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Abstract 11 
 12 
The role of γ-Aminobutyric acid (GABA) as a signal in animals has been documented over the past 6 decades. In 13 
contrast, evidence that GABA is a signal in plants has only emerged in the last 15 years, and it was not until last 14 
year that a mechanism by which this could occur was identified – a plant ‘GABA receptor’ that inhibits anion 15 
passage through the Aluminium Activated Malate Transporter family of proteins (ALMTs). ALMTs are 16 
multigenic, expressed in different organs and present on different membranes. We propose GABA regulation of 17 
ALMT activity could function as a signal that modulates plant growth, development and stress response. In this 18 
review, we compare and contrast the plant ‘GABA receptor’ with mammalian GABAA receptors in terms of their 19 
molecular identity, structure, mode of action and signalling roles. We also explore the implications of the 20 
discovery that GABA modulates anion flux in plants, its role in signal transduction for the regulation of plant 21 
physiology, the possibility that there may be other GABA binding sites and regions in the ALMT proteins (eg 22 
amino acid residues such as arginine and tyrosine) and explore the potential interactions between GABA and other 23 
signalling molecules.   24 
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Abbreviations 39 
 40 

3-MPA 3-mercaptopropionic acid  

ALMT Aluminium (Al3+)-activated malate transporter 

Cys Cysteine 

EC50 Half-maximal response 

F / Phe Phenylalanine 

GABA γ-aminobutyric acid 

GABA-T  GABA transaminase 

GABP GABA permease  

GAD Glutamate decarboxylase  

GAT GABA transporter 

GDH Glutamate dehydrogenase  

E / Glu Glutamic acid 

I / Ile Isoleucine 

SSA Succinic semialdehyde  

SSADH Succinic semialdehyde dehydrogenase 

T / Thr Threonine 

D / Asp Aspartic acid   

V / Val Valine 

Y / Tyr Tyrosine 

Q / Gln Glutamine 

L / Leu Leucine 

R / Arg Arginine 

TMDs Transmembrane domains  

K / Lys Lysine 

S / Ser Serine 

G /Gly Glycine 
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Introduction 42 
 43 
The non-proteinogenic amino acid γ-aminobutyric acid (GABA) was first isolated in 1949 from potato tubers [1], 44 
prior to its discovery in animal brain extracts [2]. Soon after, in the 1950s and 1960s, evidence was gathered that 45 
suggested GABA might act as an inhibitory neurotransmitter in animals; GABA was found to suppress impulses 46 
generated by crayfish stretch receptor neurons [3,4]. Yet, it was not until Bloom et al. (1971) that GABA was 47 
localised to mammalian nerve terminals [5], and it took a further ten years until the mechanism by which GABA 48 
acts as an inhibitory neurotransmitter was identified – via its activation of GABAA (ionotropic) and GABAB 49 
(metabotropic) receptors [6]. In mammals, GABA counteracts the action of excitatory neurotransmitters in 50 
the mature brain [5], through the activation of a Cl- conductance that passes through GABAA receptors into mature 51 
neurons leading to membrane hyperpolarisation [7]. This prevents the neurons from firing and thus has a calming 52 
effect [8]. Its action has been mainly described in the nervous system where GABA receptors regulate brain 53 
function and development [9,10], although GABAergic receptors have also been described as functioning in other 54 
tissues beyond neuronal cells, such as human organs [11,12]. This has been extensively reviewed by Owens and 55 
Kriegstein (2002) [10,13] GABA as a signalling molecule in animals has been studied over six decades, whereas 56 
in plants it is mostly defined as a carbon – nitrogen metabolite [14-16]. This said, various evidence has been 57 
mounting since the 1990’s that GABA may act as a signal in plants, including: i) GABA concentration in plant 58 
tissue is variable (0.03 ~ 6 μmol g-1 fresh weight) and prone to large and rapid increases (< thousand fold) 59 
following exposure to a multitude of biotic and abiotic stresses [17,18]; ii) GABA concentration gradients can be 60 
found in plant tissues [19,20]; iii) GABA metabolism is compartmentalised intra- and inter-cellularly [21]; iv) 61 
GABA and GABA receptor agonists and antagonists alter plant growth[22]; v) GABA binding sites have been 62 
detected on plant cell membranes [20,23] and recently, vi) the identification of GABA-regulated ion channels in 63 
plants that also have their activity regulated by drugs known to affect GABA receptors in animals [18]. 64 

 65 
A number of reviews have been published in the past two decades, which have summarised plant GABA 66 

metabolism and its contribution to plant growth, development and stress adaptation [16,17,22,24-26]. However, 67 
the discovery that a family of plant anion channels, the Aluminium (Al3+)-activated Malate Transporters 68 
(ALMTs), are regulated by GABA, and this regulation can modulate tissue growth [18] warrants a re-examination 69 
of the roles of GABA in plants. In particular, this regulation has been proposed to transduce GABA metabolism 70 
into membrane signalling via an alteration of anion flux across cell membranes [27]; as such, this discovery opens 71 
novel research avenues for plant and animal biology [28].  72 

 73 
Despite being an anion channel – like animal GABAA receptors – ALMTs were observed to share little 74 

sequence homology with their proposed animal counterparts, except in a 12 amino stretch that has some similarity 75 
to one important motif for GABA binding in rat GABAA receptors [18]. Whilst GABA activates GABAA channel 76 
activity in mammals [13], GABA inhibits ALMT activity in plants [18]. However, as the equilibrium potential 77 
for chloride is generally positive in plants and negative in mature animal neurons, GABA inhibition and activation 78 
leads to a relative hyperpolarised state in plants and mature neurons respectively[18,28]. Changes in membrane 79 
potential are a key cellular signal so the finding that GABA alters this in plants, and that this is a prerequisite for 80 
changes in tissue growth [18], suggests that GABA can act as a signal in plants. The fact that GABA can be 81 
present in large concentrations and occurs in every part of the plant examined has been used as an argument 82 
against GABA being a signal in plants [29]; for instance, it can be the main amino acid found in tomato fruit 83 
(~11.5 – 20 mM) [30], and during stress it can often exceed the levels of all other amino acids [22]. The same 84 
argument was used against GABA being a signal in animals in the 1950’s and 60’s, until the receptor proteins 85 
were identified and local gradients of GABA discovered [31,32] we now have similar evidence in plants (Table 86 
1).   87 

 88 
In this review, we will provide an update on GABA-regulated ion channels in plants and explore their 89 

possible linkage with GABA-mediated physiological processes to provide an insight into the putative roles of 90 
GABA signalling in plant biology. In the first part of this review, we will compare and contrast ALMTs with 91 
animal GABAA receptors in terms of their molecular identity, structure, mode of action and signalling roles. The 92 
aim of this section is to ascertain whether there might be commonalities and differences between GABA signal 93 
transduction in both animals and plants. In the second part of this review we focus on the unique effects that 94 
GABA has on plants and we explore the implications of the discovery that GABA regulates ALMT activity for 95 
transducing signals for the regulation of physiological processes, and the potential interactions between GABA 96 
and other signalling molecules. 97 
 98 

1. Plant ALMTs vs. animal GABAA receptors 99 
 100 
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1.1. ALMTs are likely to be involved in signalling 101 
 102 

ALMT proteins encode voltage dependent anion channels [33,34] and in at least one case a Rapid or QUIick 103 
activating Anion Channel (R/QUAC-type) [35]. As in animals, anion channels have been demonstrated to be 104 
important signalling proteins in plants. Processes that depend on the function of R-type anion channels include 105 
blue light and auxin inhibition of hypocotyl growth [36,37]and ROS production in response to bacterial pathogens 106 
[38]. When anion channels open, anions are released from the cell tending to depolarise the membrane voltage 107 
from its normally very negative resting level [39]. ALMTs are activated by some anions when placed on the efflux 108 
side of the channel protein [18,34].Such transactivation is observed in vivo for the R-type anion channels of 109 
stomatal guard cells, vacuoles and hypocotyls [38]. Transactivation may serve to keep anion efflux occurring 110 
through the channel in the face of a decreasing gradient. When potassium (K+) channels open in response to 111 
depolarisation, caused by activation of anion channels, the combined effect is loss of osmoticum and reduced 112 
turgor pressure. Stomatal pore closure, i.e. loss of guard cell turgor relies on this process and involves R-type and 113 
other anion channels [40]. A sensing and signalling role for R-type channels has been suggested [35]. Fig. 1 114 
summarises the factors that regulate the R-Type channels and ALMT anion channels. 115 
 116 
1.2 GABA is a key regulator of ion channels in plants and animals 117 
 118 
In mammals, GABA can open channels via the activation of either GABAA or GABAB receptors [41]. GABAA 119 
receptors are chloride (Cl-) channels [6], whilst GABAB receptors are G-protein coupled receptors that regulate 120 
cation transport (e.g. K+ and Ca2+) [42]. The ionotropic GABAA receptor family also includes GABAA-rho 121 
receptors that are only composed of rho (ρ) subunits which forms a distinct ligand gated Cl- channels and were 122 
previously designated as GABAC receptors [32]. GABA is also involved in proliferation, differentiation and 123 
migration of different kinds of cells in animals including cancer cells [13]. In contrast to its action in mature cells, 124 
GABA can depolarise immature neurons due to different equilibrium potentials for Cl-, trigger sodium action 125 
potentials, increase internal calcium (Ca2+), reduce the voltage-dependent magnesium block of NMDA channels, 126 
interfere with ionotropic glutamatergic transmission, and modulate the excitatory to inhibitory developmental 127 
switch dependent upon age [43,44].  128 

 129 
An early candidate, touted as a receptor for GABA signalling were the plant glutamate receptor-like 130 

proteins (GLRs), which have high sequence similarity to animal ionotropic glutamate receptors (iGluRs) [45]. 131 
These possess a regulatory domain with structural homology to the animal GABAB receptors [46-48]. They are 132 
involved in glycine signalling [49] and are thought to play a role in Ca2+ utilisation, stimulate transient changes 133 
in Ca2+ levels and signalling as they behave as ligand gated Ca2+ channels [49-52]. Thus, in plant cells if GABA 134 
interacts with GLRs, it should cause transient elevations in cytosolic Ca2+ [49,52]; however, in A. thaliana 135 
seedlings GABA (1 mM) did not induce changes in Ca2+ levels [53]. Notwithstanding this negative result it is 136 
possible for membrane potential transients elicited via GABA inhibition of ALMTs to indirectly result in 137 
cytoplasmic Ca2+ transients via hyperpolarisation activated Ca2+ channels [54,55].  138 

