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The future of Blue Carbon science
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The term Blue Carbon (BC) was first coined a decade ago to describe the disproportionately

large contribution of coastal vegetated ecosystems to global carbon sequestration. The role

of BC in climate change mitigation and adaptation has now reached international prominence.

To help prioritise future research, we assembled leading experts in the field to agree upon the

top-ten pending questions in BC science. Understanding how climate change affects carbon

accumulation in mature BC ecosystems and during their restoration was a high priority.

Controversial questions included the role of carbonate and macroalgae in BC cycling, and the

degree to which greenhouse gases are released following disturbance of BC ecosystems.

Scientists seek improved precision of the extent of BC ecosystems; techniques to determine

BC provenance; understanding of the factors that influence sequestration in BC ecosystems,

with the corresponding value of BC; and the management actions that are effective in

enhancing this value. Overall this overview provides a comprehensive road map for the

coming decades on future research in BC science.

B lue Carbon (BC) refers to organic carbon that is captured and stored by the oceans and
coastal ecosystems, particularly by vegetated coastal ecosystems: seagrass meadows, tidal
marshes, and mangrove forests. Global interest in BC is rooted in its potential to mitigate

climate change while achieving co-benefits, such as coastal protection and fisheries enhance-
ment1–3. BC has attracted the attention of a diverse group of actors beyond the scientific
community, including conservation and private sector organizations, governments, and inter-
governmental bodies committed to marine conservation and climate change mitigation and
adaptation. The momentum provided by these conservation and policy actors has energized the
scientific community by challenging them to address knowledge gaps and uncertainties required
to inform policy and management actions.

The BC concept was introduced as a metaphor aimed at highlighting that coastal ecosystems,
in addition to terrestrial forests (coined as green carbon), contribute significantly to organic
carbon (C) sequestration1. This initial metaphor evolved to encompass strategies to mitigate and
adapt to climate change through the conservation and restoration of vegetated coastal ecosys-
tems1,2. As BC science consolidates as a paradigm, some aspects are still controversial; for
instance, contrasting perspectives on the role of carbonate production as a component of BC4

and whether seaweed contributes to BC5,6. We propose an open discussion to refocus the current
research agenda, reconcile new ideas with criticisms, and integrate those findings into a stronger
scientific framework (Box 1). This effort will address the urgent need for refined understanding
of the role of vegetated coastal ecosystems in climate change mitigation and adaptation.

There is, therefore, a need to establish a comprehensive research program on BC science that
addresses current gaps while continuing to respond to immediate policy and managerial needs.
Furthermore, this research program can inform policy directions based on new knowledge, thus
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playing a role in setting the management agenda and not simply
responding to it. Here we identify, based on a broad effort by the
leading research academics in BC science, key questions and
challenges that need to be addressed to consolidate progress in
BC science and inform current debate. We do so through three
main steps. First, we briefly summarize the elements of BC sci-
ence that represent the pillar of this research program. Second, we
identify key scientific questions by first surveying the scientific
community. Then we clustered these questions into common
themes, which develop research goals and agendas. Last, we
provide guidance as to how these questions can be best articulated
into a new research agenda as a path for progress.

Scientists’ perspectives on the 10 key fundamental questions
in BC science
We identified and selected scientists from among the leading and
senior authors of the 50 most-cited papers on BC science (ISI
Web of Science access date 22 June 2017), together with the
participants in a workshop on BC organized at King Abdullah
University of Science and Technology, Saudi Arabia, in March
2017. We did not attempt to identify any scientists’ area of spe-
cialisation to avoid bias. Among these authors, we surveyed those
affiliated with academic or research institutions. A group of
50 scientists were asked to contribute from their perspective the
top pending questions (up to 10) in BC science. Specifically, the
invitees were asked to “Email your ten most important questions
(or fewer) relevant to improving our understanding of blue car-
bon science and its application to climate change mitigation”. We
did not ask scientists to prioritise their questions, or target any
particular geographical area, but we did ask them to focus on
mangrove, tidal marsh, macroalgal, and seagrass ecosystems. The
answers received (35 total respondents, see Supplementary
Note 1) and were then clustered into ten themes (by grouping
questions that were similar) that were subsequently articulated
into individual, overarching research questions:

Q1. How does climate change impact carbon accumulation
in mature Blue Carbon ecosystems and during their
restoration?

The impacts of climate change on BC ecosystems and their C
stocks are dependent on the exposure to climate change factors.
This is influenced by both the frequency and intensity of stres-
sors, and the sensitivity and resilience of the ecosystem14.
Question 1 reflects uncertainties associated with the rate and
magnitude of climate change15–17 as well as uncertainties about
the impacts of climate change on current and restored BC eco-
systems, their rates of C sequestration and the stability of C
stocks, which are likely to vary with past sea level history18, over
geographic locations, among BC ecosystems, and within
ecosystems.

BC ecosystems mainly occupy the intertidal and shallow water
environments, where their distribution, productivity and rates of
vertical accretion of soils are strongly influenced by sea level19,20

and the space available to accumulate sediment21. Thus, sea level
rise ranks among the most important factors that will influence
future BC stocks and sequestration. Sea level rise can result in BC
gains, with increasing landward areal extent of ecosystems where
possible22, and enhanced vertical accretion of sediments and C
stocks18,23; and losses, with losses of ecosystem extent24, failure of
restoration25, remineralization of stored organic matter26 that
result in greenhouse gas emissions to the atmosphere (Table 1).
Intense storms17, marine heat waves, 27, elevated CO2

28, and
altered availability of freshwater29 have also all been implicated as
important factors affecting the distribution, productivity, com-
munity composition and C sequestration of BC ecosystems over a
range of locations (Table 1). Geographic variation in exposure to
climate change is high. Rates of sea level rise and land sub-
sidence30, which enhances relative rates of sea level rise, vary
geographically18. Additionally, rates of temperature change and
changes in the frequency of intense storms and rainfall vary
regionally15–17. Geomorphic models have provided first pass
assessments of the global vulnerability of BC ecosystems to sea
level rise20,31, and for restoration success32, but local scale
descriptors of changes in exposure of BC ecosystems to climate
change and impacts on C stocks are often incomplete or missing.
For instance, storm associated waves are important for deter-
mining the persistence and recruitment of BC ecosystem33, yet
local assessments are not widely available.

