σ · ~σ

)
Lα + (yαΦ′)

∗ Φ̃′†
(
~Σ · ~σ

)
L̃α + H.c.

]
, (5.6)

where ~σ = (σ1, σ2, σ3) and the covariant derivative for the electroweak triplet fermion,

Dµ = ∂µ + igτa3W
a
µ , with the three generators τa3 of the triplet representation. The three
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physical Dirac fermion fields are as usual Σ0 = Σ3 and Σ± = 1√
2
(Σ1 ∓ Σ2), which are

degenerate in mass at tree level. Radiative corrections lift the charged components by

166 MeV [86, 87]. Notice that due to the dark symmetry the components of the fermion

triplet do not mix with SM leptons.

As we saw, in the case of GScM with singlet fermionic DM, the relic abundance can-

not be explained by annihilations due to the strong limits from CLFV. In the case of the

GScTM with triplet fermionic DM (we take its mass to be smaller than the scalars mass),

the phenomenology is very different. The relic abundance, driven by gauge interactions,

is decoupled from the neutrino and LFV phenomenology. This implies that the coannihi-

lations of the GScM with the scalars, which involve some degree of fine tuning, are not

needed. The dominant annihilation channels of the triplets are through gauge interactions,

like Σ0Σ0 → W+W−, mediated by the charged scalar Σ+. Due to the small splitting

between the neutral and the charged components, there are also important contributions

from coannihilation channels like Σ0Σ+ → Z/γ/H + W+ mediated by the charged Σ+

(t-channel) or by a W+ (s-channel), and Σ0Σ+ → ff̄ , mediated also by a W+ (s-channel),

where f are SM fermions. In this case reproducing the relic abundance fixes the mass of

the fermion triplet to be equal to 2.7 TeV [88].

Regarding direct detection, the Z does not couple to the neutral fermion, so there

is no tree level scattering. Moreover, the splitting with the charged fermion (166 MeV)

being larger than the typical recoil momentum in direct detection experiments makes it

impossible to have inelastic scattering mediated by a W. There are extra one-loop penguin

diagrams in addition to those present for a fermion singlet, with the photon/H/Z attached

to the W+ in the loop, and with the photon/Z attached to the Σ+ in the loop, as well as

box diagrams with W in the loop, see refs. [87, 89, 90].

The presence of charged fermion components generate also extra contributions to

CLFV, as well as new collider signatures, similar to the wino in SUSY. However the

large triplet mass makes its production at the LHC very suppressed, being necessary a

future collider to probe directly the model. The new charged fermions or scalars can be

pair produced at colliders via the Drell-Yan process with a photon or Z boson. Another

important production channel is ud → W− → Σ−Σ0. The interesting feature is that the

lifetime of the Σ+ is fixed, such that it generates charged tracks at colliders of length

equal to 5.5 cm. The charged fermions Σ+ will decay into the DM (MET) Σ0 plus a

very soft W, which in turn decays into pions and leptons with the branching ratios [87]:

BR(Σ+ → Σ0π
+) = 0.977, BR(Σ+ → Σ0e

+νe) = 0.0205, BR(Σ+ → Σ0µ
+νµ) = 0.0025.

One can also produce the scalars via ud → W− → η+η0, which decay into Σ0 + `+ or

Σ+ + ν`, with ` = e, µ, τ . These last decays involve the neutrino Yukawas, and therefore

there are definite predictions for the ratios of lepton flavours. Other collider studies of the

fermion triplet in the context of seesaw type III have been performed in refs. [91, 92].

6 Comparison with the scotogenic model

As already mentioned in section 5, if the global U(1)DM symmetry is replaced by a Z2

symmetry, the GScM coincides in symmetries and types of particles with the original
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ScM [3]. In the following, we highlight similarities and differences between the latter and

the GScM discussed here.

In order to generate at least two neutrino masses, at least two Majorana fermions ψ1,2

(with masses mψ1,2) and one additional inert scalar doublet field are needed in the ScM,

whereas in the GScM one Dirac fermion and two new scalar doublet fields are needed.

