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ABSTRACT OF THESIS 

Despite the advances that have occurred in the prevention and management of coronary 

heart disease, there remains a substantial residual risk in the general population. Inflammation 

has received considerable attention as a target for therapies, given the inflammatory nature of 

atherosclerosis. Omega-3 fatty acids have anti-inflammatory properties, and recent clinical trial 

evidence has demonstrated a reduction in major adverse cardiovascular events with fish oil. 

The studies presented in this thesis investigated the effects of omega-3 fatty acids on vascular 

inflammation as a possible mechanism of atheroprotection. 

 A review of the literature was performed, focusing on the inflammatory mechanisms of 

atherosclerosis, the effects of omega-3 fatty acids on inflammation, particularly vascular 

inflammation, and the results of cardiovascular outcome trials of fish and fish oil. This provided 

a theoretical basis for the studies presented. 

A systematic review of high-quality randomised controlled trials catalogued in the 

Cochrane Library was performed to evaluate the impact of omega-3 fatty acids on the 

circulating mediators of atherosclerosis. These are among the earliest inducers of endothelial 

injury and vascular inflammation. Omega-3 fatty acids reduced levels of atherogenic mediators 

in all four categories. 

 A combined randomised controlled trial and cell culture study was performed to 

evaluate the effects of omega-3 fatty acids on the gene expression of markers of acute vascular 

inflammation (AVI). Healthy volunteers were supplemented with 4 grams daily of either EPA, 

DHA, fish oil with a 2:1 EPA:DHA ratio, or placebo for 30 days. Serum before and after 

supplementation was added to TNF-stimulated HUVECs in culture. The serum from those 

supplemented with high-dose EPA reduced the gene expression of MCP-1. The gene 
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expression of VCAM-1 and MCP-1 correlated positively with HDL-C levels, suggesting a pro-

inflammatory effect at high HDL-C levels. 

 To study the impact of omega-3 fatty acids on the protein expression of markers of 

AVI, C57Bl/6 mice had non-occlusive collars applied surgically to their right carotid arteries 

after receiving 30 days of pre-treatment with either EPA, DHA, an oil control, or no treatment, 

by oral gavage. The intense inflammatory response was reduced by EPA, manifested by 

reduced expression of VCAM-1 and MCP-1 in the artery wall. 

 ApoE-deficient mice were fed an atherogenic diet for 16 weeks to induce advanced 

atherosclerotic lesions and chronic vascular inflammation. In the last 8 weeks they were 

randomised to either EPA, DHA, olive oil, or no treatment by oral gavage. EPA reduced gene 

expression of markers of chronic inflammation in the aorta, however no treatment altered the 

burden, characteristics or lipid content of plaque. EPA and DHA stabilised cholesterol levels 

and reduced triglyceride levels. 

In all experimental studies, blood levels of omega-3 fatty acids, especially EPA, 

correlated inversely with markers of vascular inflammation. 

The findings of this body of work demonstrate the suppressive effects of omega-3 fatty 

acids on acute and chronic vascular inflammation, with EPA being superior to DHA. These 

findings provide a rationale for the reduction in major adverse cardiovascular events seen 

recently with EPA therapy, and provide a mechanistic basis to guide future clinical trials. 



xiii 
 

DECLARATION 

I certify that this work contains no material which has been accepted for the award of 

any other degree or diploma in my name in any university or other tertiary institution and, to 

the best of my knowledge and belief, contains no material previously published or written by 

another person, except where due reference has been made in the text. In addition, I certify that 

no part of this work will, in the future, be used in a submission in my name for any other degree 

or diploma in any university or other tertiary institution without the prior approval of the 

University of Adelaide and where applicable, any partner institution responsible for the joint 

award of this degree. 

I give consent to this copy of my thesis, when deposited in the University Library, being 

made available for loan and photocopying, subject to the provisions of the Copyright Act 1968. 

I also give permission for the digital version of my thesis to be made available on the 

web, via the University's digital research repository, the Library Search and also through web 

search engines, unless permission has been granted by the University to restrict access for a 

period of time. 

 

Anthony David Pisaniello 

July 2019 



xiv 
 

ACKNOWLEDGEMENTS 

Firstly, I would like to thank my primary supervisor, Professor Stephen Nicholls, for 

his mentorship, guidance and support throughout my candidature. Best wishes for your new 

roles as Director of Monash Heart and Lead of the upcoming Victorian Heart Hospital. I would 

like to thank my co-supervisor, Dr Belinda Di Bartolo, for her guidance in planning 

experiments, reviewing chapters, and keeping me on track with deadlines. Best wishes with 

your continuing academic career in Sydney. I would like to thank my co-supervisor, Associate 

Professor Matthew Worthley, for his supervision, moral support and enthusiasm. A special 

mention goes to Professor Kerry-Anne Rye for her significant early involvement in my PhD 

with experiment planning and supervision. 

My PhD was predominantly a basic science/preclinical research endeavour, which was 

a significant change from clinical cardiology work. In the early period I learned a lot from Dr 

Nisha Schwarz and Mrs Tracy Le with the basics of lab experimentation, for which I am 

grateful. In the more advanced stages, Dr Peter Psaltis, Dr Joanne Tan and Dr Christina Bursill 

were helpful in guiding more complex experiments; thank you all. 

The omega-3 analysis could not have been possible without the help and expertise of 

Professor Robert Gibson and his team at the University of Adelaide Waite campus, in particular 

Dr Ge Liu and Mr. John Carragher, for which I am very grateful. I am also very grateful for 

the assistance of Mr Jim Manavis and his team in the histology lab for their wonderful help in 

preparing histology slides and performing immunohistochemical staining. 

The running of my clinical trial, the FOCUS IN study, would not have been possible 

were it not for the assistance and support of Miss Peta King. Thank you greatly. 



xv 
 

To my parents, Dino and Lisa Pisaniello, and my sister and brother-in-law Sandra and 

Adrian Pennino, thank you for your endless love and support during my PhD studies and 

always. 

To my wife Jessica, thank you for being a perfect, loving companion during my PhD 

years who has always supported me 100%. To my daughter Miranda, full of energy and always 

filling my life with joy and wonder, it has been a perfect time to bring you into the world. 

Thank you for your constant love. 

 

In loving memory of: 

My grandmothers Rosa Lombardo (1926 – 2018) and Esterina Pisaniello (1929 – 2019), and 

my good friend Leonard Werchon (1926 – 2019).



xvi 
 

SCHOLARSHIPS, ABSTRACTS AND PRIZES 

Scholarships and Grants 

• 2014 – Statewide Research Scholarship – 1 year 

• 2014 – Travel Grant to attend World Congress of Cardiology, Melbourne 

• 2015 – Cardiac Society of Australia and New Zealand Research Scholarship – 1 year 

• 2016 – National Health and Medical Research Council Postgraduate Scholarship – 1 
year 
 

• 2016 – Australian Academy of Science Douglas and Lola Douglas Scholarship in 
Medical Science top-up scholarship – 1 year 

 
• 2016 – Travel Grant to attend AAS, ACvA and HBPRCA conference, Hobart 

• 2017 – CSANZ Travelling Fellowship to attend CSANZ ASM, Perth 

 

Abstracts 

• Pisaniello AD, Di Bartolo BA, Liu G, Gibson RA, Kim SW, Psaltis PJ, Nicholls SJ. 
“The impact of oral omega-3 fatty acid supplementation on acute vascular 
inflammation in a mouse model”. Presented at ASMR ASM June 2016. Presented at 
Florey Research Foundation Conference Sept 2016. Presented at European 
Atherosclerosis Society conference April 2017. 

 
• Pisaniello AD, Di Bartolo BA, Ge Liu, Gibson RA, Duong M, Nguyen T, Toledo-

Flores DF, Psaltis PJ, Nicholls SJ. Omega-3 Fatty Acids reduce acute vascular 
inflammation but do not affect atherosclerotic plaque burden or composition. Presented 
at CSANZ 2017 ASM. 

 
• Pisaniello AD, King PM, Di Bartolo BA, Liu G, Gibson RA, Tan JTM, Bursill CA, 

Psaltis PJ, Nicholls SJ.  Impact of Fish Oil Supplementation on Acute Vascular 
Inflammation in Healthy Volunteers. Presented at American College of Cardiology 
March 2019, New Orleans. 

 

Prizes 

• 2017 – Adelaide Medical School Research Prize 

• 2017 – Florey Medical Research Foundation Prize



xvii 
 

LIST OF TABLES 

Table 1.1: Summary of the type, lipid number, and common name of the most abundant 

fatty acids 

Table 1.2: Major CVOTs of omega-3 fatty acid supplementation 

Table 2.1: List of human primers used in RT-PCR experiments 

Table 2.2: List of mouse primers used in RT-PCR experiments 

Table 2.3: Antibodies used for mouse acute vascular inflammation study 

Table 2.4: Antibodies used for mouse atherosclerosis and chronic inflammation study 

Table 3.1: Reasons for exclusion of studies from systematic review 

Table 4.1 – Summary of baseline participant characteristics by treatment group 

Table 5.1: Post-treatment levels of fatty acids in blood as a percentage of total fatty acid 

content 

Table 6.1: Summary of blood fatty acids levels in each treatment group at study 

completion 

Table 6.2: Summary of correlations between blood concentrations of EPA, DHA, and the 

ratio of EPA to DHA with measures of plaque burden and characteristics, lipid burden 

and vascular inflammation 



xviii 
 

LIST OF FIGURES 

Figure 1.1: Diagrammatic representation of atherogenesis divided into six stages 

Figure 1.2: A schematic representation of the fundamental processes of atherogenesis, 

including endothelial dysfunction 

Figure 1.3: The basic structure of a fatty acid, using the saturated fatty acid lauric acid 

(12:0) as an example 

Figure 1.4: The structure of cis- compared to trans-fatty acids, demonstrating the 

direction of the continuing carbon chain after a double bond 

Figure 3.1: Summary of studies of omega-3 fatty acids and LDL-C 

Figure 3.2: Summary of studies of omega-3 fatty acids and oxidised LDL 

Figure 3.3: Summary of studies of omega-3 fatty acids and VLDL-C 

Figure 3.4: Summary of studies of omega-3 fatty acids and IDL-C 

Figure 3.5: Summary of studies of omega-3 fatty acids and Lp(a) 

Figure 3.6: Summary of studies of omega-3 fatty acids and non-HDL-C 

Figure 3.7: Summary of studies of omega-3 fatty acids and IL-1β reported as pg/ml 

Figure 3.8: Summary of studies of omega-3 fatty acids and IL-1β reported as % 

Figure 3.9: Summary of studies of omega-3 fatty acids and IL6 reported as pg/ml 

Figure 3.10: Summary of studies of omega-3 fatty acids and IL6 reported as % 

Figure 3.11: Summary of studies of omega-3 fatty acids and IL-8 

Figure 3.12: Summary of studies of omegas-3 fatty acids and TNF-α reported in pg/ml 

Figure 3.13: Summary of studies of omegas-3 fatty acids and TNF-α reported in % 

Figure 3.14: Summary of studies of omega-3 fatty acids and MCP-1 reported in ng/ml 

Figure 3.15: Summary of studies of omega-3 fatty acids and MCP-1 reported in % 

Figure 3.16: Summary of studies of omega-3 fatty acids and IFN-γ 

Figure 3.17: Summary of studies of omega-3 fatty acids and leptin 



xix 
 

Figure 3.18: Summary of studies of omega-3 fatty acids and homocysteine 

Figure 3.19: Summary of studies of omega-3 fatty acids and ADMA 

Figure 3.20: Single study of omega-3 fatty acids on advanced glycation endproducts 

(AGEs) 

Figure 4.1: Effect of fish oil supplementation on resting heart rate 

Figure 4.2: Effect of fish oil supplementation on systolic and diastolic blood pressure 

Figure 4.3: Effect of fish oil supplementation on body weight 

Figure 4.4: Effect of fish oil supplementation on EPA levels in blood, expressed as a 

percentage of total fatty acids 

Figure 4.5: Effect of fish oil supplementation on DHA levels in blood, expressed as a 

percentage of total fatty acids 

Figure 4.6: Ratio of omega-6 to omega-3 at the end of the study 

Figure 4.7: Effect of fish oil supplementation on total cholesterol, LDL-C, HDL-C and 

triglycerides 

Figure 4.8: Effect of fish oil supplementation on lipoprotein(a) levels 

Figure 4.9: Effect of fish oil supplementation on hs-CRP levels 

Figure 4.10: Relative gene expression of VCAM-1 by TNF-stimulated HUVECs co-

incubated with serum obtained at study completion, relative to baseline 

Figure 4.11: Relative gene expression of ICAM-1 by TNF-stimulated HUVECs co-

incubated with serum obtained at study completion, relative to baseline 

Figure 4.12: Relative gene expression of MCP-1 by TNF-stimulated HUVECs co-

incubated with serum obtained at study completion, relative to baseline 

Figure 4.13: Relative gene expression of NFκBp65 by TNF-stimulated HUVECs co-

incubated with serum obtained at study completion, relative to baseline 

Figure 4.14: Correlations of gene expression of VCAM-1, ICAM-1, MCP-1, NFκBp65 

and total cholesterol 



xx 
 

Figure 4.15: Correlations of gene expression of VCAM-1, ICAM-1, MCP-1, NFκBp65 

and LDL-C 

Figure 4.16: Correlations of gene expression of VCAM-1, ICAM-1, MCP-1, NFκBp65 

and HDL-C 

Figure 4.17: Correlations of gene expression of VCAM-1, ICAM-1, MCP-1, NFκBp65 

and triglycerides 

Figure 4.18: Correlations of gene expression of VCAM-1, ICAM-1, MCP-1, NFκBp65 

and omega 6:3 ratio 

Figure 4.19: Correlations of gene expression of VCAM-1, ICAM-1, MCP-1, NFκBp65 

and saturated fats 

Figure 5.1: Schematic representation of the study outline 

Figure 5.2: Schematic representation of collar placement on right carotid artery 

Figure 5.3 Relative proportions of all major types of fatty acids in blood in all treatment 

groups at study completion, as measured by dry blood spot analysis 

Figure 5.4: Total omega-3 fatty acid content in blood from mice in each treatment group 

Figure 5.5: Blood levels of EPA for mice in each treatment group 

Figure 5.6: Blood levels of DHA for mice in each treatment group 

Figure 5.7: Total omega-6 levels in blood expressed as a percentage of total fatty acids 

Figure 5.8: Comparison of omega-6/omega-3 ratios in blood between treatment groups 

Figure 5.9: Total plasma cholesterol levels in different treatment groups at end of study 

Figure 5.10: Plasma triglyceride levels in different treatment groups at study completion 

Figure 5.11: Protein expression of VCAM-1, ICAM-1, MCP-1 and CD18 measured by 

IHC of collared compared to uncollared carotid arteries 

Figure 5.12: Quantification of VCAM-1 staining by IHC in collared carotids for each 

treatment group 

Figure 5.13: Representative IHC staining for VCAM-1 in collared carotid arteries 



xxi 
 

Figure 5.14: Quantification of ICAM-1 expression by IHC in collared carotids for each 

treatment group 

Figure 5.15: Quantification of MCP-1 expression by IHC in collared carotids for each 

treatment group 

Figure 5.16: Representative IHC staining for MCP-1 in collared carotid arteries 

Figure 5.17: CD18 expression by IHC in collared carotids by treatment group 

Figure 5.18: Correlations between blood levels of EPA and the protein expression of 

VCAM-1, ICAM-1, MCP-1 and CD18 as measured by IHC 

Figure 5.19: Correlations between blood levels of DHA and the protein expression of 

VCAM-1, ICAM-1, MCP-1 and CD18 as measured by IHC 

Figure 5.20: Correlations between the EPA:DHA ratio in blood and the protein 

expression of VCAM-1, ICAM-1, MCP-1 and CD18 as measured by IHC 

Figure 6.1: Schematic representation of study outline. 

Figure 6.2: Weight of mice in each treatment group over the 16-week atherogenic feeding 

period 

Figure 6.3: Relative proportions of all major fatty acid groups in blood at study 

completion, separated by treatment group 

Figure 6.4: Proportion of total blood fatty acids comprised of omega-3s at study 

completion 

Figure 6.5: The percentage of EPA in whole blood at study completion 

Figure 6.6: The percentage of DHA in whole blood at study completion 

Figure 6.7: The percentage of DPA in whole blood at study completion 

Figure 6.8: The proportion of total fatty acids in blood comprised of omega-6 fatty acids 

at study completion 

Figure 6.9: The blood omega-6:omega-3 ratio for all treatment groups at study 

completion 



xxii 
 

Figure 6.10: Changes in plasma total cholesterol levels for mice in each treatment group 

from 8 weeks until study completion 

Figure 6.11: Changes in plasma triglyceride levels for mice in each treatment group from 

8 weeks until study completion 

Figure 6.12: Comparison of brachiocephalic artery plaque burden as a percentage of total 

cross-sectional area 

Figure 6.13: Representative haematoxylin and eosin-stained sections of brachiocephalic 

arteries from mice in each treatment group 

Figure 6.14: Comparison of plaque burden in the aortic sinuses between treatment 

groups 

Figure 6.15: Representative haematoxylin and eosin-stained sections of the aortic sinuses 

from mice in each treatment group 

Figure 6.16: The percentage of total artery wall area comprised of the intima and media, 

compared between treatment groups 

Figure 6.17: Comparison of the collagen content of plaque in the brachiocephalic arteries 

between treatment groups 

Figure 6.18: Representative sections of brachiocephalic arteries from mice in each 

treatment group stained with the Masson’s Trichrome stain 

Figure 6.19: Comparison of the collagen content of aortic sinus plaques between 

treatment groups 

Figure 6.20: Representative sections of aortic sinuses from mice in each treatment group 

stained with the Masson’s Trichrome stain 

Figure 6.21: Smooth muscle cell content of brachiocephalic artery plaques, measured by 

IHC staining for smooth muscle actin (SMA) 

Figure 6.22: Representative images of brachiocephalic arteries in each treatment group 

stained for smooth muscle actin 

Figure 6.23: Density of IHC staining for smooth muscle actin (SMA) in aortic sinus 

plaques 



xxiii 
 

Figure 6.24: Representative images of aortic sinus plaques stained for smooth muscle 

actin 

Figure 6.25: Density of IHC staining for CD107b (Mac3) in brachiocephalic artery 

plaques 

Figure 6.26: Representative images of brachiocephalic artery plaques stained for the 

macrophage marker CD107b (Mac3) 

Figure 6.27: Density of IHC staining for CD107b (Mac3) in aortic sinus plaques 

Figure 6.28: Representative images of aortic sinus plaques stained for CD107b (Mac3) 

Figure 6.29: Relative gene expression of IL-1β in mouse aortas, measured by RT-PCR 

Figure 6.30: Relative gene expression of TNF-α in mouse aortas, measured by RT-PCR 

Figure 6.31: Relative gene expression of MCP-1 in mouse aortas, measured by RT-PCR 

Figure 6.32: Relative gene expression of NFκBp65 in mouse aortas, measured by RT-PCR 

Figure 6.33: Relative gene expression of PPAR-γ in mouse aortas, measured by RT-PCR 

Figure 6.34: Burden of lipid in the aorta, as a proportion of total aortic surface area 

Figure 6.35: Representative images from analysis of Oil Red-O staining in aortas pinned 

en-face 

Figure 6.36: Correlation between blood EPA concentration at study completion and 

intimal plus medial thickness in the artery wall 

Figure 6.37: Correlation between blood DHA concentration at study completion and 

staining for CD107b (Mac3) in aortic sinus plaques 

Figure 6.38: Correlation between blood DHA concentration at study completion and 

staining for CD107b (Mac3) in brachiocephalic artery plaques 

Figure 6.39: Correlation between blood EPA concentration at study completion and the 

gene expression of IL-1β in the arterial wall 

Figure 6.40: Correlation between blood EPA:DHA ratio at study completion and the gene 

expression of IL-1β in the arterial wall 



xxiv 
 

Figure 6.41: Correlation between blood EPA concentration at study completion and the 

gene expression of TNF-α in the arterial wall 

Figure 6.42: Correlation between blood EPA:DHA ratio at study completion and the gene 

expression of TNF-α in the arterial wall 



xxv 
 

LIST OF ABBREVIATIONS 

   

ABCA1 

ABCG1 

ACAT1 

ACS 

ADMA 

AGEs 

ALA 

ANCOVA 

ANOVA 

ATF 

ATP 

AVI 

BHT 

CCL2 

cDNA 

CETP 

CHD 

CI 

cm 

CO2 

COX 

CRP 

CSE 

CVI 

DAB 

DAMP 

DBS 

DHA 

DNA 

DPA 

DPX 

ATP-Binding Cassette Transporter A2 

ATP-Binding Cassette Transporter G2 

Acyl Coenzyme A:Cholesterol Acyltransferase-1 

Acute Coronary Syndrome 

Asymmetric Dimethylarginine 

Advanced Glycation Endproducts 

Alpha-Linolenic Acid 

Analysis Of Covariance 

Analysis Of Variance 

Activating Transcription Factor 

Adenosine 5' Triphosphate 

Acute Vascular Inflammation 

Butylated Hydroxytoluene 

C-C Motif Chemokine Ligand 2 

Complementary Deoxyribonucleic Acid 

Cholesteryl Ester Transfer Protein 

Coronary Heart Disease 

Confidence Interval 

Centimetres 

Carbon Dioxide 

Cyclooxygenase 

C-Reactive Protein 

Cystathionine-Γ-Lyase 

Chronic Vascular Inflammation 

3,3'-Diaminobenzidine 

Damage Associated Molecular Pattern 

Dry Blood Spot 

Docosahexaenoic Acid 

Deoxyribonucleic Acid 

Docosapentaenoic Acid 

Distyrene, Plasticiser and Xylene  



xxvi 
 

EC 

ECM 

EDTA 

eNOS 

EPA 

EVOO 

FBS 

FDG 

g 

GC 

H&E 

HAECs 

HDL 

HMG Co-A 

hs-CRP 

HUVECs 

ICAM-1 

IDL 

IFN-γ 

IHC 

iNOS 

IOD 

IQR 

KC 

kg 

LDL 

LOX 

Lp(a) 

LPS 

MACE 

MAPK 

MAT 

MCP-1 

Endothelial Cell 

Extracellular Matrix 

Ethylenediaminetetraacetic Acid 

Endothelial Nitric Oxide Synthase 

Eicosapentaenoic Acid 

Extra-Virgin Olive Oil 

Foetal Bovine Serum 

Fluorodeoxyglucose 

Grams 

Gas Chromatography 

Haematoxylin And Eosin 

Human Aortic Endothelial Cells 

High-Density Lipoprotein 

3-Hydroxy-3-Methyl-Glutaryl-Coenzyme A 

High Sensitivity C-Reactive Protein 

Human Umbilical Vein Endothelial Cells 

Intercellular Adhesion Molecule 1 

Intermediate Density Lipoprotein 

Interferon-Gamma 

Immunohistochemistry 

Inducible Nitric Oxide Synthase 

Integrated Optical Density 

Interquartile Range 

Keratinocyte Chemoattractant 

Kilograms 

Low-Density Lipoprotein 

Lipoxygenase 

Lipoprotein(a) 

Lipopolysaccharide 

Major Adverse Cardiovascular Events 

Mitogen-Activated Protein Kinase 

Methionine Adenosyltransferase 

Monocyte Chemoattractant Protein 1 



xxvii 
 

mm 

MMP 

MRTF 

MTHFR 

MUFA 

NBF 

nCEH 

NET 

NF-kB 

NHS 

NLRP3 

O3FA 

OCT 

PAMP 

PBS 

PCR 

PLA2 

PMNs 

PPAR-γ 

PPR 

PUFA 

RCT 

RNA 

RT-PCR 

SAHMRI 

SD 

SEM 

SFA 

SMC 

SOP 

SR-BI 

TCFA 

TIMP1 

Millimetres 

Matrix Metalloproteinases 

Myocardin-Related Transcription Factor 

Methyltetrahydrofolate Reductase 

Monounsaturated Fatty Acid 

Neutral-Buffered Formalin 

Neutral Cholesteryl Ester Hydrolase 

Neutrophil Extracellular Traps 

Nuclear Factor Kappa-Light-Chain-Enhancer Of Activated B Cells 

Normal Horse Serum 

Nucleotide-Binding Domain Leucine-Rich-Containing Family Pyrin Domain-Containing-3 

Omega-3 Fatty Acids 

Optical Coherence Tomography 

Pattern-Associated Molecular Pattern 

Phosphate-Buffered Saline 

Polymerase Chain Reaction 

Phospholipase A2 

Polymorphonuclear Cells 

Peroxisome Proliferator-Activated Receptor Gamma 

Pattern Recognition Receptor 

Polyunsaturated Fatty Acid 

Randomised Controlled Trials 

Ribonucleic Acid 

Reverse Transcription Polymerase Chain Reaction 

South Australian Health And Medical Research Institute 

Standard Deviation 

Standard Error Of The Mean 

Saturated Fatty Acid 

Smooth Muscle Cell 

Standard Operating Procedure 

Scavenger Receptor Bi 

Thin-Cap Fibroatheroma 

Tissue Inhibitor Of Matrix Metalloproteinase 



xxviii 
 

TLR-2 

TNFR1 

TNFR2 

TNF-α 

TRAIL 

VCAM-1 

VEGF 

VLDL 

Toll-Like Receptor 2 

Tumour Necrosis Factor Receptor 1 

Tumour Necrosis Factor Receptor 2 

Tumour Necrosis Factor-Alpha 

Tumour Necrosis Factor-Related Apoptosis-Inducing Ligand 

Vascular Cells Adhesion Molecule 1 

Vascular Endothelial Growth Factor 

Very Low-Density Lipoprotein 

   



xxix 
 

 

 

 

 

 

 

 

 

“I know the human being and fish can coexist peacefully” 

George W. Bush, 29 September 2000 

 



1 
 

 

 

 

 

 

 

 

 

 

CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW 

 

 

 

 

 

 

 

 

 



2 
 

1.1 Atherosclerosis is an inflammatory disease 

Cardiovascular disease is the leading cause of death worldwide and contributed to 44% 

of non-communicable disease deaths in 2016(1). The most common diseases of the 

cardiovascular system are those caused by atherosclerosis. These include coronary artery 

disease, cerebrovascular disease, and peripheral vascular disease. Atherosclerosis can be 

described in simple terms as the accumulation of fatty plaque in the arterial wall that can 

progress to cause luminal narrowing. When sufficient luminal narrowing occurs, the supply of 

blood and therefore oxygen does not meet the metabolic demand of tissues, and ischaemia or 

infarction occurs. Atherosclerosis has traditionally been viewed as the consequence of 

cumulative injury from a number of risk factors, such as hyperlipidemia, hypertension, diabetes 

mellitus and tobacco smoking. Significant advances in the prevention and treatment of 

atherosclerotic diseases have led to major population-wide reductions in morbidity and 

mortality(2). Despite these advances, there remains a substantial residual cardiovascular risk(3). 

Inflammation has received considerable attention as a target of atherosclerosis, given the 

substantial evidence demonstrating its inflammatory nature. The response-to-injury hypothesis 

of atherosclerosis was first proposed by Russell Ross, who recognised the presence of multiple 

diverse inflammatory cell types in atherosclerotic plaques, revealing a complex milieu of 

inflammatory activity(4). Inflammation is integral to all six stages of the continuum of 

atherosclerosis, which are diagrammatically represented in Figure 1.1, and described below. 

 

 

 

 

 



3 
 

 

Figure 1.1: Diagrammatic representation of atherogenesis divided into six stages. 

Adapted from Wick, G., & Grundtman, C. (2012). Inflammation and atherosclerosis. 

Wien: Springer-Verlag/Wien(5). 

1.1.1 Atherosclerosis stage I – Increased endothelial cell permeability 

 Minute changes in circulating lipoproteins, glucose, and inflammatory markers lead to 

modulation of endothelial cell (EC) function and increased permeability. This process involves 

changes in three components: (1) the “glycocalyx”, which is the surface layer of glycoproteins, 

proteoglycans, and glycosaminoglycans that together create a scaffold on the endothelial 

surface; (2) energy-dependent vesicular trafficking, also called the “transcellular pathway”; 

and (3) and the opening or rearrangement of cell-to-cell junctions, also called the “paracellular 

pathway”(6). Enhanced vesicular trafficking and/or widened intercellular spaces in the presence 

of a disarrayed or overtly disintegrated glycocalyx may all facilitate the transendothelial flux 

of low-density lipoprotein (LDL), which may ultimately become trapped in the 

subendothelium. Trapped LDL is oxidised by macrophages. Oxidised LDL (ox-LDL) 
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generates free radicals (which are toxic to ECs) leading to the generation of monocyte 

chemoattractant protein 1 (MCP-1). There is subsequent attraction and migration of monocytes 

to the subendothelium. In response to this, antioxidant heme oxygenase 1 is released, which 

reduces monocyte transmigration and toxicity to endothelial cells(7). 

1.1.2 Atherosclerosis stage II – Endothelial cell dysfunction 

 Concurrent with increased endothelial cell permeability, ECs switch to a secretory 

phenotype, producing a hyperplastic, multilayered basal lamina, which further traps LDL in 

the subendothelium(8). ECs express von-Willebrand factor, which binds to glycoprotein 1b on 

platelets and recruits them to the endothelial cell surface. Upon adhesion, platelets secrete a 

variety of proinflammatory cytokines and chemoattractants including platelet factor 4, 

RANTES, P-selectin, soluble CD40 ligand and matrix metalloproteinases. Platelet P-selectin 

interacts with monocyte P-selectin glycoprotein ligand-1, forming platelet-monocyte 

complexes. These activated platelets become more adhesive to vascular cell adhesion molecule 

1 (VCAM-1) and inflamed or atherosclerotic endothelium.  

ECs also lose their net negative surface charge that contributes to the characteristic non-

thrombogenic surface of the endothelium(9). Circulating cells have a negatively-charged 

surface, and hence are more easily able to attach and migrate through the endothelium. 

Endothelial dysfunction activates nuclear factor kappa-B (NF-κB), a transcription 

factor which induces both pro-inflammatory and anti-inflammatory genes(10). NF-κB is also 

activated by adverse conditions such as hypertension, low shear stress, and the presence of pro-

inflammatory cytokines, ox-LDL, and reactive oxygen species (ROS). There are five subunits 

of the nuclear factor kappa B (NF-κB) family, and the main subunit is p65 which mediates 

transcriptional activation of target genes. When NF-κB is activated in endothelial cells (eg. 

during endothelial dysfunction), the response is pro-inflammatory. There is expression of genes 
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that recruit inflammatory cells (eg. VCAM-1, intercellular adhesion molecule 1 [ICAM-1], E-

selectin and P-selectin), cytokines (eg. tumour-necrosis factor-alpha [TNF-α], interleukin-1 

[IL-1β], interleukin-6 [IL-6], and interleukin-8 [IL-8]), chemokines (eg. MCP-1), and matrix 

metalloproteinases [MMPs])(11). This set of molecular and cellular changes is a defence 

reaction assisting the vascular endothelium to recruit blood inflammatory cells. 

1.1.3 Atherosclerosis stage III – Leucocyte transmigration and fatty streak 

formation 

Through the EC expression of MCP-1, adhesion molecules, and through their 

interactions with monocyte integrins, monocytes are captured, roll and adhere to the 

endothelium, then transmigrate to the subendothelium. They subsequently differentiate into 

macrophages and phagocytose ox-LDL and become foam cells, the hallmark of the fatty streak. 

The differentiation process of monocytes to macrophages is normally a coordinated process 

that involves upregulation of scavenger receptors, e.g. SR-A and CD-36. When the 

macrophages encounter modified lipoproteins such as ox-LDL, advanced glycation 

endproducts, anionic phospholipids and apoptotic cells, the receptors are activated. The 

phagocytosis of ox-LDL is normally followed by esterification of cholesterol by Acyl 

coenzyme A:cholesterol acyltransferase-1 (ACAT1) and neutral cholesteryl ester hydrolase 

(nCEH), and then the efflux of cholesterol out of the cell by Adenosine 5' Triphosphate (ATP)-

binding cassette transporters A1 (ABCA1) and G1 (ABCG1), and scavenger receptor BI (SR-

BI). In atherogenic conditions, there is increased ox-LDL influx, increased cholesterol 

esterification, and decreased cholesterol efflux, hence the macrophages are ultimately 

transformed into lipid-laden foam cells(12). Fatty streaks are macroscopically-visible aggregates 

of foam cells. 

Concurrent with the transmigration of monocytes, circulating CD4+ T cells migrate 

into atherosclerotic lesions, where they bind to antigens such as modified lipoproteins, and 
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proliferate. Dendritic cells are specialised antigen presenting cells, required for activation of 

CD4 cells, and their transmigration from the circulation is augmented by EC dysfunction and 

inhibition of nitric oxide synthase(13). Activated CD4 cells release cytokines such as TNF-α, 

which are pro-inflammatory and contributed to macrophage activation(14). 

Other inflammatory cells that migrate into the subendothelium include 

polymorphonuclear cells (PMNs) and mast cells. The extravasation of PMNs is a normal part 

of immune surveillance, induced by selectin-mediated rolling and integrin-mediated 

adhesion(15). The transmigration is augmented by the upregulation of ICAM-1 in acute vascular 

inflammation(16). Mast cells are thought to be recruited to atherosclerotic plaque via the 

chemokine eotaxin-1 (CCL-11) expressed in plaque via the mast cell receptor CCR3(17). Mast 

cells accumulate in the medial and adventitial tissues and cluster around neovessels. When 

activated, they release the contents of their granules such as histamine and proteases, which 

induce vascular leakage and promote intraplaque haemorrhage(18).  

1.1.4 Atherosclerosis stage IV – Development of fibrous plaque 

Foam cells secrete cytokines, growth factors, tissue factor, interferon-gamma, MMPs, 

and reactive oxygen species. With digestion of the internal elastic lamina, there is migration of 

smooth muscle cells (SMCs) from the media to the intima, forming intimal thickenings. The 

migrated SMCs switch to a secretory phenotype, resulting in a hyperplastic, multilayered basal 

lamina and enlarged extracellular matrix (ECM), enriched with collagen bundles and fibrils(19). 

These cellular changes form a fibrous cap. 

1.1.5 Atherosclerosis stage V – Development of calcified atherosclerotic fibro-lipid 

plaque 

The switch of SMCs from a contractile to a secretory phenotype is associated with a 

significant reduction in their ability to metabolise LDL(20). SMCs become lipid-laden, and 
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along with lipid-laden macrophages and extracellular lipid deposits in fibrous plaques, form 

fibro-lipid plaques. Free cholesterol also accumulates within plaque, and the oxidised forms 

are potent inducers of apoptosis of foam cells and SMCs(21). The release of the cytotoxic 

contents of these cells results in formation of the necrotic core encapsulated by fibrous 

tissue(22). Excess extracellular unesterified cholesterol nucleates into cytotoxic crystals. Plaque 

that is surrounded by a robust fibrous cap is considered “stable”. Plaque with a thin fibrous 

cap, accumulation of cholesterol crystals, and with a large necrotic core are considered 

“unstable”. 

1.1.6 Atherosclerosis stage VI – Plaque rupture 

Progressive deterioration and thinning of the EC layer overlying the fibrous cap results 

in exposure of the ECM to circulating blood cells. Circulating macrophages infiltrate the ECM 

and secrete proteases, which digest and destabilise the ECM and contribute to fibrous cap 

thinning. Local foam cells also secrete proteolytic enzymes. SMCs also contribute to fibrous 

cap thinning due to a decrease in collagen synthesis. Local mast cells, among other cells, release 

proteases that destabilise the plaque. The plaque ruptures at its weakest point, either 

spontaneously or in the setting of haemodynamic stress, and platelets aggregate and become 

activated, leading to thrombosis. Ninety-five percent of ruptured fibrous caps are less than 65 

μm in thickness(23), which is the threshold for defining thin-cap fibroatheroma (TCFA)(24).  

 A summary of the fundamental processes involved in atherogenesis is represented in 

Figure 1.2. 
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Figure 1.2: A schematic representation of the fundamental processes of atherogenesis, 

including endothelial dysfunction: (A), fatty streak formation (B), formation of advanced 

lesions (C), and plaque rupture (D). Reproduced with permission from (Ross, R. (January 

01, 1999). Atherosclerosis--an inflammatory disease. The New England Journal of 

Medicine, 340, 2, 115-26(4)), Copyright Massachusetts Medical Society. 

 

1.1.7 An alternative fate of atherosclerotic plaques – Erosion 

 An alternative fate of atherosclerotic plaques is superficial erosion leading to 

thrombosis. The lesions associated with superficial erosion are abundant with smooth muscle 

cells and extracellular matrix, and have a paucity of lipid and foam cell accumulation(25). They 

are also much less inflammatory than lesions associated with plaque rupture(26). 

A B 
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The pathology of plaque erosion is not completely understood. Emerging data, 

including histopathological as well as from intracoronary imaging modalities such as optical 

coherence tomography (OCT) have provided valuable mechanistic insights(27). The 

characteristic feature is a breach in endothelial cell integrity at the site of proteoglycan and 

smooth muscle cell-rich plaque with a thick fibrous cap(28). Collagen and the necrotic core are 

then exposed, which allows platelet aggregation and thrombosis to occur. Plaque erosion tends 

to occur at sites of low shear stress, especially at arterial bifurcations(29). Endothelial apoptosis 

is more prevalent at sites of low shear stress(30), and this apoptosis may be triggered by 

myeloperoxidase release from neutrophils(31) and from the expression of toll-like receptor 2 

(TLR-2)(32). A proposed sequence of events involves a two-hit hypothesis. Firstly, increased 

TLR-2 expression by endothelial cells overlying plaque increases the susceptibility of 

endothelial cells to injury. Secondly, when injury occurs, neutrophils aggregate, and the 

increased TLR-2 expression impairs healing. Endothelial injury continues, and the secreted 

tissue factor by dying endothelial cells promotes thrombosis. The dying endothelial cells have 

contact with the underlying subendothelial matrix, and granulocytes such as neutrophils 

become trapped in fibrin strands and form neutrophil extracellular traps (NETs)(32). The 

prominent role of neutrophils and presence in plaque erosion differentiates it from plaque 

rupture, where macrophages are predominant. Similarly, endothelial cell apoptosis in plaque 

erosion contrasts with destruction of the ECM in plaque rupture. 

 Plaque erosion as a cause of thrombosis is becoming more prevalent, contributing to 

more than one quarter of acute coronary deaths(33). This is likely due to the increasing success 

of LDL-C-lowering therapies(25), thereby lowering the prevalence of lipid-rich plaques. 

Studying plaque erosion has been hampered by the lack of reliable animal models(34), and 

research is ongoing in this field. 
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1.2 Adhesion molecules, cytokines and inflammatory cells in atherosclerosis 

 A vast number of inflammatory mediators contribute to atherogenesis. The 

predominant mediators in acute vascular inflammation are adhesion molecules, endothelium-

derived cytokines, monocytes and neutrophils. In the setting of chronic vascular inflammation, 

prominent mediators include IL-1, IL-6 and TNF-α, which modulate the immune response and 

propagate inflammation. Macrophages are the dominant inflammatory cells, and are directly 

atherogenic. 

1.2.1 Acute vascular inflammation 

1.2.1.1  Vascular Cell Adhesion Molecule 1 

 VCAM-1, also known as CD106, is an immunoglobulin-like adhesion molecule that is 

expressed on the luminal surface of endothelial cells, and binds to the integrin α4β1, which is 

constitutively expressed on lymphocytes, monocytes and eosinophils(35). VCAM-1 is not 

present in basal conditions, and its expression is stimulated in pro-inflammatory conditions. 

These include the presence of TNF-α, IL-1β, lipopolysaccharide (LPS), reactive oxygen 

species, oxLDL, hyperglycaemia, toll-like receptor agonists, and in the context of shear 

stress(36). The gene expression of VCAM-1 is regulated by two specific subunits of the NFκB 

transcription pathway, namely p65 and p50 with low stimulation, and p65 alone with high 

stimulation(37). Upon encountering the integrin α4β1, VCAM-1 mediates rolling of, or firm 

adhesion to, circulating leucocytes, and facilitates their transmigration to the 

subendothelium(38, 39).  

1.2.1.2  Intercellular Adhesion Molecule 1 

 ICAM-1, also known as CD54, is an immunoglobulin-like adhesion molecule that is 

expressed constitutively on the luminal surface of endothelial cells. It binds to two integrins of 

the β2 family on the surface of leucocytes, including CD11a/CD18 (LFA-1) and CD11b/CD18 

(Mac-1). Its expression is regulated by the following transcription factors: NFκB (specifically 



11 
 

the p65 subunit), AP-1, CCAAT/enhancer binding protein family, ETS, signal transducer and 

activator of transcription-1 (STAT-1), and Sp1(40). Amongst these transcription factors, NFκB 

activation is always required for ICAM-1 upregulation. ICAM-1 is induced by broad range of pro-

inflammatory molecules in endothelial cells, including cytokines TNF-α, IL-1β, IL-6, and 

interferon-γ, LPS, thrombin, substance P, endothelin 1-3, oxLDL, hydrogen peroxide, and 

cyanate(41, 42). In addition, shear stress induces ICAM-1 expression(41). ICAM-1 functions similarly 

to VCAM-1; upon encountering integrins, it mediates rolling and transmigration of leucocytes into 

the subendothelium. 

1.2.1.3  P-selectin 

  P-selectin is a cell adhesion molecule present in the Weibel-Palade bodies of 

endothelial cells. Upon stimulation of ECs, it is translocated to the external plasma membrane 

where it functions as a receptor for monocytes and neutrophils(43). It is also present in platelets, 

where it is found in α-granules. Stimulants for P-selectin include TNF-α, IL-1β, oxygen free 

radicals, and histamine. The direct translocation to the cell surface after EC stimulation occurs 

within minutes as there is no requirement for transcription and translation(44). P-selectin binds 

to P-selectin glycoprotein ligand 1 (PSGL-1), expressed on almost all leucocytes, as well as 

the sialyl-Lewis X ligand, and there is subsequent leucocyte rolling and transmigration to the 

subendothelium. The expression of P-selectin on the EC surface is initially transient, lasting 

approximately 10 minutes, with the protein then being internalised inside the cell, where it is 

degraded or recycled(45). A more sustained expression occurs after continued EC stimulation, 

with de novo synthesis of P-selectin occurring within 2 hours(45). 

1.2.1.4  E-selectin 

E-selectin is an adhesion molecule present in endothelial cells, and rapidly expressed 

after EC stimulation. The pro-inflammatory mediators TNF-α, interferon-γ, IL-1β and LPS all 

stimulate E-selectin(46). In addition, disturbed and oscillatory shear stress, rather than laminar 
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shear stress, stimulate E-selectin(47, 48). It is transcriptionally regulated by both NFκB and 

Activating Transcription Factor (ATF)(49), and once on the EC surface recognises the sialyl-

Lewis X ligand on leucocytes(50). E-selectin mediates rolling and firm adhesion of leucocytes 

onto the EC surface and subendothelial transmigration. E-selectin is functionally similar to P-

selectin, however its expression occurs a minimum of 3 hrs after stimulation and subsequently 

wanes, despite continued cytokine stimulation(51). 

1.2.1.5  Monocyte Chemoattractant Protein 1 

 Also known as CCL2, MCP-1 is a chemokine (chemoattractant cytokine) secreted by 

numerous cell types including endothelial, fibroblasts, epithelial, smooth muscle, mesangial, 

astrocytic, monocytic, and microglial cells. Monocytes and macrophages are the dominant 

source of circulating MCP-1(52). Stimulants for MCP-1 expression by endothelial cells include 

TNF-α, IL-1β, IL-6, and/or brain-derived neurotrophic factor. MCP-1 is transcriptionally 

regulated by NFκB and mitogen activated protein kinase (MAPK). MCP-1 binds to the CCR2 

receptor on monocytes leading to the activation of intracellular signalling cascades that prompt 

migration toward the chemokine source (endothelial cell). Migration of monocytes from the 

blood stream across the vascular endothelium is required for routine immunological 

surveillance of tissues, as well as in response to inflammation. MCP-1 is also chemotactic for 

memory T lymphocytes and natural killer cells(53, 54).  

1.2.1.6  Monocytes 

 Non-classical monocytes slowly patrol the endothelium of blood vessels, and upon 

endothelial cell activation and subsequent monocyte chemotaxis, are able to rapidly respond to 

local perturbations. In homeostatic conditions, arterioles, capillaries, and postcapillary venules 

are populated by patrollers, perhaps one third of the marginal pool of non-classical 

monocytes(55). Once in the subendothelium, they are able to phagocytose debris and recruit 

neutrophils to mediate focal necrosis of endothelial cells(56). These monocytes (with surface 
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markers CD14hiCD16−) produce high levels of pro-inflammatory cytokines such as TNF-α, 

attracting further monocytes to sites of injury by setting up a chemoattractant gradient(57). They 

also produce proteases including matrix metalloproteinases (MMPs) that cleave collagen and 

other matrix components(58). Hence, they amplify both the inflammatory response and local 

injury. Over hours to days, monocytes differentiate into macrophages with their ultimate 

phenotype depending on different levels of trophic factors, mainly M-CSF and GM-CSF(59).  

 Macrophages that differentiate in an environment dominated by pathogen associated 

molecular patterns (PAMPs), interferon-γ, IL-1, and TNF-α from damaged tissues become 

classically activated. Such macrophages have amplified phagocytic and cytotoxic activity, 

secretion of pro-inflammatory mediators and expression of scavenger receptors. As sites of 

injury heal, with reductions in pro-inflammatory mediators, there is a reduction in macrophage 

activity. Newly-recruited macrophages may differentiate into alternatively-activated 

macrophages, which facilitate tissue repair and promote granuloma formation(60). 

1.2.1.7  Neutrophils 

 Neutrophils play a significant role in early acute vascular inflammation (AVI), and their 

accumulation in the vessel wall is a hallmark feature of AVI. Circulating neutrophils may be 

directed to a site of endothelial inflammation either by nearby monocytes using paracrine 

signalling with IL-1β, keratinocyte chemoattractant (KC), TNF-α, CCL3, or IL-6(56), or via 

chemotactic gradients from more distant sites of injury. At the sites of endothelial injury, 

adhesion molecules are upregulated.  The interactions between these molecules, especially 

selectins, with P-selectin glycoprotein ligand-1 (PSGL-1) on neutrophils, results in neutrophil 

tethering and rolling(61). This is followed by firm adhesion to the endothelium, typically 

mediated by the integrin CD11a/CD18 (LFA-1)(62). Neutrophils then crawl along the 

endothelium, in a slow, CD11b (Mac-1)-dependent meandering motion(62). Following adhesion 

and crawling, neutrophils emigrate from the vasculature, and at the site of injury phagocytose 
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debris and recruit more inflammatory cells (63). The presence of inflammation inhibits the 

apoptosis of neutrophils, and with the continued recruitment of neutrophils, the magnitude of 

the inflammatory response is increased(64, 65).  

Neutrophils can also regulate the function of dendritic cells, lymphocytes and natural 

killer cells(63). After entry into the inflammatory tissue site, in response to pro-inflammatory 

stimuli in the tissue, neutrophils become fully activated, a state characterised by release of 

granule proteins, acquisition of phagocytic capabilities, and production of NETs. Neutrophils 

are relatively nonresponsive to a single stimulus, but exposure to one stimulus enhances the 

ability of the cell to mount an enhanced activation response to a second individual stimulus(66). 

