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Capturing expert uncertainty 
in spatial cumulative impact 
assessments
Alice R. Jones   1, Zoë A. Doubleday 1, Thomas A. A. Prowse 1,4, Kathryn H. Wiltshire 2, 
Marty R. Deveney2, Tim Ward2, Sally L. Scrivens1, Phillip Cassey 1, Laura G. O’Connell3,5 & 
Bronwyn M. Gillanders 1

Understanding the spatial distribution of human impacts on marine environments is necessary for 
maintaining healthy ecosystems and supporting ‘blue economies’. Realistic assessments of impact 
must consider the cumulative impacts of multiple, coincident threats and the differing vulnerabilities 
of ecosystems to these threats. Expert knowledge is often used to assess impact in marine ecosystems 
because empirical data are lacking; however, this introduces uncertainty into the results. As part of a 
spatial cumulative impact assessment for Spencer Gulf, South Australia, we asked experts to estimate 
score ranges (best-case, most-likely and worst-case), which accounted for their uncertainty about 
the effect of 32 threats on eight ecosystems. Expert scores were combined with data on the spatial 
pattern and intensity of threats to generate cumulative impact maps based on each of the three 
scoring scenarios, as well as simulations and maps of uncertainty. We compared our method, which 
explicitly accounts for the experts’ knowledge-based uncertainty, with other approaches and found 
that it provides smaller uncertainty bounds, leading to more constrained assessment results. Collecting 
these additional data on experts’ knowledge-based uncertainty provides transparency and simplifies 
interpretation of the outputs from spatial cumulative impact assessments, facilitating their application 
for sustainable resource management and conservation.

Over 97% of the world’s oceans are exposed to multiple concurrent threats from human activities resulting in 
cumulative impacts1, with the severity of these cumulative impacts increasing in recent years2,3. Shelf seas are par-
ticularly at-risk because of their vulnerability to both terrestrial and marine threats1,4,5, which generally fall into 
four categories: pollution (including climate change), over-extraction, physical degradation and invasive species.

Spatial cumulative impact assessment is increasingly being used as a tool for evaluating the effect of multi-
ple anthropogenic threats on marine ecosystems6. The approach accounts for both the vulnerability of marine 
ecosystems to different threats7 and the spatial exposure and intensity of each threat throughout a defined study 
area1. As such, this type of assessment can support integrated management approaches that monitor and counter 
multiple threats, rather than single threats in isolation8–10. The utility of these assessments is affected by the spatial 
scale at which ecosystems and threats are mapped and the relevance of this scale to management, which is usually 
locally or regionally targeted11,12.

Since empirical data are often scarce13, cumulative impact assessments typically rely on expert knowledge to 
score and rank the effect that each threat may have on each ecosystem6,14. Although methodologies exist for incor-
porating expert knowledge into spatial cumulative impact assessments, these do not routinely account for the 
‘knowledge-based uncertainty’ (see glossary in Table 1) associated with expert-elicited data1,7. Knowledge-based 
uncertainty has the potential to affect the reliability of the assessment results15,16 and their application to 
management13,14.
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Sensitivity testing is commonly performed to check the overall influence of each threat on the final results 
of spatial cumulative impact assessments (for example Korpinen et al.17), but quantification of the influence of 
knowledge-based uncertainty has not been adopted into the commonly-used cumulative impact assessment 
methodologies6,18. Understanding uncertainty in expert-elicited data is crucial to interpreting the results of 
cumulative impact assessments and can also be used to highlight regions or ecosystems where uncertainty is 
particularly high and further data are needed. Stock and Micheli19 and Gissi et al.18 both recently investigated 
the impact of various types of uncertainty on marine spatial cumulative impact assessment outcomes. Stock 
and Micheli19 simulated error (uncertainty) around expert-elicited scores after the expert elicitation process had 
been undertaken. Whilst this is an important step forward for cumulative impact assessment methods, it sets the 
boundaries of expert uncertainty a priori, rather than asking experts to quantify their uncertainty themselves (i.e. 
to ‘self-assess’ their level of uncertainty). Conversely, Gissi et al.18 collected various uncertainty information as a 
central part of the expert elicitation process. By recognising that knowledge-based uncertainty exists, and asking 
experts to attempt to quantify it in a robust way20,21, researchers can generate data that explicitly accounts for this 
source of uncertainty in assessment outputs15.

We undertook a spatial cumulative impact assessment for Spencer Gulf, South Australia, based on the method 
developed by Halpern et al.1. We used a survey to elicit expert knowledge for our assessment. The survey allowed 
experts to self-assess uncertainty by supplying a range of plausible values for the effect of a threat on an ecosys-
tem22. We demonstrate how these additional data on knowledge-based uncertainty can be used to improve the 
robustness of cumulative impact assessments and the ease of their interpretation.

Methods
Study Area.  Spencer Gulf is Australia’s largest estuary, covering approximately 30,000 km2 23. It is an inverse 
estuary, where salinity increases with distance from the open sea because evaporation exceeds precipitation in this 
semi-arid region24. The marine ecosystems of Spencer Gulf are diverse and contain a high proportion of endemic 
species25. Gulf waters are widely used for recreation and tourism and contain eight marine parks (including 23 
no-take sanctuary zones). Spencer Gulf is also extremely important to the region’s economy26, being responsible 
for producing over half of South Australia’s seafood27,28 and providing a key shipping and export gateway for the 
energy, mining and agriculture industries29.