 139 
In plants, GABA appears to negatively regulate ALMT-mediated anion flux [18]. There are multiple 140 

ALMT in all plants, and all those tested by Ramesh et al. (2015), from wheat, barley, grapevine, Arabidopsis and 141 
rice were sensitive to low micromolar concentrations of GABA. An ALMT from Arabidopsis carries a rapid-type 142 
anion conductance across the plasma membrane, whereas other ALMTs are localised to the vacuolar membrane 143 
and are involved in the passage of malate and chloride across the tonoplast [56,57]. Both types of conductance 144 
are ubiquitous in plant cells and have been shown to be, or are implicated to have signalling roles in plants; for 145 
instance, in processes such as pathogen responses, the control of gas exchange, pollen tube growth and in response 146 
to drought, salt and acidosis [58-60] and references therein[18,61], As a consequence, ALMT appear to be clear 147 
candidates to transduce GABA and other signals in all plant cells. 148 

  149 
GABA research in plants thus far has focused more on how its metabolic roles and its synthesis during 150 

stress can ultimately impact plant growth. GABA-regulated processes are thought to include developmental 151 
regulation, pH regulation, stress tolerance, carbon:nitrogen balance and long-distance transport (reviewed in 152 
[14,21,62]). Here, we speculate that some of the physiological processes affected by GABA may involve GABA-153 
modulated signal transduction via ALMT or possibly the activity of other as yet unconfirmed ‘receptors’ (see 154 
GABA-regulated plant growth and development). 155 

 156 
1.3 Structure and topology of plant ALMTs vs. mammalian GABAA  157 

 158 
The ALMT family widely exists in land plants but no homologs have been identified in mammals [58]. Although 159 
ALMTs and animal GABAA receptors are both anion channels, they share little similarity in protein sequence, 160 
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except in a 12 amino stretch important for their regulation by GABA [18]. The GABAA, nicotinic acetylcholine 161 
(nAChr), GABAA-ρ, glycine and 5-HT3 receptors are members of cysteine (Cys) loop ligand gated ion channel 162 
superfamily. The structure of GABAA receptors in mammals has been well characterised [63-65]. They are 163 
members of the pentameric ligand-gated ion channels (pLGICs), which are ubiquitous neurotransmitter receptors 164 
in animals and certain prokaryotic homologues, but are completely absent from multicellular plants and fungi 165 
[66]. The eukaryotic members share a motif composed of two Cys residues separated by 13 amino acids (aa) 166 
residues [66] and the GABAA receptors from different animal species are highly conserved. The mammalian 167 
GABAA receptor heteromer is composed of three subunits α, β and γ, which are associated in a defined ratio to 168 
form a functional receptor [67,68]. The ligand binding sites are localised at the β (+) and α (-) interfaces [69,70], 169 
with both α and β subunits being essential for GABA binding, whilst the subunit composition within the receptors 170 
is dependent on the brain regions or on species [71]. For instance, 19 different subunit compositions have been 171 
identified in humans that determine the differential GABA binding affinities of GABAA receptors and these 172 
properties suggest that they can translate diverse GABA signals shaped by development into a functional response 173 
[72]. The subunit heterogeneity of GABAA receptors determines to some extent whether it mediates phasic 174 
(shorter-lasting inhibition typically generated by the activation of GABAA receptors following action potentials 175 
in a presynaptic interneuron) or tonic (long lasting inhibition generated by GABA conductance activated by 176 
GABA in the extracellular synapses) inhibition, as reviewed in [72-76]. The five subunits of GABAA receptors 177 
form a central pore that remains closed under normal conditions but opens following a conformational change 178 
induced by GABA binding [77,78]. Typically a mature subunit is ~450 aa in length, has a hydrophilic extracellular 179 
N terminal domain that contains the Cys loop which is the site of action for various drugs, followed by 4 180 
hydrophobic transmembrane domains (M1 to M4) and a short C terminal domain. A role for two extracellular Cys 181 
residues in agonist binding to the receptor had been suggested [66] but the subsequent mutational studies in 182 
GABAA, nAChR and glycine receptors suggest otherwise [79-81]. From the solution of the crystal structure of 183 
GABAAR, the human β3 homopentamer, details of the ligand binding pocket and key residues in the interaction 184 
with agonist are known and these support previous studies identifying key residues in ligand binding for nAChR 185 
[82]. The transmembrane domain M2 lines the channel pore and between M3 and M4 is a long intracellular loop 186 
that is involved in modulation of the receptor by phosphorylation, protein-protein interactions and post-187 
translational modifications [83,84] (Fig. 2a). A number of proteins that are involved in receptor trafficking and 188 
anchoring of receptors to the cytoskeleton and post synaptic membrane interact with the intracellular loop [85,86]. 189 
It is clear that separate regions on the extracellular domains of the N-terminus form the binding pocket including 190 
regions on adjacent subunits. The GABAAR β3 homopentamer comprises regions in a principal face (loops A-C) 191 
and a complementary face on an adjacent subunit comprising regions of loops D (Tyr62-Gln64) and E (Leu125-192 
Arg129). It is the region of loop D (also referred to as β2 strand) that was found to show some similarity to a 12 193 
residue “motif” in plant ALMTs and a critical phenylalanine that when mutated to cysteine virtually abolished 194 
GABA sensitivity [18,87].  195 
 196 

In comparison to animal GABA receptors, the structure of ALMTs is poorly understood. It is not known 197 
whether the channels are monomeric or can form multimers consisting of homomeric or heteromeric combinations 198 
– although we are aware that this is an active area of research. The ALMT genes form a functional protein when 199 
expressed alone in Xenopus laevis oocytes but whether the channel is formed from multiple subunits or whether 200 
a functional GABA binding site can occur in a monomer is not clear. The region of similarity between rat GABAA 201 
receptor and TaALMT1 is localised at the N-terminus of the former and the C-terminus of the latter. Two studies 202 
have predicted the putative TaALMT1 topology [58,88], but the models differ; one suggests that TaALMT1 has 203 
6 transmembrane domains (TMDs) and its N and C terminus both face the extracellular space [88], whereas the 204 
other, based on phylogenetic analysis of ALMTs across the plant kingdom, predicts that TaALMT1 possesses 8 205 
TMDs and its N and C terminii are localised to the inside and the outside of cells respectively [58] (Fig. 2c and 206 
d). The evidence from the rapid inhibition of malate efflux in X. laevis oocytes expressing TaALMT1 by external 207 
GABA suggests that the interacting site is localised at the extracellular side or at least rapidly accessible to an 208 
intracellular or transmembrane site [18]. Interestingly, based on YFP-QUAC1 (rapid-type anion channels eg. 209 
AtALMT12) fusion studies, Mumm et al., (2013) predict that both the N and C termini are located in the cytosol 210 
[89]. In silico analysis of Arabidopsis ALMT9 located on the vacuolar membrane, predicts 6 transmembrane 211 
domains (TMD) with N terminus facing the cytoplasm [90]. A predicted soluble C terminal domain encompasses 212 
nearly half of the protein. Patch clamp analysis of amino acid mutations in AtALMT9 revealed that individual 213 
residues affected the function of the channel differently. The removal of positive and negative charges (Lys93, 214 
Lys187, Arg143, Arg226, Glu130) abolished conductivity. Mutation of Arg200 and Arg215 affected channel function 215 
depending on which residue was substituted, mutation of these residues to aspargine resulted in time dependent 216 
inward currents comparable to WT currents whereas mutation to Glu (E) resulted in loss of channel function. 217 
Further the sensitivity of point mutations of AtALMT9 to open channel blocker citrate suggested that Lys193 and 218 
Arg200, which are located near or within TMα5 are part of the ion conduction pathway of AtALMT9 [90]. 219 
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Functional analysis of site directed mutant K193E (insensitive to citrate block) by patch clamping, and ALMT9-220 
GFP studies, suggested that ALMT9 functioned as a multimer composed of 4 subunits [90].    221 

 222 
Amino acid residues important for GABA binding in the GABAA receptors were identified by 223 

photoaffinity labelling of an affinity purified bovine receptor with [3H] muscimol and microsequencing of a 224 
purified labelled peptide [91]. Mutational analysis has identified the key residues essential for GABA binding to 225 
the α1 subunit of rat GABAA receptors through a point mutation of Phe64 [92] (Fig. 3). This mutation reduced the 226 
affinities of both agonist and antagonists of rat GABAA [92]. Further it has been observed that a similar mutation 227 
in α5 subunit had the same effect suggesting that there is close functional and structural association of α-subunits 228 
with binding sites [92]. Substituted Cysteine Accessibility Method (SCAM) analysis of the amino acids in the 229 
proposed binding region (α1 Tyr59– Lys70) mutated to Cys and expressed with wild type β subunits in HEK293 230 
cells confirmed that F64, R66 and S68 residues line part of the binding site and that Phe64 (α1F64) was very important 231 
in GABA binding [87]. Similar studies in the β2 subunit confirmed that Tyr97 and Leu99 line the GABA binding 232 
site [87]. However, Szczot et al., (2014) have shown that rapid application of agonists to rat recombinant α1β2γ2 233 
receptors with the α1F64 mutations affected gating, abolished rapid desensitization, slowed current onset and 234 
accelerated deactivation [93]. Further α1F64C mutation resulted in a decrease in open channel probability without 235 
affecting channel conductance.  236 

