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Abstract 

The paper presents outcomes of a finite element (FE) study of acoustoelastic effect associated 

with Lamb wave propagation in plates subjected to homogeneous bi-axial and bending stresses. 

In particular, the change of the phase velocity of the fundamental Lamb wave modes is obtained 

for different stress levels, bi-axial stress ratios and wave propagation angles. A comparison of 

the obtained numerical results with an analytical solution demonstrates a very good agreement. 

Moreover, the influence of bending stress on the wave velocities and wave front profile is 

further investigated numerically. There are currently no analytical results for this case. The 

developed and verified FE modelling approach can help to address several issues in the current 

non-destructive inspections including: in the investigation of changing stress conditions on the 

defect detection as well as in an adaptation of the existing Lamb wave-based defect evaluation 

systems to monitoring of stress too. The latter may have many benefits from sharing the same 

hardware for the purpose of maintaining structural integrity of thin-walled structural 

components. 
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1. Introduction 

1.1. Structural Health Monitoring using guided waves 

Structural health monitoring (SHM) has attracted significant attention in the last two decades. 

Different damage detection methods were developed and widely documented the literature [1]-

[4]. In particular, the use of ultrasonic guided waves has proved to be one of the promising 

methods for detecting damage [5]-[8], specifically, with respect to the fundamental modes of  

Lamb [9][10] and non-dispersive Rayleigh waves [11]-[13]. Other studies were largely focused 

on understanding of guided wave interactions with and scattering at various types of defects 

[14]-[16]. Practical implementation of these theoretical results for damage detection can be 

found in  [17]-[20].  

The focus of the current study are Lamb waves, which is a special type of ultrasonic 

guided waves, which can propagate in thin-walled structures with stress-free lateral surfaces. 

The main feature of Lamb waves is their ability to travel over long distances with a very little 

energy loss. Many previous studies reported an excellent sensitivity of these waves to the 

presence of damage in different metallic and composite structures such as beams [21],[22], 

plates [23],[24], pipes [25],[26] as well in structures made of concrete [27]. These studies also 

demonstrated that Lamb waves have a great potential for development of cost-effective 

methods for non-destructive safety inspections or on-line monitoring systems [28],[29]. 

Over the last decade, a wide range of damage detection methods was developed using 

Lamb waves. A large class of these methods rely on a comparison of the actual signal response 

with a reference signal obtained for defect-free conditions, e.g. in the beginning of the operation 

or after a factory defect control. It was demonstrated that a simple subtraction of the actual and 

reference signals, i.e. the residual signal, can provide the required information needed for the 



damage detection and its evaluation [30],[31]. However, changing environmental and 

operational conditions [32],[33], such as temperature and stress, can mask the signal alterations 

caused by the damage [34]. The effects of changing environmental and operational conditions 

on damage detection is currently considered as one of the main reasons why the damage 

detection techniques developed in the laboratory environment are not readily transferable to 

the real-world applications. In the literature, a number of techniques were developed to 

compensate the error due to unavoidable variations in temperature and loading conditions 

during operation and inspections [35],[36]. Alternatively, some researchers have suggested the 

nonlinear methods for the damage detection, which do not need a reference signal [37]-[39]. 

However, it is very difficult to evaluate the severity of the damage with such non-linear 

methods. 

One solution to the environmental changes can be the development of a procedure for 

the compensation of environmental and operational conditions based on a computational model, 

e.g. FE modelling. Subsequently, the focus of the current paper is the investigation of the effect 

of the applied stress on the propagation of Lamb waves as the effect of the temperature was 

investigated elsewhere. This effect is commonly known as the acoustoelastic effect. The next 

subsection will provide a brief state of the art review of the acoustoelastic effect associated 

with the Lamb wave propagation in pre-stressed plates. 

 

1.2. Acoustoelastic effect of Lamb wave propagation 

Acoustoelastic effect is defined as the effect of the applied stress on the wave propagation in a 

media. It has been studied since the development of the finite deformation theory by 

Murnaghan [40], who formulated the material nonlinearity using third order elastic constants. 

