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Abstract

Generating a high dynamic range (HDR) image from a
set of sequential exposures is a challenging task for dynamic
scenes. The most common approaches are aligning the in-
put images to a reference image before merging them into
an HDR image, but artifacts often appear in cases of large
scene motion. The state-of-the-art method using deep learn-
ing can solve this problem effectively. In this paper, we pro-
pose a novel deep convolutional neural network to generate
HDR, which attempts to produce more vivid images. The
key idea of our method is using the coarse-to-fine scheme to
gradually reconstruct the HDR image with the multi-scale
architecture and residual network. By learning the relative
changes of inputs and ground truth, our method can pro-
duce not only artificial free image but also restore missing
information. Furthermore, we compare to existing meth-
ods for HDR reconstruction, and show high-quality results
from a set of low dynamic range (LDR) images. We evaluate
the results in qualitative and quantitative experiments, our
method consistently produces excellent results than existing
state-of-the-art approaches in challenging scenes.

1. Introduction

High dynamic range (HDR) imaging is a fundamental
and essential problem in computer vision and image pro-
cessing, which is effective to capture and display real-world
lighting. Due to the limitation of the imaging devices, stan-
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dard digital cameras and most monitors have limited dy-
namic range, leading to under-exposed or over-exposed re-
gions in an image. The under-exposed regions are too dark
to show the details of the scenes, and the over-exposed re-
gions appear saturated in the image. To address this issue,
specialized camera hardware has been proposed to capture
HDR images or videos directly [25, 13]. However, high-
quality HDR cameras are not affordable for the general
public. A recent, more easy-to-use approach is to gener-
ate an HDR image from low dynamic range (LDR) images
[4,27, 33, 32]. Since each exposure can be designed to cap-
ture a specific dynamic range, HDR imaging can recover a
latent image from a stack of differently exposed images. For
image display, tone mapping is used to show on the display
device. This method produces appealing images and makes
all existing details visible in a static scene. If the stack is
captured in a dynamic scene with moving objects, HDR
imaging is a more challenging task and generates results
with ghosting artifacts. This is a serious limitation since
real-world scenes often have moving objects.

Actually, removing ghost artifacts from HDR imaging
has been the subject of extensive research. Aligning the in-
put images to a reference image before merging the aligned
images is the common way to generate an HDR image. The
most successful approaches to align the images are based
on optical flow [21, 3]. However, the HDR result is deter-
mined by the performance of optical flow, thus ghosting ar-
tifacts still exist in the standard HDR imaging results since
images are not aligned to the reference very well. With the
development of deep learning, many networks [17, 5, 2, 6]
have been proposed to produce an HDR image with differ-
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Figure 1. We propose a deep network to produce HDR images which contain more details from three input LDR images of a complicated
scene. Images with different exposures are shown on the left, and our result after tonemapping is shown in the middle after Matlab function
tonemap. The right columns show comparisons with other methods. Our proposed method using the coarse-to-fine scheme produces
appealing results, which are better than other approaches both visually and numerically.

ent strategies. For example, Kalantari ef al. [17] propose
to merge aligned inputs and exclude artifacts using deep
neural network. The result of directly predicted the HDR
image has higher performance but has artifacts sometimes.
U-Net [28] is one of the most famous networks for low-level
computer vision. We try to use this network to capture more
informative features with skip connection. Unfortunately,
the upsampling layer will lead to inevitable color distortion
or blurring artifacts, as shown in Figure 1.

In this paper, we propose a novel multi-scale dense net-
work to generate HDR, which attempts to produce vivid
artificial-free image. The multi-scale scheme is an effective
and practical approach to generate image details. It has been
very successful in both traditional optimization-based meth-
ods and recent neural-network based approaches [30, 37,
24] for image reconstruction. In the well-established multi-
scale HDR imaging method, Mertens [23] adopts multi-
scale methods for image fusion, and has higher performance
and appealing results. We thus embrace the multi-scale pro-
cessing scheme which avoids the use of upsampling layers
to improve HDR image quality. On the coarse scale, the
network predicts the global information (such as color, con-
text) of HDR image from LDR images. A medium branch
learns how to generate the middle level details of output
with considering neighborhoods pixels. The final scale is
used to keep details of LDR images and predicts the high-
frequency information that is not captured by the raw im-
age. Compared with the progressive network, our proposed
network is designed to capture multi-scale information in-
dependently. To exploit coarse and middle level information
while preserving fine level information at the same time, the
outputs of the three scale are concatenated as input to refine
network. In general, we use three subnetworks on different
scales to capture the high-level information, middle level
features and local details. The results show that the pro-
posed network can generate results with better quality than
existing state-of-the-art HDR reconstruction methods (Fig-
ure 1). In addition, to reused the features, the Dense Con-

