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Abstract 

 

Water policy, planning and design problems can be challenging. They are often nested across 

multiple scales such that downstream issues cannot be addressed without detailed understanding 

of upstream processes. Complexity of catchment processes, their interdependence and their 

feedback mechanisms represent significant catchment heterogeneity that is not easily 

represented in hydrological models. As a result, many problems are bounded or idealized to focus 

on a subset of processes restricted to a specific scale. For instance, spatially lumped hydrological 

models—commonly used for policy, planning and design decisions—are often calibrated to 

gauging data at a catchment outlet, with limited regard for the hillslope processes leading to 

runoff generation. 

Traditional approaches to streamflow monitoring are limited by relatively high costs of gathering 

observations leading to sparse geographical coverage. This can be problematic when attempting 

to understand the non-linear and complex runoff behaviour present on hillslopes and reaches 

throughout an entire river network. The representation of runoff in hydrological models can be 

critical for supporting a range of spatially distributed problems. Many practical water 

management problems focus on the aggregation of processes to an outlet which can be 

inadequate for some questions that are nested across scales, such as management decisions 

relating to upstream land use, small farm dams and environmental flows. In the absence of 

streamflow monitoring at local scales, traditional approaches are less likely to be scalable and 

pose challenges in effectively representing surface and subsurface runoff generation at finer 

scales.  

Increasingly sophisticated low-cost and low-maintenance sensing technologies are an accessible 

means of addressing data gaps in the spatial coverage of streamflow. Environmental sensor 

technologies are continually being developed with miniaturization, wireless communication and 

reduced costs, enabling automated electronic data loggers with reliable high frequency 

measurements. New initiatives in hydrological and environmental monitoring provide 

opportunities for high-density and widespread environmental data collection providing 

opportunities to better understand water management questions which span multiple scales. 

This study combined process modelling with field data collected from low-cost distributed sensors 

to improve the representation of local scale flow processes. While process modelling can, in part, 

address some deficiencies, they are limited by known scaling issues of theoretical understanding 

and data availability of parameters that cannot be adequately measured. To compensate for these 

limitations, an alternative hydrological modelling approach for calibration was presented. The 

approach was supported with inexpensive data on the presence of water in the streambed, 

providing additional information on hillslope intermittency. 

A small 10km2 South Australian catchment, located in the Mount Lofty Ranges, was selected and 

instrumented across twelve sites with paired in-stream and on-bank temperature data loggers 

and pressure transducers required to evaluate results. A two-state hidden Markov model was 

applied to temperature data to classify whether the stream was ‘wet’ (flowing) or ‘dry’ (not 

flowing) for a given day. The accuracy of classifications was between 89% to 99% during calibration 

and 82% to 97% during evaluation of algorithm performance. The binary ‘wet’-‘dry’ classifications 

were used to calculate a number of intermittency signatures for each site (e.g. number of zero 
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flow days, number of zero flow periods and average duration of zero flow periods) with the results 

demonstrating a high degree of heterogeneity of flow permanence within the small catchment 

area. 

A physically based hydrological model, HydroGeoSphere, was calibrated exclusively to discharge 

at the outlet to represent four conceptual models of runoff generation. The four competing 

conceptualisations were: (1) saturation excess dominated, (2) saturation excess and groundwater 

dominated, (3) groundwater dominated and (4) groundwater dominated but containing 17% 

infiltration excess. The conceptual models dominated by groundwater discharge showed a 20% 

increase in low flow days directly below at point of interception compared to upstream. This 

highlighted that conceptual assumptions about runoff generation mechanisms in intermittent 

river systems have significant implications on locally dependent water management problems. 

The four conceptual models were evaluated with classified ‘wet’-‘dry’ binary data showing that 

no single candidate calibration performed consistently well at all upstream sites. This result 

demonstrating that the high heterogeneity in headwaters means that catchment-average process 

simulations were not able to capture localized variability. Distributed data of flow intermittency 

in headwater catchments was able to improve process-based hydrological model calibration with 

eight out of nine sites showed significant improvement in performance, with only a small 

deterioration to the outlet. 

Headwaters, which are typically considered to include first to third order streams, are important 

for understanding intra-catchment fluxes and how these fluxes accumulate out of the catchment. 

With improved model performance there can be many benefits of getting the internal processes 

right, such as: simulating conditions that are outside a calibration period or infilling and 

completing data sets. As sensing and communications technologies continue to improve, there 

will be increasing opportunities to use information sources such as local-scale intermittency to 

supplement reliable streamflow records for representing hydrological processes across scales for 

more accurate water accounting and improve planning of water allocations for consumptive and 

environmental water needs. 
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𝑓_𝐼𝐸 − 𝑂𝐿 − 𝑅𝐹 The fraction of water of infiltration excess infiltration that re-emerges 
downstream as overland return flow 

𝑓_𝑆𝐸 − 𝑂𝐿 − 𝑅𝐹 The fraction of water of saturation excess infiltration that re-emerges 
downstream as overland return flow 

𝑓_𝐺𝑊 The fraction of water of groundwater discharge 
𝑓_𝑟𝑖𝑣𝑒𝑟_𝑓𝑙𝑢𝑥 The fraction of water that enters a channel while ponded 

𝑓_𝑖𝑛𝑖𝑡𝑖𝑎𝑙 The fraction of water that was present at the time of simulation 
initialisation. 

𝐵𝐶𝑖𝑛 or 𝐵𝐶𝑜𝑢𝑡 Inflow and outflow boundary conditions 
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Chapter 1.  

1.1 Introduction 

Watercourses in semi-arid and Mediterranean catchments are typically intermittent and 

experience many periods of low- to no-flows (Arthington et al., 2014; Datry et al., 2016; Gallart et 

al., 2016, Wani et al., 2017). The high variability of intermittent flows is important to consider 

because more than 17% of the world’s land mass falls within semi-arid climates and flow 

intermittency has significant ecological functioning within these climates (Peel et al., 2007; 

Essenwager, 2001). Despite their significance, there is poor understanding of flow intermittency 

due to traditional approaches of monitoring and modelling that focus on discharge at a catchment 

outlet.  

A significant proportion of hydrology is at the catchment scale, with attention typically given to 

conceptual models that have predefined model structures and aggregate catchment characteristic 

based on calibration to flows at the outlet (Wellen et al., 2015). This method of analysis is 

traditionally used due to data restrictions on collecting hillslope information, large computational 

requirements for complex models as well as incomplete knowledge and simplified scientific 

assumptions. These challenges are present for all modelling methods inclusive of blackbox to 

physical and lumped to distributed simulation approaches.  

Aggregated understanding of catchment behaviour is inadequate for many scientific and 

engineering problems that are distributed throughout a catchment, such as: 

• Environmental flows – which are sensitive due to changes within a catchment and water 

extractions that are relevant for the ecological health of individual reaches;  

• Water quality – influenced by sediment transport and multiscale processes controlled by runoff 

generation;  

• Low-flows – which have a disproportionate impact of ecosystem health due to their low 

magnitude which are required on individual reaches during times of stress for native species; 

• Land use change – which influences subsurface and surface runoff due to interception and local 

scale transpiration processes; and  

• Agricultural storages – where strategically placed low-flow bypasses on farm dams are 

distributed in catchments and include subsurface flow pathways (i.e. base-flows). 

An aggregated approach to understanding water management questions is limited because of 

complex interactions and feedbacks in runoff generation processes. These processes are required 

for understanding local fluxes and are rarely represented in commonly applied modelling 

approaches. Accurate representation of hydrological processes throughout a catchment is critically 

important due to heterogeneity in catchment features in space and time. Reaches on the hillslope 

(herein defined as first to third order streams) are highly variable and intermittent, and become 

more permanent with greater degrees of aggregation. The complexity of physical behaviour of local 

scale runoff generation, flow pathways and runoff response pose significant challenges in 

hydrological understanding, scaling and runoff partitioning. 

Physically based models (Freeze, 1969; Abbott et al., 1986; VanderKwaak et al., 2001; Brunner et 

al., 2012) are able to represent processes at the local or process scale, but are limited by the ability 

to identify parameters at all locations due to data scarcity. The outcome of limited data is that 

models can be calibrated to an outlet, but the internal dynamics may not be correctly represented 

(Li et al., 2015). One option to remedy this issue is to collect additional data. Such data need not be 
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of the same nature as traditional long-term sources such as streamflow measurements at the 

outlet, but can be collected for a limited time from cheap sensors. 

There are numerous alternative methods for measuring catchment properties such as 

intermittency (Datry et al., 2016; Gallart et al., 2016). Alternative methods include: 

(i) on-ground surveys and ‘wet’-‘dry’ mapping (e.g. Stanley et al., 1997; Hunter et al., 2005; 

Turner & Richer, 2011; Larned et al., 2011; Datry et al., 2016). 

(ii) remote sensing (e.g. Hamada et al., 2016; Puntennet et al., 2017) 

(i) digital images and time lapse photography (e.g. Bradley et al., 2002; Young et al., 2014; 

Kaplan et al., 2019); and  

(ii) low-cost data loggers as flow surrogates such as temperature and EC measurements (e.g. 

Constantz et al., 2001; Blasch et al, 2004; Chapin et al. 2014; Arismendi et al., 2017; Hofer 

et al, 2018). 

Real-time data collection from unconventional sources can be exploited in urban areas (Kerkez et 

al., 2016) such as the use CCTV footage to investigate flood events (Le Coz et al., 2016). However, 

image-based forms of data collection are not as readily available in rural areas due to their scale 

and distance from population centres. In contrast, low-cost sensor technologies can infer the 

occurrence of runoff events in the form of binary (‘wet’-‘dry’) observations (Wani et al., 2017). 

1.2 Dynamics of intermittency flows 

Mechanisms that generate low flows and the drivers of low flow periods are different to 

mechanisms generating high and medium flows. Low flows are typically derived from storage within 

a catchment (McMahon & Finlayson, 2003) and can originate from groundwater, shallow 

stormwater flow, bank storage and delayed surface flow (Smakhtin, 2001). Key factors controlling 

lows flows are: (i) soil properties, (ii) the macropore network, (iii) the depth at which flow processes 

occur (shallow or deep subsurface), (iv) the magnitude of deep storage (i.e. fractured rocks or 

porous aquifers feeding the stream) and (v) aquifer characteristics.   

Low flow processes can vary considerably, both spatially and temporally (Ouarda et al., 2008). 

Understanding these processes is critical, such as distinguishing between Horton overland runoff, 

shallow subsurface storm flow or Dunne saturated overland flow (Figure 1-1). For example, a 

catchment with an aquifer may continue to flow during a low flow period, while a similar catchment 

residing on different bedrock may cease to flow in the same period. It is important to identify and 

understand these dominant processes because it avoids model over-parameterisation (Grayson & 

Bloschl, 2000).  
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Figure 1-1: The Dunne diagram illustrating catchment characteristics that favour different runoff generation mechanisms 
(Dingman, 2015; Mirus & Loague, 2013). 

Understanding runoff generating mechanisms is necessary for responding to anthropogenic 

influences within catchments, setting water policy and managing flows. Figure 1-2 illustrates the 

processes of infiltration excess and saturation excess runoff generation according to well-known 

conceptualisations (Dunne, 1983). Infiltration excess runoff is produced by saturation of the soil 

surface (from above) when the intensity of precipitation exceeds the rate of infiltration. Saturation 

excess runoff occurs when the entire soil profile is saturated (from below) resulting in return flow 

and runoff from subsequent precipitation on this area. Runoff mechanisms are non-uniform and 

highly variable for a variety of reasons including: variable infiltration capacities and depression 

storage (Esteves and Lapetiti, 2003); physical and chemical properties of the soil surface such as soil 

crusting (Vaezi et al., 2010); hydraulic conductivity and slopes (Li et al., 2012); the size of a 

precipitation events (Newman et al., 1998); antecedent conditions (Singh, 1997); whether a 

catchment is water-limited or energy-limited (Trancoso et al., 2016); and subsurface flow path 

distribution, transit times and distribution of shallow storage (Vivoni et al., 2007).  Catchment runoff 

response is often nonlinear and scale-dependent, with multiple mechanisms occurring 

simultaneously in a catchment (Vivoni et al., 2007).  
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Figure 1-2 illustrates the processes of infiltration excess and saturation excess runoff generation according to well-known 
conceptualisations (Dunne, 1983). Where R is rainfall intensity and I is infiltration capacity.  

1.3 Anthropogenic influences  

Anthropogenic impacts have a significant impact on a basin’s flow regime. Growing populations in 

many regions result in increasing pressure and demand on freshwater resources, with increasing 

pressure for human consumption, industry, agriculture as well as environmental requirements. 