Some pioneering studies in this area include the research of Hughes and Kelly [41], who 

derived equations relating the wave velocity to the applied stress and experimentally measured 



the acoustoelastic effect. Another experimental study of Egle and Bray [42] demonstrated how 

to obtain higher-order elastic constants from experiments with bulk waves.  

In the literature, many developments and studies in the acoustoelasticity mainly focused 

on and utilised bulk waves (Pau and Scalea [43]). The acoustoelastic effect is usually quantified 

by measuring the velocity change of the propagating wave in pre-stressed media. However, the 

velocity change of ultrasonic bulk wave due to the applied stress is small (Mohabuth et al. [44]). 

In recent years, guided waves have attracted increasing practical interests due to its high 

sensitivity to stress, changes of material properties and its ability to propagate over long 

distances. Gandhi et al. [45] provided a comprehensive analysis of the acoustoelastic effect due 

to bi-axial loading through analytical formulation and experimental measurements. However, 

their work only considered the first order of the infinitesimal strain tensor. In a more recent 

study by Mohabuth et al. [44], they developed the governing equation for the propagation of 

small amplitude waves in a pre-stressed plate using the theory of incremental deformations 

superimposed on large deformation. The development was extended to estimate the effect of 

applied or thermally-induced stresses on the Lamb wave propagation [46].  In similar time, 

Packo et al. [47] studied the dispersion of the finite amplitude Lamb wave in nonlinear plates 

with the consideration of up to fourth-order elastic constants. 

An analysis of geometrically complicated structures or structures subjected to complex 

loadings is very difficult or not possible using analytical approaches. All theoretical results 

were obtained for infinite plates subjected to simple homogeneous stress states.  Therefore, in 

this context, it is important to develop a numerical method in order to analyse more complex 

and more relevant practical situations.    

In the current study, a VUMAT subroutine is developed in ABAQUS based on 

Murnaghan’s energy function [40] to model the Lamb wave propagation in pre-stressed plates. 

The FE model is verified by comparing the numerical results for the phase velocities with the 



analytical results obtained by Mohabuth et al. [44]. The verified FE model is then utilised to 

predict the acoustoelastic effect of Lamb wave propagation in plates subjected to bending.  

The current paper is structured as follows. In Section 2, a theoretical basis of the 

acoustoelastic effect of Lamb wave is elaborated, followed by a derivation of the constitutive 

equation to develop the material nonlinearity in ABAQUS VUMAT in Section 3. Then, the FE 

model with nonlinear material is developed in Section 4, and the simulation results of the FE 

model is verified by comparing them with the theoretical solutions obtained from previous 

studies. A series of case studies is then carried out using the verified FE model in Section 5, 

which considers the acoustoelastic effect of Lamb wave on a plate under bending. Finally, 

conclusions from the numerical studies are drawn in Section 6. 

 

2. Governing equations for acoustoelastic Lamb wave propagation 

According to Mohabuth et al. [44], the position of the material particle in the reference (βr) 

and current (β0) configurations is denoted by 𝑿 and 𝒙, respectively. The deformation gradient 

F is defined by 

𝐅 =
∂𝐱

∂𝐗
                                                                   (1) 

The nominal and Cauchy stress tensors are given by 

𝐒 =
∂𝑊

∂F
, 𝛔 = 𝐽−1F

∂𝑊

∂F
                                                     (2) 

where W is the strain energy function and 𝐽 = det𝐅. In the study of Mohabuth et al. [44], the 

strain energy function is defined by deformation gradient. The corresponding incremental 

constitutive equation of the stress tensor is given in component form by 

Ŝ0pi
= A0piqj

𝑢j,q                                                        (3) 

where Ŝ0pi
 are the components of the incremental nominal stress tensor. A0piqj

 are the 

components of the fourth-order elasticity tensor of instantaneous elastic moduli [44], [45]. 𝑢 is 



the displacement vector relative to β0, and a comma indicates partial differentiation with 

respect to Eulerian coordinate. 