The activation mechanisms that are beneficial for pathogen killing can also be detrimental in 

the context of sterile injury such as in AVI. For example, despite a targeted inflammatory 

response by neutrophils, there is typically local collateral tissue damage from leakage of 

cytosolic contents and oxidative products outside of the neutrophil from phagocytic activity(67).  

The transmigration process of neutrophils across the endothelial cell barrier can induce 

signalling changes in endothelial cells, causing them to contract and thereby generating 

intercellular gaps. This allows serum proteins (such as cytokines, antibodies, and complement) 

to pass through the endothelial barrier, further aggravating the inflammatory state(68). Such 

changes promote a continued inflammatory state that can ultimately progress to chronic 

vascular inflammation. 

1.2.2 Chronic vascular inflammation and atherosclerosis 

1.2.2.1  Interleukin 1-α and β 

 Interleukin 1-α (IL-1α) and interleukin 1-β (IL-1β) are members of the IL-1 cytokine 

superfamily and are produced by macrophages, monocytes, fibroblasts, and dendritic cells. 

They are both produced as precursor proteins that are subsequently cleaved, although IL-1β in 
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its precursor form is not biologically active. The precursor of IL-1α acts as a damage-associated 

molecular pattern (DAMP) molecule, which is recognised by innate immunity cells by pattern 

recognition receptors (PRRs) and functions as a danger signal for the immune system. IL-1α 

and β are produced in response to inflammatory stimuli and bind to interleukin-1 receptors. IL-

1α generally remains associated with the cell surface or is released by dying cells and usually 

acts at short distances by juxtacrine or paracrine signalling. IL-1β on the other hand, can either 

act in a paracrine manner or systemically(69).  

The main function of IL-1-type cytokines is to control proinflammatory reactions in 

response to tissue injury by pathogen-associated molecular patterns (PAMPs, such as bacterial 

or viral products) or (DAMPs)(70). IL-1α and IL-1β rapidly induce the mRNA expression of 

hundreds of genes in multiple different cell types, such as monocytes, macrophages, endothelial 

and epithelial cells. In parallel, IL-1α and IL-1β also induce expression of their own genes, 

which serves as a positive-feedback loop that amplifies the IL-1 response in an autocrine or 

paracrine manner(71). IL-1α and IL-1β can also increase the expression of the IL-1 receptor 

antagonist (IL-RA), enabling negative feedback inhibition, a mechanism that resists 

unrestricted IL-1 signalling(72). 

Another method by which IL-1 signalling is regulated is through the requirement for 

activation of another molecule, caspase-I, for cleavage of pro-IL-1β to IL-1β. Caspase-I is 

present in an inactive form in the cytosol of many phagocytic cells, and is activated after 

stimulation by a myriad of microbial and endogenous signals. These signals stimulate the 

assembly of an inflammasome, specifically Nucleotide-Binding Domain Leucine-Rich-

Containing Family Pyrin Domain-Containing-3 (NLRP3), a macromolecular complex that 

forms a scaffold for pro-caspase-I activation(73). Notable effects of IL-1α and β on cells include 

induction of prostaglandin production through the induction of cyclooxygenase-2; the 

elaboration of nitric oxide by elevation of levels of the inducible isoform of nitric oxide 
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synthase; induction of the expression of many cytokines, including augmenting its own gene 

transcription; increased expression of leucocyte adhesion molecules and thrombogenic 

mediators; and activation of cells involved in innate immunity, prominently including the 

mononuclear phagocytes(70). 

 There are numerous stimulators of the inflammasome in atherosclerotic plaques, 

including cholesterol crystals and inflammatory cytokines. Indeed, there are significant 

amounts of NLRP3, caspase-I and IL-1β in plaques(74). Hence, the requirement of a two-step 

activation process for the inflammasome and subsequent IL-1β generation is not a hindrance 

for continued inflammatory activity in atherosclerotic plaques. Other stimuli for the 

inflammasome in atherosclerotic plaques include altered shear stress, hypoxia and acidosis(75-

77). IL-1β is present in much larger concentrations and is a much greater contributor to 

persistent, chronic inflammation in plaques than IL-1α. Indeed, IL-1β stimulates ICAM-1 and 

VCAM-1 which recruit other leucocytes, stimulates production of MCP-1 and other 

chemokines, and also strongly induces smooth muscle cells to secrete IL-6(78). Il-1β contributes 

to intimal thickening, increases inflammation in the vessel wall, and promotes aneurysm 

formation(79-81). 

1.2.2.2  Interleukin 6 

 IL-6 is a cytokine with both pro- and anti-inflammatory properties, and is produced by 

a variety of cells, most notably monocytes and macrophages at inflammatory sites. Stimulants 

for IL-6 production include IL-1β, TNF-α, platelet-derived growth factor, LPS, and a variety 

of pathogens. In the acute inflammatory response, such as in AVI, large amounts of IL-6 can 

be produced. IL-6 binds to the IL-6 receptor (IL-6R), which is present on macrophages, 

neutrophils, some T cells, and hepatocytes. Following this, the IL-6/IL-6R complex binds to 

two molecules of GP130 (ubiquitously expressed on all cells), leading to signal transduction, 

which includes activation of the JAK/STAT, ERK, and PI3K signal transduction pathways. In 
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addition to binding to IL-6 receptors on cells, IL-6 may also bind to soluble IL-6 receptors 

(sIL-6R). Although this would be expected to dampen the immune response by scavenging 

circulating IL-6, it conversely amplifies the immune response, as IL-6/sIL-6R complexes may 

then bind to cells that express GP130, and then activate IL-6 signal transduction(82). This form 

of “trans-signalling” as opposed to classical cell to cell signalling is crucial for rapid 

lymphocyte trafficking to sites of inflammation, and produces a much more robust 

inflammatory response. One mechanism by which sIL-6R is formed is by the cleavage of 

membrane-bound IL-6R, which can occur during the apoptosis of neutrophils(82).  

The propagation of the effects of IL-6 can be controlled by the production of 

neutralising antibodies, or the release of soluble GP130, which can bind circulating IL-6/sIL-

6R complexes. If these complexes do bind endothelial cells, they induce the secretion of 

adhesion molecules and MCP-1(83). This results in a relative decrease in the secretion of 

cytokines that attract neutrophils, such as IL-8, in favour of monocytes, hence the inflammatory 

response becomes monocyte dominant(84). This switch heralds the IL-6-driven transition from 

an acute to a chronic inflammatory response(85). Furthermore, IL-6 plays a vital role in the 

initiation of specific rather than innate immune responses, such as end-stage B cell 

differentiation, immunoglobulin secretion and T cell activation.  

The activity of IL-6 can be persistent and uncontrolled. This is particularly the case in 

the setting of vascular inflammation, where there is a continuous influx of monocytes that 

differentiate into macrophages in the inflammatory environment and propagate pro-

inflammatory signalling. In addition, IL-6 acts upon naive T-lymphocytes resulting in their 

differentiation into helper or cytotoxic T cells, which are subsequently able to continue 

propagation of the inflammatory cascade(86). IL-6 stimulates the proliferation of SMCs, and is 

produced by foam cells(87). IL-6 has significant procoagulant activity, primarily through 
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inducing monocyte expression of tissue factor, which promotes thrombosis(88). In addition, IL-

6 promotes platelet aggregation(89). 

 Some of this pro-inflammatory activity is balanced by the anti-inflammatory properties 

of IL-6. IL-6 can suppress IL-1 and TNF-α production, induce the IL-1 receptor antagonist, 

and can induce tissue inhibitor of matrix metalloproteinase 1 (TIMP1), which impedes the 

activity of collagenase and therefore has anti-proteolytic activity(90). However, the pro-

inflammatory activity is dominant in the setting of vascular inflammation, and contributes to a 

chronic and atherogenic state. 

1.2.2.3  Tumour necrosis factor-alpha 

 TNF-α is a cytokine that activates multiple transduction pathways, inducing or 

suppressing a wide variety of genes, including those encoding the production of cytokines, 

adhesion molecules, and inducible nitric oxide synthase (iNOS)(91). TNF-α has many pro-

inflammatory actions: orchestrating the inflammatory response through activation of pro-

inflammatory cytokine genes, such as IL-1 and IL-6, as well as its own production(92). The 

activated macrophage is the main source of TNF-α, containing both cell-associated and 

membrane-bound TNF-α, both of which are biologically active(93). Other cells that release 

TNF-α include lymphocytes, fibroblasts, neutrophils, smooth muscle and mast cells.  

TNF-α can bind to either TNF-receptor 1 (TNFR1), which is present on most cells, or 

TNF-receptor-2 (TNFR2), which is present on immune cells. The binding of TNF-α to its 

receptors results in either activation of the NFκB or MAPK transcription pathways, or 

induction of apoptosis(94). The activation of NFκB and its translocation to the nucleus leads to 

the production of a multitude of pro-inflammatory proteins, many of which are relevant to 

vascular inflammation. These include but are not limited to: pro-inflammatory interleukins(95), 

adhesion molecules(96), interferon-γ(97), MCP-1(98), tumour necrosis factor-related apoptosis-



19 
 

inducing ligand (TRAIL)(99), toll-like receptors 2 and 9(100, 101), tissue factor-1(102) and vascular 

endothelial growth factor (VEGF)(103). The MAPK pathways control a large number of 

fundamental cellular processes including growth, proliferation, differentiation, motility, stress 

response, survival and apoptosis(104). The MAPK signalling pathways include ERK5, p38, 

JNK, and ERK1/2 pathways. The p38 and JNK pathways may be the most relevant to 

atherosclerosis. They are both necessary for foam cell formation(105, 106). They are both 

activated during vascular endothelial injury, inducing neointima formation(107), and p38 

stimulates the proliferation of SMCs(108). Although TNF-α is an inducer of apoptosis, in 

atherosclerotic plaque apoptosis is reduced in favour of cell necrosis, contributing to the 

necrotic core(109). This effect may be partly due to the stimulation of macrophages and SMCs 

to synthesise matrix proteases(110). Furthermore, the presence of TNF-α promotes more 

advanced, unstable lesions(109). 

1.2.2.4  Macrophages 

 Monocytes that have transmigrated into the subendothelial space may either 

differentiate into classical, “M1”, pro-inflammatory macrophages, or alternative, “M2”, anti-

inflammatory macrophages, depending on the local environment. Macrophages may also be 

derived from the adventitia, either from the vasa vasorum or as resident, locally-derived, 

macrophage progenitors(111). Although the M1/M2 concept is an oversimplification of the role 

of the macrophage, it is practical and for the most part accurate. Macrophages are polarised 

towards an M2 phenotype when in a pro-resolving environment, such as during resolution of 

inflammation, where the emphasis is on tissue repair. Conversely, they are polarised to an M1 

phenotype when in pro-inflammatory environment. Early atherosclerotic lesions have a 

predominance of M2 macrophages, and more advanced lesions, with high levels of 

inflammatory activity, have a predominance of M1(112). The typical activating stimuli for M1 

macrophages are interferon-γ and LPS(60). The activating stimuli for the subclasses of M2 
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macrophages are: IL-4 and IL-13 for M2a, immune complexes plus either IL-1β or LPS for 

M2b, and IL-10, transforming growth factor-β or glucocorticoids for M2c(113).  

 The atherogenic roles of M1 macrophages in the vessel wall include: (1) secretion of 

pro-inflammatory cytokines (eg. IL-6, IL-12, and IL-23), (2) secretion of growth factors that 

induce neovascularisation and vessel permeability (eg. VEGF), (3) production of matrix 

metalloproteinases that digest the matrix and solubilise the fibrous cap, (4) production of 

reactive oxygen species which promote macrophage recruitment, impair efferocytosis of 

apoptotic cells and oxidise LDL, and (5) acting as antigen presenting cells, where the activation 

of antigen-specific T cells results in the amplification of the macrophage response (114). This 

last role contributes to the chronicity of the inflammatory response. 

As stated previously, macrophages are critical to the production of lipidic plaques. The 

ability of macrophages to remove oxidised LDL can be overwhelmed when the ability to 

remove ingested oxLDL is exceeded by the rate of ox-LDL influx and cholesterol 

esterification. This forms the basis for inflammatory, cholesterol-rich plaques. 

1.3 Inflammation as a therapeutic target in atherosclerosis 

Inflammation in the vessel wall has received considerable attention as a target for new 

therapies for atherosclerosis. A conundrum has existed for many years, since numerous anti-

inflammatory agents increase the risk of cardiovascular events, such as non-steroidal anti-

inflammatory drugs(115) and corticosteroids(116). Furthermore, the recent CIRT study, which 

compared the anti-inflammatory agent methotrexate to placebo in patients with coronary artery 

disease, did not reduce cardiovascular events(117). The LoDoCo study, however, demonstrated 

a 67% reduction in the composite incidence of acute coronary syndrome, out-of-hospital 

cardiac arrest, or noncardioembolic ischemic stroke in patients with stable coronary artery 

disease taking the anti-inflammatory agent colchicine compared to placebo (p<0.001)(118). 
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Colchicine’s anti-inflammatory properties include an antitubulin effect that inhibits neutrophil 

function(119). In addition, the potential for cardiovascular benefit by targeting the inflammatory 

nature of atherosclerosis was highlighted by the CANTOS study(120). CANTOS compared 

canakinumab, a monoclonal antibody targeting interleukin-1β, to placebo in patients with a 

previous myocardial infarction and an elevated C-reactive protein (CRP) level. Canakunimab 

at a dose of 150 mg every three months reduced cardiovascular events by 15% compared to 

placebo at 48 months (p=0.021)(120). 

The reductions in cardiovascular events seen in LoDoCo and CANTOS occurred in 

addition to the effects of statins, as more than 90% of patients in both studies were taking 

statins. Statins themselves have been clearly shown to have anti-inflammatory effects amongst 

their numerous pleiotropic effects. The PRINCE trial (2001) was an early study that 

demonstrated the CRP-lowering properties of pravastatin, which occurred independently of 

changes in LDL cholesterol(121). Since then, statins have been shown to increase endothelial 

nitric oxide synthase (eNOS) gene expression and activation(122, 123); reduce NFκB activation 

by pro-inflammatory stimuli(124); upregulate antioxidant enzymes such as heme oxygenase-

1(125); inhibit pro-inflammatory cytokine release such as IL-6(126); and upregulate anti-

inflammatory cytokines such as IL-10(127). The pleiotropic effects of statins have been shown 

to be clinically significant, as several clinical trials have demonstrated reductions in 

cardiovascular events beyond the effects of lipid lowering. For example, in the LIPID trial 

pravastatin reduced cardiovascular events by 24% in patients with a past history of an acute 

coronary syndrome, throughout the continuum of LDL-C levels (p<0.001)(128). In the Heart 

Protection Study, patients with coronary, other occlusive arterial disease, or diabetes, were 

randomised to receive simvastatin or placebo; simvastatin reduced major vascular events by 

24% irrespective of initial cholesterol concentrations (p<0.0001)(129).  
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Statins have been successfully used to reduce cardiovascular events by targeting 

systemic inflammation in addition to their established lipid-lowering effects. In the JUPITER 

study, apparently healthy men and women with low LDL-C levels (<3.4mmol/L) but elevated 

hs-CRP levels (>2.0 mg/L) were randomised to rosuvastatin or placebo; the trial was stopped 

early after a median of 1.9 years due to a 44% reduction in the occurrence of major adverse 

cardiovascular events in the rosuvastatin group (p<0.00001)(130). Similarly, the anti-

inflammatory properties of omega-3 fatty acids have led to considerable research into their 

therapeutic potential for a range of conditions.  

1.4 The effects of omega-3 fatty acids on inflammation 

1.4.1 Fatty acids in health and disease  

1.4.1.1  Overview of fatty acids 

 Fatty acids are organic acids with a hydrocarbon chain and a terminal carboxyl group 

(see Figure 1.3). They are the major components of fats, oils, and waxes. Although there are 

over 1000 naturally-occurring fatty acids, only 20-30 are widely distributed in nature. These 

typically have between 10 and 22 carbon atoms. Fatty acids can be classified by the number of 

carbon atoms present, i.e.: “short-chain” if ≤ 5 carbon atoms, “medium-chain” if 6 to 12 carbon 

atoms, “long-chain” if 13 to 21 carbon atoms, and finally “very long chain” if ≥ 22 carbon 

atoms. A common form of nomenclature for fatty acids is “lipid number” in the form of 

(C:DωN), where C corresponds to the number of carbon atoms, D is the number of double 

bonds, and ωN is the position of the last double bond, if present, in the hydrocarbon chain. The 

position is defined as the number of carbon atoms away from the methyl (CH3) end of the 

structure. For example, (20:5ω3) refers to eicosapentaenoic acid (EPA), which has 20 carbon 

atoms, 5 double bonds, and the position of the last double bond is 3 carbon atoms away from 

the methyl end. The hydrocarbon chain of a fatty acid can have either single carbon-carbon 

bonds with two flanking hydrogen atoms, or double bonds, of which there can be 0 to 6 in any 



23 
 

single structure. The double carbon-carbon bonds typically have cis geometry, i.e. the 

continuing carbon chains after the double bond face in the same direction. This creates a kink 

in the structure. In the case of trans geometry, the continuing carbon chains face the opposite 

direction, and the absence of a kink allows them to be pack closer together (see Figure 1.4). It 

is important to distinguish trans-fatty acids from cis-fatty acids, and therefore “trans N” or “cis 

N” may be used in nomenclature for this purpose. “Cis” is implied if this distinction is not 

made. “Trans-fatty acids” have the trans geometry, and are much less commonly found in 

nature than in the commercial food industry. They have a much higher melting point than their 

cis counterparts, and hence can be cooked as liquids at much higher temperatures while 

maintaining chemical stability(131).  

“Saturated fatty acids” are defined by the absence of double bonds in the hydrocarbon 

chain (see Figure 1.5). This makes them very chemically stable, as oxidation and free radial 

damage to fatty acids occur at the sites of double bonds. Saturated fatty acids tend to be solids 

at room temperature due to their very high melting points. They can be found in both plant and 

animal sources, although animal products have the highest saturated fatty acid content. They 

have the maximum number of hydrogen atoms in the hydrocarbon chain, and a higher calorie 

content than unsaturated fatty acids.  

“Monounsaturated fatty acids” (MUFAs) have a single double bond in the hydrocarbon 

chain, and are predominantly comprised of the omega-7 and omega-9 fatty acids. MUFAs are 

abundant in plant and vegetable oils, nuts, milk products, red meat, high fat fruits, and 

avocados. “Polyunsaturated fatty acids” (PUFAs) have at least two double bonds in the 

hydrocarbon chain. PUFAs are predominantly comprised of omega-6 and omega-3 fatty acids. 

Both omega-6 and omega-3 fatty acids are found in plant oils, however the omega-3 fatty acids 

EPA (20:5ω3) and DHA (22:6ω3) are abundant in fish and algal oils. Fatty acids that are 

obtained from plant, animal or fish sources are in the form of mixtures rather than as individual 
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fatty acids. Furthermore, they are not found naturally as free fatty acids, but as either 

triglycerides, phospholipids or less commonly, as cholesterol esters. This is necessary because 

fatty acids, being a form of lipid, are non-polar and hence do not dissolve in aqueous solutions. 

Fatty acids are essential for basic cellular structure and function, and are important 

sources of fuel. The term “essential fatty acid” defines fatty acids that are required for normal 

biological processes in humans and animals, but cannot be synthesisedt(132). These are linoleic 

acid (18:2ω6) and alpha-linolenic acid (18:3ω3), which cannot be synthesised due to the lack 

of the Δ12 and Δ15 desaturase enzymes responsible for converting oleic acid (18:1ω9) into 

linoleic acid (18:2ω6) and alpha-linolenic acid (18:3ω3)(133). 

Table 1.1 summarises the lipid number, name, and composition of the most abundant 

fatty acids including saturated, trans-fatty, monounsaturated and polyunsaturated. 

 

 

 

 

 

Figure 1.3: The basic structure of a fatty acid, using the saturated fatty acid lauric acid 

(12:0) as an example. Downloaded from the Dallas County Community College website: 

https://dlc.dcccd.edu/biology1-3/lipids on 7/12/18. 
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Figure 1.4: The structure of cis- compared to trans-fatty acids, demonstrating the 

direction of the continuing carbon chain after a double bond. Downloaded from the 

Dallas County Community College website: https://dlc.dcccd.edu/biology1-3/lipids on 

7/12/18. 
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Figure 1.5: The structure of a saturated fatty acid compared to an unsaturated fatty acid. 

The absence of double bonds in the hydrocarbon chain defines a fatty acid as saturated. 

Downloaded from the Dallas County Community College website: 

https://dlc.dcccd.edu/biology1-3/lipids on 7/12/18. 

 

 

 

 

 

 

 



27 
 

Table 1.1: Summary of the type, lipid number, and common name of the most abundant 

fatty acids 

Type of fatty acid Lipid number Common name 

Saturated  

C12:0 lauric acid 
C14:0 myristic acid 
C15:0 pentadecylic acid 
C16:0 palmitic acid 
C17:0 margaric acid 
C18:0 stearic acid 
C20:0 arachidic acid 
C22:0 behenic acid 
C24:0 lignoceric acid 

Trans-fatty 

t16:1ω-7  trans-palmitoleic acid 
t18:1ω-7  trans-vaccenic acid 
t18:1ω-9 trans-oleic acid 
t18:2ω-6 trans-linoleic acid 

Monounsaturated 

16:1ω-7 palmitoleic acid 
18:1ω-7 vaccenic acid 
18:1ω-9 oleic acid 
20:1ω-9 eicosenoic acid 
22:1ω-9 erucic acid 
24:1ω-9 nervonic acid 

Polyunsaturated 

18:3ω-3 alpha-linolenic acid 
20:5ω-3 eicosapentaenoic acid 
22:5ω-3 docosapentaenoic acid 
22:6ω-3 docosahexaenoic acid 
18:2ω-6 linoleic acid 
18:3ω-6 gamma-linolenic acid 
20:2ω-6 eicosadienoic acid 
20:3ω-6 dihomo-gamma-linolenic acid 
20:4ω-6 arachidonic acid 

 

1.4.1.2  Saturated fatty acids 

Saturated fatty acids (SFAs) are obtained from both plant and animal sources, but can 

also be created from hydrogenation of a corresponding (same carbon chain length) unsaturated 

fatty acid. Of the SFAs, palmitic acid (C16:0) is the most widely occurring in both animal fats 

and vegetable oils, whilst stearic acid (C18:0) is found in lesser quantities in vegetable oils. 
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There has for decades been concerns about the effects of SFAs on serum cholesterol(134). The 

effects have been shown to be fatty acid-dependent, with myristic acid (C14:0), lauric acid 

(C12:0) and palmitic acid raising both LDL and HDL, with no effect on LDL seen with stearic 

acid(135, 136).However, despite these effects, a meta-analysis of 21 prospective cohort studies 

concluded that there is no association between saturated fat consumption and cardiovascular 

disease risk(137). There is still a consensus that SFAs should be substituted for healthier nutrients 

where possible(138). This is based a pooled analysis of 11 cohort studies which concluded that 

substitution of SFAs with PUFAs reduces the risk of coronary events by 13%(139).  

The discrepancy between effects of SFAs on lipids and cardiovascular risk could be 

explained by effects on other atherogenic mediators. However, the effects on other atherogenic 

mediators are still overall detrimental, and hence this area requires continued investigation. For 

example, SFAs have been shown to promote insulin resistance(140), induce low-grade systemic 

inflammation(141), and directly stimulate inflammatory gene expression by way of TLR4 

signalling(142). 

1.4.1.3  Trans-fatty acids 

Trans-fatty acids in the human diet are mostly encountered following partial 

hydrogenation of vegetable oils in the food industry (in particular, trans-oleic acid [t18:1ω-9]). 

This gives food desirable physical and chemical characteristics, as well as distinctive flavour, 

crispness, creaminess, plasticity and oxidative stability(143). Trans-fatty acids are used 

extensively in the preparation of fast foods and in baked goods. A small percentage of trans-

fatty acids is obtained from dairy products and ruminant meats (in particular, trans-vaccenic 

acid [t18:1ω-7]). The contribution of trans-fatty acids to the Australian diet is estimated to be 

0.6% of total energy(144). This compares to 2 to 3% in the United States(145).  
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The widespread production of trans-fatty acids has raised significant health concerns 

given their association with cardiovascular disease. Consumption of trans-fatty acids has been 

shown in a meta-analysis of 60 randomised controlled trials to raise LDL-C, lower HDL-C, 

raise triglycerides, and raise lipoprotein(a) levels(146). In addition, trans-fatty acids also reduce 

LDL particle size, increasing its atherogenicity(147). Trans-fatty acids are pro-inflammatory, 

and their consumption is associated with higher circulating levels of IL-6, TNF-α, CRP and 

MCP-1(148, 149). They also induce endothelial dysfunction, as evidenced by raised soluble 

adhesion molecules and impaired flow-mediated dilatation(148, 150).  

A number of observational studies have demonstrated a significantly higher 

cardiovascular risk associated with an increase in trans-fatty acid consumption. On a per-

calorie basis, coronary heart disease (CHD) risk is raised more by trans-fatty acids than any 

other macronutrient(151). In a meta-analysis of four prospective cohort studies involving nearly 

140,000 subjects, a 2 percent increase in energy intake from trans-fatty acids was associated 

with a 23 percent increase in the incidence of CHD(151-155). One study also demonstrated a 

positive correlation between trans-fatty acid levels in erythrocyte membranes and the risk of 

sudden cardiac death, with an adjusted odds ratio of 1.47 (95% CI: 1.01 to 2.13)(156). The 

mechanisms of the hazardous effects of trans-fatty acids have not been fully established, 

however their detrimental effects on lipids may be due to an increase in the activity of 

cholesteryl ester transfer protein (CETP), the main enzyme that transfers cholesterol esters 

from HDL to LDL and VLDL(157).  

The public health implications of high trans-fatty acid consumption are enormous. 

Since the estimated consumption of trans-fatty acids in the Australian diet is well within the 

World Health Organisation’s target of <1%, there has not been a strong impetus to reduce the 

consumption further. There is no requirement for declaration of trans-fatty acid content on food 

labels in Australia, however the 2009 Australia and New Zealand QSR Industry Survey 
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suggested that a number of strategies were being employed by industries to reduce trans-fatty 

acid levels in foods(158). 

1.4.1.4  Monounsaturated fatty acids 

MUFAs are found in high quantities in most commodity oils, and the vast majority are 

omega-7s or omega-9s. The most prevalent naturally occurring MUFA is oleic acid (18:1ω9), 

found in high concentrations in olive, peanut, palm, canola (rapeseed), and sunflower oils.  

The consumption of MUFAs has been shown to have health benefits, but an important 

consideration is their source and quality. There is convincing observational evidence that the 

cardiovascular benefits of MUFAs of plant origin are greater than those of animal origin(159). 

One large meta-analysis divided studies into tiers of dietary MUFA quality, and found that the 

MUFA diets of the highest quality, considering percentage of olive oil, oleic acid and 

MUFA:SFA ratio, had the lowest rates of all-cause mortality and major adverse cardiovascular 

events(160).  

MUFAs have also been shown to reduce inflammation. A diet rich in MUFAs 

contributes to a more anti-inflammatory gene expression profile in human adipose tissue 

compared with a diet high in SFAs(161). Furthermore, adherence to a Mediterranean diet in 

healthy adults reduces levels of plasma IL-6, CRP, and homocysteine(162). However, since the 

Mediterranean diet is highly abundant in other health-promoting constituents in addition to 

MUFAs, the results obtained from human dietary studies cannot be fully attributable to 

MUFAs. This was exemplified in the landmark PREDIMED study, which randomised 

individuals at high cardiovascular risk to a Mediterranean diet supplemented with extra-virgin 

olive oil (EVOO), a Mediterranean diet supplemented with mixed nuts, or a control diet (advice 

to reduce dietary fat). During a median of 4.8 years of follow-up, the intervention diets 

significantly reduced the primary endpoint of a composite of myocardial infarction, stroke, or 
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death from cardiovascular causes by approximately 30% compared to the control diet (hazard 

ratio of 0.70 [95% CI, 0.53 – 0.91, p=0.009] for the EVOO group and 0.70 [95% CI, 0.53 – 

0.94, p=0.02] for the mixed nuts group)(163). The fatty acid composition of the plasma of 

PREDIMED participants before and after treatment was analysed, and demonstrated that in 

addition to a significant increase in oleic acid in the EVOO group, the mixed nut group had a 

reduction in the omega-6 PUFA gamma-linolenic acid (18:3ω6), and both interventions had a 

reduction in the saturated fatty acid margaric acid (C17:0)(164). The original PREDIMED was 

subsequently retracted due to protocol deviations, particularly related to instances of lack of 

randomisation, and the study was republished in 2018, accepted as being a non-randomised 

trial(165). In the republished manuscript, the hazard ratios for the primary endpoint were 0.69 

(95% CI, 0.53–0.91) for the EVOO group and 0.72 (95% CI, 0.54–0.95) for the mixed nuts 

group, however levels of significance were not reported.(166) 

There is ongoing debate about what defines a Mediterranean diet, and the compositions 

of these diets in human studies have differed. MUFA-enriched high fat diets in animal studies 

have resulted in reduced IL-1β secretion from adipose tissue and improved insulin sensitivity 

compared to SFA-enriched high fat diets(167). The reduction in IL-1β is likely due to the 

inhibitory effects that MUFAs have on the NLRP3 inflammasome (168). 

In addition to plant and animal-derived MUFAs, there has recently been interest in 

marine-derived MUFAs. These long chain fatty acids, eg. gadoleic acid (20:1ω11) and cetoleic 

acid (22:1ω11), are found in fish such as soury, pollock, and herring. Analysis of the diets of 

the Greenland Inuits from the original studies from Bang and Dyerberg demonstrated levels of 

long-chain MUFAs 13 times higher than that of the Danish controls(169). There is evidence in 

animal studies for beneficial effects on glucose and lipid metabolism(170), reduced triglyceride 

and VLDL levels(171), upregulation of the anti-inflammatory transcription pathway PPAR-

γ(172), and reduced atherogenesis(173) with marine-derived MUFAs. With the continued interest 
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in the cardiovascular benefits of marine-derived PUFAs, clinical trials focusing on marine-

derived MUFAs are expected. 

1.4.1.5  Polyunsaturated fatty acids 

The polyunsaturated fatty acids (PUFAs) consist of omega-6 and omega-3 fatty acids. 

These are long-chain molecules with typically 2 to 6 non-contiguous double bonds. In plants, 

the number of double bonds rarely exceeds three, although in algae and fish the fatty acids can 

contain up to six double bonds. The omega-6 and omega-3 fatty acids are present in most plant, 

animal, and commodity oils and fats. As outlined previously, the PUFAs include the essential 

fatty acids, linoleic acid (18:2ω6) and alpha-linolenic acid (18:3ω3). The most common 

omega-6 fatty acids encountered in the human diet are linoleic acid and arachidonic acid 

(20:4ω6). Since mammalian cells lack the omega-3 desaturase enzyme, omega-6 fatty acids 

cannot be converted in vivo to omega-3 fatty acids. Closely-related omega-6 and omega-3 fatty 

acids act as competing substrates for the same enzymes(174), outlining the importance of the 

proportion of omega-6 to omega-3 fatty acids in diet (discussed in Section 1.4.4). 

Omega-6 fatty acids 

Linoleic acid (18:2ω6), the shortest and most common omega-6 PUFA, is metabolised 

to the longer and more unsaturated arachidonic acid (20:4ω6) via the intermediates gamma-

linolenic acid (18:3ω6) and dihomo-gamma-linolenic acid (20:3ω6). Arachidonic acid is 

metabolised by the cyclooxygenase (COX) enzymes to the 2-series of prostaglandins (i.e. 

PGE2, PGI2, PGD2, PGF2α) and thromboxanes (A2 and B2). Arachidonic acid is also 

metabolised via the lipoxygenase (LOX) enzymes to the 4-series of leukotrienes (i.e. LTA4, 

LTB4, LTC4, LTD4, and LTE4). Collectively, the prostaglandins, thromboxanes and leukotrienes 

are referred to as eicosanoids. Although the eicosanoids have important homeostatic functions 

in regulating both the promotion and resolution of inflammation in the immune response, they 
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predominantly have properties that are atherogenic. For example, PGD2 and LTB4 are pro-

inflammatory, TXA2 and TXB2 are pro-aggregatory and vasoconstrictive, LTB4 is chemotactic 

for neutrophils, and PGE2 induces IL-6(175). These properties predict a hazardous effect of 

excessive omega-6 consumption. Indeed, PGE2 and PGI2 are also proarrhythmic(175). However 

cardiovascular outcome studies have not demonstrated an elevated cardiovascular risk 

associated with high omega-6 consumption. Conversely, the aggregate of randomised trials, 

case-control, and cohort studies indicate reduced cardiovascular risk(176). This may be partly 

due to the increasingly recognised anti-inflammatory and atheroprotective effects of omega-6 

PUFAs. For example, omega-6 PUFAs are a substrate for the anti-aggregatory and vasodilatory 

prostacyclin(177), the anti-chemotactic and pro-resolving lipoxin A4
(178), and the vasodilatory 

and anti-adhesive epoxyeicosatrienoic acids(179). One human study showed a negative 

correlation between serum omega-6 PUFA levels and IL-6, and a negative correlation with the 

anti-inflammatory transforming growth factor β(180).  

Individual studies of the effects of omega-6 PUFAs on serum lipids have produced 

mixed results, however a meta-analysis of 60 controlled fatty acid intervention trials indicated 

a beneficial effect on blood lipid levels with lower LDL and higher HDL levels(146). 

Increasingly, when considering the physiological effects of omega-6 consumption, there has 

been a shift in focus to omega-6 as a proportion of, or relative to, other fatty acid species, and 

this continues to be studied extensively. 

Omega-3 fatty acids 

 The omega-3 fatty acids are alpha-linolenic acid (ALA, 18:3ω3), eicosapentaenoic acid 

(EPA, 20:5ω3), docosahexaenoic acid (DHA, 22:6ω3), and docosapentaenoic acid (DPA, 

22:5ω3). The latter is the intermediate species between EPA and DHA. ALA is found 

predominantly in plant oils, whereas EPA and DHA are best sourced from marine sources, i.e. 
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oily fish, fish oils and algal oil. In humans, there is a small amount of conversion from the 

essential fatty acid ALA to EPA (6%) via the enzymes Δ6 desaturase, elongase, and Δ5 

desaturase, with an even smaller amount ultimately converted to DHA (3.8%)(181). With a high 

omega-6 intake, these conversion rates are further decreased, leading some to consider EPA 

and DHA to be “conditionally essential”(182).  

The consumption of omega-3 PUFAs leads to their incorporation into cell membranes, 

where they form an essential part of the phospholipid bilayer and alter cell physiology. Cellular 

membranes from some tissues, for example the brain, retina, and myocardium are particularly 

enriched in omega-3 PUFAs. DHA is the predominant fatty acid of membrane phospholipids 

in the brain grey matter and in the retina, and the accretion of DHA in their membranes is 

required for the optimum development of retinal and cerebral functions(183). Despite this, 

supplementation of pregnant women, or fortification of infant formula, with DHA has not 

clearly resulted in improvements in neuropsychological performance in children(184). 

Furthermore, although omega-3 PUFAs are purported to have positive effects on mood(185), 

systematic reviews of the literature have demonstrated mixed results for the prevention and 

treatment of depression(186-188). The enrichment of the myocardium with omega-3 PUFAs 

suggests that they may be important for normal cardiac myocardial function and recovery as 

well as electrical stability. Recent evidence indicates that there is a reduction in adverse left 

ventricular remodelling and myocardial fibrosis following myocardial infarction in those 

supplemented with high-dose omega-3 PUFAs(189). However, despite an increase in electrical 

stability with omega-3 supplementation(190), it has not been shown to reduce atrial or ventricular 

arrhythmias in those at high risk(191-193). 

 There has been considerable interest in the lipid-lowering effects of omega-3 PUFAs, 

and the overall effects could be best summarised as follows. Triglycerides are moderately 

decreased (25 to 30%), HDL-C is increased minimally (1 to 3%), and LDL-C is increased 
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mildly (5 to 10%)(194). Given the modest effects of omega-3 PUFAs on atherogenic 

lipoproteins, there has been substantial interest in their anti-inflammatory effects as a 

mechanism for their cardioprotective effects. 

1.4.3 The anti-inflammatory effects of omega-3 fatty acids 

Omega-3 fatty acids have been shown to reduce inflammation in the in vitro and in vivo 

settings. Omega-3s are able to partly inhibit a number of aspects of inflammation including 

leucocyte chemotaxis, adhesion molecule expression and leucocyte–endothelial adhesive 

interactions, production of eicosanoids like prostaglandins and leukotrienes from the omega-6 

fatty acid arachidonic acid, production of inflammatory cytokines, and T-helper 1 lymphocyte 

reactivity(195). In addition, EPA and DHA give rise to inflammation-resolving resolvins, 

protectins and maresins(196). Furthermore, omega-3s have been showed to attenuate oxidative 

stress-induced DNA damage(197). These anti-inflammatory effects have translated into clinical 

benefit for a range of inflammatory conditions. One of the earliest conditions studied 

extensively was rheumatoid arthritis, given the understanding of the role of arachidonic acid 

metabolites in the disease process, which are clearly reduced by omega-3 fatty acids. One meta-

analysis included data from 10 trials and concluded that dietary fish oil supplementation for 

3 months significantly reduced morning stiffness and tender joint count in patients with 

rheumatoid arthitis(198). There is some evidence for a beneficial effect of omega-3 fatty acids 

in asthma, which is characterised by high levels of pro-inflammatory cytokines, arachidonic 

acid-derived eicosanoids, and prostaglandins. Some studies have demonstrated improved lung 

function and a decline in disease scores after omega-3 supplementation(199, 200), however these 

findings have not been consistently reported(201).  

Oxidative stress has been implicated as a pathogenic mechanism for the chronic, 

inflammatory neurodegenerative disease multiple sclerosis. In a randomised controlled trial, 

omega-3 fatty acids supplemented at a dose of 2 grams per day significantly reduced Expanded 
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Disability Status Scores (EDSS) in patients with multiple sclerosis, associated with reductions 

in serum CRP and the oxidative stress marker malondialdehyde(202). Omega-3 fatty acids have 

been trialled in the setting of inflammatory bowel diseases (IBD), which are associated with 

increases in inflammatory eicosanoids, pro-inflammatory cytokines, and both CD4 and CD8 T 

cell activity(203, 204). Despite omega-3s reducing all of these factors, a systematic review of 

clinical trials of IBD did not show clinical improvement with omega-3 supplementation(205). 

The lack of a predictable clinical benefit based on known biochemical effects is a frequent 

scenario that necessitates further investigation. This is indeed the case for studies of the effects 

of omega-3 fatty acids on cardiovascular disease. In addition to the potential to modulate 

cardiovascular risk by targeting inflammation, omega-3 fatty acids have beneficial effects on 

established cardiovascular risk factors, including high levels of triglycerides(206-208) and blood 

pressure(209-211). However, the results of cardiovascular outcome trials of omega-3 fatty acids 

have been overall neutral. 

1.4.4 The omega 6:3 ratio 

Conventional cardiovascular risk factors such as lipid parameters, blood pressure and 

inflammatory markers, have established and standardised tools for their measurement, as well 

as reference ranges that may define normal or associate with higher or lower risk. This is not 

the case for PUFAs. A common method for quantifying omega-3 “status” is to measure the 

proportion of total blood fatty acids comprised of omega-3s. This value, when measured in 

whole blood, has an inverse association with sudden death(212), and is the basis for the Omega-

3 Index. The Omega-3 Index is the percentage of EPA and DHA in red blood cell fatty acids, 

and based on an analysis of 10 cohort studies, a value of < 4% predicts higher CHD mortality, 

and > 8% predicts lower CHD mortality(213). However, indices such as this do not provide 

insights into the total blood fatty acid composition and the relative amounts of harmful versus 
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beneficial components. Furthermore, factors such as age and gender alter the absorption of 

fatty acids, and consequently the cut-offs for the Omega-3 index(214).  

An alternative, arguably more informative measure is the ratio of pro-inflammatory and 

atherogenic omega-6 fatty acids to anti-inflammatory and atheroprotective omega-3 fatty acids, 

i.e. the Omega 6:3 ratio. The ratio of omega-6 PUFAs to omega-3 PUFAs in the human diet 

has increased markedly from hunter-gatherer times, when it was as low as 1:1, to now, when a 

typical Western diet can provide a ratio of 20:1(215). An important concept exemplified by the 

Omega 6:3 ratio is that of fatty acid substitution. Since omega-6 and omega-3 PUFAs compete 

with each other for incorporation into cell membranes(216, 217), a higher omega-6 intake relative 

to omega-3 would be expected to shift healthy physiology to pathophysiology(218). 

A high omega 6:3 ratio is a predictor of poorer outcomes for a number of chronic 

diseases. There is a positive association with obesity, as omega-6 and omega-3 PUFAs have 

divergent effects on adipogenesis, the brain-gut-adipose tissue axis, and systemic 

inflammation(215). There is also a positive association with disease activity for several 

malignancies including colorectal and breast(219). From a cardiovascular perspective, a lower 

omega 6:3 ratio is associated with reduced platelet aggregation and circulating inflammatory 

markers(219). The Lyon Heart Study compared a Mediterranean-style diet to no dietary advice 

in patients after their first myocardial infarction, and achieved an omega 6:3 ratio in the 

intervention group as low as 4:1. Those receiving the Mediterranean diet had a 70% lower 

mortality rate at 2 years(220). 

1.5 Clinical trials of omega-3 fatty acids 

1.5.1 Dietary studies of omega-3 fatty acids 

 Bang and Dyerberg first proposed a cardioprotective effect of fish consumption after 

observing low lipid levels and rates of ischaemic heart disease in Greenland Inuit who 
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consumed a diet high in fish(221). Since that time, numerous cohort studies have been published 

comparing the effects of fish consumption on outcomes. A meta-analysis of 17 such studies 

including 315 812 participants in the primary prevention setting and an average follow-up of 

15.9 years, demonstrated a dose-response effect of fish intake on survival. Compared to low 

fish intakes (< 1 fish meal per week), the consumption of 1 fish meal per week resulted in a 

16% reduction in mortality due to CHD(222). The dose-response analysis indicated that every 

15 g per day increment of fish intake decreased the risk of CHD mortality by 6%. Musa-Veloso 

et al performed a systematic review of 8 prospective studies comparing an estimated total 

omega-3 intake of < 250 mg versus ≥ 250 mg per day by fish consumption on fatal and non-

fatal CHD in those with no prior history of CHD(223). The higher intake was associated with a 

significant 35.1% reduction in the risk of sudden cardiac death and a near-significant 16.6% 

reduction in the risk of total fatal coronary events, while the risk of non-fatal myocardial 

infarction was not significantly reduced. The risk of CHD death was again found to be dose-

dependently reduced by omega-3 intake.  

One of the first randomised controlled trials of dietary omega-3 consumption on 

cardiovascular outcomes in the secondary prevention setting was the DART study (1989)(224). 

Men admitted to hospital with an acute myocardial infarction were randomised to receive 

dietary advice to either reduce fat consumption, increase fatty fish or fish oil consumption, or 

increase fibre consumption. Those in the fish/fish oil group had a 29% reduction in all-cause 

mortality after 2 years(224). 

 Dietary studies of omega-3 intake in the primary and secondary prevention setting have 

demonstrated a lower mortality rate with fish intake that appears to be dose-responsive. 
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1.5.2 Cardiovascular outcome trials of fish oil 

Supplementation with omega-3 fatty acids in the form of fish oil provides a convenient 

and efficient method of raising blood omega-3 levels. Fish oil is generally well-tolerated with 

minimal side effects, the predominant being gastrointestinal and an anecdotal increase in 

bleeding tendency. Studies have evaluated the risk of bleeding with fish oil supplementation, 

and have demonstrated no clinically significant increase, in a variety of settings(225). Fish oils 

are available either as over the counter supplements or as prescription formulations, the latter 

being typically in the form of carboxylic acids or ethyl esters. Prescription formulations are 

purported to be superior based on having higher omega-3 concentrations, higher manufacturing 

standards, and their need for rigorous evaluation of efficacy and safety. 

The GISSI-Prevenzione trial (1999) studied the impact of fish oil supplementation on 

outcomes in patients with a recent myocardial infarction. In this multi-centre trial, patients were 

randomly assigned to either fish oil alone (900mg of omega-3 per day), vitamin E alone, fish 

oil plus vitamin E, or no supplement (control) for 6 months. There was a 10% reduction in 

death, non-fatal myocardial infarction, and stroke seen in the fish oil group compared to the 

control group(226). A summary of the major CVOTs of omega-3 fatty acid supplementation is 

presented in Table 1.2. In the JELIS study (2007), hypercholesterolaemic patients (total 

cholesterol ≥ 6.5 mmol/L) in Japan were recruited and randomised to either a statin or statin 

plus EPA (1.8g per day) for a mean duration of 4.6 years. There was a significant, 19% 

reduction in major coronary events in the EPA + statin group compared to statin therapy 

alone(227). The reduction was only significant in patients who had a prior history of coronary 

artery disease, and was independent of effects on LDL levels. The Alpha Omega Trial (2010) 

used a much smaller dose of omega-3 fatty acids, as participants were randomised to one of 

four margarines(228). Patients with a prior history of myocardial infarction and on state of the 

art medical therapy, were randomised to consumption of margarines fortified with either EPA 
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+ DHA, EPA + DHA + ALA, ALA alone, or placebo. The average dose of EPA + DHA was 

376mg. There were no significant differences between the groups in the primary endpoint of 

major cardiovascular events. Although the comparative lack of benefit compared to earlier 

studies could be attributed to a low omega-3 dose used, this study raised questions about the 

magnitude of additional benefit that fish oil could provide in the setting of contemporary anti-

atherosclerotic therapies. In the OMEGA trial (2010), published in the same year and with a 

similar population group, i.e. patients with a history of acute myocardial infarction, omega-3 

ethyl esters (1g per day) were initiated and compared with placebo (1g of olive oil per day) for 

1 year(229). On top of standard medical therapy, there was no difference between the treatment 

groups in either sudden cardiac death, total mortality, major adverse cerebrovascular and 

cardiovascular events, or revascularisation. This trend continued in the ORIGIN trial (2012), 

where 1g of fish oil (≥ 900mg of omega-3 fatty acids) daily was compared with placebo (1g of 

olive oil daily), in patients with, or at risk of, diabetes mellitus, and with a previous MI or heart 

failure(230). Over a median follow-up period of 6.2 years, there was no significant difference in 

death from cardiovascular causes between the treatment groups. 

These large CVOTs had significant variability in omega-3 doses and preparations used, 

despite growing interest in the role of the omega-3 dose-effect relationship(231). Two primary 

prevention studies in 2018, the ASCEND study and the VITAL study similarly used an 

intervention dose of 1g of fish oil daily. In the ASCEND study, diabetics without a history of 

atherosclerotic cardiovascular disease were randomised to either 1g of fish oil per day (840mg 

of EPA + DHA) or placebo (1g of olive oil per day), and were followed for a median duration 

of 2.5 years.(232) No significant difference was seen in the primary endpoint of vascular events 

or vascular death between the treatment groups. In the VITAL study, men of at least 50 years 

of age, and women of at least 55 years of age, without a history of cardiovascular disease, were 

randomised to either 1g of fish oil (840mg of EPA + DHA) per day or a matching placebo for 
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a median period of 5.3 years(233). Fish oil did not reduce either of the primary outcomes of 

major adverse cardiovascular events or invasive cancer. 