These pressures are further amplified in drier water-limited catchments in arid and semi-arid 

regions. Human impacts on the landscape affect low flow frequencies and magnitudes. Flow 

regulation, surface water abstraction, groundwater abstraction and land use all influence gains or 

losses to low flow discharges. At present, over two million agricultural dams are distributed on 

hillslopes in Australia alone, each with limited storage volume but collectively storing over 8,000 GL 

of water (Land and Water Australia, 2010)—a volume equivalent to the total volume of water 

stored in large reservoirs supplying Australia’s major capital cities. 

A desktop study conducted in an area in the Mount Lofty Ranges showed that 90% of streamflow 

lengths are first to third order streams (Figure 1-3a). Similarly, of the more than 2,500 km2 area and 

7000 farm dams investigated, 90% were located on headwater catchments (first to third order). 

Additionally, 70% of the storage capacity was located on the headwaters, with larger dams typically 

located downstream (Figure 1-3b). On average the density across the entire area was determined 

as 6.6 ML/km2, however some sub-catchments had surface storage densities as high as 25.0 

ML/km2. Assuming a runoff co-efficient of 10% and an average rainfall of 800 mm per year, these 

densities imply that as much as 33% of surface runoff is being detained in dams across the area. 

This is a significant volume, especially for the water-limited catchments that typify Southern 

Australia.  
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Figure 1-3: Illustrating the (a) stream length and stream orders for a catchment in the Mount Lofty Ranges in South Eastern 
Australian and boxplots of storage size by stream order of the 7000 farm dams. 

There are many possible causes for interception of runoff across a catchment relating to land use 

change, including: fire, increased urbanisation, remediation, development of wetlands, forestry and 

farm dams. Farm dams are highlighted here because they represent a common feature of the 

landscape in agricultural regions that are distributed throughout a catchment. Farm dams can range 

in size from a few kilolitres to hundreds of mega litres, and in recent years the cumulative impacts 

to catchment health of these dams have been recognized (Nathan & Lowe, 2012). Farm dams are 

located upstream on intermittent watercourses and can be responsible for altering seasonal flow 

patterns when present in high densities. Farm dams can also be responsible for impacting low flow 

periods by extending natural cease of- and low- flow durations (Granthan et al., 2010). To 

understand their impact requires spatially explicit representation and not just an aggregated model 

that relies on flows at the outlet. However, understanding their impacts is challenging because they 

are dispersed in a catchment and there is a lack of data availability on hillslopes and on individual 

reaches. 
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1.4 Ecological significance of intermittency 

The low flow end of the hydrograph is vulnerable to alteration caused by anthropogenic changes 

to the flow regimes (Smakhtin, 2001), however the mechanistic effects of human-induced water 

reduction on riverine ecosystems is poorly understood (Rolls et al., 2012; Boulton and Lake, 2008).  

The low flow end of the hydrograph is vulnerable to alteration caused by anthropogenic changes 

to the flow regimes (Smakhtin, 2001). However, the mechanistic effects of human-induced water 

reduction on riverine ecosystems is poorly understood (Rolls et al., 2012; Boulton and Lake, 2008). 

A key challenge for water policymakers is balancing the trade-offs between environmental water 

requirements and economical water demands (e.g. agricultural). This challenge is amplified during 

dry periods, as it is recognised that a small percent change in low flow magnitude may cause a 

disproportionately large change in ecological response (Rolls et al., 2012). In Australia low flow 

periods are a natural feature of river systems, but they are also periods of high stress for 

ecosystems. Therefore, to better address water management questions, it is critical to understand 

and acknowledge the ecological characteristics and responses to low flow regimes. 

Surface-flow and groundwater-level fluctuations drive expansion-contraction cycles of intermittent 

river networks (Stanley et al., 1997), which generate alternating patterns of wetting and drying of 

reaches. These cycles result in the shifting of habitats at a network scale between lotic, lentic and 

terrestrial habitats, forming a shifting aquatic-terrestrial habit mosaic (Datry et al., 2014). 

Hydrological drivers of magnitude, frequency and duration of cease-to-flow and low flow periods 

control the diversity, spatial arrangement, turnover and connectivity of ecosystems (Stanley et al., 

1997; Bunn et al., 2006). 

1.5 Review of modelling tools  

A majority of hydrological models widely used by policy decision makers represent low flow and 

intermittency flow processes poorly. Very few models provide reliable information on subsurface 

flow pathways and are not able to adequately represent low flows. Current modelling frameworks 

focus on reproducing peak and total flow volumes, and have significant structural weaknesses with 

respect to reproducing low flow behaviour. For example, the GR4J conceptual model (Perrin et al., 

2001) simulates flows as a function of storage, making it impossible to replicate zero flow periods 

without some form of threshold parameter. Furthermore, models that have been developed for 

one catchment or time period can perform poorly when applied to another catchment or time 

period. The uniqueness of flow mechanisms makes it difficult, if not impossible, to develop a single 

model structure suitable in all circumstances and locations. Therefore, process modelling and/or 

flexible modelling structures are better for understanding hydrological systems. 

There are a number of models capable of investigating subsurface flow paths as well as testing 

alternative model configurations (or model hypothesis based on alternative runoff mechanisms). 

Some of these include SUMMA (Clarke et al., 2015), SUPERFLEX (Fenicia et al., 2011), MIKE SHE 

(Abbott et al., 1986) and HydroGeoSphere (Therrien et al., 2006) (Table 1-1). HydroGeoSphere 

(HGS) was selected as the best candidate model and was used for all modelling tasks required for 

the project because it was able to represent the required physical processes while also being able 

to quantify proportions of runoff mechanisms. HGS is a fully coupled surface-subsurface model that 

represents 3D variably saturated flow using the modified Richard’s equation and 2D surface flow 

using the diffusion wave approximation to the St Venant equations (Therrien et al., 2009). 
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Table 1-1: Comparison of models and their capabilities in simulating infiltration, evapo-transpiration and subsurface flow 
processes. 

 Structure Infiltration Evapo-

transpiration 

Unsaturated Flow Saturated flow Groundwater 

contribution 

Preferential 

flow 
SU

M
M

A
 Flexible/ 

modular 
Yes-Green 
and Ampt 

Yes, various 
representation 

Yes–Mixed form of Richards 
equation using Van Genuchten 

closure relations – vertical 
redistribution 

Yes, Function of 
water store with 

power-law hydraulic 
conductivity profiles 

Yes, Conceptual 
power law 

representation 

No 

SU
P

ER
 F

LE
X

 

Flexible/ 
modular 

Yes Yes Conceptual bucket 
representation 

Conceptual bucket 
representation 

Yes No 

M
IK

E 
SH

E Fixed Yes-Green 
and Ampt 

Yes, Rutter 
Accounting 

method  

Yes, (1) multilayer with Richards 
equation or gravity flow; or (2) 

two-layer root zone  

Yes, 3D Bousinesq 
 
 

Yes No 

H
yd

ro
 G

e
o

 

Sp
h

er
e 

Fixed Yes-Richards 
Equation 

Yes- Rutter 
Accounting 

method  

Yes, Full 3D Richards Yes, Full 3D Richards Yes Yes, dual 
porosity & 

permeability 

 

1.6 Research gaps and questions  

There are many processes distributed throughout a catchment, yet often only catchment outlet 

data is used to represent the catchment. With the improvement of technology, it is possible to 

increase data collection on the hillslope with low-cost sensors. It is necessary to demonstrate the 

impact and benefits of additional data and how it can inform intermittent flow processes at the 

reach scale. There are many model formulations and assumptions, and it is important to show that 

a small amount of additional data can improve the simulation of internal processes. These points 

are summarized in Figure 1-4 which outlines the three motivations of this research.  

 

Figure 1-4: Conceptual overview of research motivation, each motivation 1-3 corresponds to chapters 2-4. The large black 
dot represents discharge data as the outlet and the small orange dots represent additional low-cost data used to improve 
the simulation of catchment processes. 
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The overall objective of this research was to demonstrate the value of additional data for 

characterising intermittent flow processes within a temperate catchment. The corresponding 

research questions were addressed by combining relatively underutilised methods of data 

collection via low-cost environmental sensors with a physically-based model in order to improve 

the representation of local scale processes. 

Three specific research objectives have been identified: 

Objective 1: Quantifying streamflow intermittency and signatures with low-cost sensing 

technology: To assess the effectiveness of low-cost temperature sensors in their ability to infer 

streamflow intermittency through the application of a two-state hidden Markov model applied 

across multiple locations (Paper 1). 

Objective 1.1: Compare and develop methods for inferring streamflow intermittency with binary 

‘wet’-‘dry’ classifications derived from continuous temperature measurements. 

Objective 1.2: Quantify intermittency signatures for individual reaches and data collection locations 

to illustrate differences between the sites. 

Objective 2: Implications of modelling assumptions on the representation of local-scale 

intermittent streamflow: A fully-coupled process model, HydroGeoSphere, was applied to develop 

alternative simulated scenarios calibrated to discharge at the outlet while representing alternative 

runoff mechanism on the hillslope. (Paper 2). 

Objective 2.1: Understand the effect of spatial variability of alternative simulated runoff 

mechanisms calibrated exclusively to outlet discharge and; 

Objective 2.2: To investigate the influence of different runoff mechanisms on localized flow 

pathways. 

Objective 3: Representing intermittent streamflow in headwaters using additional data in a multi-

site calibration: To determine the extent to which data collected in a headwater catchment can be 

applied to improve calibration (Paper 3). 

Objective 3.1: To quantify the upstream performance of multiple candidate calibrations based on 

an outlet-only calibration method. 

Objective 3.2: To illustrate a multi-site calibration method for a physically based model that utilizes 

additional collected data to improve the representation of upstream physical flow processes. 

Objective 3.3: To compare the performance of the outlet-only and multi-site calibrated models. 

The outcome of this thesis was a method to generate daily timeseries of ‘wet’-‘dry’ values and 

associated intermittency signatures using low-cost environmental sensors. The additional 

intermittency data was used to calibrate a physically based model and improve process 

representation throughout the catchment, and in so doing improve the ability to address water 

management questions relating to multiple reaches of the catchment.  

1.7 Thesis organisation 

The thesis contains five chapters, with the main contributions presented in Chapter 2 to Chapter 4.  

The contents of each of these chapters map directly to each of the three research objectives in 

Section 1.6, and are presented in the form of a journal paper. The focus of these chapters is as 

follows: 
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• Chapter 2 (Objective 1, Paper 1) presents the proposed approach for inferring streamflow 

intermittency and quantifying intermittent signatures with low-cost sensing technologies.  

• Chapter 3 (Objective 2, Paper 2) explores the implications of modelling assumption on 

local-scale intermittent stream flow by investigating alternate model parameterisations 

using a fully-coupled process model, HydroGeoSphere. 

• Chapter 4 (Objective 3, Paper 3) demonstrates the benefits representing intermittent 

streamflow using low-cost and additional data shown with in a multi-site calibration 

method. 

Conclusions are provided in Chapter 5, which includes a discussion of the contributions, limitations 

and future directions of the research. 
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Chapter 2.  

 

Quantifying streamflow intermittency and signatures 
with high-resolution temperature data 
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Abstract 

Headwaters generally lack continuous long-term data collection of streamflow intermittency. 

Headwaters, which are typically considered to include first to third order streams, are important 

for understanding intra-catchment fluxes and how these fluxes accumulate out of the catchment. 

The heavy reliance on streamflow gauges as the sole calibration dataset for hydrological models 

is increasingly recognized as a limiter to predictive accuracy and fidelity of simulated small scale 

hydrological processes. Low-cost and low-maintenance sensing technologies are an accessible 

means of addressing spatial data gaps which complement other high quality data sources (e.g. 

streamflow and rain gauges) and to provide high resolution spatial representation of upstream 

runoff behaviour. Intermittent streamflow signatures, based on flow surrogates at multiple points 

in a catchment, were developed to provide additional understanding of streamflow regimes 

within individual reaches. Paired low-cost temperature sensors at nine headwater sites were 

implemented within a 10 km2 catchment. A two-state hidden Markov model was applied to 

classify whether the stream was ‘wet’ or ‘dry’ for a given day with the binary classifications used 

to determine a range of intermittency signatures. For the nine sites, the accuracy of the 

classifications was between 89 to 99% during calibration and 82 to 95% during evaluation. 

