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Abstract

Kinematic Data Fusion:

Sensor Data Fusion involves the entire process of Correlation and Fusion. The thesis
addresses the application of Artificial Neural Networks (ANN), to the correlation problem
of sensor level tracks. A comparison is then made between two track-to-track correlation
techniques for multisensor fusion using simulated and real track data (using DSTOS FPS-
16 Radar and Adelaide Airports Surveillance Radar). The techniques are, Classical
Inference using Hypothesis Testing and ART2 (Adaptive Resonance Theory 2 Neural
Network).

Attribute Data Fusion:

The thesis addresses the application of the Backpropagation neural network to Data Fusion
for automatic target recognition using three knowledge sources: a Continuous Wave (CW)
Coherent (X band) Radar, which provides us with high resolution doppler signature
measurements, together with a Surveillance Radar, which provides positional information
of airborne targets, and priori information of flight times of targets flying regular flight
paths, obtained from Adelaide Airport Flight time tables. A comparison is then made
between three data fusion techniques, on the trial data obtained. They are, backpropagation
neural network, Dempster-Shafer and Fuzzy Reasoning.
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Chapter 1

Introduction

1.1 Outline of the Thesis

In this introductory chapter, 1 begin by defining and describing some of the operational
benefits and application areas of multiple sensor fusion, and by summarising a number of
the basic techniques used to assist or perform data fusion.

In chapters 2 and 3 I define and discuss some of the principles of kinematic and attribute
data fusion and some of the background theory for the techniques used in the experimental
chapters 4 and 5.

In chapter 4 (Experimental Procedures and Results for Kinematic Data-Fusion) a
comparison is made between two track-to-track correlation techniques for multisensor
fusion using simulated and real track data. They are, Classical Inference using Hypothesis
Testing and the Adaptive Resonance Theory 2 Neural Network. The simulated track data is
generated using matlab software shown in Appendix C and the real track data is obtained
from the Surveillance radar at Adelaide Airport and the FPS-16 tracking radar at DSTO.
For the real data (in section 4.3) I address the problem of producing a common space c€o-
ordinate system for both radars, before correlating the tracks.

In chapter 5 (Experimental Procedure and results for Attribute Data Fusion) I address the
application of the backpropagation neural network to data fusion for automatic target
recognition using three knowledge sources. They are, a Continuous Wave (CW) radar at
DSTO, which provides us with high resolution doppler signature measurements, together
with a Surveillance radar, which provides positional information of airborne targets, and
priori information of flight times of targets flying regular flights, obtained from Adelaide
Airport flight time tables. A comparison is then made between three data fusion
techniques, on trial data obtained. They are, backpropagation neural network, Dempster-
Shafer and Fuzzy Reasoning. I introduce this chapter (section 5.1.1.1) by discussing some
of the differences of jet engine and propeller aircraft modulation obtained from the CW
radar (discussed in more depth in Appendix F). Also an introduction to some of the signal
processing techniques used to process the doppler data for input to the neural network is
discussed in section 5.3 with a more in depth exposition in Appendix A. A numerical
example showing how Dempster-Shafer and Fuzzy reasoning combine the information
from the three knowledge sources is discussed in sections 5.7 and 5.8 respectively.
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Conclusions on experimental results for both kinematic and attribute data fusion are made
in chapter 6. For the kinematic fusion case I discuss the advantages obtained in using
ART?2 over the Classical Inference approach. And for the attribute fusion case I discussed
how objectives were met to achieve automatic allocation of identity of airborne targets with
a neural network data fusion based system. The advantages are listed and a comparison is
made of using the backpropagation neural network over the Dempster-Shafer and fuzzy
reasoning data fusion methods.

1.2 Applications, Benefits and Definitions for Multisensor Fusion

The application of multiple sensors (and the fusion of their data) to the problems of
detection, tracking and identification offer numerous potential performance benefits over
traditional single sensor approaches [11,[2],[3]. These performance benefits must of course,
be weighed against additional cost, complexity, and interface requirements introduced for
any given application. Characteristics of multisensor systems that provide operational
benefits include the following:-

Robust Operational Performance is provided because any one sensor has the potential to
contribute information while others are unavailable, denied (jammed), or lacking in
coverage of an event or target.

Extended Spatial Coverage is provided because one sensor can look where another sensor
cannot.

Extended Temporal Coverage is also provided because onc sensor can detect or measure
an event at times that others cannot.

Increased Confidence (a relative measure of an uncertainty in the measured information)
is accrued when multiple independent measurements are made on the same event or target.
Reduced Ambiguity in measured information is achieved when information provided by
multiple sensors reduces the set of hypotheses about the target.

Improved Detection Performance results from the effective integration of multiple,
separate measurements of the same target.

Enhanced Spatial Resolution is provided when multiple sensors can geometrically form a
sensor aperture capable of greater resolution than that of a single sensor.

Improved System Operational Reliability may result from the inherent redundancy of a
multisensor suite.

Increased Dimensionality of the measurement space (ie., different sensors measure various
portions of the electromagnetic spectrum) reduces vulnerability to denial (countermeasures,
jamming, weather, noise etc.) of any single portion of the measurement space.

Kinematic Data Fusion involves the use of kinematic quantities such as position, range
rate, etc. However, with the usc of advanced radar systems and advances in radar signal
processing techniques, the efficient use of attribute data fusion is becoming more



important.

Attributes are sensed target quantities that are associated with a particular class of target.
These may include such quantities as wheel ( or tread) type for ground targets, engine type
for aircraft (ie. propeller or jet), type of emitting radar for either ground or aircraft targets,
or target image shape. Also, the class or type of target (ie. truck or tank) may itself be
considered an attribute. In the next few paragraphs I will consider kinematic and attribute
data fusion separately.

Spece Based
survel | lance

Fleet Alr

Comunication and Information
Centre

Figure 1 Application Areas for Fusion. (Taken from [4]).

In general, Data Fusion techniques seek to combine observational data from multiple
sensors (and types of sensors) to locate and identify both emitting and non-cmitting sources
of targets. These sensors may include active sensors such as radars, synthetic aperture radar
,sonar or other devices as well as passive sensors such as imagery, infra-red detectors,
electronics intelligence collectors, and other types of collectors. Generally, fusion systems
aim to combine multi-sensor data to achieve a higher degree of accuracy and identification



specificity than can be obtained via a single data source [4].

Direct fusion, is also referred to as local or autonomous fusion, and is defined as the fusion
of all sensors on board a single weapons platform. Indirect fusion, also referred to as
global or regional fusion, is defined as the fusion of widely distributed sensors which may
look at targets from different spatial and temporal aspects. These concepts improve the
effectiveness of both tactical identification and strategic Command, Control and
Communications (C* systems for a wide variety of applications. Figure 1 shows the
primary military application for which fusion solutions have been used or considered. Air
Defence is a candidate for indirect fusion through use of C* assets of an entire sensor
network composed of ground radars, airborne warning and control systems, and
intelligence sensors. Ocean Surveillance systems use multiple sensor data ( ship, air, space
and underwater) to derive tracking data for ocean traffic. Battlefield IFF (identification
friend or foe) refer to direct fusion on the battlefield. Space-Based Surveillance provides a
wide range of sensor measurements (IR, radar, ESM) for detection and tracking of strategic
threats. In the future the fusion of these sensor inputs from spatially and temporally
separated spacecraft will be a requirecment [4].

The basic fusion model (Figure 2) incorporates the aspect of sensing, tracking, and
identification. The model highlights the primary functions :

Sensors may be located at the fusion node, or may be remotely located, passing
information along a data link. The sensing process may be cooperative (question-answer)
or non-co-operative and active or passive. Sensor reports may not be synchronised in time.

Tracking and Report Correlation is required to correlate the various sensor reports to
determine which sensor reports are associated with distinct targets in space. Once this
correlation is performed, target data sets (or track files for dynamic targets) may be formed
and maintained.

Combination and Classification must be performed on each target data set (or track file)
to determine if the set can be uniquely identified as known target class. This requires an
optimal combination of the data from multiple sensors and a decision process to establish
class and decision confidence.

1.3 Summary of Data Fusion Techniques

The next few paragraphs summarise the basic techniques used to assist in, or perform data
fusion [2],[3]. These techniques include: classical methods of statistics and inference,
Bayesian inference, Dempster-Shafer modification to Bayesian inference, fuzzy-set theory,
cluster analysis, estimation techniques, templating, figure of merit, expert systems and
entropy methods. The particular techniques used (in experimentation), will be discussed in
more detail later.
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Classical inference techniques compute the probability of an observed event given an
assumption of a priori probabilitics. Hence, classical inference describes the probability of
an observed event given a hypothesis. Typically, however, we seck the probability of a
hypothesised situation given observations of events. Classical inference is well based on
mathematical theory. Strict application requires knowledge of a priori probability
distributions which are clearly unknown in some realistic applications. Disadvantages of
classical inference techniques are: they require a priori sampling distribution; can only
assess two hypothesis at a time ( the hypothesis HO versus an alternative hypothesis H1);
complexities can arise for multivariate data; and the classical inference does not take
advantages of prior likelihood assessments, as does the Bayesian inference technique.

The Bayesian inference technique resolves some of the difficulties with the classical
inference methodology. Bayesian inference updates the likelihood of a hypothesis given a
previous likelihood estimate and additional evidence (observations). This methodology
allows the use of subjective probability. The disadvantages of the Bayesian inference
include: the difficulty in defining prior likelihood; complexities when there are multiple
potential hypotheses and multiple conditionally dependent events; the requirement that
competing hypotheses be mutually exclusive; and the lack of an ability to assign general
uncertainty.

Shafer and Dempster created a generalisation of Bayesian theory which allows for general
level of uncertainty. Based on this model of human inference, the Dempster-Shafer (D-S)
method utilises probability intervals and uncertainty intervals to determine the likelihood of
hypothesis based on multiple evidence. In addition D-S methodology computes a likelihood
that any hypothesis is true.( For more detail refer to section 3.1).

Fuzzy set theory applies a generalised set theory to determine membership of entities in
specified sets. A fuzzy set is one in which membership is not a boolean decision (eg. the
set of tall people clearly contains marginal members- is a person 1.7 metres tall or not-tall).
Fuzzy set theory supplies an algebra of set manipulations (such as union, disjunction , etc.)
for fuzzy sets and their members. Fuzzy set theory is beginning to be applied in decision
analysis involving imprecise events. (For more detail refer to section 3.3)

Cluster analysis embraces a number of methods for sorting observations into natural groups
based on a prespecified similarity measure. Such techniques are useful for fingerprinting
or unit identification. Cluster methods are basically ad hoc schemes for data sorting
without underlying statistical theory. Such methods may be useful for identity declarations
and analysing observational data when no theory exists for relating the observations to
assigned identity ‘or classification.

Estimation theory encompasses the techniques of maximum likelihood, Kalman filtering,
weighted least squares, and Baycsian cstimation. These techniques obtain the best estimate
of a state, given an observation corrupted by noise. An example is the estimation of an
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emitter’s location given multiple line-of-bearing observations. Application include tracking
and direction finding.

The Entropy method computes a measure of information content associated with a
hypothesis. Applications exists for systems utilising empirical or subjective assessments of
alternative hypotheses.

The Figure of Merit (FOM) algorithm computes a degree of similarity between two entities
based on observational data and a priori weights. FOMs are frequently used in correlation
schemes to make quantitative declarations of association.

Expert systems are computer programs which seek to mimic the ability of human
specialists or experts to make decisions and inferences. Observational data are used to
derive inferences based on a knowledge base which may contain facts, rule of thumb, and
heuristic information. They are used for threat identification, situation assessment and tasks
currently performed by military analysts.

Templating utilises general data records to perform pattern recognition for complex
associations. Examples include event detection and recognition of high value targets.
Observational data is matched against a priori template (or patterns) to determine if the
data supports a hypothesis characterised by the templates. A template may contain
parameter lists, Boolean conditions, weighting factors and thresholds to describe conditions
for an event, activity or hypothesis.



Chapter 2

Principles of Kinematic Data Fusion

2.1 Track-to-Track Correlation for Sensor Level Tracking

Sensor data fusion involves the entire process of Correlation and Fusion . Fundamental to
the problem of combining sensor-level tracks is determining whether two tracks from
different systems (sensors) potentially represent the same track.

In a multiple-sensor tracking system the first major issue is to define the level at which
sensor data will be combined into tracks. The choices are Sensor or Central level tracking

[51,[6]. Unlike the Central level tracking approach which forms tracks from raw
observations the Sensor level tracking

Observations
Sensor 1
o
C
V.
U
=
Observations F g Output Tracks "
Sensor 2 - ® s VSer
O >
> B
(1}
|
Observations ©
Sensor 3 b
[
]
S

Figure 3 Central-level tracking approach forms tracks from raw observations (Taken
from [5]).
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Figure 4 Sensor-level tracking approach forms tracks and then combines them (Taken
from [5]).

approach forms sensor tracks and then combines them (Refer to Figures 3 and 4) Points
cited in favour of sensor-level tracking, over central-level tracking, are reduced data-bus
loading, and higher survivability due to distributed tracking capabilities. Certain
computational advantages may result from the parallel processing that is possible using
sensor-level track approach. Also, if one sensor becomes degraded, its observations do not
affect the sensor-level tracks of other sensors. Finally, the use of sensor-level tracking
allows for filter design that is specifically tailored to the individual sensors.

The problem of track-to-track correlation arises when multiple sensors report tracks from a
common surveillance volume. An important question is how to decide whether two tracks
from two different sensors (using sensor-level tracking) represent the same target.

In the following paragraphs I will review the theory for two track-to-track correlation
techniques for multisensor fusion. They are, Classical Inference using Hypothesis Testing
(as discussed by Bar Shalom in references [6] and [7] ) and ART2 (Adaptive Resonance
Theory 2 Neural Network) renowned for its use in pattern recognition and its ability to
respond in real time. Bar Shalom [6], outlined the Classical Inference technique based
upon the use of the Chi-Squared properties of the difference in state estimation vectors.



2.1.1 Classical Inference Theory

2.1.1.1 Hypothesis Testing

Many problems require that we decide whether or not a statement about some parameter is
true or false. The statement is usually called a hypothesis, and the decision making
procedure about the truth or falsity of the hypothesis is called hypothesis testing [8].

We are interested in making a decision about the truth or falsity of a hypothesis. A
procedure leading to such a decision is called a "test of a hypothesis". Hypothesis-testing
procedures rely on using the information in a random sample from the population of
interest. If this information is consistent with the hypothesis, then we conclude that the
hypothesis is true; however if the information is inconsistent with the hypothesis, we would
conclude that the hypothesis is false.

To test a hypothesis, we must take a random sample from the sample data, compute an
appropriate test statistic, and then use the information contained in the test statistic to make
a decision. When a decision is made using the information in a random sample, the
decision is subject to error. Two kinds of error may be made when testing hypothesis. If
the null hypothesis is rejected when it is true, then a type 1 error has been made. If the
null hypothesis is accepted when it is false, then a type 2 error has been made. The
situation is described in Table 1.

Table 1 Decisions in Hypothesis Testing
#

HO IS TRUE HO IS FALSE
ACCEPT HO " NO ERROR TYPE2 ERROR
REJECT HO “ TYPE 1 ERROR NO ERROR

#

The probabilities of occurrence of type 1 and type 2 errors are given by the following:

o= P{type 1 error} = P{reject HO / HO is true}
B= P{type 2 error} = P{accept HO / HO is false}

Because the results of a test of a hypothesis are subject to error, we cannot "prove" or
"disprove" a statistical hypothesis. However it is possible to design test procedures that
control the error probabilities o and B to suitably small values.
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The probability of type 1 error is often called the "significance level" or size of the test.
For example consider the following sensor target track problem used in the experimental
section 4.0. We have two tracks from two independent radars tracking targets in a common
surveillance volume. In reference [6] Bar Shalom outlines a technique based on the use of
the Chi-Squared properties of the difference in the state estimation vector of Y1 and Y2.
Consider two tracks with state estimation vectors Y and covariance matrices P as defined
by:-

TRACK1 : Y1(K) , P1(K)
TRACK? : Y2(K) , P2(K)
where,

Y1(K) = True state of target by sensorl at time (K)
Y2(K) = True state of target by sensor2 at time (K)

Let Ej,= YI(K)-Y2(K)

The problem of track association can be regarded as the following hypothesis testing
problem

HO : E,,(K) = 0 ---- SAME TARGETS
H1 : E,,(K) # 0 ---- DIFFERENT TARGETS

The test statistic used for the problem in section 4.0 is the Mahalanobis distance (which is
a measure of similarity among vectors Y1 and Y2), calculated and summed for each time
instant of the track. The hypothesis that the two targets are the same is accepted if the
Mahalanobis distance is below a certain threshold obtained using the Chi-Squared
distribution. More detail is provided in the next section (2.1.1.2).

We can establish the significance level for the decision rule as being Pp = 0.01
(probability of false correlation). With Pr=0.01, if HO is true there is a 1% chance that the
chi-squared statistic "c" (refer to Fig. 5) is above the threshold (or 1% chance of rejecting
HO).

2.1.12 Track-to-Track Correlation and Fusion for Independent State Estimation
Errors.

The Classical Inference techniques compute the probability of an observation given the
assumption of an "a priori" hypothesis. Bar Shalom [6L,[7] , outlined a technique based
upon the use of the Chi-squarcd distribution of the difference in the state estimation
vectors of Y1 and Y2.
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If HO 1s true there is a 1% chance that the chl-squared statlistic "C" 1s
above the threshold le. 1% chance of rejecting HO.

Figure 5 Indicates the probability density that the targets are the same for Chi-
squared test statistic "c". We are establishing the significance level with testing type 1
€rTOor.

Consider two tracks with state estimation vectors and covariance matrices of the estimates
as follows.

- Y1(K), Y2(K), Are the estimated positions of a target from sensor 1 & 2, at time K.
- P1(K), P2(K), Are covariance matrices of estimates (assume independent errors)

Hypothesis Testing: Estimates pertaining to the same target ?

- B,(K)=Y 1(K)- Y2(K), the error estimates,
The above denotes estimate of:-



- E,(K)=Y1(K)-Y2(K), the true difference of position in multidimensional space.
Where Y1(K) and Y2(K) arc the true states:

The problem of track association can be regarded as the following Hypothesis Testing
problem:

HO:E,,(K)=0 ... same target.
H1:E,,(K)#0 ... different targets.

The error in the difference between state estimates:
E,(K)=E,(K)-E,(K), is zero mean, If the state estimation errors
Y1(K)=Y1(K)-Y 1(K)

Y2(K)=Y2(K)-Y2(K),

are independent, then the covariance matrix Z;,(k) of E,, is:-
Z,(K)=E{Eo(K).E",(K)}

=E{[Y1(K)-Y2(K)I[Y 1(K)-Y2(K)]"
=P1(K)+P2(K)
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Assuming that errors from both radars 1 & 2 are independent you can add the covariance

matrix estimates.
The Test Statistic is as follows:
e~E",(K). 2" ,(K).E,(K) < o HO is true

e~ET,(K).Z" (K).E,(K) > o Hl is true

Where "e" is called the Mahalanobis distance, and the threshold « is such :

Probability (e>o/H0) = Py=P(rejecting HO/HO is true) = Type 1 Error= Level of

Significance or Probability of False Correlation.

The Py may be set to 0.01 for instance (ie. 1% chance we will reject the hypothesis).

The threshold o can be selected by exploiting the fact that the random variable is Chi-
squared distributed with Ny (dimension X) degrees of freedom. If HO is accepted the track

Y1(k) and Y2(k) can be combined:
¥ =P2.(P1+P2) . Y1+P1.(P1+P2)1.¥2

The justification for this formulation is given in [6].
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2.1.2 ART2 Neural Network

2.1.2.1 Art & Pattern Recognition

Neural networks are often used for solving pattern recognition problems. The pattern
recognition is basically a signal processing problem. One of the advanced neural network
structures proposed for pattern recognition is based on Adaptive Resonance Theory (ART).
The ART neural network and its theory was proposed by Grossberg and Carpenter [9].

Art is used for pattern recognition. The network responds in real time to input vectors with
stable, self- organised pattern recognition codes. Recognition occurs with the network
matching invariant properties in the input pattern, with exemplars in a recognition category.
The ART2 neural net uses unsupervised learning to develop pattern categories (ie the
desired output need not be known to train the network). An additional vigilance parameter
determines the degree of recognition between two objects.

There are generally two classes of ART architecture. ART1 is used for classifying binary
input patterns, and ART2 for analogue patterns. ART1 illustrates many of the important
aspects of ART2. ART2 was used in my application, to cluster tracks targets from radars
with overlapping surveillance areas, because the output format from both radars is
analogue. This will be discussed in more detail in the experimental chapters.

2.1.2.2 Operation of Art Network [9], [10], [11], [12], [13]

Art consists of two interconnected layers of neurons, F1 and F2, (as shown in Fig. 6),
which comprises the attentional system. The input leads to activity in the feature detector
neurons in F1 (this short term memory activity is represented by the shaded bars over the
neurons, refer Fig. 7). This activity passes through connections (synapses) to the neurons in
F2. Each F2 ncuron adds together its input from all the F1 neurons and responds. Neurons
in F2 compete with each other, so that at any instant, at most on¢ neuron is active (winner
take all).

The network gets organised through learning, in the following way. First consider a
network that has already undergone some learning. In this case, the stimulus input leads to
activity in the neurons of F1, the feature detecting neurons. Such activity represents short-
term memory, since the neurons regularly relax back to their quiescent state after the
stimulus is removed. The activity in the F1 neurons leads to activity through the
interconnections and synapses to the neurons in F2.
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The set of interconnections from F1 to F2 is called a filter; since it transforms the activity
in F1 into a set of inputs to F2. The strengths of these interconnections are represented by
the relative size of the half ovals as shown in Fig. 7. Each neuron of F2 represents a
different category. eg. category for target 1,2,3 etc.

Early network architectures of Art were unstable when learning new categories. A
particular neuron in F2 might at one instant represent a category A, whereas at a latter time
(after more learning) it might represent a different category, category B. A network is of
limited use if it cannot form stable categories.

New architectures of Art solves its instability problem in part through top-down priming,
(also called attentional priming) as shown in Fig. 7 . Activity in the second F2 node
reinforces the activity in the first and third neurons in F1 (Refer to Fig. 7. In general, each
neuron in F1 is connected to every neuron in F2 by a bottom-up pathway, and each neuron
in F2 is connected to every neuron in F1 by a top-down pathway.

ART STRUCTURE
(A SIMPLISTIC VIEW)

ATTENT [ONAL STSTEM

Q00O -

CATEGORIES ORIENTING

SYSTEM

N\

F1
900000

PATTERNS _I_

VIGILANCE

ATTENT IONAL |
GAIN CONTROL INPUT

Figure 6 Art pattern classification network (Taken from [13].
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The top-down signal represents a sort of template or set of critical features in the category.
Any neuron in F1 might be receiving two activities, one due to the bottom-up input, the
other due to the top-down priming. During recall and categorisation, the exchange of
bottom-up and top-down information leads to a resonance in neural activity (resonance
occurs due to exchange of bottom-up and top-down information). Critical features in F1 are
reinforced, and have the greatest activity (refer to Fig. 7).