A major shift in fish oil trial outcomes occurred with the REDUCE-IT trial (2018). This 

study used a much higher dose of omega-3, with 4 grams daily of the prescription EPA form 

“icosapent ethyl”(234). The high dose is required for an optimum triglyceride-lowering effect. 

The higher fish oil dose of 4 grams per day has similarly been used in the ongoing STRENGTH 

trial(235), in the form of EPANOVA®, which contains mixed omega-3 carboxylic acids. 

REDUCE-IT compared icosapent ethyl with placebo in patients with established 

cardiovascular disease or diabetics with other cardiovascular risk factors. Despite statin 

treatment, the patients were required have a triglyceride level between 1.52 and 5.63 mmol/L 

and an LDL level between 1.06 and 2.59mmol/L. Icosapent ethyl reduced the primary endpoint 

of the first episode of a composite of cardiovascular death, nonfatal MI, nonfatal stroke, 

coronary revascularisation and unstable angina by 25% compared to placebo(234). It reduced 

total events at 4.9 years by 30%. Although the success of the higher doses of omega-3 fatty 

acids used in REDUCE-IT could be considered attributable to beneficial effects on lipid 

parameters, the difference in rates of the primary endpoint compared to placebo was 

independent of effects on triglycerides and LDL levels. This suggests an alternative anti-

atherosclerotic mechanism of omega-3 fatty acids.  

Given the inflammatory nature of atherosclerosis, it is logical to consider that a 

potential anti-atherosclerotic mechanism of omega-3 fatty acids is the amelioration of vascular 

inflammation. Indeed, canakinumab, which reduced MACE in the CANTOS study, targets 

interleukin 1-β, which plays an important role in the pathogenic mechanisms leading to 

vascular inflammation(236). Phospholipase A2 (PLA2), a superfamily of enzymes that liberate 

free fatty acids such as arachidonic acid from phospholipid membranes, has also been targeted 

to reduce vascular inflammation. The by-products of arachidonic acid oxidation, eicosanoids, 
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can induce microvascular dysfunction, oxidative stress and vascular inflammation(237).  Several 

families of PLA2 exist, and two of them have been the subject of cardiovascular outcome trials. 

An inhibitor of secretory PLA2, varespladib, was compared with placebo in the VISTA-16 trial 

(2014), which examined its cardioprotective effects in patients with a recent acute coronary 

syndrome(238). The trial was stopped early due to futility and possible harm, with a hazard ratio 

for the primary endpoint of MACE of 1.25 (95% CI, 0.97 – 1.61, p=0.08). In addition, 

darapladib, an inhibitor of lipoprotein-associated PLA2, was studied in the STABILITY trial 

(2014), which compared it to placebo in patients with stable coronary artery disease(239). 

Darapladib did not significantly reduce the primary endpoint of MACE (HR 0.94 [95% CI, 

0.85 – 1.03]), however did significantly reduce the rate of major and total coronary events by 

10% and 9% respectively. 

The cardioprotective effects of agents that target vascular inflammation deserve further 

exploration. In the case of omega-3 fatty acids, this may provide a mechanistic explanation for 

positive CVOTs. 
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Table 1.2: Major CVOTs of omega-3 fatty acid supplementation 

 

 

 

Trial name and year Study population 
No. of 
subjects 

Intervention and 
form 

Omega-3 
dose per day Comparator Effect of intervention 

GISSI-Prevenzione (1999)(226) Recent MI 11324 Fish oil (ethyl esters) 900mg No supplement HR = 0.90 (95% CI, 0.82-0.99) for MACE  

JELIS (2007)(227) Total cholesterol ≥ 6.5* 18645 
EPA (ethyl esters) + 
statin 1800mg Statin alone HR = 0.81 (95% CI, 0.69-0.95) for MACE  

Alpha Omega (2010)(228) Previous MI 4837 
Margarine fortified 
with EPA + DHA 400mg 

Margarine 
without 
fortification HR = 1.01 (95% CI, 0.87-1.17) for MACE 

OMEGA (2010)(229) Previous MI 3851 Fish oil (ethyl esters) 1000mg olive oil HR = 0.95 (95% CI, 0.56-1.60) for SCD 
ORIGIN (2012)(230) Dysglycemia 12536 Fish oil (ethyl esters) 900mg olive oil HR = 0.98 (95% CI, 0.87-1.10) for CV death 
ASCEND (2018)(232) Diabetes mellitus 15480 Fish oil (unspecified) 840mg olive oil HR = 0.97 (95% CI, 0.87-1.08) for vascular events  
VITAL (2018)(240) Men ≥ 50, Women ≥ 55 25871 Fish oil (ethyl esters) 840mg olive oil HR = 0.92 (95% CI, 0.80-1.06) for MACE 

REDUCE-IT (2018)(234) 
CVD or diabetes mellitus 
with trigs 1.52 to 5.63* 8179 Fish oil (ethyl esters) 4000mg mineral oil HR = 0.74 (95% CI, 0.65-0.83) for MACE 

           
MI = Myocardial infarction        
HR = Hazard ratio          
MACE = Major adverse cardiovascular events 
CV = Cardiovascular 
CVD = Cardiovascular disease       
SCD = Sudden cardiac death 
* = mmol/L 
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1.6 Effects of omega-3 fatty acids on acute vascular inflammation 

 The role of vascular cells during the inflammatory response is critical. Multiple 

cytokines, leucocytes, and growth factors are present at sites of inflammation, and each of these 

can potentially influence the nature of the inflammatory response(241). Endothelial cells and 

smooth muscle cells must integrate the signals generated by these multiple factors to effectively 

regulate the immunoinflammatory response through the expression of adhesion molecules, 

cytokines, chemokines, MMPs, and growth factors. This requires changes in signal 

transduction, which are mediated through NFκB, JAK/STAT and AP-1 signalling pathways.  

Several studies have investigated the impact of omega-3 fatty acids on early (acute) 

vascular inflammation, with strong evidence for a reduction in adhesion molecule expression 

based on cell culture studies. For example, the DHA derivative maresin-1 has been shown to 

downregulate E-selectin expression in cultured endothelial cells stimulated with TNF-α(242). 

Conversely, the EPA-derived Resolvin E1 did not alter circulating E-selectin, VCAM-1 or 

MCP-1 in ApoE*3Leiden mice, although this was in the setting of prolonged high fat feeding 

which can confound studies of acute inflammation(243). De Caterina et al added DHA to human 

saphenous vein endothelial cells in culture stimulated with either TNF-α or IL-1, and 

demonstrated a reduction in protein expression of VCAM-1 and E-selectin(244). DHA was not 

directly compared to EPA for these experiments. Yates et al. made direct comparisons of EPA 

with DHA and demonstrated a reduction in neutrophil adhesion to TNF-stimulated human 

umbilical vein endothelial cells (HUVECs) with DHA, but not with EPA(245). This was 

achieved through the modulation of E-selectin expression, independent of effects on 

transcriptional regulation. This was one of the first studies to identify a differential effect of 

these two fatty acids on acute vascular inflammation. Both DHA and EPA have been shown to 

suppress protein expression of VCAM-1 and ICAM-1 in LPS-stimulated human aortic 

endothelial cells (HAECs) in a study by Huang et al, with a greater reduction seen with 

DHA(246). The mechanisms were concluded to be (1) inhibition of the translocation of TLR4 
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into lipid raft domains, (2) suppression of TAK1 phosphorylation, (3) attenuation of NFκB 

activity by suppressing p38 and IκBα activation, and (4) induction of the expression of the anti-

inflammatory and NFκB-suppressor gene A20 for EPA but not DHA(246). Similar results were 

published by Wang et al, who reported a reduction in protein expression of VCAM-1 in TNF-

stimulated HAECs co-incubated with DHA, and to a much lesser extent, EPA(247). ICAM-1 

was suppressed by DHA only at very high doses, and not at all by EPA. The superior effect of 

DHA in this study may be related to the modification of the structure and composition of 

membrane rafts and the membrane bilayer that occurs when PUFAs are incorporated into cell 

membrane phospholipids(248). Specifically, DHA incorporates into (sphingomyelin and 

cholesterol-rich) membrane rafts with more than twice the affinity of EPA, making them more 

disordered and dysfunctional(249).  

Based on the above results of studies of acute vascular inflammation, further 

investigation into the differential effects of EPA versus DHA is required. Furthermore, despite 

the results and mechanistic insights that cell culture studies of PUFAs have provided, there 

remains a significant limitation in the translatability of the results. Specifically, the addition of 

pure fatty acids to cell culture does not model the conditions that occur in vivo. Since PUFAs 

undergo metabolism and oxidation after oral consumption, the genetic, humoral and cellular 

responses in vivo are likely to be different to what is measured in the cell culture setting. Indeed, 

oxidised omega-3 fatty acids have different actions to pure unoxidised fatty acids, and are still 

beneficial, if not superior(250). Sethi et al demonstrated that oxidised, but not native unoxidised 

EPA significantly inhibited human neutrophil and monocyte adhesion to endothelial cells in 

vitro by inhibiting endothelial adhesion receptor expression. In transcriptional coactivation 

assays, oxidised EPA potently activated the peroxisome proliferator-activated receptor α 

(PPAR-α)(251). Similarly, Mishra et al demonstrated that oxidised but not unoxidised EPA and 

DHA inhibit cytokine-induced endothelial expression of MCP-1 and IL-8(252). In this study, 

oxidised EPA potently inhibited cytokine-induced activation of NFκB expression (although 
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this was not caused by prevention of phosphorylation of IκBα as concluded by Huang et al). It 

is evident that the favourable effects of pure, unoxidised omega-3 fatty acids on acute vascular 

inflammation identified in a cell culture need to be replicated in a more physiological setting.  

1.7 Effects of omega-3 fatty acids on chronic vascular inflammation and 

atherosclerosis 

 The continuum of atherogenesis, as outlined in Section 1.1.1, presents a challenge in 

studying the late stages of atherosclerosis in isolation, i.e. independent of inflammatory 

processes that have occurred earlier. Nonetheless, it is highly relevant to the translational 

potential of omega-3 fatty acids, as most of their demonstrated clinical efficacy and ultimately 

practical utility is in secondary prevention. The vast majority of studies of omega-3 fatty acids 

in chronic vascular inflammation and atherosclerosis have been in animal models. However, 

studies of human atherosclerosis have been performed, such as that by Thies et al, who studied 

the inflammatory composition of plaque after fish oil consumption(253). Patients awaiting 

carotid endarterectomy were randomised to receive fish oil or a placebo oil leading up to 

surgery. The macrophage content of plaques was significant lower in the fish oil group, and 

higher concentrations of EPA and DHA were found within these plaques(253). Xu et al measured 

the burden of atherosclerotic plaque and lipids in the aortas of ApoE-deficient mice fed an 

atherogenic diet and randomised to the addition of fish oil (1% w/w of diet) or unaltered 

diet(254). No difference was seen in either parameter between treatment groups despite high 

measured circulating omega-3 levels. In this study, the dose of fish oil was low, triglyceride 

levels were significantly and unexpectedly increased in the fish oil group, and there was no oil 

control, which were limitations. EPA alone was studied by Matsumoto et al, who measured 

lipid and plaque burden in the aortas of ApoE-deficient and LDLR-knockout mice who were 

randomised to EPA (5% of diet by weight) or a standard atherogenic diet(255). EPA reduced 

aortic lipid and plaque burden, reduced macrophage accumulation in plaque, increased smooth 
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muscle cell content, and increased plaque collagen content. These changes were seen in the 

absence of effects on circulating lipids. No comparison was made with DHA.  

Li et al studied the functional aspects of plaque inflammation, including the ability of 

plaque macrophages to clear apoptotic cells (efferocytosis)(256). Macrophage efferocytosis was 

defective in ob/ob;LDL-receptor deficient mice fed an atherogenic diet for 6 weeks, and this 

was reversed by dietary fish oil supplementation for a further 6 weeks, compared to an olive 

oil control. Another functional aspect of plaque inflammation, studied by Altenburg et al, is 

the uptake of oxidised LDL (oxLDL), which is mediated by IFN-γ-induced CXCL16 

expression. DHA reduced CXCL16 expression by human aortic smooth muscle cells, measured 

by flow cytometry(257). Furthermore, oxLDL uptake was reduced as measured by fluorescent 

labelling. Foam cell formation, the internalisation of modified lipoproteins such as oxLDL, is 

also reduced by omega-3 fatty acids. Song et al cultured THP-1 monocytes in oxLDL and 

phorbol myristate acetate to induce foam cell formation, and added various ratios of EPA to 

(the omega-6) arachidonic acid(257). The conditions with the highest omega-3 content had the 

lowest cholesterol levels detected in foam cells, and a lower concentration of IL6 and TNF-α 

in the supernatant. DHA was not used in this study. The LPS-induced expression of toll-like 

receptor 4 (TLR4) on the lipid rafts of murine macrophages (RAW264.7 cells), is a marker of 

macrophage activation. In in vitro studies, both DHA alone and a combination of EPA and 

DHA reduced TLR4 expression, but EPA alone did not(258).  

Further to studies of the functional aspects of plaque inflammation, the regression of 

atherosclerosis has been studied in LDL-receptor deficient mice by Nakajima et al(259). After 8 

weeks on an atherogenic diet, mice were fed with either a standard chow diet or one with the 

addition of EPA (5% w/w) for 4 weeks. The mice in the EPA group had a 22% reduction in 

atherosclerosis burden compared to the chow-fed mice, as well as a reduction in the content of 

macrophages, CD4+ T cells and dendritic cells in atherosclerotic lesions(259). No comparison 

was made with DHA. Although much attention has been focused on EPA, the anti-
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atherosclerotic effects of DHA were studied by Tan et al, by esterifying phytosterols with 

DHA(260). In ApoE-deficient mice fed an atherogenic diet with or without phytosteryl DHA 

added (2% w/w) for 7 weeks, those in the DHA group had lower plasma cholesterol levels and 

three times smaller atherosclerotic lesions. No comparison was made with EPA.  

A study comparing the effects of EPA and DHA in different ratios on atherosclerosis 

in ApoE-deficient mice did not demonstrate a clear difference in plaque or lipid burden in 

atherosclerotic aortas(261). Nor was there a difference in markers of oxidative stress, markers of 

acute and chronic inflammation, or oxLDL uptake. Markers of chronic inflammation included 

IL1-β, IL6 and TNF-α. Takashima et al compared EPA with 1:1 combinations of EPA and 

DHA at different doses(258). ApoE-deficient mice fed an atherogenic diet had the burden and 

characteristics in the aortic arch quantified after randomisation to either a control atherogenic 

diet, a diet supplemented with 5% EPA (w/w), one supplemented with 2.5% EPA + DHA 

(w/w), or one supplemented with 5% EPA + DHA (w/w). The latter group had the lowest 

burden of plaque and the highest plaque stability, which was significantly different to all other 

groups. The results of these studies of chronic inflammation and atherosclerosis demonstrate 

differential and beneficial effects of EPA and DHA. Despite much attention being focused on 

the anti-atherosclerotic effects of EPA, these studies highlight the potential benefits of 

combination therapy, which may be synergistic and/or take advantage of their unique 

mechanisms of action. 

1.8 Areas for further investigation  

1.8.1 Methodological considerations 

The unique anti-inflammatory and anti-atherosclerotic mechanisms of action of EPA 

and DHA are yet to be fully elucidated, and there is evidence that different EPA/DHA 

combinations produce divergent effects. To further evaluate the effects of omega-3 fatty acids 

on acute vascular inflammation, it is prudent to first establish the effects of individual fatty 

acids. Modelling AVI in vitro requires a physiologically-appropriate inflammatory stimulus 
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applied to vascular endothelial cells. Omega-3 fatty acids, being non-polar molecules, do not 

dissolve readily in aqueous solutions such as cell culture media, and hence are commonly 

bound to albumin (with polar and non-polar sites), and subsequently ethanol (polar) before use 

in cell culture experiments. This process is not only highly challenging, but is temperature-

sensitive, is not physiological, and produces variable results. Studies of AVI performed in vitro 

should ideally use systems whereby fatty acids are presented to cells in a form that replicates 

the in vivo setting.  

Studies of AVI performed in vivo such as animal studies, must use models of pure acute 

vascular inflammation that do not induce atherosclerosis. For animal studies, omega-3 fatty 

acids are typically added to diet. This strategy results in animal-to-animal variations in both 

total omega-3 fatty acid consumption as well as total fatty acid oxidation. Furthermore, there 

is no adjustment for weight. A more accurate method that mimics human fish oil consumption, 

is to provide precise quantities of unoxidised fish oil directly to animals by oral gavage. An 

important consideration for human studies is ensuring adequate dosing. The studies quoted 

above have demonstrated the dose-dependent nature of the effects of omega-3 fatty acids, with 

oral doses directly correlating with blood and tissue concentrations(262-264). At present, there is 

no upper limit for omega-3 dosing in humans, and dosing up to 5 grams per day is considered 

safe by the European Food Safety Authority(265). 

1.8.2 Knowledge gap analysis 

 The in vitro, animal, and human studies of fish oil have used highly heterogeneous 

omega-3 preparations and dosing, leading to inconsistencies in results. With emerging evidence 

of differential mechanistic effects of EPA and DHA, it has become imperative to identify 

optimal preparations, either in combination or isolation, for specific indications. Currently, 

there is no clearly superior omega-3 fatty acid for the amelioration of acute vascular 

inflammation. The beneficial effects of EPA demonstrated in the JELIS study led to a focus on 

EPA for studies of atherogenesis, without sufficient comparisons with DHA or combinations. 
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There is a paucity of data on the effects of individual fatty acids on the nature as well as total 

burden of atherosclerotic plaque. Their impact on the inflammatory characteristics, stability, 

and lipid content of plaque need further evaluation. Since almost 10% of whole body omega-3 

fatty acids are circulating in the bloodstream, it is likely that an important component of their 

anti-atherosclerotic effects is on circulating factors. It is important, therefore, to establish their 

effects on circulating atherosclerotic mediators. 

1.9 Aims of research study 

The aims of this body of work are: 

1. To systematically review the literature on the impact of omega-3 fatty acids on the 

circulating mediators of atherosclerosis. These include atherogenic lipoproteins, 

inflammatory cytokines and adipokines, atherogenic amino acids and derivatives, and 

advanced glycation end products. 

2. To determine the effects of omega-3 fatty acids on acute vascular inflammation in an 

in vitro model using serum from healthy volunteers supplemented with fish oil. 

Comparisons will be made between fish oils with different EPA:DHA ratios. 

3. To determine the impact of individual omega-3 fatty acids on acute vascular 

inflammation in an in vivo animal model. 

4. To determine the impact of individual omega-3 fatty acids on chronic vascular 

inflammation and atherosclerosis in an in vivo animal model. 

1.10 Hypotheses 

The overarching hypotheses for this examination of the impact of omega-3 fatty acids on the 

inflammatory mediators of atherosclerosis are: 

1. Fish oils in various preparations and doses reduce levels of the established circulating 

mediators of atherosclerosis. 
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2. Omega-3 fatty acids that are delivered to cultured endothelial cells in a physiological 

manner will reduce markers of acute vascular inflammation measured at the gene level 

after cellular stimulation. 

3. Omega-3 fatty acid pre-treatment reduces the protein expression of markers of acute 

vascular inflammation in an animal model. 

4. In an animal model of atherosclerosis, omega-3 fatty acid supplementation reduces 

plaque lipid burden, the vulnerability and inflammatory cell content of plaque measured 

histologically and at the protein level, and reduces chronic vascular inflammation at the 

gene level, independent of changes in blood lipid levels. 

5. EPA has a superior effect compared to DHA on ameliorating acute and chronic vascular 

inflammation and atherogenesis. 

1.11 Outline of thesis 

Chapter 1: Introduction and literature review 

Chapter 2: General methods 

Chapter 3: The impact of omega-3 fatty acids on circulating mediators of atherosclerosis – A 

systematic review 

Chapter 4: Fish Oil Cell Uptake Study of INflammation (FOCUS IN). A randomised controlled 

trial of fish oil supplementation in healthy volunteers 

Chapter 5: The impact of omega-3 fatty acids on acute vascular inflammation in a mouse model 

Chapter 6: The impact of omega-3 fatty acids on atherosclerosis and chronic vascular 

inflammation 

Chapter 7: Discussion 
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2.1 Isolation of serum and plasma from whole blood 

Whole blood was collected in either clot-activating collection tubes (for serum) or 

ethylenediaminetetraacetic acid (EDTA) tubes (for plasma). For serum isolation, blood was 

allowed to sit undisturbed for 30 mins at room temperature for clotting to occur, following by 

either immediate centrifugation or storage at 4oC until centrifugation could be performed, 

which was no more than 4 hours in all cases. Blood collected for plasma isolation was stored 

at 4oC for no more than 4 hours and then centrifuged. In both cases, centrifugation was 

performed at 1900 x g for 15 mins at 4oC. Supernatant was aspirated using a pipette and 

immediately stored at -80oC. 

2.2 Fatty acid analysis by dry blood spot 

Whole blood was spotted onto pre-made dry blood spot (DBS) cards for fatty acid 

analysis. DBS cards were hand-made using cardboard and PUFACoat paper (developed by Dr. 

Ge Liu and Professor Robert Gibson at the FoodPlus Research Centre, University of 

Adelaide)(266). PUFACoat paper stabilises fatty acids in biological samples for at least 9 weeks 

when stored at room temperature, and for at least 18 months when stored at -20oC. Immediately 

after blood collection, 30 µl of whole blood was pipetted directly onto the PUFACoat paper, 

and the DBS cards were then stored in sealed foil bags with desiccant at -20oC prior to 

processing. 

2.2.1. Preparation of DBS cards 

 PUFACoat paper was created as follows. Using a sonicator, 70 ml of pure ethanol was 

mixed with 200 mg of butylated hydroxytoluene (BHT) in a beaker. Then 3 ml of 0.5 M EDTA 

was added to 27 ml of distilled water, and brought to a pH of 8.0. This solution was then added 

to the ethanol/BHT solution, and sonicated for 5 mins. Filter paper cut to size was dipped into 

this final solution and allowed to air-dry. This paper was stapled to thin cardboard with holes 

punched out that allow blood to be spotted on to the paper underneath.  
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2.2.2. Fatty acid extraction from DBS specimens by transmethylation 

 Forceps and scissors were first sonicated in isopropanol and then dried. The blood-

stained area of the PUFACoat paper was cut out and placed in 5 ml capped scintillation vials 

filled with 2 ml of 1% H2SO4. The vials were then heated to 70oC for 2.5 hours. After the first 

30 mins, the caps were released briefly to expel gas and the vials were vortexed. After each 

subsequent 30-min period the vials were vortexed only.  The vials were allowed to cool to room 

temperature, and then 250 µl of distilled water and 700 µl of heptane were added to the vials, 

which were then vortexed. Using a Pasteur pipette, the top layer was transferred to a gas 

chromatography (GC) vial. The GC vial was sealed and then stored at -20oC until GC analysis 

was performed. 

2.2.3 Gas chromatography analysis 

Gas chromatographic analysis was performed semi-quantitatively for the following 

fatty acids: 

Saturated fatty acids 

C14:0 (myristic acid) 
C15:0 (pentadecylic acid) 
C16:0 (palmitic acid) 
C17:0 (margaric acid) 
C18:0 (stearic acid) 
C20:0 (arachidic acid) 
C22:0 (behenic acid) 
C24:0 (lignoceric acid) 

 

Trans-fatty acids 

t16:1ω-7 (trans-palmitoleic acid) 
t18:1ω-7 (trans-vaccenic acid) 
t18:1ω-9 (trans-oleic acid) 
t18:2ω-6 (trans-linoleic acid) 
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Monounsaturated fatty acids 

16:1ω-7 (palmitoleic acid) 
18:1ω-7 (vaccenic acid) 
18:1ω-9 (oleic acid) 
20:1ω-9 (eicosenoic acid) 
22:1ω-9 (erucic acid) 
24:1ω-9 (nervonic acid) 

 

Polyunsaturated fatty acids 

18:3ω-3 (alpha-linolenic acid) 
20:5ω-3 (eicosapentaenoic acid) 
22:5ω-3 (docosapentaenoic acid) 
22:6ω-3 (docosahexaenoic acid) 
18:2ω-6 (linoleic acid) 
18:3ω-6 (gamma-linolenic acid) 
20:2ω-6 (eicosadienoic acid) 
20:3ω-6 (dihomo-gamma-linolenic acid) 

 
20:4ω-6 (arachidonic acid) 

 

           Results were expressed as a percentage of total specimen fatty acid content. GC analysis 

was performed using a Hewlett-Packard 6890 system (Palo Alto, CA, USA) equipped with a 

BPX70 capillary column 50 m × 0.32 mm, film thickness 0.25 µm (SGC Pty Ltd., Victoria, 

Australia), programmed temperature vaporisation injector and a flame ionisation detector 

(FID). The injector temperature was set at 250 °C and the FID temperature at 300 °C, a 

programmed temperature ramp (140–240 °C) was used. Helium gas was utilised as a carrier at 

a flow rate of 35 cm per second in the column and the inlet split ratio was set at 20:1. 

Quantification was achieved by comparing the retention times and peak area values of 

unknown samples to those of commercial lipid standards (Nu-Chek Prep Inc., Elysian, MN, 

USA) using the Hewlett-Packard Chemstation data system. 
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2.3        Preparation and maintenance of human umbilical vein endothelial cells (HUVECs) 

HUVECs were obtained from fresh umbilical cords donated by the Women’s and 

Children’s Hospital, North Adelaide. They were cultured and used up to passage 5. For culture, 

HUVECs were plated in gelatin-coated flasks at a density of 10000 cells per cm2. For general 

culture and experiments requiring serum, HUVECs were grown in MesoEndo Cell Growth 

Medium (Cell Applications, San Diego, CA, USA) supplemented with an extra 5% foetal 

bovine serum (FBS) to make a total of 10% FBS. For experiments requiring serum-free media, 

EBM-2 basal media plus SingleQuot kit supplements and growth factors (Lonza, Basel, 

Switzerland), with serum omitted, were used. Cells were cultured in incubators at 37oC with 

5% CO2. Cells were passaged when they reached 90% confluency, and experimental conditions 

were added when cells were 80% confluent. Cells were passaged using Accutase® (BD 

Biosciences, Franklin Lakes, NJ, USA) by first washing the cells with room-temperature 

phosphate-buffered saline (PBS), then adding room-temperature Accutase®. Once cells were 

fully detached, Accutase® was neutralised with warm media. Centrifugation was performed at 

220 x g for 5 mins, and after supernatant was removed, cells were resuspended in growth media. 

Cells were counted using Trypan blue exclusion. For experiments, HUVECs were cultured in 

6-well plates.  

2.4 Polymerase Chain Reaction 

Reverse transcription polymerase chain reaction (RT-PCR) was performed after 

extraction of ribonucleic acid (RNA) from either cultured cells or tissues, making 

complementary deoxyribonucleic acid (cDNA), and then amplification and semi-quantification 

of DNA. RNA extraction from cells was performed using either a Bio-Rad (Hercules, CA, 

USA) Aurum™ Total RNA Mini Kit or using the TRI Reagent® method. RNA extraction of 

tissues was performed using the Qiagen (Venlo, Netherlands) AllPrep DNA/RNA/Protein Mini 

Kit. 
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2.4.1 RNA Extraction from cultured cells using the Bio-Rad Aurum™ Total RNA 

Mini kit 

Cell culture media was aspirated, and then cells were washed with PBS at room 

temperature. Cells were detached from culture plates using room-temperature Accutase® (BD 

Biosciences, Franklin Lakes, NJ, USA). After neutralisation of Accutase® with warm media, 

cell solutions were centrifuged at 220 x g for 5 mins at 4oC. Supernatant was aspirated, and 

then cells were immediately processed for RNA extraction using the Bio-Rad (Hercules, CA, 

USA) Aurum™ Total RNA Mini Kit. The Spin Protocol was followed as per the Instruction 

Manual (Catalogue # 732-6820). In summary, cell pellets were treated with the lysis solution 

and then 70% (w/v) ethanol. Subsequently, cell solutions were added to an RNA binding 

column, and high-speed centrifugation was performed. The RNA binding column was washed 

with low stringency and high stringency wash solutions, and then 40 µl of elution solution was 

added to the RNA binding column for 1 min, followed by high-speed centrifugation. The eluted 

RNA solution was quantified using the NanoDrop™ 8000 Spectrophotometer (Thermo Fisher 

Scientific, Waltham, MA, USA). RNA was either used immediately for cDNA synthesis or 

stored at -80oC for later use.  

2.4.2 RNA extraction from cultured cells using the TRI-Reagent method 

The media from cultured cells was aspirated, and then the cells were washed with 1 ml 

of cold (4oC) PBS. After the PBS was aspirated, 500 µl of TRI Reagent® (Sigma-Aldrich, St. 

Louis, MO, USA) was added to each well of a 6-well plate and immediately frozen at -80oC. 

After thawing at room temperature, cells were scraped off of 6-well plates using a cell scraper, 

and the cell/TRI reagent solution was transferred to sterile 1.5 ml microcentrifuge tubes. One 

tenth of the TRI reagent volume (50 µl) of 1-Bromo-3-chloropropane (Sigma-Aldrich, St. 

Louis, MO, USA) was added, and the mixture was vortexed for 15 seconds, ensuring complete 

mixing of both phases. The solution was centrifuged for 15 mins at 19000 x g at 4oC. The 

aqueous phase was transferred to another sterile 1.5 ml microcentrifuge tube, and 250 µl of 
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isopropanol was added. This solution was transferred to a -20oC freezer for RNA precipitation. 

At least 24 hours later, the solution was vortexed, and centrifuged at 19000 x g at 4oC for 15 

mins. The supernatant was removed using a pipette, and the RNA pellet was then washed by 

adding 250 µl of ice-cold 75% ethanol. The solution was vortexed and centrifuged at 19000 x 

g for 10 mins at 4oC. The ethanol was removed, and the RNA pellet was air-dried for 10 mins. 

Pre-warmed (60oC) nuclease-free water (20 µl) was added to the RNA pellet, followed by 

vortexing and brief centrifugation. The RNA solution was kept on ice until RNA quantification 

was performed, using the NanoDrop 8000 spectrophotometer. RNA was stored at -80oC until 

use. 

2.4.3 RNA, DNA, and protein extraction from tissues using the Qiagen AllPrep 

DNA/RNA/Protein Mini Kit 

RNA was extracted from tissues (mouse aortas) using the Qiagen AllPrep 

DNA/RNA/Protein Mini kit, and DNA and protein were extracted simultaneously. The 

protocol followed was from the kit’s handbook. In summary, snap-frozen mouse aortas were 

thawed on ice and then transferred to a 1.5 ml microcentrifuge tube. “Buffer RLT” (600 µl) 

was added to tube, and then the aortas were homogenised using a Precellys24 Homogenizer 

(Bertin Instruments, Montigny-le-Bretonneux, France). The lysate was centrifuged for 3 mins 

at full speed, and the supernatant was then transferred to an AllPrep DNA spin column placed 

in a 2 ml microcentrifuge tube. The tube was centrifuged for 30 seconds at >8000 x g, and the 

spin column was placed in a new 2ml collection tube and stored at 4oC for later DNA 

purification. The flow-through was used for RNA purification.  

Pure ethanol (430 µl) was added to the flow-through, and mixed well by pipetting. Up 

to 700 µl of sample was transferred to an RNeasy spin column placed in a 2 ml collection tube, 

which was then centrifuged for 15 seconds at >8000 x g. The flow through was transferred to 

a 2 ml collection tube for later protein purification. The RNeasy spin column was washed by 

adding 700 µl of “Buffer RW1” and centrifuging at >8000 x g for 15 seconds. After discarding 
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the flow-through, 500 µl of “Buffer RPE” was added to the spin column, centrifugation was 

performed for 15 seconds at >8000 x g, and then this was repeated with a 2-minute spin. The 

RNeasy spin column was transferred to a new 1.5 ml microcentrifuge tube, and 30 µl of pre-

warmed (70oC) nuclease-free water was added to the spin column membrane. After 5 mins, 

centrifugation was performed for 1 min and > 8000 x g to elute the RNA. The RNA was then 

quantified using the NanoDrop 8000 Spectrophotometer, and stored at -80oC until future use. 

 Protein purification was performed by adding 1000 µl of “Buffer APP” to the flow-

through collected earlier. The solution was mixed vigorously and thoroughly by vortexing, and 

incubated for 10 mins at room temperature to precipitate protein. The solution in the 2 ml 

collection tube was centrifuged at full-speed for 10 mins, and the supernatant was discarded. 

Following this, 500 µl of 70% (w/v) ethanol was added to the protein pellet, centrifugation at 

full speed for 1 minute was performed, and the supernatant was again discarded. The protein 

pellet was dried for 10 mins at room temperature, then 250 µl of “Buffer ALO” and 10 µl of 8 

M urea were added. The protein pellet solution was dissolved by prolonged vortexing and 

heating to 95 degrees for 5 minutes using an Eppendorf Thermomixer (Hamburg, Germany). 

The solution was cooled to room temperature and centrifuged for 1 min at full speed, and the 

protein solution and residual pellet were stored immediately at -80oC. 

 For genomic DNA purification, 500 µl of “Buffer AW1” was added to the AllPrep 

DNA spin column, which was then centrifuged for 15 seconds at >8000 x g. This step was 

repeated with 500 µl of “Buffer AW2”, with 2 mins of centrifugation. The AllPrep DNA spin 

column was placed in a sterile 1.5 ml microcentrifuge tube, and then 100 µl of prewarmed 

(70oC) nuclease-free water was added to the spin column membrane. After 5 mins, 

centrifugation was performed for 1 min at > 8000 x g. The eluted DNA was stored at 4oC. 
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2.4.4. Conversion of RNA to complementary DNA (cDNA) 

Prior to conversion to cDNA, all RNA samples to be used for the same experiment were 

normalised to the same concentration. RNA was converted to cDNA using iScript™ Reverse 

Transcription Supermix for RT-PCR (Bio-Rad, Hercules, CA, USA). A desired quantity of 

RNA for the cDNA synthesis reaction was determined. RNA was thawed on ice, and the 

required volume was added to iScript RT Supermix, which comprised 20% of the total reaction 

mix (i.e. 4 µl iScript for a 20 µl cDNA reaction). The remaining volume was nuclease-free 

water. The mix was vortexed and centrifuged, and then incubated in a thermal cycler (T100™ 

Thermal Cycler, Bio-Rad) using the following protocol: priming – 5 mins at 25oC, reverse 

transcription – 30 mins at 42oC, and reverse transcription inactivation – 5 mins at 85oC. cDNA 

was stored at 4oC until further use. 

2.4.5 Reverse Transcription Polymerase Chain Reaction 

RT-PCR was performed using a Bio-Rad CFX Connect™ Real-Time PCR Detection 

System. Reactions were 20 µl in volume and were performed in 96-well plates. Reaction mixes 

consisted of 10 µl of Bio-Rad SsoAdvanced™ Universal SYBR® Green Supermix, 6 µl of 

nuclease-free water, 1 µl of forward primer, 1 µl of reverse primer, and 2 µl of cDNA. The 

reaction protocol was set at: 50oC for 2 mins, 95oC for 15 mins, then 40 cycles of: 94oC for 15 

seconds, 60-64oC (primer-specific based on optimisation) for 30 seconds, 72oC for 30 seconds, 

then 65oC to 95oC at 0.5oC increments for 5 seconds each. Primer stocks were diluted to a 

concentration of 100 µM, and the working solution was 10 µM. All RT-PCR reactions were 

performed with reference genes (B2M for human, and 36B4 for mouse). 

2.5 Primers for Polymerase Chain Reaction 

 For RT-PCR experiments, the primers used are listed in Table 2.1 below. All primers 

were optimised prior to use in experiments.  
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Table 2.1: List of human primers used in RT-PCR experiments 

Human primers 5’ to 3’ sequence 
Vascular Cell Adhesion Molecule 1 (VCAM-1) 
Forward 

AAGGCAGGCTGTAAAAGAATTGC 

Vascular Cell Adhesion Molecule 1 (VCAM-1) 
Reverse 

AGGTCATGGTCACAGAGCCACC 

Intercellular Adhesion Molecule 1 (ICAM-1) 
Forward 

CAGAGTTGCAACCTCAGCCT 

Intercellular Adhesion Molecule 1 (ICAM-1) 
Reverse 

GGACACAGATGTCTGGGCATT 

Monocyte Chemoattractant protein 1 (MCP-1) 
Forward 

GATCTCAGTGCAGAGGCTCG 
 

Monocyte Chemoattractant protein 1 (MCP-1) 
Reverse 

TGCTTG TCCAGGTGGTCCAT 

Nuclear Factor Kappa-Light-Chain-Enhancer of 
Activated B cells p65 Subunit (NFkBp65) 
Forward 

ACTGCCGGGATGGCTTCTAT 

Nuclear Factor Kappa-Light-Chain-Enhancer of 
Activated B cells p65 Subunit (NFkBp65) 
Reverse 

AGGTCCCGCTTCTTCACACA 

Beta-2 microglobulin (B2M) Forward GAGTATGCCTGCCGTGTGAAC 
Beta-2 microglobulin (B2M) Reverse CCAATCCAAATGCGGCATCTTC 
Peroxisome Proliferator-Activated Receptor 
Gamma (PPAR-γ) Forward 

CACAATGCCATCAGGTTTGG 

Peroxisome Proliferator-Activated Receptor 
Gamma (PPAR-γ) Reverse 

GCTGGTCGATATCACTGGAGATC 
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Table 2.2: List of mouse primers used in RT-PCR experiments 

Mouse primers 5’ to 3’ sequence 
Interleukin 1-beta (Il-1beta) Forward 
 

TGGATGCTCTCATCAGGACAG 

Interleukin 1-beta (Il-1beta) Reverse GAAATGCCACCTTTTGACAGTG 
Tumour necrosis factor alpha (TNF-α) Forward CAGGCGGTGCCTATGTCTC 
Tumour necrosis factor alpha (TNF-α) Reverse CGATCACCCCGAAGTTCAGTAG 
Monocyte chemoattractant protein 1 (MCP-1) 
Forward 

GCTGGAGCATCCACGTGTT 

Monocyte chemoattractant protein 1 (MCP-1) 
Reverse 

ATCTTGCTGGTGAATGAGTAGCA 

Nuclear Factor Kappa-Light-Chain-Enhancer of 
Activated B cells p65 Subunit (NFkBp65) 
Forward 

ATTGCTGTGCCTACCCGAAA 

Nuclear Factor Kappa-Light-Chain-Enhancer of 
Activated B cells p65 Subunit (NFkBp65) Reverse 

GATGCTGGGAAGGTGTAGGG 

Peroxisome Proliferator-Activated Receptor 
Gamma (PPAR-γ) Forward 

CACAATGCCATCAGGTTTGG 

Peroxisome Proliferator-Activated Receptor 
Gamma (PPAR-γ) Reverse 

GCTGGTCGATATCACTGGAGATC 

Ribosomal protein, large, P0 (Rplp0), a.k.a 36B4 
Forward 

CAACGGCAGCATTTATAACCC 
 

Ribosomal protein, large, P0 (Rplp0), a.k.a 36B4 
Reverse 

CCCATTGATGATGGAGTGTGG 

Nucleotide-Binding Domain, Leucine-Rich-
Containing Family, Pyrin Domain-Containing-3 
(NLRP3) Forward 

ATCAACAGGCGAGACCTCTG 
 

Nucleotide-Binding Domain, Leucine-Rich-
Containing Family, Pyrin Domain-Containing-3 
(NLRP3) Reverse 

GTCCTCCTGGCATACCATAGA 

 

2.6 Mouse husbandry 

 Mice were housed and managed at the South Australian Health and Medical Research 

Institute (SAHMRI), in accordance with the Australian code for the care and use of animals for 

scientific purposes (National Health and Medical Research Council (2013) Australian code for 

the care and use of animals for scientific purposes, 8th edition. Canberra: National Health and 

Medical Research Council)(267). Mice were housed in cages with siblings of the same gender. 

There were up to 5 mice per cage. Mice were monitored daily. C57Bl/6 mice and ApoE(-/-) mice 

on a C57Bl/6 genetic background were obtained from The Jackson Laboratory (ME, USA). 

Homozygous ApoE deficiency was confirmed on-site using the Genetic Engineering and 
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Archiving Services (GENEAS) genotyping service. Mice were given food and water ad-

libitum. C57Bl/6 mice were fed a standard rodent chow diet (Teklad Global 18% Protein 

Rodent Diet [Harlan Laboratories, Madison, WI, USA]). This diet contains 18.6% protein, 

6.2% fat, 44.2% carbohydrates, and no cholesterol. ApoE(-/-) mice were fed the Teklad Global 

18% Protein Rodent Diet until 8 weeks of age, and were then fed a high cholesterol, high fat 

diet (SF00-219) from Specialty Feeds (Glen Forrest, Western Australia). This diet consists of 

22% fat and 0.15% cholesterol. This diet has previously been demonstrated by our group to 

significantly increase plasma cholesterol levels and lead to accelerated atherosclerosis 

development(268). Ethics approval for all animal work was obtained from both the SAHMRI 

Animal Ethics Committee and the University of Adelaide Animal Ethics Committee. 

2.7 Oral gavaging of mice 

 The equipment used to gavage mice orally with either EPA, DHA, or olive oil included 

three 50 µl SGE GT LL syringes (SGE Analytical Science Pty Ltd, Ringwood, Victoria, 

Australia), three stainless steel 20-gauge ball-tipped animal feeding needles (Sigma-Aldrich 

catalogue number CAD7902 (Sigma-Aldrich, St. Louis, MO, USA), sterile gauze, water, 70% 

w/v ethanol, and disposable gloves. The EPA and DHA used for the study of acute vascular 

inflammation were >99% pure free fatty acids, purchased from Nu-Chek Prep, Inc (Elysian, 

MN, USA). The EPA and DHA used for the study of atherosclerosis and chronic inflammation 

were >97% pure ethyl esters donated by Bizen Chemical Co. (Okayama, Japan). The Olive Oil 

used for all experiments was Bertolli Olive Oil (Florence, Italy). Each needle and syringe pair 

was used to deliver a single liquid, either EPA, DHA, or olive oil, and there was no cross-

contamination. 

 Mice were gavaged in accordance with the SAHMRI Standard Operating Procedure 

(SOP) (SOP9/098). The animal feeding needle was attached to the syringe, and the required 

volume was slowly drawn up. The mouse was scruffed with the thumb and index finger, and 

the middle finger was used to pull the head back to the neutral position. When the oropharynx 
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and body were aligned and the mouse was still, the feeding needle was advanced into the 

oropharynx, and into the oesophagus. The liquid was delivered, and the mouse was returned to 

its cage and monitored for any signs of distress that may represent aspiration. The animal 

feeding needle was flushed and rinsed with 70% ethanol, and then flushed and rinsed with tap 

water. After drying, the needle was used for the next mouse. 

2.8 Superficial facial vein bleeding (submandibular cheek bleeding) in mice 

 Superficial facial vein bleeding was performed using sterile 5 mm Goldenrod (Beacon 

Falls, CT, USA) animal lancets, following the SAHMRI Standard Operating Procedure (SOP) 

(4/087).  In brief, the volume of blood to be taken without rehydration was determined 

beforehand based on weight, in accordance with the SAHMRI SOP (4/086), with one drop of 

blood being estimated to be 50 µl. No more than 150 µl was taken from any mouse at any time. 

Mice were restrained by scruffing at the neck, using the thumb and index finger. The location 

of the inferior branch of the superficial facial vein was determined as lying underneath the 

visible sebaceous gland near the jaw. The intended puncture site was the common superficial 

facial vein. This was estimated to be 2 mm superior and 2 mm posterior to the sebaceous gland. 

A single pass was made with a lancet to elicit venous blood, which was collected for plasma 

into Sarstedt (Nümbrecht, Germany) Microvette® 500 K3E 500 µl EDTA collection tubes. 

After the predetermined blood volume was taken, pressure was applied with gauze until 

haemostasis was achieved. Mice were observed for ill-health for 10 mins after this procedure, 

and then returned to their cages if well. Blood was stored at 4oC until centrifugation, plasma 

isolation, and plasma storage at -80oC. 

2.9 Mouse general anaesthesia 

 Prior to general anaesthesia, mice were pre-oxygenated with 100% oxygen for 5 mins 

in a closed chamber. Induction of general anaesthesia was performed using 3% isoflurane plus 

supplemental oxygen delivered in the same closed chamber. Anaesthesia was confirmed using 

the toe-pinch test. Maintenance anaesthesia was achieved with 1.5% isoflurane plus 
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supplemental oxygen, delivered via a nose cone. To minimise dry eye from the nose cone, eye 

drops were administered to both eyes immediately after induction. After surgery, isoflurane 

was ceased, and 100% oxygen was delivered for 5 mins. Mice were allowed to recover alone 

in pre-warmed (37oC) recovery boxes, and when behaviour and activity levels returned to 

normal they were returned to their cages. 

2.10 Mice humane killing and terminal cardiac puncture 

 Mice were humanely killed under general anaesthesia by both terminal cardiac puncture 

and vital organ harvesting (heart, lungs and major blood vessels). After anaesthesia was 

confirmed, betadine was applied to the chest and abdomen, and terminal cardiac puncture was 

performed using a 25-gauge needle attached to a 1 ml syringe. The puncture was made 1 mm 

left of the midline, below the ribcage. The needle was advanced until flashback was seen, and 

after slight further advancement, complete exsanguination was performed. The heart, lungs, 

and major blood vessels were removed routinely, and isoflurane was continued for the entire 

procedure. 

2.11 Cholesterol and triglyceride assays in mice 

 Plasma total cholesterol and triglyceride levels in mice were measured by colorimetric 

assays, using LabAssay™ Cholesterol and LabAssay™ Triglyceride kits (Wako Pure 

Chemical Industries, Osaka, Japan). The assays were performed in 96-well plates. Plasma 

samples of 2 µl were added to 300 µl of chromogen reagent, and concentrations were calculated 

after generating a standard curve from standards of known concentrations. Plates were mixed 

and incubated for 5 mins at 37oC. They were then read using a GloMax® Discover microplate 

reader (Promega Corporation, Madison, Wisconsin, USA) using a main wavelength of 600 nm 

and a subtracted wavelength of 700 nm. 
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2.12 Assessment and quantification of plaque burden, collagen content and medial 

expansion 

 Mouse specimens of brachiocephalic artery and heart were stored in 10% neutral-

buffered formalin after harvesting, followed by dehydration, clearing and embedded in paraffin 

blocks. Specimens were cut at the level of the proximal brachiocephalic artery and the aortic 

sinus into 5 µm sections using a microtome, and then mounted onto silane-coated slides. The 

slides were then deparaffinised and rehydrated and subsequently stained with either 

haematoxylin and eosin (H&E) for plaque quantification and assessment of medial thickness, 

or the Masson’s trichrome stain for assessment of collagen content. Slides were mounted, 

coverslipped and photographed using the Nanozoomer C9600-12 slide scanner (Hamamatsu 

Photonics, Shizuoka, Japan). Image resolution was 228 nm per pixel. Images were saved 

uncompressed and then converted to .tiff files using ImagePro Premier 9.1 (Rockville, MD, 

USA) for analysis using ImageJ 1.51 (Rasband, W.S., ImageJ, U. S. National Institutes of 

Health, Bethesda, MD, USA). To quantify plaque area, the total artery area or aortic sinus area 

was measured using the Freehand selection tool. The area of plaque was then measured and 

expressed as a percentage of total artery or aortic sinus area. The thicknesses of the intimal and 

medial layers were measured using the Freehand selection tool, and expressed as a percentage 

of total artery area (“intimal and medial thickness”). The collagen content of plaque in the 

brachiocephalic artery or aortic sinus was quantified using a macro in ImageJ 1.51 published 

by Kennedy DJ et al(269). The macro is detailed below: 

 

run("Brightness/Contrast...");           set brightness and contrast to automatic 

run("RGB Stack");                            convert RGB image to a stack 

run("Convert Stack to Images");       split stack to three images, Red, Blue and Green 
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run("Image Calculator...", "image1=Blue operation=Divide image2=Red create 32-bit");                                             

divide blue by red 

run("Brightness/Contrast...");            set brightness and contrast to automatic 

run("Subtract...", "value=1.2");          discard all image where blue intensity is not 120% of red 

intensity    

run("Multiply...", "value=10000000"); convert all decimal values to integers 

run("Brightness/Contrast...");             set brightness and contrast to automatic 

run("Max...", "value=1");                    set max value to be 1 

run("Min...", "value=0");                     set min value to be 0 

run("Measure");                                  add up 1s and express as fraction of total area 

The collagen content was hence expressed as a percentage of total plaque area. 