 237 
Similarly, in plants, site directed mutagenesis has been performed to probe a putative GABA binding site. 238 

In TaALMT1 mutagenesis of Phe213 (F213) residue appears to affect affinity of GABA action increasing the EC50 239 
from 3.4 μM to 1.8 mM [18] suggesting that this residue might be important for GABA binding. However, it is 240 
yet to be demonstrated that the mutation of F213 to C in TaALMT1 affects gating or sensitization (Table 2). The 241 
mutation of equivalent aromatic residue Y (Threonine) in Vitis vinifera VvALMT9 to C increases the EC50 from 242 
6.0 μM to 380 μM. Nevertheless, these mutations do not completely abolish GABA sensitivity of TaALMT1 [18] 243 
and as such there may be other regions that affect GABA-sensitivity and likely binding of GABA [27]. An in 244 
silico analysis of 116 different ALMTs revealed that the initial putative GABA-interaction motif appeared highly 245 
conserved across a wide range of plant species [18]. A protein-protein BLAST search of Arabidopsis proteins 246 
using a consensus sequences formed between the GABAA and ALMT regions of similarity [18] identified the 247 
majority ALMT members in Arabidopsis as well as other proteins, such as putative F-box protein, ACT-like 248 
protein tyrosine kinases- and an uncharacterised protein (Table 3a and b). However, we do not know if all or any 249 
of these identified proteins are targeted to cell membranes or catalyse ion transport [94,95], therefore if they do 250 
bind GABA they may act through a novel mechanism. It is also possible that the consensus motif alone may not 251 
be sufficient to confer protein GABA-binding ability, and other important regions in ALMTs are also essential.  252 

 253 
Although no tertiary structure for ALMTs has been resolved experimentally, there are bioinformatics 254 

techniques that can predict this and potential ligand binding sites in a protein. One technique involves examining 255 
homologous protein sequences across a wide range of organisms, and provided there are enough sequences, it is 256 
possible to examine the co-evolution of amino acid residues in a protein [96]. If there is evolutionary coupling 257 
between residues it would imply that they are linked structurally and that they are located near to each other in 258 
the tertiary structure [97]. This can be then used to predict folding in the protein. This technique known as 259 
evolutionary coupling analysis has been used on several proteins to provide structure predictions that turn out to 260 
be very close to known structures from X-ray crystallography, including those for complex ligand activated ion 261 
channels [97]. In the context of ALMTs there are now thousands of homologous protein sequences in the data 262 
bases and these can be harvested to examine evolutionary coupling between residues and to provide insight into 263 
residues in TaALMT1 that may be involved in GABA binding. Submitting the TaALMT1 sequence to the Web 264 
portal EVFold provides data on the coupling between residues over evolutionary time (utilizing 3688 sequences) 265 
and identifies “hotspots” in the protein’s evolution indicating important functional sites [97,98]. Interestingly 266 
residues in the putative GABA motif including F213 show significant evolutionary coupling (in the top 50 for the 267 
protein) with residues in the N terminus (Fig. 4). These are potential residues involved in forming a GABA binding 268 
pocket [96]. Using these couplings and other information about likely secondary structure and transmembrane 269 
domains, the EVFold computation also predicts tertiary models of the protein of interest. The top-ranking model 270 
is shown in Fig. 4 and displays some of the evolutionarily coupled residues and their proximity to F213. In this 271 
region the model predicts that the aromatic side chain is exposed and can form a cavity in the protein, which is 272 
tempting to speculate may accommodate a GABA molecule. Two residues R40 and Y96 (among a total of 7 273 
residues) at the N-terminus and start of 1st TM showed significant evolutionary coupling with F213 in the GABA 274 
interaction motif. This information provides the basis to test the model by site directed mutagenesis, particularly 275 
of the residues identified as being closing coupled.  276 
 277 
1.4 Trafficking, movement and endocytosis  278 

 279 
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The regulation of the GABAA receptor regulation in animals, depends on the number of receptors at the post 280 
synaptic membrane either via expression, lateral movement, endocytosis or rate of re-insertion of the receptors 281 
into the membrane. Numerous studies have been carried out to understand these processes in glycine and AMPA 282 
receptors but relatively little has been published in this regard about GABAA receptors [99,100]. However, it has 283 
been shown that GABAA receptors behave in a similar manner to the glycine and AMPA receptors in that there 284 
are both mobile and immobile receptor pools that move laterally in the membrane to regulate the GABAA receptor 285 
concentrations to adjust to changing environments [101]. In plants, nothing much is known about the trafficking 286 
of ALMTs to the plasma membrane or its movements in response to various abiotic or biotic stresses. 287 

 288 
Mammalian GABAA receptors are constitutively endocytosed and recycled back to the surface of the 289 

membrane to regulate the efficacy of the GABAergic transmission [102,103]. Briefly GABAA receptors undergo 290 
endocytosis via clathrin coated pits [104] by binding of the β and γ subunits to the clathrin adaptor AP2 [105] and 291 
require a di-leucine motif for efficient endocytosis [105,106]. Further the expression of the GABAA receptors 292 
might be downregulated by exposure to GABA and benzodiazepine agonists [107,108]. Preliminary data in plants 293 
suggest that GABA mediated inhibition of anion flux is not regulated by endocytosis [18] but more extensive 294 
research is needed to understand how the plant receptor is regulated and the role of GABA regulation in plant 295 
processes and signalling.  296 
 297 
1.5 Pharmacological comparison of ALMTs with GABA receptors 298 

 299 
Numerous plant-derived and synthetic pharmacological agents have been used to characterise animal GABA 300 
receptors and their role in signalling (either as agonists or as antagonists) [109,110]. These include muscimol, 301 
bicuculline, vigabatrin and 3-mercaptopropionic acid (3-MPA) [111,112]. Muscimol (as an agonist) and 302 
bicuculline (as an antagonist) are commonly applied to mammalian GABAA receptors expressed in heterologous 303 
systems to mimic and block GABA action, respectively via their interaction with the GABA binding site [113-304 
115]. Similar effects of both drugs have also been observed on ALMTs expressed in X. laevis oocytes. Muscimol, 305 
like GABA, reduces TaALMT1-mediated malate efflux but the application of bicuculline abolishes the GABA-306 
inhibited anion flux [18]. A list of other common antagonists/antagonists of GABAA receptors and GABA-shunt 307 
modulators is summarised in Table 4, such as picrotoxin [116], benzodiazepines [117] and flumazenil [118]. Most 308 
of the agents listed in Table 4 are of plant origin and have not yet been tested on ALMTs or in plants. GABA 309 
mediated regulation is seen in animals, fungi and plants and since many of the agents listed in Table 4 have been 310 
used in the characterisation of animal GABAA receptors, it would be instructive to test these in plants in regard to 311 
their mode of action on GABA mediated regulation of anion channels and signalling in plants. If they also interact 312 
with the GABA binding region in ALMTs then it appears that they also have a biological function in plants, it is 313 
tempting to speculate that this has been recruited by the medical industry to act on equivalent sites in humans. 314 
The alternative hypothesis about the origin of these compounds is that they are synthesised by non-animal systems 315 
to act as defence or beneficial compounds. For instance, muscimol, derived from the mychorrhyzal fungi Amanita 316 
muscaria, can act as an insecticide by overloading the nervous system of insects. The decaying insects can then 317 
be used as a nutrient source for further fungal growth [119].  318 
 319 
1.6 Link between aluminium, GABA and calcium in animals and plants 320 

 321 
It is perhaps a fascinating coincidence that in both animals and plants, there is interplay between Al3+, Ca2+ and 322 
GABA on certain transport proteins and that this has consequences for the development and growth of the 323 
organism. Al3+ is one of the most abundant metals on earth and found in most tissues, but is without an attributed 324 
beneficial physiological function [120]. In fact, Al3+ is associated with toxicity in both animals [121,122] and 325 
plants [123-125]. In animals, accumulation within tissues causes various cognitive as well as physiological 326 
impairments [126-129] and in plants exposure to Al3+ causes inhibition of root growth, cytotoxicity and decrease 327 
in yield on acidic soils [130-132]. Furthermore, in plants, Al3+ can inhibit some voltage gated channels and 328 
glutamate receptor-mediated currents [133,134]. In humans, Al3+ toxicity leads to conditions such as dementia, 329 
Alzheimers and Parkinsons [135,136]. Aluminium has been shown to potentiate currents evoked by GABA in rat 330 
olfactory bulb mitral/tufted neurons [129] but had no effect on membrane currents induced by glutamate, glycine, 331 
N-methyl-D-aspartate or kainate. It has been suggested that the GABAA receptors express two allosteric sites for 332 
Al3+: one a high affinity binding site (potentiating) and the other a low affinity binding site (inhibiting) and the 333 
effect of Al3+ further depends on the subunit composition of the receptors. In adult male albino rats either fed with 334 
Al2(SO4)3 in different doses or untreated, the levels of glutamate and glutamine increased in a dose dependent 335 
manner in the brain tissue, while the GABA levels decreased [137] compared to controls. The mechanisms by 336 
which Al3+ causes changes in glutamate, glutamine or GABA levels in brain is not very clear and one hypothesis 337 
is that Al3+ may induce modifications in the enzymes of the GABA shunt leading to neurotoxicity and 338 
neuropathology.  339 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



10 
 

 340 
In plants it is well known that Al3+ causes rhizotoxicity, impairs root growth and overall yield of plants 341 

in acidic soils [124,138]. TaALMT1 confers Al3+ tolerance in wheat roots through Al3+ ion activating TaALMT1 342 
causing the release of malate that complexes the external Al3+ [139]. GABA inhibition of TaALMT1 is thought 343 
to modulate the malate efflux and to provide a link between malate production and malate release under Al3+ stress 344 
[27]. GABA is synthesised in the cytoplasm and enters mitochondria via GABA permease [140] but inhibition of 345 
malate efflux suggests that GABA signalling occurs in the apoplast. The question then arises as to how GABA 346 
enters the apoplast and exits the cell. GABA is taken up into the cells via the high affinity GABA uptake 347 
transporter GAT1 [141] and is then perhaps regulated by signalling in the cell via regulation of GAT1 and other 348 
GABA transporter/s. Interestingly no GABA efflux transporter has been identified to date. Unlike animal systems 349 
[142], there is little information or experimental evidence on Ca2+ regulation of GAT1 from Arabidopsis. The 350 
expression of 7 of the 9, 14-3-3 genes identified in Arabidopsis seedlings is down regulated by GABA (10 mM) 351 
in the presence of high Ca2+ (22 mM) and requires functional ethylene and ABA signalling pathways [53], while 352 
low Ca2+ (2 mM) did not affect the transcripts. It would be interesting to study the expression of GABA shunt 353 
genes and ALMTs in root tips in presence and absence of different concentrations of Ca2+, Al3+ and exogenous 354 
GABA to understand if there is an interaction between all three similar to animals.  355 