Activity in category neurons (in F2) leads via a top-down filter to activity in the neurons
of F1.

2.1.23 Learning

In the previous paragraphs I have discussed the way input data leads to resonance between
the input feature detectors and the categories. I will now describe how the network
organised itself to give this behaviour. As mentioned earlier, the activity in the F1 and F2
neurons represents short-term memory; long term memory is encoded in the synaptic
connections.

In Art, this long term memory is encoded in both the bottom-up and the top-down synaptic
weights. Learning occurs when these synaptic weights are changed in response to the
presentation of input patterns. The precise mathematical form of learning for Art2 is given
latter. Briefly stated, a synapse in the top-down adaptive filter will approach a strength of
1.0 ( in arbitrary units), if it links two active neurons (ie. one F1 neuron and one F2
neuron). If both neurons are inactive, it will remain unchanged. If the (pre-synaptic) F2
neuron is active but the (post-synaptic) F1 neuron is not, then the synaptic weight decays
towards 0.0.

The learning rule for the bottom-up adaptive filter is similar to that just mentioned, except
in the case where both neurons are active. In that case the synaptic weight increases, but
not to a value 1.0. Instead the synapses at the post-synaptic neuron in F2 compete for
resources, and thus reach a value dependent on the number of active neurons. The greater
the number of active pre-synaptic neurons, the lower the asymptotic strength of each
synapse that will be achieved. This learning is called Weber’s Law. Such synaptic learning
rules are non-Hebbian, by virtue of associative decay and synaptic competition. During
learning, the synaptic strengths approach a composite or average of those which would be
expected for each pattern presented independently. The composite pattern of synaptic
strengths are weighted by the presentation statistics of those exemplars. Because learning
requires that only one F2 neuron be active, the categories associated with inactive neurons
are not degraded.
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ATTENT IONAL SYSTEM

I Winner take all

F2 Categorles

F1 Feature Detector

Figure 7 Activity in the category neuron (in F2) leads via a top-down Filter activity
in neurons of F1.(Taken from [13]).

2.1.2.4 Gain Control

Art has an attentional gain control unit that prevents top-down synaptic signals alone from
Jeading to F1 activity. This gain control system permits F1 to distinguish between top-
down (from F2) and bottom-up (input) signals (refer to Fig. 8). As long as the input is
present, the gain is high. If there is no stimulus input but just F2 is active, then the gain is
low, and thus only a small activity can arise in F1.

The gain control system has 3 inputs and one output. The inputs are:-

(a) The stimulus input itself (excitatory)
(b) An activity signal from F2 (inhibilory)
(c) Intermodal inhibition.
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ATTENT IONAL GAIN CONTROL

Intermodal
Inhibition F2

F1

Galn

Control + | _I_

Input

Figure 8 The attentional gain control unit permits F1 to distinguish between purely
bottom-up and top-down signals.

The gain control output acts as an overall gain or amplification signal for F1 activity. If we
begin with no inputs, but activity in an F2 neuron, the gain control has an uncentered
inhibitory input (refer to Fig. 8), resulting in little or no output. Thus, gain in F1 is low.
Even though there is attentional priming, the activity in F1 is small because of the low
gain. Consequently, the pattern of activity in FI1 is insufficient to lead to significant
bottom-up activity and hence no resonance can result. But if there is an input stimulus, the
gain control unit will be excited and the gain in F1 will be high. There will be activity in
F1. (Note that regardless of the activity in F2, the system will shut down if there is no
input).

To understand the intermodal inhibitory input to the gain control unit, suppose the Art
network is applied to a dinner party example. At a lively dinner party, you are
concentrating on what a new acquaintance is saying to you from across the table rather
than on what you are eating or drinking. Even though you drink your wine, you might not
taste it. This type of behaviour is duplicaled in Art by having an intermodal inhibition
signal to the gain control unit. In the dinner party example, your auditory system (attending
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to what your acquaintance is saying) decreases (inhibits) the gain control in your taste
system. In general, intermodal competition helps to restrict the signal to the higher stages
of cognition, thereby preventing cognitive overload.

2.1.2.5 Novelty Detector (Vigilance parameter) & Category Size

The novelty detector determines how fine or course a category will be ( ie. how much
different input patterns can vary and still be in the same category). The orientation system
has two inputs and one output, (refer to Fig. 9). The 2 inputs are the data input itself and
the overall activity in F1. The stimulus input is connected to the orienting subsystem with
an excitatory connection. The F1 activity level is communicated to the orienting subsystem
through inhibitory connections. The single output of the orienting system goes to F2 and is
a reset wave. The orienting system acts as a novelty detector by sending a reset wave (o F2
whenever the activity pattern in F1 caused by the input pattern differs significantly from
that caused by the top-down readout of a category neuron.

The Novelty Detector

Orienting

F2 System

Reset

wave

Vigi lance

Figure 9 The orienting subsystem. (Taken from [13]).
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The orienting subsystem sends its reset wave when the new input pattern differs
significantly from any previously coded. The Art orienting system has a single parameter,
called "vigilance parameter (v)" that tells how large a mismatch at F1 (between the top-
down template and the bottom-up activity) can be tolerated before the orienting systems
reset wave is emitted ( refer to Fig. 9).

If "v" is large (high vigilance) only a very slight mismatch will be tolerated before a reset
wave is emitted. If "v" is small(low vigilance), large mismatch will be tolerated before a
reset wave (and subsequent new coding) will occur. Because category formation is
dependent in this way on the relative similarity or difference in patterns, we say that Art
has the property of self-scaling.

For instance, consider an example involving wine tasting. A novice wine taster may have
only two categories: "good wine" and "bad wine". If the vigilance is set low, implying that
subtle differences between wines is unimportant, then every new wine, regardless of its
"features”, will be classified as either good wine or as a bad wine. But suppose the
vigilance is set high and a new wine is presented. The wine differs significantly from the
"good wine" or "bad wine" categories. The Art network may test those categories, but
because of the mismatch and high vigilance, it will ultimately recruit another catcgory
neuron in F2. In this way, for example you can generate a new category for "semi-sweet,
fruity wine".

2.12.6 ART2 Network Equations & Structure Using HNC software [14]

The HNC (Hecht-Nielsen Neurocomputers) software implementation of ART2 is a 2 layer
neural network with multiple slabs. The two layers (F1 and F2), or fields, are shown in
Figures 6 and 7. The F1 field has been subdivided into 7 state vectors which represent the
short- term memory (stm) of the F1 field. The neurosoftware has assigned a slab to each
of these state vectors: the P, Q, R, U, V, W and the X slabs (refer to Fig. 10). The F1 field
refers to all 7 of the slabs collectively. The F2 field is contained in the F2 slab.

Both F1 and F2 contain a state vector which represents the network’s short term memory.
The network’s weights represent the long-term memory (itm). They are maintained by the
P slab and the F2 slab, and are applied at each connection between the 2 fields. Each
processing element (PE) (or neuron) on the P slab is connected to each PE on the F2 slab,
and each PE on the F2 slab is connected to each PE on the P slab.
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Processing Equations:

Data is presented to the network through the input slab. When a pattern is presented to the
network the states of the PE’s of the F2 fields (or layer) are set to inactive, and the states
of the "U" slab are set to zero. The F1 field is iterated until the states of the R slab change
less than the tolerance parameter (defined later in real time parameter definitions).

The F2 field is then iterated to find an initial choice for the active F2 PE. Next, the F1
field is iterated until stability is reached. If the F2 choice is close enough to the input
pattern the resonance state is achieved. If a mismatch occurs, the F2 PE is inhibited and
the process is repeated until a match is achieved. If learning is enabled, the long term
memory weights are updated. Figure 10, taken from reference [12] represents the
calculations that take place within the F1 and F2 ficlds for short term memory processing.
The large filled circles (inhibitory interneurons) in Fig. 10, referred to as "gain control
nuclei” in ref. [12], (used for the normalisation of activation patterns across F1)
nonspecifically inhibit target nodes (neurons) in proportion to the L2 norm of the short
term memory activity in their source fields.

F1 Processing: .

The F1 field is updated by the following equations.

(a) W slab - The output of the i W slab PE is given by

w=l,+a.fu)

Where I, is the state of the i™ input slab PE, and y, is the state of the i" "U" slab PE and
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Figure 10 ART2 Architecture for F1 (Taken from [12]).

"a" (a positive gain term) is a user parameter.
The Signal Function is false in our application, so "f" is given by

fx)=0----if 0<x<0
else
fee)=x-———if 20

where © (signal threshold) is a user-specific parameter equal to one over the square of the
number of nodes (neurons) to be normalised.

(b) X slab - The output of the i™ X slab PE is given by
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X,= i
" e+Iwl)

where "e" (a positive small number used so that you cannot divide by zero in the above
equation) is a user specific parameter and Il w |l is the L, norm of the w slab.

(c) P slab - The output state of the i" P slab PE is given by

Pty 02
It

where y, is the state of the j" F2 slab PE, Z;is the weight associated with the connection
between the i P slab PE, and the j™ F2 slab PE and the function "g" is given by

gy)=4d if the j" F2 PE is active
8(y)=10 otherwise.

where "d" ( gain value which limits the maximum value of the winning neuron) is a user -

specific parameter. Since the value of g(y,) is either "0" or "d", the output states for the P
slab PE’s reduces to

Pi=u,rdzy,

where "J" is the index of the active F2 PE.

(d) Q slab - The output of the i™ Q slab PE is given by

9,7pi
(e) R slab - The output slab of the i™ "R" slab PE is given by

e (u;+c.q)
' (e+lul+c.lql)

where Il u Il and ll ¢ Il are the L, norms of the U and Q slabs.

(f) U slab - The output state of the i" U slab is given by
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A4

u=—-=
£ e Ivid

where Il v Il is the L, norm of the V slab.

() V slab - The output state of the i* V slab is given by

v;=x)+b.r,

where x; is the state of the i" X slab PE, "b" (a positive feedback gain term which
amplifies r, used for stability) is a user parameter, and "f" is as defined in the W slab
equations.

F2 Processing:

On the F2 slab, each PE calculates the dot product between the P slab vector and its
weight vector. This weight vector represents the F1 to F2 bottom-up long-term memory
values. Only F2 PE that are not in the inhibit state perform this calculation. The PE with
the largest dot product is selected as the active PE. All other non-inhibited F2 PE’s are set
to inactive. The equations for these calculations are given by

df‘}; Priy

y; = inhibit if the current value is inhibit
y; = active if d; = max(d,) for all i values
y; = inactive otherwise.

After the active F2 PE is selected, the F1 field is iterated. Once the F1 field has stabilised,
the following inequality is checked

P51
(e+irl)

where p is the vigilance parameter. The vigilance parameter is user-selected and lies
between O and 1. This inequality is the reset condition for the F2 slab. If the resct
condition is not met, resonance has occurred and the input pattern is categorised as
belonging to the class associated with the active F2 PE. If the next condition is met, the
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active F2 PE is set to the inhibit state, the F1 field is cleared, and a new F2 PE is
selected.

Learning:

If learning is enabled and resonance state is achieved, the network weights z; (top-down)
and z; (bottom-up) are updated. Normal learning incrementally moves the weights towards
their asymptotic values. This causes the weights to average over all examples of a
category.

Weights change as follows:

u
z,?’m=z,?w+a.d.(1 —d).[l—_‘a—z,?

and

u
ngw=z§w+a.d.(l—d).[ ! -zf,)m]

(1-d)

where J is the index of the active F2 PE and a is the learning rate.

Run Time Parameter Definitions using HNC software: [14]

The Tolerance parameter controls the number of iterations needed to reach F1 short-term
memory (STM) stability. Stability occurs on the F1 field STM calculation when the
largest change in activity of an R slab PE is less than the tolerance. The Learn Rate
parameter "o controls the rate at which weights are modified.

Parameter "A" is the parameter in the F1 field STM calculations, a.

Parameter "B" is the parameter in the F1 field STM calculations, b.

Parameter "C" is the parameter in the F1 field STM calculations, c.

Parameter "D" is the parameter in the F1 field STM calculations, d.

Parameter "E" is the parameter in the F1 field STM calculations, e.

Parameter "T" is the threshold parameter, ©, used in the F1 field signal function.

Parameter "V" is the vigilance parameter, p, used in determining when an F2 PE has
reached resonance.



26

The HNC software package suggests the use of the following typical values for the
network parameters ( refer to Table 2 ), which were appropriate for my application, (except
for the vigilance parameter which was adjusted as indicated in the experimental section).

Table 2 ART2 network parameters used in target track correlation
problems (discussed in the experimental section).
#

Parameter Typical values
' Initial weight max. 0.01
Tolerance 0.00001
Parameter A 10.0
Parameter B 10.0
Parameter C 0.10
Parameter D 0.9
Parameter E 0.000001
Parameter J 0.05
Parameter V 0.995
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Chapter 3

Principles of Attribute Data Fusion

3.1 Dempster-Shafer (Evidential Reasoning) Method [15], [5]

3.1.1 Background Introduction

Evidential Reasoning requires no prior distribution of the existence of threat types as does
the Bayesian approach. The Dempster-Shafer (D-S) method is based on a model of human
inferences; it utilises probability intervals and uncertainty intervals to determine the
likelihood of a hypothesis based on mutual evidence. In addition, the D-S methodology
computes a likelihood that any hypothesis is true. The D-S method can be used for
representing and combining data in a multiple sensor (or knowledge source) fusion
application.

Using this method we have the provision for representing incomplete or uncertain sensor
measurements (ic. D-S is a way of tepresenting exactly what is and is not known). Each
sensor contributes information at its own level of detail. The evidential reasoning structure
is general enough to utilise fully each sensor’s information regardless of its form.

The evidential reasoning approach is more general than the Bayesian. A weakness of the
Bayesian approach is the lack of convenient representation for ignorance or uncertainty.
For example, a question arises concerning the representation of an uncertain prior
distribution with the standard Bayesian approach. The evidential reasoning method handles
this situation quite simply by allowing the assignments of a probability mass value directly
to uncertainty. It also handles the problem of incomplete or uncertain sensor measurements.
Sensor error can be conveniently represented by a probability mass assignment directly to
uncertainty.

The implementation of Evidential Reasoning is illustrated with the following example. If
sensors contribute information in the following form:

"Sensor 1 indicates that the target is one of the three possible types: T1,T2, or T3."

“Sensor 2 indicates that the target is type T1." However the certainty of this is only 90%.
Because there is no evidence yet to support that the target is of type T4, this type is
ignored in all subsequent processing and only relevant target types are considered.

The process of data fusion consists of finding the intersection of two sensor statements. For
instance we know that the intersection of (T1 or T2 or T3) and (T1) is equal to (T1).
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However, only a probability of 0.9 is assigned to this product, owing to the 90%
confidence on the second sensor report. The remaining probability (0.1) is assigned to the
disjunction or union (T1 or T2 or T3). These statements are stored directly in the computer
in the form of assigned target sets and associated probabilities.

3.1.2 Implementation of Evidential Reasoning (Support and Plausibility)

The method of évidential reasoning assigns a probability mass m(T;) to any of the "n
propositions (ie. target types T1,T2 ... Ty), or to disjunctions of propositions. For example,
a disjunction is the proposition that the target is of type T1 or T2 (denoted T1 v T2) and
the mass assignments is denoted m(T1 v T2).

The representation of uncertainty is a mass assignment to the disjunction of all the original
propositions and is denoted

m@® =m(TlvT2v..vTy

Also mass can be assigned to the negation of a proposition. For example, the mass
assigned to the negation of T1 (the target is not type T1) is denoted

m(T)=m(T2 v T3 v..v Ty

The sum of the probability masses mentioned must equal to unity.

The likelihood of a proposition "A" is represented as a subinterval [S(A), P(A)] of the unit
interval [0,1] (which represents total ignorance). Referring to Fig. 11, S(A) represents the
support for proposition "A" and sets a minimum value for its likelihood. P(A), on the other
hand denotes the "plausibility” of proposition "A" and establishes a maximum likelihood.
Support may be interpreted as the total positive effect a body of evidence has on a
proposition, while plausibility represents the total extent to which a body of evidence fails
to refute a proposition. Thus P(A)=1-S(A), where the negation of "A” (A) is all
propositions which are not "A". The degree of uncertainty about the actual probability
value for a proposition corresponds to the width of its interval (refer to Fig. 11)
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Figure 11 The Uncertainty Interval [S(A),P(A)]

Example:-

A[0.25,0.85] => The likelihood of "A" is between 0.25 and 0.85; the evidence
simultaneously provides support for "A" and "A"
(ie. S(A)=0.25, S(A)=0.15). Theta is 0.6.

To illustrate further, again consider the target type example; the support S(T1) for the basic
proposition that the target is T1 is just the mass associated with T1(S(T1)=m(T1)). For a
more complex proposition such that the target is either type T1, T2, or T3 we have

S(T1 v T2 v T3)= m(TI+m(T2)+m(T3)+m(T1 v T2)+m(T1 v T3)+m(T2 v T3)+m(T1 v
T2 v T3)

The plausibility of a given proposition is the sum of all mass not assigned to its negation.
Thus
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P(Ti) = l'S(Ti)

Alternatively, P(T,) can be computed by summing all masses associated with T, and all
disjunctions, including ©, that contain T;. For example

P(T1) = m(T1) + m(T1 v T2) + ... + m(©).

3.1.3 D-S Rules of Combination of Mass Assignments

D-S rules of combination with the probability mass assignments (of mass vectors m1 and
m2 for the 2 sensors or knowledge sources to form the resulting mass vector) are as
follows.

(a) The product of mass assignments to two propositions that are consistent leads to an
assignment to another proposition contained within the two original propositions.
For example

m1(T).m2(T;) = m(T))
m1(T1 v T3).m2(T3 v T4) = m(T3)

(b) Multiplying the mass assignments to uncertainty by the mass assignments to any other
proposition leads to contribution to that proposition.

m1(®).m2(T3 v T4) = m(T3 v T4)
or m1(®).m2(T2) = m(T2)

(c) Multiplying uncertainty by uncertainty leads to a new assignment to uncertainty.
m1(0).m2(0) = m(O)
(d) Inconsistency occurs, for example, when one knowledge source assigns mass t0 T2
(m1(T2)) while a second assigns mass to T1 (m2(T1)). The product of these mass values is
assigned a measure of inconsistency, denoted "k", of the form:
m1(T2).m2(T1) = k

The following numerical example illustrates D-S rules of combination, and the manner in
which inconsistency is handled.
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Consider an example where there are four target aircraft types as defined:

T1 = friendly interceptor (fighter aircraft)
T2 = friendly bomber

T3 = hostile interceptor

T4 = hostile bomber

Assume that our first knowledge source indicates that the aircraft behaviour appears to be
that of the class of interceptor. However, this information is not certain so that the

following mass assignments are defined:

m1(©)=0.4
m1(T1 v T3)=0.6

The assignment of 0.4 to m1(©) represents the uncertainty that the aircraft is of the
interceptor class.

The second knowledge source indicates that the target is probably hostile, but again this is
not certain. Thus we assign to this knowledge source the following mass values:

m2(0)=0.3
m2(T3 v T4)=0.7

Table 3 Application of D-S rules of combination

ml(®) = 0.4 m(T3 v T4) = 0.28 m(®) = 0.12
ml (T1 v T3) = 0.6 m(T3) = 0.42 m(T1 v T3) = 0.18
m2(T3 v T4) = 0.7 m2(©) = 0.3

Table 3 illustrates how D-S rules were used to combine the two knowledge sources to
produce the resulting masses below:



32

m12(©)=0.12
m12(T1 v T3)=0.18
m12(T3)=0.42
m12(T3 v T4)=0.28

The above example illustrated D-S’s rule for the condition where there was no
inconsistency (or assignment to a null hypothesis) between the knowledge sources. The
manner in which inconsistency is handled is illustrated by introducing another hypothetical
knowledge source.

Assume that a third knowledge source gives the following target type declaration:

m3(0)=0.2

m3(T1)=0.1
m3(T2)=0.2
m3(T3)=0.3
m3(T4)=0.2

Table 4 A second application of D-S’s rule.

m3(0)=0.2 || m(T3 v T4)= | m(T3)=0.084 | m(T1 v T3)= | m(©)=0.024
0.056 0.036
m3(T1)=0.1 k=0.028 k=0.042 m(T1)=0.018 | m(T1)=.012
m3(T2)=0.2 k=0.056 k=0.084 k=0.036 m(T2)=.024
m3(T3)=0.3 || m(T3)=0.084 | m(T3)=0.126 | m(T3)=0.054 | m(T3)=.036
m3(T4)=0.2 || m(T4)=0.056 k=0.084 k=0.036 m(T4)=.024
ml2 mi2(T3) ml2 ml2(6)
(T3 v T4) =042 (T1v T3) =0.12
=0.28 =0.18

Table 4 shows how D-S’s rules is used to combine the previous masses "m12", obtained
from Table 3 , with the third knowledge source masses "m3".
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In order to compute the new masses, we first sum all assignments to k, which for this
example leads to the value k=0.366. Then, the new masses are computed by summing the
appropriate entries in the matrix and dividing by the normalisation factor (1-k=0.634). Thus
the new values are:

m(®) = 0.024/0.634 = 0.038
m(T1) = (0.018+0.012)/0.634 = 0.047
m(T2) = (0.024/0.634) = 0.038
m(T3) = (0.084+0.084+0.126+0.054+0.036)/0.634 = 0.606
m(T4) = (0.056+0.024)/0.634 = 0.126
m(T1vT3) = 0.036/0.634 = 0.057
m(T3vT4) = 0.056/0.634 = 0.088

3.2 Backpropagation Neural Network [16], [17], [19]

3.2.1 Background Introduction

An Artificial Neural Network is a distributed processing structure. Processing Elements
(PE’s) are its fundamental building blocks. They receive multiple input connections and
generate, a single output, which may fan out to many other PE’s. Processing Elements may
have local memory and a transfer function which can use this memory. Links between the
processing elements carry signals between them. Each connection may have a weight
associated with it, for altering the strength of signals passing through (refer to Fig. 18).
The artificial neural network variously known as the Gamba-perceptron, Multilayer
Perceptron (MLP) and very loosely as the Backpropagation Network (BPN), accepts as
input continuous-valued data, is able to learn complex distributions under supervision and
is able to indicate a classification at its output.

Backpropagation is a learning rule for multilayer feedforward networks, in which the
weights are adjusted by backward propagation of the error signal outputs to inputs. It uses
supervised learning in which the network is presented with a set of input pattern target
pairs. The network compares its output to the target and adapts itself according to the
learning rules. Art2 discussed earlier uses unsupervised learning, ie. it adapts itself
according to statistical association in the input pattern.
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A typical backpropagation network always has an input layer and an output layer, and at
least one hidden layer. There is no theoretical limit on the number of hidden layers but
typically there will be one or two. Each layer is fully connected to the succeeding layer.
The arrows in Fig. 18 (3 layer backpropagation neural network) indicate flow of
information during recall. During learning, information is also propagated back through the
network and used to update the connection weights. The output of each PE in the network
is the sum of the weights multiplied by its inputs and its transfer-function as shown in Fig.
14.