2.13 Immunohistochemical staining 

 Immunohistochemical staining of mouse specimens was performed using the Avidin-

Biotin peroxidase technique. Harvested organs were initially stored in 10% neutral-buffered 

formalin for fixation, followed by dehydration, clearing and embedding in paraffin blocks. 

Glass slides were coated with silane. Thermo Scientific Menzel X72 SuperFrost® Plus 

(Thermo Fisher Scientific, Waltham, MA, USA) slides were loaded onto racks and rinsed in 

100% ethanol. They were dipped in a silane solution comprised of a 1 in 50 dilution of 3-

aminopropyl-triethoxy-silane in 100% ethanol, and subsequently rinsed in 100% ethanol and 

then deionised water before being dried. Specimens were cut into 5 µm sections using a 

microtome, and placed in a waterbath filled with deionised water, and then mounted onto 

silane-coated slides. The slides were dried in a 56oC oven for 1 hour.  
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To deparaffinise and rehydrate the slides, they were heated to 70oC for 10 mins and 

then sequentially incubated twice in 100% xylene for 3 mins each time, and then sequentially 

incubated twice in 100% ethanol for 3 mins each time. Endogenous peroxidase was then 

blocked by incubating slides in 0.5% hydrogen peroxide in methanol for 30 mins at room 

temperature.  The slides were then rinsed twice in PBS for 5 mins each time, and then placed 

in the antigen retrieval buffer (10 mM sodium citrate buffer, pH 6). This was heated in a 

microwave on the highest setting until the solution boiled.  The solution was then transferred 

to a second, calibrated microwave, which heated the solution to 98oC for 10 mins. The solution 

was allowed to cool at room temperature. This was followed by two sequential PBS washes 

for 5 mins each. Using a Pasteur pipette, the specimens were coated with 3% normal horse 

serum (NHS) for 30 mins. The NHS was drained from the slides, and specimens were then 

coated with the primary antibody at a concentration determined by prior optimisation. 

Incubation occurred overnight. The following day the slides were rinsed twice with PBS for 5 

mins each time, and then the specimens were coated with the secondary antibody for 30 mins 

at a concentration determined by prior optimisation. The slides were washed twice in PBS for 

5 mins each time. The tertiary antibody, a 1:1000 streptavidin peroxidase:NHS solution, was 

added to the specimens for 60 mins. The specimens were washed twice in PBS for 5 mins each 

time. A 75 mg/ml of 3,3’-diamino benzidine (DAB)/PBS solution was added to the specimens 

for exactly 7 mins, and then the slides were thoroughly rinsed in running water for 10 mins. 

The DAB was subsequently neutralised by adding an equal volume of 0.2 M potassium 

permanganate and the same volume of 2.0 M sulphuric acid. The mixture was allowed to stand 

overnight, and then 5% (w/v) of ascorbic acid was added until the colour disappeared. The 

solution was then discarded. The slides were counterstained in haemotoxylin and coverslipped 

using distyrene, plasticiser and xylene (DPX) Mounting Media (Labworks, Victoria, Australia) 

and Deckgläser 24 x 50mm cover slips (Menzel-Gläser GmbH, Braunscheig, Germany).  
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2.14 Antibodies used for immunohistochemical staining 

Table 2.3: Antibodies used for mouse acute vascular inflammation study 

Company and 
catalogue no. Name Host Reactivity Conjugation Clonality Isotype 
Primary 
antibodies       
Abcam - 
ab134047 

Anti-VCAM1 
antibody rabbit 

Mouse, rat, 
human Unconjugated Monoclonal IgG 

Abcam - 
ab119871 Anti-ICAM1 antibody rat Mouse Unconjugated Monoclonal IgG2b 
Abcam - ab8101 Anti-MCP1 antibody rat Mouse Unconjugated Monoclonal IgG1 
Abcam - 
ab119830 Anti-CD18 antibody rat mouse Unconjugated Monoclonal IgG2A 
Isotype controls       
Abcam - 
ab18450 

Rat IgG2A kappa 
isotype control  rat   Monoclonal IgG2A 

Abcam - 
ab18407 

Rat IgG1 kappa 
isotype control rat   Monoclonal IgG1 k 

Abcam - 
ab18541 

Rat IgG2b kappa 
isotype control rat   Monoclonal 

IgG2b 
k 

Abcam - 
ab125938 

Rabbit IgG isotype 
control rabbit   Monoclonal IgG 

Secondary 
antibodies       

Abcam - ab7096 
Goat anti-rat IgG H&L 
Biotin preadsorbed goat rat Biotin Polyclonal IgG 

Abcam - ab7082 

Donkey anti-rabbit 
IgG H&L Biotin 
preadsorbed donkey rabbit Biotin Polyclonal IgG 
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Table 2.4: Antibodies used for mouse atherosclerosis and chronic inflammation study 

Company and 
catalogue no. Name Host Reactivity Conjugation Clonality Isotype 
Primary 
antibodies       
BD Biosciences 
- 550292 

Purified Rat Anti-Mouse 
CD107b (Mac-3) rat mouse Unconjugated Monoclonal IgG1 k 

Abcam - 
ab32575 

Anti-actin alpha smooth 
muscle antibody rabbit 

mouse, 
rat, human Unconjugated Monoclonal IgG 

Isotype controls       
Abcam - 
ab18412 

Rat IgG kappa isotype 
control rat   Monoclonal IgG1 k 

Abcam - 
ab172730 

Rabbit IgG monoclonal 
isotype control rabbit   Monoclonal IgG 

Secondary 
antibodies       

Vector – 
BA9400 

Biotinylated Goat Anti-
Rat IgG Antibody 
(H+L) goat rat Biotin Polyclonal IgG 

Vector – 
BA1000 

Biotinylated Goat Anti-
Rabbit IgG Antibody 
(H+L) goat rabbit Biotin Polyclonal IgG 

 

2.15 Immunohistochemical analysis using ImagePro Premier 9.1 and ImageJ 

 Slides were photographed using a Nanozoomer C9600-12 slide scanner (Hamamatsu 

Photonics, Shizuoka, Japan). Image resolution was 228 nm per pixel. Images were saved 

uncompressed and then analysed in either ImagePro Premier 9.1 (Rockville, MD, USA) or 

converted to .tiff files and analysed using ImageJ 1.51. 

2.15.1 Analysis using ImagePro Premier 9.1 

 After selecting and cropping a region of interest for analysis, the DAB analysis app was 

used to quantify the degree of antibody staining. Staining intensity was expressed as Integrated 

Optical Density (IOD) in units of lumens x pixels2 and corrected for total area. 

2.15.2 Analysis using ImageJ 

 Antibody staining was quantified in ImageJ using the Colour Deconvolution plugin, 

based on the technique described by Helps SC, et al(270). The original .ndip files were first 

opened in ImagePro Premier 9.1 and cropped and saved into .tiff format. Cropped sizes were 

either 7000 x 7000 pixels for quantification in brachiocephalic artery specimens, or 20000 x 
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20000 pixels for quantification in aortic sinus specimens. The .tiff images were then opened in 

Adobe Photoshop CS6 (Adobe Systems, San Jose, CA, USA), and the Magic Wand tool was 

used to select the background (canvas). The background colour changed to white (RGB 

255,255,255) using the paint bucket tool, to maximise contrast. The image was saved and then 

opened in ImageJ. Uneven illuminated background was removed using the “rolling ball” 

method as follows. The background was subtracted using the following commands: Process  

Subtract background  rolling ball radius of 50.0 pixels. DAB staining was quantified using 

the Colour Deconvolution Plugin version 3.0.1 using the following commands: Plugins  

Colour Deconvolution  H DAB. Three separate images are returned, and Image 2 with brown 

DAB staining visible being the image of interest. The region of interest for DAB analysis was 

then traced from Image 2, and then subjected to histogram analysis using commands Analyze 

 Histogram. The histogram list was then imported into a Microsoft Excel worksheet. The 

histogram list provides the number of pixels at each pixel intensity. The darkest pixels, which 

represent positive DAB staining are worth 0, whereas the lightest pixels are worth 255. These 

values were inverted so that maximum DAB staining was worth 255, and absence of staining 

was worth 0. To estimate the amount of DAB in a section, each pixel intensity was multiplied 

by the number of pixels at that intensity (0 to 255) and then summed. Hence, this dimensionless 

weighted DAB value (DABwt) = Σ[(255-histogramvalue) x (histogramvaluecount)]. To 

express this as a percentage, this value was divided by the maximum theoretical DAB, where 

each pixel in the image has a histogram value of 255, and multiplied by 100, obtain 

“DABwt%”. 

Therefore, DABwt% values obtained represent an estimate of the amount of DAB (and 

thus antigen) on the original tissue section. The DABwt% can then be compared with different 

sections (images) and the results subjected to statistical analysis. 
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2.16 Oil Red O staining and analysis using ImageJ 

 Lipid content in mouse aortas was assessed and quantified by Oil Red O staining. 

Harvested aortas were stored in formalin and then adventitial fat was carefully and thoroughly 

removed under stereo microscopy. Aortas were then cut and opened en-face for staining and 

returned to formalin until Oil Red O staining was performed. The Oil Red O solution for 

staining consisted of 1 g of Oil Red O powder (Sigma-Aldrich), 250 ml of propan-2-ol, and 

150 ml of MilliQ water (Millipore Corporation, Billerica, MA, USA). First, the Oil Red O 

powder was added to the propan-2-ol while stirring. After 10 mins of stirring, the MilliQ water 

was added, and stirring continued for another minute. The solution was left to stand for 6 mins, 

and then filtered through a 0.2 μm vacuum hose. The solution was used to stain aortas 

immediately. 

2.16.1 Oil Red O staining method 

 Aortas with adventitial fat removed and cut for en-face staining were first rinsed in 

distilled water and then dipped in 60% propan-2-ol solution, then incubated in the Oil Red-O 

solution for 15 mins. They were then dipped in 60% propan-2-ol again, and then rinsed in 

distilled water, before being transferred to 10% neutral-buffered formalin again, for later 

pinning and photography. 

2.16.2 Photography of stained aortas 

 Aortas were placed in 100 mm petri dishes filled with paraffin wax for pinning. Aortas 

were pinned en-face using 0.15 mm rod diameter Minutien Pins (Fine Science Tools, North 

Vancouver, British Columbia, Canada), to expose as much luminal surface area as possible. 

Aortas were photographed using a Zeiss Axio Scope A1 microscope polarised light microscope 

(Carl Zeiss AG, Oberkochen, Germany). All aortas were photographed with a colour 

temperature of 5500K, and an exposure time of 5 milliseconds, which were found to be the 

optimal settings. Images were saved in .tiff format. Three to four overlapping segments of each 

aorta were photographed separately. 
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2.16.3 Analysis of Oil Red O staining 

 Segments of images were merged in Adobe Photoshop CS6 using the Photomerge tool. 

They were then opened in ImageJ 1.51 and then the background was subtracted using the 

command Process  Subtract background, and selecting a rolling ball radius of 5.0 pixels, 

which was found to be optimal. The region of interest was selected by tracing around the aorta 

using the Freehand selection tool. An RGB stack was created, and the green channel was 

selected. A threshold was set using the commands Image  Adjust  Threshold. The 

minimum and maximum thresholds were set at 0 and 120 respectively as these settings were 

found to be optimal. The total area staining red was then determined by selecting Results  

Area, and was expressed as a percentage of total aortic luminal surface area. 

2.17 Laboratory analytes in humans 

 Venepuncture was performed on fasting human study participants by accessing forearm 

veins using the needle and syringe method. Blood was collected in EDTA tubes for plasma, 

and clot activating tubes for serum. Serum specimens were initially allowed to clot for 30 mins 

at room temperature, and both serum and plasma specimens were stored at 4oC until laboratory 

analysis was performed. Blood was sent to SA Pathology laboratories for commercial analysis 

for lipid profile (total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein 

cholesterol, and triglycerides), lipoprotein (a), and high sensitivity C-reactive protein (hs-

CRP). Human studies were performed at SAHMRI and were approved by the University of 

Adelaide Human Research Ethics Committee, and authorised after a SAHMRI Site Specific 

Assessment. 

2.18 Statistical analysis 

GraphPad Prism 7 (GraphPad Software Inc, La Jolla, CA, USA), SPSS 19 (IBM 

Corporation, Armonk, New York, USA), and Microsoft Excel 2016 (Microsoft, Albuquerque, 

NM, USA) were used to analyse data. Categorical data were analysed using the Chi-Square 
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Test or Fisher’s Exact Test if n < 5 for any group. The D’Agostino-Pearson normality test was 

performed to determine whether continuous data was normally-distributed. Normally-

distributed data were analysed using either the T-test if comparing means between two groups, 

or the One-way Analysis of Variance (ANOVA) if comparing means between multiple groups. 

If correcting for multiple comparisons, the Dunnett test was used. If comparing means between 

multiple groups adjusted for a covariate, an Analysis of Covariance (ANCOVA) was 

performed. The Two-way ANOVA test was used to compare means between multiple groups 

depending on two independent categorical variables. If continuous data were not normally-

distributed, analysis was performed between two groups using the Mann-Whitney U Test, and 

the Kruskal-Wallis test if more than two groups were being compared. If correcting for multiple 

comparisons, Dunn’s test was used. Statistical correlations were analysed using a linear 

regression model. Statistical significance was set at the 0.05 level. 
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ABSTRACT 

Background: Atherosclerosis is a systemic disease with multiple established systemic risk 

factors. Recent randomised trial evidence has demonstrated a reduction in major adverse 

cardiovascular events with omega-3 fatty acid supplementation. Their high concentrations in 

blood after ingestion present substantial opportunity to favourably affect the circulating 

mediators of atherosclerosis. The aim of this systematic review was to evaluate the impact of 

omega-3 fatty acids (O3FAs) compared to placebo on measured levels of circulating mediators 

of atherosclerosis in humans. These fall into the following four classes: atherogenic 

lipoproteins (native LDL, oxidised LDL, VLDL, IDL, Lp(a)), which are components of non-

HDL cholesterol; inflammatory cytokines and adipokines (IL-1β, IL-6, IL-8, TNF-α, MCP-1, 

IFN-γ, leptin, resistin); atherogenic amino acids and derivatives (homocysteine, asymmetric 

dimethylarginine); and advanced glycation endproducts (AGEs). 

Methods: To obtain the highest quality evidence from human clinical trials of O3FA 

supplementation, only randomised, placebo-controlled trials from the Cochrane Library with 

an NHMRC Evidence Level of I or II were included. Search dates were from database inception 

until January 2018, with independent record screening by two authors. Atherogenic mediators 

were required to be measured in blood either directly in vivo, or ex vivo in cell culture after 

human omega-3 supplementation. The heterogeneity of omega-3 formulations available, and 

the inclusion of in vivo and ex vivo studies, required qualitative rather than quantitative 

assessments of effect sizes for each mediator. 

Results: 1012 results were obtained, with 109 studies eligible for inclusion, comprised of 1 

Cochrane systematic review, 6 non-Cochrane systematic reviews, and 102 randomised 

controlled trials. It was concluded that O3FAs reduce atherosclerotic mediators from all four 

classes. Specifically, significant reductions were noted for oxLDL, VLDL-C, non-HDL-C, 

leptin, homocysteine, and AGEs. Mild reductions were noted for IL-6, and TNF-α. No 

significant changes were noted for the other mediators evaluated. 
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Conclusions: This systematic review of the literature demonstrates that omega-3 supplementation 

in humans has favourable effects on all four classes of circulating atherogenic mediators.  This 

provides mechanistic insights for the reduction in cardiovascular events seen in a number of clinical 

trials of both fish and fish oil consumption. There is a need to further elucidate the effects of O3FAs 

at the tissue level, especially those of EPA compared to DHA, and to correlate these with clinical 

outcomes. 

 

I, Anthony Pisaniello, conceived, designed, executed and analysed all of the work included in 

this chapter. 
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3.1 Introduction 

3.1.1 Introduction and rationale for systematic review 

Atherosclerosis is a complex inflammatory disease(4), and the factors leading to its 

initiation and progression have been extensively studied but not been fully elucidated. As a 

systemic disease, the mediators of atherosclerosis include systemic factors such as 

hypertension(271-274), hyperlipidemia(273, 275-277), diabetes mellitus(278-280), tobacco smoking(281-

283), and hyperhomocysteinaemia(284-286). There has been considerable interest in circulating 

atherogenic factors, particularly those that are pro-inflammatory, as new pathogenic roles for 

cellular signalling molecules, chemokines, and lipoproteins are elucidated. It is predictable that 

compounds with anti-inflammatory, anti-hypertensive, and lipid-modulating effects would 

have favourable effects on atherosclerosis. Omega-3 fatty acids are such compounds(195, 287-289), 

and there is evidence for anti-atherogenic effects, with reductions in atherosclerotic plaque 

volume seen in animal studies(258, 261). Advances in plaque imaging have allowed changes in 

plaque volume to be measured in vivo, however few such studies have been performed studying 

the effects of omega-3s, and these have produced inconsistent results(290, 291).  

Human cardiovascular outcome trials (CVOTs) of dietary omega-3 intake (i.e. fish 

consumption) have demonstrated a dose-dependent reduction in mortality from coronary heart 

disease(222).  However, CVOTs of fish oil supplementation have produced inconsistent results 

and have frequently suffered from methodological issues such as the use of low omega-3 doses. 

Both the JELIS (2007) and GISSI Prevenzione (1999) studies demonstrated reductions in major 

adverse cardiovascular events (MACE) in the primary and secondary prevention settings 

respectively(226, 227). The later OMEGA (2010) and ORIGIN (2012) secondary prevention 

studies, and the ASCEND (2018) and VITAL (2018) primary prevention studies, reported no 

reduction in MACE, and thus challenged the purported cardioprotective effects of omega-3 

fatty acids(229, 230, 232, 233). In contrast to these studies which mostly treated with no more than 

1g of omega-3 fatty acids per day, the REDUCE-IT study (2018) evaluated the effects of 4 g 
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per day of the prescription EPA formulation icosapent ethyl(234). In this study of 

hypertriglyceridemic patients on statin therapy with a history of cardiovascular disease or 

diabetes mellitus, EPA reduced the primary endpoint of a composite of cardiovascular death, 

nonfatal MI, nonfatal stroke, coronary revascularisation and unstable angina by 25% compared 

to placebo. This occurred irrespective of changes in triglyceride levels, and hence there are 

likely to be alternative mechanisms for the benefits observed. EPA (as ethyl ester) was provided 

at a dose of 1.8 g per day to statin-treated hyperlipidemic patients in the JELIS study, and a 

significant, 19% relative reduction in the primary endpoint of any major coronary event was 

seen, compared to placebo(227). REDUCE-IT and JELIS used higher-than-average omega-3 

doses, and provided EPA only. The cardioprotective effects of omega-3 fatty acids are likely 

to be both dose and formulation dependent, however the mechanisms for this observation are 

at present unclear. 

Omega-3 fatty acids are known to impact on multiple atherogenic conditions, such as 

inflammation, hypertension and hyperlipidemia. Omega-3 fatty acids are known to modulate 

inflammation through several mechanisms. These include incorporation into the phospholipids 

of inflammatory cells(292, 293), reduced eicosanoid production(294),  synthesis of resolvins(295), 

inhibition of the pro-inflammatory NF-κB transcription pathway(296-298), induction of the anti-

inflammatory PPAR-γ transcription pathway(299), disruption of lipid rafts(300, 301), and binding 

to the G-protein coupled receptor GPR120(302) which initiates an anti-inflammatory signalling 

cascade. Omega-3 fatty acids have been shown to reduce systolic and diastolic blood 

pressure(303), as well as triglycerides(304). The effects of omega-3 fatty acids on lipoproteins is 

less pronounced, with increases in HDL-C and LDL-C seen with combinations of EPA and 

DHA(194, 305, 306).  

After oral consumption, omega-3 fatty acids appear in the bloodstream within an hour, 

and are in their free forms for up to 8 hours before they are redistributed(307). Their 

incorporation into tissues, however, including the time taken to do this and maximum 
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concentration achievable, is highly variable(308). Indeed, after prolonged, high dose oral omega-

3 consumption, total concentrations in tissues can be as little as 1 per cent of total fatty 

acids(308). This is in contrast to blood, in which omega-3s can comprise almost 10% of total 

body fatty acids(309). Hence, there is substantial opportunity for omega-3 fatty acids to impact 

the circulating mediators of atherosclerosis. The vascular endothelium has direct, constant 

contact with the bloodstream, and minute changes in the levels of circulating atherogenic 

mediators affect endothelial function. The atherogenicity of all of these factors involves 

induction of inflammation in the vessel wall(310-316). If omega-3 fatty acids do indeed have 

clinically-significant anti-atherogenic properties, it is likely that an important component of 

these is their impact on circulating atherosclerosis mediators. This would be the earliest 

mechanism of altering vascular inflammation. This has not been systematically investigated. 

3.1.2 Objectives 

The aim of this systematic review is to evaluate the current literature on the impact of 

omega-3 fatty acids on circulating mediators of atherosclerosis. These mediators all have clear 

evidence for their atherogenicity and can be categorised into four classes: 

(i) Atherogenic lipoproteins, including (native) LDL(317, 318), oxidised LDL(319), 

VLDL(320, 321), IDL(320), and Lp(a)(322). These lipoproteins are components of non-HDL 

cholesterol. 

(ii) Inflammatory cytokines and adipokines, including IL-1β(323-325), IL-6(326), IL-

8(327), TNF-α(328), MCP-1 (CCL2) (329, 330), IFN-γ(331), leptin(332, 333) and resistin(334, 335). 

(iii) Atherogenic amino acids and derivatives, including homocysteine(336, 337) and 

asymmetric dimethylarginine (ADMA)(315, 338, 339). 

(iv) Advanced glycation endproducts (AGEs)(340, 341). 
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This systematic review aims to incorporate the highest quality of evidence from human 

clinical trials of omega-3 supplementation, through accessing only high-quality clinical trial 

databases. 

3.2 Review Protocol 

This study was performed based on the preferred reporting items for systematic reviews and 

meta-analyses (PRISMA) guidelines(342). 

3.2.1 Sources 

A comprehensive search of the medical literature was performed from database inception until 

January 2018 using the Cochrane Library to obtain only the highest quality clinical trials. 

3.2.2 Search strategy 

The following search string was used for the Cochrane Library search: 

("MeSH descriptor: [Fish Oils] explode all trees" OR "MeSH descriptor: [Fishes] explode all 

trees" OR "MeSH descriptor: [Fatty Acids, Omega-3] explode all trees" OR “MeSH descriptor: 

[Fatty Acids, Unsaturated] explode all trees” OR “MeSH descriptor: [Eicosapentaenoic Acid] 

explode all trees” OR “MeSH descriptor: [Docosahexaenoic Acids] explode all trees” OR 

“MeSH descriptor: [alpha-Linolenic Acid] explode all trees” OR “Docosapentaenoic acid”) 

AND 

(“MeSH descriptor: [Cholesterol, LDL] explode all trees” OR “Oxidized LDL” OR “oxidized 

low density lipoprotein” OR “MeSH descriptor: [Cholesterol, VLDL] explode all trees” OR 

“MeSH descriptor: [Lipoproteins, IDL] explode all trees” OR “MeSH descriptor: 

[Lipoprotein(a)] explode all trees” OR “non-HDL” OR “non-HDL Cholesterol” OR “MeSH 

descriptor: [Interleukin-1beta] explode all trees” OR “MeSH descriptor: [Interleukin-6] 

explode all trees” OR “MeSH descriptor: [Interleukin-8] explode all trees” OR “MeSH 

descriptor: [Tumor Necrosis Factor-alpha] explode all trees” OR “MeSH descriptor: 

[Chemokine CCL2] explode all trees” OR “MeSH descriptor: [Interferon-gamma] explode all 
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trees” OR “MeSH descriptor: [Leptin] explode all trees” OR “MeSH descriptor: [Resistin] 

explode all trees” OR “MeSH descriptor: [Homocysteine] explode all trees” OR 

“dimethylarginine” OR “MeSH descriptor: [Glycation End Products, Advanced] explode all 

trees”) 

3.2.3 Eligibility criteria 

 Only articles written in English were included. Only studies that measured the pre-

specified mediators in the context of omega-3 exposure were included. Studied had to be high 

quality (NHMRC Evidence level I or II(343)) randomised placebo-controlled studies of omega-

3 supplementation. Atherogenic mediators were required to be measured in blood either 

directly in vivo, or ex vivo in cell culture after human omega-3 supplementation. Studies in 

which omega-3 levels were measured in the absence of omega-3 supplementation were 

excluded. Studies were eligible if omega-3 supplementation included at least one of EPA, DPA 

or DHA. Studies of gene expression of atherogenic mediators were not included.  

3.2.4 Study selection 

 The titles, abstracts and keywords of every record were retrieved and separately 

screened by two authors (AP and JA) to find potentially relevant studies for the full review. 

Any discrepancies were resolved by discussion. Full text articles were retrieved if records 

indicated that eligibility criteria were likely to be met. Duplicate records were excluded.  

3.2.5 Data collection process 

 Data were extracted from the studies independently by AP and JA. Disagreements were 

resolved by discussion. The data extracted were: study type, study design, study quality, sample 

size, method and nature of omega-3 exposure, controls used, treatment duration, analytes 

(mediators) measured, and results including changes in measured levels with 

intervention/exposure. When studies included more than one dose or duration of an omega-3 

supplement, the results from the maximum dose and maximum duration were included. When 

studies included separate EPA and DHA treatment arms, results for both were reported. 
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3.2.6 Quality of studies 

 The quality of each study was appraised, and the level of evidence was graded from I 

to IV based on the NHMRC Evidence Hierarchy(343) for human studies. 

3.2.7 Summary measures 

 Changes in the levels of circulating atherogenic mediators were expressed as either as 

a concentration change or a percentage change. Summaries of studies that measured percentage 

changes were graphed separately to those that measured concentration changes. 

3.2.8 Synthesis of results 

 Studies of omega-3 supplementation are heterogeneous, with different study designs, 

omega-3 formulations, doses, durations, and placebo controls used. In this systematic review, 

circulating atherogenic mediators were measured either in vivo or ex vivo, adding another 

source of heterogeneity. Therefore, an overall effect size of omega-3 supplementation on any 

individual mediator was assessed qualitatively, as it was not possible to accurately do so 

quantitatively.  

3.3 Results 

3.3.1 Study characteristics and selection 

The Cochrane Library search yielded 1012 results, of which 2 were Cochrane 

systematic reviews, 14 were non-Cochrane systematic reviews and meta-analyses, 992 were 

randomised controlled clinical trials, and 4 were economic evaluations. In total there were 1012 

results to review. 

One Cochrane systematic review, 6 non-Cochrane systematic reviews and meta-

analyses, 102 randomised controlled trials, and 0 economic evaluations were eligible for 

inclusion in this systematic review. Hence, 109 of 1012 studies were included in the analysis. 

Reasons for study exclusion are itemised in Table 3.1 below. 
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Table 3.1: Reasons for exclusion of studies from systematic review 

Reason for study exclusion No. of studies 

Not a study of omega-3 supplementation 602 

Results do not include pre-specified circulating mediators 132 

Full text article not available 51 

Multiple omega-3 formulations compared in the same study 25 

Results are not clearly or suitably reported 22 

Lack of a suitable choice or dose of a placebo 21 

Omega-3 supplementation includes ALA only (no EPA, DPA or DHA) 16 

Study of gene expression 7 

Article not written in English 6 

Unsuitable study design 5 

Economic evaluation only 4 

Lack of suitable omega-3 intervention or sufficient supplementation 3 

Duplicate data from another article 3 

Significant confounders present 3 

Multiple subject groups for same intervention 2 

Outcome measures are not relevant 1 

TOTAL 903 

 

3.3.2 Quality of studies 

 All studies, aside from the four economic evaluations, had an NHMRC evidence level 

of I or II. 
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3.3.3 Synthesis of results 

 The studies analysed for each atherogenic mediator were not compared to each other in 

the form of a meta-analysis due to the clinical and methodological heterogeneity observed 

across studies. For example, measurements of atherogenic mediators in human serum versus 

in cell culture media supplemented with human serum are not comparable. Weighting systems 

such as that described by Deeks et al(344) cannot be applied. Effect sizes and the homogeneity 

of studies were also not comparable. Instead, the results of studies have been reported and 

graphically represented. On each graph, a qualitatively-estimated overall effect for each 

mediator is indicated. Systematic reviews and meta-analyses have suffixes of “S/R” and “M/A” 

added to author names on forest plots to highlight the higher level of evidence. Studies with a 

statistically significant overall effect are presented in blue. Studies are graphed together in the 

same units. A 95% confidence interval is presented when reported, or when it can be calculated 

from the original manuscript(345). 

 A summary of the included studies is presented in Appendix A. 

3.3.3.1  Atherogenic lipoproteins 

 Sixty-one studies measured (native) LDL-C, including two systematic reviews and one 

meta-analysis. In 16 studies, the net effect of omega-3s was a statistically significant increase 

in LDL-C. In 7 studies, the net effect was a significant decrease in LDL-C. No significant 

change was seen in 38 studies. Overall, omega-3s were concluded to not significantly alter 

LDL-C, with the average change amongst positive studies of +0.11 mmol/L, and an average 

change amongst all studies of +0.02 mmol/L, see Figure 3.1.  
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Figure 3.1: Summary of studies of omega-3 fatty acids and LDL-C. Studies with 

statistically significant changes are highlighted in blue. n=61 studies. 
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Thirteen studies measured oxidised LDL (oxLDL), and in 6 studies omega-3 fatty acids 

significantly reduced oxLDL levels. In no studies did omega-3 fatty acids significantly increase 

oxLDL levels. Overall, omega-3 fatty acids were concluded to decrease oxLDL, with the 

average change amongst positive studies of -7.7%, and an average change amongst all studies 

of -2.5%, see Figure 3.2. 

 

 

 

 

 

 

 

 

Figure 3.2: Summary of studies of omega-3 fatty acids and oxidised LDL. Studies with 

statistically significant changes are highlighted in blue. n=13 studies. 

 

Twenty studies measured VLDL-C, and in 14 studies omega-3 fatty acids significantly 

reduced VLDL-C levels. In no studies did omega-3 fatty acids significantly increase VLDL-C 

levels. Overall, omega-3 fatty acids were concluded to decrease VLDL-C levels, with the 

average change amongst positive studies of -0.33 mmol/L, and an average change amongst all 

studies of -0.25 mmol/L, see Figure 3.3. 
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Figure 3.3: Summary of studies of omega-3 fatty acids and VLDL-C. Studies with 

statistically significant changes are highlighted in blue. n=20 studies. 

 

 Five studies measured IDL-C, and in one study omega-3 fatty acids significantly 

reduced IDL-C levels, with a change of -0.04 mmol/L. The average change amongst all studies 

was -0.03 mmol/L. There was no significant effect of omega-3 fatty acids on IDL-C 

demonstrated, see Figure 3.4. 
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Figure 3.4: Summary of studies of omega-3 fatty acids and IDL-C. Studies with 

statistically significant changes are highlighted in blue. n=5 studies. 

 Six studies measured Lp(a), and in two studies omega-3 fatty acids significantly 

reduced Lp(a) levels, with an average change of -14.3%. Four studies showed no change in 

Lp(a). The overall change from all studies was -1.8%, see Figure 3.5. Omega-3 fatty acids were 

concluded to mildly reduce Lp(a) levels. 

 

 

 

 

 

 

 

Figure 3.5: Summary of studies of omega-3 fatty acids and Lp(a). Studies with statistically 

significant changes are highlighted in blue. n=6 studies. 
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 Total non-HDL cholesterol was measured in 17 studies, and in 12 studies there was a 

significant reduction with omega-3 fatty acids. In 2 studies, non-HDL-C was significantly 

increased. The average change was -0.24mmol/L, see Figure 3.6. Omega-3 fatty acids were 

concluded to reduce non-HDL-C. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: Summary of studies of omega-3 fatty acids and non-HDL-C. Studies with 

statistically significant changes are highlighted in blue. n=17 studies. 
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Atherogenic lipoproteins were overall reduced by omega-3 fatty acid supplementation, 

both as a collective non-HDL-C class, and individually for VLDL-C and Lp(a). Notably, 

oxLDL was reduced, and no change was seen in with LDL-C.  

3.3.3.2  Inflammatory cytokines and adipokines 

 Changes in IL-1β with omega-3 supplementation were reported in either pg/ml units (6 

studies) or as a percentage change (5 studies). In the former, 3 out of 6 studies demonstrated a 

significant reduction in IL-1β with omega-3 supplementation, with an overall average change 

of -0.6 pg/ml. In the latter, omega-3 supplementation did not significantly reduce IL-1β in any 

of the studies, with an average change of +7.0%, see Figures 3.7 and 3.8. It was concluded that 

omega-3 fatty acids did not significantly alter IL-1β. 

 

 

 

 

 

 

 

Figure 3.7: Summary of studies of omega-3 fatty acids and IL-1β reported as pg/ml. 

Studies with statistically significant changes are highlighted in blue. n=6 studies. 
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Figure 3.8: Summary of studies of omega-3 fatty acids and IL-1β reported as %. No 

studies had statistically significant changes. n=5 studies. 

 

Changes in IL6 with omega-3 supplementation were likewise measured in both pg/ml 

and % change. In the former, 9 out of 26 studies demonstrated a significant reduction after 

omega-3 supplementation, with an average change of -0.3 pg/ml. In the latter, omega-3 fatty 

acids reduced IL6 in 5 out of 14 studies, and increased it in 2, with an average change of -

17.6%. Omega-3 fatty acids were concluded to mildly reduce IL6, see Figures 3.9 and 3.10. 
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Figure 3.9: Summary of studies of omega-3 fatty acids and IL6 reported as pg/ml. Studies 

with statistically significant changes are highlighted in blue. n=26 studies. 
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Figure 3.10: Summary of studies of omega-3 fatty acids and IL6 reported as %. Studies 

with statistically significant changes are highlighted in blue. n=14 studies. 

 

The effect of omega-3 supplementation on IL8 was measured in both pg/ml (1 study) 

and % change in 2 studies. One study in the latter demonstrated a statistically significant 

reduction. No overall effect of omega-3s could be established (see Figure 3.11). 
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Figure 3.11: Summary of studies of omega-3 fatty acids and IL-8. The study with a 

statistically significant change is highlighted in blue. n=2 studies. 

 

 Changes in TNF-α were measured in pg/ml and %, and for the former, 6 out of 17 

studies demonstrated a reduction with omega-3 supplementation, with an average change of -

0.6 pg/ml. For the latter, omega-3s significantly reduced TNF-α in 3 out of 16 studies, and 

increased TNF-α in one study. The average change was -5.0% (see Figures 3.12 and 3.13). 

Omega-3s were concluded to mildly reduce TNF-α. 
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Figure 3.12: Summary of studies of omegas-3 fatty acids and TNF-α reported in pg/ml. 

Studies with statistically significant changes are highlighted in blue. n=17 studies. 
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Figure 3.13: Summary of studies of omegas-3 fatty acids and TNF-α reported in %. 

Studies with statistically significant changes are highlighted in blue. n=16 studies. 

 

MCP-1 was measured in 3 studies, in both pg/ml and % changes. In the former, 1 out 

of 2 studies demonstrated a significant reduction with omega-3 fatty acids, and there was no 

significant change with the latter (see Figures 3.14 and 3.15). No significant effect of omega-

3s on MCP-1 could be demonstrated. 
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Figure 3.14: Summary of studies of omega-3 fatty acids and MCP-1 reported in ng/ml. 

The study with a statistically significant change is highlighted in blue. n=2 studies. 
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Figure 3.15: Summary of studies of omega-3 fatty acids and MCP-1 reported in %. The 

single study did not have a statistically significant change. 

 

 The effects of omega-3 fatty acids on IFN-γ were measured in 2 studies as % change. 

In one study there was a statistically-significant reduction, with an overall change of -53% (see 

Figure 3.16). Given the small sample size, no significant effect of omega-3s could be 

demonstrated. 
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Figure 3.16: Summary of studies of omega-3 fatty acids and IFN-γ. The single study with 

a statistically significant change is highlighted in blue. n=2 studies. 

 

 The adipokine leptin was measured in 9 studies, and in 4 there was a significant 

reduction with omega-3 fatty acids. The average change was -0.22 ng/ml (see Figure 3.17). It 

was concluded that omega-3 fatty acids reduced leptin levels. 
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Figure 3.17: Summary of studies of omega-3 fatty acids and leptin. Studies with 

statistically significant changes are highlighted in blue. n= 9 studies. 

 

 The adipokine resistin was not measured in any of the studies. 

 The atherogenic inflammatory mediators were overall mildly reduced by omega-3 fatty 

acids, with effects on the cytokines IL6 and TNF-α, as well as the adipokine leptin. 

3.3.3.3  Atherogenic amino acids and derivatives 

 Homocysteine was evaluated in 11 studies, and in 8 studies omega-3 fatty acids 

significantly reduced circulating homocysteine levels. In one study homocysteine was 

significantly elevated, and the overall average change was -1.8 μmol/L (see Figure 3.18). 

Omega-3 fatty acids were concluded to significantly reduce homocysteine levels. 
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Figure 3.18: Summary of studies of omega-3 fatty acids and homocysteine. Studies with 

statistically significant changes are highlighted in blue. n= 11 studies. 

 

 The impact of omega-3 fatty acids on asymmetric dimethylarginine (ADMA) was 

evaluated in two studies. No significant changes were seen, with an average change of +3 

μmol/L (see Figure 3.19) 

Omega-3 fatty acids significantly reduced the atherogenic amino acid homocysteine, 

however there was insufficient evidence in the literature to draw conclusions regarding effects 

on ADMA. 

 

 

 

-5 0 5

Huang T et al 2011 M/A, n=702

Beavers K et al 2008, n=69

Fontani G et al 2005, n=33

Bourque C et al 2003, n=17

Benito P et al 2006, n=66

Zeman M et al 2006, n=24

Grundt H et al 2003, n=300

Tayebi-Khosroshahi H et al 2013, n=88

García-Alonso F et al 2012, n=18

Pooya S et al 2010, n=81

Olszewski AJ et al 1993, n=15

Studies of Homocysteine

Absolute change  (µmol/L)

St
ud

ie
s

Omega-3s
anti-atherogenic

Omega-3s
pro-atherogenic

µmol/L change (95% CI)

-1.59 (-2.34 to -0.83, p<0.0001)

+2.00 (-0.76 to 3.26, p=0.49)

-1.45 (no CI, p<0.008)

+0.40 (0.08 to 0.72, p<0.0001)

-1.1 (no CI, p<0.001)

-4.4 (no CI, p=0.01)

-1.5 (no CI, p=0.02)

-3.61 (no CI, p=0.03)

-2.44 (no CI, p>0.05)

-3.1 (-6.0 to -0.18, p<0.001)

-2.46 (no CI, p<0.05)

overall effect



103 
 

 

 

 

 

 

 

 

 

 

Figure 3.19: Summary of studies of omega-3 fatty acids and ADMA. The two studies did 

not have statistically significant changes. n=2 studies. 

 

3.3.3.4  Advanced glycation end products 

 Changes in levels of advanced glycation end products (AGEs) with omega-3 fatty acid 

supplementation were investigated in a single study. AGEs are conventionally measured in 

arbitrary units (AUs), and a 2.1 AU reduction was seen (see Figure 3.20). 
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Figure 3.20: Single study of omega-3 fatty acids on advanced glycation endproducts 

(AGEs). The result was statistically significant and presented in blue. 

 

3.4 Discussion 

 This systematic review evaluated the impact of omega-3 fatty acids on circulating 

atherogenic mediators, and included only high-quality studies catalogued in the Cochrane 

library. Systematic reviews, meta-analyses, and randomised placebo-controlled trials were 

included exclusively. The recently-published clinical trial REDUCE-IT provided evidence for 

an atheroprotective effect of omega-3 fatty acids(234), however previously published CVOTs of 

omega-3 fatty acids, especially those of fish oil supplementation, produced variable results and 

suffered from limitations of study design(346). To understand the cardioprotective effects of 

omega-3 fatty acids, and the possible reasons for disparity amongst studies, it is essential to 

directly study their effects on atherogenic mediators. Despite the associations of innumerable 

circulating factors with atherosclerosis, only mediators with clear evidence for direct 
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atherogenicity were evaluated. Given the heterogeneity of study design, which included both 

in vivo and in vitro studies, it was not possible to apply a weighting to individual studies as is 

commonly performed in systematic reviews. Nonetheless, general conclusions could be made 

from the results generated. 

Omega-3 fatty acids reduced levels of circulating atherogenic markers in all four 

classes. Among the atherogenic lipoproteins studied, non-HDL cholesterol, oxLDL, VLDL-C 

and Lp(a) were reduced by omega-3 fatty acids. LDL-C levels were not significantly altered 

by omega-3 fatty acids. It is important to note that triglycerides were not included in this review 

as they are not directly atherogenic(347). Rather, high triglyceride levels associate with higher 

cardiovascular risk by virtue of triglyceride-rich lipoproteins and remnant particles(347). The 

mechanisms by which omega-3s reduce levels of atherogenic lipoproteins are not completely 

understood. There is evidence that omega-3 fatty acids reduce VLDL production rate(348), and 

this may be due to their ability to reduce hepatic fat content(349) or reduce fatty acid availability 

for triglyceride and subsequent VLDL production by means of increased fatty acid 

oxidation(350, 351). Omega-3 fatty acids have been shown to increase hepatic production of LDL 

particles(348), which likely explains the increased LDL-C levels seen in some studies.  

Omega-3 fatty acids reduced the cytokines IL6 and TNF-α to a mild degree. This is 

likely due to the inhibitory effects of omega-3s on the pro-inflammatory NF-κB transcription 

pathway(195), as well as being a natural ligand for the anti-inflammatory nuclear receptor PPAR-

γ(352). Despite the known inhibitory effects of omega-3 fatty acids on activation of the NLRP3 

inflammasome(353-355), no overall effect was seen on IL-1β levels. This suggests additional 

effects of omega-3s on IL-1β regulation. This is particularly relevant given the reduction in 

major adverse cardiovascular events seen with IL-1β lowering seen in the CANTOS study(120). 

In this study, canakinumab reduced recurrent cardiovascular events in patients with a history 

of myocardial infarction and elevated C-reactive protein levels, without lowering lipid levels. 

The effects of omega-3 fatty acids on the inflammasome, in particular the regulation of IL-1β, 
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require further study. Insufficient studies of IL8, MCP-1, IFN-γ and resistin were included in 

this systematic review to allow conclusions to be made. 

Omega-3 fatty acids significantly reduced homocysteine levels, likely due to regulatory 

effects on genes associated with homocysteine metabolism(356). The upregulation of 

cystathionine-γ-lyase (CSE) with both EPA and DHA, the upregulation of 5-

methyltetrahydrofolate reductase (MTHFR) with DHA and ALA, and the downregulation of 

methionine adenosyltransferase (MAT) with EPA, DHA and ALA, have all been demonstrated, 

and likely contribute to the significant reductions in homocysteine levels seen in this systematic 

review(356).  Only two studies measured ADMA levels, with no effects observed. 

A single study measured advanced glycation endproducts, demonstrating a significant 

reduction. The mechanisms by which omega-3 fatty acids may reduce AGEs are unclear, 

although NFκB has been implicated in their formation(357). Given the significant role of AGEs 

in atherogenesis, the lack of high-quality studies yielded by this review suggests an important 

area of future investigation. This may identify new roles for omega-3 fatty acids in the 

management of patients with diabetes mellitus. 

This systematic review provides mechanistic insights into the atheroprotective effects 

of omega-3 fatty acids. They reduce levels of all four classes of circulating atherogenic 

mediators and hence this is their earliest mechanism of reducing vascular inflammation after 

ingestion. Given that the atheroprotective effects of omega-3 fatty acids appear to be dose-

responsive based on dietary studies, and have been demonstrated with high omega-3 doses in 

fish oil studies, there may now be further impetus to routinely measure omega-3 levels in blood 

and aim for high levels. Thus far, no correlation has been shown between the concentration of 

blood omega-3 levels and the degree of suppression of circulating atherogenic mediators, 

although this would be predicted. Several methods exist for measuring and expressing blood 

omega-3 levels. Firstly, measuring the proportion of total fatty acids in whole blood comprised 

of omega-3s, which has an inverse association with sudden death(212). Secondly, measuring the 
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total omega-3 content of the red cell component of blood, which forms the basis of the Omega-

3 Index. This value has cut-offs that predict a higher mortality (< 4%) or a lower mortality (> 

8%)(213). Thirdly, measuring the ratio of pro-inflammatory omega-6s to anti-inflammatory 

omega-3s in whole blood, i.e. the omega 6:3 ratio. It is conceivable that since omega-6 and 

omega-3 fatty acids compete with each other for incorporation into cell membranes(216, 217), a 

higher relative omega-6 content could dampen the beneficial effects of omega-3s even if they 

were present in high concentrations. The measurement of blood omega-3 fatty acid content and 

its relationship with circulating atherosclerotic mediators, and ultimately cardiovascular 

outcomes requires further investigation.  

This systematic review has several limitations. The literature search was restricted to 

studies with an NHMRC Class I or II level of evidence, and were extracted from a single 

database (Cochrane). This was to maximise the quality of articles retrieved, and to ensure that 

the conclusions drawn were informed by robust evidence. This limited the number of studies 

that could be included.  In view of the heterogeneity of the study designs, individual studies 

could not be weighted against each other. Hence, studies with a higher level of evidence and 

those with a high number of participants could not be appropriately apportioned greater 

significance. The possible effects of concomitant use of 3-hydroxy-3-methyl-glutaryl-

coenzyme A (HMG Co-A) reductase inhibitors by subjects were not accounted for in this 

review, however this is unlikely to significantly confound the results given the randomised 

nature of the included studies. This review did not investigate the relative effects of the two 

main omega-3 fatty acids, EPA and DHA, as the vast majority of studies used combinations of 

EPA and DHA. 