Responses of adjacent ecosystems to climate change may
influence the exposure and sensitivity of BC ecosystems and their
C stocks to climate change. For example, degradation of coral
reefs could increase wave heights within lagoons which may lead
to losses of seagrass or mangroves within lagoons with rising sea
levels as waves increase34, or decreases of carbonate sediments
due to ocean acidification, may reduce the ability of some BC
ecosystems to keep up with sea level rise35. Additionally, the
sensitivity of BC ecosystems to climate change is also likely
influenced by human activities in the coastal zone. For example,
deterioration in water quality may increase the impacts of sea
level rise on seagrass36 and decreased sedimentation from dam-
ming of rivers, hydrological modifications and presence of sea-
walls may negatively affect BC stocks in mangroves and tidal
marshes20,31.

Q2. How does disturbance affect the burial fate of Blue
Carbon?

The effect of disturbance on BC production and storage has
become a topic of intense interest because of an increasing desire
to protect or enhance this climate-related ecosystem service. There
are three key issues, all beginning to be addressed by BC
researchers, but requiring further study: (1) the depth in the soil
profile to which the disturbance propagates, (2) the proportion of
disturbed C that is lost as CO2, and (3) the extent to which issues 1
and 2 are context dependent. The first global estimates of potential
losses of BC resulting from anthropogenic disturbance combined
changes in the global distribution of BC ecosystems with simple
estimates of conversion (remineralisation) of stored BC per unit

Box 1. | Evidence underpinning the science

The role of seagrasses and marine macroalgae as major C sinks in the ocean was first proposed by Smith who suggested that seagrasses and marine
macroalgae were overlooked C sinks7; however, at the time, there was minimal uptake of the concept within climate change mitigation efforts. In 2003
the first global budget of C storage in soils of salt marshes and mangroves brought light to the importance of these coastal ocean sink. By 2005, it
was shown that seagrass, mangrove, and tidal marsh sediments represent 50% of all C sequestered in marine sediments8. This mounting evidence for
such a major role in C sequestration provided the impetus for the Blue Carbon report1, where the term “Blue Carbon” was first coined, and that led to
the development of international and national BC initiatives (e.g., http://thebluecarboninitiative.org). This led to research efforts to propose emissions
factors from loss and restoration of BC ecosystems for C accounting9, provide empirical evidence of emissions following disturbance and C drawdown
from restoration10,11,12, map the C density of mangrove soils globally13, and explore the potential of BC ecosystems to support climate-change
adaptation2.
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area37. The estimated annual CO2 emission from the disturbance
of BC ecosystems was estimated at 0.45 Petagrams CO2 globally37.
The generalised assumptions necessary for such global assess-
ments—e.g., remineralization within only the top 1m of soil, and
100% loss of BC—provide little guidance at a local management
scale and gloss over the variability of effects from different dis-
turbance types38. This deficiency has led to a more nuanced
theoretical framework accounting for the intensity of disturbance,
especially whether the disturbance affects only the habitat-forming
plant (e.g., clearing, eutrophication, light reduction, toxicity) or
whether it also disturbs the soil (e.g., erosion, digging, reclama-
tion)39,40. The duration of disturbance is another important pre-
dictor of disturbance effects on BC remineralisation because, over
time, more soil BC is exposed to an oxic environment41.

We have a nascent understanding of the processes by which
natural and human disturbances alter C decomposition. Die-off
of below-ground roots and rhizomes in tidal marshes, for
example, changes the chemical composition of BC and associated
microbial assemblages, subsequently increasing decomposition
and decreasing stored C (by up to 90% (ref. 42)). In seagrass

ecosystems, exposing deeply buried sediments to oxygen triggered
microbial breakdown of ancient BC43. At this stage, there is some
evidence that disturbances can diminish BC stocks, for example:
oil spills44, seasonal wrack deposition42, aquaculture45, eutro-
phication46, altered tidal flows46, and harvesting of fisheries
resources38,47. Such knowledge is key for the construction of
Emissions Factors for modelling. But examples in the literature
are often specific for a particular disturbance or ecosystem setting,
and do not yet offer the generalised understanding necessary to
build a comprehensive framework guiding management projects.
Finally, although there is widespread agreement that a changing
climate directly affects BC production and storage, we recom-
mend a clearer focus on the interacting effects of climate and
direct anthropogenic disturbances.

Q3. What is the global importance of macroalgae, including
calcifying algae, as Blue Carbon sinks/donors?