3.2.2 How the Backpropagation Works [19,20,21]

Recognition Task: A common task is to divide the input space into several distinct regions
(also called decision regions and domains, refer to Fig. 19). The job of a recognition
system or classifier is to give outputs of 1 or O depending on whether an input vector
X’=(X;,X, ... X,) lies inside a domain (as shown in Figures 19).

Learning the Training Set: A backpropagation network learns a decision region by being
exposed to many training examples. Each training example is known to be inside or
outside the desired region (refer to Fig. 20).

Forming Decision Regions: A backpropagation network can identify vectors in any
arbitrarily shaped decision region in the input space. It does this in two steps (refer to Fig.
12). Each processing element in the hidden layer (the first processing layer) divides the
input space into two, along a plane. And each processing element in the output stage
(second processing layer) combines one or more planes to form a convex open or closed
region. A large number of training examples are usually required for a close approximation
to the true boundary.

The types of decision regions (as shown in the second column of Fig. 13) that can be
formed using a MLP with one, two and three layers that use hard limiting nonlinearities
are illustrated in Fig. 13. The rightmost column gives examples of the most general
decision region that can be formed. A single layer perceptron forms half-plane decision
regions. A two layer perceptron can form any possible unbounded convex regions in the
space spanned by the inputs. A three layer perceptron can form arbitrarily complex
decision regions. The discussion of Fig. 13 is centred primarily on the multilayer
perceptron with one output when hardlimiting non linearities are used. Similar behaviour is
exhibited by the multilayer perceptron with multiple output nodes when sigmoid non
linearities are used. The behaviour of these nets is more complex because decision regions
are typically boundcd by smooth curves instead of straight line segments.



2. Each PE in the output layer (second
processing layer) combines one or
more planes to form a coavex
open or closed region.

1. Each PE in the Hiddea layer ( the first
processing layer) divides the input space
into two, along a plane,

Input.

Figure 12 Forming decision regions.

Fumber of Actlve Types of Desclslion | Most General
layers Boundaries Region Shapes

Half plane bounded by
hyperplane

Convel open or closed
regqions

Regqions of erbitary .
complexity limited by

the number of nodes

Figure 13 Types of decision regions that can be formed by single and multilayer
perceptrons with one or two layers of hidden units and two inputs. Nodes in all nets
use hard limiting nonlinearities.
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The Role of Hidden Processing Elements:

A processing element performs the function defined by:

Z 3
j f,(g Wyxy)

Where, fs is the PE activation function (refer to fig. 17,
ie. can be sigmoidal), w; is the weight on the connection
joining the i™ neuron to the j™ neuron. To simplify the
xy | algorithm, the threshold offset is defined as wy,(ie. =

X3z
Figure 14 Hidden PE weX, Where x=1, a fixed value input).

The equation z=wx,+WyX,+ ... +W,X,+W, , represents a plane in x,x, ... x, (input space).
The slope of the plane is determined by w;,w, ... w,, and the height at the origin ' =0) is
w,. Assuming that the gradient is non-zero, there will be a region of space where z>0 and
a region where z<0. The locus of points with z=0 is the decision boundary.

In two dimensions, the equation reduces t0 zZ=wx;+W;X,+W,

k =0 and the locus of points with z=0 is a line (ie. refer to Fig. 15).
"Z" can be regarded as the height (or distance out of the page)

z0 o of the plane at each point (x,x,). The direction of the positive

gradient is shown by the arrow (as shown in Fig. 15).

7 3

Figure 15
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The Role of the Output Processing Elements:

A Each output processing element receives its input from the
hidden processing elements, which indicate whether the input
vector lies on the high or the low side of each plane. By making
a weighted sum of this information, an output processing
element can combine the planes to form a region of input
vectors (as shown in Fig. 16).

X1

Figure 16 Combined
planes form region.

The Role of the Sigmoid Function:

The three types of activation functions possible for use in the backpropagation processing
elements are hardlimiting, piecewise linear and sigmoidal (Fig. 17). Hardlimiting is
discontinuous an non-biological. Piecewise linear is continuous but not differentiable. The
sigmoid is continuous, monotonic and differentiable. The sigmoid function and its
derivative are shown below. Note that f’(x) can be evaluated from f(x) alone.

f,(x)=al—_x) —————— sigmoid
+e
@ =——-—(1 fe- =R derivative

F®)=Ax).(1-fx)

The sigmoid bounds the output of the hidden processing elements to be between O and
1.0. On a sigmoidal "plane”, the locus of points with z=0 is still a line. However, when
several sigmoids are added together, the locus of points with z=0 becomes a curved
approximation to the planar boundaries. The rate of curvature is determined by the slope of
the planes. A steep sigmoid begins to approximate a hard limiter, and the result is straight
lines with a sharp corner between them.,
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1A HARD LIMITING
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PIECEWISE LINEAR

N
7

SIGMOIDAL

\
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/ S

Figure 17 The 3 possible backpropagation P.E. activation functions.
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Output layer

/ N Hidden Layer

A | nput Layer

Fig. 18 A standard backpropagation network comprises of 3 layers of processing
elements, each PE is connected to all PE’s in the following layer and from all PE’s in
the preceding layer.
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Figure 19 The backpropagation divides the input space (ie. height vs weight ) into

several distinct input classes (ie. children & adults).

X2 g
A g ’
0 g Training Examples
0 4 (1=inside region)
(O=outside region)
o g o
a 0
0
0 0
> X1

Figure 20 Each training example the backpropagation is given is known

to be inside or outside the desired region.
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Training Error: If a training input pattern "x" is presented with its corresponding training
output "f" . The network can process "x" to give an output "y" (which is likely to differ
from "1"). Given the actual output y, of the k™ processing element in the output layer, the
error at that processing element will be

€= (tk -y k)

and the total squared error in the output layer, for this training pattern, is defined as

Er=Y e}
3

=2 (tk_yk)z
k

The mean square error (MSE) is the average "Er" (individual error) for all training pairs.
The MSE is the function to be minimised, however, this requires evaluation of Er
(individual error) for each pattern on the training set. It is simpler to minimise "Er" for
each training pattern, one at a time. Large numbers of "Er", make a statistical
approximation to the mean square error (MSE). Gradient descent is a method of finding the
location of a minimum in a function of many dimensions. It locates a minimum by taking
iteration steps down this gradient until the iterations converge to a single point.

3.23 Backpropagation Network Error Equations (Learning Rule) [13]

As mentioned in previous paragraphs, during learning, information is propagated back
through the network and used to update the connection weights.

I will use the upper superscript in square brackets to indicate which layer of the network is
being considered. The rest of the notations are as follows (Fig. 21 displays a
backpropagation PE using this notation)
x¥ - Is the current output state of the j* neuron in layer "s".
w,® - Is the weight on the connection joining the i" neuron in layer (s-1) to the j*
neuron in layer "s".

jIS] _

Is the weighted summation of inputs to the j™ neuron in layer "s".

A backpropagation processing element therefore transfers its input as follows:
Where "f" is the sigmoid function (also as shown in Fig. 21). The sigmoid is defined as
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f:

x = f(R p)
J J

sigmoid used (as
shown in equation2),
but can also be
hyperbolic tangeant,

or sine.

Figure 21 Typical back-propagation processing element (shows notation used for

equations (1) - (10), Taken from [13]).
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3.23.1 The Local Error

Suppose the nctwork has some global error function "E" associated with it which is a
differentiable function of all the connection weights in the network. The parameter that is
passed back through the layer is

C 8E ——-(3)

] 6 Rj[S]

The following relationship between the local error at a particular processing element at
level "s" and all the local errors at the level "s+1", is obtained using the chain rule twice in
succession.

ej[s] =f/[ij]. ) (ek[s+l].wk[;+l]) o _(4)
k=1

In Equation 4, there is a layer above layer "s"; therefore, equation 4 can only be used for
non-output layers.

If "f" is the sigmoid function as defined in equation 2, then its derivative can be expressed
as a simple function of itself as follows

f2)=A2).(1.0-fR))-—----- ()

Therefore, from equation 1, equation 4 can be rewritten as

it +1 +1]
e=x/.(1.0-x. El(e,fs Lwih----(6)

provided the transfer function is a sigmoid. The summation term in equation 6, which is
used to back-propagate errors is analogous to the summation term in equation 1 which is
used to forward propagate the input through the network. Thus the main mechanism in a
backpropagation network is to forward propagate the input through the layers to the output
layer, determine the error at the output layer, and then propagate the errors back through
the network from the output layer to the input layer using equation 6 or more generally
equation 4. The multiplication of the error by the derivative of the transfer function scales
the error.
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3.2.3.2 Minimising the Global Error
Based on knowledge of the local error at each processing element, the aim of the learning
process is to minimise the global error "E", of the system by modifying the weights.

Given the current set of weights w,-j"’ we use the gradient descent rule to increment or
decrement them in order to decrease the global error

AwPl=-a (2E )————(7)
5w Ji

where o is the learning coefficient (ie. each weight is
rror
changed according to the size and direction of the negative
gradient on the error surface, refer to Fig. 22).
—on
Figure 22

The partial derivative in equation 7 can be calculated directly from the local error values
discussed in the previous sub-section, by the chain rule and equation 1

8E _ 8E SR

[s] ij[sl awd T

_ 01 _Is-1]

Combining equations 7 and 8 together gives

Aw[’]—a ej[s].x,[s  Fp— ©)
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3.23.3 Global Error Function

The global error function is needed to define the local errors at the output layer so that
they can be propagated back through the network. Suppose "i" vector is presented at the
input edge layer of the network, and suppose the desired output "d" is specified by a
teacher. Let "o" denote the actual output produced by the network with its current set of
weights. Then a measure of the error in achieving that desired output is given by

E=05Y (d,-0))----- (10)
k=0

where the subscript "k" indexes the components of "d" and "o". Here, the raw local error is
given by d,-o0,. From equation 3, the scaled "local error” at each processing element of the
output layer is given by

5E %0,

80, 3I,

=(d;-0).f Uy

=(d,-0px1.(1.0-x{

Equation 10 "E" defines the global error of the network for a particular (i,d). The overall
global error function is the sum of all the pattern specific error functions. Then each time a
particular (i,d) is shown, the backpropagation algorithm modifies the weights to reduce that
particular component of the overall error function.
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3.3 Fuzzy Reasoning [22,23]

Fuzzy set theory was developed by Zadeh [24], [25]. The basic concept is that people
frequently deal with concepts that are imprecise because of indistinct boundaries of
definitions (ie. terms such as tall, short, attractive, ugly are imprecise). These imprecision
can be addressed mathematically via an extension of Boolean set theory.

Fuzzy sets are defined as follows: A set "A" has members X,, X, ... Xy. Each element X,
of set "A" has an associated value pA(X,), which indicates the degree to which X, belongs
to set "A". the function is called the "membership function, p(X)", and has a value between
"0" and "1" with pA(X)=0 indicating that element "X" is not a member of set "A", and
HA(X)=1 indicating that element "X" is completely a member of set "A". The values of
p(X), within this range, must be provided by the person defining the fuzzy sets. Hence, in
fuzzy set theory, sets are defined by ordered pairs, [X, p(X)] in which "X" is an identified
set element, and p(X) is the associated membership value element "X". By contrast,
Boolean sets are defined by identifying the elements that completely belong to a set (hence
pu(X) is either 1 or 0).

Truth values (in fuzzy logic) or membership values (in fuzzy sets) are indicated by a value
in the range [0.0, 1.0], with 0.0 representing absolute Falseness and 1.0 representing
absolute Truth. For example, let us make the statement, "Jane is old". If Jane’s age was 75
we might assign to the statement the truth value of 0.8. The statement could be translated
as "Jane is a member of the set of old people", or using fuzzy set symbolically
pOLD(Jane)=0.8. Where "p" is the membership function, operating in this case on a fuzzy
set of old people, which returns a value between 0.0 and 1.0. The probabilistic approach
yields the statement, "There is an 80% chance Jane is old", while the fuzzy terminology
corresponds to "Jane’s degree of membership within the set of old people is 0.8". The
differences are significant: the first view supposes that Jane is not old; it is just that we
have an 80% chance of knowing which set she is in. By contrast, fuzzy terminology
supposes that Jane is "more or less” old, or corresponding to the value of 0.8. The
statement could be translated as "Jane is a new member of the set of old people”, or using
fuzzy symbolically pOLD(Jane)=0.8. Where "p" is the membership function, operating in
this case on a fuzzy set of old people, which returns a value between 0.0 and 1.0. The
probabilistic approach yields the statement, " There is an 80% chance Jane is old " , while
the fuzzy terminology correspond to "Jane’s degree of membership within the set of old
people is 0.8." The differences are significant: the first view supposes that Jane is not old;
it is just that we have an 80% chance of knowing which she is in. By contrast, fuzzy
terminology supposes that Jane is "more or less " old, or corresponding to the value of 0.8.
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Fuzzy logic is ‘also defined by the operations of Empty, Equal, Complement (Not),
Containment, Union (Or), and Intersection (And), and the following formal definitions:-

Definition 1: Let "X" be some set of objects, with elements noted as "x". Thus X =
{x}.

Definition 2: A fuzzy set "A" in "X" is characterised by a membership
function pA(x) which maps each point in "x" onto a real interval
[0.0, 1.0]. As pA(x) approaches 1.0, the "grade of membership in A
increases''.

Definition 3: "A" is Empty if for all "x" , pA(x) = 0.0.

Definition 4: A=B if for all "x"": pA(x) = uB(x) (or, yA = uB ).

Definition 5: pA’ = 1-pA.

Definition 6: "A" is Contained in "B" if pA < pB.

Definition 7: C = A Union B, where: pC(x) = Max( pA(x), uB(x)).

Definition 8: C = A Intersection B, where: pC(x) = Min( pA(x), pB(x)).

Note the last two operations, Union (Or) and Intersection (And), represent the clearest

point of departure from probabilistic theory for sets to fuzzy sets. Operationally, the

differences are as follows:

For example, let us assume x= Bob, "S" is the fuzzy sct of smart people and T is the fuzzy

set of tall people. Then, if pS(x) = 0.9 and pT(x) = 0.8, the probabilistic approach result

would be:

pS(x) . puT(x) = 0.72
whereas the fuzzy result of would be:
Min(uS(x), pT(x)) = 0.80

The real value of the fuzzy sel theory (developed by Zadch [24], [25]) to data fusion is the
extension to fuzzy logic (as described above in definitions 1-8); because of this we classify
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this method in the " cognitive " group. Fuzzy logic deals with approximate modes of
reasoning. In classical two-valued logic, a proposition, p, is either true or false. Classical
logic uses truth tables and manipulative rules to follow a chain of reasoning to determine
the truth (or falseness) of a proposition. By contrast, in fuzzy logic, a proposition has a
membership value range from O (completely false) to 1.0 (completely true), representing
membership of proposition in the truth value set.
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Chapter 4

Experimental Procedure and Results for
Kinematic Data-Fusion

4.1 Introduction

Sensor data fusion involves the entire process of correlation and fusion. In chapter 4 the
thesis addresses the application of artificial neural networks (ANN), to the correlation
problem of sensor level tracking. A comparison has been made between two track-to-track
correlation techniques for multisensor fusion using simulated and real track data obtained
from Adelaide Airport’s Surveillance Radar and the FPS-16 Tracking Radar at DSTO.

Unlike the Central Level Tracking approach which forms tracks from raw observations the
Sensor level tracking approach forms sensor tracks and then combines them. The
advantages Sensor Level Tracking has over Central Level Tracking are:- decreased
transfer load, the computational advantages of parallel processing, and decreased
vulnerability since each tracking system has the ability to track independently [26]. The
problem of Track-to-Track correlation arises when multiple sensors report tracks from a
common surveillance volume. An important question is how to decide whether two tracks
from two different sensors (using Sensor Level Tracking) represent the same target.

4.2 Simulated Track Data Results

The two track-to-track correlation techniques (Classical Inference and ART2 neural
network) were used and compared to each other using the simulated scenario described
below.

Consider two independent radars (since tracks are independent, the covariance matrix is the
sum of covariance matrices P1 and P2 from Radars 1 and 2 respectively), Radarl and
Radar? using a sensor level tracking approach to form sensor tracks. Both radars output
data in the format of Range (metres), Azimuth (degrees), and Elevation (degrees). They
have different accuracies with known variances in Range, Azimuth, and Elevation and
corresponding covariance matrices. Both radars are tracking 3 targets each. Two of these
targets are in the common surveillance volume of both radars (refer to Figures 23 & 24).
Radar1 and Radar2 report 3 tracks each over a time period of ten seconds. Assume tracks
are aligned in space over the time period.
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Radar A1 Radar ¢

Figure 23 Radarl and Radar2 are tracking three targets each. Two of these targets are in
the common surveillance volume of both radars.

Assume the following variances (as shown in the simulation program in Appendix C) in
Range(metres), Azimuth(degrees), Elevation(degrees) for the two independent Radars
(whose accuracy differs in Range, Azimuth and Elevation.) ie.

Radar 1 - Standard deviation in Range(m) = 1
" " " Azimuth(deg)= 2
" " " Elevation(deg)= 3
Radar 2 - Standard deviation in Range(m) = 3
" " " Azimuth(deg)= 4
= " " Elevation(deg)= 1

Assuming independent Radars the corresponding covariance matrices for Radar 1 and
Radar 2 are:-

100 9 00
PI={0 4 0|, P2=0 16 O
009 0 01

We notice that the accuracy of Radar 1 is better than that of Radar 2. Since both radars
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R1 and R2 tracked three targets each, we have nine possible track-to-track combinations.
ie.

T1R1T1R2 - (Trackl from radarl and trackl from radar2)
T1R1T2R2 - (Trackl from radarl and track2 from radar2)
T1R1T3R2 - (Trackl from radarl and track3 from radar2)
T2R1TIR2 - (Track2 from radar1 and trackl from radar2)
T2R1T2R2 - (Track2 from radar1 and track2 from radar2)
T2R1T3R2 - (Track2 from radarl and track3 from radar2)
T3RITIR2 - (Track3 from radarl and trackl from radar2)
T3R1T2R2 - (Track3 from radarl and track2 from radar2)
T3RI1T3R2 - (Track3 from radar1 and track3 from radar2)

As shown in Fig. 23 two targets are in the common surveillance of both radars, ie. Track-
to-track combination TIR1TIR2 and T2R1T2R2.

Using Matlab I simulated the tracks (as shown in Appendix C, refer to Fig. 24 for the
plots) with the added noise with standard deviations of 1,23 and 3,4,1 in range(m),
azimuth(deg.) and elevation(deg.) for radarl and radar 2 respectively .The Matlab function
"rand", which is a gaussian random number generator was used; ie. I assumed that the
noise errors from radars are gaussian.
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Fig. 24 Displays Azimuth (degrees) and Range (metres) versus Time (seconds) for
example targets. Radar1l and Radar2 report three tracks each (T1R1,T2R1,T2R1 and
T1R2,T2R2,T3R2). The six tracks above (Range and Azimuth vs Time) are displayed
in a common space/time co-ordinate graph (elevation not displayed). The dotted plots
represent target tracks from Radarl and the solid plots from Radar2. The asterisk
represents the fused plot.
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Fig. 25 Displays the Classical Inference results with the Mahalanobis distance (refer
to section 2.1.1.1 & 2.1.1.2) between pairs of tracks from Radarl and Radar2,
together with the Level of Significance (threshold value).
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4.2.1 Using Classical Inference on the Simulated Track Data

One wants to test the hypothesis that the 2 estimates YI(K) and Y2(K) correspond to the
same target for the nine track pair combinations from radarl and 2, (refer to the section
2.1.1 on Classical Inference using hypothesis testing )

ie.

YI(K) = 3X1 Vector Rangel, Azimuthl and Elevationl
Y2(K) = 3XI Vector Range2, Azimuth2 and Elevation?2.

The Mahalanobis distance was calculated and summed over the 10 second time period for
each of the 9 track pair combinations from both radars. Two of the track pairs were found
to be below the threshold value of 50.9 (determined as explained latter),(Refer to Fig. 25)
which was obtained using the Chi-Squared distribution for 3x10 degrees of freedom ,thus
indicating the same targets from both radars.

An example calculation of the Mahalanobis distance for simulated tracks T1R1 and T1R2
( shown in Table 5.) is given below:-

The Mahalanobis distance is defined as follows (Refer to review chapt. 2.1.1):-
T -1
e=E,(k).Z,.E,(K) ,
where , E12=Y1(k)—Y2(k)

RANGE
vectors YI(k), Y2(k) are | AZIMUTH | for radarl2.
ELEVATION

(100 [0 0 0"
So=(P1+P2)"= |0 4 0[+0 16 0

oo9fjo o1
10 0 ol
-0 20 0

0 0 10
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Table 5 Shows the simulated data for tracks T1R1 (trackl from radarl) and T1R2
(track?2 from radar2) over the 10 second time period. Used in example calculations.

TIME TRACK1 FROM RADAR1 TRACK1 FROM RADAR2
(Sec.) (T1R1) (T1R2)
RANGE | AZIM. ELEV. | RANGE | AZIM. | ELEV.
(M) (Deg.) (Deg.) M) (Deg.) | (Deg.)
1 1.21 1.57 1.489 3.3 1.71 2.97
2 27.67 30.07 12.66 26.75 29.8 12.43
3 34.9 38.08 24.6 37.16 37.7 24.89
4 50.2 55.2 36.19 52.19 55.7 36.6
5 66.86 80.82 41.91 70.12 80.01 42.02
6 68.47 108.15 52.86 71.4 107.88 53.76
7 71.5 129.75 68.89 80.5 128.5 68.87
8 81.6 146 79.57 85.93 146.4 79.9
9 85.8 169.4 80.13 89.77 168.08 81.6
10 95.75 177.7 88.45 99.25 176.7 88.7
HO: EI12(k)=0------ same targets
HI: E12(k)#»0------ different targets
12-33 | 12-33
where for time instant 1, el=| 1.57-1.71 | 23| 1.57-1.71
1.489-2.97 1.489-2.97

Since there are 10 time instances, e=el+e2+...+el0=11.3766

We now establish the level, and the acceptance and rejection for the decision rule to be
P;=0.01 (Probability of false correlation). (ie. Testing Type 1 error, testing to accept or
reject HO).
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o = Threshold ie. probability of rejecting HO given HO is true,
e is x* (chi squared) distributed with N.X degrees of freedom,
where, N= The number of time instances =10,

X= The number of dimensions of vector "E12" =3.

So if Py = 0.01 ,this implies HO is true and there is a 1% chance of rejecting the null
hypotheses HO. Probability (e>0/HO)=Pgc.

Using the x* statistical table for Py = 0.01 for 30 degrees of freedom, the threshold is

found to be 50.9 (Refer to Appendix G, for Chi squared distribution tables).