We have thus one more charged and one more neutral complex scalar filed in the GScM

compared to the ScM. In the latter model the scalar mass spectrum, derived from the

potential in eq. (5.3), reads

mφR0
=

√
m2

Φ +
1

2
(λHΦ + λHΦ,2 + λHΦ,3) v2

H , (6.1)

mφI0
=

√
m2

Φ +
1

2
(λHΦ + λHΦ,2 − λHΦ,3) v2

H , (6.2)

mφ+ =

√
m2

Φ +
1

2
λHΦ v2

H (6.3)

with φR0 and φI0 being the real and imaginary components of the neutral component φ0 of

the additional scalar doublet, φ0 ≡ (φR0 + i φI0)/
√

2, and φ+ the charged component of the

scalar doublet. The scalars φR0 and φI0 acquire a mass splitting proportional to the quartic

coupling λHΦ,3. In contrast, in the GScM the mass spectrum, given in eq. (2.9), clearly

shows that real and imaginary parts of the neutral scalars have the same mass and form

complex neutral scalars, denoted η0 and η′0.

In the ScM neutrino masses are generated by diagrams with the neutral scalars φR0
and φI0 running in the loop. The neutrino mass matrix is given by

(Mν)αβ =
∑
k

yαk yβkmψk

32π2
F (mφR0

,mφI0
,mψk) , (6.4)

where the loop function is defined in eq. (2.13). We can see how the difference in mass

between the two complex neutral scalars η0 and η′0 in the GScM, that appears in neutrino

masses, see eq. (2.12), is traded for the difference in mass between the neutral scalars φR0 and

φI0 in the ScM. As is well-known, in the ScM lepton number is broken by the simultaneous

presence of the Yukawa couplings, the masses of the Majorana fermions ψk and the quartic

coupling λHΦ,3 of the potential in eq. (5.3). Thus neutrino masses crucially depend on all

three of them. While the dependence on the first two ones is obvious from eq. (6.4), the

one on λHΦ,3 is best revealed in the limit m2
φR0
−m2

φI0
= λHΦ,3v

2
H � m2

0 ≡ (m2
φR0

+m2
φI0

)/2

where the expression for the neutrino mass matrix takes the form

(Mν)αβ =
λHΦ,3v

2
H

32π2

∑
k

yαk yβkmψk

m2
0 −m2

ψk

[
1−

m2
ψk

m2
0 −m2

ψk

ln
m2

0

m2
ψk

]
. (6.5)

This is similar to what happens in the GScM, where the simultaneous presence of both

Yukawa couplings yαΦ and yαΦ′ , the fermion mass mψ and the quartic coupling λHΦΦ′ is

required in order to break lepton number. Consequently, neutrino masses are proportional

to all these quantities, as can be read off from eq. (2.12) together with eqs. (2.7) and (2.9).
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In the original ScM CLFV processes have been studied in detail in refs. [3, 5] (see

also ref. [41]). It turns out that the individual penguin diagram contributions of a charged

scalar and a fermion to CLFV processes in the original ScM are the same as the ones in the

GScM, see section 3. However, the number of charged scalars and fermions differs in the

two models. We therefore obtain a different number of contributions to CLFV processes in

the two models. Moreover, there are new box diagrams for trilepton decays in the GScM.

The DM phenomenology is different in the original ScM and in the GScM. For scalar

DM the main channels for DM direct detection in the former are the tree-level mediated

processes by the Z and the Higgs boson [93]. For λHΦ,3 6= 0 the scalar (φR0 ) and pseu-

doscalar (φI0) have different masses and DM scattering off nuclei is an inelastic process,

with the Z-boson exchange typically dominating. This imposes a lower bound on λHΦ,3 in

order to kinematically forbid such scattering. In the GScM scalar DM, with η′0 being the

DM particle, also naturally has a large DM direct detection cross section mediated by the

Z boson, unless the interaction with the Z boson is suppressed, like for maximal mixing

θ = π/4. Moreover, there is an elastic contribution via Higgs-boson exchange.