Macroalgae are highly productive (Table 2) and have the lar-
gest global area of any vegetated coastal ecosystem48. Yet only in a
relatively few cases have macroalgae been included in BC
assessments. Unlike angiosperms, which grow on depositional

Table 1 Examples of gains and losses for BC stocks with a range of climate change factors

Ecosystem Sea level rise Extreme storms Higher temperatures Extra CO2 Altered precipitation

Mangrove Landward expansion
increases area and C
stocks
Losses of low intertidal
forests and coastal
squeeze could reduce C
stocks
Increasing
accommodation space
increases C
sequestration

Canopy damage, reduced
recruitment and soil
subsidence resulting in
losses of C stocks
Soil elevation gains due
to sediment deposition
increasing C stocks and,
reducing effects of sea
level rise

Minimal impacts
anticipated, although
increased decomposition
of soil C possible
Poleward spread of
mangrove forests at
expense of tidal marshes
increases C stocks
Change in dominant
species could influence C
sequestration

An increase in
atmospheric CO2

benefits plant
productivity of some
species which could
alter C stocks

Canopy dieback due to
drought
Losses of C stocks due to
remineralization and reduced
productivity
Increased rainfall may
result in increased
productivity and C
sequestration

Tidal Marsh Landward expansion
increased area and C
stocks
Losses of low intertidal
marsh and coastal squeeze
could reduce C stocks
Increasing
accommodation space
increases C
sequestration

Loss of marsh area and
C stocks
Enhanced sedimentation
and soil elevation
increasing C stocks and,
reducing effects of sea
level rise

Increased temperatures
may increase
decomposition of soil
organic matter, but offset
by increased productivity
of tidal marsh vegetation
Poleward expansion of
mangroves will replace
tidal marsh and increase
C storage
Poleward expansion of
bioturbators, may
decrease soil C stocks

An increase in
atmospheric CO2

benefits plant
productivity of some
species which could
alter C stocks

Reduced above and
belowground production due
to drought reducing C
sequestration
Possible losses of C stocks
due to remineralization
Impact could be greater in
areas that already have
scarce or variable rainfall

Seagrass Loss of deep water
seagrass
Landward migration in
areas where seawater
floods the land (into
mangrove or tidal
marsh ecosystem)

Some extreme storms cause
the erosion of seagrasses
and loss of seagrass C stocks
but some seagrass species
are resistant to these major
events
Flood events associated
with extreme rainfall may
result in mortality, but
could also increase
sediment accretion and C
sequestration

Thermal die-offs leading to
losses of C stocks
Species turnover
Colonization of new
poleward regions
Increased productivity

An increase in
dissolved inorganic
C benefits plant
productivity
increasing C stocks
Ocean acidification
leads to loss of
seagrass biodiversity,
decreasing C stocks

Most seagrasses are tolerant
of acute low salinity events
associated with high rainfall,
but some are negatively
affected and potential
interactions with disease may
lead to losses of C stocks
Reduced rainfall increases
light availability which
increases productivity and
C sequestration

Seaweed Loss of deep water
seaweeds
Seaweeds are expected
to colonise hard
substrata that become
flooded, increasing C
stocks

Reduces seaweed cover, but
could lead to sequestration
of C stocks as detritus sinks

Major retraction in kelp
forest C stores at non-polar
range edges;
Expected expansion at
polar range edges.

Increased biomass
and productivity of
kelp where water
temperatures remain
cool enough

Little effect overall
Regional effects on
seaweed flora in areas with
high land run off/rivers

Bold text indicate potential positive effects on BC stocks, italic text indicate negative effects with roman text indicating where effects could be positive or negative
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soils2, macroalgae generally grow on hard or sandy substrata that
have no or only limited C burial potential6. However, a recent
meta-analysis has estimated that macroalgae growing in soft
sediments have a global C burial rate of 6.2 Tg C yr−1 (ref. 6),
which is comparable to the lower range of estimates for tidal
marshes. Furthermore, several studies show that macroalgae act
as C donors3,6,49–51, where detached macroalgae are transported
by currents, and deposited in C sinks beyond macroalgae habitats.
Recent first-order estimates have suggested that up to 14 Tg C
yr−1 of macroalgae-derived particulate organic C is buried in
shelf sediments and an additional 153 Tg C yr−1 is sequestered in
the deep ocean6. These calculations suggest that macroalgae may
be supporting higher global C burial rates than seagrass, tidal
marshes, and mangroves combined. This research highlights that
if we are to incorporate macroalgal systems into BC assessments
we need a better understanding of the fate of C originating from
these systems. Furthermore, if we are to scale up from local
measurements of C-sequestration to the global level, more refined
estimates of the global surface area of macroalgal-dominated
systems are needed.

Most estimates of C-sequestration by marine vegetated eco-
systems refer solely to organic C even though calcifying organ-
isms are also important components of such ecosystems52. For
calcifying algae, whether they serve as C-sinks or sources is
debated4, especially where calcifying organisms form and become
buried within seagrass meadows4,5. Carbonate production results
in the release of 0.6 mol of CO2 per mol of CaCO3 precipitated53,
suggesting that calcifying algae are sources of CO2 that counteract
C-sequestration in these ecosystems. However, co-deposition of
organic and inorganic C may also have interacting effects on C-
sequestration4. Carbonate may help protect and consolidate
organic C sediment deposits, and CO2 release from mineraliza-
tion of organic matter may stimulate carbonate dissolution and
hence, CO2 removal48,53,54. Burial of inorganic carbon in seagrass
and mangrove ecosystems is also to a large extent supported by
inputs from adjacent ecosystems rather than by local calcification.
Furthermore, mass balances highlight that such Blue Carbon
ecosystems are sites of net CaCO3 dissolution54. More studies are
needed to assess the net effect of organic and inorganic C
deposition on C sequestration in calcifying systems.

Q4. What is the global extent and temporal distribution of
BC ecosystems?