3.5 Conclusions 

 This systematic review of the literature demonstrates that omega-3 fatty acids have 

favourable effects on all four classes of circulating atherogenic mediators. They modestly 

reduce atherogenic cytokines and adipokines, and this likely reflects the complexities of their 
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regulation. Atherogenic lipoproteins as well as homocysteine are reduced by omega-3s to a 

greater degree, and a single study of advanced glycation endproducts demonstrated a 

significant reduction. The findings of this systematic review provide mechanistic insights for 

the reduction in cardiovascular events seen in a number of CVOTs of fish and fish oil 

consumption. The reduction in circulating atherogenic mediators by omega-3s, suggests that 

there may be value in targeting specific blood omega-3 levels, and further research is required 

in this area. Moreover, there is a need to elucidate the effects of omega-3 fatty acids, especially 

the differential effects of EPA versus DHA on mediators of atherogenesis at the tissue level, 

and to correlate these with clinical outcomes. 
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3.6 Appendix A: Summary of included studies 

AUTHORS COMORBIDITIES STUDY TYPE 
SAMPLE 
SIZE NATURE OF INTERVENTION CONTROL 

TREATMENT 
DURATION 

ANALYTES 
MEASURED 

Aadland E et al 2015(358)  RCT placebo controlled 20 EPA + DHA control diet 4 weeks LDL 

Abbey M et al 1990(359)  RCT placebo controlled 33 EPA + DHA 
safflower 
oil 6 weeks IDL, VLDL, LDL 

Ando M et al 1999(360) ESKD on haemodialysis RCT placebo controlled 38 EPA 
control 
capsules 7 months oxLDL 

Andrade PM et al 2007(361)  RCT placebo controlled 20 EPA + DHA mineral oil 6 weeks IFN, TNF 
Asztalos I et al 2016(362)  RCT placebo controlled 121 EPA or DHA olive oil 6 weeks TNF, IL6, LDL, Lp(a) 
Ballantyne C et al 
2012(363)  RCT placebo controlled 702 ICOSAPENT ETHYL (EPA) 

control 
capsules 12 weeks 

LDL, non-HDL, VLDL, 
HDL 

Ballantyne C et al 
2015(364)  RCT placebo controlled 427 ICOSAPENT ETHYL (EPA) 

control 
capsules 12 weeks 

VLDL, LDL, IDL, non-
HDL 

Bays H et al 2010 A(365) Hyperlipidemia RCT placebo controlled 245 EPA + DHA corn oil 16 weeks VLDL, LDL, non-HDL 

Bays H et al 2010 B(366) Hypertriglyceridemia RCT placebo controlled 135 EPA + DHA 
control 
capsules 8 weeks LDL, VLDL 

Bays H et al 2012(367) Hypertriglyceridemia RCT placebo controlled 229 ICOSAPENT ETHYL (EPA) 
control 
capsules 12 weeks IDL, VLDL, LDL 

Bays H et al 2013(368)  RCT placebo controlled 931 ICOSAPENT ETHYL (EPA) 
control 
capsules 12 weeks oxLDL, IL6 

Bays H et al 2015(369) Metabolic syndrome RCT placebo controlled 849 EPA 
control 
capsules 12 weeks LDL, non-HDL 

Beavers K et al 2008(370) End stage kidney disease RCT placebo controlled 69 EPA + DHA corn oil 6 months homocysteine 

Bell S et al 1996(371) HIV RCT placebo controlled 19 EPA + DHA 
safflower 
oil 6 weeks IL6, TNF 

Benito P et al 2006(372) Metabolic syndrome RCT placebo controlled 66 EPA + DHA milk 3 months LDL, homocysteine 
Bernstein A et al 2012 
M/A(373)  

Meta-analysis of 11 
RCTs 485 Algal oil (41% DHA) multiple 4-17 weeks LDL 

Bitzur R et al 2010(374)  RCT placebo controlled 67 EPA + DHA corn oil 12 weeks LDL 
Bloedon L et al 2008(375)  RCT placebo controlled 62 EPA + DHA control diet 10 weeks Lp(a), LDL, VLDL, IL6 
Bloomer R et al 2009(376)  RCT placebo controlled 14 EPA + DHA soybean oil 6 weeks TNF, oxLDL 
Bourque C et al 2003(377)  RCT placebo controlled 17 EPA + DHA control diet 27 days homocysteine, LDL 

Bragt M et al 2012(378) Overweight and obese RCT placebo controlled 20 EPA + DHA 
sunflower 
oil 6 weeks LDL, MCP1,  

https://www-ncbi-nlm-nih-gov.proxy.library.adelaide.edu.au/pubmed/?term=Aadland%20EK%5BAuthor%5D&cauthor=true&cauthor_uid=26224298
https://www-ncbi-nlm-nih-gov.proxy.library.adelaide.edu.au/pubmed/?term=Bitzur%20R%5BAuthor%5D&cauthor=true&cauthor_uid=20617456
https://www-ncbi-nlm-nih-gov.proxy.library.adelaide.edu.au/pubmed/?term=Bourque%20C%5BAuthor%5D&cauthor=true&cauthor_uid=12800105
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Brinton E et al 2013(379) 
Type 2 DM and 
hypertriglyceridemia RCT placebo controlled 501 ICOSAPENT ETHYL (EPA) 

control 
capsules 12 weeks 

oxLDL, LDL, VLDL, 
non-HDL 

Buckley R et al 2004(380)  RCT placebo controlled 42 EPA + DHA olive oil 4 weeks LDL 

Chiang Y et al 2012(381)  RCT placebo controlled 25 EPA + DHA 
low omega-
3 diet 4 weeks IL1b, TNF, IL6 

Ciubotaru I et al 2003(382)  RCT placebo controlled 30 EPA + DHA 
sunflower 
oil 5 weeks LDL, IL6 

Connor W et al 1993(383) Type 2 DM RCT placebo controlled 16 EPA + DHA olive oil 6 months VLDL, LDL 

Contacos C et al 1993(384)  RCT placebo controlled 40 EPA + DHA 
control 
capsules 18 weeks VLDL, LDL, IDL 

Damsgaard C et al 
2008(385)  RCT placebo controlled 64 EPA + DHA olive oil 8 weeks IL6, LDL 
Damsgaard C et al 
2009(386)  RCT placebo controlled 64 EPA + DHA olive oil 8 weeks IL6 

Davidson M et al 1997(387) 
Elevated triglycerides and 
LDL RCT placebo controlled 26 DHA 

vegetable 
oils (corn 
and 
soybean) 6 weeks LDL, non-HDL 

Derosa G et al 2012(388)  RCT placebo controlled 157 EPA + DHA 

sucrose, 
mannitol, 
mineral 
salts 6 months IL6, TNF 

Dunbar R et al 2015(389) Hypertriglyceridemia RCT placebo controlled 647 EPA + DHA olive oil 6 weeks LDL, VLDL, IDL 

Eritsland J et al 1995(390) Coronary artery disease RCT placebo controlled 549 EPA + DHA 
control 
capsules 6 months Lp(a) 

Eslick G et al 2009 S/R(391)  
Systematic review of 47 
RCTs 16511 EPA ± DHA multiple 3-182 weeks LDL 

Flock M et al 2014(392)  RCT placebo controlled 116 EPA + DHA soybean oil 5 months IL6, TNF 
Fontani G et al 2005(393)  RCT placebo controlled 33 EPA + DHA olive oil 70 days homocysteine 
Gammelmark A et al 
2012(394)  RCT placebo controlled 50 EPA + DHA olive oil 6 weeks IL6, TNF, LDL 
García-Alonso F et al 
2012(395)  RCT placebo controlled 18 EPA + DHA 

tomato 
juice 2 weeks homocysteine, LDL 

Gharekhani A et al 
2014(396) ESKD on haemodialysis RCT placebo controlled 54 EPA + DHA paraffin oil 4 months IL6, TNF 
Gharekhani A et al 
2016(397) ESKD on haemodialysis RCT placebo controlled 54 EPA + DHA paraffin oil 4 months LDL, leptin 
Gidding S et al 2014(398) Hypertriglyceridemia RCT placebo controlled 42 EPA + DHA corn oil 8 weeks LDL, IL6 
Grundt H et al 2003(399)  RCT placebo controlled 300 EPA + DHA corn oil 12 months homocysteine 

https://www-ncbi-nlm-nih-gov.proxy.library.adelaide.edu.au/pubmed/?term=Ciubotaru%20I%5BAuthor%5D&cauthor=true&cauthor_uid=14505813
https://www-ncbi-nlm-nih-gov.proxy.library.adelaide.edu.au/pubmed/?term=Eritsland%20J%5BAuthor%5D&cauthor=true&cauthor_uid=7569731
https://www-ncbi-nlm-nih-gov.proxy.library.adelaide.edu.au/pubmed/?term=Gidding%20SS%5BAuthor%5D&cauthor=true&cauthor_uid=25008950
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Haberka M et al 2011(400)  RCT placebo controlled 40 EPA + DHA 
control 
therapy 1 month ADMA 

Haghiac M et al 2015(401) Obesity and pregnancy RCT placebo controlled 72 EPA + DHA 
wheat germ 
oil until delivery IL6, IL8, TNF, leptin 

Hariri M et al 2015 
S/R(402)  

Systematic review of 14 
RCTs 915 EPA + DHA multiple 4-24 weeks leptin 

Hartweg J et al S/R 
2008(403) Type 2 DM 

Systematic review of 23 
RCTs 1075 EPA + DHA multiple 3-24 weeks LDL, VLDL 

Herrmann W et al 
1995(404)  RCT placebo controlled 53 EPA + DHA rapeseed oil 4 weeks Lp(a) 
Huang T et al 2011 
M/A(405)  

Meta-analysis of 11 
RCTs 702 EPA + DHA multiple 6-48 weeks homocysteine 

Hung A et al 2015(406)  RCT placebo controlled 34 EPA + DHA 
control 
capsules 6 weeks ADMA, IL6, TNF, MCP1 

Itariu B et al 2012(407) Severe obesity RCT placebo controlled 55 EPA + DHA butterfat 8 weeks leptin, IL6 

Jacobson T 2012(408)  RCT placebo controlled 229 EPA 
control 
capsules 12 weeks 

oxLDL, LDL, VLDL, 
non-HDL 

Jellema A et al 2004(409) Obesity and pregnancy RCT placebo controlled 11 EPA + DHA 
sunflower 
oil 6 weeks IL6, TNF 

Kastelein J et al 2014(206) Hypertriglyceridemia RCT placebo controlled 364 EPA + DHA olive oil 12 weeks 
VLDL, HDL, LDL, non-
HDL 

Kooshki A et al 2011(410) ESKD on haemodialysis RCT placebo controlled 34 EPA + DHA 
medium 
chain trigs 10 weeks IL6, TNF 

Lewis N et al 2000(411)  RCT placebo controlled 25 EPA + DHA control diet 6 weeks LDL 

Li K, et al 2014 M/A(412)  
Meta-analysis of 68 
RCTs 4601 EPA + DHA multiple 2-26 weeks IL6, TNF 

Lopez-Alarcon M et al 
2012(413) Septic neonates RCT placebo controlled 63 DHA olive oil 14 days IL6, IL1b, TNF 

Maki K et al 2008(414) Mixed dyslipidemia RCT placebo controlled 39 EPA + DHA 
vegetable 
oil 6 weeks VLDL, LDL, non-HDL 

Maki K et al 2011(415)  RCT placebo controlled 31 EPA + DHA soy oil 6 weeks VLDL LDL 

Maki K et al 2013(416) 
Hypertriglyceridemia on 
statins RCT placebo controlled 647 EPA + DHA olive oil 6 weeks LDL, VLDL 

Maki K et al 2015(417) Hypertriglyceridemia RCT placebo controlled 102 EPA olive oil 8 weeks LDL, oxLDL, non-HDL 
Malekshahi Moghadam A 
et al 2012(418) Type 2 DM RCT placebo controlled 84 EPA + DHA 

sunflower 
oil 8 weeks TNF 

Mesa M et al 2004(419)  RCT placebo controlled 42 EPA + DHA olive oil 4 weeks oxLDL 

Metkus T et al 2013(420) 
HIV with 
hypertriglyceridemia RCT placebo controlled 48 EPA + DHA corn oil 8 weeks TNF, IL6, non-HDL 

https://www-ncbi-nlm-nih-gov.proxy.library.adelaide.edu.au/pubmed/?term=Metkus%20TS%5BAuthor%5D&cauthor=true&cauthor_uid=23683266
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Mirhashemi S et al 
2016(421) 

Type 2 DM with 
nephropathy RCT placebo controlled 60 EPA + DHA 

control 
capsules 12 weeks AGEs 

Mocellin C et al 2013(422) Colorectal Cancer RCT placebo controlled 11 EPA + DHA not stated 9 weeks IL1b, TNF 
Moeinzadeh F et al 
2016(423) ESKD on haemodialysis RCT placebo controlled 52 EPA + DHA 

control 
capsules 6 months LDL 

Mori T et al 1991(424)  RCT placebo controlled 27 EPA olive oil 3 weeks LDL 
Mori T et al 2000(288) Hyperlipidemia RCT placebo controlled 56 EPA or DHA olive oil 6 weeks LDL 
Mori T et al 2004(211) Overweight and HT RCT placebo controlled 63 EPA + DHA control diet 16 weeks leptin 
Mosca L et at 2017(425)  RCT placebo controlled 215 EPA + DHA not stated 12 weeks LDL, VLDL, oxLDL 
Mostad I et al 2008(426) Type 2 DM RCT placebo controlled 26 EPA + DHA corn oil 9 weeks oxLDL 
Mostowik M et al 2013(427)  RCT placebo controlled 48 EPA + DHA soybean oil 30 days leptin 
Muldoon M et al 2016(428)  RCT placebo controlled 261 EPA + DHA soybean oil 18 weeks IL6 
Murphy KJ et al 2006(429)  RCT placebo controlled 30 EPA + DHA olive oil 6 weeks IL1b, TNF 

Nielsen A et al 2007(430) Crohn's disease RCT placebo controlled 31 EPA + DHA 

omega-6 
enriched 
supplement 9 weeks leptin 

Nilsson A et al 2012(431)  RCT placebo controlled 40 EPA + DHA olive oil 5 weeks TNF 
Oliveira J et al 2015(432) HIV RCT placebo controlled 83 EPA + DHA soy oil 24 weeks IL1b, IL6, TNF 
Olszewski A et al 1993(433)  RCT placebo controlled 15 EPA + DHA olive oil 3 weeks homocysteine 
Palomäki A et al 2010(434)  RCT placebo controlled 37 EPA + DHA butter 8 weeks oxLDL 
Paoli A et al 2015(435)  RCT placebo controlled 34 EPA + DHA control diet 4 weeks IL6, IL1b, TNF, LDL 

Pedersen H et al 2010(436)  RCT placebo controlled 78 EPA + DHA 
vegetable 
oil 16 weeks LDL, non-HDL 

Pooya S et al 2010(437) Type 2 DM RCT placebo controlled 81 EPA + DHA 
sunflower 
oil 2 months homocysteine, LDL 

Poreba M et al 2017(438) 
Type 2 DM and 
cardiovascular disease RCT placebo controlled 74 EPA + DHA 

control 
therapy 3 months LDL, IL6, TNF, leptin 

Rizza S et al 2009(439)  RCT placebo controlled 50 EPA + DHA olive oil 12 weeks IL6, TNF, LDL 

Root M et al 2013(440)  RCT placebo controlled 57 EPA + DHA 
safflower 
oil 4 weeks IL6, IL8, TNF 

Rytter D et al 2011(441)  RCT placebo controlled 533 EPA + DHA olive oil 3 months LDL 

Sabour H et al 2015(442) Spinal cord injury RCT placebo controlled 104 EPA + DHA 
control 
capsules 14 months leptin 

Simons L et al 1985(443)  RCT placebo controlled 25 EPA + DHA olive oil 3 months VLDL LDL 
Singer P et al 2004(444)  RCT placebo controlled 65 EPA + DHA olive oil 6 months LDL 

https://www-ncbi-nlm-nih-gov.proxy.library.adelaide.edu.au/pubmed/?term=Mirhashemi%20SM%5BAuthor%5D&cauthor=true&cauthor_uid=27514766
https://www-ncbi-nlm-nih-gov.proxy.library.adelaide.edu.au/pubmed/?term=Mirhashemi%20SM%5BAuthor%5D&cauthor=true&cauthor_uid=27514766
https://www-ncbi-nlm-nih-gov.proxy.library.adelaide.edu.au/pubmed/?term=Palom%C3%A4ki%20A%5BAuthor%5D&cauthor=true&cauthor_uid=21122147
https://www-ncbi-nlm-nih-gov.proxy.library.adelaide.edu.au/pubmed/?term=Rytter%20D%5BAuthor%5D&cauthor=true&cauthor_uid=21874272
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Skouroliakou M et al 
2016(445)  RCT placebo controlled 60 EPA + DHA soybean oil 30 days IL6, TNF 
Su H et al 2015(446) Metabolic syndrome RCT placebo controlled 143 EPA + DHA control diet 12 weeks LDL, IL6 
Sundrarjun T et al 
2004(447)  RCT placebo controlled 35 EPA + DHA control diet 24 weeks IL6, TNF 
Suzukawa M et al 
1995(448)  RCT placebo controlled 20 EPA + DHA corn oil 12 weeks LDL 
Tardivo A et al 2015(449) Metabolic syndrome RCT placebo controlled 63 EPA + DHA control diet 6 months LDL, IL1b, TNF, IL6 

Tartibian B et al 2011(450)  RCT placebo controlled 45 EPA + DHA 

soybean 
plus corn 
oil 48 hours IL6, TNF 

Tayebi-Khosroshahi H et 
al 2013(451) ESKD on haemodialysis RCT placebo controlled 88 EPA + DHA 

control 
capsules 8 weeks homocysteine, LDL 

Vedin I et al 2008(452) Alzheimers disease RCT placebo controlled 174 EPA + DHA corn oil 6 months IL1b, IL6, IL8, TNF 
Vega-Lopez S et al 
2004(453)  RCT placebo controlled 80 EPA + DHA 

control 
capsules 12 weeks IL1b, IL6, TNF 

Vessby B et al 1990(454) Type 2 DM RCT placebo controlled 14 EPA + DHA olive oil 16 weeks VLDL, LDL 

Vikøren L et al 2013(455)  RCT placebo controlled 34 EPA + DHA 
control 
capsules 8 weeks LDL 

Wallace F et al 2003(456)  RCT placebo controlled 40 EPA + DHA 
linolenic 
acid 12 weeks IFN, TNF, IL1b, IL6 

Westerveld T et al 
1993(457) Type 2 DM RCT placebo controlled 24 EPA olive oil 8 weeks LDL 

Xin W, et al 2012 M/A(458) Congestive heart failure 
Meta-analysis of 7 
RCTs 465 EPA + DHA multiple 3-12 months TNF, IL1b, IL6 

Yusof H et al 2008(459)  RCT placebo controlled 21 EPA + DHA 

medium 
chain 
saturated 
fatty acids 8 weeks IL6 

Zeman M et al 2006(460)  RCT placebo controlled 24 EPA + DHA olive oil 3 months Lp(a), homocysteine 
Zhang J et al 2010(461)  RCT placebo controlled 92 EPA + DHA control diet 8 week IL6, LDL 
Zheng J et al 2016(462)  RCT placebo controlled 185 EPA + DHA corn oil 180 days LDL 

https://www-ncbi-nlm-nih-gov.proxy.library.adelaide.edu.au/pubmed/?term=Tartibian%20B%5BAuthor%5D&cauthor=true&cauthor_uid=21358504
https://www-ncbi-nlm-nih-gov.proxy.library.adelaide.edu.au/pubmed/?term=Vik%C3%B8ren%20LA%5BAuthor%5D&cauthor=true&cauthor_uid=22647247
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ABSTRACT 

Background: Acute vascular inflammation (AVI) is an early and critical stage of 

atherogenesis. Omega-3 fatty acids have anti-inflammatory properties, and although they have 

been studied in the setting of AVI, the study settings have typically not reflected physiological 

conditions.  With the findings of the recent REDUCE-IT study that omega-3 fatty acids reduce 

cardiovascular events in high-risk patients, there is a need to understand the factors underlying 

this benefit. This study aimed to examine the effects of omega-3 fatty acids on AVI on a cellular 

level, in an in vitro setting that was physiological and translatable. 

Methods: Forty healthy volunteers with a low baseline omega-3 fatty acid consumption were 

randomised to treatment with either (1) fish oil high in EPA (86% of total mass), (2) fish oil 

high in DHA (90% of total mass), (3) fish oil with a standard 2:1 EPA:DHA ratio, or (4) placebo 

oil, for 30 days. Baseline and post-treatment heart rate (HR), blood pressure (BP), lipids 

(including total cholesterol, LDL-C, HDL-C, and triglycerides), fatty acid profile, and 

inflammatory markers (high-sensitivity CRP and lipoprotein[a]) were measured. Serum taken 

pre- and post-treatment was added to tumour necrosis factor-alpha-stimulated human umbilical 

vein endothelial cells (HUVECs) in culture. Gene expression of markers of AVI: VCAM-1, 

ICAM-1, MCP-1 and NFκBp65 were measured by RT-PCR. To identify any associations 

between gene expression and participant characteristics, correlations were made between the 

expression of inflammatory markers and lipid parameters, omega 6:3 ratio, blood EPA content, 

blood DHA content, and saturated fats. 

Results: The baseline parameters of participants included: age 38.5±11.0 years, 70% female, 

LDL-C 2.9±0.8 mmol/L, HDL-C 1.6±0.3 mmol/L, and triglycerides 1.1±0.5 mmol/L. Blood 

EPA and DHA levels increased significantly and predictably in the different fish oil groups 

compared to placebo. DHA reduced triglycerides by 27% (p=0.02 compared to placebo, see 

Abstract Table). None of the fish oil treatments significantly altered cholesterol parameters, 
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heart rate or systolic BP. DHA reduced diastolic BP by 4.1±1.8 mmHg, which was significantly 

more than placebo (p=0.05, corrected for baseline values). The gene expression of MCP-1 by 

TNF-stimulated HUVECs reduced by 59% in the EPA group compared to baseline (p=0.02), 

and was 25% lower than in the placebo group (p=0.03, corrected for baseline values). No 

significant correlation was present between the expression of markers of AVI and blood 

omega-3 levels. A positive, significant association was present between HDL-C levels and both 

VCAM-1 (r=0.36, p=0.02) and MCP-1 (r=0.40, p=0.01) expression. 

Conclusions: The administration of serum from healthy volunteers supplemented with EPA to 

TNF-stimulated endothelial cells reduced gene expression of MCP-1, indicating a favourable 

effect of EPA on AVI. Higher fasting HDL-C levels associated with greater serum-induced 

expression of endothelial inflammatory factors implicated in early atherosclerosis. The positive 

correlation between HDL-C and endothelial inflammatory factors is consistent with HDL 

dysfunctionality at very high HDL-C levels, and this warrants further investigation. 

Abstract Table: Changes in lipid parameters and inflammatory markers 

 High EPA High DHA EPA:DHA 2:1 Placebo P value 
LDL-C 0% -7% -7% -4% 0.49 
HDL-C -1% +7% +1% +6% 0.37 
TG +3% -27% 

P=0.02* 
-18% +8% 0.03 

CRP +22% +22% -17% -25% 0.28 
VCAM-1 +5% -31% -23% +4% 0.41 
ICAM-1 +27% -69% -42% -21% 0.19 
MCP-1 -59% 

p=0.02* 
-22% 0% +9% 0.03 

NFκB-p65 -6% -40% -40% -7% 0.51 
*P value compared with baseline  

I, Anthony Pisaniello, conceived, designed, executed and analysed all of the work included in 

this chapter. 
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4.1 Background 

 Since the time a cardioprotective effect of polyunsaturated fatty acids was first 

proposed(221), researchers have been considering and investigating potential anti-

atherosclerotic mechanisms. In the randomised controlled trials of fish oil in the primary and 

secondary prevention setting that demonstrated a reduction in major adverse cardiac events, 

such as JELIS(227) and GISSI-Prevenzione(463), the benefits were observed independent of 

cholesterol levels. Given the inflammatory nature of atherosclerosis(4), it may be the anti-

inflammatory effects of fish oil that have contributed to their atheroprotective effects. Although 

the anti-inflammatory effects of fish oil are wide-ranging, it is likely to be the effects on 

vascular inflammation that are most important in the setting of cardiovascular disease. 

 Previous studies have examined the effects of omega-3 fatty acids on markers of 

vascular inflammation, particularly in the in vitro setting. Acute vascular inflammation (AVI) 

can be induced by stimulating vascular endothelial or smooth muscle cells with pro-

inflammatory agents such as TNF-α and lipopolysaccharide. The adhesion molecules and 

cytokines produced can be measured at the gene and protein level. Chronic vascular 

inflammation (CVI) as it pertains to atherosclerosis is more complex, as it occurs in conjunction 

with plaque formation and not in isolation(464). To summarise the effects of omega-3 fatty acids 

on in vitro models of AVI from less than 10 published studies, both EPA and DHA reduce 

adhesion molecule expression, with a greater effect seen with DHA compared to EPA(242, 244-

247). In these studies, EPA and DHA were added in purified forms. Although these studies have 

provided mechanistic insights into the effects of omega-3 fatty acids on AVI, they have limited 

translatability as they do not model in vivo conditions. Since omega-3 fatty acids undergo 

metabolism and oxidation after oral consumption, the genetic, humoral and cellular responses 

in vivo are likely to be different to what is measured in the cell culture setting. Indeed, oxidised 

omega-3 fatty acids have different actions to pure unoxidised fatty acids, and are still 
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beneficial, if not superior(250). Sethi et al demonstrated that oxidised, but not native unoxidised 

EPA significantly inhibited human neutrophil and monocyte adhesion to endothelial cells in 

vitro by inhibiting endothelial adhesion receptor expression(251). Similarly, Mishra et al 

demonstrated that oxidised but not unoxidised EPA and DHA inhibit cytokine-induced 

endothelial expression of MCP-1 and IL-8(252). A translatable, physiological method of 

studying the effects of omega-3 fatty acids is to deliver them to cells after oral consumption. 

The concept of adding serum from humans to endothelial cells in culture and studying its 

effects has been utilised previously and demonstrated to be effective(465).  

Fish oil is available in numerous formulations commercially, including with high 

concentrations of EPA or DHA. The most commonly available preparations have an EPA:DHA 

ratio of between 1.5:1 and 3:1(466). The availability of a wide range of fish oil products allows 

the relative effects of EPA and DHA on AVI to be studied. 

4.1.1 Aims and rationale of study 

The primary objective of the FOCUS IN study was to evaluate and compare the effects 

of different omega-3 fish oil preparations on endothelial cell markers of acute vascular 

inflammation after supplementation in healthy volunteers. FOCUS IN should identify an 

optimal omega-3 fish oil formulation which could be further studied in a primary and secondary 

prevention setting. 

The omega-3 formulations studied in FOCUS IN would be (1) high in EPA, (2) high in 

DHA, and (3) have a standard 2:1 ratio of EPA:DHA. These formulations would be compared 

with a placebo. Although the cardioprotective effects of omega-3 fatty acid supplementation 

have been questioned in a recent meta-analysis(467), the formulations and doses evaluated in 

that meta-analysis were highly heterogeneous. In high-risk patients, daily doses of ≥ 4 grams 

of omega-3 fatty acids have been shown to optimally reduce blood pressure, triglycerides, total 
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cholesterol, and circulating inflammatory markers(209, 368, 468). Furthermore, this dose has been 

shown to reduce major adverse cardiac events(234). 

4.1.2 Hypotheses 

The hypotheses of this study were that: 

• Omega-3 fatty acids would reduce endothelial cell markers of AVI, with EPA having 

a superior effect over DHA. 

• Changes in endothelial cell markers of acute vascular inflammation with omega-3 

fatty acids would occur independent of any effects on plasma cholesterol and 

triglyceride levels. 

• Blood levels of omega-3 fatty acids would correlate inversely with the gene 

expression of markers of AVI. 

4.2 Methods 

4.2.1  Study outline 

Forty healthy adult volunteers were recruited from the staff and students of the South 

Australian Health and Medical Research Institute for participation in the study. The volunteers 

were required to fulfil the eligibility criteria listed below: 

Eligibility criteria 

Healthy males and females aged ≥ 18 years 

Has not taken omega-3 supplements or eaten more than one fish meal per week in the 

preceding 6 months. 

No bleeding tendency or significant health problems 

Not allergic to fish or fish oil supplements 

Not currently taking medications that are anti-inflammatory or increase bleeding risk. 
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Not currently pregnant or breastfeeding 

No anticipated need to stop taking fish oil in the next 30 days, such as upcoming 

surgery. 

Volunteers who satisfied the eligibility criteria underwent a baseline health assessment at 

a clinic visit, which included measurement of height, weight, blood pressure and heart rate. A 

blood sample (20 mL) was taken by venepuncture; half of the sample was used to extract serum 

(as per Section 2.1) and then stored at -80oC, and half was used for biochemical analysis. For 

this, 30 microlitres of whole blood was spotted onto dry blood spot cards for fatty acid analysis 

(as per Section 2.2), and the remainder was analysed for serum levels of total cholesterol, LDL-

C, HDL-C, high-sensitivity C-reactive protein (hs-CRP) and lipoprotein(a) (Lp(a)). 

The forty participants were randomised in a double-blind fashion to one of four treatment 

groups using random number generation by an unblinded investigator.  

The four treatment groups (10 participants each) were: 

(1) A high EPA-containing fish oil, “PharmEPA® Step 1 Restore” (Igennus HealthCare 

Nutrition, Cambridge, UK). Each 580mg capsule contains 500mg of EPA (86% of total mass) 

and no detectable DHA. Omega-3 is in triglyceride form. Participants were give 8 capsules per 

day to achieve 4 g of omega-3.  

(2) A high DHA-containing fish oil, “Nature’s OwnTM Red Algal Omega-3” (Sanofi Consumer 

Healthcare, Virginia, QLD, Australia). Each 787.5mg capsule contains 707.5mg of DHA (90% 

by mass), and 30mg of EPA (4% by mass). Omega-3 is in triglyceride form. Participants were 

given 6 capsules per day to achieve 4 g of omega-3. 

(3) Fish oil containing a standard EPA:DHA ratio of 2:1, “AlaskOmega® 400200 TG” 

(Bioriginal, Den Bommel, Netherlands). Each 1000mg capsule contains 420mg of EPA (42% 
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by mass) and 209mg of DHA (21% by mass). Omega-3 is in triglyceride form. Participants 

were given 7 capsules per day to achieve 4 g of omega-3. 

(4) Placebo capsule (Bioriginal, Den Bommel, Netherlands). Each 1000mg capsule contains a 

mixture of palm oil, sunflower oil, rapeseed oil, and fish oil to preserve the smell and taste of 

fish oil. Each capsule contained 1% EPA by mass and 0.6% DHA by mass. Participants were 

given 7 capsules per day. 

The participants took the capsules daily for 30 days. During this period, participants kept a 

diary of capsule consumption and fish intake. After study completion a second health 

assessment was performed and a blood sample was taken, as before. 

4.2.2 Cell culture experiments 

A cell culture model of acute vascular inflammation was used to study the impact of 

the different omega-3 treatments on this process. The stored serum from each participant, taken 

before and after treatment, was added to cells in culture with the method described below. 

 Human Umbilical Vein Endothelial Cells (HUVECs) were obtained from fresh 

umbilical cords donated by the Women’s and Children’s Hospital, North Adelaide. They were 

plated in gelatin-coated flasks at a density of 10000 cells per cm2. They were cultured using 

MesoEndo Cell Growth Medium (Cell Applications, San Diego, CA, USA) supplemented with 

an extra 5% of foetal bovine serum (FBS) to make a total of 10% FBS. Passage 3 HUVECs 

were plated onto 6-well plates until they reached 75% confluence, with 2 ml of media used per 

well. They were then washed twice with warm sterile PBS and then cultured for 24 hours in 

EBM-2 basal media plus SingleQuot kit supplements and growth factors without the serum 

aliquot (Lonza, Basel, Switzerland). The serum was taken from participants at baseline and 

again at end of study, and was added for 24 hours at a concentration of 10%. Control conditions 

used 10% foetal bovine serum. All wells were then washed twice with warm sterile PBS, and 
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then fresh EBM-2 basal media plus SingleQuot kit supplements and growth factors except for 

serum was added again. For each condition, there was either TNF or no TNF added for 4 hours 

in serum-free media. For TNF conditions, human TNF-α (Sigma-Aldrich, St. Louis, MO, USA) 

was added at a concentration of 10 ng/ml. This dose and duration have been demonstrated to 

significantly increase cell adhesion molecule expression(469, 470). 

The cell culture media was then aspirated from each well, immediately placed on dry 

ice and stored at -80oC. The cells were washed with PBS at 4oC, and the Tri-reagent method 

was then used to extract RNA from the cells (as per Section 2.4.2). The RNA was quantified 

using a NanoDrop™ 8000 Spectrophotometer (Thermo Fisher Scientific, Waltham, MA, 

USA). The concentration of RNA was normalised between all samples and then RNA was 

reverse transcribed to cDNA (as per Section 2.4.4). Reverse transcription PCR was performed 

(as per Section 2.4.5) to measure the relative expression of the following human genes: VCAM-

1, ICAM-1, MCP-1 and NFkBp65, with B2M being used as a reference gene (see Section 2.5 

for primers). All PCR reactions used 100ng of cDNA. Due to the large number of 96-well PCR 

plates used for this experiment, control conditions were used on each PCR plate. These 

conditions were the culture conditions of (1) HUVECs cultured in 10% FBS, and (2) HUVECs 

cultured in 10% FBS plus TNF-α. Inter-PCR-plate calibration was performed using Bio-Rad 

CFX ManagerTM software version 3.0.1224.1015 (Hercules, CA, USA). Data analysis was 

performed using GraphPad Prism 7 (La Jolla, CA, USA). To identify any associations between 

gene expression and participant characteristics, correlations were made between the expression 

of inflammatory markers and lipid parameters (total cholesterol, LDL, HDL, triglycerides), 

omega 6:3 ratio, blood EPA content, blood DHA content, and saturated fats. 
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4.2.3 Statistical and data analysis 

4.2.3.1  Sample size calculation 

The sample size of 10 participants per group was based on a study by Jiang et al(471). 

The most important factor for calculating sample size was the gene expression of VCAM-1. In 

Jiang et al’s study, the active treatment, irbesartan, reduced TNF-α-induced VCAM gene 

expression by 45% and this was statistically significant. Using a one-way ANOVA power 

calculation for 4 groups with a significance level of 0.05, with 80% power, for an effect size 

of 0.45, a sample size of 10 subjects per group was required. 

4.2.3.2  Statistical methods 

Participant data were de-identified, and statistical analysis was performed using 

GraphPad Prism 7 software. This analysis was performed blinded to treatment allocation, and 

according to the intention-to-treat principle. The D’Agostino-Pearson normality test was 

performed to determine whether continuous data were normally-distributed. Normally-

distributed data were analysed using the One-way Analysis of Variance (ANOVA) to compare 

means between multiple groups. If correcting for multiple comparisons, the Dunnett test was 

used. Results were expressed as mean ± standard error of the mean (SEM). If continuous data 

were not normally-distributed, analysis was performed using the Kruskal-Wallis test, with 

Dunn’s test used to correct for multiple comparisons. Results were expressed as median + 

interquartile range (IQR). Statistical correlations were analysed using a linear regression 

model. Statistical significance was set at the 0.05 level. 

4.2.4  Ethical and site approval  

 Ethics approval was obtained from the University of Adelaide Human Research Ethics 

Committee. The trial was registered with the Australian New Zealand Clinical Trials Registry 
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(Trial ID: ACTRN12616000928415). Site specific authorisation was obtained from the South 

Australian Health and Medical Research Institute. 

 

4.3 Results 

4.3.1 Baseline participant characteristics 

 The demographics of the participants are summarised in Table 4.1. Seventy percent of 

participants were female, and the mean age of participants was 38.5 years (see Table 4.1). 

Participants in the EPA group were older, but otherwise participants in all four groups were 

evenly matched. The baseline body mass index (BMI), resting heart rate, systolic and diastolic 

BP, lipid parameters, high-sensitivity CRP, Lp(a), and percentage of EPA and DHA in blood 

are presented in Table 4.1. These parameters were not significantly different between allocated 

treatment groups at baseline. Participants on average were mildly overweight with a normal 

blood pressure and mildly elevated resting heart rate. Total cholesterol and LDL-C levels were 

at the upper end of normal, and the inflammatory markers were low. EPA and DHA levels 

were consistent with a low omega-3 intake.  
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Table 4.1 – Summary of baseline participant characteristics by treatment group 

 Placebo Std Fish Oil* EPA DHA p value 
Number of participants 10 10 10 10 NA 
Male (%) 40 30 30 20 0.36 
Age (SD) 34.6 (7.1) 32.7 (7.8) 47.5 (10.2) 39.3 (12.6) 0.02 
BMI (SD) 25.4 (2.8) 24.6 (2.2) 25.4 (4.8) 26.1 (3.9) 0.81 
Resting HR bpm (SD) 77.8 (8.5) 69.2 (11.4) 70.2 (7.4) 67.4 (11.4) 0.11 
Systolic BP mmHg (SD) 126.7 (19.5) 124.3 (12.3) 116.5 (14.2) 119.9 (12.3) 0.43 
Diastolic BP mmHg (SD) 80.6 (9.3) 78.8 (6.2) 76.6 (9.5) 76.2 (10.4) 0.67 
Tchol mmol/L (SD) 5.0 (0.8) 4.5 (0.8) 5.3 (0.7) 5.3 (1.2) 0.23 
LDL-C mmol/L (SD) 3.0 (1.1) 2.4 (0.6) 3.1 (0.6) 3.2 (0.8) 0.11 
HDL-C mmol/L (SD) 1.5 (0.2) 1.7 (0.4) 1.7 (0.3) 1.6 (0.4) 0.24 
Trigs mmol/L (IQR) 1.3 (1.1-1.5) 0.9 (0.7-1.3) 0.9 (0.7-1.1) 1.0 (0.7-1.2) 0.4 
hs-CRP mg/L (IQR) 1.1 (0.9-1.9) 0.7 (0.5-1.4) 0.4 (0.3-2.1) 1.0 (0.8-2.9) 0.5 
Lp(a) g/L (IQR) 0.1 (0-0.3) 0.1 (0-0.2) 0.1 (0-1.4) 0.4 (0.1-0.6) 0.72 
EPA % (IQR) 0.5 (0.4-0.8) 0.7 (0.6-0.8) 0.8 (0.5-0.9) 0.5 (0.4-0.7) 0.35 
DHA % (IQR) 1.7 (1.5-1.8) 1.9 (1.6-2.3) 1.9 (1.6-2.3) 1.7 (1.4-1.8) 0.12 

*Std Fish Oil = standard fish oil 

Capsule compliance was assessed by an unblinded investigator based on the return of a 

capsule diary. Capsule compliance in the study was high (94±5%). There was no significant 

difference in capsule compliance between treatment groups (p=0.63). The average number of 

treatment days was 30.5±4, and did not differ significantly between treatment groups (p=0.38). 

One participant discontinued the capsules after 6 days due to gastrointestinal side effects, 

however completed the follow up assessment and investigations. 

4.3.2 Effect of fish oil treatment on physical and biochemical measures 

Effects on physical measures  

None of the fish oil treatments had a significant effect on resting heart rate (p=0.33, corrected 

for baseline values, see Figure 4.1). 
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Figure 4.1: Effect of fish oil supplementation on resting heart rate. n = 10 per group. 

Results expressed as mean ± SEM. 

No fish oil treatment had a significant effect on systolic blood pressure (p=0.54). DHA reduced 

diastolic blood pressure by 4.1±1.8 mmHg, which was significantly more than placebo (p=0.05, 

corrected for baseline values, see Figure 4.2). 

  

 

 

 

 

 

Figure 4.2: Effect of fish oil supplementation on systolic and diastolic blood pressure. n = 

10 per group. *p=0.05. Results expressed as mean ± SEM. 
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 None of the fish oil treatments resulted in a significant change in body weight (p=0.80 

corrected for baseline values, see Figure 4.3).  

 

 

 

 

 

 

 

 

Figure 4.3: Effect of fish oil supplementation on body weight. n = 10 per group. Results 

expressed as mean ± SEM. 

 

Effects on blood fatty acid levels  

The distribution of fatty acids in blood was significantly altered by the fish oil 

treatments. Both EPA and standard fish oil (which has a predominance of EPA) significantly 

increased EPA levels in the blood by an average of 253% each (p<0.001 for each, corrected 

for baseline values, see Figure 4.4). There was a slight but non-significant increase in the DHA 

treatment group. 
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Figure 4.4: Effect of fish oil supplementation on EPA levels in blood, expressed as a 

percentage of total fatty acids. ***p<0.001. n = 10 per group. Results expressed as mean 

± SEM. 

 

 Both DHA and standard fish oil supplementation significantly increased DHA levels in 

blood by 145% (p<0.001) and 28% (p=0.02) respectively, corrected for baseline values (see 

Figure 4.5). The changes seen in EPA and DHA levels after fish oil supplementation confirm 

the efficacy of, and compliance with, the respective capsules. 
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Figure 4.5: Effect of fish oil supplementation on DHA levels in blood, expressed as a 

percentage of total fatty acids. ****p<0.0001, *p<0.05. n = 10 per group. Results 

expressed as mean ± SEM. 

 

 The omega 6:3 ratio, which has a U-shaped association with mortality(472), was not 

significantly different between treatment groups at baseline (p=0.79), with a mean ratio of 

7.3±1.1. After supplementation, the omega 6:3 ratio was significantly lower in all fish oil 

treatment groups compared to placebo (43 – 49% reductions, p<0.0001 for all comparisons, 

see Figure 4.6).  
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Figure 4.6: Ratio of omega-6 to omega-3 at the end of the study. ****p<0.0001. n = 10 per 

group. Results expressed as mean ± SEM. 

 

Effects on serum lipids and inflammatory markers 

There were no significant differences between treatment groups in levels of either total 

cholesterol (p=0.29), LDL (p=0.49), or HDL (p=0.37) when correcting for baseline values (see 

Figure 4.7). DHA significantly reduced triglyceride levels, by an average of 0.31 mmol/L (27% 

reduction, p=0.018 corrected for baseline values). There was a numerical but non-significant 

reduction in triglycerides in the standard fish oil group of 0.18 mmol/L (p=0.08, corrected for 

baseline values, see Figure 4.7). 
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Figure 4.7: Effect of fish oil supplementation on total cholesterol, LDL-C, HDL-C and 

triglycerides. *p<0.05. n = 10 per group. Results expressed as mean ± SEM, except for 

triglycerides, which is median + interquartile range. 
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0.00 – 0.47) g/L (reference range 0 - 0.3 g/L). Fish oil supplementation did not significantly 

alter Lp(a) levels (p=0.65, corrected for baseline values, see Figure 4.8). 

 

 

 

 

 

 

 

 

Figure 4.8: Effect of fish oil supplementation on lipoprotein(a) levels. n = 4-7 per group. 

Results expressed as median + interquartile range. 

 

High-sensitivity C-reactive protein (hs-CRP) levels were generally low, with a median 

of 0.9 (IQR 0.42 – 2.1) mg/L (reference range 0 - 2mg/L). Fish oil supplementation did not 

significantly alter hs-CRP levels (p=0.28, corrected for baseline values, see Figure 4.9). There 

was a trend towards an increase in hs-CRP levels in the EPA group (p=0.10). 
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Figure 4.9: Effect of fish oil supplementation on hs-CRP levels. n = 10 per group. Results 

expressed as median + interquartile range. 

 

4.3.3 In vitro studies of vascular inflammation 
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in significantly increased gene expression. This gene expression was compared between the 
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The VCAM-1 expression of TNF-stimulated HUVECs co-incubated with serum 

obtained at study completion was not significantly different between treatment groups. There 

was a trend towards a reduction in the standard fish oil group compared to placebo (35% 

reduction, p=0.11 corrected for baseline values, see Figure 4.10). 

 

 

 

 

 

 

 

 

 

 

Figure 4.10: Relative gene expression of VCAM-1 by TNF-stimulated HUVECs co-

incubated with serum obtained at study completion, relative to baseline. n = 40 for 

combined baseline and n = 10 for treatment groups. Results expressed as mean ± SEM. 
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ICAM-1 expression was also not significantly different between treatment groups 

(p=0.25, corrected for baseline values, see Figure 4.11). 

 

 

 

 

 

 

 

 

 

 

Figure 4.11: Relative gene expression of ICAM-1 by TNF-stimulated HUVECs co-

incubated with serum obtained at study completion, relative to baseline. n = 40 for 

combined baseline and n = 10 for treatment groups. Results expressed as mean ± SEM. 
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values). 
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Figure 4.12: Relative gene expression of MCP-1 by TNF-stimulated HUVECs co-

incubated with serum obtained at study completion, relative to baseline. *p<0.05. n = 40 

for combined baseline and n = 10 for treatment groups. Results expressed as mean ± SEM. 

  

Gene expression of the pro-inflammatory transcription factor NFκBp65 was not significantly 

altered by any fish oil supplement (p=0.63 corrected for baseline values, see Figure 4.13). 
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Figure 4.13: Relative gene expression of NFκBp65 by TNF-stimulated HUVECs co-

incubated with serum obtained at study completion, relative to baseline. n = 40 for 

combined baseline and n = 10 for treatment groups. Results expressed as mean ± SEM. 
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Total cholesterol 

 No significant correlations were present between total cholesterol and VCAM-1, 

ICAM-1, MCP-1 or NFκBp65 (see Figure 4.14).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14: Correlations of gene expression of VCAM-1, ICAM-1, MCP-1, NFκBp65 

and total cholesterol. n = 40 for each graph. 
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LDL-C 

 No significant correlations were present between LDL-C and VCAM-1, ICAM-1, 

MCP-1 or NFκBp65 (see Figure 4.15). 

   

 

 

 

 

 

   

 

 

 

 

 

 

Figure 4.15: Correlations of gene expression of VCAM-1, ICAM-1, MCP-1, NFκBp65 

and LDL-C. n = 40 for each graph. 
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HDL-C 

 A positive, significant association was present between HDL-C levels and both VCAM-

1 and MCP-1 expression, but not ICAM-1 or NFκBp65 expression (see Figure 4.16). 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16: Correlations of gene expression of VCAM-1, ICAM-1, MCP-1, NFκBp65 

and HDL-C. n = 40 for each graph. 
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Triglycerides 

 A non-significant inverse correlation (r = -0.3, p=0.06) was present between VCAM-1 

and triglyceride levels. No significant correlations were present between triglycerides and 

either ICAM-1, MCP-1 and NFκBp65 (see Figure 4.17). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.17: Correlations of gene expression of VCAM-1, ICAM-1, MCP-1, NFκBp65 

and triglycerides. n = 40 for each graph. 
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Omega 6:3 ratio 

 Despite the omega-6 and omega-3 fatty acids having pro- and anti-inflammatory 

properties, respectively, there was no significant association between the omega 6:3 ratio and 

any of the inflammatory markers (see Figure 4.18). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.18: Correlations of gene expression of VCAM-1, ICAM-1, MCP-1, NFκBp65 

and omega 6:3 ratio. n = 40 for each graph. 
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Saturated fats 

 Despite the proinflammatory nature of saturated fatty acids(475), no significant 

association was found between the percentage of saturated fats in blood and gene expression 

of inflammatory markers (see Figure 4.19). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.19: Correlations of gene expression of VCAM-1, ICAM-1, MCP-1, NFκBp65 

and saturated fats. n = 40 for each graph. 
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4.4 Discussion 

 The FOCUS IN study evaluated the impact of high dose omega-3 fatty acids on markers 

of acute vascular inflammation in an in vitro model. By supplementing healthy volunteers with 

4 grams of either EPA, DHA, standard fish oil or placebo daily for 30 days, the differential 

effects of EPA versus DHA were studied. To minimise confounders, participants were required 

to have a low baseline omega-3 intake, and have no significant medical illnesses or take regular 

medications such as anti-inflammatories. The addition of serum from participants to TNF-

stimulated HUVECs before and after fish oil supplementation achieved two goals: (1) the 

omega-3s were delivered to cells in a physiological manner rather than in a chemically-pure 

state, and (2) the differential effects of EPA versus DHA could be studied and compared with 

combination therapy, all at a sufficient dose. One of the major limitations of previous human 

fish oil studies has been insufficient dosing. In the recently published ASCEND study, which 

assessed the effect of fish oil on cardiovascular events in patients with diabetes mellitus, only 

one capsule of fish oil was given per day, providing less than 1 g of omega-3 fatty acids(232). 

