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ABSTRACT 

The redistribution of moment within a statically indeterminate reinforced concrete beam at the 

ultimate limit state occurs through variations in the flexural rigidities and through the formation 

of hinges. The phenomena of moment redistribution is used to increase the efficiency of 

reinforced concrete design by allowing moments to be transferred away from critical cross-

sections thereby resulting in lower design moments. To allow for this effect in design, two 

main approaches are adopted. The first is to perform an elastic analysis and then to adjust the 

resulting distribution of moment using a codified moment redistribution factor. The second is 

to apply a plastic analysis allowing for the formation of hinges, and to calculate the rotational 

requirements at the hinges from first principles. This paper uses fundamental plastic analyses 

to derive closed form expressions for the hinge rotational requirements for full moment 

redistribution (that required to achieve the theoretical maximum applied load within the beam 

based on the moment capacity of sections within the beam). These closed form solutions are 

then used to quantify the maximum load on a beam when the rotational capacities at a hinge 

are less than the rotational requirements for full moment redistribution (partial moment 

redistribution). Closed form solutions are then used to derive moment redistribution factors 

which do not require semi-mechanical calibration.  
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INTRODUCTION 

Moment redistribution (MR) allows the transfer of moments away from critical cross-sections 

towards underutilised cross-sections, thereby allowing for a reduction in member size, a 

reduction in reinforcement congestion, and an increased efficiently of a given design by 

allowing for the full capacity of statically indeterminate continuous RC beams to be achieved.  

Two approaches are available in current design standards to allow for MR while avoiding 

premature failure due to insufficient rotational capacity of the hinges. The most common 

approach is to perform an elastic analysis and to then adjust the bending moment diagram 

according to some MR factor (CEN 2004; ACI 2014; Standards Australia 2018). The second 

approach is to perform a plastic analysis to determine the rotational demand on the hinges 

which can then be compared directly to the rotational capacity of the hinges (CEN 2004; fib 

2013). 

For the first approach, the MR factor is defined as 

𝐾𝑀𝑅 =
𝑀𝑒𝑙−𝑀ℎ

𝑀𝑒𝑙
      (1) 

where Mel is the elastic moment and Mh is the actual moment at the position at which the MR 

factor is being evaluated - typically at the supports. National design standards give different 

limits for the value of KMR at ultimate which are shown graphically in Fig. 1. For example, 

AS3600-2018 (Standards Australia 2018) give the maximum MR as a function of the ratio of 

the neutral axis depth to the effective depth of the section (ku) and limits MR only to members 

reinforced with class N reinforcement (rupture strains greater than 0.05). In Eurocode 2 (CEN 

2004), the MR factor is a function of ku but is also adjusted for the ductility class of the 

reinforcement and the concrete strength.  
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Fig. 1. Code expressions for level of MR 

 

As shown in Fig. 1, KMR is the minimum of the value defined by the concrete strength and the 

ductility class of the reinforcement. In ACI 318-14 (ACI 2014) the MR factor is given as a 

function of the strain in the tensile reinforcement, however as the strain at the top fibre is fixed 

at the ultimate limit, this can also be related to the neutral axis depth.  

For AS3600-2018 (Standards Australia 2018), the variation in KMR with ku was determined by 

performing a parametric study using a numerical model and then fitting an expression to the 

results (Gravina & Warner 2003). That is, the relationship is semi-mechanical and calibrated 

to represent a safe, lower bound prediction. The expressions in the other standards are 

determined in a similar manner. The observed differences in Fig. 1 are therefore due to the 

examples considered and the underlying assumptions of the base numerical analysis and the 

level of conservatism built into each design standard. An identifiable limitation in current 

practice is, therefore, the inability to extend to applications outside of the original bounds of 

the parametric study for new materials without repeating the analysis. The expressions in 
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national codes also consider the quantity of MR to be a section property (the neutral axis depth 

is only a function of the section from which the moment is being redistributed) and neglect the 

influence of the member properties such as the variation of the flexural rigidity between the 

hogging and sagging regions, the span of the beam and the type of loading (Oehlers et al. 2010).   

Where the hogging moment is defined as a moment that creates tension on the top face of the 

beam and a sagging moment is defined as a moment that creates compression on the bottom 

face of the beam. 

The Eurocode 2 (CEN 2004) facilitates plastic analysis by providing relationships for the 

rotational capacity as a function of the neutral axis depth, concrete strength and ductility class 

of the reinforcement. However, the rotation requirement at the hinges needs to be determined 

from first principles (CEN 2004). 

The goal of this paper is therefore to derive mechanics solutions that can quantify the level of 

MR, this is done with the aim of creating a single generic approach that can be applied to both 

conventional concretes and emerging materials such as ultra-high performance fibre reinforced 

concrete (UHPFRC). The solutions are presented in such a way as to provide designers with a 

choice in terms of implementation approach. They can be implemented by imposing a desired 

bending moment distribution and solving for the necessary rotational capacities of the hinges 

to achieve the imposed moment distribution. Alternatively, they can be applied by quantifying 

the maximum load that a member can resist based on the rotational capacity of the hinges. To 

allow for the first form of analysis closed form solutions are derived for the rotation at the 

hinges required to achieve full MR, and to allow for the second form of analysis these solutions 

are manipulated for application when a beam hinge has insufficient rotational capacity to 

achieve full MR, that is partial MR. Finally, the expressions derived are compared to 

experimental results for conventional reinforced concrete beams and current code approaches. 
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To show the generic nature of the approach, the expressions derived are then used to quantify 

MR in UHPFRC beams. 

MECHANICS OF MOMENT REDISTRIBUTION 

Moment redistribution at the ultimate limit state 

Let us define the mechanics of MR in this paper as the quantification of the maximum load a 

statically indeterminate beam can withstand as well as the rotation required at any hinges that 

may have formed to achieve this maximum load. At this maximum load, the beam has not 

collapsed. However, after this maximum load is attained, any further applied deformations may 

cause the formation of more hinges which may form at the maximum load or at lower applied 

loads which then leads to a collapse mechanism.  

To allow the derivation of closed form solutions for the MR factors, we will define an elastic 

analysis of a statically indeterminate beam as an analysis of a beam with a constant flexural 

rigidity (EI), and in which the material remains elastic and hinges have not formed. Hence any 

deviation from this elastic distribution of moment is MR and which can now be caused by 

variations in the flexural rigidities along the beam and the formation of hinges.   

Moment-rotation relationship of reinforced concrete 

A typical moment-rotation relationship of an RC hinge is shown in Fig. 2 which, for the closed 

form analyses, is idealised as a linear rising branch of flexural rigidity EI, a plastic plateau at 

Mh of a rotational capacity θh and after which there is a rapidly descending branch. Here the 

rotational capacity θh is defined as the maximum possible rotation less the rotation associated 

with the rising branch. This definition is imposed as it allows the total rotation be defined as 

the summation of the rotation due to the flexural rigidity EI, and a point rotation representing 

the contribution of the plateau (hinge rotation).  
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Fig. 2. Typical moment rotation relationship for reinforced concrete hinge 

 

A number of different approaches are available in the literature for predicting the moment-

rotation of a hinge in reinforced concrete. These include segmental analysis approaches that 

give the moment-rotation directly (Bachmann 1971; Bigaj 1999; Gravina 2002; Haskett et al. 

2009; Visintin et al. 2012) and which have been extended to fibre reinforced concrete 

(Schumacher 2006; Visintin & Oehlers 2018), as well as hinge length approaches that allow 

the moment-rotation to be determined from the moment-curvature relationship (see the review 

of Panagiotakos & Fardis 2001).  

Importantly, softening moment-rotation relationships may occur for FRC and UHPFRC, and 

these can be accommodated using the idealised representation in Fig. 2. This is achieved by 

the designer determining how far they are willing to allow the moment to reduce after achieving 

the peak moment. At this point Mh is the moment reduced by softening and θh is equal to the 

rotation to achieve this reduced moment (less the rotation due to the rising branch).  

 

Moment redistribution mechanism  
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To discuss MR, consider the continuous beam with a span of L subjected to a uniformly 

distributed load (UDL) w in Fig. 3(a). The hinge rotation at the support due to w is given by 

θhog and the hinge rotation at the point of maximum moment in the midspan is given by θsag, 

The moments at each location are Mhog and Msag, respectively. The elastic distribution of 

moment is illustrated in Fig. 3(b) where the moment at the midspan is half that at the supports. 

This represents the distribution of moment before the moment capacity is reached at any point 

of the beam (neglecting MR due to variations in EI).   

 

Fig. 3. Reinforced concrete beam at ultimate loading condition 
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In Fig. 3(c), the hinge moment capacities Mh in the hogging and sagging regions are illustrated. 

Before a hinge has formed Mhog or Msag are less than Mh and after the hinge had formed they 

are equal to Mh. As the applied load increases, the moment capacity is eventually reached at 

some point along the beam. If the moment capacity is first reached at the supports, then the 

bending moment distribution is given by the solid line in Fig. 3(c). For a brittle beam with no 

rotational capacity this represents the ultimate load. 