For fermionic DM in the ScM DM-nucleon scattering occurs at one-loop level [9] via

penguin diagrams, which happens similarly in the GScM, see section 3.6. If the mass

splitting between the Majorana fermions ψk is sufficiently small, there is a transitional

magnetic dipole moment interaction with charged leptons running in the loop. This leads

to inelastic DM-nucleon scattering. As discussed in section 3.6, in the GScM the dominant

DM-nucleon scattering occurs via a magnetic dipole moment interaction with charged

leptons running in the loop.

7 Summary and conclusions

We have studied a model in which masses for neutrinos are generated at one-loop level with

Dirac fermion DM running in the loop. The model can be viewed as a generalised version

of the ScM (GScM) with a global U(1)DM symmetry. Both neutrino mass orderings (NO

and IO) can be accommodated. The flavour structure of the neutrino Yukawa couplings is

determined by the neutrino oscillation parameters and the Majorana phase γ. The model

is has some definite predictions. The flavour structure relevant for neutrino masses differs

from the one appearing in the expressions for the branching ratios of CLFV processes, in

contrast to the original ScM. We have obtained interesting correlations among the ratios of

different CLFV processes, which may allow to test the GScM and to discriminate between

the two neutrino mass orderings.

In this work we have focused on fermionic DM, given the fact that scalar DM would

require some fine-tuning. The main DM annihilation channels are into charged leptons and

neutrinos. As they depend on the same Yukawa couplings relevant for CLFV processes,

the corresponding cross sections are too small in order to explain the observed DM relic

density and thus coannihilations are important. In roughly half of the parameter space of

the model, the next-to-lightest particle is the lightest neutral scalar (η′0), and in the other

half it is the lightest charged scalar (which can be either η± or η′±).

Experimental limits on the branching ratios of CLFV processes and on DM direct

detection give complementary information on the parameter space of the model. Future
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experiments, searching for µ− e conversion in nuclei and µ→ 3e, will probe the remaining

allowed parameter space of the model best, but also DM direct detection experiments will

further test a complementary region of the available parameter space of the model. Another

interesting signature of the model is the production of new (neutral and charged) scalars

at colliders and the decay of the charged scalars to a charged lepton and DM. For neutrino

masses with NO the dominant channels are into muons and τ leptons, while for neutrino

masses with IO the decay into electrons is of similar magnitude.

In comparison to the original ScM, the GScM has more degrees of freedom in the

scalar sector (two additional doublets versus one in the ScM), and possesses one vector-

like Dirac fermion, unlike the ScM which contains at least two Majorana fermions. The

flavour structure in the GScM is more restricted by the neutrino oscillation parameters

than in the original ScM with three Majorana fermions. Nonetheless, they both are simple

explanations for neutrino masses and DM with a rich and testable phenomenology.
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A Stability of the potential

We follow closely the vacuum stability conditions derived from co-positivity criteria in

refs. [94, 95]. For large field values only the quartic part V4 of the potential is relevant.

Using the following parametrisation

H†H = h2
1, Φ†Φ = h2

2, Φ′†Φ′ = h2
3, (A.1)

H†Φ = h1h2ρ12e
iφ12 , H†Φ̃′ = h1h3ρ13e

iφ13 , Φ†Φ̃′ = h2h3ρ23e
iφ23 ,

with 0 ≤ ρij ≤ 1 and 0 ≤ φij ≤ 2π, V4 reads

V4 =λH h
4
1 + λΦ h

4
2 + λΦ′ h

4
3 +

(
λHΦ + λHΦ,2 ρ

2
12

)
h2

1 h
2
2 (A.2)