Mapping marine ecosystems.  We identified ten broad-scale benthic (seafloor) ecosystems within Spencer 
Gulf22,26, however three of these (sponge gardens, rhodolith beds and native shellfish beds) could not be included 
in the analysis, due to limited spatial data. The few data available indicate that these ecosystems are relatively 
small in extent, however they may be particularly vulnerable to human activities30–33. We collated all available 
spatial data on the remaining seven benthic ecosystems (Supplementary materials section S1.1 & Supplementary 
Table S1) to produce the first, full-coverage, broad-scale benthic ecosystem map for Spencer Gulf (Supplementary 
Figure S1). We also generated a map indicating the level of confidence in the ecosystem classification, which is 
based on the type and resolution of the available data in each area of the Gulf and how recently data were collected 
(Supplementary Figure S1). The benthic ecosystem map was rasterised to a grid of 250 × 250 m, with each cell 
assigned the dominant ecosystem type. We separately mapped a pelagic (water column) ecosystem, delineated by 
the limit of subtidal waters (Supplementary Figure S2). We assessed cumulative impacts separately for the pelagic 

GLOSSARY

Term Definition/explanation

Ecosystem The benthic (n = 7) or pelagic ecosystem present in each grid cell (250 × 250 m) within the Spencer Gulf study area. The ecosystem type attributed 
to each grid cell was determined by the dominant ecosystem in the cell (based on percentage area covered).

Threat A human activity or climatic perturbation, which is considered to be a threat to one or more of the eight ecosystems within the study area based 
on published research or expert knowledge22.

Effect score
The expert-elicited score for the effect of each threat on each ecosystem (collected through N = 81 online surveys – see22). Experts provided 
three effect scores for each ecosystem and threat pair: ‘worst-case’ scenario (higher scores), ‘most-likely’ scenario (middle scores) and ‘best-case’ 
scenario (lower scores). The range between the ‘best-case’ and ‘worst case’ effect scores represents the experts’ uncertainty bounds for the most-
likely effect of a threat on an ecosystem.

Spatial exposure
A binary value (0 or 1) representing the absence (0) or presence (1) of a threat at a given grid cell (250 × 250 m). These spatial layers indicate the 
area within which a threat occurs at any intensity. The spatial exposure scores can be summed at any location to provide a count of the number of 
threats present there.

Spatial intensity score
A continuous score, between 0 and 1, which represents the relative intensity of a threat at any grid cell within the study area. The cell with the 
highest spatial intensity score (1) for each threat is the location where this threat occurs at the greatest intensity. For example, for lobster pot 
fishing, this would be the location with the highest average number of pots dropped. In locations where a threat does not occur, the spatial 
exposure and spatial intensity scores are both 0.

Cumulative impact score
A score representing the additive effect of all threats occurring at each location. The cumulative impact score is calculated using the experts’ effect 
scores and the location-specific spatial intensity scores (see Eq. 1). A cumulative impact score for each location was calculated for each of the three 
effect score scenarios (‘best-case’, ‘most-likely’ and ‘worst-case’).

Knowledge-based uncertainty

The self-assessed level of uncertainty associated with effect scores provided through expert elicitation surveys. Experts were asked to give three 
effect scores relating to best-case, most-likely and worst-case scenarios (see ‘effect score’ definition above and Doubleday et al.22). This allowed 
each expert to provide what they considered to be a plausible range of effect scores, which expressed their level of uncertainty in the effect of each 
threat on each ecosystem. We have termed this ‘knowledge-based uncertainty’ as it represents uncertainty introduced into the cumulative impact 
assessment because of limited or imperfect expert knowledge or scientific understanding15 (epistemic uncertainty). However this uncertainty 
may be confounded with natural variation (aleatory uncertainty) and linguistic uncertainty41, which cannot easily be separated from epistemic 
uncertainty20.

Table 1.  Glossary of terms used throughout this paper.
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ecosystem because there was considerable overlap of the benthic (seafloor) and pelagic (water column) ecosys-
tems (Supplementary Figures S1 & S2).

Mapping threats.  Thirty-two threats were included in the spatial cumulative impact assessment. These 
were selected through expert consultation and a literature review22. Threats included regional-scale and relevant 
global-scale human activities and processes for which we could access, or generate, Gulf-wide spatial data (see 
online Supplementary material S1.2). The suite of threats included activities related to land use and development, 
recreation, commercial fishing, shipping, pollution, invasive species and climate change (for a full list and data 
sources see Supplementary Table S2). We did not transform the threat data layers, so as to retain realistic threat 
intensity patterns and extreme values, which may be relevant in an analysis of how ecosystems are impacted by 
threat activities6. When data were available, we mapped threats directly (e.g. nutrient inputs), but in some cases 
proxies were used (e.g. an impact kernel around port developments). For most threats, relative spatial intensity 
(see glossary in Table 1) was mapped, but in some cases only the spatial exposure (presence or absence, see glos-
sary in Table 1) of a threat at each location was mapped (due to poor data quality or resolution; Supplementary 
Table S2; Supplementary Figure S3). We transformed the spatial layers to a common projection (unit of meas-
urement = m) and then rasterised them to a 250-m grid resolution by up- or down-scaling as necessary. All data 
processing and visualisation was conducted in the R software environment for statistical and graphical computing 
(version 3.3.1)34 using packages ‘sp’35, ‘raster’36, ‘rgdal’37 and ‘rasterVis’38.

Calculating cumulative impact.  We used expert knowledge collected through online surveys (N = 81) to 
generate scores for the effect of each threat on each ecosystem (µij); these are referred to as ‘effect scores’ (see 
glossary, Table 1). For the purposes of this assessment, experts were defined as people with expertise in relevant 
ecosystems and an understanding of South Australia’s gulf environments. Experts had a range of qualifications 
and experience, and were selected from various fields including academia (researchers, academics and postgrad-
uate students), state government and environmental consultancy. However, we recognise that a broader definition 
of ‘experts’ would have allowed for greater inclusion of, for example, fishers, interested citizens, NGOs and indus-
try representatives39.