Differences between the tributaries were demonstrated in terms of onset and secession of flow, 

number of zero flow days, number of zero flow periods, and percentage of flow permanence 

annually and by season. The study quantifies the high degree of variability in intermittent patterns 

throughout the small catchment area, demonstrating the benefits of alternative data collection 

methods that are not otherwise accessible with the existing network of streamflow gauge data 

alone.  With ongoing development of low-cost sensor technologies, it is likely that the use of this 

information as complementary data to traditional streamflow gauging’s provides a valuable 

opportunity to improve hydrological understanding across catchments. 
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2.1 Introduction 

Streams in Mediterranean and semi-arid headwater catchments are often characterized by high 

variability and intermittency (Arthington et al., 2014; Datry et al., 2016; Gallart et al., 2016; Wani 

et al., 2017). Intermittent flow events are significant for understanding solute and sediment fluxes 

and how flows change throughout a catchment (Gomi et al., 2002). Intermittent flows are also 

important in semi-arid regions and provide many benefits, such as: the effect of intermittent flows 

on riparian vegetation (Stromberg et al., 2005) and macroinvertebrate communities (Vidal-Abarca 

et al., 2013). Headwater catchments, which are defined herein as comprising first to third order 

streams, can often be difficult to access, especially during rain periods. Moreover, unlike lower 

reaches, these catchments often lack continuous long-term data collection of streamflow onset 

and cession. Methods to estimate intermittent flows have typically been restricted to field 

observations, such as ‘wet’-‘dry’ mapping at a coarse time scale (Stanley et al., 1997; Datry et al., 

2016; Godsey & Kirchner, 2014; Jensen et al., 2017), models or regressions to infer properties of 

ungauged catchments (Engeland & Hisdale, 2009; Snelder et al., 2013) or through probabilistic 

models (Ogtrop et al., 2011). 

Headwaters make up approximately 80% of the total stream length within a catchment, draining 

70-80% of the total land surface area (Sidle et al., 2000; Meyer and Wallace, 2001). In southeast 

Australia, for every kilometer of fourth order stream there are over 30 kilometres of first order 

river network (see supplementary information). These catchments are usually sparsely monitored, 

with streamflow gauges typically located in higher-order streams (Leigh et al., 2016) where flows 

are more regular and total flow volumes are greater. This limits the understanding of flow 

intermittency for low order streams. However, intermittency is an important driver of river 

ecosystems across multiple scales (Larned et al., 2010), and recognition of the importance of 

understanding local-scale intermittent processes is increasing (Leigh et al., 2016).  

To characterize localized streamflow patterns at the headwater scale requires a distributed sensor 

network. A network of sensors is required because of the significant heterogeneity often a 

characterized at localized scales. The costs of streamflow gauging stations comprising a dense 

network of observation locations is prohibitive. There are further practical limitations and 

measurement challenges with this option, for example intermittent channel scour and deposition 

during flashy events can continuously change channel geomorphology and lead to non-stationary 

stage-discharge curves (Constantz et al., 2001). For these reasons, a different approach that is not 

reliant on traditional streamflow gauging technologies is required.  

Progress in environmental sensor technology has resulted in the miniaturization of electronic 

devices, improvements in wireless communication (particularly in remote regions), and reduced 

costs (Ruiz-Garcia et al., 2009). This combination of technological improvements creates new 

opportunities for automated electronic data loggers and reliable high frequency measurements 

(Wickert et al., 2018), with potential applications for widespread hydrological and environmental 

data collection (Lovett et al., 2007). Recent studies have investigated the potential of on-ground 

data loggers as alternative methods of flow detection (Table 2-1). In particular, temperature 

sensors have been used to determine: river-aquifer interaction (McCallum et al., 2014), flow 

permanence based on streambed thermographs (Constantz et al., 2001; Blasch et al, 2004, 

Arismendi et al., 2017, Hofer et al, 2018) and flow intermittency with modified loggers measuring 

conductivity (Blasch et al., 2001; Chapin et al., 2014). Alternatively, image based technologies have 

shown the benefit of time lapse photography (Young et al., 2014; Kaplan et al., 2019) and video 
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imagery (Bradley et al., 2002) to estimate discharge or closed-circuit TV footage for flood 

hydrology (Tsubaki et al., 2011; Le Coz et al., 2016).  

Table 2-1: Comparison of existing methods for on-ground intermittency monitoring and estimation. Cost were estimated 
based on commercial rates, and are presented as a ratio relative to temperature loggers as this is likely to be more stable 
over time compared to absolute costs. Costs do not include cost of field installation and collection as well as data 
processing and time required to develop models. 

Sensor type Cost 

(Ratio of cost 

relative to 

temperature 

loggers) 

Data 

processing  

Limitations References 

Temperature 

sensors 

 

Very-low 

1:1 

High Precipitation can mask the 

presence of streamflow 

Large requirement of data 

interpretation 

Deposit of sediment around 

sensors can affect analysis  

Diurnal temperature range is 

required for analysis. Therefore, 

flow conditions that last for short 

periods (i.e. minutes to hours) as 

missed 

Constantz et al., 

2001 

Blasch et al., 2004 

Chapin et al., 2014 

Arismendi et al., 

2017 

Hofer et al., 2018 

Paillex et al., 2019 

Pressure 

transducers 

 

High 

1:10 

High Scour and deposit in channels from 

flash events often results in time 

varying stage-discharge curve. 

Can be costly for equipment setup 

compared to other low-cost sensor 

methods while providing data of 

flow magnitudes. 

Barometric pressure correction 

required  

Kröger et al., 2008 

Dugan et al., 

2009 

Carling et al., 

2012 

Magnusson et al., 

2012 

‘Wet’-‘dry’ 
mapping  

Surveying 

Low to high 

- 

Low  Flashy nature of intermittent 

streams means flowing conditions 

can last for short periods (i.e. 

minutes to days) resulting in 

missed events  

Accuracy is limited by frequency of 

site visits 

Large overhead of time required 

for observations 

Hunter et al., 2005 

Turner & Richer, 

2011 

Larned et al., 2011 

Datry et al., 2016 

Electrical 

conductivity 

sensors 

 

Low 

1:3 

Low Deposit of sediment around 

sensors can lead to false signals 

Method is unable to determine 

whether the sensor is in a stagnant 

pool or a flowing stream 

Blasch et al., 2001 

Goulsbra et al., 2009 

Jaeger & Olden, 

2012 
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Conversion of temperature sensors 

are required for low-cost solutions, 

e.g. removing the thermistor and 

implementing electrical probes in 

the logger 

Clogging of electrical contacts can 

disturb measurements 

Chapin et al., 2014 

 

Image analysis 

 

Low 

1:4 

High Battery and memory storage 

requirements 

Large effort required for data 

analysis 

Shade and texture changes 

between the bank and water are 

not strong or consistent resulting in 

ambiguous detection of water 

levels 

Lens can be affected by weather 

conditions such as rain or fog. 

Bradley et al., 2002 

Tsubaki et al., 2011 

Young et al., 2015 

Le Coz et al., 2016 

Kaplan et al., 2019 

While there are examples of studies where alternative technologies, such as temperature and 

electrical conductivity sensors, have been applied (Blasch et al., 2001; Constantz et al., 2001; Le 

Coz et al., 2016), there has been significantly more investment to advance modelling approaches 

(Mishra, 2009). Nonetheless, there is a general consensus within the hydrological community that 

field work and additional monitoring are required to advance hydrological understanding and 

assist modelling advancements (Blume et al., 2017) because upscaling of runoff behaviour is rarely 

strictly additive, with headwaters behaving as complex heterogeneous systems that have localized 

impacts and influences (Kirchner, 2006). Alternative and low-cost monitoring approaches provide 

an opportunity to address data gaps but more research is required to investigate the quality of 

the measurements and the benefits they can provide. For example, intermittency signatures can 

be useful in constraining models and improving the representation of hydrological processes with 

advanced model calibration. Intermittent signatures are also useful in providing eco-hydrological 

insight, such as the fluctuation of ‘wet’ (flowing) and ‘dry’ (not flowing) states (Boulton et al, 2017), 

local-scale remnant pools (Dell et al, 2017) and surface-subsurface water interactions. 

This paper presents a method for inferring streamflow intermittency in Mediterranean headwater 

streams using temperature sensors. Temperature sensors were used as they are a cost effective 

method of flow detection on intermittent reaches. Unlike other low-cost sensor options using EC 

sensors (Blasch et al., 2001; Goulsbra et al., 2009; Jaeger & Olden, 2012; Chapin et al., 2014), the 

temperature sensors do not need modification (i.e. replacing the thermistor in temperature 

sensors for EC probes) to be applicable. Additionally, continuous measurements of temperature 

are frequently collected in headwater catchments by government agencies for water quality 

purposes because water temperature is an important parameter for ecological organisms (Webb 

et al., 2007). 

To assess the effectiveness of low-cost temperature sensors in their ability to provide improved 

estimates of streamflow intermittency in Mediterranean reaches, the paper addresses the 

following objectives: 
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(1) To develop and compare methods for inferring streamflow intermittency with binary ‘wet’-

‘dry’ classifications from continuous temperature measurements; and 

(2) To quantify intermittency signatures for individual sites and demonstrate differences between 

them. 

To achieve the objectives, continuous 15-minute in-stream and on-bank temperature 

measurements were collected at nine sites within a small 10 km2 catchment located in South East, 

South Australia (Section 2.2.2). The thermal signatures of the data were assessed (Section 2.2.3), 

and a two methods of streamflow classification were compared: (1) a standard deviation approach 

where a threshold deviation was applied (Constantz et al., 2001; Blasch et al., 2004); and (2) a 

two-state hidden Markov model was applied for stream state classification (Arismendi et al., 2017) 

(Section 2.3). The inferred binary (‘wet’–‘dry’) classifications were used to interpret the state of 

multiple locations (Section 2.4). The discussion explores potential uses of this data (e.g. 

development of a physical model) and the wider value of environmental sensors for policy, 

planning and management of water resources (Section 2.5). 

2.2 Field measurements 

2.2.1 Description of study area 

A small warm and temperate catchment in South Australia, GPS coordinates (-35.266420, 

138.731021), was selected to assess the feasibility of temperature sensors as a measure for flow 

intermittency (Figure 2-1a). Due to resource constraints as single catchment was selected for the 

pilot study. The case study catchment, approximately 10 km2, was selected based on the diversity 

of catchment features as well as the availability of high quality hydrometric gauging data. The 

catchment has three main tributaries with a total length of approximately 5 km and has vegetated 

areas that cover a large proportion of two of the tributaries. The vegetated areas contain woody 

trees (e.g. eucalypts with a dense understory), with the remaining catchment covered with grass 

(8%), pastures (50%) and sparse woody trees (2%). The elevation ranges from 175 m to 420 m 

above sea level, and contains fractured rock aquifers with a shallow to moderately thick topsoil 

layer of acidic, sandy loam and clayey soils. The reaches range from first- to fourth-order streams 

and mostly have seasonal flow in the winter/spring months (Figure 2-1b). Based on site visits and 

informal discussions with local residents, it was known that some sites have significant recharge 

to groundwater while other sites retain a permanent flow due to bedrock exfiltration. The region 

is also an important water resource for domestic water use, irrigation of crops and stock as well 

as providing water for environmental purposes, with environmentally significant assets such as 

Fleurieu Peninsula swamps and numerous pools/springs located downstream.   

The channels have varying profiles, for example site S005 is shallow and only 36.5 cm wide, Site 

S008 is 118.6 cm wide and deeply incised due to high velocities, site S002 is deeply incised but 

narrow (64.0 cm) while the outlet location had a width of 251.8 cm (see supplementary material). 

The streambed at all sites contain dark brown soils with high loads on organic material present in-

stream and on-bank (clay soils with high organic matter content). Reach 1 contains pools, springs 

and riffles, with sections of the channel containing continuous base-flows all year round. 

Upstream of Reach 1 is rocky with outcrops of fractured rock observed in and around the channel. 

Reach 2 and Reach 3 are seasonal, while Reach 5 is densely vegetated and steep (slope 

approximately 0.045 m/m) and Reach 3 is cleared of dense vegetation and relatively flat by 

comparison (0.020 m/m). 
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Figure 2-1: The location of the 10 km2 case-study catchment in a Mediterranean region of southern Australia (a), and 
partially vegetated, stream network and instrumentation at nine sites on third and fourth order streams (b). Circle and 
square markers illustrate sites where temperature sensors (sites S001, S002, S003, S004, S005, S006, S008, S010 and 
S011) and the square markers indicate additional pressure sensors (sites S001, S003, S006). Note that sites S007 and 
S009 are located in a different catchment and are not part of this case study. A high quality gauge is located at S001 and 
used for additional evaluation of data.  