 

Figure 1: Cartesian coordinate system defined in the mid-plane of the plate with stresses 

applied in axes 1 and 2 direction and Lamb wave propagation in axis 1’ direction 

 

As shown in Figure 1, consider an isotropic plate with density of ρ defined in a Cartesian 

coordinate system located at the mid-plane of the plate. The equation of motion in a prestressed 

plate is given by 

𝐴0𝑝𝑖𝑞𝑗  
𝜕2𝑢𝑗

𝜕𝑥𝑝𝜕𝑥𝑞
= 𝜌

𝜕2𝑢𝑖

𝜕𝑡2                                                     (4) 

When considering a Lamb wave propagating along a axis 1’ direction with an angle of θ, the 

equation of motion can be transformed to the rotated coordinate system 

𝐴0𝑝𝑖𝑞𝑗

′
 

𝜕2𝑢
𝑗

′

𝜕𝑥𝑝
′

𝜕𝑥𝑞
′

= 𝜌
𝜕2𝑢

𝑖

′

𝜕𝑡2                                                   (5) 

and the relationship between the two elasticity tensors before and after transformation is 

𝐴0𝑝𝑖𝑞𝑗

′
= 𝛽𝑝𝑟𝛽𝑖𝑘𝛽𝑞𝑠𝛽𝑗𝑙𝐴0𝑟𝑘𝑠𝑙                                           (6) 

where 𝛽𝑖𝑗 is the cosine of the angle of rotation. In the following discussions, all the equations 

are formulated based on the original coordinate system. 

The wave motion is assumed as 

𝑢𝑗 = 𝑈𝑗𝑒𝑖𝜉(𝒙𝟏+𝜶𝒙𝟑−𝒄𝒕)                                                   (7) 



where 𝜉 is the wave number in 𝑥1 direction, 𝑐 is the phase velocity along 𝑥1 direction, and 𝛼 

is the ratio of 𝑥3 wavenumber to 𝑥1 wavenumber. Substitute the equation to the equation of 

motion yields the Christoffel equations 

KijUj = 0                                                            (8) 

and the parameters Kij are given by 

K11 = ρc2 − A01111 − 𝛼2𝐴01313, 

K22 = ρc2 − A01212 − 𝛼2𝐴02323, 

K33 = ρc2 − A01313 − 𝛼2𝐴03333, 

K12 = K21 = −A01112 − 𝛼2𝐴01323, 

K13 = K31 = −𝛼(𝐴01133 + 𝐴01331), 

K23 = K32 = −𝛼(𝐴01233 + 𝐴01332),                                         (9) 

For non-trivial solutions of the displacement amplitude Uj, the determinant of the K 

matrix goes to zero. This yields a sixth order equation with six solutions 𝛼𝑞, q ∈ {1,2,3,4,5,6}, 

which is expressed as 

P6α6 + P4α4 + P2α2 + P0 = 0                                          (10) 

where the coefficients can be found in [48]. To satisfy the stress-free boundary condition, the 

approach developed in the work of Nayfeh and Chimenti [48], and the displacement ratios 

between U2 to U1 and U3 to U1 are defined 

Vq =
U2q

U1q
,  Wq =

U3q

U1q
                                                    (11) 

The expansion of 𝑉𝑞 and 𝑊𝑞 can also be found in the work of Nayfeh and Chimenti [48]. With 

the displacement ratios, the displacement filed of the Lamb waves can be written as 

u1 = ∑ U1qeiξ(𝐱𝟏+𝛂𝒒𝐱𝟑−𝐜𝐭)6
𝑞=1 , 

u2 = ∑ V𝑞U1qeiξ(𝐱𝟏+𝛂𝒒𝐱𝟑−𝐜𝐭)6
𝑞=1 , 

u3 = ∑ 𝑊𝑞U1qeiξ(𝐱𝟏+𝛂𝒒𝐱𝟑−𝐜𝐭)6
𝑞=1 ,                                         (12) 