To capture data on knowledge-based uncertainty, experts were asked to give a range of effect scores for each 
ecosystem-threat combination, relating to different scoring scenarios: ‘best-case’ (generally the lowest scores), 
‘most-likely’ (best estimate) and ‘worst-case’ (generally the highest scores). The experts were provided with a 
survey reference sheet that explained the meaning of these scenarios in terms of their level of uncertainty about 
the effect of a threat on an ecosystem (available in the Supplementary material for Doubleday et al.22). The three 
scenario scores could be very different if experts were highly uncertain of the effect, or very similar (even the 
same) if the expert was highly certain of the effect.

We encouraged the surveyed experts to contact the research team (via phone or email) with any que-
ries, or requests for clarification regarding the questions in the online survey. Even so, there is potential for 
language-based (linguistic) uncertainty to have been introduced into the results, because of differences in inter-
pretation of potentially vague, ambiguous, context-dependent, generalised or indeterminate terms and/or coun-
terfactual statements in the survey questions40. This linguistic uncertainty can lead to further uncertainty and 
variance in the expert-elicited effect scores, potentially leading to an artificial narrowing of the certainty bounds 
around the most-likely effect scores41. The full methodology of the expert elicitation, along with copies of the 
online surveys and additional information provided to the experts is available in Doubleday et al.22.

We followed the general framework developed by Halpern et al. and described in detail in their papers1,7. 
Our adapted version of their method calculates the cumulative impact score for the eight ecosystems separately 
(Eq. 1).
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where CIs is the cumulative impact at each grid cell based on effect score scenario s (either, ‘best-case’, ‘most-likely’ 
or ‘worst-case’). Di is the spatial intensity of threat i (scaled between 0 and 1, with 1 representing the highest value 
for the threat) and µi,e is the average, expert-elicited effect score for threat i on ecosystem e (score range = 0–8) 
calculated from all experts’ scores for the scenario, threat and ecosystem in question (Fig. 1). There were N = 32 
threats in our assessment, but not all ecosystems were exposed to all threats (Supplementary Figures S1 & S4). 
Eq. 1 results in a value of 0 for a threat-ecosystem combination if a threat did not occur in a grid cell (threat inten-
sity = 0), or if the threat had an effect score of 0 for the ecosystem in question. The more high-intensity threats 
that occurred in a grid cell, and the more vulnerable the ecosystem in that cell was to those threats, the greater the 
cumulative impact score.

After calculating CIs for all eight ecosystem types and for each of the three effect score scenarios (s), we merged 
the seven benthic ecosystem cumulative impact layers into a single raster for each scenario, with 250 × 250 m cell 
size (Fig. 1). The cumulative impact layers for the pelagic ecosystem were assessed separately. We summarised 
cumulative impact across the entire spatial range of each ecosystem type by generating density plots and calculat-
ing mean values for cumulative impact from all grid cells classified as each ecosystem type.

We also investigated the spatial consistency in cumulative impact results across all three scoring scenarios 
(best-case, most-likely and worst-case), highlighting spatially consistent results as being the most robust out-
comes. Spatial consistency was assessed using percentiles, where grid cells that consistently scored low (≤20th 
percentile) or high (≥80th percentile) for cumulative impact under all three scenarios were classified into the 
‘least-impacted’ and ‘most impacted’ zones respectively. This assessment was done separately on the benthic (all 
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seven benthic ecosystem classes combined) and pelagic ecosystems. By virtue of the methodology (based on per-
centiles of the cumulative impact scores), a maximum of 20% of the area of each of the two broad scale ecosystem 
types (benthic and pelagic) could be classified into the ‘least’ and ‘most’ impacted zones; the higher the percentage 
value, the greater the spatial consistency across scoring scenarios. However, note that the when the ‘least’ and 
‘most’ consistently impacted zones for the total benthic area of the Gulf were further split into the seven benthic 
ecosystem classes, the division of ‘most’ and ‘least’ impacted cells was not equal across the classes (i.e. some eco-
system classes were more frequently classified as ‘least’ or ‘most’ consistently impacted).

We calculated the total exposure (area) of each threat by summing the area it covered, at any intensity level >0, 
across the entire Gulf. We also ranked the threats using the sum of ‘most-likely’ cumulative impact scores from 
all grid cells that each threat occurred in. This ranking was done separately for the benthic (n = 7) and pelagic 
(n = 1) ecosystems, as these overlapped (Supplementary Figures S1 & S2). We ran sensitivity analyses to explore 
the influence of each threat and the effect scores on the most-likely scenario results; these are detailed in the 
Supplementary material (section S2.2).

Measuring ‘knowledge-based uncertainty’.  Our method for incorporating self-assessed 
‘knowledge-based uncertainty’ into the results involved using the best-case and worst-case scenario effect scores 
to generate uncertainty bounds around the most-likely effect score. This was done by adding random errors to 
the average most-likely effect score for each ecosystem-threat pair, to simulate uncertainty. We compared three 
different methods for simulating uncertainty:

Method 1: Based on Stock and Micheli’s ‘assumed expert uncertainty method’19 given in Eq. 2, where µi,j is the 
average most-likely effect score for each ecosystem-threat pair, εi,j is a random number drawn from a uniform 
distribution bounded by 0.5 * the maximum effect score (in our study this was 8).

µ µ ε= +ˆ (2)i j i j i j, , ,

Method 2: An adapted version of Stock and Micheli’s method (see method 1 above), where errors were drawn 
from a uniform distribution with bounds defined by the most-likely score plus or minus up to half of the range 
between the best-case and worst-case scores (Eq. 3).

µ µ ε= +ˆ (3)i j i j k l, , ,

where µi, j is defined as for Eq. 1, εk, l is a random number drawn from a uniform distribution bounded by 0.5 * the 
difference between the best-case and worst-case scenario effect scores for ecosystem-threat pair (i, j).