Our attempts to upscale BC estimates and model changes
across large spatial and temporal scales is hindered by poor

knowledge of their current and recent-past global distributions.
The best constrained areal estimates exist for mangroves, which
occur in tropical and subtropical regions, generally where winter
seawater isotherms exceed 20 °C55. Overall, the global spatial
extent of mangroves, and patterns and drivers of their temporal
change, are relatively well understood, especially when compared
with other BC ecosystems. Still, Giri et al.56 estimated a global
area of mangroves of ca. 140,000 km2 in the year 2000 and
Hamilton and Casey57 83,495 km2 in 2000 and 81,849 km2 in
2012. Both studies used Landsat data but different methodologies.
Mangroves occur in 118 countries worldwide, but ~75% of total
coverage is located within just 15 countries, with ~23% found in
Indonesia alone56. Total mangrove extent during the second half
of the 20th century declined at rates 1–3% yr−1 mainly due to
aquaculture, land use change and land reclamation58. There are
uncertainties in the area of mangrove that are scrub forms and
which are therefore often not considered as forests despite their
importance in arid and oligotrophic settings and often their large
soil C stocks59,60. Since the beginning of the 21st century, man-
grove loss rates are 0.16–0.39% yr−1 (ref. 57), probably reflecting
changes in aquaculture and conservation efforts.

Tidal marshes are primarily found in estuaries along coasts of
Arctic, temperate and subtropical coastal lagoons, embayments,
and low-energy open coasts, although they also occur in some
tropical regions61. Woodwell et al.62 estimated global tidal marsh
extent of 380,000 km2 using the fraction of global coastline
occupied by estuaries and the assumption that ~20% of estuaries
supported tidal marshes48. However, tidal marsh area has been
mapped in only 43 countries (yielding a total habitat extent of ca.
55,000 km2), which represents just 14% of the potential global
area63. Tidal marsh extent is well documented for Canada, Eur-
ope, USA, South Africa and Australia63–65 but remains unknown
to a large extent in regions, including Northern Russia and South
America. An historical assessment of 12 estuaries and coastal seas
worldwide indicated that >60% of wetland coverage has been
lost66 mostly due to changes in land use, coastal transformation
and land reclamation61. The minimum global rate of loss of tidal
marsh area is estimated at 1–2% yr−1 (ref. 67).

Despite the widespread occurrence of seagrass across both
temperate and tropical regions, the global extent of seagrass area
is poorly estimated48. The total global area was recently updated
to 350,000 km2 (ref. 68), although estimates range from 300,000
(ref.) to 600,000 km2 (ref. 69), with a potential habitable area for
seagrass of 4.32 million km2 (ref. 70). Available distribution data

Table 2 Estimates of global net primary productivity, CO2 release from calcification and C sequestration (Tg C yr−1) for three
benthic marine systems

System Global CO2 (as C)
fixation in NPP

Global CO2 (as C) release
from calcification,
assuming 0.6 CO2-C per
CaCO3-C produced

Global net organic C
assimilation=NPP
minus C as CO2

produced in
calcification

Global C
sequestration

References

Benthic
macroalgae
(calcified and
uncalcified)

960–2000 – – 60–1400 Charpy-Roubard & Sournia71;
Krause-Jensen & Duarte6;
Duarte49; Raven50

Calcified coralline
red algae

720 120 600 – Van den Heijden &
Kamenos53, who do not
mention CO2 release from
CaCO3 formation

Coral reefs 0 84–840 84–840 0a Ware et al.150; Smith &
Mackenzie151

aAssuming CaCO3 ultimately sinks below the lysocline, where CaCO3 dissolves, and upwelling ultimately (102–103 years) brings the resulting HCO3
− back to the sea surface
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are geographically and historically biased, reflecting the imbal-
ance in research effort among regions71, and most data have been
collected since the 1980s72. The total global seagrass area has
decreased by ~29% since first reported in 1879—with ~7-fold
faster rates of decline since 1990 (ref. 72)—due to a combination
of natural causes, coastal anthropogenic pressure and climate
change73.

Producing accurate estimates of the global extent of BC eco-
systems is therefore a prerequisite to assess their contribution in
the global carbon cycle. In addition, given the fast rate of decline
reported for many BC ecosystems, regular revision of these esti-
mates is needed to track any changes in their global extent and
importance. Extensive mapping, with particular focus on under-
studied areas that may support critical BC ecosystems, that
combines acoustic (i.e., side scan sonar and multi-beam eco-
sounder) and optical (i.e., aerial photography and satellite images)
remote sensing techniques with ground truthing (by scuba diving
or video images) should be undertaken to map and monitor their
extent and relative change over time74.

Q5. How do organic and inorganic carbon cycles affect net
CO2 flux?

Even though BC ecosystems are significant Corg reservoirs,
depending on Corg and Cinorg dynamics they could also be net
emitters of CO2 to the atmosphere through air-water CO2 gas
exchange75. For instance, in submerged BC ecosystems (i.e.,
seagrasses), Corg storage is not directly linked with the removal of
atmospheric CO2 because the water column separates the atmo-
sphere from benthic systems. BC science gaps exist in complex
inorganic and organic biogeochemical processes occurring within
the water column and determining CO2 sequestration
functioning.