If e<o. HO is true (tracks same)
or e>0. H1:s true (tracks not same)

For our example 11.3766 < 50.9 hence HO is true, and tracks T1R1 and T1R2 are the
same.

Table 6 Shows the Mahalanobis distance for each of the 9 track pair
combinations, summed over the 10 second time period.

TRACK PAIR MAHALANOBIS DIST.
COMBINATION (OVER 10 TIME
INST)
TIR1T1IR2 11.3766
TI1IR1T2R2 1.4E3
T1R1T3R2 1.01E4
T2R1T1R2 1.52E3
T2R1T2R2 8.5057
T2R1T3R2 8.19E3
T3R1T1R2 3.129E3
T3R1T2R2 3.446E3
T3R1T3R2 5.95E3
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Simulated track data results showing the Classical Inference results with the Mahalanobis
distance between the nine pairs of tracks from radar 1 and radar 2, are shown in Table 6
above.

TI1RITIR2 (trackl from radarl and trackl from radar2) and T2R1T2R2 (track 2 from
radarl and track2 from radar2 ) are below the threshold indicating HO is true, (ie. targets
the same from radars 1 and 2). Hence the tracks can be fused together using the equations
(assuming independent radars):-

Y.=P2.(P1+P2)"'Y1+PI1(P1+P2)™.Y2

4.2.2 Using ART2 For Simulated Track Data

Consider an ART2 neural net (used because of its pattern recognition and real time
operating capabilities , as discussed in section 2.1.2) which is comprised of 30 processing
elements in the F1 (Input layer) and 4 processing elements in the F2 (Output layer). Range,
Azimuth, and Elevation data over the 10 time instances for each of the six tracks was input
into the F1 layer (Refer to Fig. 26). The vigilance was initially adjusted with training
tracks which were known to be the same from both radars because we need to set the
degree of recognition needed in Art2 to cluster the test tracks (unknown) which are the
same from both radars.

ART?2 clustered the input tracks from both radars into 4 different category outputs, ie.
category neurons 1 and 2 for the two track target pairs in the common surveillance volume
of both radars, and the 2 other tracks into category ncurons 3 and 4 respectively. Four
processing elements were used in the output layer (F2) because I knew there were four
different tracks from both radars. Similarly, by increasing the number of PE’s in the (F2)
output stage (ie. to 5,6...) and using the same vigilance value (0.995), ART2 clustered the 6
tracks into 4 different categories as before.

Hence in a scenario where you don’t know the number of tracks to be clustered it is wiser
to have a large number of PE in the output stage in-case the network is forced to cluster a
track to an incorrect category neuron.

The F1 and F2 weights were initialised randomly between plus and minus the maximum
initial weight parameter of 0.01 (input to a weight file using the HNC Neurosoftware
ART?2 package). The network parameters used in the F1 field STM (short term memory)
calculations, (ie. parameters A, B, C, D, E, and maximum initial weight, as shown in Table
2), are assigned the values recommended by HNC( Hecht-Nielsen Neurocomputing)
Neurosoftware ART2 manual [14] , as shown in Table 2 of the review chapter 2.1.2.6.
Normal learning was enabled, this enables the network weights z; (top-down) and z;
(bottom-up) to be updated. Normal learning incrementally moves the weights towards their
asymptotic values.
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The training tracks were created using the same random noise variances (using the Matlab
random noise generator function "rand") in Range, Azimuth and Elevation from radars 1
and 2, as were the test tracks. Training tracks from each radar (R1 and R2) which were
known to be from the same or different targets were presented to the network and the
vigilance adjusted to a value of 0.995.

(The vigilance value was adjusted to the value of 0.995 because it was the degree of
recognition needed in ART2 to cluster together the training tracks known to be the same
from both radars.)

I presented the network with the same six tracks (ie. 3 from radarl and 3 from radar2) as
was used for hypothesis testing. The network correctly clustered TIR1 , TIR2 to category
neuron 1, and T2R1, T2R2 to category neuron 2. T3R1 was assigned to category neuron 3
and T3R2 to category neuron 4. (Refer to sections 4.4 and 6.1 for summary of results and
conclusions).

Output

Target1 Target?2 Target3 Targetq
1 | | i
O O O OF

Top-Down (Synapses) Feature
Pathway Bottom-Up Pathway Detector

OO ©-6 &-O"
T 1 Tt 1 1

Range AzTmuth Elevation
eurons

Categorles

| nput

Fig. 26 The ART2 Neural Network consists of 30 Processing Elements used in the
input stage and 4 Processing Elements in the output stage. The input consists of
Range (metres), Azimuth (degrees), and Elevation (degrees) over 10 time instances.
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4.3 Real Track Data Results

Consider two radars with different accuracies producing tracks which are independent
(since tracks are independent, the covariance matrix is the sum of covariance matrices P1
and P2 from both radars). Adelaide Airport’s Surveillance radar and Defence Science and
Technology’s (DSTOS) FPS-16 Tracking Radar (located at DSTO), using a sensor level
tracking approach to form sensor tracks.

4.3.1 DSTO Radar

The DSTO FPS-16 tracking radar is a C-Band amplitude comparison monopulse tracking
radar . Typical accuracy is 10 metres in X, +10 metres in Y, and +3 metres in Z (where
X, Y, Z are the cartesian co-ordinates, which will be explained latter). It has a maximum
range of 40 nautical miles.

In summary the program shown in Appendix D which processes DSTO’S FPS-16 Radar
target data, reads 3 binary data files indicating target positions in Range, Azimuth and
Elevation. I convert the data to a real format, and then convert from polar to cartesian co-
ordinates (so that data can be aligned in space from both radars) then finally adjust the
cartesian x,y coordinates (offset) so that the targets position is with respect to Adelaide
Airport’s origin reference point (refer to details in Appendix 0).

4.3.2 Adelaide Airports Surveillance Radar

Adelaide Airport has two radars, primary and secondary. The primary Radar is a L Band
(1320 MHz), its peak power is 2M watts and it has a maximum range of 160 nautical
miles. It’s antenna has a 1.3 degree azimuth beamwidth and has a 5 revolution per minute
rotation rate. The secondary radar is co-mounted on the primary, it receives transponder
altitude data from airborne targets. The primary radar’s data format is in slant range(nm)
and azimuth (degrees) with respect to true north.

The accuracy in X, Y, Z for targets at range less than 90nm is + 407 metres in X; + 648
metres in Y, and 20 metres in Z. The output format of the raw target data is: - Track no.
(indicating a target track number ), Slant Range (nm), Azimuth (Degrees), Altitude (feet)
and time (local). The software shown in Appendix D converts the target track data to
cartesian co-ordinates (with respect to its own radar head).
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4,33 Trial Results

Radarl (DSTO’S FPS-16 Radar) and Radar2 (Adelaide Airport’s Surveillance Radar)
tracked several targets for several minutes between the time period of 13:51:08 - 13:54:46
(APPENDIX K displays the cartesian plots over the entire tracking period 13:51:28-
13:54:46). The DSTO Radar (R1) being a tracking radar can track one target (T1R1) at
any one time instant and Adelaide Airport’s Surveillance Radar (R2) tracked five targets
(T1R2, T2R2, T3R2,T4R2,T5R2) for the same time period indicated (refer to Appendix E
processed kinematic data).

The two track-to-track correlation techniques (Classical Inference and ART2) were used
and results compared. Consider both radars as being independent using a sensor level
tracking approach to form sensor tracks. After processing (ie. alignment of data in space
and time) both radars output data in the format of X(metres), Y(metres) and Z(metres)
(Cartesian co-ordinate system relative to Adelaide Airport’s position). They have different
accuracies with known variances in X, Y, and Z. ie. Thus their corresponding covariance
matrices are:-

10 0 O

DSTO RADAR (RI) PI={0 10 0

0 0 3
407 0 O
ADELAIDE AIRPORT RADAR (R2) P2={ 0 648 O
0 0 20

The FPS-16 Radar (R1) is tracking one target and Adelaide Airport’s Radar (R2) is
tracking five targets. One of these targets is in the common surveillance volume of both
radars (refer to Fig. 27)

Radarl reports One target track and radar2 reports 5 target tracks over the time period
13:51:28 - 13:51:37. (APPENDIX K shows the cartesian X,Y & Z plots for the 10 second
time period selected).

4.3.4 Using Classical Inference Results

As in the section 4.2.1 using simulated track data I want to test the hypothesis that the two
estimates Y1(K) and Y2(K) are the same targets for the five track pair combinations from
the DSTO (FPS-16) and Adelaide Airport radars. ie.
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T1R1.

DSTO RADAR (R1) ADELA|DE ‘A |RPORT
RADAR CR2)

Figure 27 Adelaide Airport is tracking targets T1R2,T2R2,T3R2,T4R2,T5R2, and
DSTOQ’s radar is tracking target TIR1, which is in the common surveillance volume
of both radars.

Y1(k) and Y2(k) = 3X1 Vector in x,y,z cartesian co-ordinates,
at time "k" over the 10 second time period (from 13:51:28 - 13:51:37).

The Mahalanobis distance was calculated and summed over the 10 second time period for
each of the 5 track pair combinations from both radars. One of the track pairs was found to
be below the threshold value of 50.9 (Refer to log-linear plot Fig. 28) which was obtained
using the Chi squared distribution for 30 (3x10) degrees of freedom, thus indicating the
same target from both radars (Matlab program used to calculate Mahalanobis distance is
similar to the one shown in Appendix C, except for the covariances P1 & P2 values ,
which are as shown above).
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Fig. 28 Displays the Classical Inference results with the Mahalanobis distance between
pairs of tracks from Radarl and Radar2, together with the Level of Significance

(threshold value).

Table 7 Shows the Mahalanobis distance for track pairs from

Radarl and Radar2.

TRACK PAIRS MAHALANOBIS DISTANCE
T1R1T1R2 1.7847E1
T1R1T2R2 1.8424EA
T1R1T3R2 9.8913E4
TIR1T4R2 5.1815E4
TIR1TSR2 2.3502E4




62

43,5 Using ART2 Results

Consider an ART2 neural network which comprised of 30 processing elements in the Fl
(Input Layer) and 5 processing elements in the F2 (Output layer). X, Y, and Z cartesian
data, over the 10 time instances, for each of the six tracks was input into the F1 layer
(refer to Fig. 29). The vigilance was initially adjusted with training tracks which were
known to be the same from both radars, (V=0.9998), to sct the degree of recognition
needed in Art2 to cluster the unknown test tracks from both radars which are the same.

ART2 clustered the output into 5 different category outputs ie. category neuron 1 for the
track target pairs TIR1T2R2 (T1R1 is trackl from radar1l and T1R2 is trackl from radar2),
and other tracks T2R2, T3R2, T5R2, T4R2 into category neurons 2, 3, 4 and 5
respectively.

Output

(T1R1,T1R2) CT2R2) (T3R2) (T5R2) (T4R2)

Target” Target?2 Targetd Target4 Target5 Categor ies

Feature
Bottom-Up Pathway Detector

F1

[ nput

Figure 29 ART?2 consists of 30 processing elements in the input stage & 5 in the
output stage. The input consists of cartesian co-ordinates , X, Y & Z (metres) with
respect to Adelaide Airport over the 10 time instances.

The F1 and F2 weights were initialised randomly between + the maximum initial weight
parameter of 0.01. The network parameters used in the F1 field short term memory (A, B,
C, D, F) are assigned the values shown in Table 2 from the review paragraph 2.1.2.6. The
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input track data used is the same as that used for Classical Inference. Input track data is
shown in Appendix E, (Note input data was offset to make the track data values from both
radars positive.)

4.4 Summary of Results

The disadvantages of using the Classical Inference technique are derived from the need to
know the accuracy of the sensors or standard deviation of tracks to obtain the covariance
matrices P1(k) and P2(k). The Level of Significance or threshold has to be calculated
which represents the probability of rejecting the null hypothesis "HO" (Targets Same),
given that "HO" is true.

Time consuming computations (which can be crucial to a real time central computer in a
military environment which is correlating and fusing hundreds of targets at any one time)
are required in the hypothesis testing stage where the test statistic, which is the
Mahalanobis distance (a measure of similarity between two vectors), summed at each point
along the track, is compared with the Level of Significance.

The disadvantage of using Art2 is the requirement to adjust the vigilance parameter (
which determines the degree of recognition required) with training tracks which are known
to be the same from both radars.

The advantages of using the ART2 neural network are that there is no need to know the
accuracy of the sensors. The network indirectly obtains this through the adjustment of the
vigilance value when training the network with track data pairs which are the same targets
from both sensors. No instructions are required to tell the network which category the track
input belongs to it discovers it, on its own, in real-time. Where as in the Classical
Inference case, the time consuming operation of first finding all possible track-to-track
combinations from both sensors has to be made before any calculation (to determine if
they are the same) are started. ART2 requires no preprocessing (as long as the data from
both sensors are using the same unit of measure ic. metres) of the track input data from
either sensor. The number of pattern classes or categories (ie. track pairs) need not be
known in advance. ART2 can create new pattern categories that were not in the initial
training set.
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Chapter 5

Experimental Procedure and Results for
Attribute Data Fusion

5.1 Introduction

Real-time target recognition can be achicved by integrating data from dissimilar sensor
systems and priori information using artificial neural network technology.

Individual sensors, although effective, are limited in their capacity to identify targets. By
selectively integrating knowledge sources, (ic. sensor outputs which provide us with a
target’s attributes) together with any priori information, sufficient information can be
obtained to identify an airborne target with greater certainty.

In chapter 5 the thesis addresses the application of the backpropagation neural network
technology for automatic target recognition fusing target features derived from a
Continuous Wave (CW) Coherent (X band) Radar, which provides us with high resolution
doppler signature measurements, together with a Surveillance Radar, which provides
positional information of airborne targets, and priori information of flight times of targets
flying regular flight paths, obtained from Adelaide Airport Flight time tables. Dempster-
Shafer (Evidential Reasoning), and Fuzzy Reasoning (using the minimum method) data
fusion techniques are compared with the neural network output results, when similar inputs
are present in all three cases.

5.1.1 CW Radar Knowledge Source

From the CW Radar I obtain a high resolution doppler signature measurement. Signal
processing techniques [27] such as Fourier analysis can be used to characterise the Doppler
modulation of radar echoes from the airborne target returns (Refer to Fig. 30 and Fig. 32).
The processed signal characteristics will provide an insight into distinguishing features
between airborne targets with jet engines and propellers.

Doppler modulation is not only caused by flight motion (ie. difference in doppler
frequency of each point scatterer around the aircraft), but also by rotating machinery
which is dependent on engine RPM, the motion of the propeller and compressor or turbine
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blades. The coherent radar, produces a continuous doppler spectrum due to the rate of
phase change of the vector sum of the echoes from scattering points together with a
distinct doppler line which is associated with the average echo due to the radial velocity of
the target.

(Refer to Appendix F section 1.0 for details on the operation of CW Radars).

5.1.1.1 Jet Engine & Propeller Driven Aircraft Modulation

Jet aircraft modulation [28] is produced by the compressor or turbine blades of the engine.
Since compressors and turbines contain relatively large number of blades rotating at high
angular velocities, the modulation frequencies will be much higher than those of propeller
driven aircraft.

At small aspect angles (0-10 degrees) the propeller doppler spectrum is confined mostly to
the region around the airframe line (Refer to Fig. 32), and at larger angles (11-39 degrees)
it has a much wider spread into the region lower in frequency than the airframe line.

The modulation sidebands produced by the jet engine compressor stage or turbine blades
are spaced at different frequencies about the airframe line (usually more spread out in
frequency than a propeller driven aircraft), (Refer to Fig. 30).

The body doppler (or airframe line) of both jet and propeller aircraft is obtained using the
following Doppler equation:

@.velf)
doppler— ..

where,
vel = Radial velocity
fe = Operating frequency of CW Radar (9.83 GHz)
¢ = Speed of light.

For example, the commercial jet whose spectrum is shown in Fig. 30 was travelling at a
radial velocity of 140 m/sec, using the above equation the body doppler frequency is
calculated as being 9.174 KHz. You notice (from Fig. 30) that the harmonics are more
spread out than the propeller driven aircraft spectrum (as shown in Fig. 32), due to the jet
engine compressor stages producing different harmonics, spaced at different frequencies
with respect to the body doppler. Similarly the propeller driven target whose spectrum is
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shown in Fig. 32 was travelling at a radial velocity of 50 m/sec, giving a body doppler of
3.27 KHz. Because of the low aspect angle of 7.7 degrees you notice from Fig. 32 that the
propeller doppler spectrum is confined mostly to the region about the airframe line. (Refer
to Appendix F section 2.0 for more details on Doppler Spectra for jet and propeller driven
aircraft), (Appendix J displays the FFT spectrum of 14 airborne targets).

If the airspeed of commercial and propeller driven targets were different than the ones
recorded in our experiments, the airframe lines would shift hence producing a different
LPC spectrum. Due to the large number of blades rotating at high angular velocities of the
jet engine, the spectrum will still be more spread out and evenly spaced at different
frequencies about the airframe line [28], than that of a propeller driven aircraft whose
propeller spectra will always be lower in frequency than the airframe line, as indicated by
RE Gardner in reference [28] . Producing the characteristic spread of peaks found in the
LPC spectrums, for commercial jet aircraft (shown in Fig. 31 and Appendix J).
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Figure 30 The FFT spectrum (magnitude squared, 4096 samples) of a commercial jet
aircraft at an aspect angle of 20 degrees.( 50 KHz sampling rate used). The calculated
airframe line of the target is at 9.2KHz.
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Figure 31 The Lincar prediction spectral estimate of a commercial jet shown above.



16a8

68

1684 |-

1400 -

1200

1900

POWER

600 |-

4100

200 -

o T k il g 1) 1l \ g0 \
i UL lm.-.L:umlmL.-.mum..w.mme.a.uuﬂ&.‘w:mmmﬁs

588 1868 1560 2p0n

Frequency (x10 Hz)

Figure 32 The FFT spectrum (magnitude squared, 4096 samples) of a propeller driven
aircraft at an aspect angle of 7.7 degrees. The calculated airframe line of the target is at 3.2

KHz.
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Figure 33 The linear prediction spectral estimate of a propeller driven aircraft shown in

above.
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5.1.2 Surveillance Radar and Priori Knowledge Source

From Adelaide Airport Surveillance radar I obtain positional information. Range(nm) and
Azimuth(degrees) are converted into cartesian co-ordinates X(nm) and Y(nm) with respect
to Adelaide Airport’s position. Priori information on regular flight paths , and
arrival/departure times (from flight time tables) can be obtained for selected commercial
flights.

Information from the three knowledge sources (CW radar, Surveillance radar and flight
time table information) can be used to train a neural network to provide a greater certainty
(than would otherwise be obtained using fewer knowledge sources) on the identity of the
airborne target in real time.

5.2 Experimental Investigation

Three trials to collect data from sensors were organised on the same day and times of the
week 1o ensure flight timetables were consistent (ie. Tuesdays between hours of 3:00 - 5:30
pm). Two types of airborne targets (propeller driven and commercial jets) were tracked
using the CW Radar (located at DSTO Salisbury) at distances not greater than 40nm and at
aspect angles not greater than 60 degrees (with respect to the front of the aircraft). Six
commercial jets and eight propeller driven aircraft were tracked at various aspect angles.
The type of commercial jets ranged from Ansett Airlines Boeing 727, Australian Airlines
737 to British Aerospace BAE-134. The propeller driven aircraft were mainly single and
twin engine cessnas.

Both radars recorded time information of airborne targets being tracked. The Radar used to
collect the doppler records is an X Band (9.83 GHz) CW system developed at Microwave
Radar Division {(DSTO) using two six foot diameter antennas. The elevation on the
azimuth mount is slaved with a servo loop to the FPS-16 Tracking Radar which directs the
antennas at the target being tracked. Radar data records were taken from each experiment
which consisted of a combination of FPS-16 Range, Azimuth, Aspect angle , Aspect rate
and time the target is tracked. Each second the radar collected 640k bytes of complex data
(In-Phase & Quadrature). The radar frequency was set 1o 9.83 GHz. An A/D sample rate
of 50 KHz permits an adequate Doppler Spectrum for signal processing without aliasing.
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5.3 Processing Data from Both Sensors [29]

Slant Range and Azimuth data from the Surveillance Radar is converted to cartesian
coordinates X & Y.

Features associated with propeller or jet engine modulation of the doppler can be identified
in the spectrum by performing a Fast Fourier Transform (FFT) on the radar returns. It is
not always possible to extract all features (for input to a neural network) by the use of a
single digital signal processing tool. A combination of Fourier Transform and Linear
Prediction (LP) was used to process the radar returns from targets.

The idea in using FFT together with LPC comes from a paper [38] by D. Nandagopal,
presented in Radarcon 90 in which he describes an experimental study of the
characterisation of doppler returns from flat rotating blades carried out in the Microwave
Radar Division of DSTO. One of the dominant features of radar echoes from rotating
blades was the presence of a "plateau" in the frequency spectrum. The plateau of the radar
returns is due to the variable doppler contributions of the blades. Signal processing
techniques such as Fourier transforms and Linear Prediction were used to characterise the
doppler modulation of radar echoes from rotating blades. The smoothed LP plots clearly
defined the edges, lengths and heights of the plateau regions in Nandagopals [38]
application (from which the identity of the rotating blade could be determined). Whereas in
my application the smoothed plots were used as inputs into the backpropagation neural
network over a defined frequency period (discussed in section 5.4.1 in more detail).

The basic idea in Linear Prediction (LP) [30],[27] analysis is that a signal sample can be
approximated as a linear combination of past signals by minimising the sum of the squared
differences (over a finite interval of time) between the actual signal sample and the linearly
predicted ones. A unique set of predictor coefficients can be determined, which
characterises the signal data. Once predictor constants are computed then an all pole model
can be developed to fit the data. (Details on Linear Prediction are discussed in Appendix
A).

The Doppler spectrum of the Radar returns can be modelled using LP. [Refer to Fig. 31
and Fig. 33]. In this particular application since I am using a small model order the LPC is
basically acting as a smoother rather than a high resolution spectral estimator [29].
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5.4 Experimental Procedure

Three backpropagation neural networks (NN1, NN2 & NN3) were used (Refer Fig.35) to
fuse the targets attribute data from the sensors together with priori information on arrival
times & flight paths. (APPENDIX N provides an exposition into data fusion of multiple
classifiers).

5.4.1 Backpropagation neural network 1 (NN1)

The first neural  network (NN1) is used to identify targets from the processed doppler
modulation (using CW radar) as being either jet or propeller driven aircraft.
NN1 consists of :-

11 neurons in the input layer,

8 neurons in the hidden layer &

1 neuron in the output layer.

A backpropagation neural network with 2 (active) layers (ie. one hidden and one output
layer) was chosen for the classification of processed doppler modulation data primarily
because it should be easier to train than a network with more layers. The reason for using
the 11 input neurons in NN1 was to cover the required range of frequencies between 2-12
KHz (in 1 KHz intervals). Eight neurons in the hidden layer produced the shortest time
needed to train the network (using CW radar doppler data as inputs). A single output from
the sensor network NN1 is all that was needed to pass it’s decision (on the identity of the
processed doppler data), to the fusion neural network NN3.