Method 3: Errors were drawn from a beta distribution, which is a distribution well-suited to representing 
uncertainty around expert elicited data20. The beta was parameterised by scaling the mean most-likely expert 
score for each habitat and threat combination using the mean best-case and worst-case scores, such that it fell 
within the range of 0 and 1: (most-likely − worst-case)/(best-case − most-likely). The alpha (α) and beta (β) 
parameters for the beta distribution were then calculated as described in Eqs 4 and 5 respectively:

α µ σ µ µ= − ÷ − − ×(((1 ) ) (1 )) (4)i j i j i j,
2

, ,
2

β α µ= × ÷ −((1 ) 1) (5)i j,

where µi,j is the scaled average most-likely effect score for each ecosystem-threat pair and σ2 (variance) is fixed at 
0.2. After back-transformation, this procedure produced unimodal sampling distributions bounded by the best- 
and worse-case effect score, and with mean equal to the most-likely effect score.

We used each of the three methods for uncertainty simulation to generate 1000 new effect scores for each 
ecosystem and threat pair. These were then used to parameterise 1000 iterations of the spatial cumulative 
impact assessment, thus simulating a plausible range of cumulative impact scores that attempted to account for 
knowledge-based uncertainty in three different ways. We summarised the results of the knowledge-based uncer-
tainty simulations by calculating a mean and standard deviation from all 1000 iterations of cumulative impact for 
each ecosystem and for each of the three uncertainty methods.

Data availability.  The spatial datasets generated and analysed during this study are available from the 
Figshare repository. These data layers include the Spencer Gulf benthic and pelagic ecosystem layers (https://doi.
org/10.6084/m9.figshare.5047798.v1), all threat intensity layers (https://doi.org/10.6084/m9.figshare.5047786.v1),  
and the cumulative impact score layers for the three expert scoring scenarios for both benthic and pelagic ecosys-
tems (https://doi.org/10.6084/m9.figshare.5047774.v1). The R scripts used for analyses during the current study 
are available from the corresponding author on reasonable request.

Results
Ecosystem and threat mapping.  The eight dominant ecosystems of Spencer Gulf and their areal coverage 
are shown in Table 2 (for map see Supplementary Figure S1). The spatial exposure and spatial intensity (see glos-
sary in Table 1) of each threat varied throughout Spencer Gulf, exposing some ecosystems to a greater number of 
threats than others (Table 3, Supplementary Figure S4). Mangroves had the highest average exposure to multiple 
threats throughout their spatial range, although seagrass and subtidal rocky ecosystems had the highest maxi-
mum threat exposure at any single point (Table 3). The pelagic ecosystem had the lowest threat exposure, both on 
average across its whole range and at any single location (Table 3).

http://dx.doi.org/10.6084/m9.figshare.5047798.v1
http://dx.doi.org/10.6084/m9.figshare.5047798.v1
http://dx.doi.org/10.6084/m9.figshare.5047786.v1
http://dx.doi.org/10.6084/m9.figshare.5047774.v1
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Spatial cumulative impact assessment (standard approach, ‘most-likely’ scenario).  Seagrass 
ecosystems had the greatest cumulative impact score (>30) at a single location (Fig. 2), whereas the intertidal 
rocky ecosystem had the highest average cumulative impact score (most >15) across its entire spatial range 
(Fig. 2). Spencer Gulf ’s intertidal and supratidal ecosystems were more likely to be exposed to higher levels of 
cumulative impact than subtidal and pelagic ecosystems (Figs 2, 3b,c). Cumulative impact score density curves 
for four ecosystems (saltmarsh, seagrass, pelagic and subtidal rocky) showed bimodality, indicating they had 
patches of both low cumulative impact and moderate to high cumulative impact (Fig. 2). Mangroves notably dif-
fered from all other ecosystems because the most common cumulative impact scores recorded for this ecosystem 
occurred in the middle of the score range, as opposed to occurring close to the minimum score (as was found for 
all the other ecosystems, Fig. 2).

For both pelagic and benthic ecosystems, the greatest cumulative impacts occurred in areas close to the coast, 
especially near major industrial developments and towns (e.g. Whyalla, Port Pirie and Port Lincoln, black out-
lines in Fig. 3b & Supplementary Figure S6). There were also concentrations of cumulative impacts for the pelagic 
ecosystem around the shipping channel in the middle of the northern Gulf, as well as in fishing and aquaculture 
areas in the south-central Gulf (Fig. 3c).

Our analysis based on the most-likely expert effect scores found that the top five threats for both benthic and 
pelagic ecosystems were pollution-related; including point source pollution, such as oil spills and nutrient inputs, 
and climate change threats resulting from global CO2 emissions (Table 4 & Supplementary Table S3).

Knowledge-based uncertainty – simulation of uncertainty bounds for the ‘most-likely’ scenario 
scores.  The cumulative impact rankings of the eight Gulf ecosystems remained broadly similar across the 
three approaches to incorporating expert uncertainty; although note the switch in positions of pelagic, saltmarsh 

Figure 1.  Schematic of framework for calculating cumulative impact and accounting for ‘knowledge-based 
uncertainty’. Experts were asked to give ‘effect scores’ (between 0–8) for each combination of threat (in this 
example it is prawn trawl fishing) and ecosystem (here subtidal soft sediment), and for three uncertainty 
scenarios:’best-case’, ‘most-likely’ and ‘worst-case’. These effect scores were then used in a calculation of impact 
that accounts for the spatial intensity of each threat and the locations of overlap between a threat and an 
ecosystem. This process was repeated for each threat that occurs to each ecosystem and the resulting impact 
layers were summed to generate ecosystem-specific cumulative impact maps. This entire process was carried 
out for all eight ecosystems, and was repeated three times, once for each uncertainty scenario, to account for 
the experts’ ‘knowledge-based uncertainty’ around the cumulative impact scores. Maps were produced using 
R statistical software (version 3.3.1; https://www.r-project.org) and the packages raster36, rgdal37, sp35 and 
rasterVis38.