+
(
λHΦ′ + λHΦ′,2 ρ

2
13

)
h2

1 h
2
3 +

(
λΦΦ′ + λΦΦ′,2 ρ

2
23

)
h2

2 h
2
3

+ 2λHΦΦ′ h
2
1 h2 h3 ρ12 ρ13 cos(φ12 + φ13) .
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If we neglect λHΦΦ′ , we can write V4 as a bilinear form

V4 =
(
h2

1 h
2
2 h

2
3

)
Q

 h2
1

h2
2

h2
3

 (A.3)

with

Q ≡


λH

1
2 (λHΦ + λHΦ,2 ρ

2
12) 1

2 (λHΦ′ + λHΦ′,2 ρ
2
13)

1
2 (λHΦ + λHΦ,2 ρ

2
12) λΦ

1
2 (λΦΦ′ + λΦΦ′,2 ρ

2
23)

1
2 (λHΦ′ + λHΦ′,2 ρ

2
13) 1

2 (λΦΦ′ + λΦΦ′,2 ρ
2
23) λΦ′

 (A.4)

and determine the necessary conditions for the stability of the potential. We find

λH ≥ 0 , λΦ ≥ 0 , λΦ′ ≥ 0 (A.5)

and

c1 =
1

2
(λHΦ + λHΦ,2 ρ

2
12) +

√
λH λΦ ≥ 0 , (A.6)

c2 =
1

2
(λHΦ′ + λHΦ′,2 ρ

2
13) +

√
λH λΦ′ ≥ 0 ,

c3 =
1

2
(λΦΦ′ + λΦΦ′,2 ρ

2
23) +

√
λΦ λΦ′ ≥ 0 ,

together with√
λH λΦ λΦ′ +

1

2
(λHΦ + λHΦ,2 ρ

2
12)
√
λΦ′ +

1

2
(λHΦ′ + λHΦ′,2 ρ

2
13)
√
λΦ (A.7)

+
1

2
(λΦΦ′ + λΦΦ′,2 ρ

2
23)
√
λH +

√
2 c1 c2 c3 ≥ 0 .

Depending on the sign of λHΦ,2, λHΦ′,2 and λΦΦ′,2 the necessary conditions are given for

ρij = 0 or ρij = 1, i.e. for λHΦ,2 > 0 the necessary conditions are obtained for ρ12 = 0,

while for λHΦ,2 < 0 these are given for ρ12 = 1. The same is true for λHΦ′,2 and ρ13 as well

as for λΦΦ′,2 and ρ23.

For non-zero λHΦΦ′ we derive sufficient (but not necessary) conditions for the stability

of the potential from considering co-positivity. We re-write V4 as

V4 = h4
1

[
λH +

(
h̃2

2 h̃
2
3

) ( λΦ
1
2 (λΦΦ′ + λΦΦ′,2 ρ

2
23)

1
2 (λΦΦ′ + λΦΦ′,2 ρ

2
23) λΦ′

) (
h̃2

2

h̃2
3

)
(A.8)

+
(
h̃2 h̃3

) ( λHΦ + λHΦ,2 ρ
2
12 λHΦΦ′ ρ12 ρ13 cos(φ12 + φ13)

λHΦΦ′ ρ12 ρ13 cos(φ12 + φ13) λHΦ′ + λHΦ′,2 ρ
2
13

) (
h̃2

h̃3

)]

with h̃2,3 being h2,3 rescaled by h1. We require then co-positivity of the three different

terms of V4. This leads to

λH ≥ 0 (A.9)
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and to

λΦ ≥ 0 , λΦ′ ≥ 0 and
1

2
(λΦΦ′ + λΦΦ′,2 ρ

2
23) +

√
λΦ λΦ′ ≥ 0 , (A.10)

with the last condition depending on the sign of λΦΦ′,2, i.e. ρ23 = 0 (1) for positive (negative)

λΦΦ′,2. In order to use co-positivity of the last term we first minimise V4 with respect to ρ12,

ρ13 and cos(φ12 + φ13). The term with λHΦΦ′ alone is minimised for cos(φ12 + φ13) = −1.