Substitute the displacement relations to equation (3), gives the expression for stresses in 3 

direction 

Ŝ33 = ∑ iξD1qU1qeiξ(𝐱𝟏+𝛂𝐪𝐱𝟑−𝐜𝐭)6
q=1 , 

Ŝ13 = ∑ iξD2qU1qeiξ(𝐱𝟏+𝛂𝐪𝐱𝟑−𝐜𝐭)6
q=1 , 

Ŝ23 = ∑ iξD3qU1qeiξ(𝐱𝟏+𝛂𝐪𝐱𝟑−𝐜𝐭)6
q=1 ,                                       (13) 

where the coefficients 𝐷1𝑞, 𝐷2𝑞 and 𝐷3𝑞 are defined with the elasticity tensor and displacement 

ratios [48]. For the stress-free condition at the upper (d/2) and lower (-d/2) surfaces of the plate, 

there are six equations in terms of the amplitudes U11, U12, …, U16, and the determinant is 

|

|

𝐷11𝐸1 𝐷12𝐸2 𝐷13𝐸3

𝐷21𝐸1 𝐷22𝐸2 𝐷23𝐸3

𝐷31𝐸1 𝐷32𝐸2 𝐷33𝐸3

𝐷14𝐸4 𝐷15𝐸5 𝐷16𝐸6

𝐷24𝐸4 𝐷25𝐸5 𝐷26𝐸6

𝐷34𝐸4 𝐷35𝐸5 𝐷36𝐸6

𝐷11�̂�1 𝐷12�̂�2 𝐷13�̂�3

𝐷21�̂�1 𝐷22�̂�2 𝐷23�̂�3

𝐷31�̂�1 𝐷32�̂�2 𝐷33�̂�3

𝐷14�̂�4 𝐷15�̂�5 𝐷16�̂�6

𝐷24�̂�4 𝐷25�̂�5 𝐷26�̂�6

𝐷34�̂�4 𝐷35�̂�5 𝐷36�̂�6

|

|

= 0                  (14) 

where �̂�𝑞 = 𝐸𝑞
−1 = e−iξα𝑞

𝑑

2. The determinant leads to two uncoupled characteristic equation 

D11G1 cot(γα1) − D13G3 cot(γα3) + D15G5 cot(γα5) = 0, 

D11G1 tan(γα1) − D13G3 tan(γα3) + D15G5 tan(γα5) = 0,                     (15) 

corresponding to symmetric and anti-symmetric Lamb wave modes, respectively, and γ =

ξ d 2⁄ = 𝜔𝑑 2𝑐⁄ . The parameters Gi are provided in [48]. Consequently, with the elasticity 

tensor defined through nonlinear energy function and equation (15), the dispersion relation of 

Lamb wave can be obtained. 

 

3. Implementation to ABAQUS/Explicit 

In ABAQUS/Explicit, VUMAT can be used to define the mechanical constitutive behaviour 

based on the nonlinear strain energy function of Murnaghan [40], which is written as: 

𝑊(𝐄) =
1

2
(𝜆 + 2𝜇)𝑖1

2 − 2𝜇𝑖2 +
1

3
(𝑙 + 𝑚)𝑖1

2 − 2𝑚𝑖1𝑖2 + 𝑛𝑖3                      (16) 



where 𝜆 and 𝜇 are the lamé elastic constants; l, m and n are the third order elastic constants. 

𝑖1 = 𝑡𝑟𝐄, 𝑖2 =
1

2
[𝑖1

2 − 𝑡𝑟(𝐄)2], 𝑖3 = 𝑑𝑒𝑡𝐄, respectively. 𝐄 is the Green-Lagrange strain tensor 

given by: 

𝐄 =
1

2
(𝐂 − 𝐈)                                                            (17) 

where I is the identity tensor and C is the right Cauchy-Green deformation tensor, defined as: 

𝐂 = 𝐅T𝐅 = 𝐔𝟐                                                         (18) 

where U is the right stretch tensor.  

In ABAQUS, the stress in VUMAT of ABAQUS/Explicit is the Cauchy stress tensor 

in Green-Naghdi basis, 

�̂� = 𝐑T𝛔𝐑                                                             (19) 

where R is rotation tensor, and R is a proper orthogonal tensor, i.e., 𝐑−1 = 𝐑T. The relationship 

between F, U and R is given by  

𝐅 = 𝐑𝐔                                                               (20) 

So, equation (19), with the energy function presented in equation (16) can be translated to, 

�̂� = J−1𝐑T𝐅𝐓𝐅T𝐑 = J−1𝐑T𝐑𝐔𝐓𝐔T𝐑T𝐑 = J−1𝐔
∂𝑊(𝐄)

∂𝐄
𝐔T                   (21) 

where T is the second Piola-Kirchhoff (PK2) stress. The stress in VUMAT must be updated 

with the equation at the end (t+∆t) of an integration step and stored in stressNew(i), which is a 

default variable of the updated stress value at the end of each step. Based on the values of F 

and U given in the subroutine at the end of previous step (t), stressNew(i) can be obtained and 

then proceed to the next integration step. 