https://www.r-project.org
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and seagrass ecosystems in Fig. 4a–c. Both of the self-assessment uncertainty approaches (Fig. 4a,b) resulted 
in smaller standard deviations compared to the assumed uncertainty approach (Fig. 4c). Assuming our sur-
vey method appropriately captured the experts’ uncertainty about the effect of threats on ecosystems, this out-
come suggests that results were better constrained when we used the data collected from the experts to quantify 
knowledge-based uncertainty. However, there is a risk that linguistic uncertainty introduced during the expert 
survey may have caused the elicited bounds to be unrealistically narrow. Future surveys should follow the advice 
in Regan et al.40 and Carey et al.41 to reduce the risk of linguistic uncertainty in expert elicitation.

Using a uniform distribution to simulate uncertainty resulted in higher cumulative impact scores (Fig. 4b,c) 
and often did not adequately capture the experts’ most-likely scores. This can be seen when comparing the values 
from the boxplots (Fig. 4b,c) with the density plots of most-likely scores from the entire spatial range of each 
ecosystem (Fig. 2). This results from the uniform distribution assumption of symmetrical uncertainty around 
the most-likely score, which we found not to be the case in most instances (See Supplementary material S2.4 and 
Supplementary Figure S7). The beta distribution method for modelling uncertainty allowed asymmetrical bounds 
around the most-likely score (see Supplementary material S2.5, Supplementary Figure S8) and thus resulted in a 
better representation of both the most-likely expert effect scores and the self-assessed uncertainty ranges.

Self-assessed knowledge-based uncertainty – spatial consistency.  Using the best-case, most-likely 
and worst-case scenario effect scores from the expert survey22, we undertook three versions of the spatial cumu-
lative impact assessment and explored spatial consistency across all three results; identifying areas consistently 
classified as ‘most’ or ‘least’ impacted, based on a percentile method. The ‘most impacted’ zones for both the ben-
thic and pelagic broad scale ecosystems tended to be in the northern Spencer Gulf and coastal areas (Fig. 5). The 
‘least-impacted’ zones (containing cells with consistently low cumulative impact scores) were generally found in 
southerly parts of the Gulf and areas with moderate depth (Fig. 5).

Values close to 20% for the total coverage of the benthic or the pelagic ecosystems within each impact zone 
indicate high consistency in the cumulative impact scores across all three scoring scenarios (Table 5). Whereas 
low percentage values indicated that there was little overlap between the areas classified as ‘least’ or ‘most’ 
impacted across all three scoring scenarios. There was greater consensus (indicative of greater confidence) for 
the pelagic ‘most’ (19.3%) and ‘least’ (16.9%) impacted zones under the three scoring scenarios, compared to the 
total benthic ecosystem impact zones (calculated based on the total area of all seven classes of benthic ecosystem), 
which were 13.3% and 6.8% respectively.

We further investigated the impact zones as a function of which specific ecosystem class they covered. The 
full spatial extent of the intertidal rocky and intertidal soft areas of the Gulf were encompassed in the consist-
ently ‘most-impacted’ zone for benthic ecosystems. The two ecosystem classes with the largest areas classified as 
‘most-impacted’ were seagrass (1901.7 km2) and pelagic (5679.8 km2) (Table 5). The ecosystem with the lowest 

Ecosystem class Areal extent (km2)

Pelagic (water column in all sub-tidal areas) 29370

Subtidal soft sediment (includes invertebrate, rhodolith 
and sparse algal communities) 14552

Seagrass (intertidal and subtidal) 7423

Subtidal rocky (including algal forest and rocky reef 
communities) 1563

Saltmarsh 507

Intertidal soft (un-vegetated soft substrate) 382

Mangrove 87

Intertidal rocky (hard substrate) 16

Table 2.  Area of the eight, mapped broad-scale ecosystems in Spencer Gulf.

Ecosystem class

Summary statistics (per grid cell)

Min N threats Maximum N threats Mean N threats (std dev)

Intertidal rocky 6 16 8.06 (1.69)

Intertidal soft 6 19 8.14 (1.54)

Mangrove 6 16 9.99 (1.69)

Saltmarsh 6 15 8.49 (1.38)

Seagrass 5 20 7.59 (1.63)

Subtidal rocky 5 20 7.81 (1.63)

Subtidal soft 5 19 7.46 (1.11)

Pelagic 3 12 5.75 (1.26)

Table 3.  Summary statistics for threat exposure, based on spatial overlap between threats (N = 32) and 
ecosystems (N = 8). Values were calculated using all grid cells within each ecosystem class.
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percentage of its area classified as ‘most impacted’ was subtidal soft (2%), although this ‘small’ percentage equates 
to 284.8 km2, which is more than 18 times the total size of the intertidal rocky ecosystem (Table 5). There were 
only two ecosystem classes with any part of their area consistently classified as ‘least-impacted’; these were sub-
tidal soft (1677.7 km2) and pelagic (4959 km2), which was also the ecosystem class with the greatest percentage of 
its area (16.9%) within the consistently ‘least-impacted’ zone (Table 5). Six of the seven benthic ecosystem classes 
(intertidal rocky, intertidal soft, mangrove, saltmarsh, seagrass and subtidal rocky) had none of their extent in the 
benthic consistently ‘least impacted’ zone (Table 5).