Hinges in reinforced concrete members have some ductility and therefore rotation can occur to 

allow the moment to redistribute from a plastic region to another (stiffer) location along the 

beam where the moment capacity has not yet been reached. When these locations reach their 

moment capacities full MR has been achieved. For a continuous beam, this occurs when the 

hinge moment capacity has been reached at three cross-sections: both supports and the point 

of maximum sagging moment at the midspan. At this point, the ultimate load is reached and 

the distribution of moment is given by the dashed line in Fig. 3(c). This represents the 

maximum possible load that could be applied to the beam assuming sufficient rotational 

capacity exists at the hinges at the supports, as shown by the increase in the static moment 

(Mst)FMR>(Mst)el. This situation, where the moment capacities of the sections are achieved and 

consequently any increase in rotational capacity does not result in an increase in MR, is referred 

to as full MR. 

The distribution of moment associated with full MR can only be achieved if the rotational 

capacity at the hinges is not exceeded. If the rotational capacity is exceeded at any of the hinges, 

then the applied load w at which this occurs is the maximum capacity of the beam. In this case, 

the bending moment distribution would be intermediate between those corresponding to the 

elastic and full MR loads, that is, the dashed-dotted line in Fig. 3(c). This is referred to as partial 

MR because the level of MR is intermediate and lies between the elastic case and full MR. For 
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partial MR (Mst)el<(Mst)PMR<(Mst)FMR, that is the ultimate load w is intermediate between that 

for the elastic and full MR cases. 

In the subsequent section, expressions are developed for quantifying the rotational 

requirements at the hinges as a function of the applied bending moment distribution. Hence a 

comparison of a section’s rotational capacity with the member rotational requirement at that 

section will determine whether the full MR can be achieved or premature failure occurs due to 

a lack of ductility that is partial MR.  

ROTATIONAL REQUIREMENT FOR FULL MR    

Consider the continuous beam with a UDL in Fig. 4(a). This beam is subject to the bending 

moment distribution in Fig. 4(b) which may cause some rotation at the hinges. To determine 

these rotations, consider the deflection at the right hand when and the right hand support is 

removed and the bending moment in Fig. 4(b) is applied. This causes a deflection upwards or 

downwards as shown in Fig. 4(c). This deflection is referred to as the elastic deflection yel as 

this is the deflection due to the curvature distributed along the beam. However as the total 

deflection is required to be zero at the right hand support position, an equal and opposite 

deflection has to be applied to counteract this elastic deflection yh. This deflection is generated 

by the hinges. The total deflection can therefore be written as 

𝑦 = 0 = 𝑦𝑒𝑙 + 𝑦ℎ     (2) 

To determine yh the distribution of hinges needs to be considered. There are three possible 

hinge locations for a continuous beam: left hand support, right hand support and position of the 

maximum sagging moment as shown in Fig. 4(a). Next, consider that at the instant before full 

MR is achieved there are two hinges in the beam. Applying these constraints there are three 

situations that can occur: (i) hinges at the supports as shown in Fig. 4(d-e); (ii) hinges at the 

left hand support and the position of maximum sagging moment as shown in Fig. 4(f-g) and 
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(iii) hinge at the position of maximum sagging moment and the right hand support as shown in 

Fig. 4(h-i). 
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Fig. 4. Elastic and hinge deflections 
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To decide which situation applies, first release the right hand support in Fig. 4(a) and calculate 

yel at this position. Next release the left hand support and calculate yel at that position, paying 

attention to the direction of the deflection. If the elastic deflections yel calculated at the left and 

right hand supports are both upwards, then the hinges form at the supports to counteract this 

deflection. The resulting hinge deflections, as shown in Fig. 4(d-e), are given as 

𝑦ℎ(0) = 𝜃3𝐿      (3) 

𝑦ℎ(𝐿) = 𝜃1𝐿      (4) 

If the elastic deflection yel at the left hand support is upwards while the elastic deflection yel at 

the right hand support is downwards, then hinges form at the position of the maximum sagging 

moment and the right hand support. From Fig. 4(h-i), the resulting deflections are given as 

𝑦ℎ(0) = 𝜃3𝐿 + 2𝜃2𝑥𝑚     (5) 

𝑦ℎ(𝐿) = 2𝜃2(𝐿 − 𝑥𝑚)     (6) 

Conversely if the deflection yel is downwards at the left hand support and upwards at the right 

hand support, then the hinges form at the left hand support and the position of the maximum 

sagging moment. That is 

𝑦ℎ(0) = 2𝜃2𝑥𝑚      (7) 

𝑦ℎ(𝐿) = 𝜃1𝐿 + 2𝜃2(𝐿 − 𝑥𝑚)     (8) 

Finally, the last case to consider is when the deflection is downwards at both supports. In this 

case, first calculate the position of maximum sagging moment rotation required to counteract 

the hinge deflection at the left hand support and that required to counteract the hinge deflection 

at the right hand support, ignoring any hinges at the supports. That is 

(𝜃2)0 = −
𝑦𝑒𝑙(0)

2𝑥𝑚
     (9) 
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(𝜃2)𝐿 = −
𝑦𝑒𝑙(𝐿)

2(𝐿−𝑥𝑚)
     (10) 

The actual hinge rotation at the position of maximum sagging moment is given by the 

maximum of Eq. (9) and Eq. (10). For example when (θ2)0>(θ2)L, then the additional hinge 

forms at left hand support. Conversely when (θ2)L<(θ2)0, then the additional hinge forms at the 

right hand support. In the first case, the hinge deflections are given by Eqs. (7-8) and in the 

second case the hinge deflections are given by Eqs. (9-10). These different cases are 

summarised in Table 1 where 1 is the hinge at left hand support, 2 is the hinge at the position 

of maximum sagging moment and 3 is the hinge at the right hand support. 

 

Table 1: Hinge locations 

    yel(0)>0 yel(0)<0 

yel(L)>0   1,3 

Eq. (3-4) 

1,2 

Eq. (7-8) 

yel(L)<0 (θ2)0>(θ2)L 2,3 

Eq. (5-6) 

1,2 

Eq. (7-8) 

(θ2)L<(θ2)0 2,3 

Eq. (5-6) 

 

The next step is to evaluate the elastic deflection yel when the right hand support is released. 

The variation in curvature is given by the following expression 

𝜒(𝑥) =
𝑀(𝑥)

𝐸𝐼𝑖
;  𝑥𝑖−1 < 𝑥 < 𝑥𝑖;  𝑖 ∈ (1, 𝑁)    (11) 
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where the beam is divided into N segments where EIi is the flexural rigidity within the given 

segment as illustrated in Fig. 5. 

 

Fig. 5 Flexural rigidity of beam 

 

For a continuous beam subjected to a UDL, the bending moment in Fig. 4(b) is  

𝑀(𝑥) = 𝑤 (
𝐿𝑥

2
−

𝑥2

2
) + 𝑀1 (1 −

𝑥

𝐿
) + 𝑀3 (

𝑥

𝐿
)    (12) 

and the maximum moment occurs at a distance xm from the left hand support, where the 

derivative of Eq. (12) is equal to zero, that is 

𝑑𝑀

𝑑𝑥
= 0 =

𝑤𝐿

2
− 𝑤𝑥𝑚 −

𝑀1

𝐿
+

𝑀3

𝐿
    (13) 

Rearranging Eq. (13) gives the position of the maximum moment as 

𝑥𝑚 =
𝐿

2
−

𝑀1−𝑀3

𝑤𝐿
     (14) 

which also gives the location of the maximum sagging moment, which is a location a hinge 

may form.  