The real part of the complex data from the CW Radar (doppler modulation) was selected
and processed for the target being tracked by both radars (for nose aspect angles less than
60 degrees). The FFT of the LP coefficients were calculated and plotted (Refer to Fig. 31
and Fig. 33). The use of LP using a small model order (details shown in Appendix A)
produces a smoothing effect hence defining any plateau or peak regions of the spectrum
(as shown in Ref. [38]), and simplifying the input data to the neural network NNI.
Because most of the important modulation information on all the recorded targets was
present between 2000 & 12000 Hz, and radar noise was present for frequencies less than
400 Hz for some targets, eleven data values were selected from the above plot (relative to
the noise floor) between the frequency values of 2000-12000 Hz in 1000 Hz intervals as
inputs to the backpropagation neural network NN1 . NN1 classifies the input data as either
being that of a jet or propeller driven aircraft.
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Continuous Wave (CW) radar data (obtained from trials 1 and 2 ) from four commercial
jets and three propeller driven aircraft over the cleven frequencies were used to train NN1.
CW radar data for two commercial jets and five propeller driven targets (obtained from
trial 3) were used to test NN1 (Refer to Appendix H for data tables of training and testing
pre-processed CW data).

In Appendix M, verification tests performed on NN1 are described using the CW radar
data stored in array0. To test the integrity of the NN1’s output when CW Radar data (real
part, stored in array0) is input, noise was added before being processed using LP. Also test
and train data were swapped and results noted.

The output result of NNT1 is fed into the input of the third neural network NN3 (Refer Fig.
35) which fuses it with data from the other knowledge sources.

Training and test CW Radar data (pre-processed using LP) for NN1 is shown in Appendix
H Tables 23 and 24. The FFT and LP plots for the corresponding training and test data for
commercial jets and propeller driven aircraft are shown in Appendix J. The Linear
Prediction spectral estimates, figures 60, 62, 64, 66, 68, 70, and 72 represent the training
plots and Figures 46, 48, 50, 52, 54, 56 and 58 represent the test plots.

5.4.2 Backpropagation neural network 2 (NN2)

Since all three trials were performed on the same day and times of the week, arrival &
departure times of regular flights were consistent. Three regular commercial flights arrive
into Adelaide Airport on that day between the hours of 3:00 to 5:30 pm. They are from
Darwin (at 4:30 and 5:30) and Perth at 4:30. (Appendix I contains the Darwin & Perth
flight path training data tables, Fig. 34 indicates the flight-paths).

NN2 was trained to identify the targets on Perth and Darwin Flight paths and to identify
all other flight paths as unknown. "X" and "Y" cartesian coordinates with respect to
Adelaide Airport in Nautical Miles are the inputs to NN2. As shown in Appendix I (Tables
25 and 26) thirty four cartesian (X,Y) coordinates (with respect to the origin point at
Adelaide Airport , X=0, Y=0) were used to train NN2 to identify the targets as being on
one of the 3 flightpaths.

NN2 consists of :-
2 neurons in the input layer
8 neurons in the hidden layer, and
3 neurons in the output layer.

The 3 neurons in the output layer represent the three possible flight paths ie. Darwin 1o
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0), Perth (0 1 0) and unknown (0 0 1). Outputs from NN2 are fed into the input of NN3.

40

Darwin Flight paths

nautical miles

AdeTaide Airport

nautical miles

Figure 34 Typical Darwin and Perth jet arrival flight paths to Adelaide Airport.

5.43 (Fusion) Backpropagation neural network 3 (NN3)

The inputs to NN3 are the outputs of NN1 and NN2 and real time information (ie. time the
target is locked on by the radar). Assuming due to delays and early arrivals, a commercial
flight (Boeing 727/737) from either Perth or Darwin can still be on a flight path (within 35
Nm of Adelaide) + 30 minutes from its scheduled arrival time.

Hence real time data is presented to the input of NN3 in one of the binary forms, as
follows:-

100 represents any time between the hours of 3:00-4:00 pm,
0 1 0 " " 11} " " " 1" 4:01_5:00 pm’
0 0 1 ” 1" " " n " " 5:01_6:00 pm'
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The data used for training NN3 to identify possible target types, reflected the priori
knowledge that Darwin flights are only possible (within 35 Nm of Adelaide Airport)
during the hours of 4:00-5:00 and 5:00-6:00 pm, and Perth flights only possible during the
hours of 4:00-5:00 pm.

NN3 consists of :-
7 neurons in the input layer,
12 " " " hidden layer, and
4 " " " output layer.

The output layer represents the certainties associated with target identification, as follows :-

(A) Darwin jet.

(B) Perth jet.

(C) Unknown jet. (ie. jet, on unknown flight path at any time, or known flight path
and unknown time).

(D) Propeller driven aircraft (ie. on any flight path at any time.)

NN3 was trained on the binary truth table (refer Table 8) which reflects the above desired
output (taking into account priori knowledge on flight arrival times ) for the ideal inputs
from both sensors .
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0.0 0.0 0.0 1.0 00 | 00 | 1.0 0.0 0.0 0.0 1.0

Table 8 Is the truth table used to train NN3 back propagation neural network.

"A" INDICATES A JET FROM DARWIN.

"B'" INDICATES A JET FROM PERTH.

"C" INDICATES AN UNKNOWN JET (ie.Unknown flight path & or unknown time).
"D" INDICATES A PROPELLER AIRCRAFT (ie. Which can be on any flightpath
or time).
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Fig 35 Displays the 3 backpropagation neural nets used to fuse the doppler modulation
attribute data from the CW Radar together with flight positional data from the Surveillance
Radar and time information when the target is locked on by both sensors. Flight path and
arrival time priori information has been used to train NN3.
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5.5 Mass Computations for use with Dempster-Shafer and Fuzzy Reasoning

To do the mass computations for use with the D-S and Fuzzy Reasoning methods 1 first
have to convert sensor measurements into a "probability mass distribution" over
propositions, the propositions in this case being the proposition that the attribute from the
three knowledge sources (CW Radar, Surveillance Radar and priori Flight Time-table
information) have come from one of the following targets:- Darwin jet, Perth jet, Unknown
jet, Propeller driven aircraft.

Since the output of NN1 gives us a measure of the certainty that the target is a jet/propeller
driven aircraft (when attribute data from the CW Radar is present). We can derive a
probability mass distribution on the four propositions.

ie. For target 1 (as shown in Table 10.) NN1’s output indicates a 99.98 % probability that
the target is a jet, this would indicate that the target is equally likely to be either a Darwin
jet, Perth jet, or Unknown jet (ie. 99.98%, 99.98%, 99.98% certainty) respectively and
0.02% chance of it being a propeller driven aircraft as shown in Table 15. A set of "basic
numbers” is then computed (for the four propositions) by normalising the resultant to bring
their total value to one. This process is equivalent to computing the probability of the
target being one of the four propositions. The measurement uncertainty "theta" of the
sensor (knowledge source) is accounted for by weighting each basic mass number by a
factor equal to "(1-theta)". This new set of mass numbers then represent the contribution of
the knowledge source to the support of each proposition.

Raw mass assignments derived from NN1 for the remaining seven targets are shown in
Table 15, with their normalised mass assignments, ( assuming an uncertainty of 1% or 0.01
from the CW Radar Sensor) shown in Table 16 (ie. target example 1: 0.33, 0.33, 0.33,
0.0, for Darwin jet, Perth jet, Unknown jet, Propeller aircraft propositions respectively)

The output from NN2 gives us a measure of the certainty that the target is on either a
Darwin, Perth or Unknown flight path. Using target 1 again (as shown in Table 10), NN2’s
output (when positional data is input from the Surveillance Radar) indicates a 99.01%
certainty that the target is on a Darwin flight path, this in tern implies that the target is
equally likely to be one of the following propositions, a Darwin jet (99.01%), Unknown jet
(99.01%) or Propeller driven (99.01%) aircraft, and a negligible chance of it being a Perth
jet as shown in Table 15. The normalised results for the 8 targets (assuming 1%
uncertainty from the Surveillance Radar) is shown in Table 16 (ie. target example 1:- 0.33,
0.0, 0.33, 0.33, for the 4 propositions)

From Flight Time-table information I derive Figure 36. Thus I know that a Perth jet is
due to arrive into Adclaide between the hours of 4:00-5:00 pm and two Darwin jets are
due to arrive between the hours of 4:00-5:00 pm and 5:00-6:00 pm. I also assume that
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propeller driven aircraft are in the air at all times between 3:00-6:00 pm, and that
commercial jets are unlikely to be in the air between the hours of 4:00-6:00, in the
quadrant air space interested in.

Radars started tracking target 1 (within 35nm of Adelaide airport) in the time period of
3:00-4:00 pm. Using Fig. 36 1 derive the following "basic numbers” 0,0,1,1; for the 4
proposition Darwin jet, Perth jet, Unknown jet and Propeller aircraft respectively. This
indicates equally high likelihood of the target being either an unknown jet or propeller
driven aircraft and negligible chance of it being a Darwin jet or a Perth jet. Normalising
and taking into consideration the uncertainty (assume 1% or 0.01) I obtain the value of
(0,0,0.495,0.495, for the 4 propositions) as shown in table 16.

Target No. % Darwin Jet % Perth Jet % Unknown Jet % Propeller
Aircraft
1 1.78 0.0 98.02 0.2
2 96.0 1.76 0.59 0.78
3 0.0 0.04 0.06 99.91
4 0.0 0.0 1.16 98.84
5 0.0 0.0 0.02 99.97
6 0.0 0.01 0.02 99.97
7 5.25 0.09 0.0 94.75
8 72.4 4.9 22.8 0.00

Table 9 Shows the probability (as a percentage value) that the targets’ 1D is one of the 4
possible outputs from NN3.

5.6 Discussion of Experimental Results using NN3

Data from trials 1 and 2 were used to train NN1 and NN2 backpropagation neural
networks. Results from trial 3, together with a simulated scenario input, werce used for
testing the neural network structure. For the third trial seven different targets (as shown in
Table 9 & 10), were tracked during various times between the hours of 3:00-5:30 .

Table 11 displays the raw output results from the neural network (NN3) when trial 3 data
is input. Note, that NN1 identifies the first target example as being a jet, and NN2
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TARGET ' TRIAL3 & SIMULATED INPUT TO NN3
NO.
[ NN1OP | NN2 O/P [FLIGHT PATH] | LOCKON TIME I/P
'[JET/PR] [TIME]

[=1/0] DAR. | PER. | UNK. || 34 | 45| 56
1 0.9998 09901 | 0.0000 | 0.0134 | 1.0 | 00| 00
2 0.9994 0.9968 | 0.0000 | 0.0055 | 00 | 1.0 | 00
3 0.0032 04331 | 09474 | 0.0000 | 1.0 | 00 | 00
4 0.0029 0.0019 | 0.0000 | 09985 | 1.0 | 0.0 | 00
5 0.0092 0.0042 | 0.0000 | 09970 | 00 | 1.0 | 00
6 0.0500 0.0000 | 0.0000 | 09993 | 00 | 1.0 | 00
7 0.1608 0.9974 | 0.0000 | 0.0043 | 00 | 00 | 10
8 0.9998 03370 | 0.0000 | 04979 | 00 | 1.0 | 00

Table 10 Shows the raw data input to NN3, from NN1 & NN2 outputs.

identifies it as a target flying on a Darwin flight path (refer to Table 10). This normally
would indicate a Darwin jet but because I have priori information from a third knowledge
source (ie. timetable), which indicates that no flight from Darwin is possible that time of
day. In consequence NN3 concludes (98% probability) that the target must be an unknown
commercial jet flight, which happens to be flying in a Darwin flight path. The output of
NN3 (fusion backpropagation neural network) will indicate a measure of certainty on the
identity of the four possible target types, ie. (Refer Table 9 ) 1.78% probability that the
first target from trial 3 is a Darwin jet, and 98% that it is an unknown commercial jet.

For the second target example, NN1 produces an output of (0.9994) (refer to Table 10),
which indicates a high likelihood that the target is a jet. An output from NN2 (0.9968, 0.0,
0.0055 ) indicates a high probability that the target is on a Darwin Flight Path. The target
was tracked between the hours of 4:00-5:00. For the above input data, NN3 (trained)
output the following results (0.984, 0.018, 0.006, 0.008) as shown in Table 11, indicating a
96% probability that the target is a Darwin jet scheduled to arrive into Adelaide at 4:30 (as
shown in Table 9).

For the next five targets (no. 3 - 7 , shown in Table 10), NN1 indicates that they are
propeller driven aircraft ie. (0.0032, 0.0029, 0.0092, 0.05, 0.16) respectively. The output of
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NN2 indicates that they are on (Perth, Unknown, Unknown, Unknown, Unknown) flight
paths respectively. Fusing the above outputs from NN1 and NN2, together with real time
information, NN3 produces an output (Table 9 & 11) which indicates a high probability
that the targets are propeller driven, flying on any flight path and at any time.

Target no. 8 was simulated to produce the scenario of a Darwin jet which has strayed a
couple of nautical miles from the known Darwin flight path (during the hours of 4:00-
5:00). ie. Assume NN1 indicates a 99.9% probability that the target is a jet (output of
0.9998 ), and NN2 indicates a 60% probability that the target is on a Darwin Flight Path.
The output results, from the fusion network NN3, indicate a 72.4% probability that it is a
jet from Darwin and a 22% probability that it is an Unknown jet on an unknown flight
path (refer to Table 9).

TARGET NO. OUTPUT FROM NN3
DARWIN JET PERTH JET | UNKNOWN JET | PROP. AIRC.
il 0.011029 0.000237 0.986725 0.002814
2 0.984128 0.018254 0.006511 0.008746
3 0.000000 0.000056 0.000672 0.996808
4 0.000000 0.000000 0.0111724 0.994852
S 0.000000 0.000223 0.000013 0.997230
6 0.000000 0.000272 0.000021 0.995945
7 0.054552 0.000000 0.000000 0.984433
8 0.516379 0.035242 0.163251 0.006903

Table 11 Shows the output from the fusion neural network NN3 when presented with the
inputs of table 10.
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5.7 Discussion of Results using Dempster-Shafer

5.7.1 Numerical Example Target No.1

The normalised mass assignments for target example 1 (obtained from Table 16) will be
used to show how the attributes are fused from the 3 knowledge sources to facilitate
automatic processing using Dempster-Shafers combination rules [15,5].

From Table 16 I obtain the normalised mass assignments for the 4 propositions or target
types (Darwin jet, Perth jet, Unknown jet, Propeller aircraft ie T1,T2,T3,T4 respectively) of
target no. 1 , which was derived from the outputs of NN1 and NN2 and Fig. 36 ; assuming
an uncertainty of 1% from the 3 knowledge sources, which could be a reflection of
information/sensor error or accuracy.

Mass Function derived from CW Radar (m1) and Surveillance Radar (m2):-
m1=(T1,T2,T3,T4)=(0.33, 0.33, 0.33, 0.0) ; thetal = 0.01

m2=(T1,T2,T3,T4)=(0.33, 0.0, 0.33, 0.33) ; theta2= 0.01

Dempster’s rules of combination are used to obtain the matrix shown in Table 12, with the
probability mass assignments that are to be combined given along the first column (m2)
and the last row (m1). The computed elements (for a given row and column) of the matrix
are the product of the probability mass values in the same 10w of the first column and the
same column of the first row.

The assignments of the elements in Table 12 are according to the rules below [15,5]:

(1) The product of mass assignments to two propositions that are consistent leads to
another proposition contained within the original.
ml1(A1).m2(A1)=m(A1)

(2) The product of the mass assignments to uncertainty and the mass assignment to another
proposition leads to a contribution of that proposition.
m1(theta).m2(A2)=m(A2)

(3) The product of uncertainty and uncertainty leads to a new assignment to uncertainty.
m1(theta).m2(theta)=m(theta)
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(4) When inconsistency occurs between the knowledge sources, we assign a measure of

inconsistency denoted "k" to their products.
m1l(al).m2(a2)=k

m?2 theta=0.01 T1=0.0033 T2=0.0033 T3=0.0033 theta=.0001
m2 T4=0.33 K=0.1089 K=0.1089 K=0.1089 T4=0.0033
m2 T3=0.33 K=0.1089 K=0.1089 T3=0.1089 T3=0.0033
m2 T1=0.33 'I T1=0.1089 K=0.1089 K=0.1089 T1=0.0033

ml ml ml ml
T1=0.33 T2=0.33 T3=0.33 theta=0.01

Table 12 Shows how Dempster’s rule is used to combine the mass vector ml, with the
mass vector m2. (Note "k" represents a measure of inconsistency).

In order to compute the new mass vector, I first sum all the assignments to k (ie. k=0.7623
in our example. The new mass vector is computed by summing the appropriate entries in
the matrix and dividing by the normalisation factor (1-k=0.2377).
The new entries are:-

theta=0.0001/0.2377 = 0.00042

T1=(0.0033+0.0033+0.1089)/0.2377 = 0.4859

T2=0.0033/0.2377 = 0.01388

T3=(0.0033+0.1089+0.0033)/0.2377 = 0.4859

T4=0.0033/0.2377 = 0.01388

Plausibility was computed as shown in this example:

P(T1)=m(T1)+m(theta) = 0.4859+0.00042 = 0.4863
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SUPPORT PLAUSIBILITY
T1 0.4859 0.4863
T2 0.0139 0.0143
T3 0.4859 0.4863
T4 0.0140 0.0144

Table 13 Shows the resulting support and plausibility for the
propositions listed.

Thus m1 and m2 are combined to produce a new mass m3.

m3 = (T1,T2,T3,T4)=(0.4859, 0.01388, 0.4859, 0.0138)
with resulting uncertainty of 0.00042

Based on sensor data alone (ie. CW Radar and Surveillance Radar) the method leads to
two primary hypotheses, T1(0.4859, 0.4863) and T3(0.4849, 0.4863). The support and
plausibility values of 0.4859 and 0.4863 for propositions T1 and T3 indicate that the target
is either a Darwin jet or an Unknown jet. T1 and T3 are favoured over the other
propositions. Both propositions at this stage are equally as likely to occur.

The flight timetable knowledge source (Fig. 36) indicates a high likelihood of encountering
an Unknown or a Propeller aircraft target at the radar lockon time (between 3:00-4:00 pm)

for target example 1, and I derive the following priori normalised mass assignments for the
4 propositions (assume an uncertainty of 1% or 0.01).

mpriori = (T1,T2,T3,T4) = (0, 0, 0.495, 0.495) ; theta = 0.01

which, when integrated with m3, results in a mass function:-

Mcomposite = (TI,TZ,T3,T4) = (0.0188, 5E—4, 0.952, 0.028)
with resulting uncertainty, theta= 1.63E-5



SUPPORT PLAUSIBILITY
T1 0.0188 0.018816
T2 SE-4 5.16E-4
T3 0.952 0.952016
T4 0.028 0.028016

Table 14 Shows

new Support and Plausibility for the
propositions after combining the new knowledge source my;;
(Note new resultant uncertainty has decreased to 1.63E-5 from
0.00042).
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This leads to the following hypotheses. When new priori evidential evidence is brought to
bear, the support for T3[0.952, 0.952016] (Unknown jet), becomes significantly greater
than for all others. ie. Proposition 1 (Darwin jet) has a lower support than the previous
combination as shown in Table 13 (0.4859 goes to 0.0188). In fact, as shown in Table 14

all other propositions except T3 drop to very insignificant levels of support.

5.8 Discussion of Results using Fuzzy Reasoning

5.8.1 Minimum Method

Using example targetl, I will discuss an alternative to Dempster-Shafers (which is less
computationaly intensive) of fusing the 3 knowledge sources,

ie m1=(T1,T2,T3,T4) = (0.33, 0.33, 0.33, 0), thetal= 0.01
m2=(T1,T2,T3,T4) = (0.33, 0, 0.33, 0.33), theta2= 0.01
mpriori=(T1,T2,T3,T4) = (0, 0, 0.495, 0.495), theta3= 0.01

Using the minimum method, I take the minimum mass value of propositions T1, T2, T3,
T4, and uncertainty, for the first two knowledge sources ml (CW Radar) and m2

(Surveillance Radar).
ie.

min(m1T1, m2T1) = 0.33

min(m1T2, m2T2) = 0.0

min(m1T3, m2T3) = 0.33
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Figure 36 The curves (derived from flight timetable information) indicate the
probability thadt any given target type (or proposition) T1,T2,T3,T4 will be flying
within 40nm of Adelaide Airport at the time indicated on the x axis.

min(m1T4, m2T4) = 0.0
min(thetal, theta2) = 0.01

Normalising the resultant mass vector, I obtain the combined mass m3
ie. sum of above is 0.67, hence:-

T1 = T3 = 0.33/0.67 = 0.49
T2 =T4 =0.0
theta = 0.01/0.77 = 0.0149

hence combined mass,
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m3 = (0.49, 0, 0.49, 0) theta = 0.0149;

integrating m3 with mpriori results in meomposite (after normalisation)

mcomposite = (0, 0, 0.98, 0) theta = 0.02

Hence proposition T3 (Unknown jet) is the most likely target (0.98). Which compares
favourably with the D-S method (0.952), and neural network method (0.9524), except for
the fact that theta has increased in value, ie the uncertainty has increased when fusing m3
with mpriori . Also by taking the minimum and normalising the mass vectors continuously
we can lose the resultant masses of the remaining propositions. But the minimum method
has the advantage over D-S in the reduced number of calculations needed. However, as
mentioned, the uncertainty calculation is unsatisfactory. In the next paragraph, I will
introduce and discuss the alternative to uncertainty using Fuzzy Reasoning (called Entropy)

and calculate the uncertainty (Entropy) for target example 1.