Similarly, in the recently-published meta-analysis by Aung et al of omega-3 trials assessing 

cardiovascular outcomes(467), 6 out of the 10 trials used less than or equal to 1 g of omega-3 per 

day. Such doses are widely considered to be insufficient to produce a clinical benefit. The 

negative conclusions from these studies therefore need to be interpreted with caution. 

 Participants in the FOCUS IN study were generally well-matched at baseline, aside 

from those in the EPA group being older. The dose of 4 g of omega-3 per day was well 

tolerated, with only one participant experiencing side effects, and it achieved the desired goal 

of significantly increasing blood omega-3 levels. Those supplemented with either EPA or 

standard fish oil had a >200 % increase in EPA levels. Those supplemented with DHA had an 

almost 150 % increase in circulating DHA levels. These changes also translated into a reduced 

omega 6:3 ratio. Although a lower omega 6:3 ratio has long been considered desirable for 
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reducing the risk of chronic diseases(476), the recently-identified U-shaped association with 

mortality(472) indicates that this interpretation of the ratio may be an oversimplification. Indeed, 

there is evidence that higher levels of specific omega-6 fatty acids (namely linoleic acid)(477) 

confer more mortality benefit than others, and this likely to also be the case for omega-3s. 

Hence, the individual fatty acid contributors to the omega 6:3 ratio may be more important than 

the value. 

At follow-up, DHA significantly reduced diastolic blood pressure, and produced a 

numerical but non-significant reduction in systolic blood pressure. Previous studies have 

demonstrated a blood pressure lowering effect of omega-3 fatty acids(209-211), but this is the first 

study to compare EPA with DHA, and identified a superior effect with DHA. DHA 

significantly reduced triglyceride levels, although none of the fish oil supplements affected 

total cholesterol, LDL or HDL levels. The 27% reduction in triglyceride levels is consistent 

with the magnitude of effect previously described, of 25 to 34%(194, 478). This greater reduction 

in triglycerides with DHA compared to EPA is consistent with previous studies that have 

compared the two fatty acids directly(479-483). Lp(a) levels were reduced to the greatest extent 

in the DHA group, although not significantly, and this should be investigated in future studies. 

In the cell culture experiments, serum from healthy volunteers supplemented with one 

of three types of fish oil or with placebo was added to TNF-stimulated HUVECs in culture, 

and the effects on gene expression of inflammatory markers were measured. Fatty acids in 

blood are either incorporated into the phospholipids of red blood cell membranes(484) or 

circulate freely or bound to albumin(485). Serum is therefore an effective method of fatty acid 

delivery to cells in culture. EPA significantly reduced the gene expression of MCP-1 in TNF-

stimulated HUVECs. The oral administration of 4 g of EPA per day to healthy adults is 

sufficient to reduce markers of acute vascular inflammation and is independent of effects on 

circulating inflammatory markers and lipids. There were trends towards reductions in both 
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VCAM-1 and MCP-1 with standard fish oil, which contains a predominance of EPA, and which 

increased EPA levels to a similar extent as the EPA treatment in this study. The mechanisms 

by which EPA and DHA demonstrate differential effects on acute vascular inflammation are 

not fully understood, and require further investigation. 

 Correlations were studied between gene expression of inflammatory markers and levels 

of total cholesterol, LDL-C, HDL-C, triglycerides, omega 6:3 ratio, blood EPA, blood DHA, 

and saturated fats taken at baseline. A striking positive association was present between HDL-

C levels and both VCAM-1 and MCP-1 expression. Although the HDL molecule has anti-

inflammatory properties(486), with higher levels being associated with lower rates of 

cardiovascular events and mortality(487, 488), there is evidence that extremely high circulating 

HDL-C levels are paradoxically associated with increased mortality(489). The reasons for this 

are unclear and require further investigation, however the results from this study suggest a 

possible harmful, pro-inflammatory effect at the highest HDL-C levels. This could be 

consistent with a hypothesis that the functionality of HDLs is compromised at extremely high 

levels, with the concentration of HDL cholesterol no longer reflecting HDL function, and such 

dysfunctional HDLs being harmful(490). If this is the case, this would have implications for the 

interpretation of the results of studies of HDL-raising therapies on cardiovascular outcomes(491-

494). 

The limitations of this study include the small sample size of 10 participants per group. 

The numerical reductions seen in the gene expression of VCAM-1, ICAM-1 and MCP-1 after 

different fish oil treatments may have reached statistical significance in the setting of a larger 

cohort. However, the high threshold for a demonstrable reduction in gene expression in this 

small study highlighted the superior effect of EPA over other treatments. The requirement for 

healthy volunteers in this study allowed the effects of the fish oil preparations on inflammation 

to be demonstrated with minimal confounding factors. However, physical ambulatory 
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measures such as heart rate and blood pressure, as well as circulating factors such as lipids and 

inflammatory markers, were largely in the normal range for these healthy volunteers. 

Therefore, the effects of fish oil preparations on these variables were not expected to 

significantly reduce them even though significant beneficial effects may have been 

demonstrated in individuals at high cardiovascular risk. The changes seen in the gene 

expression of markers of AVI do not necessarily predict the changes that would occur in vivo 

or even at the protein level. Studies in the in vivo setting are required to confirm the in vitro 

findings. 

There are several clinical implications of this study. In a healthy population, high dose 

omega-3 fatty acids would not be expected to significantly reduce heart rate, body weight, or 

systolic blood pressure. DHA would likely reduce diastolic blood pressure modestly, however 

the requirement of 4 g per day of omega-3 to achieve this would not be economical or practical. 

Furthermore, the predicted 0.5 mmol/L reduction in triglycerides seen with DHA would be 

unlikely to translate into a significant benefit. High dose EPA reduced the inflammatory 

response to endothelial injury in this study, and in a healthy population the number needed to 

treat to prevent an ischaemic event would be high. For the general population, there is not a 

strong indication for daily high dose omega-3 fatty acid consumption based on this study. 

Those at high cardiovascular risk and those with established atherosclerotic disease may well 

derive benefit, and indeed these groups were the target of the recent REDUCE-IT study, which 

evaluated 4 grams of EPA daily in the form of icosapent ethyl(234). The 25% reduction in the 

incidence of first major cardiovascular event, and 30% reduction in total events occurred in 

statin-treated patients with hypertriglyceridemia and history of atherosclerosis or diabetes(495). 

Icosapent ethyl is EPA in ethyl ester form which differs from EPA in triglyceride form used in 

FOCUS IN. The benefits seen in FOCUS IN and REDUCE-IT suggest that the anti-

inflammatory and anti-atherosclerotic effects of EPA are not limited to a specific form. 
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The association seen between high plasma HDL-C levels and a greater inflammatory 

response in HUVECs to TNF-α seen in FOCUS IN is consistent with a hypothesis of disturbed 

HDL functionality at high HDL-C levels. Future studies will be required to redefine a target 

HDL-C range, however the concept of HDL-C being invariably regarded as “good cholesterol” 

in patient and population education needs to be reconsidered. 

In conclusion, the results of the FOCUS IN study provide evidence for a beneficial 

effect of EPA on markers of acute vascular inflammation by virtue of a reduction in MCP-1 by 

stimulated endothelial cells. The magnitude of the anti-inflammatory effect is modest, as the 

other inflammatory markers studied were not significantly reduced. DHA on the other hand, is 

superior for triglyceride reduction as previously described, as well as blood pressure lowering, 

which is a new finding. The results of FOCUS IN provide a mechanistic rationale for the 

reduction in major adverse cardiovascular events with high-dose EPA seen in the recently-

published REDUCE-IT study(234). This study’s findings demonstrated in vitro need to be 

confirmed in an in vivo model of AVI. 
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CHAPTER 5: THE IMPACT OF OMEGA-3 FATTY ACIDS ON ACUTE VASCULAR 
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ABSTRACT 

Background: Acute vascular inflammation (AVI) is an early and critical stage of 

atherogenesis. The anti-inflammatory properties of omega-3 fatty acids have been 

demonstrated in a number of settings, however their effects on AVI, and in particular, the 

relative effects of EPA compared to DHA, have not been well defined. This is particularly 

relevant, given the recently published findings of a reduction in major adverse cardiovascular 

events with EPA treatment. Previous in vitro and in vivo studies have had methodological 

limitations, whereby omega-3s have not been administered in a physiological manner, have 

been subject to oxidation, or have not been provided in a pure form. The aim of this study was 

to determine the effects of pure EPA versus DHA on AVI in an established animal model. 

Methods: Forty, 8-week-old C57BL/6 chow-fed mice were randomised to supplementation 

with 600mg/kg/day of either EPA, DHA, olive oil as an oil control, or no treatment, for 30 days 

by oral gavage. Non-occlusive collars were surgically implanted around the right carotid artery 

to induce AVI. After 48 hours, the mice were humanely killed. The carotids underwent 

immunohistochemical staining for the inflammatory factors VCAM-1, ICAM-1, MCP-1 and 

CD18. Blood was analysed for cholesterol, triglycerides, and fatty acids. Correlations were 

made between blood omega-3 levels and the protein expression of markers of AVI. 

Results: Thirty-eight mice (95%) had successful carotid collaring. The collared carotids of 

mice had significantly more expression of all inflammatory factors compared to uncollared 

carotids which were used as internal controls (p<0.01 for all comparisons). EPA reduced the 

expression of VCAM-1 and MCP-1 by 43% and 38% respectively in collared carotids 

compared to no treatment (p<0.05 for both comparisons). There were numerical reductions in 

ICAM-1 and CD18 expression with EPA, which did not reach statistical significance. 

Furthermore, there was a numerical reduction in all four markers of AVI with DHA, which was 

less than EPA in each case, and not statistically significant. Plasma cholesterol and triglycerides 
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did not differ between treatment groups. EPA and DHA supplementation increased their 

respective blood levels by 272% and 62% (p<0.0001). There were significant inverse 

correlations observed between blood levels of both EPA and DHA and the expression of all 

four markers of AVI on immunohistochemistry. Furthermore, significant inverse correlations 

were also observed between the blood EPA:DHA ratio and all four markers of AVI. 

Conclusions: Pre-treatment with EPA, but not DHA, significantly reduced acute vascular 

inflammation in a mouse model.  This protective effect was present independent of plasma 

cholesterol and triglyceride levels, which were not significantly altered by any of the 

treatments. The greater effect of EPA compared to DHA in reducing AVI was further supported 

by significant inverse correlations observed between the EPA:DHA ratio and all four markers 

of AVI studied. The findings of this study may provide a mechanistic contribution underlying 

the significant cardiovascular benefit seen with EPA treatment in the recent REDUCE-IT 

study. Further studies of the effects of omega-3 fatty acids on vascular inflammation, including 

different ratios of EPA:DHA, are warranted. 

I, Anthony Pisaniello, conceived, designed, executed and analysed all of the work included in 

this chapter. 
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5.1 Background 

 In recent decades, there has been increasing interest in the role of omega-3 

polyunsaturated fatty acids in inflammation. Preclinical studies have identified a number of 

anti-inflammatory as well as pro-resolving properties of omega-3 fatty acids(195, 196). The anti-

inflammatory properties of the omega-3 fatty acids eicosapentaenoic acid (EPA) and 

docosahexaenoic acid (DHA) have been demonstrated on multiple levels, including cellular, 

humoral, signal transduction, and gene expression(496), although there is a paucity of quality 

data on the impact on acute vascular inflammation (AVI).  

AVI is an early and critical stage of atherogenesis(4). For example, minute changes in 

LDL, glucose, blood pressure, and inflammatory markers, lead to increased endothelial cell 

permeability, which permits the migration of circulating LDL into the subendothelial space. 

Concurrent with this, endothelial cells switch to a secretory phenotype, producing a 

hyperplastic, multilayered basal lamina, which further traps LDL in the subendothelium(8). 

Trapped LDL is oxidised by macrophages, generating pro-inflammatory free radicals and 

monocyte chemoattractant protein 1 (MCP-1). The recruitment of monocytes to the 

subendothelium, and of platelets to the endothelial cell surface (after expression of von-

Willebrand factor by activated endothelial cells), triggers a plethora of changes; these include 

the release of pro-inflammatory cytokines, activation of pro-inflammatory signal transduction 

pathways, and an increase in the adhesiveness of the endothelial cell surface(9-11, 57). These 

changes of AVI promote the formation of atherosclerotic lesions, ultimately culminating in 

either plaque rupture or erosion.  

Physiological mechanisms exist to partly counteract the atherogenic effects of AVI, 

such as the efflux of LDL from the subendothelial space(497), and the release of heme 

oxygenase-1 (HO-1) which reduces monocyte transmigration and toxicity to endothelial 

cells(7). The implications of preventing or reducing AVI and hence retarding atherogenesis are 
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significant, given that cardiovascular disease is the leading cause of death worldwide(1). Since 

macroscopic evidence of atherosclerosis has been identified in humans as early as the foetal 

stage, i.e. in the form of fatty streaks(498), supplementation with a safe agent that reduces AVI 

has the potential for use in primary cardiovascular prevention in all age groups. 

 Previous studies have explored, with limitations, the effects of omega-3 fatty acids, 

found abundantly in fish and fish oil, on markers of AVI.  These include measuring the 

expression of cell adhesion molecules and endothelium-derived cytokines, and using various 

methods of exposure to omega-3s, such as direct addition to cell culture media, oral 

supplementation in the form of capsules or the addition to food, and the use of transgenic 

animals that can synthesise omega-3s due to the encoding of omega-3 fatty acid desaturase(244, 

499-503). Endothelial cell permeability, adhesion molecule expression, and chemotaxis of 

leucocytes have all been studied in the setting of omega-3 supplementation. Although omega-

3 fatty acids have not been shown to reduce lipopolysaccharide-induced endothelial cell 

permeability(504), they do reduce adhesion molecule expression by endothelial cells in 

culture(244, 505, 506) and chemotaxis of monocytes(507). However, the direct administration of 

purified omega-3 fatty acids to cells cultured in vitro is not physiological, and hence does not 

model in vivo exposure to fatty acids which have undergone modification during metabolism. 

In Chapter 4 of this thesis, omega-3 fatty acids were delivered to endothelial cells by adding 

human serum obtained before and after fish oil consumption. The omega-3 fatty acids were 

therefore presented to cells after ingestion and metabolism. Fish oil that was high in EPA (86% 

total mass) reduced gene expression of MCP-1 by TNF-stimulated human umbilical vein 

endothelial cells. EPA was superior to both DHA and standard fish oil (2:1 EPA:DHA ratio). 

The results of FOCUS-IN need to be confirmed at a protein level and in an in vivo setting. 

Previous animal studies of the effects of omega-3s on AVI have been limited by 

difficulties in eliciting a local endothelial insult without inducing atherosclerotic lesions. 
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Kockx M et al described a method of inducing AVI in the arterial wall of rabbits by surgically 

implanting a non-occlusive silicone elastic collar around the carotid arteries, and demonstrated 

intense infiltration of polymorphonuclear leucocytes from 6 hours to 3 days post-surgery(508). 

Short-term collar application did not induce atherosclerotic lesions, and this method was safely 

and effectively replicated in mice by von der Thusen et al(509). Application of a periarterial 

collar to the carotid artery increases the production of reactive oxygen species, and stimulates 

neutrophil recruitment, adhesion molecule expression, and inflammatory cytokine 

production(510). Previous studies have most commonly administered omega-3 fatty acids to 

animals by means of dietary supplementation, leading to difficulties with quantifying intake, 

and also resulting in fatty acid oxidation. Oral gavage of unoxidised and appropriately stored 

fatty acids overcomes this problem. The use of the short-term carotid collar model in animals 

supplemented with omega-3 fatty acids by oral gavage is a physiological way to study their 

effects on pure vascular inflammation. Furthermore, direct comparisons can be made between 

the effects of EPA versus DHA. 

5.1.1 Aims and rationale of study 

The aim of this study was to determine the impact of individual omega-3 fatty acids, 

administered in a physiological manner, on acute vascular inflammation in an established 

animal model. The non-occlusive periarterial collar model elicits features of pure vascular 

inflammation when used for less than 72 hours(503, 510). Chow-fed C57Bl/6 mice do not have a 

propensity to develop atherosclerosis, and hence were used for this experiment. The pre-

treatment of mice with omega-3 fatty acids and then subsequent induction of AVI mimics the 

primary prevention clinical setting. In this animal study, the collared carotids could be 

harvested so that protein expression of markers of AVI could be measured and compared 

between different omega-3 formulations. 
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5.1.2 Hypotheses 

The primary hypotheses of this study were that: 

(1) Pre-treatment with high-dose omega-3 fatty acids reduces the degree of acute 

vascular inflammation induced by periarterial collaring. 

(2) There is a differential effect among omega-3 fatty acids, with EPA reducing 

markers of acute vascular inflammation more than DHA. 

(3) Blood levels of omega-3 fatty acids, especially EPA, have an inverse 

correlation with the degree of acute vascular inflammation. 

 

5.2 Methods 

5.2.1 Study outline 

 Forty 8-week-old C57Bl/6 mice fed a standard rodent chow diet were randomised 

equally to supplementation with either EPA, DHA, olive oil, or no treatment for 30 days, by 

oral gavage. EPA and DHA were >99% pure free fatty acids purchased from Nu-Chek Prep, 

Inc (Elysian, Minnesota, USA), and all treatments were administered at a dose of 600 

mg/kg/day. Periarterial collaring of the right carotid artery was then performed under general 

anaesthesia. The collar was left in place for 48 hours, and then mice were subsequently 

humanely killed (See Figure 5.1). Blood was harvested for plasma total cholesterol and 

triglyceride levels, and fatty acid analysis. Both carotid arteries were harvested for 

immunohistochemical staining for VCAM-1, ICAM-1, MCP-1 and CD18. The left carotid 

artery was a within-animal control. 
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This study was approved by the animal ethics committees of both the South Australian 

Health and Medical Research Institute, and the University of Adelaide.  

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Schematic representation of the study outline. After randomisation to one of 

four treatment groups, the mice were gavaged daily for 30 days, then had 48 hours of 

carotid collaring before being humanely killed. 

 

5.2.2 Diet and preparation of EPA, DHA, and olive oil 

 Mice were fed the Teklad Global 18% Protein Rodent Diet (Harlan Laboratories, 

Madison, WI, USA) and had free access to food and water. Free fatty acids were aliquoted into 

200 µl microcentrifuge tubes, which were sealed under nitrogen gas using paraffin film. Tubes 

were stored at -20oC, protected from light, in between uses. Each tube was resealed under 
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nitrogen gas using paraffin film after each use. Olive oil was prepared as above although was 

stored at room temperature as it solidifies when refrigerated. 

5.2.3 Periarterial collaring method 

1. Silicone tubing with internal diameter 0.64 mm and outer diameter 1.2 mm 

(BlueSky Scientific, Burnside, SA, Australia) was cut to a length of 4 mm. Two 

cuts were then made into the tubing lengthwise, 0.5 mm apart, so that a sliver of 

tubing was removed. 

2. The mouse was pre-oxygenated with 100% FiO2 for five minutes, and then 

anaesthetised with 3% isoflurane for induction and 1.5% isoflurane for 

maintenance. 

3. The anterior neck was shaved, and povidone-iodine was applied to the skin. After 

administration of subcutaneous buprenorphine (0.1 mg/kg) and intradermal 

lignocaine (50 μl) into the area to be incised, a midline incision was made into the 

skin of the neck and thorax. After blunt dissection and retraction of deep tissues, 

the right common carotid artery was exposed. 

4. The right common carotid artery was gently separated from the jugular vein and the 

vagus nerve, and then lifted by passing suture material underneath and suspending 

the vessel. The silicone tubing was slipped around the carotid artery from beneath 

while suspended, using haemostats. The tubing was placed proximal to the aorta, 

away from the carotid bifurcation, to avoid contact with local microscopic nerve 

bundles (see Figure 5.2). 

5. A small metal clip applicator (Weck Hemoclip® Plus EZ Load Applier (Teleflex 

Medical, North Carolina, USA) was used to gently apply a metal clip to the tubing 

to secure its position without compressing the vessel. 
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6. The midline incision was closed with 6-0 nylon sutures, and isoflurane was ceased. 

The mouse was given supplemental oxygen again, 100% FiO2 for 5 minutes, and 

after the recovery period was returned to its cage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: Schematic representation of collar placement on right carotid artery. 
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5.2.4 Fatty acid analysis 

 Whole blood was spotted onto pre-made dry blood spot (DBS) cards for fatty acid 

analysis. DBS cards were hand-made using cardboard and PUFACoat paper (developed by Dr. 

Ge Liu and Professor Robert Gibson at the FoodPlus Research Centre, University of Adelaide). 

PUFACoat paper stabilises fatty acids in biological samples for at least 9 weeks when stored 

at room temperature, and for at least 18 months when stored at -20oC. Immediately after blood 

collection, 30 µl of whole blood was pipetted directly onto the PUFACoat paper, and the DBS 

cards were then stored in sealed foil bags with desiccant at -20oC prior to processing. The 

blood-stained area of the PUFACoat paper was cut out and placed in 5 ml capped scintillation 

vials filled with 2 ml of 1% H2SO4. The vials were then heated to 70oC for 2.5 hours. After the 

first 30 mins, the caps were released briefly to expel gas and the vials were vortexed. After 

each subsequent 30-minute period the vials were vortexed only.  The vials were allowed to 

cool to room temperature, and then 250 µl of distilled water and 700 µl of heptane were added 

to the vials, which were then vortexed. Using a Pasteur pipette, the top layer was transferred to 

a gas chromatography (GC) vial. The GC vial was sealed and then stored at -20oC until GC 

analysis was performed. GC analysis was performed using a Hewlett-Packard 6890 system 

(Palo Alto, CA, USA) equipped with a BPX70 capillary column 50 m×0.32 mm, film thickness 

0.25 µm (SGC Pty Ltd., Vic, Australia), programmed temperature vaporisation injector and a 

flame ionisation detector (FID). The injector temperature was set at 250 °C and the FID 

temperature at 300 °C, a programmed temperature ramp (140–240 °C) was used. Helium gas 

was utilised as a carrier at a flow rate of 35 cm per second in the column and the inlet split ratio 

was set at 20:1. Quantification was achieved by comparing the retention times and peak area 

values of unknown samples to those of commercial lipid standards (Nu-Chek Prep Inc., 

Elysian, MN, USA) using the Hewlett-Packard Chemstation data system. 
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5.2.5 Tissue harvesting 

 Blood from terminal cardiac puncture was spotted onto dry blood spot cards (40 µl in 

total), which were then stored at -20 oC for later fatty acid analysis as per Section 2.2. The 

remaining blood was collected in EDTA tubes for plasma extraction, and later analysed for 

plasma total cholesterol and triglycerides as described in Section 2.11. The left ventricle was 

flushed with normal saline, and both carotid arteries were harvested and stored in 10% neutral 

buffered formalin for later immunohistochemical analysis as described in Section 2.13.  

5.2.6 Immunohistochemistry 

 Sections (5mm) of the vessels were cut, dewaxed, and rehydrated as described(511). 

Sections were stained with rabbit anti-mouse/rat/human VCAM-1 (1:1000; Abcam ab134047), 

rat anti-mouse ICAM-1 (1:200; Abcam ab119871), rat anti-mouse MCP-1 (1:50; Abcam 

ab8101), and rat anti-mouse CD18 (1:1000; Abcam ab119830) antibodies to assess endothelial 

expression of markers of AVI. 

Quantification was performed using ImagePro Premier v9.1 (Media Cybernetics, Silver 

Spring, MD, USA). The threshold for positive staining was determined by a blinded 

pathologist. Image analysis results, which represent the average positive staining above the 

threshold for individual arterial sections, are expressed as the Integrated Optical Density in 

units of lumens x pixels2. All IgG controls were negative. 

5.2.7 Statistical and data analysis 

5.2.7.1  Sample size calculation 

 The sample size of 40 mice was calculated based on data from the paper by Borissoff 

et al(512). The neutrophil count in the vessel wall was considered the most important factor for 

calculating sample size. In Borissoff et al’s study, perivascular carotid collars were applied, 

with a resulting density of neutrophils of 151±48 per standardised area of vessel wall measured 



161 
 

by immunofluorescence staining for Ly6G+ cells. This was statistically significantly decreased 

after pharmacological intervention to 83±28 neutrophils per standardised area. To detect a 

significant difference in neutrophil count in the artery wall assuming a power of 80% and alpha 

set at 0.05, a one-way ANOVA power calculation derived a sample size of 9 per group, with 4 

groups in total. To account for a predicted 10% failure rate based on a pilot study of the 

procedure, one extra mouse per group was added. 

5.2.7.2  Statistical methods 

GraphPad Prism 7 (GraphPad Software Inc, La Jolla, CA, USA) and Microsoft Excel 

2016 (Microsoft, Albuquerque, NM, USA) were used to analyse data. The D’Agostino-Pearson 

normality test was performed to determine whether continuous data were normally-distributed. 

Normally-distributed data were analysed using the One-way Analysis of Variance (ANOVA) 

to compare means between multiple groups, and results were expressed as mean ± standard 

error of the mean (SEM). If correcting for multiple comparisons, the Dunnett test was used. If 

continuous data were not normally-distributed, analysis was performed using the Kruskal-

Wallis test, and results were expressed as median + interquartile range (IQR). If correcting for 

multiple comparisons, Dunn’s test used. Statistical correlations were analysed using a linear 

regression model. Statistical significance was set at the 0.05 level. 

 

5.3 Results 

 Thirty-eight out of forty mice (95%) completed the study. One mouse died during 

anaesthesia prior to the commencement of surgery, and another developed a reduced 

respiratory rate in the recovery period and was culled on humane grounds. 
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5.3.1 Omega-3 supplementation in mice modulates fatty acid profiles 

A complete fatty acid profile of blood taken at study completion was obtained. 

Individual fatty acid levels in whole blood were expressed as a percentage of total fatty acid 

content. The relative proportions of all major fatty acids, i.e. saturated fatty acids, trans-fatty 

acids, monounsaturated fatty acids, and polyunsaturated fatty acids (including omega-3 and 

omega-6) for mice in each treatment group are presented in Figure 5.3. Saturated fatty acids 

and omega-6 polyunsaturated fatty acids comprised the majority of fatty acids in each group. 

Trans-fatty acids comprised less than 1% of total fatty acids in each group.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 Relative proportions of all major types of fatty acids in blood in all treatment 

groups at study completion, as measured by dry blood spot analysis. 

Fatty acid content of blood 
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5.3.1.1  Polyunsaturated omega-3 fatty acids 

Polyunsaturated fatty acids are omega-3 or omega-6 fatty acids that have more than one 

double bond in the fatty acid chain. As expected, the total omega-3 fatty acid content in blood 

was significantly higher in the EPA- (9.07±0.22%, p=0.0001) and DHA-supplemented groups 

(9.20±0.38%, p=0.0001) compared to the no treatment group (5.90±0.45%), see Figure 5.4. 

There was no significant difference in the olive oil group (6.72±0.40%, p=0.29) compared to 

the no treatment group. The same trend was also observed for EPA and DHA blood levels. 

That is, EPA levels were significantly higher in the EPA- (1.07±0.04%, p<0.0001) and DHA-

supplemented groups (0.56±0.06%, p<0.0001) compared to the no treatment group 

(0.23±0.05%). DHA levels were significantly higher in the EPA- (6.32±0.17%, p=0.0012) and 

DHA-supplemented groups (7.64±0.34%, p<0.0001) compared to the no treatment group 

(4.71±0.36%), see Figures 5.5 and 5.6. 

 

 

 

 

 

 

 

Figure 5.4: Total omega-3 fatty acid content in blood from mice in each treatment group. 

Data are presented as mean ± SEM. n = 9-10 per group. NT = No treatment. OO = Olive 

oil. ****p≤0.0001 
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Figure 5.5: Blood levels of EPA for mice in each treatment group. Data are presented as 

mean ± SEM. n = 9-10 per group. ****p<0.0001 

 

 

 

 

 

 

 

Figure 5.6: Blood levels of DHA for mice in each treatment group. Data are presented as 

mean ± SEM. n = 9-10 per group. ****p<0.0001, ***p<0.001 
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Table 5.1. This was expected, given that DPA is the intermediary product during conversion 

of EPA to DHA. 

The essential omega-3 fatty acid alpha-linolenic acid (ALA), obtained by rodents from 

their diet, comprised only 0.43±0.06% of total blood fatty acids in the no treatment group. This 

was not significantly different in the olive oil (0.39±0.06%, p=0.87), EPA (0.47±0.04%, 

p=0.91) or DHA (0.47±0.04%, p=0.94) treatment groups, see Table 5.1. 

Table 5.1: Post-treatment levels of fatty acids in blood as a percentage of total fatty acid 

content. 

Fatty acids Treatment Groups 

 NT Olive Oil EPA DHA 

Total Omega-3 (%) 5.90±0.45 6.72±0.40 9.07±0.22**** 9.20±0.38**** 

EPA (%) 0.29±0.03 0.26±0.03 1.07±0.04**** 0.56±0.06**** 

DHA (%) 4.71±0.36 5.53±0.32 6.32±0.17*** 7.64±0.34**** 

DPA (%) 0.57±0.04 0.56±0.05 1.21±0.05**** 0.53±0.02 

ALA (%) 0.43±0.06 0.39±0.06 0.47±0.04 0.47±0.04 

Total Omega-6 (%) 35.02±1.21 37.22±1.08 37.51±0.31 37.13±0.51 

Linoleic acid (%) 20.35±0.55 20.34±0.65 23.05±0.43* 23.27±0.69* 

Arachidonic acid (%) 12.22±0.71 14.28±0.59* 12.16±0.27 11.56±0.47 

Total Monounsaturated Fats (%) 11.31±0.33 11.83±0.37 11.07±0.28 10.23±0.35^^ 

Total Trans-fatty Acids (%) 0.4±0.11 0±0** 0.05±0.04** 0.13±0.09* 

Total Saturated Fats (%) 47.37±1.37 44.22±1.34* 42.29±0.31** 43.31±0.53* 
*p<0.05, **p<0.01, ***p<0.001, ****p≤0.0001 compared to NT. ^^p<0.01 compared to 

OO. 

5.3.1.2  Polyunsaturated omega-6 fatty acids 

 Omega-6 fatty acids comprised 35.02±1.21% of total blood fatty acids in the no 

treatment group. This was not significantly different in the olive oil (37.22±1.08%, p=0.19), 

EPA (37.51±0.31%, p=0.11), or DHA (37.13±0.51%, p=0.22) treatment groups, see Figure 

5.7. The most prevalent omega-6 fatty acids were linoleic acid and arachidonic acid. Linoleic 
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acid comprised 20.35±0.55% of total fatty acids in the no treatment group, and this was 

statistically significantly greater in the EPA (23.05±0.65, p=0.005) and DHA (23.27±0.69, 

p=0.003) treatment groups, although the numerical differences were modest, see Table 5.1. 

Arachidonic acid comprised 12.22±0.71% of total fatty acids in the no treatment group. This 

was significantly greater in the olive oil treatment group (14.28±0.59, p=0.03), but was not 

significantly different in either the EPA (12.16±0.27, p=0.94) or DHA (11.56±0.47, p=0.62) 

treatment groups, see Table 5.1. 

 

 

 

 

 

 

 

 

Figure 5.7: Total omega-6 levels in blood expressed as a percentage of total fatty acids. 

Data are presented as mean ± SEM. n = 9-10 per group. 
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6:3 ratio was significantly lower in mice supplemented with EPA (4.16±0.11 : 1, p=0.0001) 

and DHA (4.07±0.13 : 1, p=0.0001), see Figure 5.8.  

 

 

 

 

 

 

 

 

Figure 5.8: Comparison of omega-6/omega-3 ratios in blood between treatment groups. 

Data are presented as mean ± SEM. n = 9-10 per group. p≤0.0001. 

5.3.1.4  Monounsaturated fatty acids 

 Monounsaturated fatty acids contain a single double bond in the fatty acid chain, and 

consist of omega-7 and omega-9 fatty acids. In the no treatment group, monounsaturated fatty 

acids comprised 11.31±0.33% of total fatty acid content. Given the high proportion of the oleic 

acid (omega-9) in olive oil, the olive oil treatment group had the highest proportion 

(11.83±0.37%) of monounsaturates, although the numerical differences were modest. The EPA 

(11.07±0.88%, p=0.91) and DHA (10.23±0.35%, p=0.07) treatment groups did not have 

significantly different levels of monounsaturates, see Table 5.1. 
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5.3.1.5  Trans-fatty acids 

Trans-fatty acids comprised less than 1% of total blood fatty acids in all groups. This 

value was 0.4±0.11% in the no treatment group. All supplements reduced trans-fatty acid 

levels, demonstrating the effect of fatty acid substitution. The olive oil (0.0±0.00%, p=0.001), 

EPA (0.05±0.04%, p=0.003) and DHA (0.13±0.07%, p=0.03) treatment groups had 

significantly lower levels, see Table 5.1. 

5.3.1.6  Saturated fatty acids 

 Saturated fatty acids were the major fatty acid component of blood, comprising 

47.37±1.37% of all fatty acid content in the no treatment group. All supplements reduced 

saturated fatty acid levels. The olive oil treatment group (44.22±1.34%, p=0.034), the EPA 

treatment group (42.29±0.31%, p=0.003), and the DHA treatment group (43.31±0.53%, 

p=0.015) all had significantly lower levels, see Table 5.1.  

5.3.2 Plasma cholesterol and triglycerides were not altered with omega-3 

supplementation 

Plasma total cholesterol and triglyceride levels, obtained at the time of death, were low 

in all treatment groups, consistent with the use of a non-atherogenic mouse model. Total 

cholesterol was 2.01±0.09 mmol/L in the no treatment group, and supplementation did not 

significantly alter this. Total cholesterol levels were 1.68±0.26 mmol/L in the olive oil group 

(p=0.37), 1.82±0.12 mmol/L in the EPA group (p=0.73), and 1.72±0.14 mmol/L in the DHA 

group (p=0.45), see Figure 5.9. 

 

 



169 
 

 

 

 

 

 

 

 

 

Figure 5.9: Total plasma cholesterol levels in different treatment groups at end of study. 

Data are presented as mean ± SEM. n = 9-10 per group. 

 Plasma triglyceride levels were 0.53±0.05 mmol/L in the no treatment group, and did 

not significantly differ in the olive oil (0.48±0.07 mmol/L, p=0.90), EPA (0.61±0.07 mmol/L, 

p=0.64), or DHA (0.63±0.06 mmol/L, p=0.52) treatment groups, see Figure 5.10.  
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Figure 5.10: Plasma triglyceride levels in different treatment groups at study completion. 

Data are presented as mean ± SEM. n = 9-10 per group. 

 

5.3.3 Endothelial expression of markers of acute vascular inflammation were 

significantly reduced with omega-3 supplementation 

 Immunohistochemical (IHC) staining of carotid arteries was performed for the 

following markers of acute vascular inflammation: VCAM-1, ICAM-1, MCP-1 and CD18. 
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demonstrating the intense vascular inflammatory response produced by the collaring method. 

As demonstrated in Figure 5.11, the expression of all four markers was significantly increased 

in collared (right) carotids compared to uncollared (left) carotids. 
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Figure 5.11: Protein expression of VCAM-1, ICAM-1, MCP-1 and CD18 measured by 

IHC of collared compared to uncollared carotid arteries. Data are presented as mean ± 

SEM. n = 9-10 per group. ****p<0.0001, ***p<0.001 

 

VCAM-1 

 Compared with collared carotids from mice on no treatment, EPA-treated mice had a 

42.8±3.38% reduction in VCAM-1 expression (p=0.02). There was no significant change in 

VCAM-1 expression in the olive oil group (+5.78±7.40%, p=0.97). There was a notable 

reduction in the DHA (-27.5±7.82%) group, however it did not reach statistical significance 

(p=0.25), see Figures 5.12 and 5.13. 
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Figure 5.12: Quantification of VCAM-1 staining by IHC in collared carotids for each 

treatment group. Data are presented as mean ± SEM. n = 6-10 per group. *p<0.05 

 

 

 

 

 

 

 

 

Figure 5.13: Representative IHC staining for VCAM-1 in collared carotid arteries. 

Staining is visible in the endothelium (arrows). Carotid specimens are from mice treated 

with (A) No Treatment, (B) Olive Oil, (C) EPA, and (D) DHA. The EPA group has much 

less endothelial staining compared to the No Treatment group. 
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ICAM-1 

 ICAM-1 expression was not significantly different between treatment groups. There 

were numerical but non-significant reductions in ICAM-1 expression in the olive oil (-

13.2±2.01%, p=0.79), EPA (-28.8±0.33%, p=0.18), and DHA (-27.9±2.01%, p=0.28) 

treatment groups compared to the no treatment group, see Figure 5.14. 

 

 

 

 

 

 

 

Figure 5.14: Quantification of ICAM-1 expression by IHC in collared carotids for each 

treatment group. Data are presented as mean ± SEM. n = 6-10 per group. 

MCP-1 

 Compared with mice in the no treatment group, mice in the EPA-treated group had a 

significant reduction (-40.9±6.59%, p=0.03) in MCP-1 expression in collared carotid arteries. 

There was no significant change in MCP-1 expression in the olive oil- (+13.5±2.68%, p=0.75) 

or DHA- (-24.3±1.87%, p=0.33) treated groups compared with the no treatment group, see 

Figures 5.15 and 5.16.  
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Figure 5.15: Quantification of MCP-1 expression by IHC in collared carotids for each 

treatment group. Data are presented as mean ± SEM. n= 6-10 per group. *p<0.05 

 

 

 

 

 

 

 

 

Figure 5.16: Representative IHC staining for MCP-1 in collared carotid arteries from 

mice treated with (A) No Treatment, (B) Olive Oil, (C) EPA, and (D) DHA. Endothelial 

staining is least visible in the EPA-treated group. 
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CD18 

 CD18 expression was not significantly different between treatment groups. There were 

numerical but non-significant reductions in CD18 expression in the EPA (-27.1±9.27%, 

p=0.32) and DHA (-26.1±13.00%, p=0.44) treatment groups compared to the no treatment 

group. The olive oil-treated group had a numerical but non-significant increase in CD18 

expression (+21.1±0.85%, p=0.60), see Figure 5.17. 

 

 

 

 

 

 

 

 

Figure 5.17: CD18 expression by IHC in collared carotids by treatment group. Data are 

presented as mean ± SEM. n = 6-9 per group. 

 

5.3.4 Both EPA and DHA blood levels had an inverse correlation with inflammatory 

markers  

 The markers of AVI measured by IHC were correlated with blood levels of EPA and 

DHA, and a significant inverse relationship was demonstrated. There were significant inverse 

correlations present between blood levels of EPA, and all four inflammatory markers, see 

Figure 5.18.  
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Figure 5.18: Correlations between blood levels of EPA and the protein expression of 

VCAM-1, ICAM-1, MCP-1 and CD18 as measured by IHC. 

  

Similarly, there were significant inverse correlations between blood levels of DHA and 

the protein expression of all four markers of AVI in the vessel wall, see Figure 5.19. This was 

in the context of a numerical but non-significant reduction in VCAM-1 and MCP-1 protein 

expression in the collared carotid of DHA-treated mice. This likely reflects a genuine anti-

inflammatory effect that has not been fully demonstrated due to a modest study sample size. 
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Figure 5.19: Correlations between blood levels of DHA and the protein expression of 

VCAM-1, ICAM-1, MCP-1 and CD18 as measured by IHC. 

 The superior anti-inflammatory properties of EPA compared to DHA was again 

demonstrated when correlating the protein expression of markers of AVI with the ratio of EPA 

to DHA in blood. There was a significant inverse correlation with all four markers, consistent 

with the greater anti-inflammatory effect seen with EPA, see Figure 5.20. 
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Figure 5.20: Correlations between the EPA:DHA ratio in blood and the protein 

expression of VCAM-1, ICAM-1, MCP-1 and CD18 as measured by IHC. 
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inflammation (AVI), as evidenced by reduced endothelial protein expression of VCAM-1 and 

MCP-1. Notable reductions in markers of AVI were seen with DHA, which did not achieve 
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These outcomes were in the context of EPA and DHA supplementation having no effect on 

cholesterol or triglyceride levels, which were low in all mice. 

 The effectiveness of the oral gavage method and the method of supplement preparation 

were confirmed by the significant increase in blood omega-3 levels after 30 days of omega-3 

supplementation. Omega-3 fatty acids can be administered in various biochemical forms, 

including phospholipid, free fatty acid, triglyceride, and ethyl ester forms. The free fatty acid 

form is the most bioavailable(513) and was used in this study. The dose chosen was equivalent 

to ten times the dose used in many recent human clinical trials of 4 grams per day. Four grams 

per day equates to 60mg/kg/day for a 70kg human, and hence 600mg/kg/day was used in this 

mouse study to ensure sufficient dosing. 

In eukaryotes, fatty acids may undergo enzymatic conversion to other fatty acid species, 

by such processes as elongation, desaturation, chain shortening and beta-oxidation. This allows 

multiple diverse species of fatty acids to be generated from the presence of a single fatty acid. 

These processes however, are inefficient, and hence supplementation with a specific fatty acid 

produces the highest blood and tissue concentrations of that fatty acid. EPA (20:5ω3) can be 

elongated, Δ6 desaturated, and beta-oxidised to DHA (22:6ω3) via the intermediary, DPA  

(22:5ω3)(514). Likewise DHA can be retroconverted directly back to EPA, but without an 

intermediary(515). It follows that supplementation with either EPA or DHA in this study 

significantly increased both EPA and DHA levels, with a natural predominance of the fatty 

acid being supplemented. Likewise, DPA, which is formed by the elongation of EPA, was 

significantly increased in the EPA-supplemented mice, but not in the DHA-supplemented 

mice.  

The essential omega-3 fatty acid alpha-linolenic acid (18:3ω3) was not increased by 

supplementation with either EPA or DHA, as EPA does not readily undergo carbon chain 



180 
 

shortening. Blood levels of alpha-linolenic acid hence reflect the presence of this fatty acid in 

diet. Supplementation with olive oil, rich in the omega-9 oleic acid (18:1ω9), did not alter total 

omega-3 levels or total omega-6 levels. Arachidonic acid (20:4ω6) was increased by olive oil, 

and this is likely because oleic acid is a precursor of arachidonic acid. 

A low omega-6/omega-3 ratio is associated with lower levels of oxidative stress, 

inflammation, and endothelial dysfunction(516).  Reductions of >30% were seen in the EPA- 

and DHA-supplemented mice, despite the high background blood levels of omega-6 fatty acids.  

The levels of monounsaturated fatty acids, comprised of omega-7 and omega-9 fatty acids, 

were naturally highest in the mice supplemented with olive oil. Trans-fatty acids, which are 

atherogenic and promote inflammation and oxidative stress(517) are present in very low levels 

in standard rodent diets, and this was reflected in the trans-fatty acid blood levels. 

Supplementation with large quantities of alternative fatty acids, in the form of EPA, DHA and 

olive oil in this study, reduced trans-fatty acid levels to nearly undetectable in each case. 

Saturated fats were present in high concentrations in all mice in the study, which is consistent 

with previous fatty acid profiling in mice(518, 519). Supplementation with high doses of 

unsaturated fatty acids in this study led to reductions in the proportions of saturated fatty acids 

in all groups. Thus, it is emphasised that the omega-6/omega-3 ratio, and levels of trans-fatty 

and saturated fatty acids, are lowered by substitution by more favourable fatty acids, namely 

monounsaturated fatty acids and omega-3 polyunsaturated fatty acids. 

 Periarterial, non-occlusive collaring for 48 hours produced an intense inflammatory 

response throughout the vessel wall. VCAM-1 and ICAM-1, which are adhesion molecules 

that are upregulated during early vascular inflammation(520), were present in significant 

concentrations in the endothelium of collared carotids. MCP-1, another marker of early 

vascular inflammation, which regulates migration of monocytes into the vessel wall(521), was 

similarly induced in the endothelium by collaring. Leucocyte recruitment to the vessel wall is 
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a key, early event in acute vascular inflammation(522), and this was studied using the pan-

leucocyte marker CD18. CD18 was also induced in the endothelium by collaring. The 

numerical reductions in endothelial protein expression of all factors by both EPA and DHA is 

consistent with the known anti-inflammatory effects of omega-3 fatty acids(195). The significant 

reductions seen in VCAM-1 and MCP-1 in the mice supplemented with EPA provides evidence 

for a differential anti-inflammatory effect on acute vascular inflammation between EPA and 

DHA. Significant inverse correlations were present between blood levels of both EPA and 

DHA and the expression of VCAM-1, ICAM-1, MCP-1, and CD18. However, a higher 

EPA:DHA ratio in blood correlated with lower levels of all four inflammatory markers. This 

further demonstrates the superior anti-inflammatory effect of EPA compared to DHA, while 

also providing evidence of the anti-inflammatory properties of DHA. The superior anti-

inflammatory effect of EPA may simply reflect a more potent anti-inflammatory effect, or 

different mechanisms of action. 

Omega-3 fatty acids are known to modulate inflammation through several mechanisms. 

These include incorporation into the phospholipids of inflammatory cells(292, 293), reduced 

eicosanoid production(294),  synthesis of resolvins(295), inhibition of the pro-inflammatory NF-

κB transcription pathway(296-298), induction of the anti-inflammatory PPAR-γ transcription 

pathway(299), disruption of lipid rafts(300, 301), and binding to the G-protein coupled receptor 

GPR120(302), which initiates an anti-inflammatory signalling cascade. The expression of 

VCAM-1, ICAM-1 and MCP-1 are regulated via the NF-κB transcription pathway(523). 

Additionally, ICAM-1 is regulated by the MRTF-A/B pathway(524) and is inhibited by mIR-

22(525), both of which are not known to be a target of omega-3 fatty acids. This may explain the 

lack of a significant reduction in ICAM-1 expression observed. Moreover, the recruitment of 

leucocytes to the vessel wall, measured by CD18, is regulated by several factors(526), some of 

which are not a target of omega-3 fatty acids. There is a paucity of quality data on the 
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differential effects of EPA versus DHA on inflammation. Some studies that have examined 

this in vitro have noted comparable downregulation of gene expression of inflammatory 

markers with both EPA and DHA(527-529), or seen differential effects between the two fatty acids 

that have been discordant between studies(530, 531). Other in vitro studies have demonstrated 

differential effects of EPA compared to DHA on the expression of regulatory genes by 

concanavalin A-treated T-lymphocytes (DHA superior)(532), and in lipopolysaccharide-

stimulated THP-1 macrophages (EPA superior)(527). The specific pathways studied were 

cytokines and related receptors, signal transduction pathways, transcription factors, immune 

response, cell cycle, defence and repair, apoptosis, DNA synthesis, cell adhesion, cytoskeleton, 

and hormone receptors(527, 532). These studies have provided some mechanistic clues to explain 

differential effects on inflammation but much further study is required. 