volutional Network (DenseNet) [15] is also integrated into
the U-Net architecture in each scale.
The main contributions can be summarized as:

e We adopt three independent networks to capture the
multi-scale information from a sequence of bracketed
exposure LDR images for reconstructing HDR image.

¢ In order to use the features effectively and decrease the
numbers of parameters, we incorporate dense connec-
tions into U-Net to connect each layer to every other
layer in a feed-forward fashion.

* We take advantages of the multi-scale HDR image to
gradually reconstruct the final of HDR image.

* We propose a multi-scale loss function that not only
constraints the estimated HDR images are similar to
ground truth in different scales, but also guarantees the
quality of the final result.

2. Related Work

A number of methods to HDR imaging have been pre-
sented in the literature. Those methods can coarsely be
divided into two classes from different applications (static
scenes and dynamic scenes). The static scenes commonly
are captured by estimating the camera response function
and recovering the latent HDR image [4, 11]. However, the
static scene approaches introduce other limitations such as
blurring or ghosting artifacts in dynamic scenes.

Existing methods to reduce the ghosting artifacts for
HDR imaging can be categorized into two general classes.
The first class is alignment before merging, which aligns
the different images before merging them into an HDR im-
age. The optical flow (OF) is the most widely used approach
in aligning image fileds. For example, to enhance the dy-
namic range, Bogoni [1] estimated local unconstrained mo-
tion vectors using optical flow, and warped other exposed
images into alignment. Kang et al. [18] improved optical



flow based methods to compensate scene and camera move-
ment, and proposed a specific HDR merging process. Zim-
mer et al. [38] computed the optical flow by minimizing
an energy function approach which takes into account the
varying exposure conditions. However, the overexposure or
underexposure regions have less information and may lead
to error displacement fields.

Meanwhile, patch matching based methods were em-
ployed in HDR imaging to handle dense correspon-
dence [29, 14]. For instance, Sen et al. [29] proposed a
patch-based energy-minimization system to integrate LDR
images and reconstruction HDR images. The algorithm pre-
serves the high-quality information in the reference image,
and also fills in the missing under-exposed or over-exposed
information from other input LDR images. Hu et al. [14]
added camera calibration as a part of the optimization. The
resulting method obtains a latent image which is similar to
the reference image but exposed like source image accord-
ing to intensity mapping function. Although patch match-
ing based methods can generate excellent results of HDR
images, the computation complexity is very huge, reducing
the model efficiency.

The second class is moving objects based methods,
which rejects moving objects by using lower weights to
erase the influence of this regions. The key difference be-
tween these methods is how to detect the ghost regions.
Grosch [10] detected ghost regions using the divergence of
predicted pixel colors and the original pixel colors to detect
motion. Jacobs er al. [16] employed local entropy of dif-
ferent input images to detect ghost regions. Assuming the
linearity of the image intensity with exposure times, Gallo
et al. [7] used deviation of two exposure pixel values of
adjacent images to measure ghost effects. Heo et al. [34]
computed a Gaussian-weighted distance between the color
of the reference image and other input images, then refined
the image based on a global energy minimization system.
Zhang and Cham [36] detected motion by analyzing the gra-
dient maps between exposures image, due to the magnitude
and orientation are different in motions object and satura-
tion regions. Oh ef al. [26] presented a rank minimization
algorithm which simultaneously aligns LDR images and de-
tects outliers for the robust HDR generation. Lee et al. [20]
adopted rank minimization in HDR de-ghosting. Yan et al.
[31] proposed a ghost-free HDR image synthesis algorithm
which utilizes a sparse representation framework. However,
the performances of those de-ghosting algorithms mainly
depend on the accuracy of the ghost detection.