Discussion
Lack of data drives the use of expert knowledge in spatial cumulative impact assessments for all environ-
ments6,42–45. However, there are drawbacks to using expert knowledge as a surrogate for quantitative empirical 
data, a key one being knowledge-based uncertainty16 and the difficulty in accounting for it21. We demonstrate that 
this source of uncertainty can affect spatial cumulative impact assessments, and their interpretation, particularly 
regarding the level of confidence to ascribe to mapped outputs. Exploration of the impact of knowledge-based 
uncertainty on assessment results is important for testing the reliability of cumulative impact assessment methods 

Figure 2.  Density curves of the ‘most-likely’ (unscaled) cumulative impact score for each ecosystem in 
Spencer Gulf. The curves are generated using the cumulative impact scores from all grid cells classified as each 
ecosystem type.

Figure 3.  (a) Overview map of Australia with Spencer Gulf region shown by rectangle. Scaled cumulative 
impact maps for (b) benthic and (c) pelagic ecosystems in Spencer Gulf, based on the ‘most-likely’ scenario 
expert scores. Annotations: SG = Spencer Gulf, GSV = Gulf St Vincent, AD = Adelaide. Boxed areas in map 
(b) show location of population centres or industrial areas, finer-scale maps for these areas are supplied in the 
Supplementary material (Supplementary Figure S6). Maps were produced using R statistical software (version 
3.3.1; https://www.r-project.org) and the packages raster36, rgdal37, sp35 and rasterVis38.

https://www.r-project.org
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and outputs19,46,47. It also improves the transparency of the assessment process and highlights the most robust 
results, which is critical if the outputs are to be used for identifying knowledge gaps, directing funding, monitor-
ing, or informing management actions6,8,18.

We requested that experts provided an effect score range using scoring scenarios22, as is commonly recom-
mended in the literature on expert elicitation6,15,16,19. This led to upper and lower bounds (best-case & worst-case 
scenarios respectively) around the most-likely effect scores. There is a risk that linguistic uncertainty (uncertainty 
in language) related to each expert’s own interpretation of the terms ‘best-case’, ‘worst-case’ and ‘most-likely’, may 
have introduced uncertainty into our survey results40,41. We attempted to avoid this issue by providing a defini-
tion of these terms in the survey reference sheet (a copy of which can be found in the Supplementary material of 
Doubleday et al.22).

In addition, experts may be over-confident when assessing their own uncertainty15, but we cannot test this 
without knowing the ‘correct’ effect score for each ecosystem and threat pair, which would require validation 
with empirical data that are not currently available. Our approach required additional time and effort from both 
the experts and the researchers, because three effect scores were needed for each ecosystem and threat combi-
nation. However, we propose that through thoughtful survey design and expert selection22, these time costs can 
be reduced. We also demonstrate that these additional time costs are balanced by the benefits of gathering these 
valuable data on uncertainty, which increase the confidence in, and utility of, the assessment outputs.

Our spatial cumulative impact assessment for Spencer Gulf found that intertidal and near-shore pelagic/sub-
tidal benthic ecosystems, especially those around heavy industry and population centres, consistently scored 
above the 80th percentile for cumulative impact across all three scoring scenarios. The intertidal rocky and sub-
tidal soft ecosystems respectively had the highest and lowest average cumulative impact across their entire spa-
tial ranges. The ecosystem classes all ranked similarly for cumulative impact under the different methods for 
simulating knowledge-based uncertainty; however, the absolute values of average cumulative impact for each 
ecosystem changed substantially depending on the assumptions of the distribution used to simulate uncertainty. 
Using the beta distribution to simulate uncertainty around the most-likely expert scores resulted in the lowest 
average cumulative impact scores and the smallest amount of variation. The beta distribution was centred on 
the most-likely score and bounded by the best-case and worst-case scores; meaning it accurately reflected these 
three information points provided by the experts, which represented plausible ranges for the impact of threats on 
ecosystems in the Gulf. Conversely, the method we used to parameterise the uniform distribution (based on that 
of Stock and Micheli19) used only the best-case and worst-case scores to generate error values and assumed that 
uncertainty was symmetrical around the most-likely score. This assumption resulted in simulated ranges of effect 
scores that could exclude the experts most-likely effect score, in cases when the best-case and worst-case scores 
were not equidistant from the most-likely score. The plausible score ranges that we collected from the experts 
were frequently not centred on the most-likely score; meaning they could not be appropriately represented by a 
uniform distribution.

If self-assessed knowledge-based uncertainty data are not available (as is the case in many previous stud-
ies), the Stock and Micheli method19 may be a conservative alternative for retrospectively accounting for 

Exposure (km2)

Impact score summary:

R2Min Max Median Mean SD Sum

Threat layer Benthic ecosystems (combined) impact scores

Climate change: hot weather events 5190.3 <0.1 4.25 0.00 0.73 1.46 271264 0.552

Climate change: extreme rainfall events 30361.2 0.00 2.88 0.00 0.42 0.83 157525 0.743

Pollution: oil 3175.4 0.00 4.17 0.00 0.22 0.67 81049 0.893

Pollution: nutrients 3614.4 0.00 4.73 0.00 0.07 0.25 26843 0.957

Climate change: increased average 
temperature 30361.2 1.83 4.00 2.85 3.05 0.31 1133269 0.966

Threat layer Pelagic ecosystem impact scores

Climate change: ocean acidification 30361.2 3.75 3.75 3.75 3.75 0.00 1666710 0.669

Climate change: increased average 
temperature 30361.2 3.33 3.33 3.33 3.33 0.00 1481372 0.706

Climate change: extreme rainfall events 30361.2 2.75 2.75 2.75 2.75 0.00 1222254 0.757