2.2.2 Experimental setup and data collection 

High velocity flows, sediment transport and floating debris conditions can present a challenge for 

long-term accurate sensor readings. For example, the steel post at site S008 was bent during a 

high-flow period and showed significant sediment build-up (supplementary material). Knowing 

these challenges, robust and commercially available sensors were deployed at all sites. The two 

types of instruments selected to classify and then evaluate the state of the stream as either ‘wet’ 

or ‘dry’ were:  

(1) Temperature sensors with the ability to log temperature measurements – Onset Hobo Pendent 

® UA-001-64 temperature data logger covered in a waterproof casing; and  

(2) Pressure sensors with the ability to log water levels – Onset Hobo Water level U20L-04 used as 

reference data for the true (of reference) state of the stream. 

The pressure sensors in this study were used for evaluation purposes. All sensors were deployed 

to record at 15-minute intervals, which allows for approximately 12 months of data to be stored 

on the sensor. The battery life of the sensors was rated at typically over 12 months. In this study, 

sensor batteries lasted the duration of the study (i.e. up to 26 months).  

The network of sensors was designed to obtain measurements for the three main tributaries, with 

additional sensors used at some sites to compare temperature readings. Vegetated and non-

vegetated sites were included to investigate the effects on streamflow timing. Nine sites were 

selected (Figure 2-1b) including the outlet and both upstream and downstream locations for each 

tributary. Four kinds of data were collected using two kinds of sensors: (1) on-bank temperature, 

(2) on-bank barometric pressure, (3) in-stream temperature, and (4) in-stream water pressure. 

The on-bank barometric pressure was used to obtain the water level for the in-stream pressure 

measurements at sites S001, S003 and S006. The pressure sensors installed at S001, S003 and 

S006 provide the ability to directly evaluate classifications at these sites. All other sites (S002, 
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S004, S005, S008, S010 and S011), located upstream of the pressure sensors, contain only 

temperature data loggers. At sites S010 and S011 the sensors were installed in the second year of 

data collection because they were immediately upstream of the confluence of the two largest 

tributaries and were used to identify whether there were similarities in the respective intermittent 

patterns. 

To establish consistency when applying temperature sensors to infer intermittency, two different 

sensor configurations were implemented: (1) on-bank and in-stream temperature sensors; and (2) 

on-bank temperature and dual in-stream temperature sensors on a single post (Figure 2-2). The 

second configuration was applied because pressure sensors were not deployed at every site; 

therefore, using dual sensors provided an additional check on the thermal data used to classify 

the stream state. Additionally, the dual sensor configuration was applied to site S004 where the 

stream is fed by groundwater all year round and thus rarely dries out. For this case, one sensor 

installed below the base-flow depth and a second sensor installed above the base-flow depth to 

record response to rainfall events. A threshold for the base-flow depth was defined as the depth 

of flow that was present at the time of sensor installation during the annual dry period (December 

to March). This was only relevant for sites S001 and S004 where year round base-flow was present. 

All flows below a depth threshold (Table 2-2) were described as ‘dry’ (or ‘zero-flow’) and all 

recorded flow responses were defined as ‘wet’. The reason for installing the sensors just above 

the streambed (e.g. approximately 0.10 m) was to minimize the risk of silt and sediment build up 

on and around the sensor which can cause errors in readings. 

The on-bank temperature sensor was used to reduce errors as a result of micro-climate variations 

across the sites (i.e. shade or thermoclines in valleys). On-bank temperature sensors were 

installed in shaded locations (i.e. under a tree) to avoid UV light from impacting readings. 

Locations with a well-defined channel were selected and sensors were attached to steel posts 

installed within the channel (at the lowest point in the streambed). Each sensor was encased in 

PVC piping and capped at the bottom for protection from UV and floating debris. The PVC pipe 

and cap had several drilled holes (20 mm in diameter) to allow for the free flow of air and water 

around the sensor. Site visits were conducted on an approximate monthly basis to collect data 

from the sensors, and maintain the site by clearing debris and silt when necessary. During these 

site visits additionally data was recorded, such as the state of the stream (i.e. ‘wet’ or ‘dry’) and 

landowners provided additional qualitative information about the site’s recent flow behaviour. 

The true state of the stream (or reference state used to evaluate the classified state) was 

determined using water level data for sites S001, S003 and S006. This approach to evaluation was 

defined as ‘direct evaluation’ (Table 2-2). The remaining sites were evaluated using the ‘true’ in-

stream state that was indirectly determined using visual inspection of auxiliary data (defined as 

indirect evaluation). Auxiliary data used to determine the true state of a stream included: (i) the 

recorded state of the stream from sites visits; (ii) upstream and/or downstream flow data (which 

in some cases was located approximately 100m away) and (iii) visual inspection of temperature 

and rainfall data obtained from a gauge less than 5 km from the site (023799 Prospect Hill SA). 

The data collection period varies between 11 months (from March 2018 to February 2019) at sites 

S010 and S011 to 26 months (from December 2016 to February 2019) at sites S001 and S002. For 

the other sites S003, S004, S005, S006 and S008 between 23 and 24 months of data (Table 2-2).  
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Figure 2-2: (A) Different configurations were explored in this study to evaluate the effectiveness of temperature sensors 
to infer intermittency.  Four types of data were collected: in-stream and on-bank pressure sensors used to validate results 
from the paired in-stream and on-bank temperature measurements. Configuration (e) was used at site S004 where the 
flow onset threshold was defined as the base-flow threshold (see Table 2). Photos from the outlet (S006) showing 
installed (B) on-bank and (C) in-stream sensors. 

(A) 

(B) (C) 
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 Table 2-2: Site list and descriptions as well the length of data and the split used for calibration and evaluation of the 
classification method and method the classification were evaluated (indirectly or directly) is presented. The sensor 
configuration a-f refers to the sensors shown in Figure 2-2. 

 

Site Location 

Sensor 

depth 

above 

streambed 

Data length and split Evaluation 

method 

Sensor configuration 

Calibration Evaluation  (a) (b) (c) (d) (e) 

1 S001 Downstream 

Tributary 1 

 

0.10 m 19 Dec ’16-

19 Dec ’17 

20 Dec ’18-

20 Feb ’19  

Direct 
    • 

2 S002 Downstream 

Tributary 1 

 

0.15 m 19 Dec ’16-

19 Dec ’17  

20 Dec ’18-

20 Feb ’19  

Indirect      

3 S003 Tributary 1 

and 2 outlet  

 

0.10 m 1 Mar ’17-1 

Mar ’18  

2 Mar ’17-

20 Feb ’19  

Direct      

4 S004 Upstream 

Tributary 1  

0.15 m 22 Mar ’17-

22 Mar’18 

23 Mar’18- 

18 Mar’19  

Indirect      

5 S005 Upstream 

Tributary 2 

0.05 m 28 Feb’17-

28 Feb’18 

1 Mar’18-

20 Feb’19 

Indirect      

6 S006 Tributary 1 

and 3 outlet 

0.05 m 15 Mar’17-

15 Mar’18 

16 Mar’18-

3 May’19 

Direct      

7 S008 Upstream 

Tributary 3 

0.1 m 21 Mar’17-

21 Mar’18 

22 Mar’18-

20 Feb’19 

Indirect      

8 S010 Downstream 

Tributary 1 

0.05 m 1 Mar’18-20 

Feb’19 

NA Indirect      

9 S011 Downstream 

Tributary 3 

0.05 m 1 Mar’18-20 

Feb’19 

NA Indirect      

2.2.3 Characteristics of in-stream temperature data for intermittency classification 

The difference in temperature thermal profiles have previously been used to delineate flow with 

streambed thermographs (Blasch et al., 2004; Sowder and Steel, 2012; Arismendi et al., 2017). 

There were a number of temperature-based characteristics that can be used to inform the state 

of a stream as either ‘wet’ or ‘dry’ and were used as the conceptual basis of the proposed 

classification algorithm. Periods of streamflow and zero-flow can be identified visually in a number 

of temperature time series when comparing flowing water (i.e. in-stream) and air (i.e. on-bank) 

temperature measurements (Figure 2-3). The temperature data when flow was present in the 

channel illustrate: (a) differences in the daily range of temperatures, (b) differences in the mean 

temperature and (c) lagged peak values and smoother fluctuations (Figure 2-3). A distinct feature 

was the reduced diurnal temperature variations of water compared to air (Figure 2-3a). For this 

study site, the in-stream temperature range was approximately 2 °C while the air temperature 

range was 15 °C—more than seven times larger. This feature was observed in winter flowing 

periods (July-October) and for this site the average ratio of in-stream temperature (when flow was 

present) to on-bank temperature range was 1:8. 

While changes in the range of the in-stream temperature were the strongest feature, differences 

in the mean can also be observed. Figure 2-3b provides an example where the mean air 

temperature was approximately 7.5 °C whereas the mean stream temperature was approximately 

11 °C, because bodies of water can take longer to cool down in response to changing weather 

conditions (Webb and Zhang, 1999). Additionally, the daily peak temperature for a sensor 

submerged in water can present a delay compared to air temperature (Figure 2-3a) due to the 
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specific heat of water being greater than air (Halliday and Resnick, 2013). Figure 2-3c also 

illustrates that the temperature sensor submerged in water had fewer and smaller temperature 

fluctuations due to flow dampening the atmospheric variations relative to the on-bank air 

temperature readings. Figure 2-4 summarises these observations via a comparison to water levels, 

showing that at times that streamflow was present (Figure 2-4a, highlighted with the grey shading 

based on information from the co-located pressure sensor), the diurnal range of in-stream 

temperature was dampened (Figure 2-4b).  

 

Figure 2-3: Example characteristics of paired in-stream and on-bank temperature profiles. (a) A similar mean 
temperature but where variation of the in-stream temperature was significantly lower, 2°C, compared to the on-bank 
temperature range of 20°C; (b) a difference in the mean between in-stream and on-bank profiles; and (c) similar 
temperature range but where the in-stream (wet) profile was lagged. 

 

 

Figure 2-4: Example of time series of (a) water level at an intermittent site used as reference data for the true stream 
state and (b) in-stream and on-bank temperatures.  
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2.3 Methods of classifying streamflow and intermittency signature 

To assess the effectiveness of low-cost temperature sensors deployed in a Mediterranean 

environment in their ability to detect streamflow, two classification methods of inferring 

streamflow intermittency were compared. Table 2-3 illustrates the approaches: (1) the standard 

deviation method, where a threshold deviation was applied (Constantz et al., 2001; Blasch et al., 

2004) and; (2) the two-state hidden Markov model (HMM), used as a signal detection method 

(Arismendi et al., 2017). To ensure consistency between the approaches, a daily timestep was used 

and each of the methods were further developed to investigate whether improved performance 

could be achieved.  

The standard deviation method was assessed using two approaches; the first was to delineate 

events using the in-stream daily temperature variance (Constantz et al., 2001; Blasch et al., 2004) 

and was used as a benchmark for comparison purposes. The second approach, based on the HMM 

methodology, also included on-bank temperature information. The inclusion of on-bank 

temperature was able to reduce false ‘wet’ classifications due to cold atmospheric fluctuations 

that can mimic ‘wet’ in-stream temperature data. Importantly, this removes the requirement of 

calibrating a minimum flow duration parameter that had been applied for previous studies (Blasch 

et al., 2004). The approach involves calculating the ratio of on-bank to in-stream daily temperature 

variance, and a threshold of this ratio was selected to obtain maximum classification performance 

when compared to the true state of the stream.  

The effectiveness of the HMM method was determined by investigating six alternative algorithm 

inputs (e.g. single and multiple inputs) (Table 2-3). A benchmark was established by using the 

singular input of the in-stream daily temperature variance, as previously presented by Arismendi 

et al., 2017. The variables considered in the algorithm were selected based on thermal 

characteristics outlined in Section 2.2.3 and findings from previous studies (Constantz et al., 2001; 

Blasch et al., 2004; Arismendi et al., 2017). It had been previously shown that in some cases the 

HMM identified multiple (more than seven) state changes over a time period where the state was 

constant (Arismendi, et al. 2017). In order to minimize this error, 30-day antecedent daily rainfall 

data was collected from a local weather station to provide the algorithm with additional seasonal 

statistical characteristics of streamflow persistence. The maximum number of inputs 

implemented in any single implementation of the algorithm was limited to three to ensure model 

parsimony, and the in-stream daily variance was included for all iterations as it was the strongest 

signal identified in the data. In total there were five possible observation inputs: (1) in-stream 

temperature variance; (2) ratio of on-bank to in-stream temperature variance; (3) difference of 

on-bank to in-stream daily temperature mean; (4) in-stream to on-bank temperature profile lag; 

and (5) 30-day antecedent rainfall. Table 2-3 shows eleven combinations of these inputs that were 

considered. 
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Table 2-3: List of the inputs iterated for the two classification methods, where the application of in-stream temperature 
variance alone provides a baseline performance accuracy for comparison of developed methods 

 

Combination of observation inputs, 𝑶, used 
in algorithm 
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Classification 
approach 

Method of application 
Iteration 

for 
method 

Standard 
deviation 
method 

Calibration of threshold to 
delineation ‘wet’ (flow) and 

‘dry’ (no-flow) periods 

1 
(baseline)      

2      

 

 

Two-state 
hidden 
Markov 

model (HMM) 

 

 

Unsupervised application of 
algorithm to determine the 
statistical parameters of the 

input data to categorize 
observations into two states 

(i.e. ‘wet’ or ‘dry’). 