Recently, deep learning based methods have been pro-
posed for low-level computer vision tasks [9, 37, 17]. There
are also many works to generate HDR images. Eilertsen et
al. [5] reconstructed a high-quality HDR image from single
exposed LDR image with an auto-encoder network. Endo
[6] synthesized LDR images from one LDR image with a

deep neural network, then reconstructed a HDR image by
merging the synthesized LDR images. Cai et al. [2] pro-
posed a convolutional neural network (CNN) to train a SICE
enhancer for a single image. Most of the works are devoted
to generate HDR images from a single LDR image, due to
they don’t consider the dynamic scenes. However, generat-
ing HDR images from a sequence of LDR images is more
vulnerable in the dynamic scenes. Kalantari et al. [17] uti-
lized the optical flow to align LDR images to the reference
image, then trained a deep CNN to generate HDR images.
Compared with previous works, the results have sharper de-
tails. The main reason is that they used a weighted aver-
age of the aligned HDR images. Different from Kalantari’s
method, our work focuses on collecting information from
multi-scale LDR images, and generates artificial free and
colorful HDR images.

3. The Proposed Method

The overall framework of the proposed network is shown
in Figure 2. The network is designed to introduce more
information via a multi-scale dense connection architecture.
As introduced in Section 1, we reconstruct an HDR image
from a sequence of LDR inputs. More specifically, we use
three LDR images of a dynamic scene (L1, Lo, L3), and the
middle exposure image (Ls) is set as the reference. Our
goal is to generate a ghost-free HDR image H, which is
aligned with the reference image Lo. The information of
the HDR image either merges the contents of LDR images
or generated from the network. In this paper, we not only
focus on how to remove ghost artifacts but also generate
more vivid colorful HDR images.

The proposed method is divided into the data preprocess-
ing and merge phases. Following [17], in the data prepro-
cessing, the aligned LDR images I, I, I3 are first created
based on optical flow [21], then HDR images H;, Hy, Hs
are generated by gamma correction.

I
Hi:fai:1a2537 (1)

(2
where, t; denotes the exposure time of ¢-th image I;, v is set
as 2.2 in our experiments. Then we concatenate LDR and
HDR images X = {I, I, I3, H1, Hy, H3} as inputs to the
proposed network. LDR images can be used to detect the
misalignment and saturation region, while HDR images are
facilitated to generate the final HDR images H.

In the field of image reconstruction, the multi-scale
scheme is a very successful strategy in both traditional
optimization-based methods and recent neural-network
based approaches [30, 37, 24, 35]. Therefore, we believe
this strategy is also helpful to generate HDR images. Based
on this motivation, we use multi-scale strategy to recon-
struct HDR images and then refine them.
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Figure 2. Our proposed framework. Firstly, the LDR images are aligned based on optical flow. Then, gamma correction is performed to
change the pixel range. These images are feed into the multi-scale dense networks to generate the multi-scale HDR images. Afterwards,
we utilize a shallow network to refine the multi-scale predictions. The final result is tonemapped before it can be displayed. S; is the result
of HDR images in the i-th scale, H denotes the result of final HDR image.

To enrich the image information, our method takes a
sequence of LDR and HDR images as inputs at different
scales, and adopts three subnetworks to obtain correspond-
ing HDR images (global, middle and local). To uniform the
resolution of the multi-scale prediction, we upsample the re-
sults from subnetworks by bilinear interpolation. The final
HDR images are generated using a shallow refinement net-
work. The refinement network takes the concatenation of
the upsampled HDR images as inputs. Therefore, the HDR
merge process can be expressed as:

H = g(D4(X), D2(X), X), (2)

where g defines the mapping from the inputs to HDR image.
D(X)4 and D(X)s denote the downsampled inputs of X
with scale 4 and 2.