Climate change: hot weather events 5190.3 0.00 3.42 0.00 0.41 1.11 180800 0.951

Pollution: oil 3175.4 0.00 3.84 0.00 0.24 0.73 107722 0.971

Table 4.  Summary statistics of impact scores for the top-five threats to benthic and pelagic ecosystems in 
Spencer Gulf, based on the experts’ most-likely effect scores. Summary values (min, max, median, mean and 
standard deviation) were calculated from all grid cells classified as each ecosystem type (all benthic ecosystem 
cells were grouped for this analysis). Sum = the total impact score attributable to each threat across all grid cells. 
Exposure = the total area of Spencer Gulf covered by the threat at any intensity level > 0. Images showing the 
exposure and intensity of each threat layer are provided in Supplementary Figure S3. R2 values were calculated 
using jack-knife sensitivity testing (see Supplementary material section S2.2.2) and indicate the influence of 
each threat layer on the final (most-likely scenario) cumulative impact scores. In this context, lower R2 values 
indicate a larger influence on the outcome (i.e. a greater difference after the threat was removed from the 
assessment). The full table of threat rankings is available in the online supplementary material (Supplementary 
Table S3).
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knowledge-based uncertainty in cumulative impact assessment results (being based on a priori assumptions)19. 
However, it must be acknowledged that the bounds set on the distribution of uncertainty are arbitrary and the 
method can lead to over-inflation of both the average cumulative impact scores and the amount of uncertainty 
around them, if expert uncertainty is not symmetrical around the given score.

In addition to our primary focus on knowledge-based uncertainty, we also aimed to deliver useful outputs for 
the sustainable management of Spencer Gulf. We found that high cumulative impacts in coastal areas were driven 
both by the greater effect scores for threats to shallow and intertidal ecosystems22 and the greater spatial exposure 
and intensity of sea- and land-based threats in coastal areas. Similar patterns of high cumulative impact in shallow 
coastal areas have also been shown in other studies at both global-1,2 and regional-scales12,17,44,48,49.

We expected that most of each ecosystem would experience relatively low-level cumulative impact, with a 
small proportion having moderate to high cumulative impact scores. This pattern was borne out in the cumula-
tive impact density curves for the intertidal rocky, intertidal soft and subtidal soft ecosystems. However, we found 
that the density curves for saltmarsh, seagrass, pelagic and subtidal rocky ecosystems were bimodal, indicating 

Figure 4.  Summary plots of spatial cumulative impact scores from simulations that accounted for knowledge-
based uncertainty. For each of 1000 simulations some random error was added to the expert effect scores for 
each ecosystem and threat combination and the adjusted scores were used to calculate cumulative impact. 
(a) Using the expert’s self-assessed uncertainty data, simulated values were drawn from a beta distribution 
centred on the most-likely score and bounded by the best-case and worst-case scores (Eqs 4 and 5). For (b) and 
(c), simulated random errors were drawn from a uniform distribution based on (b) our expert self-assessed 
uncertainty method (Eq. 3) and (c) assumed uncertainty method proposed by Stock and Micheli19 (Eq. 4). In all 
panels the bold horizontal line shows the average cumulative impact score for each ecosystem class from 1000 
simulations, box extents show the standard deviation of this average and vertical lines extend to the minimum 
and maximum average cumulative impact per ecosystem recorded across all 1000 simulations.
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that considerable patches of these ecosystem classes experienced moderate to high cumulative impact. The 
patches experiencing higher cumulative impact were predominantly in northern Spencer Gulf and coastal areas, 
where cumulative impact scores were consistently higher than in the southern or deeper, central areas of the Gulf. 
Mangroves differed from other ecosystems because the peak in cumulative impact occurred in the middle of the 
score range, rather than being skewed to the lower end of the scale. This suggests that most mangroves throughout 
Spencer Gulf are at least moderately impacted by cumulative threats.

High cumulative impacts on Spencer Gulf ’s coastal ecosystems are likely to affect the delivery of key ecosys-
tem services from these areas50, including recreation, provision of fish habitat and nursery areas, water purifica-
tion, coastal protection and carbon sequestration51–53. A reasonably large proportion (19.3%) of the Gulf ’s pelagic 
ecosystem fell within the consistently ‘most-impacted’ zone: 5680 km2, with a smaller proportion (3269 km2 and 
13.3%) of the total area of Spencer Gulf ’s benthic ecosystems found to be consistently at risk of high cumulative 
impact (i.e. in the ‘most-impacted’ zone). This suggests that there is greater certainty about the risk of cumulative 
impacts to the pelagic ecosystem than the benthic ecosystem; shown by more consistent results across the three 
certainty scenarios for the pelagic ecosystem.

Our results indicate that Spencer Gulf ’s benthic ecosystems are relatively unaffected by human activities 
compared to other multi-use aquatic systems that support industrial and recreational activities, such as the 
Mediterranean and Black Sea48, the Baltic Sea17 and the Great Lakes in North America44. This assertion is based 
on qualitative visual assessment of the figures in these papers, which indicate greater cumulative impact scores 
over larger areas compared to our results for Spencer Gulf (it is difficult to make this comparison quantitatively 

Figure 5.  Maps showing the grid cells that were consistently the ‘most impacted’ (≥80th percentile, pink) or ‘least 
impacted’ (≤20th percentile, green) across all three effect score scenarios (best-case, most-likely and worst-case) 
for (a) benthic and (b) pelagic ecosystems. Tan coloured areas show pixels that were not consistently in either the 
upper or the lower percentile groups (i.e. had scores between the 20th and 80th percentile in at least one scoring 
scenario). Maps were produced using R statistical software (version 3.3.1; https://www.r-project.org) and the 
packages raster36, rgdal37, sp35 and rasterVis38.