1 
(baseline)      

2      

3      

4      

5      

6      

7      

8      

9      

10      

11      
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The collected observation inputs were split into training data, defined as the first year of data, and 

testing data, defined as the remaining data (March 2018 to March 2019), additional detail provided in 

Section 2.3.3. The effectiveness of each method was determined by calculating three performance 

measures: accuracy in binary classifications, comparison of number flow transitions (e.g. ‘wet’ to ‘dry’ 

and ‘dry’ to ‘wet’) and the comparison in the number of ‘wet’ days. Accuracy in binary classifications 

was defined as the number of times the daily classification matches the reference state of the stream 

divided by the number of daily time steps, i.e. T=365 days. The comparisons on the number of ‘wet’ 

days was determined as an error where the percentage difference of the classified number of ‘wet’ 

days to calculated against the true number of ‘wet’ days. 

2.3.1 Standard deviation method for intermittency classification 

The standard deviation method of stream intermittency classification had been previously applied 

(Constantz et al. 2001; Blasch et al., 2004). Using a daily timestep, the approach determined the in-

stream temperature standard deviation, 𝜎𝑠(𝑡), which was calculated as: 

𝜎𝑠(𝑡) = √
1

𝑛
∑ (𝑥𝑠𝑖

(𝑡) −  𝑥𝑠̅(𝑡))

𝑛

𝑖=1

2

 (1) 

where each day 𝑡 has 𝑖 = 1, … , 𝑛 measurements, 𝑥𝑠𝑖
(𝑡) is the ith measurements of the in-stream 

temperature on day 𝑡, and 𝑥𝑠̅(𝑡)  is the daily mean in-stream temperature. For 15-minute samples, 

there were 𝑛 = 96 measurements per day. Rather than solely rely on in-stream variation, the method 

is extended here to allow for the ratio of in-stream to on-bank variance at each timestep, referred to 

here as F(t). The 𝐹(𝑡) ratio is defined as the ratio of on-bank to in-stream variance and can be 

calculated as: 

𝐹(𝑡) = ∑
[𝑥𝑏𝑖

(𝑡) − 𝑥𝑏̅̅ ̅(𝑡)]
2

[𝑥𝑠𝑖
(𝑡) − 𝑥𝑠̅(𝑡)]

2

𝑛

𝑖=1

 

 

(2) 

where 𝑥𝑏𝑖
(𝑡) is the ith measurement of the on-bank temperature on day 𝑡, and 𝑥𝑏̅̅ ̅(𝑡)  =

1

𝑛
∑ 𝑥𝑏𝑖

(𝑡)𝑛
𝑖=1  

is the daily mean on-bank temperature.  

To identify periods of streamflow and no-flow, a deviation threshold parameter was required to 

determine the daily stream state. The threshold parameter, 𝜏𝜎, was defined as the magnitude of the 

standard deviation separating flowing and non-flow periods. The state of the streambed, 𝑆(𝑡) was 

determined as: 

𝑆(𝑡)~ {
   𝑆𝑡 = 𝑊        𝜎𝑠(𝑡) ≤ 𝜏𝜎  

   𝑆𝑡 = 𝐷         𝜎𝑠(𝑡) > 𝜏𝜎  
 (3) 

 

Where a ‘wet’ (flow) state is 𝜎𝑆(𝑡) ≤ 𝜏  and was given a value of 1 and a ‘dry’ (no-flow) is when 𝜎𝑆(𝑡) >

𝜏 and was given a value of 0.  

The 𝐹(𝑡) threshold parameter, 𝜏𝐹 , was determined by: 

𝑆(𝑡)~ {
  𝑆𝑡 = 𝐷      𝜎𝑠(𝑡) ≤ 𝜏𝐹  

𝑆𝑡 = 𝑊     𝜎𝑠(𝑡) > 𝜏𝐹
 (4) 
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where a ‘dry’ (no-flow) state is 𝜎𝑠𝑖
(𝑡) ≤ 𝜏  and was given a value of 0 and a ‘wet’ (flow) is when 

𝜎𝑠𝑖
(𝑡) > 𝜏 and was given a value of 1. Similarly, the threshold parameter was calibrated for the first 

12 months of data at each site and was optimized to maximize the accuracy of binary classifications. 

Minimum flow duration and minimum inter-event duration parameters were not applied here, 

because of the daily scale of classifications, with single day events and inter-event durations possible 

for this case study, particularly during seasonal transitions. 

2.3.2 Two-state hidden Markov model for intermittency classification 

A two-state hidden Markov model (HMM) was applied to classify streamflow intermittency. The 

algorithm has the ability to handle multiple data inputs, including temperature and climate 

measurements, to determine the state of the stream as either ‘wet’ or ‘dry’. The advantage of the 

approach is that it is an unsupervised method, where temperature data can be classified without the 

requirement of optimizing the algorithm parameters to the observed stream state. This is a significant 

contrast to the standard deviation method which requires the calibration of one or more parameters 

using the ‘true’ state of the stream (Constantz et al., 2001; Blasch et al., 2004). This advantage allows 

low-cost temperature sensors to be deployed across a catchment without the requirement of 

calibration data (e.g. water levels). 

Figure 2-5 illustrates the applied method of intermittency classifications. The observed data, 𝑂, 

consists of on-bank and in-stream temperature measurements and daily precipitation data collected 

at a local weather station.  The data was split into training data (the first year of data), and testing 

data (the remaining data).  

 

 

Figure 2-5: Schematic illustration of the method applied for the classification of intermittency using a hidden Markov 
algorithm. 𝑶 are the observation variables, 𝑺 are the unobserved states of the stream and 𝑺𝒓𝒆𝒇𝒆𝒓𝒆𝒏𝒄𝒆 are the observed 

reference states used to evaluate the performance of the algorithm. 

The two-state hidden Markov model (HMM) is an unsupervised classification approach that uses 

multiple inputs. The R function depmixS4 was the primary means of method application (Visser & 

Speekenbrink, 2010). Relevant daily statistics of observed data are denoted as 𝑶 = { 𝑂𝑗,𝑡, 𝑗 = 1, … , 𝑀,

𝑡 = 1, … , 𝑇} for 𝑀 input dimensions and 𝑇 time-steps. In the following, the vector 𝑶𝒕 is used as a 
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shorthand for {𝑂𝑗,𝑡 , 𝑗 = 1, … , 𝑀}. The state of the stream is the vector 𝑺 = { 𝑆𝑡, 𝑡 = 1, … , 𝑇}  with two 

possible states, 𝑆𝑡 ∈ {𝑆1, 𝑆2}. While the HMM delineates the observed inputs (listed in Table 2-3) into 

two states, the algorithm itself was ignorant of what ‘wet’ and ‘dry’ means. An additional step to 

determine which of the two states correspond to ‘wet’ and ‘dry’ was required to obtain {𝑊, 𝐷}, where 

𝑊 was defined a as a ‘wet’ state when the probability of it being ‘wet’ was greater than or equal to 

0.50 and 𝐷 was defined as the ‘dry’ state when the probability of it being ‘wet’ was less than 0.50.  

The hidden state of the streambed was assumed to follow a first-order Markov model describing a 

sequence of states in which the probability of each state depends on the previous state. The transition 

probabilities 𝑝𝐷𝑊 and 𝑝𝑊𝐷 govern the transition between states, and by corollary, the persistence in 

each state. The distribution of observations in a given state was assumed to be from an M-dimensional 

Gaussian distribution: 

𝑂𝑡  ~ {
𝑁𝑀(𝝁𝑾, 𝚺𝑾) 𝑆𝑡 = 𝑊

𝑁𝑀(𝝁𝑫, 𝚺𝑫) 𝑆𝑡 = 𝐷
 (5) 

 

where 𝝁𝑾 and 𝝁𝑫 are the mean vectors and 𝚺𝑾 and 𝚺𝑫 are the covariance matrices for each state 𝑆𝑡 

at time-step 𝑡. The vector of unknown parameters is: 

𝜽 = {𝝁𝑾, 𝚺𝑾, 𝝁𝑫, 𝚺𝑫, 𝑝𝑊𝐷, 𝑝𝐷𝑊} (6) 
  

which includes the vector of means and covariance matrix for the Gaussian distributions in the wet 

and dry states, as well as the two scalar transition probabilities. Given these parameters, the HMM 

defines the probability of the observations along with the hidden state variables as 𝑃𝑟(𝑶, 𝑺 |𝜽). The 

marginal likelihood of the observations was constructed using the forward-backward algorithm 

(Rabiner, 1989), and parameters were estimated using the expectation-maximization algorithm 

(Dempster et al., 1977). For this application, rather than the distribution of observed values, the main 

interest was in the inferred best estimate of state variables that were used to determine intermittency 

statistics. 

In this study, M = 1 to 3 inputs are considered and typically T = 365  daily time-steps for calibration 

(except for S008 due to a short period of missing data). The inputs used for the HMM were selected 

based on physical and hydro-climatic characteristics of the site and insights from previous studies 

(Constantz et al., 2001; Blasch et al., 2004; Arismendi et al., 2017) in order to provide the strongest 

relationship to streamflow state (Table 2-3).  

2.3.3 Calibration and evaluation of intermittency classification methods 

Using a split sample approach, the standard deviation and the two-state HMM methods were 

calibrated at nine sites and evaluated at seven sites (see Table 2-2). The first 12 months of data was 

used for calibration and the remaining data (ranging from 11 to 14 months) was used to evaluate the 

predictions against the collected reference data. The two sites S010 and S011 installed during the 

second year of data collection were calibrated against 12 months of data. 

For performance evaluation, reference data (𝑆𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒) were used to define the true state of the 

streambed. Reference data were determined in two ways: pressure data and auxiliary data. Pressure 

measurements were used to provide direct measurements of water levels at locations where 

available. Sites S001, S003 and S006 contained water levels and were directly evaluated using this 

approach. Auxiliary data were developed as an indirect method for determining the true state of the 
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streambed for remaining sites. The auxiliary estimates of streamflow were developed from multiple 

sources, including (1) records of stream state from monthly site visits; (2) qualitative information from 

landowners; (3) upstream and downstream water level data; and (4) visual inspection of temperature 

and rainfall data (see Section 2.2.2).  

The results from the two-state HMM were defined such that if the probability of a ‘wet’ state from 

the HMM was greater than 0.5, then it was classified as ‘wet’. An accurate prediction was if the 

classifier was equal to the observed reference state of the stream, where accuracy in binary 

classifications was defined as the sum of correctly classified states divide by the number of days in the 

period. The accuracy in binary classifications was further analysed by comparing the number of false 

‘wet’ states and the number of false ‘dry’ states. Additionally, performance of the methods was 

evaluated by comparing the number of transitions over a period to the true number of transitions in 

terms of ‘wet’ to ‘dry’ and ‘dry’ to ‘wet’ as well as the error in the number of ‘wet’ days predicted 

compared the observed number of ‘wet’ days. 

2.3.4 Quantification of intermittency signatures 

Using the most accurate approach based on the methodology above, the intermittency was defined 

at each site and enables comparison to better understand catchment processes and heterogeneity. 

Specifically, seven intermittency signatures were calculated to determine streamflow intermittency at 

the nine monitored sites. The selected signatures use the binary data to characterize different aspects 

of streamflow intermittency. Here the applied intermittency signatures refer to ‘wet’-‘dry’ sequencing 

with flow below any previously applied threshold defined as ‘zero-flow’ (Table 2-4).  

Table 2-4: Definitions of intermittency signatures 

Low flow signature  Definition 

(1) Number of zero flow days  The annual average number of days per annum that there was 

‘zero-flow’.  

(2) Average duration of zero flow 

periods 

The annual average duration of ‘zero-flow’ periods. Calculated as 

the number of zero-flow days divided by the number of 

contiguous zero-flow periods 

(3) Annual percentage of time flow was 

present continuous  

The annual average percentage of days there was flow in a 

channel. Calculated as the number of flow days divided by 365. 