Photosynthesis lowers the CO2 concentration in surface water
as dissolved inorganic C (DIC) is incorporated into Corg ((1) in
Fig. 1), and respiration and remineralization increases the CO2

concentration ((2) in Fig. 1). Net autotrophic ecosystems would

lower surface water CO2 concentration and be a direct sink for
atmospheric CO2

76,77. Lowering of surface water CO2 con-
centration is facilitated if allochthonous Corg ((3) in Fig. 1) and
DIC inputs ((4) in Fig. 1) are low. Reactions of the inorganic C
(Cinorg) cycle can also change the CO2 concentration in surface
water and therefore influence net exchange of CO2 with the
atmosphere4,5,78. Formation of calcium carbonate minerals (cal-
cification) results in an increase of CO2 in the water column ((5)
in Fig. 1) while dissolution of carbonate minerals decreases CO2

((6) in Fig. 1). These processes may critically affect air–water CO2

gas exchange. Although recent studies related to the role of BC in
climate change mitigation are beginning to address the abun-
dance and burial rate of Cinorg in soils4,5,54,78–80, studies investi-
gating the full suite of key processes for air–water CO2 fluxes,
such as carbonate chemistry and Corg dynamics in shallow coastal
waters and sediments, are still scarce (but see76,77,81,82). In par-
ticular, relevance of carbonate chemistry to the overall spatio-
temporal dynamics of Corg and Cinorg pools and fluxes (e.g.,
origin, fate, abundance, rate, interactions) and air–water CO2

fluxes is largely uncertain for BC ecosystems4.
Therefore, in addition to Corg related processes occurring in

sediments and vegetation, future BC science should also quantify
other key processes, such as air-water CO2 fluxes and Corg and
Cinorg dynamics in water, to fully understand the role of BC
ecosystems in climate change mitigation83.

Q6. How can organic matter sources be estimated in BC
sediments?

Coastal ecosystems, mangroves, seagrasses and tidal marshes,
occupy the land-sea interface and are subject to convergent inputs
of organic matter from terrestrial and oceanic sources as well as
transfers to and from nearby ecosystems84. However, the most
basic requirement of quantifying organic matter inputs, and dif-
ferentiating between allochthonous and autochthonous sources of
Corg, remains a challenge. This limitation has particular relevance
because of interest in financing the restoration of coastal

CO2 (gas)

CO2 (aq)

SinkSource

Respiration
remineralization

Photosynthesis

HCO3
−

DissolutionCalcification

CO3
2−

Terrestrial
systems

Cinorg
(Skeltons and shells, carbonate minerals)

DIC input

(4)

(2)
(3)

(4)

(1)

DIC poolDIC pool

Corg
(Flesh body, detritus)

BurialBurial?

Cinorg and Corg input

(3)

(5)

(6)

Fig. 1 Conceptual diagram showing the biogeochemistry of carbon associated with air-water CO2 exchanges. Blue lines indicate the processes that enhance
the uptake of atmospheric CO2, and red lines indicate those that enhance the emission of CO2 into the atmosphere. The CO2 concentration in surface
water is primarily responsible for determining the direction of the flux. The concentration of surface water CO2 is determined by carbonate equilibrium in
dissolved inorganic carbon (DIC) and affected by net ecosystem production (the balance of photosynthesis, respiration, and remineralization), which
directly regulate DIC (1 and 2), allochthonous particulate and dissolved organic carbon (Corg), particulate inorganic carbon (Cinorg), and DIC inputs from
terrestrial systems and coastal oceans (3 and 4), net ecosystem Cinorg production (the balance of calcification and dissolution), directly regulating both DIC
and total alkalinity (TA) (5, 6), and temperature (solubility of CO2). Calcification produces CO2 with a ratio (released CO2/precipitated Cinorg) of
approximately 0.6 in normal seawater54
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ecosystems through the sale of BC offset-credits85. Policy fra-
meworks such as the Verified Carbon Standard Methodology
VM0033 (ref. 86) stipulate that offset-credits are not allocated
under the framework for allochthonous Corg because of the risk of
duplicating C sequestration gains that may have been accounted
for in adjacent ecosystems. New methods are emerging that have
greater potential to quantify the contribution of different primary
producers to sedimentary organic carbon in marine ecosystems87.

Natural abundance of stable isotopes, most commonly 13C,
15N and 34S, have been used to trace and quantify allochthonous
and autochthonous Corg sources and their relative contributions
to carbon burial. The costs are low, the methodology for sample
preparation and analysis is relatively easy and the validity of the
technique has been widely, and generally successfully tested88.
However, the diversity of organic matter inputs can result in
complex mixtures of Corg that are not well resolved based on the
isotopic separation of the sources. Isotopic values of different
species may be similar, or may vary within the same species with
microhabitats, seasons, growth cycle or tissue type89,90.

The use of bulk stable isotopes must be improved by addi-
tionally analysing individual compounds with a specific taxo-
nomic origin. Biomarkers such as lignin, lipids, alkanes and
amino acids, have proven useful for separating multiple-source
inputs in coastal sediments88,91. Leading-edge studies, using
compound-specific stable isotopes, employ both natural and
radiocarbon analyses, providing the added dimension of age to
taxonomic specificity92,93. Oxygen and hydrogen stable isotopes
could also be used to improve resolving power, but up to now
they have been used mainly in foodweb studies and their utility in
determining sedimentary sources in coastal systems still needs to
be validated87. Studies using both bulk and compound-specific
isotopes must consider how decomposition may alter species-
specific signatures89,90,94 Other, alternative fingerprinting tech-
niques are emerging. The deliberate stable isotope labelling of
organic matter and tracing its fate is a powerful approach that
overcomes some of the limitations of natural abundance studies
(e.g., source overlap), but has only looked at short-term Corg

burial to-date95. The use of environmental DNA (eDNA) has
been used to describe community composition in marine systems,
but the potential to quantify the taxonomic proportions of plant
sources in sediments has rarely been tested87,96.