4. Numerical Case Studies 

4.1. 3D Finite Element Model 

A 3D FE model of a 6061-T6 aluminium plate was developed with ABAQUS software and the 

wave propagation problem was solved by the explicit integration approach [50]. The material 



properties of the 6061-T6 aluminium are listed in Table 1. The thickness of the plate is 3.2mm 

and the in-plane dimension is 240mm×240mm. The element type used in the model is the 8-

node linear brick with reduced integration, and hourglass control (C3D8R). The in-plane 

dimension of an element is 0.25×0.25mm2 to ensure that there are at least 20 elements per 

wavelength [51]. There are 10 elements in the thickness direction, and hence, the thickness of 

each element is 0.32mm. To reduce the computational cost, only a quarter of the plate 

(120mm×120mm) is modelled using symmetric boundary conditions due to the symmetric 

nature of the FE model (Figure 2). 

As shown in Figure 2, bi-axial stresses are applied to the plate, which are defined as σ1 

and σ2, with 

σ2 = λσ1                                                             (22) 

where λ is the bi-axial stress ratio. In this study, quasi-static loading with a duration of 2ms is 

used to apply the initial stress. The duration is sufficient to minimise the transient effect due to 

the loading process on the propagating wave modelling in the following steps. After the plate 

is stressed, the fundamental symmetric mode (S0) of Lamb wave is excited by applying in-

plane nodal displacements to nodes at the circumference of a quarter of 10mm diameter circle 

located at the bottom of the modelled quarter plate. The excitation signal is a 250kHz 4-cycle 

narrow-band sinusoidal tone burst pulse modulated by a Hann window. The measurements are 

taken in five different directions, i.e., 0°, 22.5°, 45°, 67.5° and 90°. There are six measurement 

points along each direction as specified in Figure 2. The first measurement point is 30mm away 

from the excitation area, and all the five other measurement points are equally spaced at 4mm.  

 

Table 1: Material properties of 6061-T6 aluminium [49] 

λ (GPa) μ (GPa) l (GPa) m (GPa) n (GPa) Density (kg/m3) 

54.3 27.2 -281.5 -339.0 -416.0 2704 



 

 

Figure 2: Schematic diagram of the FE model with applied stresses 

 

 

4.2. Plate under bi-axial stress state 

Figure 3  shows the time domain signal of the excited Lamb wave mode propagating in 𝜃 = 0° 

direction with linear material behaviour defined using standard elastic properties and nonlinear 

material behaviour defined in VUMAT, respectively. In the numerical results obtained from 

the nonlinear material model, there is a clear shift of the peak of the Lamb wave signal when 

the plate is subjected to an 80MPa bi-axial tension. In contrast, in the wave signals obtained 

from the linear material model, there is no shift of the peak no matter the model is subjected to 

stress or not. 



 

Figure 3: FE simulated Lamb wave signal at 𝜃 = 0° propagation direction in a plate with a) 

linear material properties and b) nonlinear material properties. 

 

The propagating signals corresponding to S0 Lamb wave mode are calculated in 

different wave propagation directions (θ), see Figure 2.  By using these calculated data, the 

phase velocity can be evaluated by 

𝐶𝑝 =
2π𝑓𝑑

∆𝜙
                                                             (23) 

where 𝐶𝑝 is the phase velocity, 𝑓 is the excitation frequency, 𝑑 is the distance between two 

adjacent measurement points, and ∆𝜙 is the phase change between the two measurement points. 