(4) Percentage of time flow was 

present by season  

The average percentage of days there was flow in a channel by 

season. Calculated as the number of flow days in a season divided 

by the total number of days in the season. Summer was defined 

between Dec-Feb, autumn between Mar-May, winter between 

Jun-Aug and spring between Sep-Nov.  

(5) Timing of flow permanence The Julian start and end date where flows were permanent or 

continuous in a channel, including short duration stops of less 

than 3 days. 

(6) Flow variability The coefficient of variation in flow occurrence, calculated as the 

standard deviation divided by the mean of the binary 

classifications (modified from Jowett and Duncan, 1990) 

(7) 30-day antecedent rainfall to flow 

permanence 

The cumulative rainfall occurring 30 days prior to the day which 

flow in a channel becomes permanent. 
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2.4 Results and discussion 

2.4.1 Calibration and evaluation of the standard deviation method 

The standard deviation method was assessed by calibrating a threshold deviation for daily 

temperature variance for the nine sites and evaluated at seven sites (evaluation data was not available 

for site S010 and S011). The temperature variation approach yielded an average calibration accuracy 

(fraction of time with the correct state) for the nine sites of 90% (ranging from 68% to 97%). The 

average accuracy for the evaluation period was 79% (ranging from 52% to 99%). The threshold 

deviation varied across the sites from 0.35°C to 5.07°C (see supplementary information, Table 2-10). 

The standard deviation method where a threshold deviation was applied to the 𝐹(𝑡) ratio showed an 

average calibration accuracy of 91% (ranging from 77% to 98%) and an average evaluation accuracy 

of 78% (ranging from 50% to 98%). The performance of this approach, in terms of average accuracy 

was similar to the baselined variance approach. The threshold applied to 𝐹(𝑡) across the sites ranged 

between 2.5 and 11.0 (see supplementary information, Table 2-11).  

The results show, given the simple nature of the method, both approaches perform well under 

calibration. However, both standard deviation methods (variance and 𝐹(𝑡) ratio) showed a 

deterioration in performance over the evaluation period of 11% and 13% respectively. Figure 2-6 

illustrates an example of performance variations for the two approaches from 70% to 77% for the 

standard deviation method and from 82% to 67% for the 𝐹(𝑡) ratio approach. The performance at a 

number of sites was consistently good, but the deterioration in performance at other sites shows a 

lack of robustness in the method.  
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Figure 2-6: Illustration of the standard deviation method for site S008 where: (a) the in-stream daily temperature variance in 
used to delineate ‘wet’ and ‘dry’ periods by applying a threshold deviation shown with the horizontal red line, where variance 
values below the threshold were classified as ‘wet’ and above the threshold classified as ‘dry’; (b) the ratio of on-bank to in-
stream daily temperature variance with the threshold deviation difference shown with the horizontal grey line, where 𝑭(𝒕) 
values above the threshold were classified as ‘wet’ and below the threshold ‘dry’; (c) illustrates the reference (or observed) 
state of the stream where, ‘wet’=1 and ‘dry’=0. 

To further investigate the misclassification of days for site S008, Figure 2-7 illustrates an eight day 

period of flow (or ‘wet’ days) between 18th to 26th August. The figure shows that seven days for the 

variance approach and four days for the 𝐹(𝑡) ratio approach were misclassified, where all days should 

be classified as ‘wet’ (Figure 2-7a and b). Figure 2-7c shows that this error can be attributed to the 

presence of alternative temperature signals that can indicate the presence of flow. For example, a 

profile lag was illustrated with the vertical dashed lines on day 19/09 in Figure 2-7c. While there was 

flow present in-stream, the daily in-stream peak was lagged approximately two hours after the daily 

on-bank daily temperature. However, given that the in-stream daily variance was large, this day had 

been classified as a false ‘dry’ for the standard deviation method using the in-stream variance. In 

contrast, the on-bank daily variance used to calculate the 𝐹(𝑡) ratio was large enough to correctly 

identify this day as ‘wet’.  
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Figure 2-7: Showing site S008 over the ‘wet’ period of 18th to 26th August, where blue indicates a ‘wet’ classification and grey 
indicated a false ‘dry’ classification. The panels illustrate the misclassification of the standard deviation methods using the 
(a) variance and (b) F(t) ratio approaches compared to (c) temperature measurements. The dashed lines show an example of 
daily peak in-stream temperature lag compared to the on-bank temperature. 

2.4.2 Calibration and evaluation of the two-state hidden Markov model 

A baseline for comparison was established by applying the HMM with a single input for in-stream 

temperature variance. The baseline average accuracy of binary classifications for the calibration and 

evaluation period was 83% and 81% respectively, a deterioration of compared to the simple standard 

deviation approach. The alternative combinations of inputs yielded a range of results, varying across 

sites as well as the type of input variables. For the best performing method, Table 2-5 shows the 

performance at each site along with the median performance across all sites. The median performance 

was used as the basis of discussion and shows, the highest performing approach resulted in a 

calibration and evaluation accuracy of 93% and 92% respectively, outperforming both benchmarked 

results. The observation variables for this implementation were: (1) the daily in-stream temperature 

variance; (2) the ratio of on-bank to in-stream temperature variance; and (3) 30-day antecedent 

rainfall. The error in the number of ‘wet’ days across all sites was relatively low, with a calibration and 

evaluation error of 10% and 5%, respectively. The number of false ‘wet’ and false ‘dry’ classifications 

were on average 3% and 4% respectively across the eleven approaches over the entire period. This 

results shows that the inclusion of alterative identified signals (Figure 2-3) did not to improve the 

average accuracy of ‘wet’ and ‘dry’ prediction for the two-state hidden Markov model when tested 

with the 11 alternative combinations (see supplementary material). 
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The number of predicted transitions compared to the observed transitions performed well across the 

sites, both during training and evaluation with a 22 to 14 transition comparison during calibration and 

an 8 to 8 transition comparison during evaluation (Table 2-5). The exception was site S001, where the 

probability of transitioning was significantly under-estimated by the HMM algorithm during the 

calibration period with a comparison of 40 to 9 transitions. It was also observed that sites S004 and 

S008 significantly under-estimate the number of predicted ‘wet’ days with a resulting error of -26% 

and -40% respectively during calibration. 

Table 2-5: Results for the HMM with inputs (1) in-stream variance, (2) 30-day rainfall and (3) F(t) ratio. 
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S001 90% 5% 5% 5% 40:9 93% 2% 5% -5% 12:8 

S002 83% 7% 7% -6% 38:49 89% 7% 4% 5% 18:11 

S003 98% 0% 2% -3% 1:5 94% 5% 1% 5% 10:13 

S004 93% 0% 7% -26% 14:8 91% 3% 5% -3% 6:14 

S005 98% 1% 1% 3% 10:10 99% 0% 1% -7% 4:2 

S006 99% 0% 1% 0% 5:6 92% 2% 7% -11% 6:4 

S008 83% 0% 17% -40% 2:7 84% 15% 1% 45% 4:3 

S010 99% 0% 1% -2% 4:8      

S011 96% 0% 4% -6% 8:10      

Median 93% 2% 5% 10% 22:14 92% 5% 3% 5% 8:8 

Figure 2-8 illustrates how the addition of 30 day rainfall and the 𝐹(𝑡) ratio improves the predictive 

capabilities of the two-state HMM. For site S001, the singular input variable, in-stream daily variance, 

results in a median accuracy of binary classifications of approximately 69%. The number of predicted 

transitions over the period was 131 compared to the observed 52. Similarly the error in the percentage 

of ‘wet’ flow days was significantly over-estimated with a calibration and evaluation error of 94% and 

34% respectively (Figure 2-8a). Following the addition of the 30 day antecedent rainfall, the predictive 

performance of the HMM algorithm improves to 73%. The positive bias in classified transitions was 

also significantly improved reducing to 61 (previously 131 classified transitions). Significant 

improvement in predictive performance was identified with the addition of the 𝐹(𝑡) ratio to the in-

stream daily variation and the 30 day rainfall inputs. The error in predicted ‘wet’ days during 

calibration and evaluation performed well, with -10% and 4% respectively. 
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Figure 2-8: Shows the accuracy of the two-state HMM, with the red line showing the reference state and the grey line showing 
the state of algorithm as classified by the HMM for site S001. Additional observations were added to the algorithm; where 
the (a) daily in-stream temperature variance was applied, (b) daily in-stream temperature variance and 30-day antecedent 
rainfall was applied, and (c) daily in-stream temperature variance, 30-day antecedent rainfall and the 𝐹(𝑡) ratio was applied.   

2.4.3 Comparison of intermittency classification methods 

A comparison of the standard deviation methods and the best performing two-state HMM method 

shows that one of the most significant improvements was the predicted number of transitions when 

applying the HMM (Table 2-6). That is, the average number of transitions observed was 30, while the 

standard deviation methods predict 85 and 44 transitions for the variance and 𝐹(𝑡) ratio approach 

compared to 19 transitions for the HMM. The HMM maintained a good evaluation accuracy of 91% 

compared to the standard deviation approaches of 79% and 78% for the variance and 𝐹(𝑡) ratio 

approach. The median accuracy of binary classifications achieved with the standard deviation method 

was 85% for the variance approach and 85% for the 𝐹(𝑡) ratio approach. In contrast, the median 

accuracy achieved with the HMM was 92% [i.e. (93+91)/2], an improvement of 7%, while also reducing 

the error in predicted number of ‘wet’ days by 10% and reducing the over-estimation of flow 

transitions across all sites.  
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Table 2-6: Comparison for the two classification methods assessed and observation inputs investigated 
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Standard 
deviation 
method 

in-stream variance 90% 79% 15% 35% 4% 6% 8% 11% 30:85 

𝐹(𝑡) ratio  
91% 78% 17% 34% 4% 5% 11% 11% 30:44 

Two-state 
hidden 
Markov 
model 
(HMM) 

in-stream variance, 
30-day rainfall,  
F(t) ratio 93% 92% 5% 5% 1% 5% 5% 3% 30:19 

2.4.4 Calculated number of ‘wet’ flow days and intermittency signatures 

Seven intermittency signatures were calculated for the individual sites to determine the statistical 

properties of low flow regimes within the catchment. The percentage of ‘dry’ and ‘wet’ days, 

determined by the average of ‘wet’ and ‘dry’ days over two years, shows the differing proportions of 

flow permanence (Table 2-7). The outlet, S006, had flow present for approximately 65% of the year, 

with locations upstream having different annual flow permanence. For example, site S005 flows 22% 

of the year (approximately three months), while site S008, which is cleared of all vegetation, flows for 

33% of the year. Further downstream of S008, site S011 flows for 60% of the year demonstrating the 

variety of flow behaviour for the nine sites. This highlights that a single gauge at the outlet is not 

capable of effectively representing local-scale details within the catchment. 

Table 2-7 illustrates that site S004 was flashier with an average zero flow duration of 21 days compared 

to site S001 with 47 days. The calculated signatures illustrate that sites S002 and S003 (tributary 1) dry 

out on average for 136 days and 47 days per year respectively. However, the pools do not remain dry 

for long, with average durations of dry spells being 11 days and 13 days respectively. This behaviour 

can be related to subsurface processes occurring within the sub-catchment (i.e. groundwater 

contributions at S001 and S004). In addition to this the contributing area of this sub-catchment is 

densely vegetated. 

The intermittent site S005 (tributary 2) had an average 47 zero-flow-day duration with a majority of 

runoff occurring in the middle of winter and receding in spring. While the contributing area is densely 

vegetated, there was no evidence of groundwater processes contributing to flow during dry periods 

and was likely to be a contributing factor of the longer dry spell periods, contrasting tributary 1. 

Conversely while site S008 (tributary 3) also flows for 50% of the winter periods, it recedes quickly in 

early spring and was less flashy with an average 100 zero-flow-day duration.  While similar to tributary 

2, in that there was no evidence of subsurface flow processes contributing to flow during dry periods, 

the average period of dry days was doubled by comparison. This may be due to the contributing area 

being cleared of dense vegetation and containing grass, pastures and sparse woody trees. These 

results indicate that the presence of dense vegetation and subsurface processes may reduce the 

length of average zero-flow-day durations



 
 

 
35 

 

Table 2-7: Annual intermittency signatures were calculated for each individual site of data collection 

  Description of sub-catchments and local conditions Intermittency signatures 
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S001^  

Sensor on reach 1. 
Site is clear of 
dense vegetation. 

1.8 0.04 75% 95.0 10.9 1.1 250 days 47 days 31% 

Su=5% 
Au=43% 

Wi=90% 
Sp=10% 

2017: 
19 Jun-10 Sept 

2018: 
2 Apr-4 Sept 

1.37 
2017: 54.8 mm 
2018: 14.8 mm 

S002 

Sensor on reach 1. 
Site is clear of 
dense vegetation. 