TARGET || DEMPSTER SHAFER & FUZZY REASONING UNNORMALISED
NO. INPUTS FOR THE 4 PROPOSITIONS
CW RADAR SURYV. RADAR FLIGHT
TIMETABLE
1 99.98,99.98,99.98,.02 99.01,0,99.01,99.01 0,0,1,1
2 99.94,99.94,99.94,.06 99.68,0,99.68,99.68 1,1,0,1
3 0.32,0.32,0.32,99.68 | 43.3,94.74,94.74,94.74 0,0,1,1
4 0.29,0.20,0.20,99.71 00.19,0,99.85,99.85 0,0,1,1
5 0.92,0.92,0.92,99.08 0.42,0,99.7,99.7 1,1,0,1
6 © 5.0,5.0,5.095.0 0,0,99.93,99.93 1,1,0,1
7 16.08,16.08,16.08,83. 99.74,0,99.74,99.74 0,1,0,1
02
8 99.98,99.98,99.98,.02 33.7,0.0,49.79,49.79 1,1,0,1

Table 15 Raw mass assignments for 4 propositions (T1,T2,T3,T4) derived from table 10

and flight timetable information (Fig. 35).
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Target DEMPSTER SHAFER & FUZZY REASONING INPUT
No. VECTORS (normalised) FOR THE 4 PROPOSITIONS
(ASSUME INITIAL UNCERTAINTY OF 1% FOR THE 3
KNOWLEDGE SOURCES).
CW RADAR SURYV. RADAR FLIGHT
TIMETABLE
1 .33,.33,.33,0 .33,0,.33,.33 0,0,.495,.495
2 .33,.33,.33,1.9E4 .33,0,.33,.33 .33,.33,0,.33
3 .003,.003,.003,.98 .1309,.286,.286,.286 0,0,.495,.495
4 .003,.003,.003,.98 9.4E-4,0,.495,.495 0,0,.495,.495
5 .009,.009,.009,.96 .0021,0,.494,.494 .33,.33,0,.33
6 .045,.045,.045,.85 0,0,.495,.495 .33,.33,0,.33
7 12,.12,.12,.628 .33,0,.33,.33 0,0,.495,.495
8 .33,.33,.33,6.6E-5 .25,0,.3698,.3698 .33,.33,0,.33

Table 16 Normalised mass assignments for the 4 propositions (ie Darwin jet, Perth jet,
Unknown jet, Propeller Aircraft) derived from the outputs of NN1 & NN2 (Table 10) and
flight timetable prior information. And used as input vectors for Dempster Shafer & Fuzzy
Reasoning. (Assuming an initial uncertainty of 1% (.01) from the 3 knowledge sources).

5.8.2 Fuzzy Reasoning (Entropy) [34]

Fuzzy variables are based upon fuzzy set theory of Zadeh [24,25], which is used to
represent uncertainty. If the field of discourse "Y" has a variable "y" in a fuzzy set "A",
then "y" has a‘membership function p(y) in the unit interval [0,1]. Crisp sets have
membership values that are either 1 or 0. Operations on fuzzy sets corresponding to logical
AND, OR and NOT are defined by:-

A AND B = AUB = { (y, min(u,(y), us(¥)) },
A OR B = AmB = { (y, max(u,(y), Up(y))) } and
A’ = {(y, 1-pa(Y)) }
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Entropy measures the uncertainty of a system, and fuzzy entropy represents the uncertainty
of the fuzzy set. Entropy is defined as follows [23] :-

E(A)=M(ANA’)/M(AVA’)

where M(A) is the fuzzy count (= Zp,(y)). Hence E(A) varies between certainty (=0) and
maximum uncertainty (=1).

The normalised outputs of NN1 and NN2 can be used to represent the membership
function for each target type or proposition (T1, T2, T3, T4). Probability represent a
special case of fuzziness [23]. For example the fuzzy variable (jet/propeller aircraft) range
, can be defined to have a membership of T1(jet/propeller aircraft) given by the normalised
output of NN1 (between 0 and 1). Thus the probability mass values outputs from NNT1 and
NN2 can also be used for fuzzy reasoning.

For our target type example, fuzzy "rules” can be stated by:-

If jet/propelier aircraft range value from NN1 is Ty(jet/propeller) and flight path range
values (in the flight paths Darwin, Perth or Unknown) from NN2 is Ty(flight path) and
flight lockon time range is Ty(lockon time) the target is Ty,

Where Ty, N=1,2,3,4 represents the membership function to each of the target types.
For the fuzzy rule, Ty, has a value range 0-1.
Using example 1:-

m1l=jet/propeller ={(T1,0.33), (T2,0.33), (T3,0.33), (T4,0)} thetal=.01
m2=flight path = {(T1,0.33), (T2,0), (T3,0.33), (T4,0.33)} theta2=.01
mpriori= lockon time = {(T1,0), (T2,0), (13,0.495), (T4,0.495)} theta3=0.01

Calculate the entropy of each fuzzy proposition:-

sum of T1 ... T4 for m1 = 0.99
sum of T1 ... T4 for m2 = 0.99
sum of T1 ... T4 for mpriori = 0.99

sum of the complement of T1 ... T4 for ml = 3.01
sum of the complement of T1 ... T4 for m2 = 3.01

Entropy of ml= 0.99/3.01 = 0.328
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Entropy of m2= 0.99/3.01 = 0.328

Using fuzzy rules, we combine m1 and m2 to obtain the entropy of m3

Target type = (jet/propeller) N (flight path)
= {(T1,0.33), (T2,0), (T3,0.33), (T4,0)}
suml = 0.66

The crisp value is the maximum , and so T1 and T3 are the most likely target types with
an entropy value of 0.1967.

ie. Entropy of m3 = suml/complement of above
= (0.33+0+0.33+0)/(0.67+1+0.67+1) = 0.1976

Using the prior knowledge we have

Target type = (jet/propeller) N (flight path) N (lockon time)
= {(T1,0), (T2,0), (T3,0.33), (T4,0)}

With the crisp value giving T3 as the chosen target type with an Entropy for m,mposie =
0.0899

ie. Entropy of m g = (0 + 0 + 0.33 + 0)/(1 + 1+ 0.67 + 1) = 0.0899

When fusing m3’ with m,, . » the uncertainty using D-S, reduced from 4.2E-4 to 1.63E-
5, and for fuzzy from 0.1976 to 0.0899. So the uncertainty (using fuzzy reasoning) of the
combination has also been shown to reduce in a consistent manner as in D-S. (Appendix L,
shows the results in a table of uncertainty and entropy for the remaining seven targets
using both D-S and Fuzzy methods).
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5.9 Summary of Results

Examining the results of fusing the target attribute data from the 3 knowledge sources
using the 3 data fusion methods (ie. refer to Table 9 using NN3, Table 17 using D-S and
Table 18 using fuzzy reasoning) you notice that they all reach the same result on which
target (proposition) is most likely for each of the 8 examples.

The obvious advantage of using the fuzzy reasoning (minimum) method is the reduced
number of calculations needed. The disadvantage with the fuzzy reasoning method is that
in some cases we can lose the resultant masses of the remaining propositions, due to the
continuous minimisation and normalisation of the mass vectors, which may not necessarily
represent the magnitude of the resultant proposition accurately. A problem with fuzzy
reasoning (stated in ref.[34]) is when combining information about a particular hypothesis,
the fuzzy reasoning AND will represent it by the one low value despite the existence of a
number of larger values. The D-S method has a similar problem, for example, a
proposition of mass of 0.9 repcated n times causing in the worst case assignment of 0.9%,
which can be quite small, when different sets of evidence are combined.

As mentioned in Kewley [34], the disadvantage of using D-S method is its reliability.

Zadeh [39] questions D-S’s use of normalisation to remove mass assignments to the null
set. He shows that for:-

m1(2)=0.0, m1(b)=0.1, m1(c)=0.9
m?2(a)=0.9, m2(b)=0.1, m2(c)=0.0

the combined result is

m3(a)=0.0, m3(b)=1.0, m3(c)=0.0
This is not consistent with the low mass assignments to proposition "b", in both probability
assignments. The normalisation has concealed the contradictory aspect of the sets of

evidence. Shafer’s counter example [40], slightly modifies m1 and m2 so that :-

m1’(2)=0.01, m1°(b)=0.1, m1’(c)=0.89
m2’(2)=0.89, m2’(b)=0.1, m2’(c)=0.01

with the new combined result of
m3’(a)=0.32, m3’(b)=0.36, m3’(c)=0.32

Kewley [34], stated that from these examples, there is great danger in assignment of zero
or very low values to a probability due to the normalisation procedure.
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Also the disadvantage of using the D-S method is the number time consuming
computations needed in combining mass vectors. For both D-S and Fuzzy reasoning there
exists the problem of how to obtain the initial mass assignments for each of our target
types, (propositions T1 ... T4), and what initial uncertainties to assign to our knowledge
sources ( in our example we assumed an uncertainty of 1% ).
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Chapter 6

Conclusion

6.1 Kinematic Data Fusion

Even though the same results were achieved in the end using both techniques (Classical
Inference and ART2) with kinematic data obtained from both radars, ART2 has the
following advantages over the Classical Inference technique :

It can be trained and implemented into a real time environment very quickly without
knowledge of the accuracy of the sensors. Radar data can be input to the neural net in
parallel to obtain a quick result. Also, as the number of targets changes, continuously in an
ever changing real time environment, a new pattern category can be formed quickly that
was not in the initial training set.

Strict application of the Classical Inference technique requires knowledge of an ’a priori’
probability distribution which is clearly unknown in a realistic application. Thus the
threshold value used (50.9) is not necessarily the best in the real world and so there might
arise a situation where the same target being tracked in the common surveillance volume of
both radars is identified incorrectly as being two different target tracks (ie. tracks are not
the same, the alternative hypothesis HO is accepted). ART2 does not require knowledge of
any ’a priori’ probability distribution.

In conclusion the ART2 neural network technique is better than the Classical Inference
approach using Hypothesis testing as first outlined by Bar Shalom [6], because we not
only avoid the time consuming computations required in the hypothesis testing stage,
where the test statistic (which is the Mahalanobis distance) is summed at each point along
the track and compared with the level of significance (as shown in the example
calculations of the Mahalanobis distance for simulated tracks in section 4.2.1). But also the
need to find the accuracy of the sensors is avoided because the network indirectly obtains
this from the training data through the adjustment of the vigilance value. The vigilance
determines the degree of recognition between the two tracks when the network is trained
with track pairs which are known to be from the same targets. Even though the vigilance
value was adjusted manually when training ART2 with tracks from both radars which were
known to be the same, it wouldn’t be hard to write an algorithm to adjust the vigilance
value automatically.

Also to find out if there is any correlation between track pairs when using the Classical
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Inference approach one has to find the possible track pair combinations (ie. trackl from
radar] with trackl from radar2, trackl from radarl with track2 from radar2, etc, refer to
Table 6). This tedious and time consuming procedure of pairing tracks is avoided using the
ART2 neural network because all we do, once the network is trained, is input the tracks
into the network one at a time , and the network clusters the input tracks into one of the
appropriate target categories as shown in Fig. 29, in real time.

Time consuming computations as discussed previously can be crucial in a military scenario
with hundreds of targets being correlated and fused by a central computer whose data is
sent to weaponry (ie. Rapier missiles) used to intercept the required targets in real time.

6.2 Attribute Data Fusion

The objective was to develop and evaluate a neural network based Data Fusion system for
automatic allocation of identity of airborne targets using all available information, and
compare the results using trial data with the D-S and fuzzy reasoning methods. Even
though the target classifications were restricted to jet or propeller driven in NN1, and to
Darwin/Perth/Unknown Flight paths in NN2, the fusion of the outputs, with flight-time
information, in NN3, effected a considerable improvement in the final classifications over
NN1 or NN2’s target classification on their own.

To achieve the objective a neural network based Data Fusion system comprising of 3
backpropagation neural networks NN1, NN2 and NN3 was evaluated (as shown in Fig.
35). NN1 and NN2 produced classifications on the identity of target types (when presented
with data from a CW radar and Surveillance radar respectively). NN1 successfully
identified airborne targets as either jet or propeller driven from their doppler modulation
(processed using LP), and achieved a recognition accuracy of 100% for the 7 airborne
targets presented. (ie. Refer to the bar graphs in figures 74 and 75, Appendix M). Results
from NN1 using the limited target numbers (as shown in Appendix H, Tables 23 and 24)
are very promising. However, further investigations are necessary using large number of
targets before drawing definitive conclusions. Also NN2 successfully identified the 7
airborne targets as being on Perth, Darwin or unknown flight paths from their cartesian
coordinates, "X" and "Y" (with respect to Adelaide Airport). The fusion centre NN3 made
the overall classification based on the outputs of NN1, NN2 and flight timetable
information (refer Fig. 36). As discussed in section 5.6 using the eight target examples [
conclude that combining the knowledge sources gives us a better assessment of the identity
of the target (in real time).

One advantage neural networks have over the other data fusion methods is that, due to a
massive system of parallel processing elements, it is possible for them to process the input
data relatively rapidly (after they are trained) which makes them attractive in an Automatic
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Target Recognition System working in Real Time. While D-S evidential reasoning can
reach a useful conclusion for the identity attribute problem, it gets there with time
consuming and tedious computations, which can effect the performance of an Automatic
Target Recognition system working in Real Time.

In comparing the D-S and fuzzy reasoning data fusion methods with the backpropagation
neural network method NN3 (as discussed in section 5.7 and 5.8), I used input vectors
obtained from the normalised mass assignments for the four propositions (ie. Darwin jet,
Perth jet, unknown jet, propeller aircraft) derived from the outputs of NN1, NN2 and flight
time table priori information (as shown in Table 16). From the results of fusing the target
attribute data from the three knowledge sources (ic. CW radar, Surveillance radar and time
table information) using the three data fusion methods (as shown in Table 9, 17, and 18
using the NN3, D-S and fuzzy reasoning methods respectively), you notice that they all
reach the same final hypothesis on which target (proposition) is most likely for the eight
target examples. The main difference is the slight variations in magnitude for some of the
propositions, as shown in Tables 9, 17, 18. But that’s not surprising because for example,
using the fuzzy method, by taking the minimum and normalising the mass vectors
continuously we can lose the resultant masses of the remaining propositions, hence obtain
zero values as shown in Table 18. Since D-S and fuzzy methods have calculated
uncertainties and entropy measurements (as shown in Appendix L), the magnitude values
of the resultant propositions are not a measure of the likelihood of one occurring on its
own. As in the neural network method which reflects the Bayesian approach, you have to
take into account the uncertainties.

Hence T also conclude that the backpropagation neural network method is better than D-S
or Fuzzy Reasoning (in the cases studied) because there is no need to know or calculate
the uncertainty of your knowledge source, the network indirectly obtains this through the
training data. Also by training NN1 and NN2 to classify the target’s attributes directly
from the sensors (CW and Surveillance radars) into simpler weighted variables (ie.
jet/propeller targets; Darwin, Perth and Unknown flightpaths), which correspond to their
probabilities, you can directly feed these outputs into the input of NN3 in real time. For D-
S and fuzzy reasoning I use the outputs of NN1, NN2 and timetable information to derive
the initial mass assignments for the 4 propositions (T1...T4). Otherwise I would have had
to calculate or derive curves or data tables for the target attributes coming from the CW
and Surveillance radars, which would indicate the probability that any given target type
(proposition T1..T4) will have a specified value of the variables (jet/propeller;
Darwin,Perth,Unknown flightpaths).
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TARGET SUPPORT FOR THE FOLLOWING PROPOSITIONS USING
NO. DEMPSTER-SHAFER (as a percentage)
DARWIN JET PERTH JET UNKNOWN | PROP. AIRC.
' JET
1 1.8 053 95.24 2.8
2 91.85 2.7 2.7 2.7
3 01167 .025 1.31 98.65
4 .00015 .00011 1.28 98.72
5 .0459 0379 .056 99.86
6 A2 0.12 .19 99.56
7 4 0.59 0.4 98.6
8 88.93 3.41 3.81 3.84

Table 17 Indicates the support for the propositions using Dempster-Shafers (Evidential
Reasoning) on the normalised outputs of NN1 & NN2 (table 3) and priori information
(flight timetables).

TARGET DECISION ON WHICH TARGET IS LIKELY USING FUZZY
REASONING (MINIMUM METHOD)
NO.
DARWIN JET PERTH JET UNKNOWN PROP. AIR
JET
1 0 0 98 0
2 97 0 0 0
3 0 0 1.96 96
4 0 0 1.1 96.9
5 1.19 0 0 95.9
6 0 0 0 97
7 0 0 0 98
8 97 0 0 0

Table 18 Indicates the likelihood for the propositions using Fuzzy Reasoning (Minimum
method) on the normalised outputs of NN1 & NN2 & flight timetable priori information.
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Appendix A (Linear Prediction)

1.0 Introduction

Linear Prediction is an aspect of time series analysis also known as least squares estimation
(prediction), (dates back to 1795). The basic idea of Linear Prediction (LP) [30], [29]
analysis, is that a signal sample can be approximated as a linear combination of past
signals by minimising the sum of the squared differences (over a finite interval of time)
between the actual signal and the linearly predicted data. Once predictor constants are
computed then an all pole model can be developed to fit the data (refer to Fig. 37 ).

Doppler spectra of radar returns (from the CW (continuous wave) radar can be modelled
using LP. In my particular application, the LP is basically acting as a smoother rather than
a high spectral estimator, since I am using a small model order.

A close relationship exists between a linear prediction filter and an autoregressive process.
Consider the linear prediction estimate, of sample x/n], where afk] (square brackets are
used for sampled signals) is the linear prediction coefficient at time index k.

x'[n]= -Em: alk]x[n-k]--—----- (12)
k=1

e[n] is the error between predictor and actual sample.
m is the model (predictor) order

x'[n] is the predictor sample

alk]  is the predictor constants.

The "’ " is used to denote an estimate, and the prediction is forward in the sense that the

estimate at time index n is based on m samples indexed earlier in time. The complex
forward linear prediction error is:

e[n)=x[n]-x'[n]--~------ (13)
e[n]=x[n]+Y  alk]x[n-k]-—-(14)
k=1

Expressing the error equation (14) in the "z" domain ( z is the complex operator) we have:-
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E@=x'@)I1-Y alklz¥]------ (15)
k=1

If the predictor order m is sufficiently large, then substantially all correlation is removed
from the error efn], and this yields a white (constant spectrum) signal X[n]

EC2) S| HD > X (2

Figure 37 All pole model developed to fit data.

)]
H(2) E@)

O a6

1-Y alklz™*
k=1

As m becomes large the variance p of the error e[n] becomes small, so I1/H(z)
approximates the. signal spectrum. H(z) is also known as the signal model; the denominator
of H(z)

1 —}m: alkl.z *----(17)

k=1

is called the inverse filter. The structure of such a filter is given by the following Figure
38.
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Figure 38 : Digital structure of Generating Filter

2.0 Relationship of the Real Variance (p) to LP Analysis

The complex forward linear prediction error show in equation 13 has real variance :

"E" denotes expectation. Substituting equations 12 and 13 into equation 18 yields
expression 19 .

p=E|e[n] |*=E(x[n] +E a[k]-x[n—k])?
k=1

p=E((x[n]+Y_ alflx[n—4].(x[n]* +)_ alk]l* x[n-k]")
j=1 k=1
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p=(x[n}x[n]*+Y_ x[nl.alk]* x[n-k1* +Y aljl.x[n-jl.x[n]* +Y_ aljlx[n—1.Y alk]* x[n-k1")
k=1 j1 j=1 k=1

p=r [0]+Ea[k] T [k]+za[k]r [J]+EEG[I] a[k]".r,,[kj]

J=1 k=1

rearranging

p=r[0] +E alkl.r [ +E alk]*.r[Kk] +E Za[ﬂ alk}*.r [k-j)

J1 k=1

assuming x/n] is a wide sense stationary process so r,,[-k] =r [k]"

p=r [0]+E alkl.r U1 +E alk]".r [k]+E Ea[ﬂ alk}'r k-]

J=1 k=1

Rewriting above in a matrix format (getting rid of summation (sigma) terms)

p=r_[0]+rna+@"r"+a" R, _ .a------- (19)

Where a, rm, and R, , are as follows (H is the complex transpose)

111 [r_[11] " ;

ZE iy rf0] ... rgm-11
a= , Tm= , R,.,=

Gl r [m] rAm-1] . . . r[0]

The expression (19) is identical to the quadratic equation shown in equation (3.68) of Ref
[5] page 69. Therefore the linear prediction coefficient vector a that minimises the variance
p is found as the solution to the normal equation (Refer to Reference [29] chapt. 3.5 pages
69-71, for theory into "least squares normal equations”) is given by :-
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ral0l HH
r, R._, a_O,,,
Or
1 'p}
a[ll| |0
T TS ool L | o
r 1, r 0L, .. o.ordm-10) L H - (20)
roml, rIm=11, . . . 1,0l
a[m]| [O]

"_n

Note in equation (20) as shown above a/0]=1 in the “a” vector ie.

al0]
a[1]
. |
a= » $0 pR)=——
. Y az®
i=0
[a[m]|

and not as shown in equation (15), ie.

-
a[2]
p(z)=—m1—- with g
1-Y a2
i=1 .
a[m]|

3.0 Steps used to Formulate Matlab Program used to Process Doppler Data

We fit a filter to the Continuous Wave Doppler Radar Data stored in array 0. ie. we null
out the noise spikes to find where the frequencies are (refer to Fig. 39).

(Array O is a matlab file, obtaincd from the CW Radar, containing 32k bytes or one tenth
of a second of Real data at a certain aspect angle of the target in question).
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Figure 39 Fit a filter to the CW radar data.

We are calculating the coefficients of the linear prediction coding a=R".rm

Now that we have a filter we generate a spectrum of the filter
And if we plot p(z) we get the following (nulls or zeroes, get rid of spikes, Fig. 40).

PCw) /\

FREQUENCY
RESPONSE

V
=

N/

Zeroes

Figure 40
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We want the poles where the zeroes are, so the peaks correspond to the sinusoids of the
input data, so we take the inverse of p(z), which gives us poles (refer to Fig. 41). The
spectrum of the all pole filter (I/p(z)) is an estimate of the spectrum of the data. (ie. FFT
of the LPC).( The impulse response of P(z) in the z domain is the LP coefficients "a", so
to get the frequency region of P(z) we take the fourier transform.)

1/ P(2) 1s the impulse response

- i
Call pole filter) Noise

Signal Data

I\

(SIGNAL TRYING TO GET ESTIMATE
OF THE SPECTRUM OF THE DATA)

Figure 41 Taking the inverse of p(z).

Note, since in my application I am using a small model order the LPC is basically acting
as a smoother rather than a high resolution estimator.

4.0 Matlab Programming Steps

Step 1: Array0 is a 4096 x 1 array vector containing the real part of the doppler
modulation data (32k bytes, 1/10 th. of a second) obtained from the CW Radar for the
target being tracked at a certain aspect angle. ArrayQ has to be arranged in the form
accepted by the "COV(X)" Matlab function. COV(X) computes the covariance matrix of
"X, ie.
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[ X1 | ) .
Xl X2 X3 ... X4085
X2
array0=| |, X=
‘ XI2 XI3 XI14 . . . X4096)
| X4096) )
Jor i=1:12
x(@i,:)=array0(i:4096-12 +i);
end
Step 2: Calculate the covariance (where X , is the transpose of x), and define rm

(where rm is the variance vector as shown below). The number of zeroes in rm is
proportional to the number of points you want to use as the history of your input data (to
predict the next point, ie. to get 5 output peaks in the output spectrum you need 10
zeroes). Since a small model order of ten was used (to produce the smoothing effect) to
suit my application the LPC is basically acting as a smoother rather than a high
resolution estimator (the results of the processing can be seen in the plots Appendix H).

rl=cov(x’;
rm=[1;0;0;0,0,0;0;0;0,0;0;0];

Step 3: Fitting a filter to the data by calculating the linear prediction coefficients in
array, "a". Where "inv(rl) " is the inverse of vector "rl".

a=inv(rl).rm;

Step 4: The spectrum of the filter is an estimate of the spectrum of the data (ie.
Plotting FFT of LP coefficients).

p=plot(-log10(abs(fft(a,4096))));

Note the reason why the equation above is "(ffi(a,4096)... " and not "(1-fft(a,4096)..." is

shown in the last few lines of paragraph 2 (it depends on how you define your "a" vector,
in our case a0=1).