From the extreme values of ρ12 and ρ13 that minimise V4 we derive then the sufficient

conditions

λHΦ ≥ 0 , λHΦ′ ≥ 0 , λHΦ + λHΦ,2 ≥ 0 , λHΦ′ + λHΦ′,2 ≥ 0 , (A.11)

and
√

(λHΦ + λHΦ,2)(λHΦ′ + λHΦ′,2)− λHΦΦ′ ≥ 0 .

Only the last condition involves λHΦΦ′ and bounds the latter from above.

V4 is also minimised for non-extremal values of ρ12 and ρ13. This, however, does not

imply conditions different from those already shown above, but only leads to an equality

involving λHΦΦ′ , λHΦ,2 and λHΦ′,2 which needs to be fulfilled in addition. We have checked

that the presented conditions can also be applied to the special directions in which one or

two of h1,2,3 vanish.

B Neutrino masses and lepton mixing

We can diagonalize the neutrino mass matrix in eq. (2.12) as

Mν = U∗DνU
† , (B.1)

where Dν is a 3× 3 diagonal matrix with positive semi-definite eigenvalues (in our model

with m1 = 0 for NO, and m3 = 0 for IO). U is the PMNS mixing matrix, which relates the

neutrino mass eigenstates νi (i = 1, 2, 3) with masses mi to the neutrino flavour eigenstates

να (α = e, µ, τ ):

να =

3∑
i=1

U∗iα νi . (B.2)

The standard parametrisation for U for one massless neutrino is

U =

 c13c12 c13s12 s13e
−iδ

−c23s12 − s23s13c12e
iδ c23c12 − s23s13s12e

iδ s23c13

s23s12 − c23s13c12e
iδ −s23c12 − c23s13s12e

iδ c23c13


 1 0 0

0 eiγ 0

0 0 1

 , (B.3)

where cij ≡ cos θij and sij ≡ sin θij (θ12, θ13, and θ23 being the three lepton mixing angles).

γ is the Majorana and δ the Dirac phase. Since the lightest neutrino is massless in the

GScM, there is only one physical Majorana phase.

C Parametrisation of the neutrino Yukawa couplings

We want to express the neutrino Yukawa couplings in terms of neutrino masses and lepton

mixing parameters. We follow the discussion in ref. [96]. On the one hand, the rank-two
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Figure 13. Neutrino Yukawa couplings yαΦ (left panels) and yαΦ′ (right panels) for neutrino masses

with normal ordering, separated according to real (in red) and imaginary parts (in blue). The upper

panel shows the flavour τ versus µ, while the lower one shows µ versus e.

Figure 14. The same as in figure 13 for neutrino masses with inverted ordering.
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neutrino mass matrix can be expressed in terms of the two non-vanishing mass eigenvalues

and two columns of the PMNS mixing matrix, ui, in the flavour basis

Mν =
∑
i

miu
∗
iu
†
i =

∑
i

viv
T
i . (C.1)

The vectors vi ≡
√
miu

∗
i are linearly independent and span a two-dimensional vector space.

On the other hand, the calculation of the neutrino mass matrix results in the following form

Mν = x1x
T
2 + x2x

T
1 (C.2)

with

x1 =

√
sin 2θmψ

32π2
F (mη0 ,mη′0

,mψ) yΦ , x2 =

√
sin 2θmψ

32π2
F (mη0 ,mη′0

,mψ) yΦ′ , (C.3)

see eqs. (2.12) and (2.13). If sin 2θ < 0 the square roots yield a complex number. The two

linearly independent vectors xi can be written in terms of the vectors vi

xi = aijvj , (C.4)

where (aij) forms an invertible 2 × 2 matrix, i.e. det a = a11a22 − a12a21 6= 0. Using the

two different parametrisations of the neutrino mass matrix, we can find possible solutions

of aij

Mν = x1x
T
2 + x2x

T
1 (C.5)