1.9 0.04 75% 64.0 11.3 0.63 
177 days 

 
11 days 51% 

Su=23% 
Au=63% 

Wi=100%
Sp=49% 

2017: 
15 Apr-29 

Sept 
2018: 

1 Apr-19 Oct 

0.79 
2017: 17.5 mm 
2018: 13.6 mm 

S003 

Sensors located on 
reach 1. Site is clear 
of dense 
vegetation. 

4.4 0.036 70% 132.5 13.1 1.28 47days 13 days 87% 

Su=31% 
Au=78% 

Wi=99% 
Sp=88% 

2017: 
16 Apr-29 

Sept 
12 Oct-3 
Jan’18 
2018: 

15 Apr-23 Dec 

0.57 

2017:17.5 mm 
2017:49.4 mm 
2018:50.4 mm 

S004^ 
 

Sensors located 
upstream of Reach 
1. Site is densely 
vegetated channel 

0.9 0.05 80% 31.5 10.9 2.72 182 days 21 days 50% 

Su=0% 
Au=6% 

Wi=85% 
Sp=21% 

2017: 
15 Jun-9 Sept 

2018: 
7 Jun-2 Sept 

1.59 
2017: 49.6 mm 
2018: 48.2 mm 
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contains rock and 
outcrop of rock 
observed at site. 

S005 

Sensor upstream 
on tributary 2. Site 
is densely 
vegetated. 

1.4 0.04 100% 36.5 10.9 0.19 285 days 47 days 21% 

Su=1%, 
Au=0% 

Wi=47% 
Sp=40% 

2017: 
30 Jul-26 Oct 

2018: 
18 Jul-16 Sept 

1.90 

2017: 153.2 
mm 

2018: 55.1 mm 

S006 

The site is the 
catchment outlet 
with three 
tributaries 
upstream. Site is 
clear of dense 
vegetation. 

8.6 0.036 40% 251.8 12.4 2.13 143 days 14 days 65% 

Su=3% 
Au=70% 

Wi=100% 
Sp=83% 

2017:  
10 Apr-6 Nov 

2018: 
15 Apr-19 Nov 

0.73 
2017: 25.1 mm 
2018: 50.4 mm 

S008 

Site is upstream 
reach 3, Site is clear 
of dense 
vegetation. 
Channel is deeply 
incised. 

2.6 0.02 20% 118.6 11.5 1.99 244 days 81 days 33% 

Su=0% 
Au=0% 

Wi=50% 
Sp=19% 

2017:  
19 Jul-2 Oct 

2018: 
14 Jul-3 Sept 

2.26 
2017: 131.6 

mm 
2018: 81.3 mm 

S010 *  

Sensors located 
downstream reach 
1. Site is clear of 
dense vegetation. 

4.1 0.036 20% 174.0 12.4 0.73 107 days 27 days 70% 

Su=36%, 
Au=56% 

Wi=100% 
Sp=99% 

2018: 
14 Apr-12 Dec 

0.59 2018: 33.6 mm 

S011 * 
 

Sensors located 
downstream reach 
3. Site is clear of 
dense vegetation. 

4.5 0.02 70% 75.0 12.1 1.48 145 days 18 days 60% 

Su=14% 
Au=35% 

Wi=100% 
Sp=87% 

2018: 
4 May-9 Nov 

0.81 2018: 68.4 mm 

* 12 months of data from the second year used to calculate signatures 
^ All signatures calculated as flow response above a continuous flow threshold 
× Breakdown of the percentage of ‘wet’ days by: Su = summer, Au = Autumn, Wi = Winter and Sp= Spring. 



 
 

 
37 

 

Figure 2-9 shows the spatially variable flow behaviour and complexity of flow regimes across the 

catchment area. The binary classifications illustrate that some sites transitioned to ‘wet’ or ‘dry’ states 

at the same or similar times. In contrast, other sites shifted to a ‘wet’ state later and a dry state sooner 

(see also Table 2-7). As previously discussed, reach 1 (i.e. sites S001 and S004) was fed by continuous 

base-flow year round, while downstream flow had seasonal behaviour (i.e. S010 and the outlet S006). 

The study shows that given the relatively small sub-catchment area, the streamflow across the 

landscape was heterogeneous with detailed seasonal and annual flow patterns being illustrated based 

on the classified temperature data. 

The binary classification of stream-flow intermittency has been shown to be useful for describing 

important hydrological features and ecological responses, such as, timing, duration and frequency of 

drying within the stream network. The unique signatures at the individual sites have a number 

applications, such as: (i) evaluation or improved calibration of models, (ii) informing ecological 

management of river networks at the reach scale; (iii) applying regressions to extrapolate the 

probability of reaches drying and wetting; or (iv) evaluating local scale risks of drought and climate 

change impacts where studies are typically based on with outlet data. 

 

Figure 2-9: Map of the study catchment, with three main tributaries, tributary 3  which is largely un-vegetated, with nine 
sites where data was collected for a periods of 11 to 26 months. The bar at each site shows the inferred intermittency for 
each site. The wet panel for sites S001 and S004 shows the presence of base-flow, with the sensor was installed and 
classified above the base-flow. 

2.5 Conclusions 

This research demonstrated that temperature sensors can be successfully used to infer streamflow 

intermittency by comparing alternative methods of delineating flow permanence within a headwater 

stream network. The advantage being, the method was low-cost and unsupervised, was reliable under 

evaluation, had an accuracy of over 90% and was able to provide detailed intermittency signatures at 

the local scale. The study compared the standard deviation and two-state HMM methods with a total 

of 13 variations investigated which depended on input parameters into each approach. The best 

performing model over an independent evaluation period that was not used for parameter estimation 



 
 

 
38 

 

was the HMM model using inputs: (1) the daily in-stream temperature variance; (2) the ratio of on-

bank to in-stream temperature variance; and (3) 30-day antecedent rainfall. The algorithm 

quantitatively determined ‘wet’ (or ‘flowing’) and ‘dry’ (or ‘no-flow’) transitions for the paired in-

stream and on-bank sub-daily temperature readings with achieve an average accuracy of 91% in 

evaluation (93% in calibration), an improvement of 7% compared to the standard deviation approach. 

The daily temperature variance was the strongest temperature signal and due to differences across 

the sites (e.g. slope, vegetation cover and groundwater contributions), other temperature 

characteristics were identified such as differences in daily mean temperature and lag to daily peak 

(Figure 2-3). The study showed that the inclusion of alterative identified signals did not to improve the 

accuracy of ‘wet’ and ‘dry’ prediction for the two-state hidden Markov model when tested with the 

11 alternative combinations. The approach was used to quantify intermittent signatures across all the 

sites and demonstrated a high degree of heterogeneity in the headwater catchment. 

Although methods based on temperature sensing provide significant additional information relative 

to a single downstream streamflow gauge, they have a number of limitations. When a sensor touches 

the streambed, the moisture may persist and cause inference, leading to false ‘wet’ day classifications. 

On average false ‘wet’ classifications for the standard deviation and the HMM methods accounted for 

5%, and 3% of the error, respectively. Alternatively, when placed marginally above the streambed, a 

trickle of very low flows can pass under the sensor. When the sensor was not touching the base, 

sedimentation may cause rivulets at very low flows to bypass flow around the sensor, or equally, may 

cause build-up so that the sensor was buried and has spurious readings. This was observed at site 

S008, where high flows and a deep channel resulted in in-stream temperature sensors being buried 

under sediment (observed 19th July 2018, see supplementary material for photos). For these reasons, 

the sensors do not detect truly ‘zero’ flow conditions, but represent the intermittency of the stream 

above some very minor base threshold. This was also the case when the sensor was placed underwater 

in a standing pool – even though the pool may rarely dry out, it was possible to use temperature 

variation to infer the onset of flow – and the classification of ‘wet’ flowing and ‘dry’ not-flowing was 

not identical to whether remnant water was present at the site. As a result of these differences in site 

conditions, each location will have unique diurnal temperature patterns. Other practical issues to 

consider in locating sensors include the accessibility of the site, strength of the stake and foundation 

on which it was posted, avoiding direct sunlight (Sowder & Steel, 2012) having similar shade conditions 

for the on-bank and in-stream temperature sensors and avoiding significant vegetation which may 

cause the build-up of debris and shelter a sensor. 

This paper demonstrated a low-cost monitoring technique that can be used to complement other high 

quality data sources (e.g. streamflow). The advantage being that, the technique has the ability to 

provide higher resolution spatial representation of headwater runoff behaviour. Data of this type has 

the potential to improve methods of model calibration and evaluation for temperate catchments. In 

particular the representation of upstream processes in physical models that are commonly difficult to 

calibrate and evaluate due to their high data requirements can be addressed and is applicable for 

alternative catchments. The calculated intermittency signatures for each site illustrate highly variable 

intermittent patterns within the small study area, ranging between highly ephemeral, seasonal to 

continuous annual base-flow. It was clear that there was significant variability of headwater 

catchments, even over small scales (Figure 2-9). With ongoing development of low-cost sensor 

technologies, it is likely that the use of this information as complementary data to traditional 

streamflow gauging’s provides a valuable opportunity to improve hydrological understanding in 

headwater catchments.  
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Supplementary material 

 

1. Quantifying length of stream orders 

The calculated sums of stream orders are presented in Table 2-8. The shape file of South Australian 

waterways which contained stream order data (Figure 2-10) was accessed from the Government of 

South Australia website WaterConnect. 

Table 2-8: The summed length of first to seventh stream orders for the South Australian region 

 First 

order 

Second 

order 

Third 

order 

Fourth 

order 

Fifth 

order 

Sixth 

order 

Seventh 

order 

Total 

Total 

length 

173,929 

km 

21,792 

km 

11,117 

km 

5,547 

km 

2,768 

km 

1,297 

km 

321 km 216,771 

km 

 

 

Figure 2-10: Stream orders using the Strahler (1957) ordering method for the South Australian stream network, ranging 
from first to seventh order streams. 
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2. Detailed descriptions of site details and contributing areas 

Table 2-9: Detailed description of each site 

Site Reach width Site Description Photos 

S001 95.0 cm Sensors located on reach 1, approximately 1.5 
km upstream of the outlet. The sensors are inst
alled 0.10m above the stream bed and above t
he continuous base-flow which typically flows 
all year round. The base-flow receded in Januar
y 2019 during data collection which is uncharac
teristic of the area. Average channel slope is 0.
04 m/m 

 

 

 
 

Photo taken on the 25th January 2017 with the temperature and pressure sensor 
sitting just above the water level. The true classification of these sensors is ‘dry’ 
the HMM probability of it being in a ‘wet’ state is 1.36 x 10-4 

S002 64.0 cm Sensors located on reach 1, approximately 1.5 
km upstream of the outlet. The sensors are inst
alled in a pool of water. Average channel slope 
is 0.04 m/m 
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Photo taken on the 9th August 2018 with a single temperature sensor installed o
n the post. The ‘true’ state of the stream is ‘wet’ the HMM probability of ‘wet’ st
ate is 0.998 

S003 132.5 cm Sensors located on reach 1, approximately 1.0 
km upstream of the outlet. The sensor is locate
d in a pool, the reach section does not flow yea
r round and is seasonal. The average channel sl
ope is 0.036 m/m. The site contains grass, with 
dense vegetation not present in the area. The c
hannel contains dark brown soils, with leaves, 
grasses and organic matter present in-stream a
nd on-bank. The channel contains pool and spri
ngs, with no presence of rock in the channel or 
outcropping of fractured rock observed in the v
icinity.  

Photo taken on the 11th October 2017 with temperature and pressure sensor rec
ording measurements. The true state of the stream has been classified as ‘wet’ a
nd the HMM probability of ‘wet’ state is 0.022 which has been incorrectly classifi
ed by the classifier.  

S004 31.5 cm Sensors located upstream of Reach 1, approxi
mately 2.0 km upstream of the outlet. Site is ve
getated with clayey/loamy stream bed (dark br
own soil with organic material overlaying i.e. le
aves). Clay soil high in organic matter content. 
The channel is very rocky. Fracture rock outcro
p is observed at the site (see photos) and is un
derlying approximately 0.5m below the sensor 
location. Pools, springs and riffles located alon
g the channel. Average slope of the channel is 
0.05 m/m.  
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Photo taken on the 18th March 2019. The post contains dual temperature sensor
s one for the base-flow measurements and one temperature sensor to measure 
response above the 0.15m threshold. The photo illustrates the stream which has 
completed receded which is not typical for this reach. The true state of the strea
m is ‘dry’ the HMM probability of ‘wet’ state is 0.0 

Examples of fractured rock at the site 

 

Photo illustrating rocky channel, with vegetation debris also observed. 
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S005 36.5 cm Sensor was deployed upstream of tributary 2. 
The contributing area is densely vegetated. 