As the plate undergoes in-plane deformation due to pre-stress, the distance 𝑑 used for the 

formula is the distance after the deformation. Five phase velocities are calculated in each 



direction, and the averaged value of the velocity is then calculated. The effect of the plate 

thickness change due to the Poisson’s effect is not considered as the change of thickness is very 

small and its influence on phase velocity is negligible. 

The dispersive nature of Lamb wave can introduce some additional errors to the 

velocity calculated from the FE model. According to the dispersion curve of the 6061-T61 

aluminium plate of 3.2 mm thickness (Figure 4), the excitation frequency used in the simulation 

is selected in a region having relatively flat phase velocity profile so that the dispersive effect 

can be minimised. It can be seen in Figure 4 that the fundamental anti-symmetric mode (A0) of 

Lamb wave at low frequency region (< 500kHz) and S0 Lamb wave at frequency region of 500 

– 1000kHz, as well as the higher order anti-symmetric and symmetric modes Lamb wave are 

very dispersive. In this study, the number of cycles of excitation signal is carefully selected so 

that the frequency bandwidth is reduced, while the reflected waves from boundary are not 

mixed with the first arrival. Thus the phase velocity change can be estimated accurately. 

 

 

 

Figure 4: Phase velocity dispersion curve of 6061-T6 aluminium 

 



Four cases are considered to verify the 3D FE model with the material nonlinearity. 

Case 1 investigates the effect of stress ratio λ, in which different values of λ are applied and σ1 

= 80MPa. Case 2 investigates the effect of stress magnitude, in which σ1 = 80MPa and λ = -0.5 

and -1. Case 3 studies the effect of the wave propagation angle, in which σ1 = 0MPa, 20MPa, 

40MPa, 60MPa and 80MPa and λ = -1, -0.5, 0, 0.5 and 1. Case 4 analyses the effect of the 

wave excitation frequency, in which the considered excitation frequency 200kHz (fd = 640kHz-

mm) is different to the excitation frequencies considered in Cases 1 – 3 with different stress 

ratios λ and σ1 =80MPa. Table 1 is a summary of these cases. 

 

Table 1: Summary numerical case studies of biaxial stresses 

 Investigation σ1 (MPa) σ2 (MPa) λ 
Excitation 

frequency 

Case 1 Biaxial stress ratio λ effect 80 -80, -40, 0, 40, 80 -1,-0.5,0,0.5,1 250kHz 

Case 2 Stress magnitude effect 
0,20,40,60,80 0,-20,-40,-60,-80 -1 250kHz 

0,20,40,60,80 0,-10,-20,-30,-40 -0.5 250kHz 

Case 3 Wave propagation angle effect 80 -80,-40,0,40,80 -1,-0.5,0,0.5,1 250kHz 

Case 4 Wave excitation frequency effect 80 -80-40,0,-40,80 -1,-0.5,0,0.5,1 200kHz 

 

In Case 1, the value of σ2 is fixed at 80MPa while the values of σ1 are -80MPa, -40MPa, 

0MPa, 40MPa and 80MPa. The corresponding bi-axial stress ratios λ are -1, -0.5, 0, 0.5 and 1, 

respectively. Figure 5 shows the results of the phase velocity change against different values 

of bi-axial stress ratio λ. The analytical solutions calculated based on the equations developed 

in [44] and the 3D FE simulation results are shown in Figure 5, in which they are presented by 

solid and dash-dotted lines, respectively. There is very good agreement between the analytical 

solutions and FE simulation results for all wave propagation angles ( 𝜃 =

 0°, 22.5°, 45°, 67.5° and 90°). The results also show that the phase velocity change has a linear 

relationship with the bi-axial stress ratios, which is predicted by the acoustoelastic theory. It 

should be noted that when the bi-axial stress ratio λ = 1, the phase velocity changes in all 

propagation directions are negative and having the same magnitude. In comparison, when λ = 



-1, there is no velocity change in 45o direction, and for propagation directions in 22.5o and 

67.5o, as well as 0o and 90o, the magnitude of velocity changes is the same but has opposite 

signs. It can be seen that, when λ is changed from -1 to 1, phase velocity change in 90o 

propagation direction experiences the largest variation, while in 22.5o direction the variation is 

trivial as compared with those in all other directions.  