3.1. Structure of the Dense U-Net for HDR imaging

The encoder-decoder structure is commonly used to map
an image to a certain output image. U-Net [28] is an ex-
tension of the encoder-decoder structure, which introduces
skip-connections to connect the encoder part and the de-
coder part. The skip-connections can benefit the gradi-
ent propagation and accelerate model convergence. The
encoder part extracts high-level features, and the decoder
part generates the corresponding predictions. This struc-
ture is a suitable solution to generate more information in
HDR imaging, such as over-exposed or under-exposed re-
gions. To reuse the multi-scale features, based on the U-Net
structure, we introduce the Dense Convolutional Network
(DenseNet), which connects each layer to other layers in
a feed-forward fashion [15]. More specifically, the small
scale is denoted by Dense U-Netl, the kernel size of which
is 3 x 3. Thus the coarsest-scale network has a large enough
receptive field to see the whole patch. The middle and high
scale are define by Dense U-Net2 (kernel size is 5 x 5) and
Dense U-Net3 (kernel size is 7 x 7), respectively. Based

on this design, the multi-scale information can be obtained
to reconstruct different scales HDR images. There are nine
dense blocks and different transition blocks in each scale,
as shown in Figure 3. All the building blocks consist of 16
channels, and the final output consists of 3 channels to fit the
HDR image. The transition layer is added after each dense
block to enhance the ability of representations. The net-
work architecture of the three scales is the same. The only
difference is the kernel size of convolution layer. Similar
to U-Net, for dense block6, features with the same size are
concatenated together as the input. Mathematically, each
stream can be represented as:

Ing = cat[DB3, DB4, DB, 3)

where cat denotes a concatenation operator, DB;, i =
1,...9 indicates the output features of the ¢-th dense block,
Ing denotes the input of dense block6. And the input of
dense block8 and block9 can be denoted by

Ing = cat[DB7, DB2], “4)
Ing = cat[DBS, DBl]. 5
3.2. Refinement Module

In order to concatenate the multi-scale predictions, we
adopt the upsampling layers. However, the upsampling op-
erations inevitably bring in blurring artifacts of HDR im-
ages. To address this problem, we propose a shallow net-
work to refine the multi-scale results. More specifically, we
first upsample the result of lower scale S; and middle scale
So with factors 4 and 2 respectively (Figure 2). Then those
images (D4(X), D2(X), X) are concatenated together as
the inputs of the refinement network. The refinement net-
work contains one convolution layer followed by several
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Figure 3. Details of the proposed Dense U-Net. Our network includes dense blocks, transition-down layers, transition layers and transition-
up layers. The network architecture of three scales is the same, and the only difference is the kernel size of convolution layer.

ment network includes three ResBlocks. Each of them contains
two convolutional layers and one ReLU activation.

ResBlocks. The first convolution layer is used to fuse the
multi-scale images. The ResBlocks are used to refine the
results and produce the final HDR image. We adopt the
ResBlock in [12], which contains skip-connections from the
early layers to the later layers. The short connections help
to preserve the detailed high-frequency information in the
early layers. As shown in Figure 4, our refinement network
includes three ResBlocks, each of which contains two con-
volutional layers and one ReLU. All convolutional layers
have the same number of kernels. The kernel is 3 x 3 with
padding 1. This refinement process produces more details
for HDR imaging.

3.3. Training Loss

To display HDR images on the screen, Kalantari [17]
proposed to use p-law function, a commonly-used range
compressor in audio processing, which is defined as:

_log(1+4 pH)
log(1 + )

where 11 = 5000 defines the amount of compression, H is
the HDR image, and 7" is the tonemapped image. The L;-
norm loss is employed for each scale, between the estimated
and ground truth HDR images (downsampled to the same
size using bilinear interpolation) as

) (6)

L= \TS) = Tils +IITH) =T, ()
i=1

where T(S;) and T} are the estimated and ground truth HDR
images in the i-th scale, respectively. T'(H) and T denote
the final output and ground truth tonemapped HDR images.
The loss not only ensures the estimated HDR images are
similar with ground truth in different scales, but also guar-
antee the quality of the final result. We have also tried Lo-
norm loss, however, we find that the L;-norm is better to
generate sharp and clear results.

4. Experiments

Our experiments are conducted on a PC with Intel i7
CPU (12 GB of memory) and an NVIDIA GeForce GTX
1080Ti GPU. We implement our framework based on the
PyTorch platform. To evaluate the effectiveness of our net-
work, different baseline network structures are tested. For
fairness, all experiments are conducted on the same dataset
with the same training configuration.