Substituting Eq. (12) into Eq. (11) gives the variation in curvature as a function of position  
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𝜒(𝑥) =
𝑤

𝐸𝐼𝑖
(

𝐿𝑥

2
−

𝑥2

2
) +

𝑀1

𝐸𝐼𝑖
(1 −

𝑥

𝐿
) +

𝑀3

𝐸𝐼𝑖
(

𝑥

𝐿
) ; 𝑥𝑖−1 < 𝑥 < 𝑥𝑖;  𝑖 ∈ (1, 𝑁)   (15) 

Integrating gives the variation in the elastic rotation of the beam, which is the portion of the 

rotation due to the curvature of the beam between the hinges induced by the applied loading 

𝜃𝑒𝑙(𝑥) =
𝑤

𝐸𝐼𝑖
(

𝐿𝑥2

4
−

𝑥3

6
) +

𝑀1

𝐸𝐼𝑖
(𝑥 −

𝑥2

2𝐿
) +

𝑀3

𝐸𝐼𝑖
(

𝑥2

2𝐿
) + (𝑐1)𝑖;  𝑥𝑖−1 < 𝑥 < 𝑥𝑖;  𝑖 ∈ (1, 𝑁) 

 (16) 

At the left hand support, the rotation is zero (for the case where the right hand support is 

released), hence 

𝜃𝑒𝑙(0) = 0 = (𝑐1)1     (17) 

The rotation is also continuous across segment boundaries, therefore 

𝜃𝑒𝑙(𝑥𝑖+1) =
𝑤

𝐸𝐼𝑖
(

𝐿𝑥𝑖+1
2

4
−

𝑥𝑖+1
3

6
) +

𝑀1

𝐸𝐼𝑖
(𝑥𝑖+1 −

𝑥𝑖+1
2

2𝐿
) +

𝑀3

𝐸𝐼𝑖
(

𝑥𝑖+1
2

2𝐿
) + (𝑐1)𝑖 =

𝑤

𝐸𝐼𝑖+1
(

𝐿𝑥𝑖+1
2

4
−

𝑥𝑖+1
3

6
) +

𝑀1

𝐸𝐼𝑖+1
(𝑥𝑖+1 −

𝑥𝑖+1
2

2𝐿
) +

𝑀3

𝐸𝐼𝑖+1
(

𝑥𝑖+1
2

2𝐿
) + (𝑐1)𝑖+1(18) 

Rearranging gives 

(𝑐1)𝑖+1 − (𝑐1)𝑖 = 𝑤 (
1

𝐸𝐼𝑖
−

1

𝐸𝐼𝑖+1
) (

𝐿𝑥𝑖+1
2

4
−

𝑥𝑖+1
3

6
) + 𝑀1 (

1

𝐸𝐼𝑖
−

1

𝐸𝐼𝑖+1
) (𝑥𝑖+1 −

𝑥𝑖+1
2

2𝐿
) +

𝑀3 (
1

𝐸𝐼𝑖
−

1

𝐸𝐼𝑖+1
) (

𝑥𝑖+1
2

2𝐿
)(19) 

Integrating the elastic rotation gives the elastic deflection in Fig. 4(c)  

𝑦𝑒𝑙(𝑥) =
𝑤

𝐸𝐼𝑖
(

𝐿𝑥3

12
−

𝑥4

24
) +

𝑀1

𝐸𝐼𝑖
(

𝑥2

2
−

𝑥3

6𝐿
) +

𝑀3

𝐸𝐼𝑖
(

𝑥3

6𝐿
) + (𝑐1)𝑖𝑥 + (𝑐2)𝑖;  𝑥𝑖−1 < 𝑥 < 𝑥𝑖;  𝑖 ∈

(1, 𝑁)  (20) 

At the right hand support the deflection is zero, hence 

𝑦𝑒𝑙(0) = 0 = (𝑐2)1     (21) 
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and given the  deflection is continuous across segment boundaries 

𝑦𝑒𝑙(𝑥𝑖+1) =
𝑤

𝐸𝐼𝑖
(

𝐿𝑥𝑖+1
3

12
−

𝑥𝑖+1
4

24
) +

𝑀1

𝐸𝐼𝑖
(

𝑥𝑖+1
2

2
−

𝑥𝑖+1
3

6𝐿
) +

𝑀3

𝐸𝐼𝑖
(

𝑥𝑖+1
3

6𝐿
) + (𝑐1)𝑖𝑥𝑖+1 + (𝑐2)𝑖 =

𝑤𝐿𝑥𝑖+1
3

12𝐸𝐼𝑖+1
−

𝑤𝑥𝑖+1
4

24𝐸𝐼𝑖+1
+

𝑀1

𝐸𝐼𝑖+1
(

𝑥𝑖+1
2

2
−

𝑥𝑖+1
3

6𝐿
) +

𝑀3

𝐸𝐼𝑖+1
(

𝑥𝑖+1
3

6𝐿
) + (𝑐1)𝑖+1𝑥𝑖+1 + (𝑐2)𝑖+1(22) 

Rearranging Eq. (22) gives 

(𝑐2)𝑖+1 − (𝑐2)𝑖 = 𝑤 (
1

𝐸𝐼𝑖
−

1

𝐸𝐼𝑖+1
) (

𝐿𝑥𝑖+1
3

12
−

𝑥𝑖+1
4

24
) + 𝑀1 (

1

𝐸𝐼𝑖
−

1

𝐸𝐼𝑖+1
) (

𝑥𝑖+1
2

2
−

𝑥𝑖+1
3

6𝐿
) +

𝑀3 (
1

𝐸𝐼𝑖
−

1

𝐸𝐼𝑖+1
) (

𝑥𝑖+1
3

6𝐿
) − [(𝑐1)𝑖+1 − (𝑐1)𝑖]𝑥𝑖+1 = −𝑤 (

1

𝐸𝐼𝑖
−

1

𝐸𝐼𝑖+1
) (

𝐿𝑥𝑖+1
3

6
−

𝑥𝑖+1
4

8
) −

𝑀1 (
1

𝐸𝐼𝑖
−

1

𝐸𝐼𝑖+1
) (

𝑥𝑖+1
2

2
−

𝑥𝑖+1
3

3𝐿
) − 𝑀3 (

1

𝐸𝐼𝑖
−

1

𝐸𝐼𝑖+1
) (

𝑥𝑖+1
3

3𝐿
)(23) 

From Eq. (12), the elastic deflection at the right hand support is given by 

𝑦𝑒𝑙(𝐿) =
𝑤𝐿4

24𝐸𝐼𝑁
+

𝑀1𝐿2

3𝐸𝐼𝑁
+

𝑀3𝐿2

6𝐸𝐼𝑁
+ (𝑐1)𝑁𝐿 + (𝑐2)𝑁 = 𝑎1𝑤 + 𝑎2𝑀1 + 𝑎3𝑀3  (24) 

where 

𝑎1 =
𝐿4

24𝐸𝐼𝑁
+ ∑ (

1

𝐸𝐼𝑖
−

1

𝐸𝐼𝑖+1
) (

𝐿2𝑥𝑖+1
2

4
−

𝐿𝑥𝑖+1
3

3
+

𝑥𝑖+1
4

8
)𝑁−1

𝑖=1    (25a) 

𝑎2 =
𝐿2

3𝐸𝐼𝑁
+ ∑ (

1

𝐸𝐼𝑖
−

1

𝐸𝐼𝑖+1
) (𝐿𝑥𝑖+1 − 𝑥𝑖+1

2 +
𝑥𝑖+1

3

3𝐿
)𝑁−1

𝑖=1    (25b) 

𝑎3 =
𝐿3

6𝐸𝐼𝑁
+ ∑ (

1

𝐸𝐼𝑖
−

1

𝐸𝐼𝑖+1
) (

𝑥𝑖+1
2

2
−

𝑥𝑖+1
3

3𝐿
)𝑁−1

𝑖=1      (25c) 

Following the same procedure, the elastic deflection at the left hand support when this is 

released is given by  

𝜃3𝐿 + 2𝜃2𝑥𝑚 = −𝑦𝑒𝑙(0) = −[𝑎1′𝑤 + 𝑎2′𝑀1 + 𝑎3′𝑀3]  (26) 

where 
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𝑎1
′ =

𝐿4

24𝐸𝐼1
− ∑ (

1

𝐸𝐼𝑖
−

1

𝐸𝐼𝑖+1
) (

𝐿2𝑥′
𝑖+1
2

4
−

𝐿𝑥′
𝑖+1
3

3
+

𝑥′
𝑖+1
4

8
)𝑁−1

𝑖=1    (27a) 

𝑎2
′ =

𝐿2

6𝐸𝐼1
− ∑ (

1

𝐸𝐼𝑖
−

1

𝐸𝐼𝑖+1
) (

𝑥′
𝑖+1
2

2
−

𝑥′
𝑖+1
3

3𝐿
)𝑁−1

𝑖=1    (27b) 

𝑎3′ =
𝐿2

3𝐸𝐼1
− ∑ (

1

𝐸𝐼𝑖
−

1

𝐸𝐼𝑖+1
) (𝐿𝑥𝑖+1

′ − 𝑥′
𝑖+1
2

+
𝑥′

𝑖+1
3

3𝐿
)𝑁−1

𝑖=1    (27c) 

where the position with respect to the right hand support is given by 

𝑥′ = 𝐿 − 𝑥      (28) 

From Eqs. (24) and (26), the elastic deflections at the supports can be calculated. Table 1 can 

then be used to determine the position of the hinges, and therefore the correct expressions for 

the hinge deflections can be selected from Eqs. (3-8). Hence by substituting the hinge and 

elastic deflections into Eq. (2) and rearranging, the rotations can be determined. From this and 

for the case in Fig. 4(d-e) 

𝜃1 = −
𝑦𝑒𝑙(𝐿)

𝐿
      (29) 

𝜃3 = −
𝑦𝑒𝑙(0)

𝐿
      (30) 

For the case in Figs. 4(f-g) 

𝜃2 = −
𝑦𝑒𝑙(0)

2𝑥𝑚
      (31) 

𝜃1 = −
𝑦𝑒𝑙(𝐿)

𝐿
− 2𝜃2 (1 −

𝑥𝑚

𝐿
)     (32) 

For the case in Figs. 4(h-i) 

𝜃2 = −
𝑦𝑒𝑙(𝐿)

2(𝐿−𝑥𝑚)
     (33) 

𝜃3 = −
𝑦𝑒𝑙(0)

𝐿
− 2𝜃2

𝑥𝑚

𝐿
    (34) 
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The suggested workflow, for applying this approach to design a beam for moment 

redistribution, is given in Fig. 6.  