Whether there is a differential effect of EPA compared to DHA on chronic vascular 

inflammation and atherosclerosis is yet to be determined. This is relevant since there is now 

clear evidence that certain anti-inflammatory therapies reduce cardiovascular events. The 

CANTOS study evaluated the effects of canakinumab, a monoclonal antibody that targets 

interleukin 1-β, which plays an important role in the pathogenic mechanisms leading to 

vascular inflammation(236). Canakinumab reduced cardiovascular death, nonfatal MI and 

nonfatal stroke compared to placebo in patients with a previous history of MI and an elevated 

C-reactive protein, independent of lipid levels. Thrombosis is a major pathophysiological event 

leading to these cardiovascular endpoints, with plaque rupture being the most common 

cause(533). The intense inflammatory milieu present in ruptured plaques is a potential target for 

therapies such as omega-3 fatty acids that reduce acute inflammation. Although EPA has not 

been compared directly with DHA in cardiovascular outcome trials, high-dose EPA has been 

shown to significantly reduce major adverse cardiovascular events. The recently-published 

REDUCE-IT study evaluated high-dose EPA (4 grams daily of icosapent ethyl) in 
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hypertrigyceridemic patients who had established cardiovascular disease or were diabetics with 

other cardiovascular risk factors. Icosapent ethyl reduced the primary endpoint of a composite 

of cardiovascular death, nonfatal MI, nonfatal stroke, coronary revascularisation and unstable 

angina by 25% (first event) and 30% (all events) compared to placebo(234). The reductions in 

triglyceride levels that occurred with icosapent ethyl did not influence its efficacy in reducing 

the primary endpoint. This further highlights the importance of inflammation reduction as a 

mediator of atheroprotection in this study, and the likelihood that targeting acute inflammation 

impacts all stages of atherogenesis from endothelial dysfunction to thrombosis. Future well-

designed studies of omega-3 fatty acids on acute vascular inflammation are warranted, and will 

have implications for a number of acute and chronic vascular diseases. 

 The limitations of this study include a small sample size of 10 mice per group. There 

were numerical reductions in the protein expression of all four markers of acute vascular 

inflammation with both EPA and DHA supplementation. EPA had a greater anti-inflammatory 

effect than DHA, however only reached statistical significance for VCAM-1 and MCP-1. It is 

likely that with a greater sample size, significant reductions would have been demonstrated for 

both EPA and DHA. This study was designed to directly compare pure EPA with pure DHA, 

and no mice were supplemented with formulations with different ratios of EPA and DHA. 

Therefore this study was unable to identify an optimal EPA:DHA ratio to reduce acute vascular 

inflammation. The design of this study best modelled a primary prevention setting, as wildtype 

mice fed a standard rodent diet were pre-treated with omega-3s and then given an acute 

inflammatory insult. An additional treatment arm in which mice were first collared and then 

treated with omega-3s would have permitted a comparison of primary prevention versus acute 

therapy. However, attempting to orally gavage mice after neck surgery would have 

significantly increased the risk of wound dehiscence and aspiration and therefore was not 

attempted. 
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This is the first animal study of the differential effects of EPA versus DHA 

supplementation on pure acute vascular inflammation. Pre-treatment with high dose EPA 

significantly reduced protein expression of VCAM-1 and MCP-1 in an established perivascular 

collar model of AVI. This occurred independent of lipid levels, and was supported by strong 

inverse correlations seen between blood EPA levels as well as the EPA:DHA ratio with protein 

expression of all four markers of AVI studied. This was consistent with the findings of Chapter 

4, where gene expression of MCP-1 was reduced by EPA in an in vitro model of AVI. The 

recently published REDUCE-IT study demonstrated a significant reduction in major adverse 

cardiovascular events with high dose EPA supplementation, and the effects of EPA on AVI 

may contribute to this. Moreover, the effects of EPA and DHA on chronic vascular 

inflammation and atherogenesis require further study, to further elucidate a mechanistic 

rationale for the results of REDUCE-IT. 

 

5.5 Appendix A – Periarterial collaring materials 

1. Normal saline 

2. Betadine 

3. Isoflurane for anaesthesia 

4. Anaesthetic machine with nose cone and oxygenation chamber 

5. Dissecting microscope 

6. Small metal clip applicator [Weck Hemoclip® Plus EZ Load Applier (Teleflex 

Medical, North Carolina, USA)], with small metal clips 

7. Silicone tubing with 0.64 mm internal diameter, 1.2 mm outer diameter (Catalogue 

number: JHS06412, Blue Sky Scientific, Burnside, SA, Australia).  
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8. Clippers for fur removal 

9. Lignocaine for injection, diluted to 0.5% in normal saline 

10. Buprenorphine 

11. 6/0 nylon sutures (Dyloc D602D sutures, Dynek, SA, Australia). 

12. Heatpad 

13. Cotton tips 

14. 25 gauge or smaller needles for injection 

15. 1 ml syringes 

16. Metal retractors 

17. Scalpel 

18. Small, blunt forceps x 2 

19. Suture holder 

20. Ligation aid (hook-shaped) 

21. Ruler 

22. Blunt haemostats for blunt dissection 

23. Small, fine scissors 

24. Lubricating eye drops 

25. Recovery box 
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CHAPTER 6: THE IMPACT OF OMEGA-3 FATTY ACIDS ON 

ATHEROSCLEROSIS AND CHRONIC VASCULAR INFLAMMATION 
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ABSTRACT 

Background: Despite the significant advances that have occurred in the prevention and 

management of cardiovascular disease, there remains a significant residual risk in the general 

population. Inflammation has received considerable attention as a target for new therapies. 

Omega-3 fatty acids have anti-inflammatory properties, and clinical evidence is emerging that 

supports an atheroprotective role, especially when provided at a high dose. Previous animal 

studies have attempted to evaluate the effects of omega-3 fatty acids on atherogenesis, which 

have frequently had methodological limitations, and have not explored the relative effects of 

EPA versus DHA. This study aimed to determine the effects of omega-3 fatty acids on chronic 

vascular inflammation and atherogenesis, specifically the burden and characteristics of 

atherosclerotic plaque, in an animal model. The relative effects of EPA were to be compared 

with DHA. 

Methods: Forty 8-week-old ApoE-deficient mice, 20 of each sex, were fed an atherogenic diet 

for 16 weeks to induce chronic vascular inflammation and advanced atherosclerotic plaques. 

After the first 8 weeks, a blood sample was taken for fatty acid and lipid analysis. The mice 

were then randomised equally to supplementation with 600mg/kg/day of either (1) EPA, (2) 

DHA, (3) olive oil as an oil control, or (4) no treatment, by oral gavage, to be given for the 

final 8 weeks. The mice were subsequently humanely killed and a terminal blood sample was 

taken for fatty acid and lipid analysis. Organs were harvested, and plaque burden, intimal and 

medial layer expansion, plaque collagen content, smooth muscle cell content and inflammatory 

cell content were measured in the aortic sinuses and brachiocephalic arteries. The aortas were 

stained for lipid using Oil Red O. Aortas were snap-frozen, and gene expression of markers of 

chronic inflammation and regulatory transcription factors were measured by RT-PCR 

(including IL-1β, TNF-α, MCP-1, NFκB-p65, and PPAR-γ). Correlations were made between 
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the blood concentrations of EPA, DHA, and the EPA:DHA ratio at study completion and the 

plaque, lipid, and inflammatory measures. 

Results: 38 out of 40 mice completed the study. Blood EPA and DHA levels increased 

significantly in the respective treatment groups. Plasma cholesterol levels were high in all mice 

after 8 weeks (17.96±5.4 mmol/L), continued to increase in the no treatment and placebo 

groups, but stabilised in the EPA and DHA treatment groups. Triglyceride levels were elevated 

in all mice after 8 weeks (2.27±0.70 mmol/L), and were significantly reduced by EPA and 

DHA treatment. All mice developed advanced atherosclerotic plaques, however the burden of 

plaque in the aortic sinuses and brachiocephalic arteries did not differ among treatment groups. 

Although the combined thickness of the intima and media was similar between treatment 

groups, there was an inverse correlation between blood EPA levels and intimal plus medial 

thickness (r=-0.49, p=0.04). Collagen content, a marker of plaque stability, did not significantly 

differ among treatment groups in the aortic sinus or brachiocephalic artery plaques. In these 

sites, the density of smooth muscle actin staining and macrophage (CD107b) staining on 

immunohistochemistry was similar among treatment groups. Lipid was present throughout the 

aorta in all mice, with 6.3 (IQR 5.0 – 10.6) % of the aortic surface staining positively for Oil 

Red-O in the no treatment group; this did not differ significantly among treatment groups. In 

aortic tissue, the gene expression of markers of chronic inflammation, IL-1β and TNF-α, were 

significantly lower in the mice treated with EPA (-44.3% [p=0.04] and -48.8% [p=0.04], 

respectively). There were significant inverse correlations present between IL-1β and TNF-α 

expression and both blood EPA levels and the EPA:DHA ratio. 

Conclusions: In an atherogenic mouse model, supplementation with both EPA and DHA 

stabilised cholesterol levels and reduced triglyceride levels. Despite this, neither EPA nor DHA 

had a significant effect on plaque burden, lipid burden, markers of plaque stability, or the 

inflammatory cell content of plaque. EPA significantly reduced gene expression of the markers 
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of chronic vascular inflammation IL-1β and TNF-α in the arterial wall, with a strong inverse 

correlation present between these markers and blood EPA levels and the EPA:DHA ratio. The 

findings of this study, in particular the reduction in chronic vascular inflammation by EPA 

supplementation, may provide a mechanistic contribution to the reduction in major adverse 

cardiac events seen with EPA in the recently-published REDUCE-IT trial. The 

pharmacodynamics of individual omega-3 fatty acids and their effects on all stages of 

atherogenesis require continued investigation. 

 

I, Anthony Pisaniello, conceived, designed, executed and analysed all of the work included in 

this chapter. 
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6.1 Background 

 Cardiovascular disease is the leading cause of death worldwide, with the largest 

contribution being from atherosclerotic diseases(1). Significant advances in the prevention and 

treatment of atherosclerotic diseases have led to major reductions in morbidity and mortality(2). 

Despite these advances, there remains a substantial residual cardiovascular risk in the general 

population(3). There have been continued efforts to identify and target new atherogenic 

pathways, and much attention has been focused on the role of inflammation, which is present 

in all stages of atherogenesis(534). Given the essential contribution of acute and chronic vascular 

inflammation to atherogenesis, agents that attenuate these processes are likely to have anti-

atherosclerotic properties and reduce cardiovascular risk. This has recently been demonstrated 

using canakunimb, a monoclonal antibody to interleukin-1β, which contributes significantly to 

the inflammatory state of plaques, especially in the vessel wall(79-81). Canakinumab reduced 

cardiovascular events in patients with a previous myocardial infarction and a raised C-reactive 

protein levels(120). The same may be applicable to omega-3 fatty acids, which have beneficial 

effects on inflammation(535, 536), as well as on endothelial function(537, 538), oxidative stress(197, 

539), and lipids(540, 541). As demonstrated in Chapter 4 and 5 of this thesis, omega-3 fatty acids, 

in particular eicosapentaenoic acid (EPA), reduce acute vascular inflammation (AVI). Since 

AVI is an early and critical stage of atherogenesis, it is predictable that omega-3 fatty acid 

supplementation would reduce the volume and inflammatory nature of atherosclerotic plaques. 

Moreover, inflammation in plaque promotes vulnerability(542, 543), and hence omega-3s may 

also have a favourable effect on plaque stability. The effects of omega-3 fatty acids on the 

pathology of chronic vascular inflammation and atherosclerosis have been studied 

predominantly in animal models of atherosclerosis. In a study by Matsumoto et al, EPA 

improved plaque and lipid burden in ApoE-deficient mice, and improved plaque stability and 

inflammatory cell content in LDLR-deficient mice(255). However a similar study by Xu et al, 
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which assessed the effects of combined EPA and DHA in the form of fish oil on plaque and 

lipid burden in ApoE-deficient mice demonstrated no benefit(254). Favourable effects of 

combined EPA and DHA on the inflammatory state were seen in a study by Li et al, where 

efferocytosis by macrophages was increased in the atherosclerotic plaques of ob/ob mice(256). 

The prevalence of inflammatory cells, namely macrophages, dendritic cells and CD4+ T cells 

in atherosclerotic plaques, was reduced by EPA supplementation in LDLR-deficient mice in a 

study by Nakajima et al(259). In that study, EPA was also shown to significantly regress 

atherosclerotic plaque. DHA on the other hand, has been less studied in the setting of chronic 

vascular inflammation and atherosclerosis, yet was shown in one study to reduce 

atherosclerotic lesion size in ApoE-deficient mice when added to their diet(260). These studies 

have provided evidence for beneficial effects of omega-3 fatty acids on chronic vascular 

inflammation and atherosclerosis, which require further investigation. These studies have not 

directly compared EPA with DHA. The method of supplementation used in these animal 

studies, i.e. the addition of omega-3 fatty acids to food has limitations such as a propensity for 

both fatty acid oxidation and variability in dosing. 

 Cardiovascular outcome trials (CVOTs) of omega-3 supplementation in the primary 

and secondary prevention settings have produced variable results(226-230, 232, 233), despite overall 

positive results from dietary studies(222-224). Some of the limitations of those CVOTs were 

overcome by the well-designed REDUCE-IT trial, which demonstrated a 25% reduction in 

major adverse cardiovascular events with EPA supplementation(234). Although there was no 

comparison with DHA in REDUCE-IT, data from a recent cohort study by Veno et al provided 

evidence for a superior atheroprotective effect of EPA compared to DHA(544). Middle-aged 

adult subjects had adipose tissue analysed for fatty acid content at baseline, and were followed 

for a median period of 13.5 years for the development of ischaemic strokes. There was a 

significant inverse correlation between EPA content and ischaemic stroke risk (HR 0.74, 95% 
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CI, 0.62–0.88), which was not present for DHA or for total omega-3 fatty acid content(544). The 

evidence for a cardioprotective effect of omega-3 fatty acids mandates further evaluation of 

mechanisms of benefit. This may include beneficial effects on chronic vascular inflammation 

and on the characteristics and burden of plaque. Given the results of REDUCE-IT, the 

comparative effects of EPA compared to DHA in a model of secondary prevention would be 

of significant interest. 

6.1.1 Aims and rationale of study 

The aims of this study were to: 

(1) Determine in an animal model of atherosclerosis the impact of omega-3 fatty acids on (i) 

plaque burden, characteristics, inflammatory content and stability, (ii) arterial lipid burden and 

circulating lipids, and (iii) markers of chronic inflammation in the vessel wall.  

(2) Compare the relative effects of EPA versus DHA supplementation on the above measures. 

 

An ideal animal model for this study is the ApoE-deficient mouse fed an atherogenic 

diet, which rapidly develops advanced atherosclerotic lesions that resemble those of 

humans(545). The very high cholesterol levels induce endothelial dysfunction as early as four 

weeks of age, followed by fatty streak formation by 6 weeks, and early inflammatory 

atherosclerotic plaques by 10 weeks of age(546).  By 10-15 weeks of age, foam cell formation 

and smooth muscle cell proliferation are evident, and after 20 weeks of age advanced plaques 

are seen, progressing from the proximal aorta distally throughout the arterial tree, characterised 

by a necrotic core and fibrous cap(547). Precise quantities of omega-3 fatty acids can be 

administered to mice by oral gavage, and mice do not have a natural aversion to the taste or 

odour of fish unlike other animals such as rabbits, which are often used to study 

atherosclerosis(548). 
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6.1.2 Hypotheses 

The hypotheses of this study were that: 

(1) Omega-3 fatty acids alter the development of atherosclerotic plaques by 

reducing total plaque content, reducing intimal and medial proliferation, reducing 

inflammatory cell content, and increasing collagen and smooth muscle cell content. 

(2) Omega-3 fatty acids reduce the lipid content of aortic lesions independent of 

effects on plasma cholesterol and triglyceride levels. 

(3) Omega-3 fatty acids reduce markers of chronic vascular inflammation in the 

arterial wall. 

(4) For all of the above measures, EPA will have a greater effect compared to DHA. 

(5) A significant inverse correlation will be present between blood omega-3 levels, 

especially EPA, and the above measures of plaque, lipid and vascular inflammation. 

 

6.2 Methods 

6.2.1 Study outline 

Forty 8-week-old chow-fed ApoE-deficient mice, 20 of each sex, previously fed a 

standard rodent chow diet, were commenced on an atherogenic diet (22% fat, 0.15% 

cholesterol, SF00-219, Specialty Feeds, Glen Forrest, WA, Australia) for 16 weeks. Mice were 

weighed at baseline and then weekly thereafter. After 8 weeks, a blood sample was taken by 

superficial facial vein bleeding. Whole blood was spotted onto dry blood spot cards for fatty 

acid analysis. Blood was also collected for plasma total cholesterol and triglycerides. The mice 

were then randomised equally to daily supplementation with either EPA, DHA, olive oil (OO), 

or no treatment for the last 8 weeks of the 16-week period, by oral gavage. EPA and DHA were 
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in the form of ethyl esters (>97% purity), and were provided by Bizen Chemical Company 

(Okayama, Japan). The olive oil was Bertolli brand (Florence, Italy). The dose administered 

was 600 mg/kg/day. At the end of the treatment period, the mice were humanely killed as per 

Section 2.10, and the blood that was obtained from terminal cardiac puncture was analysed for 

fatty acids, plasma total cholesterol and plasma triglycerides. The study outline is presented 

schematically in Figure 6.1. Organ harvesting was then performed. Organs were stored in 10% 

neutral-buffered formalin (NBF) or snap-frozen in liquid nitrogen. 

 

 

 

 

 

 

 

Figure 6.1: Schematic representation of study outline. Forty ApoE-deficient mice were 

randomised equally to one of four treatment groups. After 8 weeks on an atherogenic 

diet, a cheek bleed was performed and treatment by oral gavage was commenced. After 

a further 8 weeks the mice were humanely killed. 
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 The harvested hearts were sectioned parallel to the aortic valve, through its entire depth, 

in 5 µm increments. Sections were stained for haematoxylin and eosin, as well as the Masson’s 

trichrome stain, to allow quantification of plaque burden, intimal and medial expansion, and 

plaque collagen content. In addition, sections were assessed for the presence of smooth muscle 

cells by immunohistochemical staining for smooth muscle actin. Quantification of all 

immunohistochemical staining was performed using ImageJ software as per Section 2.15. The 

inflammatory content of plaque was assessed by immunohistochemical staining for 

macrophages using the CD107b (Mac3) stain. The brachiocephalic artery was sectioned 

through its entire length, and staining and quantification were as per the aortic valves. The 

aortas were stained for lipid using the Oil Red O and quantified using ImageJ software as per 

Section 2.16. The snap-frozen aortas were homogenised, and gene expression of markers of 

chronic inflammation and regulatory transcription factors were measured by PCR. These 

comprised IL-1β, TNF-α, MCP-1, NFκB-p65, and PPAR-γ. Correlations were made between 

the blood concentrations of EPA, DHA, and the EPA:DHA ratio at study completion and the 

plaque, lipid, and inflammatory measures. 

6.2.2 Statistical methods 

6.2.2.1  Sample size calculation  

The sample size calculation for this study was based on a paper by Liu M et al(549). The 

macrophage content of plaques was deemed to be the most important factor in demonstrating 

differences between treatment groups. In Liu M et al’s study, 17% of the atherosclerotic plaque 

area of ApoE-deficient mice fed an atherogenic diet stained positively for macrophages. 

Treatment with the active drug (simvastatin) reduced this to 10%, and was significantly greater 

than an inactive vehicle. Using a one-way ANOVA power calculation for 4 groups with a 

significance level of 0.05, with 80% power, and a standard deviation of 10, a sample size of 40 

was chosen, i.e. 10 mice per group. 
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6.2.2.2  Statistical analysis 

GraphPad Prism 7 (GraphPad Software Inc, La Jolla, California, USA), SPSS 19 (IBM 

Corporation, Armonk, New York, USA), and Microsoft Excel 2016 (Microsoft, Albuquerque, 

New Mexico, USA) were used to analyse data. The D’Agostino-Pearson normality test was 

performed to determine whether continuous data were normally-distributed. Normally-

distributed data were analysed using either the T-test if comparing means between two groups, 

or the One-way Analysis of Variance (ANOVA) if comparing means between multiple groups. 

If correcting for multiple comparisons, the Dunnett test was used. If comparing means between 

multiple groups adjusted for a covariate, an Analysis of Covariance (ANCOVA) was 

performed. Results were expressed as mean ± standard error of the mean (SEM). If continuous 

data were not normally-distributed, analysis was performed using the Kruskal-Wallis test, with 

Dunn’s test used to correct for multiple comparisons. Results were expressed as median + 

interquartile range (IQR). Statistical correlations were analysed using a linear regression 

model. Statistical significance was set at the 0.05 level. 

 

6.3 Results 

Thirty-eight out of 40 mice completed the study. Two mice were culled on humane 

grounds; one after pulmonary aspiration occurred following oral gavage in the 9th week of 

supplementation (DHA group), and another due to the development of significant dermatitis 

(olive oil group). 

6.3.1 Mouse body weight increased appropriately in the omega-3 treatment groups 

At baseline, the 8-week-old ApoE-deficient mice fed a standard chow diet had a mean 

weight of 22.63±0.51 g. On the atherogenic diet, this increased by approximately 1.2 g per 

week to 32.40±0.13 g by 8 weeks. There were no significant differences between mice 
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allocated to different treatment groups at baseline (p=0.65) or after 8 weeks (p=0.52). In the no 

treatment group, the mice gained 5.90±0.50 g from weeks 9 to 16.  This did not significantly 

differ in the EPA or DHA treatment groups (p=0.50 and p=0.10 respectively, adjusted for 

differences in weight after 8 weeks). Olive oil reduced further weight gain, with only a 

2.22±0.47 g increase over the last 8 weeks of the study, which was notably less than that of the 

no treatment group (p=0.004), see Figure 6.2. 

 

 

 

 

 

 

 

 

 

Figure 6.2: Weight of mice in each treatment group over the 16-week atherogenic feeding 

period. Note that treatment began after 8 weeks on this diet. n = 9-10 per group. Results 

expressed as mean ± SEM. NT = No treatment, OO = Olive oil. 
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6.3.2 Fatty acid analysis of whole blood 

6.3.2.1  Summary of fatty acid content of blood by treatment group 

A complete fatty acid profile of blood was taken after 8 weeks and then again after 16 

weeks of atherogenic feeding. This was to record the fatty acid content of blood before and 

after supplementation, and to confirm the effectiveness of the oral gavage delivery method. 

Fatty acid levels in whole blood were expressed as a percentage of total fatty acid content. The 

highest proportion of fatty acids in blood were monounsaturated and saturated fatty acids. 

Omega-6 fatty acids were more prevalent than omega-3s, and trans-fatty acids were the least 

prevalent overall. The relative proportions of all major fatty acids at study completion are 

presented in Figure 6.3. 

 

 

 

 

 

 

 

 

 

 

Figure 6.3: Relative proportions of all major fatty acid groups in blood at study 

completion, separated by treatment group. 
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6.3.2.2  Polyunsaturated omega-3 fatty acids 

Total omega-3 fatty acid content 

The SF00-219 rodent atherogenic diet has very low levels of omega-3 fatty acids 

(0.35% of total), and amongst those, it is predominantly composed of alpha-linolenic acid. 

After 8 weeks on this diet, the mean omega-3 content of blood for all mice was 2.60±0.11%. 

In the no treatment group, with continued feeding of the atherogenic diet, the total omega-3 

content of blood increased by study completion to 3.79± 0.28%. A similar outcome was seen 

in the olive oil group, with an increase to 4.06±0.21%. As predicted, EPA and DHA 

supplementation markedly increased total omega-3 levels, with significantly higher values 

compared to that of the no treatment group (13.34±0.96%; p=0.001, and 9.98±0.67%; 

p<0.0001, respectively), see Figure 6.4.  

 

 

 

 

 

 

 

 

Figure 6.4: Proportion of total blood fatty acids comprised of omega-3s at study 

completion. n = 9–10 per group. Results expressed as mean ± SEM. ****p<0.0001. 

***p<0.001. 
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Eicosapentaenoic acid levels in blood 

  The omega-3 fatty acids with established anti-inflammatory properties are EPA, DPA 

and DHA. In rodents, the plant-derived omega-3 fatty acid ALA (18:3ω3), is not efficiently 

converted to longer chain omega-3 fatty acids. Hence, blood levels of EPA (20:5ω3), DPA 

(22:5ω3) and DHA (22:6ω3) reflect their respective supplementation in a dose-dependent 

manner. Favourable properties of EPA include its superior hypolipidemic effect, and its effect 

on endothelial function. After 8 weeks, which was before randomisation, blood EPA levels 

were 0.60±0.02% of total fatty acid content in the 40 mice. Over the subsequent 8 weeks, blood 

EPA content increased mildly in the no treatment and olive oil groups to 0.97±0.07% and 

0.98±0.06%, respectively. Blood EPA levels were markedly increased in the EPA 

(9.27±0.81%) and DHA (3.68±0.29%) groups (p<0.0001 for both comparisons with the no 

treatment group). EPA supplementation naturally produced significantly higher levels of EPA 

than did DHA supplementation (p<0.0001), see Figure 6.5. 

 

 

 

 

 

 

 

Figure 6.5: The percentage of EPA in whole blood at study completion. n = 9-10 per 

group. Results expressed as mean ± SEM. ****p<0.0001. 
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Docosahexaenoic acid levels in blood 

DHA is the most unsaturated omega-3 fatty acid, and the one present in highest 

concentrations in blood and tissue. After 8 weeks of atherogenic feeding, DHA comprised 

1.41±0.07% of total fatty acids in the 40 mice. By study completion, those in the no treatment 

and olive oil groups had a mild increase in DHA levels, to 2.13±0.18% and 2.3±0.15%, 

respectively. EPA supplementation only mildly increased DHA levels (to 2.70±0.16%; p=0.23 

for comparison with the no treatment group). DHA supplementation was highly effective at 

increasing blood DHA levels, which were significantly greater than those in all other groups 

(5.52±0.38%; p<0.0001 for all comparisons), see Figure 6.6. 

 

 

 

 

 

 

 

 

Figure 6.6: The percentage of DHA in whole blood at study completion. n = 9-10 per 

group. Results expressed as mean ± SEM. ****p<0.0001. 
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Docosapentaenoic acid (DPA) levels in blood 

 DPA is an intermediary between the conversion of EPA to DHA, although the 

retroconversion of DHA to EPA does not have the DPA intermediary in rodents. It is present 

in lower concentrations in blood and tissue, and has received considerably less attention than 

EPA and DHA. Consequently, its effects on inflammation and atherosclerosis are largely 

unknown. After 8 weeks of atherogenic feeding, DPA comprised 0.32±0.01% of total fatty 

acids in the 40 mice. This remained low in the no treatment and olive oil groups for the duration 

of the study, with levels of 0.38±0.03% and 0.40±0.02%, at study completion, respectively. 

There was a predictable increase in DPA levels (231%) in the EPA-treated mice to 1.06±0.05%, 

see Figure 6.7. As expected, pure DHA supplementation did not significantly alter DPA levels.  

 

 

 

 

 

 

 

 

Figure 6.7: The percentage of DPA in whole blood at study completion. n = 9-10 per 

group. Results expressed as mean ± SEM. ****p<0.0001. 
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Alpha-linolenic acid (ALA) 

 ALA (18:3ω3) is present in low quantities in the bloodstream of rodents, and much of 

the ALA that is present is used as a substrate for the synthesis of EPA (20:5ω3) and DHA 

(22:6ω3). Longer chain omega-3s are not readily converted back to ALA, but despite this, small 

increases in ALA levels are expected after supplementation with longer chain omega-3s. After 

8 weeks, ALA comprised 0.27±0.01% of total fatty acids in the 40 mice. Small increases 

occurred in the no treatment and olive oil groups by the end of the study, to 0.32±0.02% and 

0.34±0.02%, respectively. Despite the prolonged, high-dose omega-3 supplementation, there 

were no significant increases in ALA levels in the EPA (0.27%±0.03%; p=0.43) or DHA 

(0.37±0.03%; p=0.51) treatment groups, see Table 6.1. ALA levels were higher in those treated 

with DHA compared to EPA (p=0.03), despite the higher total omega-3 levels in the EPA 

group.  

Table 6.1: Summary of blood fatty acids levels in each treatment group at study 

completion. 

Fatty acids in blood Treatment Groups 

 NT Olive Oil EPA DHA 

Total omega-3 (%) 3.79±0.28 4.06±0.21 13.34±0.96**** 9.98±0.67**** 

EPA (%) 0.97±0.07 0.98±0.06 9.27±0.81**** 3.68±0.29**** 

DHA (%) 2.13±0.18 2.34±0.15 2.70±0.16**** 5.52±0.38**** 

DPA (%) 0.38±0.03 0.40±0.02 1.06±0.05**** 0.43±0.03 

ALA (%) 0.32±0.02 0.34±0.02 0.27±0.03 0.37±0.03 

Total omega-6 (%) 10.9±0.53 11.57±0.51 6.92±0.24**** 8.14±0.29**** 

Linoleic acid (%) 5.23±0.19 5.48±0.14 4.16±0.14**** 5.04±0.10 

Arachidonic acid (%) 4.67±0.33 4.96±0.32 2.13±0.11**** 2.34±0.16**** 

Total Monounsaturated Fats (%) 45.58±0.69 45.64±0.76 37.53±0.82**** 38.32±0.59**** 

Total Trans-fatty Acids (%) 1.52±0.09 1.34±0.11 1.54±0.12 1.61±0.11 

Total Saturated Fats (%) 38.15±0.63 37.38±0.73 40.70±0.97 41.82±0.94* 
*p<0.05, ****p<0.0001 compared to NT. Results expressed as mean ± SEM. 
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6.3.2.3  Polyunsaturated omega-6 fatty acids 

Total omega-6 fatty acid content 

Omega-6 fatty acids have pro-inflammatory properties, and are highly prevalent in 

“Western-type” diets. After 8 weeks, omega-6 comprised 9.59±0.24% of total fatty acids in the 

40 mice. With the continued atherogenic feeding, this increased to 10.90±0.53% and 

11.57±0.51% in the no treatment and olive oil groups, respectively. Omega-3 supplementation 

had a favourable effect by significantly reducing omega-6 levels, likely by simple fatty acid 

substitution. In the EPA and DHA groups, the relative proportions of omega-6 significantly 

decreased, to 6.92±0.24% and 8.14±0.29%, respectively (p<0.0001 for both comparisons with 

no treatment), see Figure 6.8. 

 

 

 

 

 

 

 

 

Figure 6.8: The proportion of total fatty acids in blood comprised of omega-6 fatty acids 

at study completion. n = 9-10 per group. Results expressed as mean ± SEM. ****p<0.0001. 
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Linoleic acid 

 The two main omega-6 fatty acids are linoleic acid (LA) and arachidonic acid (AA). 

The enzymes that convert LA (18:2ω6) to AA (20:4ω6) are the same as those that convert ALA 

to EPA and DHA. Therefore, higher LA levels result in less conversion of ALA to EPA and 

DHA. After 8 weeks, linoleic acid comprised 5.03±0.10% of total fatty acids in the 40 mice. 

This did not increase with ongoing atherogenic feeding, and was 5.23±0.19% in the no 

treatment group and 5.48±0.14% in the olive oil group. DHA supplementation did not alter LA 

levels (5.08±0.14%; p=0.999), however EPA supplementation significantly reduced LA levels 

to 4.16±0.12% (p<0.0001), see Table 6.1. 

Arachidonic acid 

 Arachidonic acid (AA) is a biologically important fatty acid as it is a substrate for the 

production of eicosanoids, hormone-like mediators of tissue inflammation. After 8 weeks, 

arachidonic acid comprised 3.65±0.14% of total fatty acids in the 40 mice. With the ongoing 

atherogenic diet, this increased in the no treatment (4.67±0.33%) and olive oil (4.96±0.32%) 

groups. EPA and DHA supplementation reduced the proportion of arachidonic acid in blood to 

2.13±0.11% and 2.34±0.16% respectively, and these were significantly lower than in the no 

treatment group (p<0.0001 for both comparisons), see Table 6.1. 

Omega-6/Omega-3 ratio 

The omega-6/omega-3 ratio is a summary of the ratio of pro-inflammatory omega-6 to 

anti-inflammatory omega-3 fatty acids. Higher levels favour a pro-inflammatory state and 

confer a higher mortality risk(472). After 8 weeks on the atherogenic diet, the 40 mice had a 

mean omega-6/omega-3 ratio of 3.81±0.07. In the no treatment and olive oil groups, the omega-

6/omega-3 ratios reduced by the end of the study to 2.95±0.14 and 2.86±0.08, respectively. In 
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the EPA and DHA groups, there were major reductions, to 0.54±0.03 and 0.84±0.04 

respectively (p<0.0001 for comparisons with the no treatment group), see Figure 6.9. 

 

 

 

 

 

 

 

 

Figure 6.9: The blood omega-6:omega-3 ratio for all treatment groups at study 

completion.  n = 9-10 per group. Results expressed as mean ± SEM. ****p<0.0001.  
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significant reductions, in the EPA (37.5±0.82%; p<0.0001) and DHA (38.3±0.59%; p<0.0001) 

treatment groups, see Table 6.1. 

6.3.2.5  Trans-fatty acids 

Total trans-fatty acids 

Trans-fatty acids, which promote inflammation and increase cardiovascular risk, are 

present in low levels in rodent diets. After 8 weeks, trans-fatty acids comprised only 

1.46±0.04% of total blood fatty acids in the 40 mice. There was no significant change by the 

end of the study regardless of treatment group (no treatment: 1.52±0.09%, olive oil: 

1.34±0.11%, EPA: 1.54±0.12%, and DHA: 1.61±0.11%; p=0.88 for comparison between 

treatment groups, see Table 6.1). 

6.3.2.6  Saturated fats 

Total saturated fatty acids 

Saturated fats lack double bonds and do not readily undergo conformational changes to 

other fatty acid species. Saturated fats are pro-inflammatory although have not been 

conclusively shown to increase cardiovascular risk(137). After 8 weeks, saturated fatty acids 

comprised 42.6±0.36% of total blood fatty acids of the 40 mice. In the no treatment and olive 

oil groups, this decreased to 38.2±0.63% and 37.4±0.73%, respectively. This value was 

40.7±0.97% in the EPA group (p=0.10), and 41.8±0.94% in the DHA group, which was 

significantly higher than the no treatment group (p=0.02), see Table 6.1. 

6.3.3 Plasma cholesterol and triglycerides 

Total cholesterol 

 All mice developed hypercholesterolaemia after 8 weeks on the atherogenic diet with a 

mean total cholesterol level of 17.96±0.9 mmol/L. Before treatments commenced, there were 

no significant differences in total cholesterol levels between mice allocated to each treatment 
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group (p=0.53). In the no treatment and olive oil groups, total cholesterol levels continued to 

increase for the last 8 weeks of the study, to 20.13±1.1 mmol/L and 27.21±2.9 mmol/L, 

respectively, with significant increases from their 8-week levels (p=0.005 and p=0.02, 

respectively). Both EPA and DHA stabilised total cholesterol levels, with an increase by 

0.0±2.8 mmol/L to 20.8±1.6 mmol/L in the EPA group (p=0.999 for change from the levels at 

8 weeks), and an increase by 2.75±1.9 mmol/L to 19.96±1.3 mmol/L in the DHA group (p=0.16 

for change from the levels after 8 weeks), see Figure 6.10. 

  

 

 

 

 

 

 

 

Figure 6.10: Changes in plasma total cholesterol levels for mice in each treatment group 

from 8 weeks until study completion. n = 9-10 per group. Results are expressed as mean 

± SEM. **p<0.01. *p<0.05. NT = no treatment, OO = olive oil. 
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Triglycerides 

 Triglyceride levels were mildly elevated after 8 weeks, with a mean level of 2.27±0.70 

mmol/L. There were no significant differences between allocated treatment groups (p=0.25). 

In the no treatment group, the mean triglyceride level after 16 weeks was not significantly 

different to that after 8 weeks, with a -0.11±0.30 mmol/L change (p=0.71). In the olive oil 

group, there was mild, non-significant reduction of 0.56±0.30 mmol/L (p=0.08). This reduction 

is consistent with the known triglyceride-lowering effects of diets high in monounsaturated 

fatty acids. In the EPA and DHA groups, triglyceride levels reduced by 0.73±0.27 mmol/L 

(p=0.02), and 1.02±0.22 mmol/L (p=0.0002), respectively, see Figure 6.11. 

 

 

 

 

 

 

 

 

Figure 6.11: Changes in plasma triglyceride levels for mice in each treatment group from 

8 weeks until study completion. n = 9-10 per group. Results expressed as mean ± SEM. 

***p<0.001. *p<0.05. NT = no treatment, OO = olive oil. 
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6.3.4 Atherosclerotic plaque quantification 

Brachiocephalic artery 

 The brachiocephalic artery is a site of predilection for plaque formation in ApoE-

deficient mice fed an atherogenic diet. In this study, brachiocephalic arteries were harvested 

from male mice, resulting in a maximum of 5 mice per treatment group. When plaque was 

present it was quantified and expressed as a percentage of total cross-sectional artery area. In 

the no treatment group, plaque comprised 32.0 (IQR 24 - 40) % of total cross-sectional artery 

area. There were no significant differences in plaque burden in the olive oil [30.3 (13-38) %, 

p=0.46] and EPA [27.1 (16.3 – 51.5) %, p=0.54] groups. Mice in the DHA group had notably 

less plaque compared to the no treatment group [18.1 (16.3 – 20.7) %], although it did not reach 

statistical significance in the context of a small sample size (p=0.09), see Figure 6.12. 

Representative images from haematoxylin and eosin-stained sections are presented in Figure 

6.13. 

 

 

 

 

 

 

 

Figure 6.12: Comparison of brachiocephalic artery plaque burden as a percentage of total 

cross-sectional area. n= 3-4 per group. Results expressed as median + interquartile range. 
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Figure 6.13: Representative haematoxylin and eosin-stained sections of brachiocephalic 

arteries from mice in each treatment group. Advanced plaques are seen, including 

cholesterol crystals and intimal and medial expansion. No significant differences are 

present between treatment groups. 
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Aortic sinuses 

 Plaque burden in the aortic sinuses was expressed as the percentage area of each sinus 

comprised of plaque. The plaque burden in each sinus was averaged for each mouse. In the no 

treatment group, plaque comprised 34.2 (IQR 19 – 35) % of total sinus area. This was similar 

to the plaque burden seen in the brachiocephalic arteries. There were no significant differences 

among treatment groups (p=0.95 for the overall comparison), see Figure 6.14. In the olive oil 

group, plaque comprised 33.5 (26.1 – 39.6) % of total sinus area, and in the EPA and DHA 

groups plaque comprised 32.8 (20.1 – 37.3) % and 30.5 (26.1 – 35.6) % of total sinus area, 

respectively. Representative images from haematoxylin and eosin-stained slides are presented 

in Figure 6.15.  

 

 

 

 

 

 

 

 

 

Figure 6.14: Comparison of plaque burden in the aortic sinuses between treatment 

groups. n = 4 per group. Results expressed as median + interquartile range. 
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Figure 6.15: Representative haematoxylin and eosin-stained sections of the aortic sinuses 

from mice in each treatment group. Advanced plaques with inflammatory infiltrates and 

cholesterol crystals can be seen. No significant differences were present between 

treatment groups.  

6.3.5 Expansion of the intima and media in the artery wall 

 Following endothelial injury, an early event in atherogenesis, smooth muscle cells 

(SMCs) are recruited to the intima and proliferate. Over time, this expands the extracellular 
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matrix and results in thickening of the intimal and medial layers of the arterial wall. This 

thickening narrows the lumen. The impact of omega-3 supplementation on this process was 

quantified histologically in the brachiocephalic artery specimens. The area comprised by the 

intimal and medial layers was measured and expressed as a proportion of the total area of the 

artery wall. In the no treatment group, the median value was 30.7 (IQR 26.1 – 37.2) %. In the 

olive oil group, this was significantly greater at 48.2 (38.6 – 52.0) % (p=0.02). However, there 

were no significant differences noted in the EPA [36.2 (28.5 – 42.6) % (p=0.42)] or DHA [39.9 

(34.5 – 49.2) % (p=0.10)] treatment groups, see Figure 6.16). The representative H & E sections 

of plaque in Figure 6.13 also demonstrate expansion of the intimal and medial layers. 

 

 

 

 

 

 

 

 

Figure 6.16: The percentage of total artery wall area comprised of the intima and media, 

compared between treatment groups. n = 4-6 per group. Results expressed as median + 

interquartile range. *p<0.05. 
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6.3.6 Collagen content of plaque as a measure of stability 

 Atherosclerotic plaques that are stable are less prone to rupture. The amount and 

organisation of matrix collagen is positively associated with the mechanical stability of the 

fibrous cap(550). In advanced plaques, inflammatory cells release metalloproteinases (MMPs), 

which degrade collagen and cause apoptosis of collagen-producing SMCs. The collagen 

content of plaques in the brachiocephalic arteries and aortic sinuses were quantified using the 

Masson’s trichrome stain. Collagen comprised 60.6 (IQR 55.1 – 68.6) % of brachiocephalic 

artery plaque in the no treatment group. There were no significant differences in collagen 

content amongst different treatment groups, with mean values for the olive oil, EPA, and DHA 

treatment groups of 60.1 (38.1 – 70.3) %, 65.6 (46.2 – 71.8) %, and 48.8 (36.9 – 62.5) %, 

respectively (p=0.65 for differences between the groups), see Figure 6.17. Representative 

images of slides stained with Masson’s trichrome stain from each treatment group are presented 

in Figure 6.18. 

 

 

 

 

 

 

 

Figure 6.17: Comparison of the collagen content of plaque in the brachiocephalic arteries 

between treatment groups. n = 3-5 per group. Results expressed as median + interquartile 

range.  
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Figure 6.18: Representative sections of brachiocephalic arteries from mice in each 

treatment group stained with the Masson’s Trichrome stain. The collagen content of 

plaques was high, and not significantly different between treatment groups. 
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Plaque in the aortic sinuses had a higher collagen content than that in the 

brachiocephalic arteries. In the no treatment group this was 83.4±1.1%, and not significantly 

different in the EPA (72.9±5.4%, p=0.11) or DHA (73.5±2.5%, p=0.11) treatment groups. It 

was significantly reduced in the olive oil treatment group (70.9±4.0%, p=0.04), see Figure 6.19. 

Representative images of aortic sinus plaques stained with the Masson’s trichrome stain are 

presented in Figure 6.20. 

 

 

 

 

 

 

 

 

 

Figure 6.19: Comparison of the collagen content of aortic sinus plaques between 

treatment groups. n = 7-8 per group. Results expressed as mean ± SEM. *p<0.05 
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Figure 6.20: Representative sections of aortic sinuses from mice in each treatment group 

stained with the Masson’s Trichrome stain. The content of collagen, stained blue, was 

higher than that of the brachiocephalic artery plaque, and was not significantly different 

between treatment groups. 
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6.3.7 Smooth muscle cell content of plaque 

 In atherosclerotic plaques SMCs contribute to the formation of the fibrous cap. With 

degradation of SMCs and collagen by MMPs in inflammatory plaques, SMC content and 

plaque stability are reduced. Brachiocephalic artery and aortic sinus sections underwent 

immunohistochemical staining for SMCs in plaque using the smooth muscle actin (SMA) 

antibody. The density of SMA staining in the brachiocephalic arteries in the no treatment group 

was 43.2 (IQR 38.8 – 56.3) % of the maximum possible. No significant differences were seen 

between treatment groups (p=0.45), with 25.5 (25.2 – 54.1) % in the olive oil group, 32.2 (24.4 

– 54.1) % in the EPA group, and 51.7 (33.2 – 59.0) % in the DHA group, see Figure 6.21. 

Representative images are shown in Figure 6.22.  

 

 

 

 

 

 

 

 

Figure 6.21: Smooth muscle cell content of brachiocephalic artery plaques, measured by 

IHC staining for smooth muscle actin (SMA). n = 3-5 per group. Results expressed as 

median + interquartile range. 
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Figure 6.22: Representative images of brachiocephalic arteries in each treatment group 

stained for smooth muscle actin. Staining was positive throughout plaques and did not 

significantly differ between treatment groups. 

 The density of SMA staining in aortic sinus plaques was less than that of the 

brachiocephalic artery plaques. In the no treatment group, the staining density of SMA was 

19.1 (IQR 18.2 – 21.4) % of the maximum possible. No significant differences were present 
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between treatment groups (p = 0.94). In the olive oil, EPA, and DHA treatment groups, the 

staining density was 17.3 (16.0 – 25.1) %, 20.4 (18.4 – 21.9) %, and 19.1 (13.7 – 21.6) %, 

respectively, see Figure 6.23. The pattern of staining was diffuse in the brachiocephalic artery 

plaques. The aortic sinus plaques had a striking intensity of staining localised to the plaque 

surface, consistent with the location of the fibrous cap, see Figure 6.24. 

 

 

 

 

 

 

 

 

Figure 6.23: Density of IHC staining for smooth muscle actin (SMA) in aortic sinus 

plaques. n = 7-8 per group. Results expressed as median + interquartile range.  
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Figure 6.24: Representative images of aortic sinus plaques stained for smooth muscle 

actin. Intense staining is present on the surface of plaques. No differences in staining 

density were present between treatment groups. 
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6.3.8 Chronic inflammation in plaque and in the vessel wall 

6.3.8.1  Macrophage content of plaques 

Atherosclerotic plaques with a high inflammatory cell content are more biologically 

active and vulnerable(551). Macrophages are highly prevalent at sites of chronic inflammation, 

and play a critical role in all stages of atherosclerosis. The macrophage content of plaques was 

measured by performing immunohistochemical staining of brachiocephalic arteries and aortic 

sinuses for CD107b (Mac3), which is expressed on the surface of macrophages. In the no 

treatment group, the staining density of CD107b in brachiocephalic artery plaques was 22.1 

(IQR 21.5 – 27.8) % of the maximum possible. This was not significantly different amongst 

treatment groups (p=0.14), with 26.2 (16.9 – 46.7) % in the olive oil group, 20.1 (16.4 – 25.5) 

% in the EPA group, and 39.3 (36.1 – 45.9) % in the DHA group, see Figures 6.25 and 6.26. 

 

 

 

 

 

 

 

 

Figure 6.25: Density of IHC staining for CD107b (Mac3) in brachiocephalic artery 

plaques. n = 3-4 per group. Results expressed as median + interquartile range. 
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Figure 6.26: Representative images of brachiocephalic artery plaques stained for the 

macrophage marker CD107b (Mac3). Staining is present diffusely throughout plaque, 

and the density of staining is no different between treatment groups. 

  

Aortic sinus plaques had less CD107b staining than the brachiocephalic plaques, with 

a median plaque staining density of 6.1 (IQR 5.4 – 7.5) % of the maximum possible in the no 
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treatment group. This was consistent with other measures of plaque stability, indicating that 

brachiocephalic artery plaques were more vulnerable than aortic sinus plaques. There were no 

significant differences in the olive oil and EPA groups, with staining densities of 7.1 (6.8 – 8.1) 

% and 7.0 (6.3 – 10.5) %, respectively. Staining was unexpectedly higher in the DHA group 

[9.7 (7.2 – 12.4) %], and reached borderline significance (p = 0.05), see Figures 6.27 and 6.28. 