 356 
1.7 Evolutionary insights into ALMTs and GABAA receptors 357 

  358 
Gene and genome duplication has been documented as one of the most important factors in the evolution of 359 
eukaryotic animals and plants [143-145]. Gene duplication followed by gene divergence is thought to be the 360 
underlying factor in evolution of central nervous system in vertebrates [146]. Both the cationic (acetylcholine, 361 
serotonin) and anionic (eg. GABA, glycine) ligand gated channels have been predicted to have diverged before 362 
the origin of eukaryotes [147]. Despite this plants do not possess any orthologous proteins to the mammalian 363 
GABA receptors, suggesting that ALMTs may have evolved convergently to fulfil a GABA-signalling role. 364 
GABAA receptors are made up of multiple subunits and fourteen of the human GABAA receptor genes cluster on 365 
four chromosomes [148,149]. Two clusters contain 2 genes encoding α, one gene encoding β and γ subunits each 366 
while the other two clusters contain genes encoding α, β, γ and ε subunits [148]. Evidence suggests that the four 367 
clusters arose from the duplications of and within a single GABAA receptor gene cluster with α, β and γ subunits 368 
encoded for by single genes [148,149]. It is thought that ε and π subunits also arose from gene duplications but 369 
not from the same four clusters [149]. Further, an ancestral GABAA receptor gave rise to two monophyletic clades: 370 
one that has subunits that are involved in binding to benzodiazepines (α, ε and γ) and the other that is not involved 371 
in binding to benzodiazepines (ρ, β, Δ, θ and π) and this divergence occurred before the split from urochordates 372 
[150].  373 

 374 
Whole genome duplications are thought to be the main source of gene duplications in plants, although 375 

individual gene duplications are also common [151]. It is thought that numerous genome duplication events have 376 
occurred during the diversification of angiosperms including polyploidy [152-155]. Phylogenetic analyses of 377 
ALMT proteins from plants such as A. thaliana, P. trichocarpa, O. sativa, S. moellendorffii and moss P. patens 378 
subdivided these proteins into five distinct clades [39]. The ALMT family was initially thought to be specific to 379 
angiosperms but now it has been shown that ALMTs are present in Bryophyta (mosses) and Lycophyta [58] and 380 
possibly algae [156]. Interestingly, no ALMTs have so far been identified in bacteria, fungi, humans, or amoeba, 381 
though the ALMTs share a domain of similarity to the fusaric acid resistance protein (FusC) effluxers in bacteria 382 
(REF). Phylogenetic analyses of 400 non-redundant ALMT proteins identified from 30 embryophyte species and 383 
2 chlorophytes revealed that all belonged to a single group of orthologs indicating that they arose from a single 384 
ALMT type protein [58]. However, it was observed that ALMT proteins from S. moellendorffi and P. patens 385 
formed two distinct groups in addition to five clades identified [39,58]. Furthermore the different clades/groups 386 
arose by several gene duplication events in different lineages and underwent functional diversification e.g. 387 
ALMTs from Arabidopsis [39]. When an in silico analysis of 116 ALMTs was carried out for the GABA motif 388 
from ALMTs from plants, it was observed that there were natural variants (Cys for Phe) in the amino acid residue/s 389 
that appear to be important for GABA binding [18]. This would potentially render such variants insensitive to 390 
GABA, but so far these have not be examined. Given the structural and functional diversity of full length ALMT 391 
proteins, we performed a phylogeny of the amino acid motif important for GABA binding from the ALMTs used 392 
by Dreyer et al., (2012) in their phylogenetic analyses and also wheat (T. aestivum), barley (Hordeum vulgare) 393 
and rice (Oryza sativa) (Fig. 5) [58]. The motif for GABAA receptor from rat was used as an outgroup. It is 394 
interesting to note that the motif region from different ALMTs fall into similar clades identified for the full length 395 
proteins [58]. The motif region from TaALMT1 from wheat, HvALMT1 from barley and OsALMT5 from rice 396 
fall into the evolutionary clade 1 with ALMTs 1, 2, 7 and 8 from A. thaliana. It is interesting that ALMTs from 397 
wheat (TaALMT1), barley (HvALMT1), rice (OsALMT5) and Arabidopsis (AtALMT1) have been shown to be 398 
regulated by GABA [18], localised to the plasma membrane of either the root tips or guard cells. Not much is 399 
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known about the transport characteristics of the other members of clade 1. The OsALMT9 from rice falls into the 400 
evolutionary clade 3 along with Arabidopsis ALMT12, 13 and 14 and it is interesting that all these members 401 
characterised so far localise to the guard cells and with the exception of AtALMT12 have been shown to be GABA 402 
sensitive (and has not been reported) [18]. Based on consensus sequence, sequence logo and residues in the 403 
positions 3-5 (from L to R – presence or absence of F residue) for each clade (Fig. 5), clade 1 (except P. 404 
trichocarpa 006s21960.1, 0016s07070.1 and 009s02300.1 – have two cys in position 3 and 5), 2a, 3, 4 and 5 – all 405 
have plants that can be predicted to be GABA sensitive. Interestingly clade 2 in this analysis splits into 2 parts – 406 
a and b (in comparison to phylogenetic analysis by Dreyer et al., 2012). Clade 2a has plants that are predicted to 407 
be GABA sensitive while clade 2b has plants that may be weakly sensitive to GABA based on the fact that the 408 
positions 3-5 have no F except P. trichocarpa 0010s13750.1. However one must keep in mind that this prediction 409 
is based on the analysis of one GABA motif identified so far in ALMT1 proteins [18] and there is a possibility of 410 
more than one GABA motif occurring in the ALMTs. 411 
 412 
2. GABA regulation in plants 413 
 414 
2.1 GABA regulates plant growth and development  415 
 416 
The comparison above between plant ALMTs and mammalian GABAA receptors indicates that ALMTs may 417 
respond to GABA in an analogous manner to that of GABA receptors, although the classification of ALMTs as a 418 
“GABA receptor” has not been thoroughly confirmed [18]. Current evidence proposes that GABA can act as a 419 
signal molecule in plants and aspects of this evidence will be further discussed below to explore how GABA is 420 
regulated by and/or modulates physiological process in plants. 421 
 422 

A seminal paper for plant GABA research in the 1990s discovered that GABA can impact plant growth 423 
and development [157]. The overexpression in tobacco (Nicotiana tabacum) of a GAD from petunia, with its C-424 
terminal calmodulin binding domain removed to make it constitutively active, increased the tissue GABA 425 
concentration above wildtype levels and caused slow growth, and more branched and shorter cortical parenchyma 426 
cell elongation [157]. Physiological evidence for the presence of GABA receptors in plants was first observed in 427 
duckweed (Lemna minor L.) [22], where, in the presence of 5 mM GABA and nutrient solutions, a 2-3 fold 428 
increase in plant growth was observed over that cultured in nutrient solution alone and addition of 0.5 mM 2-429 
aminobutyric acid inhibited growth compared to control plants. This is in contrast to the GABA inhibition of 430 
growth observed in tobacco [157] and soybean hypocotyl tissue [158]. In sunflower, the effect of GABA was dose 431 
dependent with low concentrations promoting growth and high concentrations inhibiting growth [159]. Cell 432 
elongation was severely impaired in Arabidopsis pollen tubes, primary root and hypocotyls when the GABA 433 
transaminase (GABA-T) gene was disrupted leading to elevated tissue GABA concentrations [19,160,161]. 434 
Exposure to 10 mM GABA, further increased tissue GABA concentrations in a GABA-T T-DNA insertion line 435 
(named gaba-t or pop2) [19,161]. As multiple stresses increase GABA concentration in tissues – as has been well 436 
documented [22] – these effects of GABA detailed above have been proposed to mimic the impact of stress on 437 
growth and development [162]. Besides, there is evidence that GABA regulates other processes not associated 438 
with stress, such as the possible regulation of nitrate uptake in Arabidopsis and Brassica napus [163-165], nodule 439 
formation in Medicago [166-168] and control of leaf senescence in Arabidopsis [169]. Endogenous GABA 440 
concentrations exhibit a light-rhythm dependent oscillation in Arabidopsis tissue [170], suggesting GABA might 441 
be involved in regulation of, or regulated by, the plant circadian clock. GABA may also be involved in long 442 
distance transport via xylem and phloem in plants (see Section 2.8 below).  443 
 444 

The first piece of substantive evidence for a signalling role of GABA in plants was that it affected pistil–445 
pollen tube communication [19,20]. GABA has a biphasic effect on pollen tube growth. At low concentrations it 446 
increased growth rate in vitro, whereas at concentrations greater than 1 mM pollen tube growth rate was retarded 447 
[20]. A gradient of GABA (in the micromolar range, Table 1) increasing from the stigmatic surface toward the 448 
ovary was proposed to guide pollen tubes in tobacco to optimize fertilization. When GABA was constitutively 449 
high pollen growth was aberrant and fewer ovules were fertilised [19,161]. GABA regulation of pollen tubes is 450 
widespread across the plant kingdom with effects observed for both angiosperms and gymnosperms [18,171]. 451 
Pollen germination and polarization of Picea wilsonii is affected by GABA, supplementation with GABA between 452 
50 to 100 mM promoting pollen tube elongation, while supply with higher than 100 mM or with lower than normal 453 
levels of GABA (via 3-MPA treatment) severely reduced pollen germination and tube growth [172,173]. Pollen 454 
tube growth of both Arabidopsis and grapevine was also found to be inhibited by muscimol (an agonist of GABAA 455 
receptor) and this affect was antagonized by bicuculline (a competitive antagonist of GABA) [18]. Since 3-MPA, 456 
muscimol and bicuculline are agents commonly used for GABA-receptor diagnostics in mammals [41], the 457 
observed change in pollen tip growth by these may involve an alteration of GABA-mediated ion flux across its 458 
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cell membrane [18,60]. Although the mechanism by which GABA regulates tip growth is not yet ascertained, it 459 
is possible that ALMTs and/or other targets are situated in the pollen tube plasma membrane.  460 
 461 