 

Fig. 6. Design procedure to allow sufficient MR 

 

In this example, a continuous beam with a UDL has been considered, however, other support 

and loading arrangements can be considered as well. For example a propped cantilever can be 

considered by setting the moment at the simple support to zero. The required rotation for a 

continuous beam with a point load is also given in Appendix A.  

APPLIED LOAD FOR PARTIAL MR 
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If insufficient rotational capacity is available at the hinges such that full MR cannot be 

achieved, the expressions in the previous section can be adapted to calculate the load that can 

be achieved given the available rotational capacity, that is partial MR. To do this, first a partial 

mechanism needs to be identified. This can be done by inspecting the elastic distribution of 

moment to find the location of the first hinge. From this, three partial mechanisms involving a 

single hinge can be identified: (i) hinge at left hand support; (ii) hinge at right hand support; 

(iii) hinge at position of maximum sagging moment. 

Hinge at left hand support 

Substituting Eq. (24) and Eq. (4) into Eq. (2) and rearranging gives the following 

𝜃1𝐿 = −[𝑎1𝑤 + 𝑎2𝑀1 + 𝑎3𝑀3]    (35) 

and as the hinge deflection at the left hand support due to a rotation at this support is zero, the 

following is obtained by substituting Eq. (26) into Eq. (2)  

0 = −[𝑎1′𝑤 + 𝑎2′𝑀1 + 𝑎3′𝑀3]    (36) 

Solving Eqs. (35) and (36) gives the following applied load and moment at the right hand 

support 

𝑀3 =
𝑀1(𝑎2𝑎1

′ −𝑎1𝑎2
′ )+𝜃1𝐿𝑎1

′

𝑎1𝑎3
′ −𝑎3𝑎1

′     (37) 

𝑤 = −
𝑎2𝑀1+𝑎3𝑀3+𝜃1𝐿

𝑎1
     (38) 

Hinge at right hand support 

Similarly to the previous case but for a hinge at the right hand support, the moment at the left 

hand support and the applied load is given by 

𝑀3 =
𝑀3(𝑎3𝑎1

′ −𝑎1𝑎3
′ )−𝜃3𝐿𝑎1

𝑎1𝑎2
′ −𝑎2𝑎1

′     (39) 
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𝑤 = −
𝑎2𝑀1+𝑎3𝑀3

𝑎1
     (40) 

Hinge at the position of maximum sagging moment 

To solve this, three simultaneous equations are required. Substituting Eq. (24) and Eq. (6) into 

Eq. (2) gives  

2𝜃2(𝐿 − 𝑥𝑚) = −[𝑎1𝑤 + 𝑎2𝑀1 + 𝑎3𝑀3]   (41) 

From Eq. (26) and Eq. (7) 

2𝜃2𝑥𝑚 = −[𝑎1′𝑤 + 𝑎2′𝑀1 + 𝑎3′𝑀3]    (42) 

From Eq. (12) 

𝑀(𝑥𝑚) = 𝑀2 = 𝑤 (
𝐿𝑥𝑚

2
−

𝑥𝑚
2

2
) + 𝑀1 (1 −

𝑥𝑚

𝐿
) + 𝑀3 (

𝑥𝑚

𝐿
)  (43) 

xm is determined from the distribution of moment immediately before the formation of the hinge 

at the position of maximum sagging moment. Solving gives 

𝑀3 =
𝑎2

′ 𝑀2+2𝜃2(𝑥𝑚−
𝑥𝑚

2

𝐿
)

−𝑎3
′ +(𝑎2

′ +𝑎3
′ )

𝑥𝑚
𝐿

     (44) 

𝑀1 =
𝑎3𝑀2+2𝜃2(𝑥𝑚−

𝑥𝑚
2

𝐿
)

𝑎3−(𝑎2+𝑎3)
𝑥𝑚

𝐿

     (45) 

𝑤 =
𝑀2

𝐿𝑥𝑚
2

−
𝑥𝑚

2

2

− 𝑀1

1−
𝑥𝑚

𝐿

𝐿𝑥𝑚
2

−
𝑥𝑚

2

2

− 𝑀3

𝑥𝑚
𝐿

𝐿𝑥𝑚
2

−
𝑥𝑚

2

2

   (46) 

After calculating the distribution of moments, the moments at the other possible hinge locations 

need to be checked. If the hinge moment at any hinge location is exceeded, a partial hinge 

mechanism with two hinges needs to be considered. 

Hinge at left hand support and right hand supports 
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For this case the uniformly distributed load is given by Eq. (38). 

Hinge at the position of maximum sagging moment and left hand support 

Substituting Eq. (24) and Eq. (8) into Eq. (1) gives 

𝜃1𝐿 + 2𝜃2(𝐿 − 𝑥𝑚) = −[𝑎1𝑤 + 𝑎2𝑀1 + 𝑎3𝑀3]   (47) 

Solving Eq. (47) and Eq. (42) 

𝑀3 =
(𝑎2𝑎1

′ −𝑎1𝑎2
′ )𝑀1+𝜃1𝐿𝑎1

′ +2𝜃2[𝐿𝑎1
′ −𝑥𝑚(𝑎1+𝑎1

′ )]

𝑎1𝑎3
′ −𝑎3𝑎1

′     (48) 

And the applied load is given by Eq. (46). 

Hinge at maximum sagging moment and right hand support 

Similarly for a hinge at the position of maximum sagging moment and right hand support, the 

moment at the left hand support is given by 

𝑀1 =
(𝑎3𝑎1

′ −𝑎1𝑎3
′ )𝑀1−𝜃3𝐿𝑎1+2𝜃2[𝐿𝑎1

′ −𝑥𝑚(𝑎1+𝑎1
′ )]

𝑎1𝑎3
′ −𝑎3𝑎1

′     (49) 

And the applied load is given by Eq. (46). 

Hinges at maximum sagging moment, left hand support and right hand support 

If after trying a two hinge mechanism, the moment still exceeds the hinge moment at the third 

hinge location, then a three hinge mechanism needs to be considered. This corresponds to the 

distribution of moment determined using plastic limit analysis. Rearranging Eq. (30) at this 

stage gives the applied load as 

𝑤 =
−𝑀1(1−

𝑥𝑚
𝐿

)+𝑀2−𝑀3(
𝑥𝑚

𝐿
)

𝐿𝑥𝑚
2

−
𝑥𝑚

2

2

     (50) 

MOMENT REDISTRIBUTION FACTORS 
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In this section, a single value of flexural rigidity is attributed to the hogging regions of a beam 

and a single value is attributed to the sagging region as this is most commonly encountered in 

design (where the reinforcement ratio is different in each region). Simple expressions are 

derived for the commonly encountered design cases in Fig. 7. Solutions for other situations are 

possible. For example they could be derived for all the situations described in the previous 

section, however, the solutions are complex and have limited applicability and instead the 

expressions in the previous section could be applied directly. 

 

Fig. 7. Cases for simplified expressions; a) continuous beam with identical end moments and 

UDL; b) continuous beam with identical end moments and central point load; c) propped 

cantilever with UDL; d) propped cantilever with point load 
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Hinge at support 

Consider the continuous beam in Fig. 7(a) with equal end moments and subject to a UDL. Let 

EIhog=EI1=EI3, EIsag=EI2, Mhog=M1=M3 and θhog=θ1=θ3. Hence from Eq. (35), the uniformly 

distributed load is  

𝑤 = −𝜃ℎ𝑜𝑔 (
𝐿

𝑎1
) − 𝑀ℎ𝑜𝑔 (

𝑎2+𝑎3

𝑎1
)    (51)  

The elastic moment at the support is then given by 

𝑀𝑒𝑙 = −
𝑤𝐿2

12
=

𝐿2

12𝑎1
[𝜃ℎ𝑜𝑔𝐿 + 𝑀ℎ𝑜𝑔(𝑎2 + 𝑎3)] =

𝜃ℎ𝑜𝑔𝐿+𝑀ℎ𝑜𝑔[
𝐿2

2𝐸𝐼𝑠𝑎𝑔
+(

1

𝐸𝐼ℎ𝑜𝑔
−

1

𝐸𝐼𝑠𝑎𝑔
)𝐿𝑥1]

𝐿2

2𝐸𝐼𝑠𝑎𝑔
+(

1

𝐸𝐼ℎ𝑜𝑔
−

1

𝐸𝐼𝑠𝑎𝑔
)(3𝑥1

2−
2𝑥1

3

𝐿
)