 

 

 

 

 

 

 

 

 

Figure 6.27: Density of IHC staining for CD107b (Mac3) in aortic sinus plaques. Results 

expressed as median + interquartile range. n = 6-8 per group. *p=0.05 
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Figure 6.28: Representative images of aortic sinus plaques stained for CD107b (Mac3). 

Staining is diffuse throughout plaque but weaker than that seen in brachiocephalic artery 

plaques. There was a greater density of staining in the DHA group which reached 

borderline significance. 
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6.3.8.2  Chronic inflammation in the vessel wall 

Prolonged atherogenic feeding in ApoE-deficient mice induces a chronic inflammatory 

state. The following markers and transcriptional regulators of chronic inflammation were 

measured at the gene level by RT-PCR in snap-frozen aortas: IL-1β, TNF-α, MCP-1, NFκB-

p65, and PPAR-γ. IL-1β is a potent pro-inflammatory cytokine that is produced after NFκB-

dependent activation of the inflammasome, and is prevalent in states of chronic inflammation. 

It is produced by endothelial cells and macrophages in the setting of atherosclerosis. TNF-α is 

a cytokine secreted by numerous immune cells including those in the vessel wall at sites of 

acute and chronic injury. Its presence stimulates other inflammatory mediators that contribute 

to a chronic inflammatory milieu. MCP-1 is a chemotactic cytokine which is highly expressed 

in atherosclerotic lesions. It recruits leukocytes to sites of endothelial injury and induces 

chronic vascular inflammation. The transcription factor NFκB regulates the transcription of 

pro-inflammatory genes. NFκB is detectable in atherosclerotic plaques, with higher levels seen 

in plaques that are unstable, and p65 is its most important subunit. PPAR-γ regulates the 

transcription of anti-inflammatory genes, and is also detectable in plaques. 

 Compared to the no treatment group, the relative gene expression of IL-1β in the EPA 

group was 44.3 (IQR 33.4 – 51.8) % lower (p=0.04). In the DHA group it was 48.8 % (25.2 – 

51.8) lower, but it did not reach statistical significance (p=0.06). Gene expression was 33.5 

(16.4 – 80.8) % greater in IL-1β expression in the olive oil group, but was not statistically 

significant (p=0.56), see Figure 6.29. 
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Figure 6.29: Relative gene expression of IL-1β in mouse aortas, measured by RT-PCR. 

Notable reductions were seen in the EPA and DHA treatment groups. n = 4-6 per group. 

Results expressed as median + interquartile range. *p<0.05. 

 

Similarly, the EPA and DHA groups had significantly lower TNF-α expression 

compared to the no treatment group. Gene expression was 47.9 (IQR 31.0 – 63.2) % lower in 

the EPA group (p=0.04), and 49.8 (27.4 – 70.1) % lower in the DHA group (p = 0.05). Gene 

expression was 20.3 (-22.2 – 46.6) % lower in the olive oil group, which was not statistically 

significant (p = 0.26), see Figure 6.30.  
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Figure 6.30: Relative gene expression of TNF-α in mouse aortas, measured by RT-PCR. 

TNF-α was significantly reduced by EPA and DHA. n = 4-6 per group. Results expressed 

as median + interquartile range.  *p<0.05. 

 

Despite the reductions in IL-1β and TNF-α seen with EPA and DHA, there were no 

significant differences between treatment groups seen for MCP-1 expression. Compared to the 

no treatment group, MCP-1 gene expression was 6.2 (-25.8 – 37.5) % lower in the EPA group 

(p=0.79), and 36.3 (24.0 – 51.0) % lower in the DHA group (p=0.15). Gene expression was 4.0 

(-47.4 - 95) % greater in the olive oil group (p=0.79), see Figure 6.31. 
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Figure 6.31: Relative gene expression of MCP-1 in mouse aortas, measured by RT-PCR. 

n = 4-6 per group. Results expressed as median + interquartile range. 

 

Gene expression of the transcription factors NFκBp65 (pro-inflammatory) and PPAR-

γ (anti-inflammatory) were similar in all treatment groups, see Figures 6.32 and 6.33. 

Compared to the no treatment group, the gene expression of NFκBp65 was 5.6 (-16.7 – 44.7) 

% greater in the EPA group (p=0.65), 21.4 (-16.1 – 50.9) % greater in the DHA group (p=0.43), 

and 11.3 (-31.1 – 19.8) % greater in the olive oil group (p=0.96). Compared to the no treatment 

group, the gene expression of PPAR- γ was 15.7 (-30.1 – 67.2) % greater in the EPA group 

(p=0.98), 41.8 (-20.1 – 92.3) % greater in the DHA group (p=0.69), and 55.3 (27.3 – 107.0) % 

greater in the olive oil group (p=0.29). Functional changes in transcription factors are likely to 

be more important than the magnitude of gene expression. 
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Figure 6.32: Relative gene expression of NFκBp65 in mouse aortas, measured by RT-

PCR. n = 4-6 per group. Results expressed as median + interquartile range. 

 

 

 

 

 

 

 

 

Figure 6.33: Relative gene expression of PPAR-γ in mouse aortas, measured by RT-PCR. 

n = 4-6 per group. Data are presented as median + interquartile range. 
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6.3.9 Lipid content of the aorta 

 After 16 weeks of atherogenic feeding, the aortas of all ApoE-deficient mice stained 

positively for Oil Red-O. Lipid was present diffusely throughout the aorta in all mice. In the 

no treatment group, 6.3 (IQR 5.0 – 10.6) % of the aortic surface area stained positively for Oil 

Red-O. Treatment with neither olive oil, EPA or DHA significantly modified aortic lipid 

content, with 7.1 (5.2 – 13.0) %, 6.9 (6.6 – 8.1) %, and 4.4 (4.1 – 8.1) % of aortic surface area 

staining positively, respectively (p>0.99 for all comparisons with no treatment), see Figures 

6.34 and 6.35. The lack of effect of EPA or DHA on aortic lipid burden was in spite of their 

favourable effects on plasma cholesterol and triglycerides. 

 

 

 

 

 

 

 

 

Figure 6.34: Burden of lipid in the aorta, as a proportion of total aortic surface area. n = 

4-5 per group. Results expressed as median + interquartile range.  
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Figure 6.35: Representative images from analysis of Oil Red-O staining in aortas pinned 

en-face. Lipid deposition spans the entire length of the aorta, with a similar lipid burden 

amongst the different treatment groups. 

 

6.3.10 Correlations between blood omega-3 levels and measures of plaque burden, 

plaque characteristics, lipid burden and vascular inflammation 

 The blood concentrations of EPA, DHA and the EPA:DHA ratio at study completion 

were correlated with (1) all measures of plaque burden, stability, inflammatory cell content, (2) 

gene expression of markers of inflammation in the vessel wall, and (3) the burden of lipid in 

the aorta. A summary of the correlation (Spearman) coefficient and level of statistical 

significance for each correlation is presented in Table 6.2. No significant correlation was seen 

between blood omega-3 concentrations and the burden of plaque in the aortic sinuses or 

brachiocephalic arteries, however there was a significant inverse correlation between EPA 

levels and the thickness of the intima and media in the arterial wall (see Figure 6.36). 

No Treatment Olive Oil EPA DHA 
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Table 6.2: Summary of correlations between blood concentrations of EPA, DHA, and the 

ratio of EPA to DHA with measures of plaque burden and characteristics, lipid burden 

and vascular inflammation. 

Parameter Correlation coefficient and significance level 
 EPA DHA EPA:DHA 
Aortic sinus plaque burden r = -0.07, p = 0.82 r = 0.11, p = 0.70 r = 0.05, p = 0.86 
BCA plaque burden r = 0.10, p = 0.74 r = -0.36, p = 0.22 r = 0.08, p = 0.79 
Arterial intimal + medial thickness r = -0.49, p = 0.04 r = -0.11, p = 0.67 r = -0.39, p = 0.11 
Aortic sinus plaque collagen r = -0.22, p = 0.25 r = -0.34, p = 0.06 r = -0.12, p = 0.53 
BCA plaque collagen r = -0.06, p = 0.85 r = -0.47, p = 0.09 r = -0.13, p = 0.65 
SMA staining in aortic sinus plaque r = 0.06, p = 0.76 r = 0.09, p = 0.65 r = 0.04, p = 0.83 
SMA staining in BCA plaque r = 0.13, p = 0.66 r = 0.56, p = 0.54 r = 0.12, p = 0.68 
CD107b staining in aortic sinus plaque r = 0.32, p = 0.09 r = 0.58, p = 0.0008 r = 0.05, p = 0.79 
CD107b staining in BCA plaque r = -0.04, p = 0.89 r = 0.66, p = 0.01 r = -0.29, p = 0.32 
IL-1β expression in arterial wall r = -0.63, p = 0.009 r = -0.47, p = 0.06 r = -0.67, p = 0.004 
TNF-α expression in arterial wall r = -0.50, p = 0.04 r = -0.45, p = 0.06 r = -0.47, p = 0.049 
MCP-1 expression in arterial wall r = -0.13, p = 0.61 r = -0.43, p = 0.07 r = 0.02, p = 0.93 
NFκBp65 expression in arterial wall r = -0.11, p = 0.66 r = -0.13, p = 0.62 r = -0.02, p = 0.95 
PPAR-γ expression in arterial wall r = -0.31, p = 0.21 r = -0.13, p = 0.60 r = -0.35, p = 0.16 
Lipid burden in aorta (Oil Red-O) r = -0.21, p = 0.39 r = -0.40, p = 0.09 r = 0.18, p = 0.46 

 

BCA = brachiocephalic artery. SMA = smooth muscle actin. 
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Figure 6.36: Correlation between blood EPA concentration at study completion and 

intimal plus medial thickness in the artery wall. n = 18 mice.  

No significant correlation was present between omega-3 levels and two important 

measures of plaque stability, i.e. collagen content and smooth muscle actin staining (See Table 

6.2). The macrophage content of both aortic sinus and brachiocephalic artery plaques correlated 

positively and significantly with blood DHA levels, indicating that DHA may have a pro-

inflammatory effect in atherosclerotic plaques (See Figures 6.37 and 6.38). 
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Figure 6.37: Correlation between blood DHA concentration at study completion and 

staining for CD107b (Mac3) in aortic sinus plaques. n = 30 mice.  

 

 

 

 

 

 

 

 

Figure 6.38: Correlation between blood DHA concentration at study completion and 

staining for CD107b (Mac3) in brachiocephalic artery plaques. n = 14 mice. 
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 Consistent with the reductions in gene expression of IL-1β and TNF-α in the arterial 

wall occurring with EPA supplementation, there was a significant inverse correlation present 

between (1) blood EPA levels and (2) the EPA:DHA ratio with the expression of those genes 

(see Figures 6.39 to 6.42). No significant correlations were demonstrated between blood 

omega-3 levels and the gene expression of MCP-1, NFκBp65, or PPAR-γ in the arterial wall 

(see Table 6.2). Furthermore, no significant correlations were demonstrated between blood 

omega-3 levels and the burden of lipid in the aorta (see Table 6.2). 

 

 

 

 

 

 

 

 

Figure 6.39: Correlation between blood EPA concentration at study completion and the 

gene expression of IL-1β in the arterial wall. n = 17 mice. 
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Figure 6.40: Correlation between blood EPA:DHA ratio at study completion and the gene 

expression of IL-1β in the arterial wall. n = 17 mice. 

 

 

 

 

 

 

 

 

Figure 6.41: Correlation between blood EPA concentration at study completion and the 

gene expression of TNF-α in the arterial wall. n = 18 mice. 
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Figure 6.42: Correlation between blood EPA:DHA ratio at study completion and the gene 

expression of TNF-α in the arterial wall. n = 18 mice. 

 

6.4 Discussion 

 This is the first study comparing direct supplementation of purified EPA with DHA on 

atherogenesis and chronic vascular inflammation in a mouse model. Previous studies have 

administered combinations of EPA and DHA, or individual fatty acids alone, typically by their 

addition to diet. Chapters 4 and 5 of this thesis demonstrated that EPA reduces acute vascular 

inflammation and has a superior effect over DHA. This chapter extends the study of omega-3 

fatty acids to their effects on the development of advanced atherosclerotic lesions and on 

chronic vascular inflammation. ApoE-deficient mice fed an atherogenic diet were 

supplemented with high dose EPA, DHA, olive oil, or had no treatment, for the last 8 weeks of 

a 16-week atherogenic feeding period prior to being humanely killed. The dose chosen was 

equivalent to ten times the dose used in many recent human clinical trials of 4 grams per day. 
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Four grams per day equates to 60 mg/kg/day for a 70kg human, and hence 600 mg/kg/day was 

used in this mouse study to ensure sufficient dosing. The effects of treatments on the rate of 

weight gain, lipid levels, the burden of plaque and lipid, the inflammatory characteristics and 

stability of atherosclerotic plaque, and on chronic inflammation of the vessel wall were 

quantified. 

 The neutral effects of EPA and DHA on the rate of weight gain in this study are 

consistent with previous studies showing no effect of omega-3 fatty acid supplementation on 

body weight(552-554). Olive oil reduced the rate of weight gain, and this may be because oleic 

acid, its dominant fatty acid, is a substrate for the lipid messenger oleoylethanolamide, which 

induces satiety after fat consumption(555). 

 The effect of fish oil on total cholesterol levels has been studied extensively, but this is 

one of few studies using pure EPA and DHA. The stabilising effect of EPA and DHA on 

cholesterol levels demonstrated in this study is consistent with a study by Guo et al, where 

EPA, DPA, and DHA were administered to C57Bl/6 mice fed an atherogenic diet, and all three 

fatty acids reduced total cholesterol and LDL levels(556). These cholesterol-lowering effects of 

omega-3 fatty acids are in contrast to the small increase typically seen in humans(541), and even 

differ between rodent species(557). Mechanisms for this effect in mice may be the activation of 

AMP-activated protein kinase(558), activation of fatty acid oxidation genes(559), and suppression 

of liver fatty acid synthesis(560). 

Triglyceride levels were naturally elevated in all mice after 8 weeks, as ApoE-deficient 

mice have reduced triglyceride clearance(561). Both EPA and DHA significantly reduced these 

levels by the end of the study. This is consistent with findings from Guo et al’s study, with 

EPA, DPA, and DHA all reducing triglyceride levels. Previous animal studies have also shown 

reductions in plasma triglycerides with combination omega-3 (EPA plus DHA) 
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supplementation(558, 562), and a triglyceride-lowering effect with DHA administered alone(563). 

Human studies have likewise consistently demonstrated triglyceride lowering with omega-

3s(207, 564). This has been attributed to reduced triglyceride production and increased 

clearance(565). Specifically, the stimulation of PPAR-α causes beta-oxidation of fatty acids, 

which reduces their availability for VLDL production(559). The superior effect of DHA in 

reducing triglyceride levels compared to EPA in the current study is also consistent with human 

studies(288, 479, 480, 482, 483, 566). 

Neither EPA nor DHA altered the burden of atherosclerotic plaque. Atherosclerotic 

plaques were quantified at sites of predilection for advanced plaque formation, namely the 

aortic sinuses and brachiocephalic arteries. Omega-3 fatty acids have numerous pleiotropic 

effects beyond lipid lowering, which lower cardiovascular risk(567), but which were clearly 

insufficient to lead to a measurable anti-atherosclerotic effect. In the current study, plaque in 

the aortic sinuses and brachiocephalic arteries was extensive and morphologically advanced. 

The burden of plaque was similar in both locations (32-34% of total area), however the stability 

of plaque was higher in the aortic sinuses as evidenced by a higher collagen content, a high 

concentration of smooth muscle cells on the plaque surface, and a lower inflammatory cell 

(macrophage) content. Blood flow at arterial branch points (such as the brachiocephalic artery) 

is subject to abnormal haemodynamic shear stress, which induces endothelial dysfunction and 

promotes atherosclerosis(568) compared to sites of more laminar flow, such as the aortic root. 

This explains the discrepant findings at the two sites. It is plausible that omega-3s would have 

a favourable effect on arterial shear stress given the reductions in arterial stiffness(569) and 

increases in local nitric oxide production(570) previously demonstrated. However, this has not 

been studied directly using omega-3 fatty acids and warrants further investigation. 

Furthermore, neither EPA nor DHA reduced the degree of expansion of the arterial intima and 

media. There was, however, a significant inverse correlation between the content of EPA in 
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blood and the thickness of the intima and media. This is consistent with evidence for an 

association between higher blood omega-3 levels and lower carotid intima-media thickness in 

certain population groups, however a greater association of EPA compared to DHA has not 

been previously reported(571, 572). The collagen content, smooth muscle cell content, and 

inflammatory cell (macrophage) content were not altered by any of the treatments. However, 

there was a significant positive correlation between DHA levels and the macrophage content 

of plaques. This would naturally be considered to represent a pro-inflammatory relationship of 

DHA with plaque. This is in contrast to evidence of a macrophage-lowering effect of omega-3 

fatty acids, which has been demonstrated in carotid endarterectomy specimens after fish oil 

supplementation(253). It has been suggested that omega-3 fatty acids lower macrophage content 

in plaque by inducing their death by apoptosis(253). Macrophages in plaque contribute to plaque 

instability, both pathologically(573) and clinically(574), and hence their apoptosis would generally 

be considered beneficial. However, apoptotic macrophages in plaques are incompletely 

scavenged, and their death results in the release of extracellular lipid into plaque. The cellular 

debris and extracellular lipid may propagate the chronic inflammatory response in plaque(575). 

Therefore, the positive correlation of DHA with plaque macrophage content demonstrated in 

this study suggests, but does not necessarily imply, a pro-atherosclerotic relationship, with EPA 

being more protective than DHA. 

Lipid was detected using Oil Red-O staining throughout the aorta. EPA and DHA did 

not reduce lipid burden despite lowering serum cholesterol and triglyceride levels. Although 

the positive and continuous association between serum cholesterol and atherosclerosis has been 

well-established(275, 576), only recently has the lipid content of plaque become quantifiable in 

vivo, using near-infrared spectroscopy (NIRS)(577-579). Unlike total plaque burden, the lipid 

content of plaque does not correlate directly with serum cholesterol levels. Rather, changes in 

the lipid content of plaque has been associated with changes in HDL-C but not other lipid 
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parameters(580). This may explain the discordance between serum cholesterol levels and aortic 

lipid burden. Given that only 4-5 mice per treatment group had aortic Oil Red-O staining 

performed, an effect on plaque lipid by omega-3 fatty acids cannot be excluded. Larger studies 

will be required to further elucidate the differential effects of EPA and DHA on plaque lipid, 

and the clinical implications of this. 

EPA significantly reduced the gene expression of two important markers of chronic 

vascular inflammation in plaque, IL-1β and TNF-α. There was also a significant inverse 

correlation between the gene expression of both IL-1β and TNF-α and blood levels of EPA as 

well as the EPA:DHA ratio. This provides evidence for a differential and superior effect of 

EPA compared to DHA on chronic vascular inflammation. The suppressive effect of EPA on 

IL-1β gene expression may be due to its effects on the inflammasome. There are numerous 

stimulators of the inflammasome in atherosclerotic plaques, including cholesterol crystals and 

inflammatory cytokines. Indeed, there are significant amounts of NLRP3, caspase-I and IL-1β 

in plaques(74). Hence, the requirement for a two-step activation process for the inflammasome 

and subsequent IL-1β generation is not a hindrance for continued inflammatory activity in 

atherosclerotic plaques. Dietary fatty acid composition is sensed by the NLRP3 inflammasome 

in human macrophages, and omega-3 fatty acids (studied in the forms of fish oil and DHA) 

have been shown to have an inhibitory effect(353, 354, 581). Williams-Bey et al demonstrated that 

inhibition of the G-Protein-coupled Receptor, GPR120, also known as Free Fatty Acid 

Receptor 4, was necessary for this to occur, which suppressed the nuclear translocation of NF-

κB(581). It is likely that EPA inhibits the inflammasome by the same mechanisms demonstrated 

for fish oil and DHA. Based on the success of IL-1β inhibition on reducing cardiovascular 

events in high risk patients(120), it is likely that the cardioprotective effects of high-dose EPA 

seen in the REDUCE-IT trial are partly due to this mechanism(234). 
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The suppressive effect of omega-3 fatty acids on TNF-α has been demonstrated for both 

circulating and tissue forms. Circulating TNF-α has been reduced with fish oil supplementation 

in both mice(582) and humans(583). In vitro studies have corroborated this with reductions seen 

in endotoxin-induced TNF production by monocytes(296, 584) after the addition of omega-3 fatty 

acids. This was shown to be due to inhibition of NFκB activation(297, 298). TNF-α has been 

measured in the vessel wall by Western Blot after EPA supplementation in a rabbit model of 

acute vascular inflammation. In this study, pre-treatment of Japanese white rabbits for 1 week 

with high dose EPA resulting in a reduction in TNF-α levels in the vessel wall both before and 

3 days after carotid cuff placement(585). In the setting of chronic vascular inflammation and 

atherosclerosis, a study of LDL-R-deficient mice fed an atherogenic diet demonstrated a 

reduction in gene expression of TNF-α in established atherosclerotic plaques after EPA 

supplementation(259). A proposed mechanism elucidated by Vassiliou et al is that the omega-3 

metabolite Resolvin D1 inhibits T cell proliferation (a source of TNF-α) through increasing 

indoleamine 2,3-dioxygenase expression in dendritic cells(586). This is the first study to compare 

the effects of EPA with DHA on the gene expression of TNF-α in vessel wall in the setting of 

chronic vascular inflammation, and hence the finding of a superior effect of EPA is a novel 

finding. 

An important limitation of this study is the small sample size. Although a power 

calculation guided the overall allocation of 10 mice per treatment group, several analyses of 

plaque, inflammation and lipid were performed with only 5 mice per treatment group because 

they included only mice of a single sex. Hence, these analyses per underpowered, and the 

negative results should be interpreted with caution. 

Supplementation of omega-3 fatty acids for the final 8 weeks of a 16-week atherogenic 

feeding period in ApoE-deficient mice models a clinical scenario of the commencement of fish 

oil supplementation in an adult with atherosclerotic cardiovascular disease. Nakashima et al 
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demonstrated that by 15 weeks of age, approximately the same age that the mice in the current 

study were randomised to treatments, ApoE-deficient mice fed an atherogenic diet have 

developed foam cell lesions, smooth muscle cell proliferation and early fibrous plaques(546). 

Neither EPA nor DHA significantly altered the burden of plaque or several measures of its 

stability. Nor did EPA or DHA alter lipid burden in the aorta. Consistent with the reduction in 

acute vascular inflammation in collared carotid arteries by EPA seen in Chapter 5, the current 

study demonstrates a reduction in markers of chronic vascular inflammation in aortas with EPA 

treatment. Furthermore, these reductions were significantly inversely correlated with blood 

EPA levels. These findings may contribute to the mechanisms underlying the reduction in 

major adverse cardiac events seen with EPA in the recently-published REDUCE-IT trial(234). 

The results of the current study predict a superior atheroprotective effect of EPA compared to 

DHA, however this will need to be confirmed in clinical trials. Although atherosclerosis is 

fundamentally an inflammatory disease(4), the neutral effect of omega-3s on atherogenesis 

despite a clear anti-inflammatory effect highlights the complex mechanisms underlying this 

disease process. The pharmacodynamics of individual omega-3 fatty acids and their effects on 

atherogenic mediators require continued investigation. 
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7.1 Rationale for body of work 

 The effects of omega-3 fatty acids on atherosclerosis have been studied extensively, 

including mechanistic studies, observational studies, clinical trials, and epidemiological 

research. Throughout the period of investigation, which has continued for approximately half 

a century, there have been discrepancies in the findings of these studies, with numerous 

examples. Mechanistic studies typically demonstrated beneficial effects of omega-3 fatty acids 

on inflammation and atherogenesis. Observational studies, both prospective and retrospective, 

have most commonly demonstrated inverse associations between fish and fish oil consumption 

as well as blood omega-3 levels on cardiovascular events and mortality. Notably, these inverse 

associations were more consistent with fish compared to fish oil consumption. Clinical trials 

of fish oil have produced varied results, however, from an overall neutral effect to significant 

reductions in cardiovascular events and mortality. Neutral effects were seen more commonly, 

and identified a paradox of basic research studies identifying cardioprotective properties of 

omega-3 fatty acids that did not reliably translate into clinical benefit. Moreover, omega-3 fatty 

acids have consistently been shown to reduce inflammation and triglyceride levels, with both 

associated with increased cardiovascular risk. 

 The omega-3 formulations used in basic and clinical studies have been highly 

heterogeneous, including a variety of doses and EPA:DHA ratios. There is a possibility that an 

optimal ratio of EPA:DHA exists, and that a dose threshold may be required to achieve an 

atheroprotective effect. Furthermore, the form in which omega-3 fatty acids are consumed may 

also play an important role. In most oily fish, omega-3 fatty acids are primarily in triglyceride 

form, and to a lesser extent phospholipid and free fatty acid forms. However, fish oil 

supplements are predominantly in either ethyl ester or triglyceride forms. The doses of omega-

3 fatty acids used in prospective clinical studies have often been ≤ 1 gram per day, with issues 

of intolerance, compliance, bleeding risk, and cost all being considered in study design. 
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However, in pre-clinical studies, omega-3 fatty acids have commonly been supplemented at 

comparatively high doses, such as 5% of total food intake for animal studies. The latter is an 

example of a commonly-implemented method of omega-3 supplementation, which has 

limitations both due to the imprecision of measuring total omega-3 intake and also due to 

oxidation of fatty acids that occurs upon exposure to air. 

 The question of whether fish oil consumption is atheroprotective has been confounded 

broadly by the limitations and heterogeneity of previous study designs, the temporal changes 

in background anti-atherosclerotic therapies, and the lack of specific omega-3 target levels. 

The current body of work aimed to answer several important questions about the role of omega-

3 fatty acids for atheroprotection by focusing on vascular inflammation. There has been 

increasing recognition of the role of inflammation in all stages of atherogenesis, and given the 

established anti-inflammatory properties of omega-3 fatty acids, it was important to investigate 

their impact on the inflammatory processes in the vessel wall that promote atherosclerosis. 

7.2 Findings of individual studies 

7.2.1 The impact of omega-3 fatty acids on circulating mediators of atherosclerosis 

– a systematic review 

 This systematic review, which included only high-quality (NHMRC Evidence Level I 

or II) randomised, placebo-controlled omega-3 fatty acid studies indexed in the Cochrane 

Library, demonstrated that supplementation with omega-3 fatty acids reduced levels of all four 

classes of atherogenic mediators. These four classes were: atherogenic lipoproteins, 

atherogenic cytokines and adipokines, atherogenic amino acids and derivatives, and advanced 

glycation endproducts. Atherogenic mediators were required to be measured in blood either 

directly in vivo, or ex vivo in cell culture after human omega-3 supplementation. The Cochrane 

Library search yielded 1012 results, of which 109 studies were eligible for inclusion in the final 
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analysis. These comprised 1 Cochrane systematic review, 6 non-Cochrane systematic reviews 

and meta-analyses, and 102 randomised controlled trials. Each mediator was assessed 

individually, and the overall effect of omega-3 fatty acids was evaluated qualitatively due to 

the heterogeneity of study types included. The fatty acid contents of the supplements studied 

were highly variable, although mostly included mixtures of EPA and DHA, such as what occurs 

in standard fish oil. Significant reductions were noted for oxLDL, VLDL-C, non-HDL-C, 

leptin, homocysteine, and advanced glycation endproducts. Mild reductions were noted for IL-

6, and TNF-α. No significant changes were noted for the other mediators evaluated. 

 Amongst included studies, there was significant heterogeneity in sample size, duration 

of supplementation, the choice of placebo, and omega-3 formulation. Although this systematic 

review did not attempt to segregate studies based on omega-3 dose or measured blood omega-

3 levels, it is predictable that the degree of suppression of atherogenic mediators would 

correlate with blood omega-3 concentrations. This, as well as the relative effects of EPA versus 

DHA, and the effects on vascular inflammation measured at the tissue level, requires further 

evaluation. 

7.2.2 Fish Oil Cell Uptake Study of INflammation (FOCUS IN). A randomised 

controlled trial of fish oil supplementation in healthy volunteers. 

 The FOCUS IN study enrolled 40 healthy adult volunteers with a low baseline omega-

3 intake, and randomised them in a double-blind fashion to four grams per day of either (1) fish 

oil high in EPA, (2) fish oil high in DHA, (3) fish oil with a standard 2:1 EPA: DHA ratio, or 

(4) a placebo oil as an oil control, for 30 days. Participants in the EPA group were older, 

however the groups were otherwise evenly matched at baseline in terms of age, gender, body 

mass index, resting heart rate and blood pressure, lipid profile, inflammatory profile and 

omega-3 status. 
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 There were no significant differences in resting heart rate or systolic blood pressure 

between the 4 treatment groups, although DHA significantly reduced diastolic blood pressure 

compared to placebo. Total cholesterol, LDL-C and HDL-C did not significantly differ 

between treatment groups, although DHA significantly reduced triglyceride levels. High-

sensitivity CRP and lipoprotein (a) levels did not significantly differ between treatment groups.

 Serum collected before and after treatment was added to human umbilical vein 

endothelial cells (HUVECs) in culture at a concentration of 10%, before and after TNF-α 

stimulation (10ng/ml). Changes in the gene expression of the following markers of vascular 

inflammation were measured by RT-PCR: VCAM-1, ICAM-1, MCP-1 and NFκBp65. Serum 

from participants taking EPA reduced the gene expression of MCP-1 by TNF-stimulated 

HUVECs by 25% compared to placebo (p=0.03). No significant differences were seen between 

treatment groups for the other markers. 

 The expression of VCAM-1, ICAM-1, MCP-1 and NFκBp65 by stimulated HUVECs 

was correlated with the following patient characteristics to determine whether any significant 

associations exist: total cholesterol, LDL-C, HDL-C, triglycerides, omega 6:3 ratio, blood EPA 

levels, blood DHA levels, and blood saturated fats. HDL-C levels correlated positively and 

significantly with both VCAM-1 (r=0.36, p=0.02) and MCP-1 (r=0.40, p=0.01) expression. 

This is consistent with HDL dysfunctionality at very high HDL-C levels, and this warrants 

further investigation. 

7.2.3 The impact of omega-3 fatty acids on acute vascular inflammation in a mouse 

model 

 In this study, eight-week-old C57Bl/6 mice fed a chow diet were randomised to 

supplementation with 600mg/kg/day of either EPA, DHA, olive oil as an oil control, or no 

treatment, for 30 days by oral gavage. Subsequently, pure acute vascular inflammation was 

induced using the surgical application of non-occlusive silicon elastic collars to the right carotid 
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artery, which remained in place for 48 hours. Subsequently, the mice were humanely killed and 

both carotid arteries were harvested for immunohistochemical analysis for markers of acute 

vascular inflammation, namely VCAM-1, ICAM-1, MCP-1 and CD18. A blood sample was 

obtained by terminal cardiac puncture. 

 Carotid collaring significantly upregulated the protein expression of all markers 

measured. EPA reduced the protein expression of VCAM-1 and MCP-1 by 43% and 38% 

respectively in collared carotids compared to no treatment (p<0.05 for both comparisons). 

There were numerical reductions in ICAM-1 and CD18 expression with EPA, which did not 

reach statistical significance. Furthermore, there was a numerical reduction in all four markers 

of AVI with DHA, which was less than EPA in each case, and not statistically significant.

 Plasma total cholesterol and triglycerides were low, and did not differ significantly 

between treatment groups. EPA and DHA supplementation increased their respective blood 

levels by 272% and 62% (p<0.0001). There were significant inverse correlations observed 

between blood levels of both EPA and DHA and the expression of all four markers of AVI on 

immunohistochemistry. Furthermore, significant inverse correlations were also observed 

between the blood EPA:DHA ratio and all four markers of AVI, consistent with the superior 

effect of EPA compared to DHA. 

 The reduction in protein expression of markers of AVI by EPA supplementation 

measured in the arterial wall, is consistent with the in vitro gene expression findings of FOCUS 

IN. 

7.2.4 The impact of omega-3 fatty acids on atherosclerosis and chronic vascular 

inflammation 

 In this study, forty 8-week-old ApoE-deficient mice were fed an atherogenic diet for 16 

weeks to induce chronic vascular inflammation and advanced atherosclerotic plaques. After 8 
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weeks, a blood sample was taken and the mice were randomised to supplementation with 

600mg/kg/day of either: (1) EPA, (2) DHA, (3) olive oil as an oil control, or (4) no treatment. 

Supplementation was performed by oral gavage, and continued for the last 8 weeks of the 16-

week treatment period, after which time the mice were humanely killed and blood and organ 

harvesting were performed. 

 The body weight of mice in all four treatment groups increased over the atherogenic 

feeding period, with no effect of EPA or DHA. Plasma total cholesterol levels were high in all 

mice after 8 weeks, and were stabilised by both EPA and DHA. Plasma triglyceride levels were 

elevated in all mice after 8 weeks, and EPA and DHA significantly reduced these levels by 

study completion. 

 Atherosclerotic plaque was measured in the aortic sinuses and brachiocephalic arteries. 

Although advanced plaques had developed by study completion, no differences in plaque 

burden were demonstrated between treatment groups. Similarly, the thickness of the intimal 

and medial layers, and the collagen content of plaques did not differ among treatment groups. 

The smooth muscle cell content and macrophage content of plaques, measured by 

immunohistochemical staining for smooth muscle actin and CD107b, did not differ between 

treatment groups. Hence, omega-3 supplementation did not impact on measures of plaque 

stability. The lipid content of aortas was assessed by Oil Red-O staining, and in all mice lipid 

was distributed diffusely throughout the aorta. Omega-3 supplementation did not significantly 

impact the burden of lipid. 

 In aortic tissue, the gene expression of markers of chronic inflammation, IL-1β and 

TNF-α, were significantly lower in the mice treated with EPA (-44.3% [p=0.04] and -48.8% 

[p=0.04], respectively). Consistent with this beneficial effect on EPA on chronic vascular 

inflammation, there were significant inverse correlations present between IL-1β and TNF-α 
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expression and both blood EPA levels and the EPA:DHA ratio. Blood EPA levels also 

correlated inversely with intimal and medial thickness in the artery wall. This finding suggests 

a signal for a favourable effect of EPA on plaque, that may not have been demonstrated due to 

the low sample size in this study (n < 5 mice for some measures).  

7.3 Overarching conclusions 

 Omega-3 fatty acids reduce vascular inflammation from the earliest stages of 

endothelial injury to the advanced stages of atherosclerosis. In the in vitro study FOCUS IN, 

and in the acute and chronic mouse studies, EPA was consistently shown to be superior than 

DHA. Omega-3 fatty acids reduce triglyceride levels and stabilise cholesterol levels. 

Nonetheless, the beneficial effects of omega-3 fatty acids on vascular inflammation in the 

experimental studies have largely occurred independent of effects on both cholesterol and 

triglyceride levels.  Despite the critical role of vascular inflammation in atherogenesis, and the 

reduction in circulating atherogenic mediators by omega-3 fatty acids established in the 

systematic review, omega-3 fatty acids did not improve plaque burden or characteristics, nor 

lipid burden. In view of the small sample size of the chronic mouse study, which was less than 

5 mice for some analyses, an atheroprotective effect has not been excluded. Moreover, the 

findings of the recent REDUCE-IT study demonstrated a significant reduction in major adverse 

cardiovascular events with high-dose EPA supplementation(234). 

 In the experimental studies presented in this thesis, omega-3 fatty acids were 

supplemented at high doses. In FOCUS IN, this was 4 grams of omega-3 per day. In both 

mouse studies, a daily omega-3 dose of 600mg/kg was given (equivalent to 40 grams per day 

for a weight of 70kg). Consistent with the results of previous dietary omega-3 studies(222, 223), 

which demonstrated dose-dependent effects, and the high dose of EPA ethyl esters (4 grams 

per day) utilised in the positive REDUCE-IT trial, it is likely that high doses of omega-3 fatty 

acids are required to demonstrate beneficial effects. 
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7.4 Clinical implications of research findings 

7.4.1 Omega-3 fatty acids for primary prevention  

In this body of work, the beneficial effects of omega-3 fatty acids on vascular 

inflammation have been demonstrated in experimental studies that model primary and 

secondary prevention settings. In FOCUS IN, serum from healthy volunteers supplemented 

with fish oil was added to HUVECs in culture for a duration of 24 hours, prior to the addition 

of an inflammatory stimulus (TNF-α). Similarly, in the mouse study of AVI, omega-3 fatty 

acids were supplemented for 30 days prior to the induction of AVI by carotid collaring. 

However, in the chronic mouse study, the ApoE-deficient mice were 16 weeks of age and had 

had 8 weeks of atherogenic feeding prior to the commencement of omega-3 supplementation. 

By this stage, foam cell lesions, smooth muscle cell proliferation and early fibrous plaques 

would likely have developed(546). 

 Regular high-dose consumption of omega-3 fatty acids, whether in dietary or 

supplement form, is likely to have a role in the primary prevention of cardiovascular disease. 

Since macroscopic evidence of atherosclerosis has been identified in humans as early as the 

foetal stage, i.e. in the form of fatty streaks(498), omega-3 supplementation has the potential for 

use in primary cardiovascular prevention in all age groups. High-dose omega-3 consumption 

on a population level for primary prevention is not feasible, however, for several reasons. 

Firstly, the number needed to treat in order to prevent one cardiovascular event has not been 

established and is likely to be high. Secondly, to achieve 4 grams of omega-3 fatty acids per 

day would be prohibitively expensive and potentially cumbersome for the consumer. For 

example, in the FOCUS IN study, 6-8 capsules per day were required for each of the 

supplements. Thirdly, as the main source of omega-3 fatty acids is marine-derived, 

consideration must be given to sustainability of the aquaculture industry and the risk of 

extinction to fish populations(587). In recent years, Australian scientists have been among those 
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pioneering the development of genetically-modified crops that produce omega-3 oils, as a 

sustainable source(588-590). Finally, although generally well-tolerated, fish oil consumption is 

associated with a number of mild adverse effects that may lead to discontinuation, in 

particularly gastrointestinal complaints(591). 

 A more feasible approach for the use of omega-3 fatty acids for primary prevention 

would be to target specific population subgroups. Conceivably, these could include individuals 

with risk factors that have been shown to be ameliorated by omega-3 fatty acids. Based on the 

results of the systematic review, individuals with elevated VLDL-C and non-HDL-C levels, 

hyperhomocysteinemia, the overweight or obese (likely to have elevated leptin levels), and 

those with hyperglycaemia or vascular diabetic complications (expected to have circulating 

advanced glycation endproducts) could have a slowed progression of atherogenesis. The two 

experimental studies that modelled primary prevention (FOCUS IN and the mouse collar study) 

were conducted using subjects with minimal cardiovascular risk factors (healthy volunteers 

and wild-type mice), however some additional target groups could be surmised. For example, 

individuals with very high levels of HDL-C, which correlated positively with VCAM-1 and 

MCP-1, may be a target for therapies that reduce these inflammatory markers, namely EPA. In 

addition, among these subgroups, individuals with low blood omega-3 levels, especially EPA, 

are likely to have a greater inflammatory response to a future vascular insult, which could be 

reduced by omega-3 supplementation. Triglyceride levels, although not a focus of this body of 

work, were lowered by omega-3 fatty acids in the experimental studies - their atherogenic 

effects being exerted by virtue of their incorporation into atherogenic triglyceride-rich 

lipoproteins. Prospective studies will be required to demonstrate the effectiveness of targeting 

these population subgroups for primary prevention, however REDUCE-IT produced 

encouraging findings. Almost 30% of patients in REDUCE-IT were in the primary prevention 

setting, i.e. were diabetics with elevated triglyceride levels and other risk factors but no 
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established history of cardiovascular disease. Although not statistically-significant, the hazard 

ratio for the primary endpoint for these patients was 12% lower in the icosapent ethyl group 

compared to placebo(234). 

7.4.2 Omega-3 fatty acids for secondary prevention  

The results of the chronic mouse study suggest promising roles for the use of omega-3 

fatty acids in the secondary prevention setting. In the context of established atherosclerosis, 

omega-3 fatty acids did not significantly reduce plaque burden or favourably modify plaque 

characteristics seen histologically. Furthermore, atheromatous lesions were no less lipidic. 

These findings would naturally suggest that in patients with atherosclerotic cardiovascular 

disease, omega-3 fatty acids would not modify the risk of future acute plaque events or 

progressive myocardial ischaemia. However, markers of chronic inflammation in the vessel 

wall were significantly reduced by EPA. Given the intensely inflammatory nature of ruptured 

plaques, it is possible that the significant reduction in acute plaque events with icosapent ethyl 

reported in REDUCE-IT was partially driven by a reduction in vascular inflammation. If indeed 

modifications in the cytokine profile of the vessel wall in the setting of atherosclerosis are 

sufficient to contribute to a reduction in major adverse cardiovascular events, then this may 

require a paradigm shift in cardiovascular risk assessment, in particular the role of plaque 

imaging. The traditional focus on the assessment of the characteristics of intracoronary plaque 

using intravascular ultrasound and optical coherence tomography, could be complemented in 

future by the increased use of functional molecular imaging. Indeed, several radionuclide 

tracers are available such as 18F fluorodeoxyglucose (FDG) and 18F sodium fluoride that can 

detect and measure aspects of plaque inflammation when combined with imaging modalities 

such as positron emission tomography and computed tomography(592, 593). 

 In the days immediately following an acute coronary syndrome (ACS), culprit plaques 

are highly inflamed and may be most responsive to anti-inflammatory therapies(594, 595). 
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Features of both acute and chronic vascular inflammation are present in these plaques, and 

hence high-dose EPA supplementation may be beneficial in the early post-ACS period. A 

reduction in vascular inflammation could contribute to reduced coronary spasm and infarct size 

in the acute period, and a reduction in recurrent events in the long term. 

7.5 Suggestions for future research 

7.5.1 Elucidating the differential mechanistic effects of EPA compared to DHA  

The experimental studies demonstrated a superior effect of EPA compared to DHA for 

the reduction of vascular inflammation. The mechanisms underlying these differences need to 

be further elucidated. Although structurally very similar, there is emerging evidence for 

different pharmacodynamic effects of these two molecules. Differences in effects on adhesion 

molecule expression with EPA compared to DHA, for example, may relate to differences in  

(1) the inhibition of the translocation of TLR4 into lipid raft domains, (2) the suppression of 

TAK1 phosphorylation, (3) the attenuation of NFκB activity by suppressing p38 and IκBα 

activation, and (4) the induction of the expression of the anti-inflammatory and NFκB-

suppressor gene A20(246). The differences in the magnitude of effects may partly relate to their 

concentration and assembly in cell membrane phospholipids; for example DHA is incorporated 

into (sphingomyelin and cholesterol-rich) membrane rafts with more than twice the affinity of 

EPA(249). Hence, although much of the focus of the effects of fatty acids has been on their 

pharmacodynamics, differences in pharmacokinetics may also be relevant. 

Future mechanistic omega-3 studies should use purified forms of EPA and DHA 

provided for sufficient duration to allow for incorporation into the cell membranes of interest, 

and with care taken to minimise oxidation. 



258 
 

7.5.2 Targeting blood omega-3 concentrations 

The inverse correlations between blood omega-3 levels and markers of vascular 

inflammation demonstrated in the experimental studies provide further evidence for a dose-

dependent effect. As with blood pressure and lipid targets, there is a rationale for establishing 

a therapeutic target for blood omega-3 levels. The Omega-3 Index, which is the percentage of 

EPA and DHA in red blood cell fatty acids, identified a cut-off value (< 4%) that associates 

with coronary heart disease mortality(213), but this index does not profile individual fatty acids. 

This is critically important, given the consistent demonstration of stronger correlations with 

EPA levels in the experimental studies. A sub-study of the JELIS trial examined the 

relationships between various plasma fatty acid concentrations and the risk of coronary events 

using a Cox proportional hazard model. High plasma EPA concentrations, but not DHA 

concentrations, were significantly inversely associated with major coronary events, with a 

hazard ratio of 0.71 for those with the highest tier of EPA concentrations(596). Ohnishi et al 

examined this association further, and found that a ratio of EPA to arachidonic acid of > 0.75 

also significantly inversely associated with major coronary events(597). This provided further 

evidence for the prognostic value of blood omega-6:omega-3 ratios, with a focus on individual 

fatty acids. 

To establish therapeutic blood omega-3 concentrations, future cardiovascular outcome 

trials will need to achieve both high omega-3 levels and a range of levels, and hence consider 

both the dose and bioavailability of omega-3 sources. For the currently ongoing STRENGTH 

trial, the treatment group has received a high dose of omega-3 (4 grams per day) provided as 

free fatty acids (omega-3 carboxylic acids), which do not require hydrolysis by pancreatic 

lipase and therefore have optimal intestinal absorption(235). This large (>13000 participants 

recruited) randomised, placebo-controlled trial, is investigating the effects of omega-3 

carboxylic acids on the risk of cardiovascular events in statin-treated patients with high 
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triglyceride and low HDL-C levels. Fatty acid levels in both plasma and red blood cells have 

been taken at baseline, during treatment, and at the end of treatment, and will be correlated 

with clinical events(235). 

Future clinical studies should evaluate the therapeutic effects of achieving specific 

blood omega-3 concentrations in the context of the complete fatty acid profile in a range of 

clinical settings. 

7.5.3 The concept of dysfunctionality 

 Fatty acids undergo metabolism, oxidation, shortening, elongation and conversion to 

other fatty acids after oral ingestion. Oxidation changes the structure and function of fatty acids, 

and longer chain polyunsaturated fatty acids are more susceptible to oxidation due to the higher 

number of double bonds present. It has been proposed that oxidised products in fish oils may 

attenuate their beneficial effects(598). However, Mishra et al provided evidence that the anti-

inflammatory effects of fish oil on the endothelium after cytokine stimulation result from the 

inhibitory effects of oxidised omega-3 fatty acids on NF-κB activation(252). It is not clear at 

present to what extent conformational changes in omega-3 fatty acids after oral ingestion may 

lead to dysfunction, and further research is needed in this area. 

 The incorporation of fatty acids into cellular membranes is critical to their effects on 

downstream signalling. Fatty acids incorporate into the membrane rafts of the most abundant 

phospholipids, initially phosphatidylcholine and phosphatidylethanolamine(599). Fatty acid 

uptake is an active process regulated by fatty acid transporters(600). Hence, there may be 

pathophysiological conditions which reduce fatty acid uptake by fatty acid transporters, leading 

to a state of “fatty acid resistance” akin to insulin resistance. The conditions which may 

contribute to a fatty acid-resistant state and limit the functional effects of omega-3 

supplementation would be worthy of exploration. 
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 FOCUS IN demonstrated a strongly-positive correlation between blood levels of HDL-

C and the gene expression of VCAM-1 and MCP-1 by stimulated HUVECs. The correlations 

were not a primary focus of the study, but occurred on a background of a recent report from 

two prospective cohort studies of extremely high levels of HDL-C being associated with 

increased all-cause mortality(489). This paradoxical association raises the possibility of HDL 

dysfunctionality at very high levels. If this is the case, HDL may develop pro-inflammatory 

properties. The effects of HDL particles on the vessel wall in the setting of extreme HDL-C 

levels warrant further investigation.  

 Despite the advances that have occurred in our understanding of the impact of omega-

3 fatty acids on atherogenesis over the last half-century, there remain significant knowledge 

deficits that will lead to fertile and exciting areas for continued investigation. The findings of 

this body of work provide mechanistic insights into the atheroprotective effects of omega-3 

fatty acids, particularly EPA, and may inform the design of future clinical studies. 
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