Step 5: Shift the LPC data by subtracting by its minimum , so that all that all plots
can be compared on a common relative scale.

g=p-min(p);



Appendix B (simulated track data tables)
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TIME (SECONDS)

!
“ 1 2 3 4
Il

5 6 7 8 9 10

R 1.21 22.67 349 50.2 66.86 | 68.47 71.5 816 85.8 95.7

I'I;} AZ 1.57 30.07 | 38.02 55.2 80.82 | 108.1 | 129.7 | 146.8 | 1694 | 177.
EL 1.489 | 12.67 24.6 36.19 | 4191 | 52.86 | 68.89 79.5 80.14 | 884

R 33 26.75 | 37.16 | 52.19 | 70.12 71.4 80.5 85.9 89.77 | 99.2

l’l;; AZ 1.71 29.8 377 557 8001 | 107.8 | 1285 | 1464 | 168.0 176.

’Ir{i AZ " 2.05 29.18 383 55.83 81.4 108.8 | 1295 | 146.5 | 160.1 177.
EL I 1.07 12.6 2488 | 3627 | 4143 | 52.76 | 68.17 | 7923 | 8022 | 88.3
R 14.3 28.7 32.25 39.8 4885 | 57.14 | 67.63 | 60.07 | 5344 | 823
1’1{“; AZ 15.8 18.41 | 22.84 | 4327 | 5141 | 6454 | 7547 | 8129 [ 91.18 155.
EL 26.68 | 2931 | 3042 | 3843 | 3726 | 39.18 | 50.55 59.0 60.02 | 61.0
e
R 121 22.04 | 34.68 | 5067 | 66.38 | 68.38 71.5 818 85.02 | 950
1'1;1 AZ 2.05 29.18 | 3831 | 55.83 81.4 108.8 | 1295 | 146.5 | 168.1 177.
EL 1.07 12.63 | 24.88 | 3627 | 4143 | 52.76 | 68.17 | 79.24 80.3 88.3
R 89.32 827 71.25 68.8 63.85 | 56.14 | 48.62 | 39.66 254 13.3
I'I{g AZ 1758 | 166.4 | 1548 | 1482 | 1394 | 1305 | 1224 | 1162 | 70.17 | 38.1

R 12.49 | 2426 | 32.09 | 3695 | 45.07 535 67.38 | 60.27 509 78.5

;l;i AZ 1625 | 19.47 | 23.45 | 4499 | 5277 | 64.46 | 75.61 81.7 92.02 156.
EL 25.57 29.8 30.03 | 37.53 375 3996 | 50.75 | 59.55 | 60.89 | 61.6

R 3.31 2675 | 37.16 | 52.19 | 70.12 | 71.45 80.5 8593 | 89.77 | 99.2

1'1;; AZ 1.71 29.8 377 55.7 80.02 | 107.8 | 128.5 | 1404 | 168.1 176.
EL 2.89 1243 | 24.89 | 36.63 | 42.03 | 53.76 | 68.88 79.9 81.6 88.7

Table 19 Simulated track data results (in range, azimuth & elevation) for the track pairs
(TIR1, T1R2), (T1R1, T2R2), (T1R1, T3R2), and (T2R1, T1R2) over the 10 second time

period.
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TIME (SECONDS)

1 2 3 4 5 6 7 8 9 10

R 12.2 24.04 | 32.67 | 36.67 | 4593 533 67.5 60.03 | 50.03 | 780

l'lii AZ ’ 16.05 | 18.18 | 23.31 | 43.83 524 6582 | 76.52 | 81.52 | 91.09 | 156.
EL 25.07 | 29.63 | 30.88 | 37.27 | 3243 | 39.76 | 5047 | 59.24 | 60.27 | 613

R 14.65 | 27.35 | 32.04 | 3792 | 4533 | 55.08 | 7043 | 6294 | 54.65 | 82.2

IT{i AZ 1533 | 18.63 | 22.75 | 4399 | 51.36 | 6425 | 7598 | 81.72 | 91.75 | 155.

R2 AZ 1758 | 166.4

l'll‘i AZ 1626 | 14.47 | 2345 | 4499 | 52.77 | 6446 | 75.61 81.7 92.03 156.
EL 25.57 29.8 30.03 | 37.53 | 3749 | 39.95 | 50.74 | 59.55 | 60.07 | 61.6
R 89.32 82.7 71.25 68.8 63.86 | 56.13 | 48.62 | 39.07 | 2544 | 133
Ly 1548 | 148.2 | 1394 | 1305 | 1224 | 1162 | 70.18 | 38.1

I'I;:; AZ 49.05 | 82.18 | 86.31 | 98.83 | 1244 | 1468 | 159.5 | 166.5 | 171.1 178.
EL 3.07 7.6 12.88 | 1627 | 24.43 | 28.76 | 3047 | 31.24 | 2717 | 263
R 331 26.76 | 37.16 | 5219 | 70.12 714 80.5 85.9 89.77 | 99.2
1'1;; AZ 1.72 298 377 55.7 80.02 | 107.8 | 128.5 | 1464 | 168.1 176.
EL 2.98 1243 | 24.89 | 36.63 | 42.03 | 53.76 | 68.88 | 79.93 | 81.61 | 80.7
R 18.2 38.06 | 46.69 | 55.68 | 67.94 | 82.38 | 59.53 44.8 33.0 211
I’l{‘i AZ 49.05 | 82.18 | 86.31 | 98.83 | 1244 | 146.8 | 159.5 | 166.5 | 171.1 178.
EL '3.07 7.63 12.88 | 1627 | 2443 | 2876 | 3047 | 3124 | 2717 | 263
R 14.32 28.7 3225 | 3981 | 4885 | 57.14 | 6763 | 60.08 | 5344 ( 823
IT{‘; AZ 1585 | 1841 | 22.84 | 43.27 | 5141 | 64.55 | 7547 | 8129 | 91.18 155.
EL 26.68 | 29.32 | 3042 | 3043 | 37.26 | 39.18 | 50.55 59.0 60.8 61.0

Table 20 Simulated track data results (in range, azimuth & elevation) for the track pairs
(T2R1, T2R2), (T2R1, T3R2), (T3R1, T1R2), and (T3R1, T2R2) over the 10 second time

period.
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TIME (SECONDS)

|| 1 2 3 4 5 6 7 8 9 10

R I 1822 | 38.05 | 4667 | 5568 | 6794 | 82.38 | 59.53 | 44.83 | 33.03 | 210

I’I{‘i AZ 49,05 | 82.18 | 86.31 | 98.83 | 124.4 | 1468 | 159.5 | 1665 | 171.0 178.
EL 3.07 7.63 12.88 | 1627 | 24.46 | 28.76 | 3047 | 3123 | 27.17 | 263

T3 R 89.32 82.7 71.2 68.8 63.85 | 56.14 | 4862 | 34.08 | 25.44 133
e AZ “ 1758 | 1664 | 1548 | 1483 | 139.4 | 130.5 | 1225 | 1162 | 70.17 | 38.1
EL || 89.68 713 56.42 454 55.26 | 67.18 | 5154 48.0 30.8 12.0

Table 21 Simulated track data results ( in range, azimuth and elevation) for track pairs

(T3R1, T3R2) over the ten second time period.
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Appenle C (Program used to simulate tracks T1IR1,T1IR2 & T2R1,T2R2)

1.0 Matlab Program

The following matlab program was used to simulate track pairs from the two radars (radarl
R1, and radar2 R2), with the noise variances indicated in range, azimuth and elevation .
Assume the radars are independent and are tracking the same targets in an overlapping
surveillance volume for a time period of ten seconds. Assume simulated tracks from both
radars have a common space/time co-ordinate graph system as shown in Fig. 24.

Radar 1 has the following variances:
standard deviation in Range for Radar 1 = 1 metre
standard deviation in Azimuth for Radar 1 =2 degrees
standard deviation in Elevation for Radar 1 = 3 degrees
and Radar 2 has the following variances:
standard deviation in Range for Radar 2 = 3 metres
standard deviation in Azimuth for Radar 2 = 4 degrees

standard deviation in Elevation for Radar 2 = 1 degree.

Corresponding covariance matrices for Radar 1 & Radar 2 respectively :-

100 9 00
PI=0 4 0|, P2=0 16 O
009 0 01

Matlab Program is as follows:-

r=[1 23 34 50 66 68 77 81 85 95] % Range track data for 10 time intervals.
a=[1 29 37 55 80 107 128 146 168 176] % Azimuth " " " " " "
e=[1 12 24 36 41 52 68 79 80 88] % Eleyation™ " " " " "

rand("normal’) % Normal distribution

% Assuming normal distribution (using random number generator “rand")
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% We are creating noise with standard deviations shown below.

noisel=1*rand(1,10) % noisel used for range, radarl
noise2=3*rand(1,10) % noise2 used for range, radar2
noise3=2*rand(1,10) % noise3 used for azimuth, radarl
noise4=4*rand(1,10) % noise4 used for azimuth, radar2
noise5=3*rand(1,10) % noise5 used for elevation, radarl
noise6=1*rand(1,10) % noise6 used for elevation, radar2

% Adding noise to Range, Azimuth & Elevation, creating new tracks from radar 1 (rl, al,
% ell) and radar 2 (12, a2, el2).

rl= r+noisel % Adding noise to Range, creating a new track from radar 1.
r2= r+noise2 % Adding noise to Range, creating a new track from radar 2.
al= a+noise3 % Adding noise to Azimuth, creating a new track from radarl.
a2= a+noise4 % Adding noise to Azimuth, creating a new track from radar2.
ell=e+noise5 % Adding noise to Elevation, creating a new track from radarl.
el2=e+noise6 % Adding noise to Elevation, creating a new track from radar2.

pl=[100;04 0,009] % Covariance matrices for radarl and radar2 (for simulated
% scenario),

p2=[9 0 0;0 16 0;0 0 1] % assuming independent radars, with different accuracies in range
% azimuth and elevation.

s12=pl+p2 % Covariances can be added if radars independent.

is12=inv(s12) % Get the inverse of the sum of the covariances.

pri=10

eold=0

for i=1:prl % We are summing the "e" quadratic term (Mahalanobis distance)

r=r1(1,i)-r2(1,i) % for the 10 time instances. The Mahalanobis distance is a
da=al(1,i)-a2(1,) % measure of similarity between two tracks ( ie. the more
de=ell(1,i)-e12(1,i) % similar the tracks are , the smaller the "e" value.
g=[dr;da;de]

el=(g)’ *is12*(g) % Converting the "g" vector into a scalar
eold=eold+el
end
for j= 1:prl % If the null hypothesis HO is true (two tracks are the same)

% Tracks fused together using equation below [37].
% Yc=P2.(P1+4P2).Y1+P1(P1+P2)".Y2
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% Yc below, is a 3x1 vector containing fused range, azimuth & elevation.

Ye=p2*is12*[r1(1,j);al(1,j);el1(1,j)]+p1*is12*[r2(1,j);a2(1,j);e12(1,j)] % Combined track.

ric(1,j)=Yc(1,1) % fused range vector over 10 second period
alc(1,j)=Yc(2,1) % fused azimuth vector over 10 second period
end

% Plotting range tracks rl1 and r2 from radars 1 & 2, and the fused range track also
% plotting azimuth tracks al and a2 from radars 1 & 2, and the fused azimuth track
% over 10 second time period.

t=[123456789 10]

subplot(211), plot(t,r1,”:’,t,r2,’-’ t,rlc,”*’)
ylabelCRANGE’)

subplot(212), plot(t,al,’:’ t,a2,’-’ t,alc,’*)
ylabel(AZIMUTH’)
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Appendlx D ("C" program used to process raw data from the FPS-16
Radar)

The following software written in "C" reads three raw data files containing :-

Slant Range (in 10’s metres), Azimuth (as a binary fraction of 360 degrees, where 800
HEX= 180 Degrees with respect to true north) and similarly for elevation (8000 Hex =180
Degrees) with a 45 degree offset due to the position of the DSTO FPS-16 Tracking Radar.
We then perform the polar to cartesian conversions necessary to align the tracks from both
radars to bring them into a common space/time co-ordinate system, so they can be
correlated and eventually fused, if found to be the same track from both radars. Note, since
each kinematic range,azimuth and elevation value of the track is logged into the raw files
every second, we need only know the “start logging time" to calculate the local time of
each track value (this aids in time alignment for tracks from both radars).

#include <stdio.h>
#include <io.h>
#include <string.h>
#include <dos.h>
#include <math.h>
#include <stdlib.h>

#define hex_float_range 10.0 /* Range conversion =10 metres */

#define hex_float_az 180.0/32768.0 /* Azimuth float conversion from hex, 180.0/2%
degrees) */

#define hex_float_el 180.0/32768.0 /* Elevation float conversion from hex, 18021
degrees) */

#define pion180 3.14159265/180

#define rlxp 7464.17 /* Position of DSTO Radar in X & Y wrt Adelaide Airport
Radar */

#define rlyp 25248.13 /* position in metres. */

#define rlzp 0.0

main()

{

unsigned ac,rc,ec,i;
long int rcf,act,ect;
float range,az,el;
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float rlazrd,rlelrd,r1x,r1y,riz,rixout,rlyout,r1zout,rigndra,ritgtht;
float rlrg;

int hr=0,min=0,sec=0;

FILE *rinfp,*fopen(),*ainfp, *einfp,*stream;

rinfp=fopen("b:16range.033","rb"); /*Slant Range input binary file */
ainfp=fopen("b:16az.033","tb"); /*Azimuth " y "ok
einfp=fopen("b:16¢1.033","rb"); /*Elevation " "oy

stream=fopen("b:razel4.dat","w"); /* Output file */

for(i=0;i<256;++i) /* Skip range, azimuth & elevation file headers */

{

re=getc(rinfp);

printf(" %c",rc);

ac=getc(ainfp);

printf(" %c",ac);

ec=getc(einfp);

printf(" %c",ec);

}

fprintf(stream, "X CO-ORD(m) Y CO-ORD(m) Z CO-ORD(m) HEIGHT DATA
TIME ")

/* Initialise the time in hours, minutes & seconds */

hr=13;
min=51;
sec=00;

for(i=0;i<400;++i)
{

/* Get Range & do conversion to float. */

rc=getw(rinip);
rcf=rc;
range=rc*hex_float_range;

/* Get Azimuth & do conversion to float */

ac=getw(ainip);
acf=ac;
az=ac*hex_float_az;
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/* Get Elevation & do conversion to float */
ec=getw(einfp);
ecf=ec;

el=(ec*hex_float_el)+45.0-360; /* Add 45 degree offset */

/********************************************/

/* Polar to Cartesian Conversions */
/********************************************/

/* Convert Azimuth and Elevation from degrees to radians */
rlazrd=(az-1.4)*pion180; /* Azimuth is converted to radians, */
/* and the angle is corrected by 1.4 degrees */
/* for true north to grid north correction. */

rlelrd=el*pion180; /* Elevation is converted to radians  */

/* Polar to Cartesian Conversion */

rlz=range*sin(rlelrd); /* Z co-ordinate */
rirg=range*cos(rlelrd);  /* Ground range */
rlx=rirg*sin(rlazrd), /* X co-ordinate */
rly=rlrg*cos(rlazrd); /* Y co-ordinate */

/* Correct positions wrt origin point (Adelaide Airport) */

rlxout=rlx+rixp; /* X, Y, Z positions wrt origin point (Adelaide Airport) */
rlyout=rly+rlyp;
rizout=rlz+rlzp;

fprintf(stream,"\n%f, %f, %f, %f, %d",r1xout,rlyoutrlzout,rltgtht,i);/* Print X,Y,Z i
/* & height value to output file */

/***********************************/

/¥ Time calculations */
/***********************************/

++8€ec;
if(sec>59)
{ )
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++min;
sec=0;

if(min>59)
{
++hr;
min=0;
}
fprintf(stream,” %d : %d :%d" hr,min,sec); /* Print local time to output file */

}

fclose(stream);



Appendix E (Real track data in Cartesian Co-ordinates)
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Time (seconds)

1 2 3 4 5 6 7 8 9 10
-X 14.78 14.87 14.96 15.07 15.16 15.26 15.3 15.35 15.45 15.5
T1
R1 Y 5.44 5.59 5.73 5.88 6.03 6.176 6.256 6.337 6.49 6.63
Z 936 944 952 963 970 .987 .088 .989 996 1.01
e
-X 13.87 13.97 14.07 14.17 1427 14.37 14.47 14.57 14.67 14.7
T1
R2 Y 5.271 5.428 5.58 5.74 59 6.05 6.216 6.373 6.531 6.68
7z 936 944 952 96 .969 977 986 994 1.002 1.01
ey
-X 8.059 8.08 8.1 8.12 8.14 8.16 8.19 8.21 8.23 8.25
T2
R2 Y 39.53 39.5 3047 39.44 39.40 39.27 39.34 39.31 39.28 39.2
7z 512 515 518 521 524 527 53 533 .536 539
=L ———— = s
wX 58.48 58.49 58.5 58.52 58.53 58.54 58.55 58.56 58.57 58.5
T3
R2 Y 65.36 65.4 65.46 65.51 65.56 65.61 65.66 65.7 65.75 65.8
VA 1.01 1.007 1.005 996 088 .08 972 964 055 947
X _25.75 25.71 25.68 25.64 25.6 25.57 25.53 25.49 2545 25.4
T4
R2 Y 22.07 22.04 22.01 21.97 21.94 2191 21.88 21.85 21.82 21.8
Z 1.493 1.493 1.49 1.49 1.49 1.49 1.49 1.49 1.49 1.49
=== | |
X 13.09 13.14 13.20 13.25 133 13.36 13.41 13.47 13.52 13.5
T5
R2 Y 22.29 22.33 22.37 22.41 22.45 22.49 22.53 22.57 | 2261 22.6

N

914 914 914 914 914 914 914 914 914 914

Table 22 Real track data from the DSTO Radar (T1R1), and from Adelaide Airports
Surveillance Radar (T1R2, T2R2, T3R2, T4R2, T5R2). T1R1 and T1R2 are tracks , are the
same target being tracked by both radars.
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Appendix F (CW Doppler Radar and Spectra)

1.0 CW Radar [35]

When a radar signal is reflected off a moving target the frequency is changed. This is
called the Doppler effect which allows the velocity to be estimated but, more significantly,
it means that returns from unwanted stationary objects such as ground, vegetation,
buildings can be filtered out. This process of clutter rejection leads to the radar’s strong
capability to detect moving targets. The very different characteristic Doppler signature of
various types of targets such as marching men, jet engines, propeller driven aircraft,
helicopters etc., allows target classification to be carried out.

High resolution spectrum analysis of received doppler signals can reveal a family of
modulation sidebands around the airframe line with significant components as far as 10
kHz from the airframe line. The modulation components, which are symmetric about the
airframe line in frequency but asymmetric in amplitude, are caused by rotating machinery
and are dependent upon engine rpm, and the number of propeller, compressor or turbine
blades.

e

Figure 42 Doppler frequency principle .(aken from [35]).
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Figure 42 shows that an approaching target will increase the radar frequency f; by the
Doppler frequency f, whilst a target receding at the same velocity will reduce it by the
same amount. For a target moving circumferentially around the radar with no radial
component the Doppler frequency is zero. The Doppler frequency is given by:

f4 )_

Where v is the target velocity radially inwards and A is the radar wavelength. For a radar
with A=30mm (corresponding to £=10 Hz), a vehicle moving towards the radar at 13.4 m/s
gives a Doppler frequency of about 900 Hz. An aircraft flying at 660 m/s gives a Doppler
shift of 44 kHz on the same radar.

To extract the moving target Doppler frequency from the stationary clutter returns, the
radar echo must be mixed with a signal at the original radar frequency. Figure 43 shows
how this is done in a continuous wave radar. The radar transmits at f, continuously by use
of a circulator. The circulator passes radar energy from one connection to that on its right
whilst leaving that on its left isolated. Thus the energy from the oscillator goes direct to
the antenna and not to the receiver where its high power levels would damage the receiver.
The radar return is passed from the antenna direct to the receiver. The radar return
consists of the incoming target echo at f+f, together with energy reflected from the
stationary ground or rain clutter at f,.
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Figure 43 CW Radar.(Taken from [35]).

These signals are received and pass to the mixer. The mixer effectively subtracts the
frequencies of the two signals. The output thus consists of (f,+f,)-f.=f, for the target signal
and f-f,=0. Thus the clutter is suppressed whilst the target signal can be measured to
establish the speed or to classify the target type. Figure 44 shows the transmission
characteristic of a typical high pass filter. It is clear that it only passes the high Doppler
frequencies and has a gradual cut off down to zero Doppler. In fact clutter will posses a
range of Doppler frequencies due to, for example, a wind blown tree movement or the
motion of rain. The filter suppresses these whilst passing target Doppler.

The rich content of harmonics in Doppler spectrum from moving targets makes
identification possible. Figures 30 & 32, (obtained in trials from an X Band CW Radar)
illustrate this by comparing the spectra from a propeller aircraft and a jet. The Doppler
frequency due to the airframe motion is clearly seen in both cases. However, the Doppler
tones due to the propellers and compressor blades are clearly different. The automation of
this classification (after processing) has been illustrated using neural networks.
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Figure 44 Transmission characteristics of a typical HP Filter.(Taken from [35]).

2.0 Doppler Spectra from Jet and Propeller Aircraft [36,28]

The motion of an aircraft target’s propellers, in addition to causing some amplitude
modulation of the airframe doppler signal, produces doppler signals of its own. Since the
return from a propeller is periodic at the blade rotational frequency (speed at which the
blade was rotating), and the blade tip velocity approaches Mach 1.0, the spectrum of the
propeller doppler signal at most aspect angles is quite complex and is separate from that of
the airframe doppler signal.

In the case of a jet aircraft, modulation is produced by the compressor or turbine blades of
the engine. Even though the engines are usually totally enclosed, except for intake and
exhaust ducts some times 16 feet in length, there is sufficient propagation down the ducts
at microwave frequencies to allow ample amounts of rf energy to be modulated by the
blades. Since the compressors and turbines contain relatively large numbers of blades
rotating at high angular velocities, the modulation frequencies will be much higher than
those of a propeller-driven aircraft ( refer to Fig 30 & 32 experimental spectra results of jet
and propeller driven aircraft). The modulation sidebands produced by the blades are easily
distinguished, and, depending upon aspect angle and transmitter frequency, can be quite
strong compared to the aircraft doppler return.
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A typical doppler frequency spectrum of a propeller-driven aircraft, is shown in Figure 32.
The most prevalent spectral line, of course, is the doppler return from the airframe,
denoting its radial velocity. Some amplitude modulation sidebands at the propeller blade
frequency appear around the airframe. This amplitude modulation can be caused by the
propeller blade chopping a portion of the reflected radar energy from the airframe, thereby
periodically modulating the received echo.