Overall, projects using 13C and 15N stable isotopes will likely
continue to dominate the investigation of organic matter sources,
especially in simple two end member systems. While there is a
growing suite of organic matter tracers, the ability to distinguish
between specific blue carbon sources such as marsh vegetation
and seagrass still remains a challenge. Sample size requirement,
analytical time and cost implications, will be crucial in the
selection of the most appropriate tracers for the characterisation
and quantification of the molecular complexity in blue carbon
sediments. In general, applications of most compound specific
tracers have focused on environments other than those sup-
porting blue carbon ecosystems88,93,97, and more work is needed
to apply the same research tools to these systems. We recom-
mend, wherever possible, that complementary methods such as
compound-specific isotopes and eDNA that take advantage of
methodological advances in distinguishing species contributions,
be used in conjunction with bulk isotopes.

Q7. What factors influence BC burial rates?
BC ecosystems have an order of magnitude greater C burial

rates than terrestrial ecosystems3. This high BC burial rate is a
product of multiple processes that affect: the mass of C produced
and its availability for burial; its sedimentation; and its sub-
sequent preservation. A host of interacting biological, biogeo-
chemical and physical factors, as well as natural and
anthropogenic disturbance (see Q2), affect these processes. With

respect to biological factors, it remains unclear how primary
producer diversity and traits (e.g., biochemical composition,
productivity, size and biomass allocation) influence BC98,99.
However, it is likely that the suite of macrophytes present in BC
ecosystems is critical to the mass of C available to be captured and
preserved (as suggested for tidal marshes100). Equally, it is
uncertain how fauna influence the production, accumulation or
preservation of Corg via top-down processes such as herbiv-
ory38,101–103. Similarly, predators can regulate biomass, persis-
tence and recovery of seagrasses, marshes and mangroves by
triggering trophic cascades38. In addition, the functional diversity
and activity of the microbial decomposer community, and how
they vary with depth and over time, is only just beginning to be
examined104 and will need to be linked to BC burial rates. Most
likely this microbial community will be more important in
defining the fate of Corg entering BC soils than its production and
sedimentation.

The general effects of hydrodynamics on carbon sequestration
in BC ecosystems are understood, yet there is much we still do
not understand which could explain the variability in sequestra-
tion we see across BC ecosystems. We know that hydrodynamics,
mediated by biological properties of BC ecosystems (e.g., canopy
size and structure), affect particle trapping105–107 and, pre-
sumably, Corg sedimentation rates. For example, increasing den-
sity of mangrove stands positively affects affect wave attenuation,
enhancing the accumulation of fine grained material108, which
promotes Corg accumulation (silts and clays retain more Corg than
sands109,110. However, significant variation in soil Corg has been
observed within seagrass meadow111, pointing to complex
canopy-hydrodynamic interactions which we do not understand
but which could affect our ability to develop robust estimates of
meadow-scale BC burial. For example, a study of restored sea-
grass meadow found strong positive correlations between Corg

stocks and edge proximity leading to gradients in carbon stocks at
scales of >1 km112. Elsewhere, flexible canopies have been shown
to interact with wave dynamics, increasing turbulence near the
sediment surface113. This could explain the loss of fine sediments,
and presumably Corg, in low shoot density meadows compared to
high density meadows114, with implications for carbon seques-
tration over time following restoration of BC ecosystems and the
development of canopy density. Because these types of hydro-
dynamic interaction can affect the spatial and temporal patterns
in carbon accumulation they need to be better understood in
order to design stock and accumulation assessments and to
predict the temporal development of stocks following manage-
ment actions.

The basic biogeochemical controls on Corg accumulation
within soils are understood (e.g., biochemical nature of the Corg

inputs which vary among primary producers115–117 and the
chemistry of their decomposition products)110, but it remains
unclear what controls the stability of stored Corg in BC soils and
whether these factors vary across ecosystems or under different
environmental conditions (incl. disturbance). With the exception
of one recent paper43, we know little about the Corg -mineral
associations in BC ecosystems, how these affect the recalcitrance
of soil Corg or whether specific forms are protected more by this
mechanism than others, though this is clearly the case in other
ecosystems118–120. Undoubtedly the anaerobic character of BC
soils places a significant control on in situ rates of Corg decom-
position and remineralisation. However, the time organic mate-
rials are exposed to oxygen before entering the anaerobic zone of
BC soils will impact the quantity and nature of Corg as will the
redox potential reached within the soil. The amount of time
organic matter is exposed to oxygen explains the observation that
Corg concentrations in tidal marshes globally are higher on
coastlines where relative sea level rise has been rapid compared to
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those where sea level has been relatively stable18. Moreover,
exposure of BC to oxygen has been recently shown trigger
microbial attack, even ancient (5000-year-old) and chemically
recalcitrant BC43. Enhancing our understanding of oxygen
exposure times and critical redox potentials will help explain
variations in Corg accumulation rates and preservation within
different BC ecosystems.

From the above, there is increasing evidence that we do not
understand the complex interactions among influencing envir-
onmental factors well enough to predict likely Corg stocks in soils,
including temperature, hydrodynamic, geomorphic and hydro-
logic factors that can affect biogeochemical processes or mediate
biological processes, and this leads to apparent contradictions.
For example, the influence of nutrient availability on Corg stocks
is unclear with one study reporting an increase in soil Corg stocks
along a gradient of increasing phosphate availability121, another
reporting no effect122, and yet others121,123 finding that increas-
ing nutrient availability led to lower soil Corg. Some empirical
studies have examined interactive effects or evoked them to
explain difference in Corg stock101,124,125. However, these studies
are rare and limited by the complexity or the interactions being
examined. We conclude that gaining insights into these inter-
active effects is more likely to be advanced through modelling
approaches.

Q8. What is the net flux of greenhouse gases between Blue
Carbon ecosystems and the atmosphere?