=
∑
i,j

a1ia2jviv
T
j +

∑
i,j

a2ia1jviv
T
j =

∑
i,j

(a1ia2j + a2ia1j)viv
T
j (C.6)

=
∑
i

viv
T
i . (C.7)

As the vectors vi form a basis of the two-dimensional vector space, we find

a11a21 + a21a11 = 1 ⇒ a11a21 =
1

2
, (C.8)

a12a22 + a22a12 = 1 ⇒ a12a22 =
1

2
, (C.9)

a11a22 + a21a12 = 0 ⇒ a2
11a

2
22 = a2

12a
2
21 = −1

4
. (C.10)

In particular the matrix elements are non-zero, aij 6= 0. There are two sets of solutions.

Writing the complex matrix element a11 = reiα in terms of two real parameters r, α we

obtain

a11 = reiα ≡ ζ√
2
, a21 =

1

2r
e−iα , a22 =

1

2r
e−i(α±

π
2 ) , a12 = rei(α±

π
2 ) (C.11)

and the condition of a non-vanishing determinant

0 6= det a = a11a22 − a12a21 = 2 a11a22 = e∓i
π
2 (C.12)
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is trivially satisfied for the two solutions. Thus the two vectors can be uniquely written as

x1 =
ζ√
2

(v1 ± iv2) , x2 =
1√
2ζ

(v1 ∓ iv2) . (C.13)

For NO we obtain

x
(NO)
1 =

ζ√
2

(
√
m2u

∗
2 ± i

√
m3u

∗
3) , x

(NO)
2 =

1√
2ζ

(
√
m2u

∗
2 ∓ i

√
m3u

∗
3) , (C.14)

while for IO, we have that

x
(IO)
1 =

ζ√
2

(
√
m1u

∗
1 ± i

√
m2u

∗
2) , x

(IO)
2 =

1√
2ζ

(
√
m1u

∗
1 ∓ i

√
m2u

∗
2) . (C.15)

Without loss of generality we choose ζ to be real and positive. Any phase of ζ can be

absorbed via phase redefinitions of the lepton doublets Lα and the Dirac fermion ψ. In

figures 13 and 14 we show the results for yαΦ (left) and yαΦ′ (right) for neutrino masses with

NO and IO, respectively, separated according to real (in red) and imaginary (in blue) parts,

as obtained in the numerical scans. We show different flavours: the upper panel shows the

flavour τ versus µ, while the lower one shows µ versus e. We clearly see that yαΦ and yαΦ′

of different flavour α are correlated. These correlations can be understood analytically to

a certain extent, see section 2.2.

D Loop functions

In this appendix we collect loop functions and other inputs appearing in CLFV processes,

h→ γγ and DM direct detection.

The loop functions for the dipole and monopole photon contributions to CLFV pro-

cesses are

f(x) =
1− 6x+ 3x2 + 2x3 − 6x2 ln(x)

6(1− x)4
,

g(x) =
2− 9x+ 18x2 − 11x3 + 6x3 ln(x)

12(1− x)4
.

(D.1)

The following ones enter in the box diagrams of trilepton decays

h1(x) =
1− x2 + 2x lnx

2(x− 1)3
,

h2(x, y) = − xy

2(1− x)(1− y)
− x2y lnx

2(1− x)2(x− y)
− xy2 ln y

2(1− y)2(y − x)
.

(D.2)

The numerical values of the overlap integrals D and V (p,n) and the total muon capture rate

ωcapt, needed for the computation of µ− e conversion ratios in nuclei, are shown in table 5

for three different nuclei.