Also in the propeller driven aircraft case another group of spectral lines can be found at a
lower frequency than that of the airframe line (refer to Figure 32). These are the result of
reflected energy from the rotating propeller blades themselves, thus creating doppler
frequencies proportional to the vector sum of the radial components of the airframe
velocity and the propeller tangential velocity at the radius of the reflected surface. Since a
propeller has a varying blade angle along its length, the position of the reflecting area on
the blade depends upon the viewing angle and the blade angular position. Thus, the
propeller doppler return is modulated at the blade frequency, and the centre frequency of
its spectrum is dependent upon aspect angle.

For approaching targets with small aspect angles the major portion the propeller doppler
spectrum is confined mostly to the region around the airframe (refer to Fig. 32) line, and at
larger angles it has a much wider spread into the region lower in frequency than the
airframe line [36].



Appenle G (Chi-Squared Distribution Tables, taken from [8])

Percentage Polnts of the y* Distribution®

975

995 990 .950 .900 500 .100 .050 025 .010 .005

1 00+ .00+ 00+ .00+ 02 45 271 3.84 5.02 6.63 7.88
2 01 02 .05 .10 21 1.39 4.61 5.99 7.38 9.21 10.60
3 07 A1 22 35 58 2.37 6.25 7.81 9.35 1134 - 1284
4 21 .30 48 k2! 1.06 3.36 7.78 9.49 11.14 13.28 14.86
5 41 55 83 1.15 1.61 4.35 9.24 11.07 12.83 15.09 16.75
6 68 87 1.24 1.64 2.20 535  10.65 12.59 14.45 16.81 18.55
7 99 1.24 1.69 2.17 2.83 6.35 1202 14.07 16.01 18.48 20.28
8 1.34 1.65 218 273 3.49 734 1336 15.51 17.53 20.09 21.96
9 1.93 2.09 2.70 3.33 417 8.34  14.68 16.92 19.02 21.67 23.59
10 2.16 2.56 3.25 3.94 4.87 934 1599 18.31 20.48 23.21 25.19
1 2.60 3.05 382 4.57 558 1034  17.28 19.68 21.92 24.72 26.76
12 3.07 3.57 4.40 523 630 11.34  18.55 21.03 23.34 26.22 28.30
13 3.57 a1 5.01 5.89 7.04 1234 1981 22.36 24.74 27.69 29.82
14 4.07 4.66 563 6.57 779 1334 2106 2368 26.12 29.14 31.32
15 4.60 5.23 6.27 7.26 8.55 1434 2231 25.00 27.49 30.58 32.80
16 5.14 5.81 6.91 7.96 931 1534 2354 26.30 28.85 32.00 34.27
17 5.70 6.41 7.56 867 1009 1634 2477 27.59 30.19 33.41 35.72
18 6.26 7.01 .23 939 1087 1734 2599 28.87 31.53 34.81 37.16
19 6.84 7.63 so1 1042 1165 1834  27.20 30.14 3285 36.19 38.58
20 7.43 8.26 059  10.85 12.44 1934  28.41 31.41 3417 37.57 40.00
21 8.03 890 1028 1159 1324 2034 2962 3267 35.48 38.93 41.40
22 8.64 054 1098 1234 1404 2134 3081 33.92 36.78 40.29 42.80
23 926 1020 11.69 1309 1485 2234 3201 3517 38.08 41.64 4418
24 989 1086 1240 1385 1566 2334 3320 36.42 39.36 42.98 45.56
o5 | 1052 1152 1312 1461 1647 2434 34.28 37.65 40.65 44.31 46.93
2 | 1116 1220 1384 1538 17.29 2534 3556 38.89 41.92 45.64 48.29
27 | 1181 1288 1457 1615 1811 2634 3674 40.11 4319 46.96 49.65
o8 | 1246 1357 1531 1693 1894 2734 3792 4134 44.46 48.28 50.99
29 | 1312 1426 1605 1771 1977 2834 39.09 42.56 45.72 49,59 52.34
530 | 1379 1495 1679 1849 2060 29.34 4026 43.77 4698 (5089  53.67
4 | 2071 2216 2443 2651 2905 3934 5181 55.76 59.34 63.69 66.77
50 | 2799 2071 3236 3476 3769 4933 6317 67.50 71.42 76.15 79.49
60 | 3563 37.48 4048 4319 4646  59.33 7440 79.08 83.30 88.38 91.95
70 | 4328 45.44 4876 5174 5533 6933 8553 90.53 9502  100.42  104.22
g0 | 5147 5354 5715 6039 6428 7933 9658 10188 106.63 11233 116.32
90 | 5020 6175 6565 6913 7329 89.33 10757 11314 11814 12412 128.30
w00 | 6733 7006 7422 7793 8236 99.33 11850 12434 12056 = 13581 14047

*y =degrees of freedom,
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Appendix H ( cw Radar, Test & Training Data for NN1)
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FREQ TRIAL 1&2 CW RADAR TARGET DATA (AT ASPECT ANGLE
(KHz) | INDICATED) OVER THE 11 FREQUENCIES USED TO TRAIN NN1
" (PRE-PROCESSED USING LINEAR PRED. FILTER)

Jet A Jet B Jet C JetD Prop. A | Prop. B | Pro.C
20 Deg. | 55 Deg. | -60 Deg | -58 Deg | 0 Deg. | -20 Deg | 7.7 Deg

2 0.1231 0.7039 0.779 0.170 1.0348 0.8169 0.844

3 0.2502 0.6528 0.8526 0.2173 1.0332 0.8233 0.65

4 0.3133 0.6925 0.7319 0.2576 0.9736 0.7425 0.411

5 0.2088 0.7406 0.6534 0.18 1.0102 0.6784 0.248

6 0.084 0.6083 0.766 0.168 1.1064 0.78 0.159
7 0.029 0.4618 0.904 0.346 0.6965 0.67 0.1156
8 0.0685 0.4042 0.4991 0.5137 0.43 0.35 0.0829

9 0.2258 0.4137 0.282 0.1557 0.3129 0.197 0.0451
10 0.3696 0.3993 0.202 0.0112 0.3015 0.163 0.0152
11 0.1736 0.3014 0.2019 0.0226 0.3327 0.1979 | 0.0078
12 0.0321 0.203 0.2025 0.1248 0.2747 0.177 0.0204

Table 23 Trial 1&2 Continuous Wave Radar target data (consisting of 4 jets & 3
propeller driven light aircraft at various aspect angles) used to train neural network NNI1,
the data has been pre-processed using a Linear Prediction filter (smoother); as shown in the
matlab program in Appendix A section 4.
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Freq. TRIAL 3 CW RADAR TARGET DATA OVER THE 11
( KHz) | FREQUENCIES, USED TO TEST NN1 (ASPECT ANGLE SHOWN)
(Data pre-processed using Linear Prediction Filter)
Target 1 Target 2 Target 3 Target 4 Target S5 Target 6 Target 7
Jet Jet Propeller Propeller Propeller Propeller | Propeller
(-31 Deg.) | (-32 Deg.) Aircraft Aircraft Aircraft Aircraft Aircraft
(-16 Deg.) (43 Deg.) (35 Deg.) (-33 Deg) | (-31 Deg)
2 0.5728 0.7246 0.7233 0.7549 0.6312 0.5449 0.7031
3 0.3295 0.540 0.687 0.699 0.6071 0.4488 0.5003
4 0.2271 0.316 0.7117 0.615 0.5496 0.369 0.327
5 0.2467 0.206 0.504 0.7305 0.346 0.307 0.2519
6 0.3975 0.22 0.277 0.767 0.185 0.218 0.2612
7 0.6496 0.345 0.1697 0.397 0.125 0.1388 0.244
8 0.6754 0.4612 0.142 0.1957 0.1313 0.1038 0.1312
9 0.6713 0.4203 0.1221 0.1164 0.1089 0.101 0.043
10 0.5369 0.3629 0.0832 0.1207 0.0422 0.0949 0.0225
11 0.2509 0.2734 0.0856 0.1759 0.0259 0.0728 0.0422
12 0.0955 0.1719 0.168 0.213 0.102 0.051 0.0616

Table 24 Trial 3 Continuous Wave Radar target data (consisting of 2 jets & 5 propeller
aircraft at aspect angles indicated) used to test neural network NN1, the data has been pre-
processed using a Linear Prediction Filter (smoother); refer to Appendix A for matlab
program.
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AppendiX I (Surveillance Radar Training Data for NN2)

TRAINING NN2 WITH POSITIONAL X&Y FLIGHT PATH DATA FOR
PERTH & DARWIN FLIGHTPATHS

CARTESIAN CO-ORDS DESIRED OUTPUT
INPUT IN (KM)

X(KM) Y(KM) DARWIN PERTH UNKNOWN
0 4 1 1 0
5 7 1 0 0
10 10 1 0 0
15 16 1 0 0
20 23 1 0 0
25 30 1 0 0
30 39 1 0 0
5 4 0 1 0
10 4 0 1 0
15 5 0 1 0
20 7 0 1 0
30 9 0 1 0
35 10 0 1 0

Table 25 Training data for NN2 backpropagation neural network obtained from Adelaide
Airport showing positional X & Y flight path data for Perth & Darwin jets.
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TRAINING DATA FOR NN2 WITH POSITIONAL X&Y POSSIBLE
UNKNOWN FLIGHT PATHS
CARTESIAN CO-ORDS DESIRED OUTPUT
INPUT (KM)
X Y DARWIN PERTH UNKNOWN
0 39 0 0 1
0 25 0 0 1
0 10 0 0 1
5 30 0 0 1
5 15 0 0 1
5 40 0 0 1
10 23 0 0 1
10 20 0 0 il
10 40 0 0 1
15 25 0 0 1
15 35 0 0 1
15 40 0 0 1
20 30 0 0 1
20 40 0 0 1
20 15 0 0 1
25 40 0 0 1
25 20 0 0 1
30 30 0 0 1
30 25 0 0 1
30 15 0 0 1
35 ; 39 0 0 1

Table 26 Training NN2 with positional possible unknown flight-paths in cartesian co-

ordinates X & Y.
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Appendlx J (FFT Spectrum & Linear Prediction Spectral Estimate Plots

of Jet & Propeller Aircraft)
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Figure 45 The FFT spectrum (magnitude squared, 4096 samples) of a commercial jet
aircraft (Target 1) at an aspect angle of -31 degrees. ( Sample rate = 5S0KHz)
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Figure 46 The linear prediction spectral estimate of a commercial jet (Target 1)
shown above.
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Figure 47 The FFT spectrum (magnitude squared, 4096 samples) of a commercial jet
aircraft (Target 2) at an aspect angle of -45 degrees.
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Figure 48 The linear prediction spectral estimate of a commercial jet shown above.
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Figure 49 The FFT spectrum (magnitude squared) of a propeller

(Target 3) at an aspect angle of -16 degrees.

driven aircraft
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Figure 50 The linear prediction spectral estimate of a propeller driven aircraft shown

above.
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Figure 51 The FFT spectrum (magnitude squared) of a propeller driven aircraft
(Target 4) at an aspect angle of 43 degrees.
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Figure 52 The linear prediction spectral estimate of the propeller driven aircraft
shown above.
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Figure 53 The FFT spectrum (magnitude squared) of a propeller driven aircraft
(Target 5) at an aspect angle of -35 degrees.
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Figure 54 The linear prediction spectral estimate of a propeller driven aircraft shown
above.
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Figure 55 The FFT spectrum (magnitude squared) of a propeller driven aircraft
(Target 6) at an aspect angle of -33 degrees.
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Figure 56 The lincar prediction spectral estimate of a propeller driven aircraft shown
above.
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Figure 57 The FFT spectrum (magnitude squared) of a propeller driven aircraft
(Target 7) at an aspect angle of -31 degrees).
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Figure 58 The linear prediction spectral estimate of the propeller driven aircraft
shown above.
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Figure 59 The FFT spectrum (magnitude squared) of a commercial jet aircraft at an
aspect angle of 20 degree (training example 1 for NN1).
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Figure 60 The linear prediction spectral estimate of a commercial jet shown above.
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Figure 61 The FFT spectrum (magnitude squared) of a commercial jet aircraft at an
aspect angle of 55 degrees (training example 2 for NN1).
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Figure 62 The linear prediction spectral estimate of a commercial jet shown above.
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Figure 63 The FFT spectrum (magnitude squared) of a commercial jet aircraft at an
aspect angle of 60 degrees (training example 3 for NN1).
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Figure 64 Th¢ linear prediction spectral estimate of a commercial jet shown above.
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Figure 65 The FFT spectrum (magnitude squared) of a commercial jet aircraft at an
aspect angle of -58 degrees (training example 4 for NN1).
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Figure 66 The linear prediction spectral estimate of a commercial jet sown above.
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Figure 67 The FFT spectrum (magnitude squared) of a propeller driven aircraft at an
aspect angle of 58 degrees (training example 5 for NN1).
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Figure 68 The lincar prediction spectral estimate of a propeller driven aircraft sown
above.
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Figure 69 The FFT spectrum (magnitude squared) of a propeller driven aircraft at an
aspect angle of -20 degrees (training example 6 for NN1).
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Figure 70 The linear prediction spectral estimate of a propeller driven target shown
above.
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Figure 71 The FFT spectrum (magnitude squared) of a propeller driven target at an
aspect angle of 7.7 degrees (training example 7 for NN1).
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Fti)gure 72 The linear prediction spectral estimate of a propeller driven target shown
above.
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Appendix K (adetaide Airport & DSTO Radar X,Y & Z Plots)
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Fig. 73 Displays X,Y & Z (metres) versus time for targets. Radarl (DSTQ) reports 1 track (T1R1) and Radar2
(Adelaide Airport) reports 5 tracks (T1R1,T2R2,T3R2,T4R2 & T5R2). The 5 tracks above (X,Y,Z vs Time) are
displayed in 4 common space/lime co-ordinale graph. The vertical lines indicate the 10 second time period, we
have performed the correlation tests (ie. 13:51:28-13:51:37).
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Appendix L (Entropy & Uncertainty using D-S & Fuzzy Methods)

TARGET UNCERTAINTY & UNCERTAINTY & ENTROPY
NO. ENTROPY FROM FROM COMBINED
COMBINED KNOWLEDGE KNOWLEDGE SOURCES
SOURCES ,2&3
1&2
D-S FUZZY D-S FUZZY
METHOD METHOD METHOD METHOD
1 4.2E-4 0.1976 1.6E-5 0.0899
2 4.2E-4 0.197 2.3E-5 0.089
3 3.3E-4 0.0798 6.6E-6 0.07
4 1.97E-4 0.1425 3.9E-6 0.139
5 1.99E-4 0.1445 5.9E-6 0.0905
6 2.14E-4 0.1561 6.7E-6 0.0899
7 3.2E-4 0.1665 8.99E-6 0.089
8 4.4E-4 0.1679 2.8E-4 0.0668

Table 27 Shows & compares the reduction of uncertainty/entropy using Dempster Shafer
(D-S) & Fuzzy Reasoning methods when combining two and then a third knowledge
source.
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Appendix M (Verification Tests on NN1 )

To verify that NN1 was classifying the data correctly the following tests were performed
(as shown below) on processed trial data obtained from the CW Radar (ie. Jet or Propeller
driven Aircraft). Random noise was added (using matlab software) to the CW radar (real)
data stored in Array O as discussed in (section 4) Appendix A .(Note the maximum real
magnitude value is 12).

The following output results are shown in Table 28 when noise (0.5, 1.0 and 2.0) is added
to array0 and processed using the linear predictive filter, and then input to NN1. The
neural network NN1 was trained on data shown in Appendix H, Table 23 and tested on
data shown in Table 24 (output results with noise shown in Table 28).

Target Correct Noise Added to Array0
NO. Classificat.

None 0.5 1.0 2.0
1 1.0 0.9998 0.9998 0.99969 0.999
2 1.0 0.99%4 0.997 0.9901 0.728
3 0.0 0.0032 0.007 0.0047 0.07
4 0.0 0.0024 0.0085 0.0048 0.0059
5 0.0 0.0092 0.01675 0.026 0.23
6 0.0 0.05 0.036 0.045 0.06
7 0.0 0.1608 0.01769 0.035 0.036

Table 28 The output of NN1 when varying amounts of noise is added to the input data in
Array0, and processed using LPC.

Test and training data were swapped and the results noted from the output of NN1.

NN1 was initially trained on the data shown in Table 23 and tested on data from Table 24
Appendix H, the output results from NN1 are shown in Table 29 (Fig. 74). Then NN1 was
trained on the data shown in Table 24 and tested on data shown in Table 23 Appendix H,
the output results from NN1 are shown in Table 30 (Fig. 75).

The overall conclusion is that input noise generated (max. 16% of input signal), didn’t
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make significant changes to the output of NN1 as shown in Table 28. And NN1 classified
the input data correctly (jet or propeller targets) even when testing and training data for the
network were swapped, (refer to Bar Graphs).

Targets Desired NN1 Output from NN1 Trained on Data from
Output table 21 and tested on data from table 22

1 1.0 0.9998

2 1.0 0.9994

3 0.0 0.0032

4 0.0 0.0024

5 0.0 0.0092

6 0.0 0.0500

7 0.0 0.1608

Table 29 The output data from neural network NN1 when trained on data shown in table
23 and tested on data shown in table 24 Appendix H.

NEURAL NETWORK OUTPUT NN1

TARGET NUMBER

Figure 74 NN1 output when trained on processed data
from table 23 and tested on data from table 24

Appendix H.
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Target NO. Desired Output NN1 output when Trained on
Table 22 and Tested on Table 21
1 1.0 0.9676
2 1.0 0.8000
3 1.0 0.7800
4 1.0 0.9960
5 0.0 0.00268
6 0.0 0.010678
7 0.0 0.0028

Table 30 The output of NN1 when trained with data from table 24 and tested with data
from table 23 Appendix H (processed CW Radar data).

NEURAL NETWORK OUTPUT NN1

TARGET NUMBER

Figure 75 Bar graph showing the results from NN1
when trained with processed CW Radar data from table
24 and tested with data from table 23 Appendix H.
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Appendix N (Data Fusion of multiple classifiers [32])

One of the problems in data fusion is the combination of "opinions" of multiple classifiers
as to the identity of a target. Such a situation arises for my experimental case, for example,
a number of knowledge sources (ie sensors, priori knowledge) outputs can reach a
conclusion about the identification of a proposition ( ie target type , Darwin jet, Perth jet,
Unknown jet, Prf)peller driven aircraft). It is desirable to combine these knowledge sources
to give a better assessment of the identity of the target.

The Bayesian approach to classification of an observation (ie. vector x) of the identity of a
target for example is to find the class "c" which maximises P(c/x) . ie From Bayes rule we
have:-

P(c)

P(c/x)=P(x/c). —%

In data fusion sensors (or knowledge sources) can be of different types ie. a Surveillance
Radar gives us positional attributes of targets and a CW Radar gives us doppler
modulation and flight timetables give us arrival flight times of possible targets. The
approach used is to perform initial processing on partial information, and then attempt to
fuse the resulting reduced data , ie. make separate classification based on information from

each knowledge source and integrate these decisions. For example consider the general
case where we can break the classification problem into separate parts as shown in Fig. 76.

Each of the sensors processors Si (refer to Fig. 76) could attempt either "hard” or "soft"
classifications, producing decisions on the identity of a target type for example. The fusion
centre "F" makes an overall classification on the basis of the information supplied to it.

Adaptive feedforward neural networks can give appropriate probabilistic outputs, and these
can be used to estimate the class probabilities {32]. The architecture shown in Fig. 76 is
similar to that used for multisensor data fusion (shown in Fig. 35) which consists of a set
of independent sensor neural nets (NN1 and NN2) one for each sensor (CW radar and
Surveillance radar) coupled to a fusion net NN3.
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Figure 76 The integration of classifier modules.
(Taken from [32]).
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AppendiX O (Polar to Cartesian Conversion of Radar Data)

The raw data received from the FPS-16 Radar is in the following format (stored in three
separate files for range, azimuth and elevation):-

Slant Range (in 10’s of metres), Azimuth (as a binary fraction of 360 degrees, where 8000
Hex = 180 Degrees with respect to true north) and similarly for Elevation (8000 Hex =180
Degrees) with a 45 degree offset due to the position of the radar. (Refer to Appendix D for
"C" software used to process the data) .

The data from both radars has to be aligned in space (as shown below in steps 1 and 2)
and time (local time was recorded every second from both radars) before any fusion can
occur . The raw data from the FPS-16 Radar was converted to polar and then to cartesian
X(m), Y(m), Z(m) co-ordinate system relative to Adelaide Airports position (origin
X=0,Y=0,Z=0) (Refer to Appendix D for software written in "C" used to process the raw
radar data to the format mentioned above).

The FPS-16 Radar Polar to Cartesian conversion sums for the program shown in Appendix
D, are as follows :-

Step 1 Convert Azimuth and Elevation from Degrees to Radians (correct the angle from
true north to grid north (subtract 1.4 Degrees)).

AZIMUTH,RADIANS ; AZRAD=(AZIMUTH—1.4)*—1%

ELEVATION RADIANS ; ELRAD=(ELEVATIO. *FI;IO

Step 2 Polar to Cartesian conversion (note, slant range is the distance from the radar to
the target in the air, whereas ground range is the ground distance, ie. refer to Fig. 77).
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(Z co-ordinate) Z=(SLANT RANGE) «SIN(ELRAD)
GROUND RANGE=(SLANT RANGE)*COS(ELRAD)
(X co-ordinate) X=(GROUND RANGE)+*SIN(AZRAD)

Y=(GROUND RANGE)+COS(AZRAD)

Z1

Adelalde
Alrport Radar

Corigin)

DSTO Radar

Figure 77 Converting polar coordinates from the radars to cartesian, with respect to
Adelaide Airports Grid map position which is used as the origin (ie. x, y, z =0).

DSTO’S Radar grid map position (in Eastings and Northings) are as follows:-

East 282 088.78 metres
North 6 154 616.49 metres.

? Adelaide Airport’s Radar grid map position (in Eastings and Northings) are:-

|
{ East 274 626.1 metres
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North 6 129 373.4 metres

Some of the measurement corrections that have to be noted and adjusted for are as follows:
Taking into consideration the point scale factor (which is the ratio of an infinitesimal
distance at a point on the grid to the corresponding distance on a spheroid) . For example,
1 metre on the ground is equal to 1.0002 metres on a grid map showing Easting and
Northings measurements, the difference is negligible for small distances. Also Azimuth
(with respect to true north) measurements taken from the radar have to be adjusted to grid
north (which is a difference of 1.4 degrees) as shown in the software in Appendix D.

Since I am making Adelaide Airport the cartesian reference point, the new adjusted
cartesian co-ordinates are as follows (in metres):-

Adelaide Airport Radar X = 0, Y = 0; DSTO’S FPS-16 Radar position ( point scale factor
adjusted, with respect to Adelaide Airport) X = 7,4614.17 metres, Y = 25,248.13 metres.
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