BC ecosystems are generally substantial sources or sinks of
greenhouse gases (GHGs) (CO2, CH4, N2O), though we cannot
construct accurate global BC budgets due to uncertainties in net
fluxes. The C budget is best constrained for mangroves, with
mangroves globally taking up 700 Tg C yr−1 through Gross
Primary Production, and respiring 525 Tg C yr−1 (75%) back to
the atmosphere as CO2

126. However, large uncertainty exists in
budgets due to poorly constrained mineralization pathways
linked to CO2 efflux119.

We lack robust global C budgets for other BC ecosystems due
to insufficient empirical evidence127. For example, while we have
estimated global soil Corg stocks128 and accumulation rates for
seagrasses, this is insufficient to create a budget129 because we
lack representative data on community metabolism and GHG
fluxes, particularly for CH4 and N2O emissions. Thus, we need to
better quantify sink/source balances, e.g., the net balance between
primary production vs. emissions from ecosystem degradation
and pelagic, benthic, forest floor and canopy respiration126. We
also need to understand how source/sink dynamics change
budgets over time and how environmental parameters affect
GHG fluxes129,130, allowing us to estimate thresholds that flip BC
ecosystems from GHG sinks to sources.

Budgets generally focus on CO2 fluxes, though we must better
understand fluxes of other GHGs such as CH4 and N2O, and their
contribution to the global BC budget131. Global estimates show
that CH4 emissions can offset C burial in mangroves by 20%
because CH4 has a higher global warming potential than CO2 on
a per molecule basis132. CH4 emissions may also offset C burial in
seagrasses, though these estimates have not been made. In con-
trast, some mangroves are N2O sinks133 which would enhance the
value of the C burial as a means to mitigate climate change.
Overall, CH4 and N2O biogeochemistry is understudied in BC
ecosystems.

Finally, we must understand how GHG fluxes change as BC
ecosystems replace each other, such as when mangroves expand
onto marshes at their latitudinal limits134, or are planted on
seagrass meadows in Southeast Asia. We also need to understand
how emissions may change with loss of BC ecosystems. For
example, it has been coarsely estimated that a 50% loss of sea-
grass would result in a global reduction in N2O emissions of

0.012 Tg N2O-N yr−1 and a 50% loss of mangroves would result
in a global reduction in emissions of 0.017 Tg N2O-N yr−1

(ref. 130).
Q9. How can we reduce uncertainties in the valuations of

Blue Carbon?
Studies into BC increasingly include a valuation aspect,

focussed on coastal sites135 but more recently also including
offshore sites136, showing a range of values for different ecosys-
tems as depicted in Fig. 2. Differences in values are driven by
differences in BC sequestration and storage capacity and/or
potential avoided emissions through conservation and restoration
of ecosystems. There is also variation in BC values due to
uncertainties in the calculation of C sequestration and perma-
nence of C storage, as is required for valuation. The wide range of
C valuation methods, including social costs of C111, marginal
abatement costs112, and C market prices, also enhances the
uncertainty and variation in valuation estimates.

Valuation of BC enables its inclusion in policy and manage-
ment narratives113, facilitating the comparison of future socio-
economic scenarios, including mitigation and adaptation inter-
ventions137, and raises conservation interests as an approach to
mitigate climate change and offset CO2 emissions2. For example,
BC budgets can be incorporated into national greenhouse gas
inventories138. Alternatively, demonstrable gains in C sequestra-
tion and/or avoided emissions through conservation and
restoration activities can be credited within voluntary C markets
or through the Clean Development Mechanism of the United
Nations Framework Convention on Climate Change (UNFCCC)
86. Voluntary market methodologies for BC ecosystems have been
released within the American Carbon Registry139 and within the
Verified Carbon Standard86, while some countries are developing
BC-focussed climate change mitigation schemes that provide
economic incentives. However, on the international scale, BC
ecosystems have previously not been consistently incorporated
into frameworks for climate change mitigation that offer
economic reward for the conservation of C sinks, such as the
REDD+ program140, possibly as there was insufficient informa-
tion for its inclusion. Avoiding degradation of mangroves,
tidal marshes and seagrasses could globally offer up to 1.02 Pg
CO2-e yr−1 in avoided emissions37. Developing countries with
BC resources have the opportunity to use BC for the NDC, for
example Indonesia, where BC contribution to reduce emissions
could be as much as 0.2 Pg CO2-e yr−1 or 30% of national land-
based emission while mangrove deforestation only contributes to
6% of national deforestation141.

To reduce uncertainty in BC values and encourage use of
values in future policy and management, we recommend
improved interdisciplinary research, combining ecological and
economic disciplines to develop standardised approaches to
improve confidence in the valuation of BC. Ideally this should be
undertaken alongside studies which recognise the additional
values of conserving BC ecosystems, for example the benefits
generated from fisheries enhancement, nutrient cycling, support
to coastal communities and their livelihoods2 and coastal pro-
tection, which is considered a cost-effective method compared to
hard engineering solutions142.

Q10. What management actions best maintain and promote
Blue Carbon sequestration?