(52) 

And from Eq. (1), the MR factor at the support is given as 

𝐾𝑀𝑅,ℎ𝑜𝑔 =
1+

𝑀ℎ𝑜𝑔

𝜃ℎ𝑜𝑔
(

1

𝐸𝐼ℎ𝑜𝑔
−

1

𝐸𝐼𝑠𝑎𝑔
)(𝑥1−

3𝑥1
2

𝐿
+

2𝑥1
3

𝐿2 )

1+
𝑀ℎ𝑜𝑔

𝜃ℎ𝑜𝑔
[

𝐿

2𝐸𝐼𝑠𝑎𝑔
+(

1

𝐸𝐼ℎ𝑜𝑔
−

1

𝐸𝐼𝑠𝑎𝑔
)𝑥1]

    (53) 

Similar expressions can be derived for other loading conditions, which have the following 

general form 

𝐾𝑀𝑅,ℎ𝑜𝑔 =
1+

𝑀ℎ𝑜𝑔

𝜃ℎ𝑜𝑔
𝐿(

1

𝐸𝐼ℎ𝑜𝑔
−

1

𝐸𝐼𝑠𝑎𝑔
)𝑏1

1+
𝑀ℎ𝑜𝑔

𝜃ℎ𝑜𝑔
𝐿[𝑏2

1

𝐸𝐼𝑠𝑎𝑔
+(

1

𝐸𝐼ℎ𝑜𝑔
−

1

𝐸𝐼𝑠𝑎𝑔
)𝑏3]

    (54) 

where b1, b2 and b3 are given in Table 2 and in which ξ=x1/L. This expression gives the moment 

redistribution at the support when the rotational capacity of the hinge at the support is achieved. 

This corresponds to partial MR as discussed earlier. However, there is an upper limit on Eq. 

(54). If the moment at both supports and at the midspan are equal to their hinge moment 

capacities, then no additional moment redistribution can occur even if the rotation at the hinges 

is less than the rotational capacity of the hinges. This corresponds to full MR and in a 
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subsequent section an expression for this upper limit is determined using a basic plastic 

analysis.  

As a simplification, b1 and b3 can be approximated using the elastic point of contraflexure as 

shown in Table 3. 

 

Table 2 MR Coefficients for Hinge at Support 

 b1 b2 b3 

Continuous beam with equal end moments 

and UDL 

𝜉 − 3𝜉2 + 2𝜉3 1/2 𝜉 

Continuous beam with equal end moments 

and central point load 

𝜉 − 2𝜉2 1/2 𝜉 

Propped cantilever with UDL 𝜉 − 3𝜉2 + 3𝜉3 − 𝜉4 1/3  
𝜉 − 𝜉2 +

1

3
𝜉3 

Propped cantilever with central point load 
𝜉 −

7

3
𝜉2 +

11

9
𝜉3 

1/3 
𝜉 − 𝜉2 +

1

3
𝜉3 

 

Table 3 Approximate MR Coefficients for a Hinge at the Support 

 b1 b3 

Continuous beam with equal end moments and UDL (ξ =0.211) 0.0962 0.211 

Continuous beam with equal end moments and central point load (ξ 

=0.25) 

0.125 0.25 

Propped cantilever with UDL (ξ =0.25) 0.106 0.193 

Propped cantilever with central point load (ξ =3/11) 0.124 0.205 
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Hinge at the midspan 

Similar expressions can also be derived if the hinge is assumed to form in the midspan. From 

Eq. (41) setting θ2=θsag and x2 =L/2 gives the following for the beam in Fig. 7(a) 

𝜃𝑠𝑎𝑔 = −𝑤 (
𝑎1

𝐿
) − 𝑀ℎ𝑜𝑔 (

𝑎2+𝑎3

𝐿
)    (55) 

From Eq. (12), the midspan moment is given by 

𝑀𝑠𝑎𝑔 =
𝑤𝐿2

8
+ 𝑀ℎ𝑜𝑔     (56) 

Rearranging and substituting into Eq. (55) gives the rotation as 

𝜃𝑠𝑎𝑔 = −𝑤 [
𝑎1

𝐿
− (𝑎2 + 𝑎3)

𝐿

8
] − 𝑀𝑠𝑎𝑔 (

𝑎2+𝑎3

𝐿
)   (57) 

Rearranging gives the UDL as 

𝑤 = −
𝜃𝑠𝑎𝑔𝐿+𝑀𝑠𝑎𝑔(𝑎2+𝑎3)

𝑎1−(𝑎2+𝑎3)(
𝐿2

8
)

     (58) 

The elastic moment is then 

𝑀𝑒𝑙 =
𝑤𝐿2

24
= −

𝐿2

24
[

𝜃𝑠𝑎𝑔𝐿+𝑀𝑠𝑎𝑔(𝑎2+𝑎3)

𝑎1−(𝑎2+𝑎3)(
𝐿2

8
)

] =
𝜃𝑠𝑎𝑔𝐿+𝑀𝑠𝑎𝑔[

𝐿2

2𝐸𝐼𝑠𝑎𝑔
+(

1

𝐸𝐼ℎ𝑜𝑔
−

1

𝐸𝐼𝑠𝑎𝑔
)𝐿𝑥1]

𝐿2

2𝐸𝐼𝑠𝑎𝑔
+(

1

𝐸𝐼ℎ𝑜𝑔
−

1

𝐸𝐼𝑠𝑎𝑔
)(3𝐿𝑥1−6𝑥1

2+
4𝑥1

3

𝐿
)

  (59) 

From Eq. (1), the MR factor is given by 

𝐾𝑀𝑅,𝑠𝑎𝑔 =
1+

𝑀𝑠𝑎𝑔

𝜃𝑠𝑎𝑔
(

1

𝐸𝐼ℎ𝑜𝑔
−

1

𝐸𝐼𝑠𝑎𝑔
)(−2𝑥1+

6𝑥1
2

𝐿
−

4𝑥1
3

𝐿2 )

1+
𝑀𝑠𝑎𝑔

𝜃𝑠𝑎𝑔
[

𝐿

2𝐸𝐼𝑠𝑎𝑔
+(

1

𝐸𝐼ℎ𝑜𝑔
−

1

𝐸𝐼𝑠𝑎𝑔
)𝑥1]

    (60) 

Similar expression can be derived for other loading conditions in the following form 

𝐾𝑀𝑅,𝑠𝑎𝑔 =
1+

𝑀𝑠𝑎𝑔

𝜃𝑠𝑎𝑔
𝐿(

1

𝐸𝐼ℎ𝑜𝑔
−

1

𝐸𝐼𝑠𝑎𝑔
)𝑏4

1+
𝑀𝑠𝑎𝑔

𝜃𝑠𝑎𝑔
𝐿[𝑏5

1

𝐸𝐼𝑠𝑎𝑔
+(

1

𝐸𝐼ℎ𝑜𝑔
−

1

𝐸𝐼𝑠𝑎𝑔
)𝑏6]

    (61) 
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where the coefficients are given in Table 4. ξ can be approximated using the elastic points of 

contraflexure, resulting in the values in Table 5 

Table 4 MR Coefficients for Hinge at Midspan 

 b4 b5 b6 

Continuous beam with equal 

end moments and UDL 

−2𝜉 + 6𝜉2 − 4𝜉3 1/2 𝜉 

Continuous beam with equal 

end moments and central 

point load 

−𝜉 + 2𝜉2 1/2 𝜉 

Propped cantilever with 

UDL 

−
64

27
𝜉 +

64

9
𝜉2 −

64

9
𝜉3

+
64

27
𝜉4 

32/27 32

9
𝜉 −

32

9
𝜉2 +

32

27
𝜉3 

Propped cantilever with 

central point load 

−
6

5
𝜉 +

14

5
𝜉2 −

22

15
𝜉3 

2/3 
2𝜉 − 2𝜉2 +

2

3
𝜉3 

 

Table 5 Approximate MR Coefficients for a Hinge at the Support 

 b4 b6 

Continuous beam with equal end moments and UDL (ξ =0.211) -0.192 0.211 

Continuous beam with equal end moments and central point load (ξ =0.25) -0.125 0.25 

Propped Cantilever with UDL (ξ =0.25) -0.25 0.685 

Propped Cantilever with Central Point Load (ξ =3/11) -0.149 0.41 

 

Upper limit on MR 
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If the hinge moment capacity has been reached at both supports and the midspan, additional 

moment redistribution cannot occur even if the rotation at these hinges is less than the rotational 

capacity and hence full MR is achieved. Setting M1=M3=Mhog and M2=Msag in Eq. (50), the 

uniformly distributed load is given as 

𝑤 =
8𝑀𝑠𝑎𝑔

𝐿2
−

8𝑀ℎ𝑜𝑔

𝐿2
     (62) 

The elastic moment at the support is then  

𝑀𝑒𝑙 = −
𝑤𝐿2

12
= −

2

3
𝑀𝑠𝑎𝑔 +

2

3
𝑀ℎ𝑜𝑔   (63) 

From Eq. (1), the MR factor at the support is  

𝐾𝑀𝑅,ℎ𝑜𝑔 =
−

2

3
𝑀𝑠𝑎𝑔−

1

3
𝑀ℎ𝑜𝑔

−
2

3
𝑀𝑠𝑎𝑔+

2

3
𝑀ℎ𝑜𝑔

    (64) 

Similar expressions can be derived for other loading conditions in the following form 

𝐾𝑀𝑅,ℎ𝑜𝑔 =
𝑏7𝑀𝑠𝑎𝑔+𝑏8𝑀ℎ𝑜𝑔

𝑏7𝑀𝑠𝑎𝑔+𝑏9𝑀ℎ𝑜𝑔
    (65) 

where b7, b8 and b9 are given in Table 6.  