Tip growth of pollen is dependent upon oscillations in ion influx (e.g. Ca2+) and efflux (e.g. Cl–) across 462 
the plasma membrane that drives oscillations in cytosolic ion concentrations [60,172-175]. It was observed that 1 463 
μM GABA increased cytosolic Ca2+ in N. tabacum pollen protoplasts [20], and 1 mM GABA elicited a Ca2+ influx 464 
into pollen tubes through a pathway independent of glutamate-induced increases in cytosolic Ca2+ (1 μM was not 465 
tested in this case) [20]. Patch clamp electrophysiology found that low millimolar (e.g. 1 mM) GABA increased 466 
inward currents, which in the conditions used could have been either anion efflux or Ca2+ influx, whereas these 467 
currents were inhibited by 100 mM GABA [20]. As GAD is activated by increases in cytosolic Ca2+, GABA-468 
induced Ca2+ influx will potentially affect production of GABA and feedback on ion flux across the membrane 469 
that may modulate pollen tube growth [20].  470 
 471 
2.2 GABA regulates plant abiotic stress responses  472 
 473 
Diverse abiotic stresses drive GABA accumulation in plants, including salt, anoxia, hypoxia, heat, mechanical 474 
damage, drought, cold, and waterlogging, but the speed of the GABA increase varies from seconds to a few days 475 
[176], reviewed in [18,177-188]. Amongst these stresses, salt-induced GABA accumulation has been studied most 476 
broadly in terms of the number of plant species, including alfalfa (Medicago sativa L.), Arabidopsis, barley, 477 
tobacco, Populus × canescens, rice, and soybean [189-195]. However, the molecular mechanism behind the 478 
GABA increases and its consequences has only been probed in Arabidopsis [160,177,190,192,193,195,196]. The 479 
Arabidopsis seedling produced ~15 µmoles.g-1 DW level of GABA under 150 mM salt stress in shoots, this was 480 
approximately 20-fold higher than in non-stressed conditions (0.7 µmoles.g-1 DW) [160]. The Arabidopsis GABA 481 
transaminase (GABA-T) mutant (gaba-t or pop2), which blocks GABA catabolism and causes GABA 482 
accumulation (see Section 2.9), is more sensitive to salt stress, as indicated by primary root growth being inhibited 483 
by 17% by 150 mM NaCl through reduced cell-elongation compared to that of wildtype [160]. The investigation 484 
of global transcriptional profile found that the pop2 mutant lines had 10 cell-wall related (4 up-regulated and 6 485 
down-regulated), 8 carbon metabolism (up-regulated) and 3 polyamines metabolism genes differentially 486 
expressed, consistent with metabolomics analysis showing that central carbon metabolism was disrupted by salt 487 
stress [197]. Many of these genes were also regulated by application of 10 mM GABA to pop2 plants independent 488 
of salt stress, indicating that GABA plays a key role in the response to salt [161]. Thus, it was proposed that 489 
GABA-mediated response to salt-stress involves regulation of central carbon metabolism and cell wall 490 
modification [160,197]. Intriguingly no ALMT gene transcripts were found to be regulated by salt stress in this 491 
study.  492 
 493 

Drought stress was reported to promote GABA synthesis in Arabidopsis, soybean, sesame (Sesamum 494 
indicum L.), bean (Phaseolus vulgaris L. cv. Topc rop) and turnips (Brassica rapa L. var. Shogoin) [181,188,198-495 
200]. The disruption of glutamate decarboxylase (GAD1 and GAD2) genes depleted GABA production in 496 
Arabidopsis T-DNA insertion line gad1/gad2 and this increased stomatal conductance and made them more 497 
sensitive to drought [188]. The triple mutant gad1/gad2×pop2-5, increased endogenous GABA production and 498 
rescued the drought sensitive phenotype of gad1/gad2 and recovered stomatal conductance to wildtype levels 499 
[188,201]. So GABA appears to regulate plant gas exchange [188]. Nevertheless, there has been no evidence 500 
presented so far to determine whether GABA regulates any ion channels or transporters involved in stomatal 501 
opening or closure (e.g. ALMT12) [188].  502 
 503 
2.3 GABA regulates Al3+tolerance in plants 504 
 505 
A common problem in acidic soils is that Al3+ becomes soluble in the soil solution. In wheat, two near-isogenic 506 
lines (NILs) – ET8 (Al3+-tolerant) and ES8 (Al3+-sensitive) were first isolated at a single locus designated as Alt1, 507 
essential for root Al3+ sensitivity by Delhaize et al. (1993) [202,203]. Later, the gene TaALMT1 was identified as 508 
underpinning the locus Alt1 as the protein that facilitates malate efflux from root tips, which chelates Al3+ and 509 
prevents Al3+-inhibition of root growth. The high expression of TaALMT1 in ET8 compared to ES8 is believed to 510 
confer the difference in Al3+ sensitivity between the two NILs [204]. Interestingly, the Al3+ sensitivity of ES8 511 
could be phenocopied in ET8 via the exogenous application of GABA or muscimol [18]. GABA production is 512 
induced under acidic conditions however, it was found that under acidic conditions such as when Al3+ was present, 513 
GABA concentrations were lower in the root tips of ET8 compared to when Al3+ was absent, and this coincided 514 
with the induction of malate efflux [18]. Treatment with GABA inhibited malate efflux under these conditions 515 
and abolished Al3+ tolerance in roots [18]. The down regulation of GABA is essential for plant adaptation to acidic 516 
(Al3+) stress. This led to the discovery that TaALMT1, and other ALMTs more broadly can have their transport 517 
activity regulated by GABA [18]. Notably, GABA (~2 μM) was previously found as one predominant molecule 518 
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in root exudates (followed by putrescine, alanine, betaine and glutamate) at near neutral pH (6.5-6.8) [205]. It has 519 
been suggested that wheat can reuptake a range of organic nitrogen compounds at sub micromolar concentrations 520 
from root exudates. A number of transporters have been identified to be involved in secretion of root exudates 521 
[206,207] but to date the mechanism of GABA efflux from roots has not been identified. 522 
 523 
2.4 GABA regulates plant defence  524 
 525 
GABA rapidly accumulates in the apoplasm following herbivory attack and pathogen infection and it is used in 526 
defence responses, and possibly signalling [201,208-212]. The rapid increase in GABA by 5-fold in tobacco was 527 
detected within 10 min of the leaf being crawled upon by the tobacco budworm (Heliothis virescens) and by 11-528 
fold in soybean following leaves being crawled upon by Choristoneura rosaceana cv Harris larvae [213]. 529 
Transgenic tobacco plants overexpressing a petunia GAD gene achieved a higher tissue GABA concentration and 530 
conferred more resistance to Meloidogyne hapla than wildtype plants with significantly fewer egg masses on the 531 
root surface by ≥ 50% [209]. The triple mutant gad1/gad2×pop2-5 line had a greater GABA content within tissue 532 
and a greater resistance against insect herbivores S. littoralis than wildtype Arabidopsis [201]. These observations 533 
point to a positive correlation between GABA induction and herbivory defence [210]. This GABA increase is 534 
considered to cause physiological disorders to insect larvae via the inhibition of their neuronal GABA-targeted 535 
Cl- channels that results in a reduced growth and survival rate [210,214-218]. 536 
 537 