Research over the past decade has improved estimates of C
dynamics at a range of spatial scales. This has enabled modelling
of potential emissions from the conversion of seagrass, mangrove
and tidal marsh to other uses41, and estimates of rates of and
hotspots for CO2 emissions resulting from ecosystem loss. The
development of policy, implementation of management actions
and the demonstration of BC benefits (including payments),
however, are still in their infancy.
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There are three broad management approaches to enhance C
mitigation by BC ecosystems: preservation, restoration and
creation. Preserving ecosystem extent and quality—for exam-
ple, through legislative protection and/or supporting alternative
livelihoods—has the two-fold benefit of avoiding the reminer-
alisation of historically sequestered C, while also protecting
future sequestration capacity. Preservation may include direct
or indirect approaches to maintain or enhance biogeochemical
processes, such as sedimentation and water supply46. Restora-
tion pertains to a range of activities seeking to improve
biophysical and geochemical processes—and therefore seques-
tration capacity—in BC ecosystems. Examples include passive
and/or active reforestation of logged and degraded mangrove
forests143; earthwork interventions to return aquaculture ponds
to mangrove ecosystems141; and the restoration of hydrology to
drained coastal floodplains144. Managed realignment is a par-
ticular option for creating or restoring tidal marshes as part of a
strategy to achieve sustainable coastal flood defence together
with the provision of other services, including C benefits145;
other similar options include: regulated tidal exchange131 and
beneficial use of dredged material146. Although restoration may
re-establish C sequestration processes, it is important to note
that it may not prevent large amounts of fossil C being lost
following future disturbance or intervention. ‘No net loss’
policies have been now developed and applied to wetland

ecosystems in many countries (e.g., USA and EU). These gen-
erally imply the creation of BC ecosystems to replace those lost
through development. Such approaches should be treated with
caution, however, since there is confusion about terminol-
ogy141, lack of enforcement and limited capacity to recreate the
qualities of pristine sites.

Tools for the accounting and crediting of C payments now
exist for coastal wetland conservation, restoration and creation
under the voluntary C market86,147. Several small-scale projects
(e.g., Mikoko Pamoja in Kenya) are now using these frame-
works to generate C credits with others projects in develop-
ment148. Few jurisdictions have adopted their own mechanisms
for the accounting and/or trading of BC, though some have
undertaken preliminary research to identify BC policy
opportunities149.

Technical, financial and policy barriers remain before local
initiatives can be scaled-up to make large impacts—such as
through national REDD+ initiatives. Significant barriers include:
biases in the geographic coverage of data; approaches for robust,
site-specific assessment and prediction of some C pools (e.g.,
below-ground C and atmospheric emissions); high transaction
costs; and ensuring that equity and justice are achieved. In
addition, most demonstrated efforts are recent actions with little
quantification of C mitigation benefits (or societal outcomes)
beyond the scale of a few years.
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Fig. 2 Estimates of the economic value of blue carbon ecosystems per hectare. Data from ref. 1 and references therein. Symbols and images are courtesy of
the Integration and Application Network, University of Maryland Center for Environmental Science (ian.umces.edu/symbols/)
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Despite such barriers, we now have the fundamental knowl-
edge to justify the inclusion of BC protection, restoration and
creation in C mitigation mechanisms. While there remain
knowledge gaps—both in science, policy and governance—these
will partly be addressed through the effective demonstration,
monitoring and reporting of existing and new BC projects.

Toward a research agenda on the role of vegetated coastal
ecosystems on climate change mitigation and adaptation
The questions above are not short of challenges and therefore,
provide ample scope for decisive experiments to be designed and
conducted, current hypotheses to be rejected or consolidated and
new ideas and concepts to unfold. Emerging questions that are
not yet supported by robust observations and experiments,
include, for example: the estimation of allochthonous C (organic
and inorganic) contributions to BC, which remains challenging
due to availability of markers able to quantitatively discriminate
among the different carbon sources; and the net balance of GHG
emissions, which remains challenging as it requires concurrent
measurements across relevant time and spatial scales of all major
GHGs (CO2, CH4, NO2), for which not a single estimate is
available to-date. The core questions that capture much of current
research efforts in BC science include the role of climate change
on C accumulation, efforts to improve the precision of global
estimates of the extent of BC ecosystems, factors that influence
sequestration in BC ecosystems, with the corresponding value of
BC, and the management actions that are effective in enhancing
this value. The preceding text provides a summary of current
research efforts and future opportunities in addressing these key
questions.

Three questions are long-standing, controversial, and need
resolution in order to properly constrain the BC paradigm. The
first is the effect of disturbance on GHG emissions from BC
ecosystems, where the initial assumption, that the top meter of
the soil C stock is likely to be emitted as GHG following dis-
turbance37,128, continues to be carried across papers without
being challenged or verified. The second is whether macroalgae-C
can be considered BC. The term BC refers to C sequestered in the
oceans1, and the focus on seagrass, mangroves and tidal marshes
is justified by the intensity of local C sequestration these eco-
systems support. If macroalgae provide intense C sequestration,
whether in the ecosystem or beyond, they need to be dealt with in
this context. And the third controversy is whether carbonate
accumulation in BC ecosystems render them potential sinks of
CO2 following disturbance. It is clear that there are far too many
key uncertainties4 to resolve this at the conceptual level, since
empirical evidence to provide a critical test is as yet lacking. We
propose that a research program including key observational and
experimental tests designed to resolve the mass balance of car-
bonate (e.g., balance between allochthonous and autochthonous
production and dissolution)—and then the coupling between BC
ecosystems and the atmosphere—is needed. In the case of all
three controversies, we believe that the positive approach to
address these questions, is to pause the current discussion, which
are largely rooted in the lack of solid, direct empirical evidence,
and recognize that further science is required before any con-
clusion can be reached.

In summary, the overview of questions provided above por-
trays BC science as a vibrant field that is still far away from
reaching maturity. Apparent controversies are a consequence of
this lack of maturity and need to be resolved through high quality,
scalable and reproducible observations and experiments. We
believe the questions above inspire a multifarious research agenda
that will require continued broadening the community of practice

of BC science to engage scientists from different disciplines
working within a wide range of ecosystems and nations.
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