Table 6 MR Coefficients for upper limit on MR 

 b7 b8 b9 

Continuous Beam with UDL -2  -1 2 

Continuous Beam with Central Point Load -1 -1 1 

Propped Cantilever with UDL -16 -9 6 

Propped Cantilever with Central Point Load -6 -5 3 

 

Design Chart 
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Eq. (54) can be rewritten as 

𝐾𝑀𝑅,ℎ𝑜𝑔 =
1+𝑋(1−𝛼)𝑏1

1+𝑋[𝛼𝑏2+(1−𝛼)𝑏3]
    (66) 

where 

𝑋 =
𝑀ℎ𝑜𝑔

𝜃ℎ𝑜𝑔

𝐿

𝐸𝐼ℎ𝑜𝑔
     (67) 

and 

𝛼 =
𝐸𝐼ℎ𝑜𝑔

𝐸𝐼𝑠𝑎𝑔
     (68) 

Similarly, Eq. (65) can be rewritten as 

𝐾𝑀𝑅,ℎ𝑜𝑔 =
𝑏7−𝑏8𝛽

𝑏7−𝑏9𝛽
    (69) 

where 

𝛽 = −
𝑀ℎ𝑜𝑔

𝑀𝑠𝑎𝑔
     (70) 

From Eqs. (66) and (69) for specific combinations of α and β, KMR can be plotted as a function 

of X in Fig. 8 that is similar to that by Visintin & Oehlers (2016). Note that α and β have been 

shown as equal as the stiffness is proportional to the strength for reinforced concrete members 

(Priestly et al. 2017). The curves are of a similar shape to the code expressions if X is assumed 

to be proportional to the neutral axis depth to effective depth ratio. 
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Fig. 8. Design Chart of Continuous Beam subjected to a UDL with constant end moments 

 

COMPARISON TO EXPERIMENTAL RESULTS 

The tests by do Carmo & Lopes (2004) and Scott & Whittle (2005) on two-span continuous 

beams are compared with the theory in Table 7 where: where the column labelled Pred. (Partial 

MR) refers to the MR estimated considering Partial MR as given by Eq. (66); while Pred. (full 

MR) refers to the MR obtained assuming full MR as given by Eq. (69).  

The actual predicted KMR value, which is in bold in Table 7, is the minimum of the partial and 

full interaction values. In all cases the beams reached full MR. This demonstrates the difficulty 

with trying to quantify MR with lab-scale specimens as these specimens tend to be quite ductile 

which makes partial MR behaviour difficult to explore. This also highlights the importance of 

the presented theory as this allows us to relate the MR to the rotational capacity which can be 

measured experimentally in a laboratory setting.  

Table 7 Comparison to Test Results 

Reference Specimen Mhog Msag EIhog EIsag θhog KMR  Mh/Mel 

    
kNm kNm 

× 109 

Nmm2 

× 109 

Nmm2 
radians 

Exp

. 
Pred. Exp. Pred. 

Exp./

Pred. 
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Partial 

MR 

Full 

MR 

do Carmo 

& Lopes 

(2004) 

V1-0.8-0.7 20.2 44.3 921 1899 0.0187 0.39 0.53 0.51 0.61 0.49 1.24 

V1-0.8-1.4 38.4 44.3 1628 1899 0.0157 0.16 0.35 0.19 0.84 0.81 1.04 

V1-0.8-2.1 50.1 60.9 2149 2543 0.0173 0.35 0.38 0.22 0.65 0.78 0.83 

V1-0.8-2.9 66.6 89.5 2756 3519 0.0143 0.11 0.35 0.28 0.89 0.72 1.24 

V1-0.8-3.8 80.8 89.5 3233 3519 0.0109 0.05 0.25 0.17 0.95 0.83 1.14 

V1-0.8-5.0 98.3 89.5 3705 3519 0.0076 
-

0.02 
0.15 0.05 1.02 0.95 1.07 

Scott & 

Whittle 

(2005) 

B2T12D 13.5 18 463 643 0.0503 0.27 0.65 0.27 0.73 0.73 1.00 

B2T12DX 13.5 18 463 643 0.0503 0.28 0.65 0.27 0.72 0.73 0.99 

B2T12DXX 13.5 18 463 643 0.0503 0.34 0.65 0.27 0.66 0.73 0.90 

B3T10D 13.6 18 479 643 0.0452 0.26 0.63 0.27 0.74 0.73 1.01 

B5T8D 16.1 18 504 643 0.0401 0.22 0.56 0.18 0.78 0.82 0.95 

B2T8E 8.2 11.4 232 329 0.0411 0.4 0.57 0.29 0.6 0.71 0.85 

B2T8EX 8.2 11.4 232 329 0.0411 0.55 0.57 0.29 0.45 0.71 0.63 

B2T20BH 74.3 105 4272 5949 0.0189 0.38 0.55 0.3 0.62 0.7 0.89 

B2T20BHX 74.3 105 4272 5949 0.0189 0.33 0.55 0.3 0.67 0.7 0.96 

B2T12DH 14.6 22.9 487 682 0.0394 0.4 0.59 0.35 0.6 0.65 0.92 

B2T12DHX 14.6 22.9 487 682 0.0394 0.45 0.59 0.35 0.55 0.65 0.85 

          Mean 0.97 
          Std. Dev. 0.15 
          C.O.V. 0.16 

 

The coefficients used in Eqs. (66) and (69) were given by the values for a propped cantilever 

with a central point load in Tables 3 and 6 where ξ =3/11 was assumed, which is the elastic 

point of contraflexure. The moment capacity, rotational capacity and flexural rigidity were 

evaluated using the numerical segmental model described in Visintin & Oehlers (2018). This 

approach can simulate concretes without fibres by setting the concrete tensile strength to zero 

after cracking. The material properties were taken from the published results or were estimated 

using the relationships in the fib Model Code 2010 (fib 2013). 

The errors in Table 7 are presented in terms of Mh/Mel which is related to KMR by rearranging 

Eq. (1) as follows 

𝑀ℎ

𝑀𝑒𝑙
= 1 − 𝐾𝑀𝑅     (71) 
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Mh/Mel is also the parameter by which MR is represented in the fib Model Code 2010 (fib 

2013). The reason for this is KMR maybe positive or negative, therefore, the Exp./Pred. values 

can be difficult to interpret. For example if the predicted KMR is small and positive while the 

experimental KMR is small and negative this can result in a negative Exp./Pred. As Mh/Mel is 

distributed around 1 ensuring a positive value for Exp./Pred. the interpretation of the errors is 

more straightforward.  

COMPARISON TO CODE APPROACHES 

The parametric study in Fig. 9 compares Eq. (53) for full MR to code values that also apply to 

full MR. The moment capacity, rotational capacity and flexural rigidity of the beam were also 

calculated using the model in Visintin & Oehlers (2018). The default values in this study are: 

effective depth of 500 mm; concrete strength of 40 MPa; class N reinforcement; span-to-depth 

ratio of 20; continuous beam; and the stiffness of the hogging and sagging regions are the same. 

Each of these parameters are varied while the others are held constant as the influence of each 

parameter is explored. For all simulations, the hinges are also assumed to form at the supports 

as this is the usual case considered in the codes. All beams were also singly reinforced and the 

width was 200 mm, as these parameters were not found to significantly affect MR. For each 

case considered the reinforcement ratio was varied from 0.25% to 1% to produce the observed 

variation in neutral axis depth. The neutral axis depth was evaluated for a top strain of 0.003 

as required by AS3600-2018 (Standards Australia 2018). 
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Fig. 9. Comparison to Code Approaches 

 

From Fig. 9(a), it can be seen that the effective depth does not have a strong effect on the level 

of MR. This is because, even though the curvature is reduced, the size of the hinge increases 

with beam depth. However, the shape of the curve is different from that in the design codes. 

The initial branch of the curve is when the rotational capacity is controlled by the tensile failure 

of the reinforcement and the falling branch is when the rotational capacity is controlled by the 

crushing of the concrete. The rotational capacity of the section tends to increase with neutral 

axis depth when this parameter is controlled by the rupture of the reinforcement and the 
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rotational capacity decreases with neutral axis depth when this parameter is controlled by the 

crushing of the concrete. 