In plant-microbial interactions, GABA is also induced and has a positive contribution to plant defence 538 
against microbial invasion. The application of cell-wall elicitor derived from rice blast fungus (Magnaporthe 539 
grisea) remarkably increased GABA content by 12.5-fold in rice suspension cultured cells [211]. Exogenous 540 
application of GABA enhanced the resistance of tomato to Botrytis cinerea [219]. To further explore the GABA 541 
correlation with pathogen defence, Park and co-workers (2010) deleted 3 GABA transaminase genes (GabT) in 542 
Pseudomonas syringae DC3000 to generate a triple mutant strain –ΔgabT2/T3/T1 with a defect in GABA 543 
degradation activity resulting in approximately 2.5-fold higher levels of GABA than in wildtype. This mutant P. 544 
syringae strain ΔgabT2/T3/T1 weakened its infection on Arabidopsis leaves, and following a disruption of GABA-545 
T in pop2 mutants from Arabidopsis, ΔgabT2/T3/T1 displayed further reduced colonization [212]. This advocates 546 
that pathogen induced GABA production by plants, on the one hand, is positively correlated with its microbial 547 
resistance, while on the other hand, the ability of a pathogen to metabolize GABA is associated with their infection 548 
capacity. The mechanism behind GABA-mediated defence against P. syringae is unclear however, we can see 549 
some hints from plant interaction with Agrobacterium tumefaciens [220-222]. A. tumefaciens produces crown 550 
galls on infection, and the level of quorum-sensing signal [N-(3-oxoctanoyl) homoserine lactone-OC8HSL] was 551 
inactivated by GABA [220]. Two GABA-binding proteins have been identified from A. tumefaciens –the non-552 
selective GABA sensor Atu2422 (binding to a board spectrum of amino acids) and the selective GABA sensor 553 
Atu4243, both of which are critical for the inactivation of OC8HSL quorum-sensing signal [222,223]. An analysis 554 
of Atu4243 crystal structure identified serial conserved residues for GABA interaction 555 
(W8T12E60F99Y101W200R203D226Y262), which is also possessed by P. syringae (W8T12E60F99F101W200R203D226Y262) 556 
[222], implicating that plants may have similar machinery for GABA-mediated defence against both A. 557 
tumefaciens and P. syringae. Intriguingly, these key GABA-interaction residues from Atu4243 do not appear in 558 
the plant or animal GABA-regulated region (as reviewed in Section 1.3). So far, however, no evidence is available 559 
to indicate any GABA-regulated ion flux or channel involved in this plant-microbial interaction. 560 
 561 
2.5 Crosstalk between GABA and other signalling molecules / hormones 562 
 563 
GABA has been proposed to be a stress-related metabolite with links to plant hormones [22,224-227] and the 564 
oxidative burst [180,183,228-230]. Exogenous GABA has been reported to promote ethylene synthesis in 565 
sunflower and Stellaria longipes [159,231]; however, it reduced ethylene production in Caragana intermedia 566 
roots under salt stress [232]. Alternatively, perturbed ethylene levels also impairs GABA metabolism in plants. 567 
The exogenous application of ethylene inhibitor (aminoethoxyvinylglycine, AVG) decreased GABA 568 
accumulation in Creeping bentgrass (Agostis stolonifera) (cv. Penncross) under heat stress [227]. The ethylene 569 
inhibitors AVG and AIB (amino isobutyric acid) promoted Al3+-activated malate efflux from the root tips of wheat 570 
ET8 line [233], while ethylene donor (Ethrel) inhibited Al3+ induced efflux from tobacco cells when expressing 571 
TaALMT1 [233]. Coupling with the evidence that Al3+ stress reduces endogenous GABA production leading to 572 
increased malate efflux [18] (as discussed above), we speculate that the application of ethylene inhibitor somehow 573 
modulates GABA concentrations or perhaps ALMT expression to maximise malate efflux [18,233]. There may 574 
also be a cross talk between GABA and ethylene that confers a negative regulation of malate efflux, perhaps via 575 
regulation of TaALMT1 activity.  576 
 577 
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Other hormones can also affect GABA metabolism in plants. A T-DNA insertion into the NCED3 (9-578 
cis-epoxycarotenoiddioxygenase 3) gene in Arabidopsis impaired dehydration-induced abscisic acid (ABA) 579 
synthesis [225,234,235] and the mutant had a significantly higher GABA accumulation compared to wildtype 580 
[225]. An overexpression of two DELLA subfamily members–gibberellins (GAs) insensitive gene (GAI) and 581 
repressor of GA1-like (RGL1) in Populus seedlings increased GAs level by 12 and 64-fold respectively; while 582 
GABA was also 3-fold higher in these transgenic seedlings compared to wildtype [236]. Chilling treatments were 583 
found to increase GABA content in loquat fruit and this GABA was further increased when methyl jasmonate 584 
(MeJA) was applied in addition to chilling [237]. However, its role in plant-herbivory interaction was not tested, 585 
although both GABA and MeJA appear to contribute to plant defence against herbivory attack [201,238]. In 586 
Arabidopsis, the triple T-DNA insertional mutant of GAD1, GAD2 and GABA-T (gad1/gad2×pop2 line) over 587 
accumulated GABA and displayed better systemic defence against the insect herbivore Spodoptera littoralis 588 
[201], whereas the levels of defence hormone against S. littoralis –jasmonate (JA) and its bioactive derivative, 589 
(+)-7-iso-jasmonoyl-L-isoleucine (JA-Ile) showed no obvious difference [201,239]. GABA may thus interplay 590 
with plant hormones, such as ABA, GAs and JA, but possibly only upon certain stimuli (e.g. JA). Taken together, 591 
an interaction between GABA metabolism and hormone production is likely to modulate several physiological 592 
processes in plants and requires further research.  593 
 594 

Apart from hormones, GABA metabolism has also been shown to have links with ROS production (e.g. 595 
H2O2). When C. intermedia was grown in 300 mM NaCl, endogenous H2O2 gradually increased in root and shoot 596 
tissue for up to 72 h [232]. However this was abolished by exogenous application of GABA [232]. Similarly, 597 
potassium cyanide treatment, which mimics hypoxia stress, stimulated H2O2 production in grapevine buds, and 598 
again this was reduced by GABA [186]. Elicitors from rice blast fungus (Magnaporthe grisea) increased GABA 599 
production and decreased GABA-T activity, and the activation of ROS scavenging recovered the GABA-T 600 
activity in this case [211]. Thus, GABA was proposed to protect plants from oxidative stresses [16,208].  601 
 602 
2.6 Cytosolic pH modulates ALMT activity 603 
 604 
A model has been recently proposed by Gilliham and Tyerman (2015) for regulation of plasma membrane ALMT 605 
activity by malate and GABA, which respectively contributes to a positive and a negative regulation of TaALMT1 606 
activity. This confers a connection of metabolism with membrane signal sensing [27]. On the one hand, malate is 607 
a metabolite regulated by cytosolic pH: 1) high cytosolic pH increases malate synthesis as it consumes OH-; 2) 608 
low cytosolic pH inhibits malate synthesis and stimulates its metabolism into pyruvate together with CO2 and OH- 609 
release [240]. On the other hand, GABA is also regulated by cytosolic pH [16]: i) the acidic pH stimulates the 610 
synthesis of GABA (via up regulation of GAD activity); ii) this process is reversible when increasing cytosolic 611 
pH [241,242]. Taken together, it appears that high cytosolic pH stimulates malate production and suppresses 612 
GABA leading to a relatively low GABA-to-malate ratio, and likely a high ALMT activity. Whereas cytosolic 613 
acidification will shift to a higher GABA-to-malate ratio that reduces activity of plasma membrane ALMTs. 614 
Therefore, changes in cytosolic pH induced by stresses (e.g. salt and hypoxia) possibly alters ALMT activity, and 615 
then changes in cell membrane voltage and transport to elicit downstream response [243,244]. 616 
 617 
2.7 The GABA-malate connection at the tonoplast  618 
 619 
The model proposed by Gilliham and Tyerman (2016) as described in the section above connects the GABA-620 
malate metabolism to the plasma membrane signal mediated by ALMTs. In fact a number of ALMT family 621 
members (e.g. AtALMT6 and VvALMT9) are also targeted to the tonoplast membrane [56,57,61,245]. For 622 
instance, ALMT9 from grapevine encodes a vacuolar membrane malate channel sensitive to GABA at high affinity 623 
(6 µM) when expressed in X. laevis oocytes [18,61]. Presumably the model proposed by Gilliham and Tyerman 624 
(2015) on plasma membrane regarding the ALMT-mediated GABA-malate signalling paradigm could be mirrored 625 
at the tonoplast [27]. Thus stress-induced GABA elevation in the cytoplasm could transiently increase the 626 
cytosolic GABA:malate ratio to negatively modulate tonoplast ALMT activity and reduce malate uptake from 627 
cytoplasm into vacuoles. This will also lead to a change in vacuolar membrane potential and perhaps other ion 628 
fluxes across the tonoplast. The tonoplast localized GABA transporters, such as the cationic amino acid 629 
transporters (CATs) from Solanum lycopersicum (SlCAT9) catalyses GABA uptake into vacuoles [246], and may 630 
have a similar role to that of GAT1 in this model.  631 
 632 
2.8 Is GABA involved in long-distance transport regulation? 633 
 634 
A range of signalling molecules can be translocated between shoot and root via the plant vascular system, 635 
including hormones, ROS and salicylic acid (SA), as reviewed in [247,248]. GABA has been found in the xylem 636 
sap of walnut [249] and salt treatment increases GABA in the root xylem of soybean [250]. Approximately 0.7 637 
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μmol g-1 GABA was present in soybean nitrogen-fixing nodules however only 0.01 μmol g-1 GABA and almost 638 
no GAD activity were detected in bacteroids of cowpea Rhizobium MNF2030, suggesting that GABA in the 639 
nodules was probably supplied by the host instead of in vitro synthesis [166]. Artificial feeding of 15 mM GABA 640 
to M. truncatula petioles doubled GABA concentration in nodules, and enhanced nodule activity and N2 fixation 641 
[251]. In this case, more GABA was likely transported into nodules and might be correlated with the observed 642 
increases in nodule activity and N2 fixation. Nevertheless, it is uncertain whether this rapid change of GABA 643 
levels in nodules was due to translocation via xylem or phloem from one part of the plant to another, or due to de 644 
novo synthesis in response to stresses (e.g. wound) [252]. So whether GABA is involved in long distance transport 645 
within plants still remains inconclusive and hard to probe [252]. The development of a fluorescence GABA sensor 646 
and its application to intact plants would be of benefit to such studies [253]. 647 
 648 
2.9 Elements that shape GABA signals within in plants via the GABA shunt 649 
 650 
In mammalian neuron cells, a GABA signal is generated via GABA synthesis in presynaptic cells from Glu 651 
catalyzed by two GAD enzymes, GAD65 and GAD67 [254]. GABA is then transported via vesicles by a vesicular 652 
neurotransmitter transporter (VGAT) [255] and released into the extracellular space for activation of GABA 653 
receptors and inhibitory neuron signal transmission. The GABA signal is terminated via re-uptake by surrounding 654 
glial cells through plasma membrane GABA transporters (GATs) [256] and degraded by GABA-T [257,258].  655 
 656 