4.1. Dataset

To train our model, we adopt the public dataset in [17].
The dataset consists of training samples from 74 different
scenes and testing samples from 15 different scenes. For
each scene, three different LDR images with motion were
taken. To generate the ground truth HDR image, Kalantari
et al. [17] capture a static set by asking a subject to stay still
and taking three images with different exposures on a tri-
pod. Then the captured images are used to produce ground
truth HDR with reference to the middle exposure image. To
reduce the possible misalignment in the static set, all the
images are resized to the resolution of 1500 x 1000. Due to
the limitation of the dataset (only 74 training samples), it is
hard to train a deep learning-based model if we directly feed
the full-size image to the network. To avoid over-fitting,
data augmentation is performed. More specifically, we ran-
domly crop and flip the patches with 256 x 256 as training
images.



Networks | PSNR-z|PSNR-M |PSNR-L |HDR-VDP-2
One Scale | 41.2959 | 30.6563 |40.9213 | 60.1513
Two Scale|41.4630 | 31.1986 |40.9269 | 60.1344
Proposed |42.2263 | 31.5845 [41.0170 | 60.2991

Table 1. Quantitative comparisons of the results on the testing set.
All scores are the average across 15 testing images.

4.2. Training Details

For model training, the Adam algorithm [19] is used with
B1 = 0.9, By = 0.999, ¢ = 1078 and batch size=1. The
learning rate is set to 10~* and divided by 10 after 60,000
epoch. According to our experiments, 80,000 epochs are
enough for convergence, which takes about two days. All
weights are initialized by the Xavier method [8]. The pa-
rameters described above are fixed for all experiments. Our
method takes roughly 0.7 seconds to product the final HDR
image H of size 1000 x 1500. In this paper, all the HDR
results are tonemapped by Matlab function tonemap with
same parameters.

4.3. Evaluation Metrics

To evaluate the predicted results, four metrics are con-
sidered. We compute the PSNR values for images af-
ter tonemapping using p-law (PSNR-u), Matlab function
tonemap (PSNR-M), and linear (PSNR-L) domains. We
also conducted a quantitative evaluation by computing the
HDR-VDP-2 [22], which can measure the visual difference
based on human perception rather than the element-wise
difference between two images. The parameters of the di-
agonal display size and viewing distance in HDR-VDP-2
algorithm are set as 40 inches and 1 meter.

4.4. Study on Multi-scale Strategies

To evaluate the effectiveness of the multi-scale strate-
gies, we design several baseline models. The One Scale
model uses the single scale Dense U-Net, and only takes
a single-scale image as input at its original resolution. The
Two Scale model uses two Dense U-Nets, and the inputs in-
clude the image of the original resolution and downsampled
one with factor 2. The results of different models are shown
in Table 1. As we can see the multi-scale strategy is very
effective for HDR imaging. The results are consistently im-
proved when we use two-scale network. Compared with the
One Scale structure, the improvements of the Two Scale
are rather minor. However, the proposed network with three
scales produces better performance. The main reason is that
multi-scale information has been effectively incorporated.

4.5. Study on Training Loss Function

To analyze the effects of different training losses, we
evaluate the performance with different loss functions. We

Loss |PSNR-u|PSNR-M|PSNR-L |HDR-VDP-2
MSE loss| 41.81 31.44 | 40.79 60.59
Lyloss | 42.23 | 31.58 | 41.02 60.30

Table 2. Quantitative comparisons of the results with different
losses. All the scores are averaged over 15 testing scenes.

additionally train our model with Mean Squared Error
(MSE) loss and L;-norm loss, respectively. The MSE loss
is defined by

Luse =Y _IT(S) =Tl + ITH) = T|F. ®)
i=1

As we all know, the L, loss can generate more sharp im-
ages but easily affected by noises, while the MSE loss may
capture the smooth result. The results of L; and MSE loss
on the testing dataset are shown in Table 2. Although the
MSE loss results in higher HDR-VDP-2 values, the L; loss
achieves higher values in terms of the other three quality as-
sessment metrics. Our goal is to show the HDR image on
the screen. We focus on the metric PSNR-z, and PSNR-M.
Hence, we choose L; loss as the training loss function.