In Fig. 9(b), increasing concrete strength results in a decrease in MR. This is consistent with 

the Eurocode 2 (CEN 2004) which reduces the allowable MR for concretes with a strength 

greater than 50 MPa. 

Fig. 9(c) shows that an increased reinforcement ductility results in an increased level of MR 

for the cases where the rotational capacity is controlled by the rupture of the tensile 

reinforcement. However when concrete crushing controls the rotational capacity, the ductility 

of the reinforcement has no effect as would be expected. Eurocode 2 (CEN 2004) reduces the 

maximum level of MR to 0.2 for low ductility reinforcement while AS3600-2018 (Standards 

Australia 2018) does not allow MR to be considered for low ductility reinforcement. Note that 

in AS/NZS 4671-2001 (Standards Australia 2001) class E reinforcement has a minimum 

elongation of 0.1, while class N reinforcement has a minimum elongation of 0.05 and class L 

reinforcement has a minimum elongation of 0.015. Similarly, in the Eurocode 2 (CEN 2004), 

class A has a minimum elongation of 0.025, class B has a minimum elongation of 0.05 and 

class C has a minimum elongation of 0.075. 

From Fig. 9(d), the level of MR decreases for beams with greater span to depth ratios. Fig. 9(e) 

demonstrates that more MR occurs for a propped cantilever than for a continuous beam. Fig. 

9(f) found that the stiffer the sagging region is relative to the hogging region, the greater the 

expected MR is at the support. 

From this parametric study, it can be seen that while existing code approaches consider the 

effect of concrete strength and reinforcement ductility on the MR, the influence of member 

properties such as span, type of loading and relative stiffness of the midspan and the support 
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are neglected. This suggests that the expressions in this paper could be used as the basis of 

design expressions which considers the effects of both section and member properties. 

APPLICATION TO ULTRA-HIGH PERFORMANCE FIBRE REINFORCED 

CONCRETE 

In Fig. 10, the predicted and experimental MR factors are compared for the UHPFRC beams 

tested by Visintin et al. (2018). The moment-rotation of these beams were recorded during the 

tests, hence, these results were used directly rather than from predictive models. It can be seen 

that the expressions in this paper give a close prediction of the MR. Importantly, to apply the 

approach to beams constructed from UHPFRC the only change is in the inputs to the model, 

not in the form of the model. To apply the approach to members where the moment-rotation 

relationship is unknown, approaches such as those by Schumacher (2006) or Sturm et al. (2020) 

which allow for tension stiffening and fibre bridging effects for fibre reinforced materials can 

be applied. 

 

Fig. 10. Comparison of Experimental to Predicted MR for Visintin et al. (2018) 
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CONCLUSION 

Mechanics expressions have been derived for the MR in reinforced concrete beams. These 

expressions allow the hinge rotation required to achieve full MR to be determined, that is the 

MR required to achieve the theoretical maximum load based on the sectional moment capacity 

of the beam. Expressions have also been developed for the maximum load that can applied if 

the rotational capacity of the hinges is insufficient to reach full MR, that is, partial MR is 

achieved. Finally, mechanics expressions are derived for the MR factors for a number of 

common design scenarios. These expressions are functions of the moment capacity of the 

hinges, rotational capacity of the hinges, flexural rigidity along the member, span of the beam, 

type of loading as well as the restraint conditions. Hence, these expressions can be applied for 

beams constructed from any combination of concrete and reinforcement as long as the value of 

these parameters can be defined.  

The expressions are then validated against experimental results for conventional reinforced 

concrete beams as well as UHPFRC beams with good correlation, demonstrating the versatility 

of the solutions. Finally, a parametric study was performed comparing the results of using these 

expressions in national codes of practice to illustrate the importance of the different parameters 

effecting MR. 

 

APPENDIX A CONTINUOUS BEAM WITH POINT LOAD 

Consider the continuous beam in Fig. A1 which is subjected a point load, P, a distance a from 

the left hand support. It is subjected the distribution of moment as follows 

𝑀(𝑥) = 𝑃 (1 −
𝑎

𝐿
) 𝑥 + 𝑀1 (1 −

𝑥

𝐿
) + 𝑀3 (

𝑥

𝐿
) ; 0 < 𝑥 < 𝑎   (A1a) 

𝑀(𝑥) = 𝑃 (
𝑎

𝐿
) (𝐿 − 𝑥) + 𝑀1 (1 −

𝑥

𝐿
) + 𝑀3 (

𝑥

𝐿
) ; 𝑎 < 𝑥 < 𝐿   (A1b) 
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The elastic deflection at the right hand support is a superposition of the deflection due to the 

applied point load and the end moments. From Eq. (3) the curvature due to the point load is 

𝜒(𝑥) =
𝑃

𝐸𝐼𝑖
(1 −

𝑎

𝐿
) 𝑥; 𝑥𝑖−1 < 𝑥 < 𝑥𝑖; 𝑥 < 𝑎; 𝑖 ∈ (1, 𝑗)   (A2a) 

𝜒(𝑥) =
𝑃

𝐸𝐼𝑖
(

𝑎

𝐿
) (𝐿 − 𝑥); 𝑥𝑖−1 < 𝑥 < 𝑥𝑖; 𝑥 > 𝑎; 𝑖 ∈ (𝑗, 𝑁)   (A2b) 

where j is the segment in which the point load is contained defined as xj<a<xj+1. 

 

Fig. A1. Continuous Beam with Point Load 

 

Integrating gives the rotation as 

𝜃𝑒𝑙(𝑥) =
𝑃

𝐸𝐼𝑖
(1 −

𝑎

𝐿
)

𝑥2

2
+ (𝐶1)𝑖; 𝑥𝑖−1 < 𝑥 < 𝑥𝑖; 𝑥 < 𝑎; 𝑖 ∈ (1, 𝑗)   (A3a) 

𝜃𝑒𝑙(𝑥) =
𝑃

𝐸𝐼𝑖
(

𝑎

𝐿
) (𝐿𝑥 −

𝑥2

2
) + (𝐶2)𝑖; 𝑥𝑖−1 < 𝑥 < 𝑥𝑖; 𝑥 > 𝑎; 𝑖 ∈ (𝑗, 𝑁)  (A3b) 

At the left hand support the rotation is zero, therefore 

𝜃(0) = 0 = (𝐶1)1      (A4) 
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The rotation is continuous across segment boundaries, therefore from Eq. (A3a) 

𝜃(𝑥𝑖) =
𝑃

𝐸𝐼𝑖
(1 −

𝑎

𝐿
)

𝑥𝑖
2

2
+ (𝐶1)𝑖 =

𝑃

𝐸𝐼𝑖+1
(1 −

𝑎

𝐿
)

𝑥𝑖
2

2
+ (𝐶1)𝑖+1   (A5) 

Rearranging gives 

(𝐶1)𝑖+1 − (𝐶1)𝑖 = 𝑃 (
1

𝐸𝐼𝑖
−

1

𝐸𝐼𝑖+1 
) (1 −

𝑎

𝐿
)

𝑥𝑖
2

2
    (A6) 

From Eq. (A3b) 

𝜃(𝑥𝑖) =
𝑃

𝐸𝐼𝑖
(

𝑎

𝐿
) (𝐿𝑥𝑖 −

𝑥𝑖
2

2
) + (𝐶2)𝑖 =

𝑃

𝐸𝐼𝑖+1
(

𝑎

𝐿
) (𝐿𝑥𝑖 −

𝑥𝑖
2

2
) + (𝐶2)𝑖+1  (A7) 

Rearranging gives 

(𝐶2)𝑖+1 − (𝐶2)𝑖 = 𝑃 (
1

𝐸𝐼𝑖
−

1

𝐸𝐼𝑖+1
) (

𝑎

𝐿
) (𝐿𝑥𝑖 −

𝑥𝑖
2

2
)  (A8) 

The rotation is also continuous at the point of loading so 

𝜃(𝑎) =
𝑃

𝐸𝐼𝑗
(1 −

𝑎

𝐿
)

𝑎2

2
+ (𝐶1)𝑗 =

𝑃

𝐸𝐼𝑗
(

𝑎

𝐿
) (𝐿𝑎 −

𝑎2

2
) + (𝐶2)𝑗  (A9) 

From which rearranging gives 

(𝐶2)𝑗 − (𝐶1)𝑗 = −
𝑃

𝐸𝐼𝑗

𝑎2

2
    (A10) 

Integrating Eq. (A3) gives the elastic deflection as 

𝑦𝑒𝑙(𝑥) =
𝑃

𝐸𝐼𝑖
(1 −

𝑎

𝐿
)

𝑥3

6
+ (𝐶1)𝑖𝑥 + (𝐶3)𝑖; 𝑥𝑖−1 < 𝑥 < 𝑥𝑖; 𝑥 < 𝑎; 𝑖 ∈ (1, 𝑗)  (A11a) 