The enzymes engaged in the GABA shunt are conserved in both animal and plant kingdoms [13,162]. 657 
GABA is synthesized from Glu in the cytoplasm by GADs with CO2 release in plants [14] and mammals 658 
[157,259]. The C-terminus of GAD2 from Arabidopsis and rice contains an autoinhibitory CaM-binding region, 659 
the deletion of which increases GAD2 activity by 40 fold in rice and leads to GABA overproduction by 100-fold 660 
in seedlings [260]. In Arabidopsis, CaM T-DNA insertion mutant lines cam1, cam4, cam5-4, cam6-1 and cam7-661 
1 seedlings, there is significantly more GABA produced by H2O2 and paraquat treatments [183], so Ca2+/CaM 662 
indirectly regulates GABA metabolism and GABA accumulation in plants [157,162,170,261,262]. GABA is taken 663 
up into mitochondria through a mitochondrial-localized GABA permease (GABP) [140] and catabolised by 664 
GABA-T into succinic semialdehyde (SSA) and finally succinate [29,252,263] this process is similar to the 665 
biological process in mammals [13]. In Arabidopsis, knocking out GABA-T (pop2/gaba-t) blocks GABA 666 
degradation resulting in more than 10-fold GABA over accumulation [19,160,161,201,264]. Succinate 667 
semialdehyde (SSA) as the downstream metabolite of GABA is further catabolised into succinate by succinate 668 
semialdehyde dehydrogenase (SSADH) [263]. The disruption of this single SSADH gene in Arabidopsis causes 669 
necrosis, constant higher GABA and H2O2 over accumulation, and leads to hypersensitive to light and heat stress 670 
[24,263,265,266]. In ssadh mutant lines, the hypersensitive phenotype is partially relieved by treatment with 671 
vigabatrin as an inhibitor of GABA-T and GABA degradation [263,265,266]. Interestingly, crossing ssadh with 672 
pop2-4 generates ssadh/pop2-4 line that has higher GABA levels in tissue, rescues ssadh dwarf and hypersensitive 673 
phenotypes, and with H2O2 production at basal levels similar to wildtype seedlings [267]. SSADH is also reported 674 
to control the robust leaf patterning and formation of the adaxial–abaxial axis of leaf primordia through a screening 675 
of enlarged fil expression domain1 (enf1) mutant (enf1 = ssadh) [268]. Vigabatrin has not been applied to test its 676 
effect on the enf1 mutant, but the enf1/gaba-t (=ssadh/pop2-4) has a wildtype-like leaf patterning [268]. The 677 
manipulation of tissue GABA levels through a T-DNA insertional mutation of Arabidopsis GABA-T, GAD and 678 
SSADH can be phenocopied in tomato via virus-induced silencing of their homologs from tomato (SlGABA-Ts, 679 
SlGADs and SlSSADHs, respectively) [269]. A study led by Seher et al (2013) have measured tissue Glu, GABA, 680 
succinate and total nitrogen concentrations as well as glutamate dehydrogenase (GDH) and GAD activities in 16 681 
different plant species. They found that a large variation in GAD and GDH activity appears between different 682 
plant species and this does not match their endogenous N, Glu and GABA content [270]. Accordingly, the tissue 683 
GABA levels are not simply determined by one or two enzymes. It appears that GADs, GABA-T, SSADH and 684 
GAD interact, with Ca2+/CaMs impacting on GABA production in all cases. Their interaction, perhaps together 685 
with other elements, e.g. carbon metabolism via tricarboxylic acid cycle (TCA cycle) and malate [27,62] 686 
coordinate the generation and/or termination of GABA signals. The perturbed tissue GABA levels via the 687 
manipulation of these GABA shunt elements has successfully impaired GABA-mediated signalling and helped us 688 
explore GABA-metabolism and -mediated signalling in plants. Nevertheless, these different elements essentially 689 
display differential cell-type expression patterns [19,161,268], thereby certain GABA signals may be shaped only 690 
in particular cell types. In this case, a cell-type modification of GABA shunt elements possibly causes a cell-691 
specific GABA signalling perturbation, which is necessary to dissect the GABA roles in different cell types and 692 
particular physiological processes.  693 
 694 

In addition, the disruption of elements in the GABA shunt is not always associated with perturbed GABA 695 
concentrations but yet still alters plant growth, development and stress responses [140,271]. The T-DNA insertion 696 
into either GABP1 or GAT1 fails to change GABA levels in mutant tissue [140,272]. Knocking out GABP1 697 
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significantly reduces mitochondrial GABA uptake rate by > 40% and lowers CO2 evolution (approximately 20%) 698 
so that it impairs GABA flow into the TCA cycle and mitochondrial respiration [140]. The high-affinity GABA 699 
transporter, GAT1 localized at the plasma membrane is thought to only reuptake GABA into the 700 
cytoplasm[27,271], reminiscent of mammalian GATs As such supply of exogenous GABA does not increase 701 
tissue GABA level in the gat1 mutant, the disruption of GAT1 caused no change in tissue GABA levels but altered 702 
the metabolic carbon-nitrogen equilibrium and response to low carbon - and nitrogen- environment in plants (e.g. 703 
Glu, malate, fructose and etc) [272]. These two cases indicate that the disruption of certain GABA shunt elements 704 
does not always alter GABA concentrations in plants; however, it may still impair GABA-associated 705 
physiological processes.  706 

 707 
Conclusions and Future Research 708 

The recent discovery of plant GABA regulated ion channels – ALMTs, opens up new pathways for GABA 709 
research in plant biology, here our review provides an insight into the similarity and differences between plant 710 
ALMTs and animal GABAA receptors, the molecular determinants of GABA regulation by ALMTs proteins, the 711 
connection between GABA metabolism with GABA-mediated ion flux and physiology, and elements shaping 712 
potential GABA signals in plants. The comparison of literature from animals and plants suggests that common 713 
features exists in both such as: i) residues important for GABA sensitivity; ii) GABA regulation of anion flux; 714 
and, iii) common drugs that modulate GABA receptor activity, as well as differences such as; i) limited homology 715 
in predicted full length amino acid sequence of the GABAA receptor (similarity is restricted to a 12 amino acid 716 
stretch); ii) topology – mammalian receptor has 4 transmembrane domains while the plant ALMT has 6 (or more) 717 
predicted transmembrane domains; iii) mammalian receptor is heteropentamer while nothing much is known in 718 
plants regarding the subunits but we do know that plant receptor can function as a homomer since the expression 719 
of only one gene is sufficient to elicit functional response to GABA; and, iv) GABA binding site in mammalian 720 
receptor is located at the N terminus while the predicted binding site in ALMT is located at the end of 721 
transmembrane 6. Interestingly, most of the drugs that are modulators of mammalian GABA receptors are of plant 722 
origin and therefore the application of these drugs could well interact with the predicted GABA binding region in 723 
ALMTs and will help further elucidate the molecular identity and basis of GABA regulation of ion fluxes in 724 
plants.  725 
 726 

The characterisation of the predicted GABA binding motif in plants is still in its infancy and there are 727 
key research gaps. It remains to be shown: i) whether GABA binds to the identified aromatic amino acids residues 728 
in ALMT1; ii) what residues line the binding site and the pore; iii) the kinetics of GABA binding; iv) whether 729 
there are more than one region in the ALMT proteins involved in GABA mediated regulation; v) whether there 730 
are other metabolites such as amino acids and compounds related to GABA metabolism that are involved in 731 
regulation of ALMTs/ion channels; and, vi) what the tertiary structure is of ALMTs. Additionally, a number of 732 
GABA-mediated physiological processes in plants may require the participation of ALMTs to transduce GABA 733 
metabolism into plasma- and/or tonoplast-membrane signalling. The interaction between GABA and other 734 
signalling molecules may also contribute to certain responses albeit the candidates remain elusive. GABA signals 735 
controlled by GABA shunt elements appear to be shaped in particular cell types, although it is still inconclusive 736 
whether GABA signals are involved in long distance translocation within plants. However, the recent research on 737 
plant GABA highlighted in this review suggests that new insights into the GABA regulation of physiological, 738 
developmental and growth processes in plants may rapidly occur in the near future. 739 
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Fig 1 Summary of known and possible factors that control the activity of ALMT anion channels and R-type 

anion channels. A tick indicates similar responses in gating and/or voltage dependence, ? indicates not known,        

(?) indicates possibility based upon indirect evidence. Note ALMTs do not necessarily respond to all these factors, 

similarly for R-type channels.  

 

Fig 2 (a and b) - Schematic representation of GABAA receptor (GABAAR) structure. a) Transmembrane 

topology reveals that each subunit is composed of 4 hydrophobic transmembrane domains (TM1-4), a large 

extracellular ligand binding NH2 region with a disulphide bond characteristic of the family of cys-loop receptors 

and a short barely extruding COOH terminus. Each subunit also contains a large intracellular domain between 

TMs 3 and 4 which is site of protein-protein interactions and also undergoes numerous post-translational 

modifications. b) Transverse view of the subunits that form an ion channel. TM1 and 3 interact with neighbouring 

subunits, TM2 faces the lumen of the ion channel while TM4 is anchored in the lipid membrane. (c and d) 

Schematic representation of predicted topology models of wheat (Ta)ALMT1. c) Model proposed by Motoda et 

al., 2007 predicts both N and C termini to be extracellular with 6 transmembrane domains. The residues important 

for GABA binding reside at the end of 6 TM and are indicated by the red arrow. d) The second model proposed 

by Dreyer et al., 2012 predicts that in addition to 6 transmembrane domains, the large N terminus may contain 

another transmembrane domain (shown in grey). Further the large C terminus may span the membrane twice 

resulting in intracellular and extracellular domains (shown in grey). The position of the residues important for 

GABA binding are indicated by the red arrow and the highly conserved WEP motif and phosphorylation site 

(S384) are also shown. 

Fig 3 Sequence alignment of rat GABAA α subunit with wheat TaALMT1. Residues important for GABA 

sensitivity indicated by an * in the rat GABAA α subunit while arrows point to the residues important for GABA 

sensitivity in TaALMT1. Alignment was performed with Geneious 9.0.4 using CLUSTAL and sequence logo was 

also generated using Geneious 9.0.4. The scale bar to the left of the graph shows minimum and maximum coverage 

for the alignment, as well as a tick somewhere in between for the mean coverage. The height of the logo at each 

site is equal to the total information at that site and the height of each symbol in the logo is proportional to its 

contribution to the information content. 

 

Fig 4 One 3D model of TaALMT1 protein computed from evolutionary sequence variation using the EvFold 

web portal (http://evfold.org/evfold-web/evfold.d). a) Top 50 modeled contacts computed from co-evolution of 

residue pairs from 3,688 alignments using TaALMT1 as input with overall E value of 10-5. The circled region 

denotes the region of amino acids that includes the putative GABA interaction motif and F213, and showing 

significant coupling to a short region in the N-terminus and as a hot-spot in the evolution of the protein. The 

diagram on the top and right sides of the plot denote secondary structure predictions of helices (yellow) and 

transmembrane helices (red). b) Computed 3D model from EVFold illustrating 6 transmembrane (TM) domains 

(orange, cyan and red) with N-terminus first TM denoted orange and the 6th TM denoted red.  The F213 is at the 

C-terminus end of TM6.  N and C termini are predicted to be on the cytoplasmic side. The GABA molecule is 

shown as size comparison. c) Close-up of the GABA interaction motif showing F213 (asterix) and two residues 

at the N-terminus and start of  1st TM that showed significant evolutionary coupling (R40 and Y96 among a total 

of 7 residues).  The aromatic side chain of F213 forms a surface of a cavity when examining the protein surface 

plot (d).  Another cavity is present between F213 and R40 on the N-terminus.  Diagram in a) was obtained from 

the output files of EvCouplings and images of the 3D structure were drawn with PYMol from the downloaded 

pdb files from the EVFold run.   