Ecosystem

Consistently most-impacted Consistently least-impacted

Percentage Area (km2) Percentage Area (km2)

Pelagic ecosystem 19.3 5679.8 16.9 4959.0

Benthic ecosystems (total) 13.3 3269.0 6.8 1677.7

Benthic - Intertidal Soft 100.0 382.4 0.0 0.0

Benthic - Mangrove 87.6 76.1 0.0 0.0

Benthic - Saltmarsh 41.8 211.7 0.0 0.0

Benthic - Seagrass 25.6 1901.7 0.0 0.0

Benthic - Subtidal Rocky 26.4 412.3 0.0 0.0

Benthic - Subtidal Soft 2.0 284.8 11.5 1677.7

Table 5.  Percentage and area (km2) of each broad scale ecosystem type (benthic and pelagic), and each benthic 
ecosystem class, which scored ≤20th percentile (‘least impacted’) and ≥80th percentile (‘most impacted’) for 
cumulative impact under all three effect score scenarios (best-case, most-likely and worst-case). The benthic 
ecosystem total shows the area of the ‘most’ and ‘least’ impacted zones as a percentage of the entire area of all 
benthic ecosystems in the Gulf.

https://www.r-project.org
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because the cumulative impact scores in these papers are not described using directly comparable percentile 
metrics). This apparent difference in the extent and severity of cumulative impacts is likely to be driven by greater 
population densities (with associated development and industrialisation) in these regions, compared to the 
Spencer Gulf region. The areas surrounding the Mediterranean Sea and the Great Lakes region of the USA have 
respective averages of 20–1000 54 and 91.5 55 people per km2, compared to just 1.62 people per km2 in South 
Australia (with a range of 0.1–10 people per km2 in areas immediately surrounding Spencer Gulf)56. This cur-
rent, comparatively low impact of human activity in Spencer Gulf provides an important opportunity for early 
intervention through the development of an integrated management approach for the region. Adopting such a 
framework now, before broad-scale environmental degradation becomes a widespread issue, may avoid the need 
for ecosystem restoration later.

According to our semi-quantitative assessment for the eight assessed marine ecosystems in Spencer Gulf, the 
top five threats were related to either point source pollution from oil and nutrients, or climate change. In a recent 
update2 to their earlier global analysis1, Halpern et al. found that the impacts of climate change have increased over 
the last 5 years in 66% of the global ocean. These findings are particularly concerning as impacts from global climate 
change are difficult to manage at a local, or even regional level57. This makes it even more important to reduce other 
high-impact threats that can be managed locally, e.g. point source pollution in Spencer Gulf. This will contribute 
to reducing overall pressures on marine ecosystems and potentially increase their resilience to climate change58–60.

All spatial cumulative impact assessments make a number of assumptions6, each of which may influence the 
results19. Our study highlights the effect that knowledge-based uncertainty can have on assessment results; the 
ease with which self-assessed data on uncertainty bounds can be collected; and how confidence in results can then 
be tested and reported by simulating bounds around average impact scores and focusing on the most consistent 
results from across all effect score scenarios. However, further uncertainty in our results may stem from assump-
tions we have made during the assessment process, which are common to other cumulative impact assessments6. 
We assumed that an ecosystem exposed to single, or multiple threats would be impacted; that the impact was 
linear; and that the impact of multiple threats was additive (rather than interactive, synergistic or antagonistic61). 
Other caveats include that we could not include pelagic/midwater line and net fishing in our assessment, because 
of the poor spatial resolution of these data for our study region. However, the impact of these types of fishing gear 
on ecosystems (as opposed to specific species62) is expected to be minimal, especially when compared to other 
fishing gears with greater impact on the seascape, such as trawling22,63, which was included. In addition, the avail-
able climate change data had poor spatial resolution, meaning that these threats were often treated as ubiquitous 
(Supplementary Figure S3e). We were not able to include three particularly vulnerable ecosystems (rhodolith 
beds31,32, sponge gardens30,64 and native shellfish beds33) because of a lack of spatial data leading to uncertainty 
around their location and spatial extent throughout the Gulf. The unavailability of these data identify clear knowl-
edge gaps based around a lack of well-resolved spatial information on ecosystems, human activities and impacts 
of climate change, as well as a need for more empirical studies on the impact of various threats, including the 
likely complex interactions between multiple threats65. This lack of data also highlights that knowledge-poor areas 
or ecosystems are often those that are most vulnerable and difficult to evaluate.

Our method enables new or updated spatial data layers to be included as they become available; particularly 
if they relate to the distribution of ecosystems or threats that were included in the original expert elicitation sur-
vey22. Future work should involve validation of our predictions of cumulative impact using in-situ data on ecosys-
tem condition and the inclusion of potentially positive human activities, such as marine parks and no-take zones.

Conclusion
Our study of Spencer Gulf, based in part on expert-elicited data, showed that the greatest risk of cumulative impacts 
to the eight assessed coastal and marine environments occurred in intertidal and shallow subtidal ecosystems, par-
ticularly in the northern Gulf. This was consistent across all expert score uncertainty scenarios and was due to: 1) 
greater concentrations of high-intensity threats in coastal areas, especially close to heavy industry and population 
centres; and 2) higher effect scores for these ecosystems (indicative of their greater vulnerability to threats), particu-
larly climate change and localised pollution. Overall, however, only a relatively small proportion of Spencer Gulf ’s 
marine ecosystems appear to be exposed to high risks from cumulative impact when qualitatively compared to 
published studies for other locations. This is a positive outcome, and means our results can be used to support con-
servation and proactive, protective management, rather than exclusively highlighting priority areas for restoration.

We show that uncertainty associated with expert knowledge can lead to uncertainty in the outputs of spa-
tial cumulative impact assessments. However, we recognise the value of expert knowledge for assessments of 
data-poor regions and environments (commonly the case for marine systems). Therefore, we demonstrate a 
straight-forward method for capturing uncertainty in expert knowledge, which is simply to ask the experts for 
effect score ranges indicative of their uncertainty, when assessing the effect of threats to ecosystems. This approach 
enables knowledge-based uncertainty to be accounted for and the most certain results to be identified.
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