𝑦𝑒𝑙(𝑥) =
𝑃

𝐸𝐼𝑖
(

𝑎

𝐿
) (

𝐿𝑥2

2
−

𝑥3

6
) + (𝐶2)𝑖𝑥 + (𝐶4)𝑖; 𝑥𝑖−1 < 𝑥 < 𝑥𝑖; 𝑥 > 𝑎; 𝑖 ∈ (𝑗, 𝑁) (A11b) 

The deflection is zero at the left hand support, therefore 

𝑦𝑒𝑙(0) = 0 = (𝐶3)1     (A12) 
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The deflection is also continuous across segment boundaries so from Eq. (A11a) 

𝑦𝑒𝑙(𝑥𝑖) =
𝑃

𝐸𝐼𝑖
(1 −

𝑎

𝐿
)

𝑥𝑖
3

6
+ (𝐶1)𝑖𝑥𝑖 + (𝐶3)𝑖 =

𝑃

𝐸𝐼𝑖+1
(1 −

𝑎

𝐿
)

𝑥𝑖
3

6
+ (𝐶1)𝑖+1𝑥𝑖 + (𝐶3)𝑖+1(A13) 

Rearranging gives 

(𝐶3)𝑖+1 − (𝐶3)𝑖 = 𝑃 (
1

𝐸𝐼𝑖
−

1

𝐸𝐼𝑖+1
) (1 −

𝑎

𝐿
)

𝑥𝑖
3

6
− [(𝐶1)𝑖+1 − (𝐶1)𝑖]𝑥𝑖 = −𝑃 (

1

𝐸𝐼𝑖
−

1

𝐸𝐼𝑖+1
) (1 −

𝑎

𝐿
)

𝑥𝑖
3

3
 (A14) 

From Eq. (A11b) 

𝑦𝑒𝑙(𝑥𝑖) =
𝑃

𝐸𝐼𝑖
(

𝑎

𝐿
) (

𝐿𝑥𝑖
2

2
−

𝑥𝑖
3

6
) + (𝐶2)𝑖𝑥𝑖 + (𝐶4)𝑖 =

𝑃

𝐸𝐼𝑖+1
(

𝑎

𝐿
) (

𝐿𝑥𝑖
2

2
−

𝑥𝑖
3

6
) + (𝐶2)𝑖+1𝑥𝑖 + (𝐶4)𝑖+1

 (A15) 

Rearranging gives 

(𝐶4)𝑖+1 − (𝐶4)𝑖 = 𝑃 (
1

𝐸𝐼𝑖
−

1

𝐸𝐼𝑖+1
) (

𝑎

𝐿
) (

𝐿𝑥𝑖
2

2
−

𝑥𝑖
3

6
) − [(𝐶2)𝑖+1 − (𝐶2)𝑖]𝑥𝑖 = −𝑃 (

1

𝐸𝐼𝑖
−

1

𝐸𝐼𝑖+1
) (

𝑎

𝐿
) (

𝐿𝑥𝑖
2

2
−

𝑥𝑖
3

3
) (A16) 

The deflection is also continuous at the point load, so 

𝑦𝑒𝑙(𝑎) =
𝑃

𝐸𝐼𝑗
(1 −

𝑎

𝐿
)

𝑎3

6
+ (𝐶1)𝑗𝑎 + (𝐶3)𝑗 =

𝑃

𝐸𝐼𝑗
(

𝑎

𝐿
) (

𝐿𝑎2

2
−

𝑎3

6
) + (𝐶2)𝑗𝑎 + (𝐶4)𝑗(A17) 

Rearranging gives 

(𝐶4)𝑗 − (𝐶3)𝑗 = −
𝑃

𝐸𝐼𝑗

𝑎3

3
− [(𝐶2)𝑗 − (𝐶1)𝑗]𝑎 =

𝑃

𝐸𝐼𝑗

𝑎3

6
  (A18) 

The elastic deflection at the right hand support is then given by 

𝑦𝑒𝑙(𝐿) =
𝑃

𝐸𝐼𝑁

𝑎𝐿2

3
+ (𝐶2)𝑁𝐿 + (𝐶4)𝑁 = 𝑎4𝑃    (A19) 

where  
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𝑎4 =
1

𝐸𝐼𝑁

𝐿2𝑎

3
+

1

𝐸𝐼𝑗
(−

𝐿𝑎2

2
+

𝑎3

6
) + ∑ (

1

𝐸𝐼𝑖
−

1

𝐸𝐼𝑖+1 
) (1 −

𝑎

𝐿
) (

𝐿𝑥𝑖
2

2
−

𝑥𝑖
3

3
)

𝑗−1
𝑖=1 + ∑ (

1

𝐸𝐼𝑖
−𝑁−1

𝑖=𝑗

1

𝐸𝐼𝑖+1
) (

𝑎

𝐿
) (𝐿2𝑥𝑖 − 𝐿𝑥𝑖

2 +
𝑥𝑖

3

3
)(A20) 

Hence the total elastic deflection at the right hand support for a continuous beam with a point 

load is given by 

𝑦𝑒𝑙(𝐿) = 𝑎4𝑃 + 𝑎2𝑀1 + 𝑎3𝑀3  (A21) 

Similarly the elastic deflection at the left hand support  

𝑦𝑒𝑙(0) = 𝑎4
′ 𝑃 + 𝑎2

′ 𝑀1 + 𝑎3
′ 𝑀3  (A22) 

where 

𝑎4
′ =

1

𝐸𝐼1
(1 −

𝑎

𝐿
)

𝐿3

3
+

1

𝐸𝐼𝑗
[

(𝐿−𝑎)3

6
−

𝐿(𝐿−𝑎)2

2
] − ∑ (

1

𝐸𝐼𝑖
−

1

𝐸𝐼𝑖+1 
) (

𝑎

𝐿
) (

𝐿(𝑥𝑖
′)

2

2
−

(𝑥𝑖
′)

3

3
)

𝑗−1
𝑖=1 −

∑ (
1

𝐸𝐼𝑖
−

1

𝐸𝐼𝑖+1
) (1 −

𝑎

𝐿
) (𝐿2𝑥𝑖

′ − 𝐿(𝑥𝑖
′)2 +

(𝑥𝑖
′)

2

3
)𝑁−1

𝑖=𝑗   (A23) 

Using the results of Eqs. (A21) and (A22) hinges locations can then be determined using Table 

1. The rotation at these hinges can then be determined from Eqs. (29)-(34), choosing the 

appropriate expressions based on the hinge locations. 

 

NOTATION 

The following symbols are used in this paper: 

a = position of point load with respect to left hand support; 

a1, a2, a3, a4, a1’, a2’, a3’, a4’ = coefficients for the rotational demand; 

b1, b2, b3, b4, b5, b6, b7, b8, b9 = coefficients for moment redistribution expression; 
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(C1)i, (C2)i, (C3)i, (C4)i = integration coefficients;EI = flexural rigidity; 

EIhog, EIsag = flexural rigidity in the hogging and sagging regions, respectively; 

EIi = flexural rigidity of ith segment; 

EI1, EI2, EI3 = flexural rigidity of the leftmost hogging region, sagging region and rightmost 

hogging region; 

fc = concrete strength; 

KMR, KMR,hog, KMR,sag = moment redistribution; moment redistribution at support and at the 

position of maximum sagging moment, respectively; 

ku = ratio between neutral axis and effective depth; 

L = span; 

Lh = length of hinge; 

M, Mel, Mh = moment; elastic and hinge moments, respectively; 

Mhog, Msag = moments at the support in the hogging region and postion of maximum sagging 

moment, respectively; 

Mst, (Mst)el, (Mst)FMR, (Mst)PMR = static moment; elastic static moment; static moment at full 

MR; static moment at partial MR; 

M1, M2, M3 = moments at the left hand support, position of maximum sagging moment and 

right hand support, respectively; 

N = number of segments; 

P = point load; 

w = uniformly distributed load; 
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X = moment redistribution parameter; 

x = position with respect to the left hand support; 

x’ = position with respect to the right hand support; 

xi = distance from left hand support to the left hand boundary of ith- segment 

xm = distance from left hand support to point of maximum moment; 

y, yel, yh = deflection; elastic and hinge deflections, respectively; 

α = ratio of flexural rigidity of the hogging to the sagging region; 

β = ratio of moment capacity at the support to the moment capacity at the position of maximum 

sagging moment; 

εu = ultimate concrete strain;  

θcap = rotation capacity;  

θel, θh = elastic rotation;hinge rotation;   

θhog, θsag = rotation at support in hogging region and at position of maximum sagging moment, 

respectively;   

θ1, θ2, θ3= hinge rotations at the left hand, position of maximum sagging moment and right 

hand supports, respectively; 

ξ = ratio of distance to the point of contraflexure with respect to the left hand support to the 

span of the beam; 

χ = curvature; 
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