Fig 5 Phylogenetic analyses of amino acid residues important for GABA binding from ALMTs in plants. The 

full length amino acid sequences of ALMTs from A. thaliana, P. patens, Poplar, M. truncatula, O. sativa, S. 

mollendorfii, T. aestivum, C. reinhardtii, V. carteri and GABAA α subunit from Rattus novergicus (rat) were 

aligned with MUSCLE. The region with residues important for GABA binding was extracted from the alignment 

and subjected to PhyML analysis at Phylogeny.fr program with bootstrapping procedure (100). The clade 

information has been overlaid from Dreyer et al., 2012. The sequence alignment was used to generate consensus 

sequence and sequence log using Geneious 9.0.4. The scale bar to the left of the graph shows minimum and 

maximum coverage for the alignment, as well as a tick somewhere in between for the mean coverage. The height 

of the logo at each site is equal to the total information at that site and the height of each symbol in the logo is 

proportional to its contribution to the information content. 
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Table 1 GABA distribution in different plant organs and species. GABA has been found in all organs in 

plants, including embryo, cotyledon, roots, shoot, flowers, fruit, nodule, xylem and phloem. FW = fresh weight, 

DW = dry weight, *GABA gradient exists from top to bottom in pistils of flowers. 

    Species Organs GABA concentration References 

Arabidopsis thaliana root ~ 0.40-0.1 µmoles.g-1 FW / ~8 µmoles.g-1 DW 

[19,160,161,170

,179,188,273-

275] 

 shoot ~ 0.03-1 µmoles.g-1 FW / <1 µmoles.g-1 DW 

 flowers ~ 0.2 µmoles.g-1 FW 

   

Nicotiana tabacum pistil* ~0.6-4 µmoles.g-1 FW [261] 

 shoot ~0.2-1 µmoles.g-1 FW [209,273] 

 root < 0.2 µmoles.g-1 FW  

 seedling ~25 µmoles.g-1 FW [276] 

Nicotiana sylvestris leaf ~10 µmoles.g-1 FW [277] 

Brassica napus  root ~0.5 µmoles.g-1 FW / ~3.6 µmoles.g-1 DW [163] 

 leaf ~1.30 µmoles.g-1 FW / ~1.1 µmoles.g-1 DW [278] 

Oryza sativa  calli ~0.2-0.3 nmoles.g-1 FW 
[260,279,280] 

 root ~0.5-1 µmoles.g-1 FW 

 shoot <0.5-1 µmoles.g-1 DW [187,281] 

 kernel ~0.01-0.12 µmoles.g-1 FW [282] 

 embryo <5 µmoles.g-1 FW [283] 

Glycine max  xylem ~ 100-160 µM 
[199,284,285] 

 leaf ~0.05-0.4 µmoles.g-1 FW 

 root ~0.1 µmoles.g-1 FW  

 nodule ~1.5 µmoles.g-1 FW  

 seedling <1 µmoles.g-1 FW [180] 

 cotyledon ~25 µmoles.g-1 DW [185] 

 embryo ~15 µmoles.g-1 DW  

Medicago sativa. root ~0.4 µmoles.g-1 FW [196] 

 nodule ~2.4 µmoles.g-1 FW [251] 

 phloem ~1.4 nmoles.g-1 FW  

Solanum lycopersicum fruit ~0.5-40 µmoles.g-1 FW [286-288] 

 leaf ~3-5 µmoles.g-1 FW [8,30,269] 

Triticum aestivum root ~2-4 µmoles.g-1 FW [18,289] 

 seedling ~0.02 µmoles.g-1 FW [178] 

Hordeum vulgare seedling ~0.02 µmoles.g-1 FW [178] 

Eriobotrya japonica  fruit ~0.15-0.35 µmoles.g-1 FW [237] 

Cucumis melo  root ~0.25 µmoles.g-1 FW [290] 

Vicia faba  bean <10 µmoles.g-1 DW [291] 

Vitis vinifera berry ~1.4 µmoles.g-1 FW [292] 

Comellia sinesis leaf ~15 µmoles.g-1 DW [293] 

Phaseolus vulgaris  leaf ~4.4-9 µmoles.g-1 DW [198] 

Pisum sativum nodule <1.5 µmoles.g-1 FW [294] 

Caragana intermedia root <0.05 µmoles.g-1 FW [295] 
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Table 2 Effect of mutations on residues important for GABA binding. 

Name Wild Type Residue Affinity (EC50 μM) Mutation EC50 (µM) 

GABAA α1(rat) 

F64 594 F64 to C64 72.8 

F65 19 F65 to C65 2.34 

R66 2610 R66 to C66 320 

TaALMT1  
F213 3.4 F213 to C213 1000 

F215 3.4 F213/F215 to C213/C215 1853 
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Table 3a Regions in other proteins that may have a role in GABA binding.  Amino acid regions identified using 

BLAST search using consensus sequence “DVFXXXXWXXEXL”. (Coverage above 80% only listed below). 

Proteins Equivalent sequence Coverage Identity Accession 

ALMT5 NVFLFPIWAGEDL 100% 38% NP_564935.1 

ALMT6 NIFIFPIWAGEDL 100% 31% NP_179338.1 

ALMT4 NIFILPIWAGEDL 100% 31% NP_173919.1 

ALMT8 IFICPVWAGEDL 93% 33% NP_187774.1 

Putative F-box protein VFAPPNWFGEPL 92% 42% NP_177195.1 

ACT-like protein tyrosine kinase-like protein 8, STY8 DVFVVDGWSQE 84% 45% NP_179361.1 

ACT-like protein tyrosine kinase-like protein17, STY17 DVFVVDGWSQE 84% 45% NP_195303.2 

ACT-like protein tyrosine kinase-like protein 46, STY46 DVFVVDGWPYE 84% 45% NP_568041.1 

Uncharacterized protein EVFGVVIWKKE 84% 36% NP_193542.1 

 

Table 3b Regions in Arabidopsis proteins that may have a potential role in GABA binding.  Amino acids 

identified using BLAST search with GABA binding motif “DVFFXPTWXGEXL”.  (Coverage above 90% only 

listed). 

 

Description Equivalent sequence Coverage Identity Accession 

ALMT10 VFFCPIWAGSQL 92% 58% NP_567199.2 

ALMT5 NVFLFPIWAGEDL 100% 54% NP_564935.1 

ALMT6 NIFIFPIWAGEDL 100% 46% NP_179338.1 

ALMT4 NIFILPIWAGEDL 100% 46% NP_173919.1 

putative F-box protein VFAPPNWFGEPL 92% 58% NP_177195.1 

ALMT8 IFICPVWAGEDL 92% 50% NP_187774.1 

ALMT9 NMFIYPIWAGEDL 100% 46% NP_188473.1 

ALMT14 VF--PIWSGEDL 92% 58% NP_199473.1 

ALMT12 VF--PIWSGEDL 92% 58% NP_193531.1 
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Table 4 Overview of drugs tested as agonists, antagonists or modulators of GABA receptors in animals and plants 

Drug Source Action on animal GABA 

receptors 

Effect on animal GABA 

receptors 

References Tested in 

plants 

Effects in plants References 

Bicuculline Dicentra cuccullaria; 

Corydalis sp., Adlumia sp. 

Competitive antagonist Mimics epilepsy [296] Yes Ameliorates the inhibition 

of anion flux by GABA 

[18] 

Picrotoxin Anamirta cocculus Non-competitive antagonist Blocker for the GABAA 

receptor 

[296] No Unknown  

Bilobalide and  

Ginkgolides 

Gingko biloba Negative allosteric 

modulator 

Acts on GABAA receptors 

and GABAA-rho receptors 

[296,297] No Unknown 

 

 

Muscimol Amanita muscaria Agonist Sedative-hypnotic and 

dissociative psychoactivity 

[298,299] Yes Inhibits anion flux 

 

[18] 

GABA Plants - Chocolate, tea 

wine 

Agonist Reducing neuronal 

excitability 

[110,300] Yes Inhibits anion flux [18] 

Flavanoids Red wine, Vegetables, 

Green tea 

Modulators-Benzodiazepine 

binding 

Anti allergic/anti 

inflammatory, anti 

microbial/anti oxidant 

[297] No Unknown  

α pyrones P. methysticum, cinnamon, 

cloves, and ginger, 

Positive modulators Facilitates cell to cell 

communication 

[297] No Unknown  

Apigenin Matricaria recutita 

(Chamomile), parsley, 

celery, celeriac 

Anxiolytic properties Possible chemo-preventive 

role in Leukemia 

[301-303] No Unknown  

Flumazenil Synthetic Benzodiazepine receptor 

antagonist 

Anaesthesia reversal 

Benzodiazepine overdose 

[304,305] No Unknown  
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Amentoflavone St. John's wart Gingko 

biloba 

influences G-protein-

coupled receptors, for 

serotonin, dopamine etc 

Anti cancer/Anti malarial [306] No Unknown  

Baclofen Synthetic Mainly GABAA receptor 

agonist 

Spasticity/Addiction [42,307,308] Yes Increased GABA mediated 

promotion of growth in 

Lemna minor 

[22] 

Gabaculine Streptomyces toyacaensis Irreversible GABA-α 

Ketoglutaric acid 

Transaminase inhibitor,  

GABA reuptake inhibitor 

Research only purposes- 

increases GABA levels 

[309,310] No Unknown  

Vigabatrin Synthetic GABA-T inhibitor Treatment of epilepsy [111,311,31

2] 

Yes  Increases endogenous 

GABA concentrations 

[18] 

GHB (γ-

Hydroxybutyric 

acid) 

Endogenous -plants & 

animals 

Naturally occurring 

neurotransmitter 

General anaesthetic, 

insomnia, narcolepsy, 

alcoholism, recreational 

drug etc 

[313-316] No Unknown  

Barbiturates Synthetic Central nervous system 

depressants 

Anxiolytic, sedative, 

hypnotic 

[317-319] No Unknown 

 

 

Benzodiazepines Synthetic Inhibit GABAA receptors Anxiolytic, sedative, 

hypnotic, muscle relaxant 

[320,321] No Unknown  

 