 

Figure 5: Phase velocity change for different values of stress ratio λ with fd = 800kHz-mm, σ1 

= 80MPa 

 

Figures 6 and 7 show the effect of the stress magnitude on the phase velocity change of 

the S0 Lamb wave. The values of σ1 considered in Case 2 are 0MPa, 20MPa, 40MPa, 60MPa 

and 80MPa, and the bi-axial stress ratios λ are -1 and -0.5. This means that the σ2 are 0MPa, -

20MPa, -40MPa, -60MPa and -80MPa for λ = -1 as shown in Figure 6, and 0MPa, -10MPa, -

20MPa, -30MPa and -40MPa for λ = -0.5 as shown in Figure 7. The same as Figure 5, there is 

very good agreement between the analytical solutions and FE simulation results in Figures 6 

and 7. Figure 6 considers the stresses adding in x1 and x2 direction are of the same magnitude 

(λ = -1). Therefore, the values of the phase velocity change are the same in 𝜃 = 0° and 90°, 

and 𝜃 = 22.5° and 67.5°, respectively, but they are in opposite sign. There is no change in the 
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phase velocity for 𝜃 = 45° regardless the changes in the applied stress. Different to Figure 6, 

Figure 7 considers λ = -0.5. The phase velocity change in 𝜃 = 45° is no longer equal to zero 

when bi-axial stress is applied on the plate. Also, the values of the phase velocity change for 

wave propagation at 𝜃 < 45° are larger than those at 𝜃 > 45°. This is because the stress value 

in x1 direction is always larger than x2 in Case 2. 

 

Figure 6: Phase velocity change for different stress levels with fd = 800kHz-mm, λ = -1 

 

Figure 7: Phase velocity change for different stress levels with fd = 800kHz-mm, λ = -0.5 
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Figure 8 shows the phase velocity change in relation to the wave propagation angle. 

The wave propagation angles considered are 𝜃 =  0°, 22.5°, 45°, 67.5° and 90°. Biaxial ratios 

λ = -1, -0.5, 0 , 0.5 and 1 while σ1 = 80MPa are considered in Case 3. As shown in Figure 8, it 

is found that the phase velocity changes are always the same for different biaxial stress ratios 

when the propagation angle roughly is equal to 22.5o. When λ = 1, the phase velocity is the 

same for all wave propagation angle. Figure 9 shows the results of Case 4, in which are setting 

are the same, expect the excitation frequency is 200kHz. The phenomena of the phase velocity 

change in relation to the wave propagation angle and biaxial stress ratio are very similar. The 

results in Figures 8 and 9 show that there is good agreement between the analytical solutions 

and FE simulation results. 

Overall, the FE simulation results from the model with VUMAT subroutine agrees very 

well with the analytical results in all considered cases. It can be observed that the tensile stress 

reduces the phase velocity while the compression increases the phase velocity of the S0 Lamb 

wave. The phase velocity changes in different cases with different loads, propagation angles 

and stress ratios are quite different.  

 

Figure 8: Phase velocity change for different wave propagation directions with fd = 800kHz-

mm, σ1 = 80MPa 
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Figure 9: Phase velocity change for different wave propagation directions with fd = 640kHz-

mm, σ1 = 80MPa 

 

5. Acoustoelastic effect of Lamb wave propagation under bending stress 

5.1. Front shape of Lamb waves under applied bending stress 

A 2D plane strain model is first developed in ABAQUS to investigate the variation of the front 

shape of S0 Lamb wave propagation on a plate under a bending stress. The dimension of the 

plate is 1000mm long by 3.2mm thick. 4-node bilinear plane strain quadrilateral elements are 

used with reduced integration and hourglass control (CPE4R). The element size is 0.25mm in 

length and 0.32mm in depth to ensure there are at least 10 elements in the thickness direction 

and 20 elements per wavelength [51]. The excitation is a 250kHz 4-cycle narrow-band 

sinusoidal tone burst pulse modulated by a Hann window. The S0 Lamb wave is excited at the 

middle of the plate. The bending stress is applied at both ends of the plate and varies linearly 

through the plate thickness. The material nonlinearity sub-routine is modified to accommodate 

the 2D plane strain condition. The measurement location is at 400mm away from the excitation 

location. At this location, both in-plane and out-of-plane displacements of the nodal points 

located along the plate thickness are calculated for the plate at stress free condition and the 
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under a maximal bending stress of 80MPa. As shown in Figure 12, when the plate is free from 

bending stress, the in-plane displacement front shape of the S0 Lamb wave is symmetric about 

the mid-plane of the plate, while the out-of-plane mode shape is antisymmetric. As compared, 

when the plate is under the bending stress, both in-plane and out-of-plane displacement front 

shapes are slightly distorted.  