4.6. Comparison with Other Methods

We compare our proposed model with several state-of-
the-art methods. Specifically, we compare against two
patch-based methods [29, 14], the method based on motion
region detection [26], the flow-based approach with CNN
merger [17]. For a fair comparison, we reproduce the code
of [17] by PyTorch. In addition, we also compare with two
single image HDR imaging methods [6, 5].

4.6.1 Qualitative Comparison

Figure 5 shows the visual comparison of our approach
against other state-of-the-art methods on the testing set.
The left column shows three LDR images, the middle im-
ages are our tonemapped HDR results, and the right nine
columns show the detailed results of our approach and other
methods. The numbers at the bottom present the PSNR of
the tonemapped images using the tonemapping function in
MATLAB. Compared with other methods, our method ob-
tains more information in saturated regions. Figure 6 shows
the corresponding HDR-VDP-2 visibility probability maps.
The HDR images generated from single images have large
differences compared to the ground truth. Meanwhile, they
often have noises in predicted results. The main reason
maybe that they heavily rely on the reference image. While
our method can achieve much better results.

To verify the generalisation, we also compare our ap-
proach against other methods on Sen’s dataset [29]. As
shown in Figure 7, our method produces appealing results,
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Figure 5. Comparison of our approach against several state-of-the-art methods on the testing set.

and outperforms others on this dataset. For example, our
method produces clear results in zoomed-in regions, while
other methods lose details of saturated regions (such as
zoomed-in regions of Figure 7 (a)) or prone generate arti-
facts (such as zoomed-in regions of Figure 7 (b)(c)). Com-
pared with Kalantari ef al. [17], our result products sharper
edges in under-exposed regions (the arm and hand in Figure
7 (b)). Due to the multi-scale information are introduced,
the color of our results looks more realistic and the net-
work can hallucinate missing details more easily compared
to other methods.

4.6.2 Quantitative Comparison

Table 3 shows the quantitative comparison averaged over
the 15 test scenes. As can be seen, the methods [6] and [5]
have poor performance, because of the single image does
not have the different exposure information. From the ex-
periments, we also find that global color consistency is a
critical factor for HDR imaging. For example, results of
[26] suffer from substantial differences from the ground
truth. The main reason is that the global intensity of result
is more higher than ground truth. However, the global infor-
mation is introduced in our network. The results of the pro-
posed method have better performance than other methods
on PSNR-i, PSNR-M, PSNR-L, HDR-VDP-2. Besides,
the tonmapping algorithm has a significant impact on the
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Methods PSNR-1.|PSNR-M | PSNR-L |HDR-VDP-2
Sen [29] 40.9453 | 30.5507 | 38.3147| 55.7240
Hu [14] 32.1872 1 25.5937 | 30.8395| 55.2496
Oh [26] 27.351 | 22.6311 |27.1119| 46.8259
TMO [6] 8.2123 | 21.4368 | 8.6846 | 44.3944
HDRCNN [5]|14.0925 | 25.8217 | 13.1116 | 47.7399
Kalantari [17]]42.0098 | 31.3868 | 40.7091 | 59.7234
U-Net 37.9675 | 27.6974 |40.0354| 60.0866
Ours 42.2263 | 31.5845 | 41.0170 | 60.2991

Table 3. Quantitative comparisons of the results on test set. All
scores are the average across 15 testing images.

final result. However, under the same setting, our method
achieves high performance in the terms of both PSNR-y and
PSNR-M.

5. Conclusions

In this paper, we present a multi-scale dense network to
generate HDR images. Our method adopts a coarse-to-fine
scheme, which contains three subnetworks to gradually re-
construct the HDR images. These subnetworks can gener-
ate multi-scale information which is very helpful to handle
saturated and motion regions. Furthermore, we introduce
dense connections into U-Net to reuse the features. By the
refinement module with the multi-scale HDR images, our
method can generate the artificial-free image with more de-
tails. Experimental results show that our method is excel-
lent in the HDR imaging, both qualitatively and quantita-
tively.

HDRCNN Kalantari Unet Ours
Talking

Figure 6. HDR-VDP-2 visibility probability maps. Red and blue denote major and minor differences, respectively.
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Figure 7. Visual comparison of different approaches on Sen’s
dataset [29].
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