The relevant loop function for the DM magnetic dipole moment which gives the dom-

inant contribution to DM direct detection is

fDD(x, y, z) = 1− y2 − z2

x2
ln
y

x

+
y4 + z4 − x2y2 − x2z2 − 2z2y2

x2λ1/2(z2, x2, y2)
ln
y2 − x2 + z2 + λ1/2(z2, x2, y2)

2yz
(D.3)

with the Källén-λ function λ(x, y, z) = x2 + y2 + z2 − 2xy − 2yz − 2zx.
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V (p) V (n) D ωcapt(106s−1)

197
79 Au 0.0859 0.108 0.167 13.07

48
22Ti 0.0399 0.0495 0.0870 2.59

27
13Al 0.0159 0.0169 0.0357 0.7054

Table 5. Overlap integrals in units of m
5/2
µ (V (p), V (n) and D) and total capture rates (ωcapt)

for different nuclei [29]. The total capture rates are taken from table 8 in ref. [29]. The overlap

integrals of 197
79 Au as well as 27

13Al are taken from table 2 and the ones for 48
22Ti are taken from table 4

in ref. [29].

In h→ γγ we need the following loop functions for scalars, fermions and gauge bosons

Ai(x) (i = 0, 1/2, 1)

A0(x) = −x+ x2 f

(
1

x

)
, (D.4)

A1/2(x) = 2x+ 2x(1− x) f

(
1

x

)
, (D.5)

A1(x) = −2− 3x− 3x(2− x) f

(
1

x

)
. (D.6)

E Oblique parameters

The two inert scalar doublets Φ and Φ′ contribute to the EWPT at one-loop level. The

contribution in our model to the T parameter is given by [63, 64]

T =
1

16π2αemv2
H

{
2 s2

θF(m2
η+ ,m

2
η0

) + 2 c2
θF(m2

η+ ,m
2
η′0

)

+ 2 c2
θF(m2

η′+ ,m
2
η0

) + 2 s2
θF(m2

η′+ ,m
2
η′0

)
}
,

where the loop function is defined as

F(x2, y2) =
x2 + y2

2
− x2y2

x2 − y2
ln
x2

y2
. (E.1)

The loop function is symmetric in x and y. It vanishes in the custodial symmetry limit,

x→ y, and diverges for x/y going to 0 or infinity. Extending the results of ref. [64], the S

parameter reads in our model

S =
1

πm2
Z

{
− B22(m2

Z ,m
2
η+ ,m

2
η+)− B22(m2

Z ,m
2
η′+ ,m

2
η′+)

+ B22(m2
Z ,m

2
η0
,m2

η0
) + B22(m2

Z ,m
2
η′0
,m2

η′0
)
}
.

Similarly, the combination S + U combination results in

S + U =
1

πm2
W

{
2 s2

θB22(m2
W ,m

2
η+ ,m

2
η0

) + 2 c2
θB22(m2

W ,m
2
η+ ,m

2
η′0

)

+ 2 c2
θB22(m2

W ,m
2
η′+ ,m

2
η0

) + 2 s2
θB22(m2

W ,m
2
η′+ ,m

2
η′0

)

− 2B22(m2
W ,m

2
η+ ,m

2
η+)− 2B22(m2

W ,m
2
η′+ ,m

2
η′+)

}
.
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The auxiliary functions B22 and B0 are defined as

B22(q2,m2
1,m

2
2) ≡ B22(q2,m2

1,m
2
2)−B22(0,m2

1,m
2
2) . (E.2)

The Passarino-Veltman function B22 [97] arises from two-point self-energies. In dimensional

regularisation this function reads [64]

B22(q2,m2
1,m

2
2) = 1

4(∆ + 1)(m2
1 +m2

2 − 1
3q

2)− 1

2

∫ 1

0
X ln(X − iε) dx , (E.3)

with

X ≡ m2
1x+m2

2(1− x)− q2x(1− x) , ∆ ≡ 2

4− d + ln 4π − γE (E.4)

in d space-time dimensions, where γE ' 0.577 is the Euler-Mascheroni constant. Note that

B22 is symmetric in the last two arguments. We use the compact analytic expressions given

in appendix B of ref. [65]. We have confirmed that the expressions agree with the ones in

the inert doublet model [98], when taking the appropriate limit.
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