 

 

Figure 12: a): In-plane and b) out-of-plane displacement front shape with and without applied 

bending stress 

 

5.2. Phase velocity change due to applied bending stress 

In this section, the verified 3D FE model with material nonlinearity effect is applied to simulate 

the acoustoelastic effect on Lamb wave propagation in plate under bending stress. The 3D FE 

model has same properties (excitation frequency and location, boundary conditions, and FE 

mesh) as the one shown in Figure 2. Measurements are taken at the nodal points at the top, 

mid-plane and bottom of the plate. Bending stress is applied along the surface highlighted in 

Figure 10. The stress is applied with a pressure load with analytical field, which defines the 

linear variation of the pressure along thickness. The maximal magnitude of the stress is varied 

from 20MP to 80MPa.  



 

Figure 10. 3D FE model under bending stress 

 

 

Figure 11. Phase velocity change with measurement calculated at the a) top, b) bottom, and c) 

mid-plane of the plate for different propagation directions and under different magnitudes of 

maximal bending stresses 

 



 

Results of numerical simulations are shown in Figure 11. The dependence of the phase 

velocity change against the applied bending stress is linear in all propagation directions. 

Meanwhile, it should be noticed that, the phase velocity change obtained from the top and 

bottom of the plates in the same propagation direction under the same stress condition has very 

similar magnitudes but the opposite sign. In addition, as demonstrated in Figure 11c, the phase 

velocity changes are about zero in all directions for all stress conditions. The results indicate 

that the phase velocity change is caused by the applied bending stresses. The region above and 

below the mid-plane of the plate are under tension and compression, respectively. As a result, 

the phase velocity changes in Figures 11a and 11b have an opposite trend. At the location of 

the mid-plane, the stress is zero so the value of the phase velocity change is almost zero despite 

increasing the applied bending stress.  

 

6. Conclusions 

The study has presented outcomes of a numerical simulations of the acoustoelastic effect 

associated with S0 Lamb wave propagation in a prestressed plate. The nonlinear material model 

has been formulated based on Murnaghan’s energy function. A series of case studies have been 

conducted and the phase velocity changes from FEA have been compared with the analytical 

results. The 3D FE results have shown nearly perfect match with the analytical solutions for 

the all range of stress ratios, stress magnitudes and propagation angles. The results have 

indicated that the 3D FE model with VUMAT subroutine, is able to simulate the acoustoelastic 

effect due to the nonlinear characteristics of a material under pre-stressed condition. The study 

has also investigated a more complicated stress situation, when the plate is subjected to bending 

stress. The effects of the applied bending stress on the in-plane and out-of-plane displacement 

front shapes has been investigated. It has demonstrated that for short propagating distances the 



effect of bending stress is negligible and can be omitted from design considerations of defect 

detection system utilising the S0 Lamb wave. 

 The main outcome of this study is that the 3D FE model with nonlinear material model 

can be used to accurately predict the acoustoelastic effect associated with the Lamb wave 

propagation in plates subjected to applied stress, including the cases when the plates are 

subjected to complicated stress state. In these cases, the analytically solution are not available 

and the only way to analyse these situations are direct numerical simulations. It is believed that 

the numerical simulations can contribute to the further developments of damage detection using 

Lamb waves as well as the on-line stress monitoring techniques. In addition, the model can 

also be used in developing SHM system. As it is proven that stress variation can affect the 

propagating waves, by considering the effect of loading conditions on linear guided wave 

propagation in practical field, and compensate this effect would help achieve a more accurate 

assessment of damages. 
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