The sensor was installed in a well defined swall
ow channel. A majority of the section of reach i
s not incised. 

Streambed and surrounding soil is medium to 
dark brown with lots of vegetation surrounding 
and organic matter overlaying soil. (clay soil hig
h in organic matter content ). No springs or po
ols present. No underlying rock (outcrop) obser
ved. The overall catchment and site is steep (sl
ope 0.04 m/m)`. 

 

 

 

Photo taken on the 11th April 2017. The true state of the stream is ‘dry’ the HM
M probability of ‘wet’ state is 0.0 

 

Photo taken on the 28th August 2017. The post contains a single temperature se
nsor. The true state of the stream is ‘wet’ the HMM probability of ‘wet’ state is 1
.0 
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Photo taken directly below the sensor showing the stream channel is less define
d (not incised) looking like puddles of water. 

S006 251.8 cm The site is the catchment outlet with three trib
utaries upstream. The site contains mainly gras
ses and some trees. The channel is well define
d and wide. The soil is dark brown (clay/loam) 
with high loads of organic matter. The average 
slope of the catchment of 0.036 m/m. No rocky 
outcrops are observed in the area with the cha
nnel containing vegetation debris. 
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Photo taken on the 11th April 2017. The true state of the stream is ‘wet’ the HM
M probability of ‘wet’ state is 1.0. 

 

Photo taken on the 23th August 2017. The catchment outlet contains sensor whi
ch measures temperature and pressure. The true state of the stream is ‘wet’ the 
HMM probability of ‘wet’ state is 1.0. 
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Photo of the confluence located upstream of the outlet. On the left side is Reach 
1 and the right side is Reach 3, both reaches flowing. Photo taken on 9th August 
2018. 

S008 118.6 cm Average slope of the catchment is 0.02 m/m. A
t the site there is non-dense vegetation presen
t, the catchment overall is cleared of vegetatio
n containing pastures and grasses. The channel 
soil is dark brown (clay with high content of or
ganic matter). The channel is deeply incised du
e to high velocity flows. The reach contains so
me pools along the channel, with flow being se
asonal. Fracture rock is not observed and the c
hannel contains on rock.  

 

Photo taken on the 24th August 2017. High velocity flows have bent the post whi
ch had dual temperature sensors attached. The true classification of the site is ‘
wet’ and the HMM probability of ‘wet’ state is 1.0. The sensor was observed to 
be bent due to high velocity flows. 
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Illustration of high velocity flows at site. A large branch was observed to be attac
hed to the sensor. Owner at this property has described flows being able to pick 

up large concrete blocks (Photo taken 24th August 2017) 
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Post where sensor is located became bent during 2017 winter high flows (June-A
ugust 2017). 

Sensor was buried as a result of sediment build up around the sensor. This senso
r was accumulated over two months (between visits). Photo taken on the 19th Ju
ly 2018.  

S010 174.0 cm Sensors located on reach 1 downstream of site 
S003. Average channel slope is 0.036 m/m. The 
site contains grass, with dense vegetation not 
present in the area. The channel contains dark 
brown soils, with leaves, grasses and organic m
atter present in-stream and on-bank. The chan
nel is seasonal with no presence of flow during 
dry periods. There is no presence of rock in the 
channel or outcropping of fractured rock obser
ved in the vicinity. 

 

Photo taken on the 1st March 2018. The post contains a single temperature sens
or. The true state of the stream is ‘dry’ the HMM probability of ‘wet’ state is 0.0 
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Photo taken on the 9th November 2018. The true state of the stream is ‘wet’. Th
e HMM probability of ‘wet’ state is 1.0 

S011 75.5 Sensors located downstream of site S008 on tri
butary 3. The site contains mainly grasses and s
ome trees. The channel is well defined, althoug
h the channel is less incised and deep as upstre
am. The soil is dark brown (clay/loam) with hig
h loads of organic matter. The average slope of 
the catchment of 0.02 m/m. No rocky outcrops 
are observed in the area with the channel cont
aining vegetation debris. 

 

Photo taken on the 9th November 2018. The post contains dual temperature sen
sors. Debris has accumulated around the post. The true state of the stream is ‘w
et’. The HMM probability of ‘wet’ state is 1.0. 
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3. Results of the Standard deviation method 

The result of the standard deviation method are shown for the variance approach (Table 2-10) 

and the 𝐹(𝑡) ratio approach (Table 2-11). The performance across sites varies and diminished 

accuracy (less than 90%) was observed at sites S001, S002, S004 and S008 for both approaches.  

Table 2-10: Results of standard deviation method: Variance approach 
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S001 0.5 88% 57% 3% 9% 40:32 77% 59% 12:54 3% 20% 

S002 2.1 83% 12% 12% 5% 38:66 66% 78% 18:62 34% 0% 

S003 5.7 96% -3% 4% 0% 1:17 93% -1% 4:2 5% 2% 

S004 1.5 90% 16% 7% 3% 14:46 59% 67% 6:58 0 41% 

S005 0.6 97% 10% 0% 3% 10:13 99% 7% 4:2 0% 1% 

S006 3.6 97% -1% 2% 1% 5:20 92% 9% 7:79 0% 8% 

S008 2.3 70% -46% 23% 7% 2:85 77% -20% 4:79 15% 8% 

S010 2.7 95% -4% 4% 1% 4:30      

S011 5.1 94% 0% 3% 3% 8:24      

Median  90% 15% 4% 6% 22:37 80% 35% 8:48 8% 11% 

Table 2-11: Results of standard deviation method: F(t) ratio approach 
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S001 14.9 88% 54% 1% 11% 40:20 89% 26% 12:38 0% 11% 

S002 8.7 77% 29% 21% 3% 38:21 50% 105% 18:28 48% 2% 

S003 4.4 98% 0% 1% 1% 1:11 94% -2% 10:20 5% 1% 

S004 5.7 88% 36% 1% 10% 14:28 53% 66% 6:46 0% 47% 

S005 7.1 98% 3% 0% 2% 10:12 98% -7% 4:6 1% 1% 

S006 2.7 98% 0% 1% 1% 5:10 94% 7% 7:11 1% 5% 

S008 2.3 82% 25% 5% 7% 2:29 67% -7% 4:49 20% 13% 

S010 10.9 95% 3% 6% 1% 4:24      

S011 4.3 96% 0% 1% 3% 8:12      

Median  91% 17% 4% 5% 22:18 78% 36% 8:26 11% 11% 



 
 

57 
 

4. Results of the HMM method 

The two-state hidden Markov model (HMM) was applied by investigating five alternative 

algorithm inputs: (1) in-stream temperature variance; (2) ratio of on-bank to in-stream 

temperature variance; (3) difference of on-bank to in-stream daily temperature mean; (4) in-

stream to on-bank temperature profile lag; and (5) 30-day antecedent rainfall. Eleven different 

combinations of inputs were trialled and the results are presented in the preceding sections. The 

eleven inputs were: 

1. Daily in-stream temperature variance (used as a benchmark) 

2. Daily in-stream temperature variance and daily rainfall antecedent moisture 

3. Daily in-stream temperature variance and difference in daily in-stream to on-bank 

temperature mean 

4. Daily in-stream temperature variance and in-stream to on-bank temperature lag 

5. Daily in-stream temperature variance and ratio of on-bank to in-stream temperature 

variance – 𝐹(𝑡) 

6. Daily in-stream temperature variance, daily rainfall antecedent moisture and difference 

in daily in-stream to on-bank temperature mean 

7. Daily in-stream temperature variance, daily rainfall antecedent moisture and in-stream to 

on-bank temperature lag 

8. Daily in-stream temperature variance, daily rainfall antecedent moisture and ratio of on-

bank to in-stream temperature variance – 𝐹(𝑡) 

9. Daily in-stream temperature variance, difference in daily in-stream to on-bank 

temperature mean and in-stream to on-bank temperature lag 

10. Daily in-stream temperature variance, difference in daily in-stream to on-bank 

temperature mean and ratio of on-bank to in-stream temperature variance – 𝐹(𝑡) 

11. Daily in-stream temperature variance, in-stream to on-bank temperature lag and ratio of 

on-bank to in-stream temperature variance – 𝐹(𝑡) 
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Table 2-12: HMM observation inputs: in-stream variance 
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S001 57 212 42 1 40:67 81 34 17 2 12:64 

S002 82 -4 8 10 38:60 73 55 26 1 18:50 

S003 97 -4 0 3 1:7 84 -2 3 4 10:14 

S004 81 6 17 2 14:27 88 -1 4 5 6:19 

S005 69 116 31 0 10:23 60 218 40 0 4:27 

S006 98 -1 1 1 5:12 91 -14 0 9 6:8 

S008 68 65 29 3 2:51 74 46 20 6 4:67 

S010 98 -2 1 1 4:12      

S011 93 -8 1 6 8:16      

Median 83 42 14 3 22:31 78 48 16 4 8:36 

 

Table 2-13: HMM observation inputs: in-stream variance and 30 day rainfall 
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S001 70 54 25 5 35:63 86 3 8 6 16:25 

S002 82 -6 7 11 38:50 84 12 11 5 18:20 

S003 96 -5 0 4 1:11 93 5 5 2 10:9 

S004 79 77 21 0 14:20 89 1 4 3 6:4 

S005 70 12 30 0 10:14 65 -7 17 18 4:10 

S006 97 -3 0 3 5:12 91 -14 0 9 6:8 

S008 86 -34 0 14 2:8 66 102 33 1 4:11 

S010 97 -2 1 2 4:10      

S011 94 -7 1 5 8:16      

Median 86 10 9 5 22:23 82 15 11 6 8:12 
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Table 2-14: HMM observation inputs: in-stream variance and difference in daily mean 
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S001 59 197 40 1 40:85 77 41 20 3 12:78 

S002 82 -3 8 10 38:64 73 33 21 6 18:92 

S003 95 -4 1 4 1:19 93 -1 3 4 10:16 

S004 76 82 22 2 14:42 86 1 7 7 6:27 

S005 65 133 35 0 10:33 66 186 34 0 4:45 

S006 98 0 1 1 5:15 93 -10 1 6 6:9 

S008 66 49 27 7 2:72 70 67 26 4 4:95 

S010 95 0 2 3 2:24      

S011 90 -13 1 9 8:32      

Median 81 49 15 4 22:43 80 45 16 4 8:52 

 

 

Table 2-15: HMM observation inputs: in-stream variance and temperature profile lag 
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S001 67 146 31 2 40:73 84 -14 5 11 12:38 

S002 81 -6 7 12 38:58 80 -10 8 12 18:52 

S003 97 -4 0 3 1:9 94 -2 2 4 10:14 

S004 69 -57 8 23 14:47 88 -4 5 7 6:16 

S005 72 105 28 0 10:19 76 132 24 0 4:13 

S006 98 -1 1 1 5:12 90 -16 0 10 6:14 

S008 79 4 11 1 2:33 67 69 26 6 4:101 

S010 87 -14 2 11 4:70      

S011 87 -19 1 12 8:62      

Median 82 17 10 7 22:43 83 22 10 7 8:35 
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Table 2-16: HMM observation inputs: in-stream variance and ratio of on-bank to in-stream variance 
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S001 86 -11 6 8 40:29 95 3 3 2 12:14 

S002 83 -4 7 10 38:49 89 19 10 1 18:25 

S003 98 -3 0 2 1:5 94 1 3 3 10:12 

S004 92 -9 3 5 14:6 77 -27 0 23 6:18 

S005 97 1 2 1 10:10 99 -7 0 1 4:2 

S006 100 0 0 0 5:5 93 -8 1 6 6:11 

S008 86 -1 7 7 2:13 73 11 15 12 4:5 

S010 98 -2 0 2 4:8      

S011 95 -7 0 5 8:8      

Median 93 -4 3 4 22:15 89 -1 4 7 8:12 

 

Table 2-17: HMM observation inputs: in-stream variance, 30 day rainfall and difference in daily mean 

 Calibration Evaluation 

Site 

A
cc

u
ra

cy
 in

 b
in

ar
y 

cl
as

si
fi

ca
ti

o
n

s 

Er
ro

r 
p

re
d

ic
te

d
 n

u
m

b
er

 

o
f 

‘
w

e
t’

 d
ay

s 

Fa
ls

e
 ‘

w
e

t’
 

cl
as

si
fi

ca
ti

o
n

 

Fa
ls

e
 ‘

d
ry

’
 

cl
as

si
fi

ca
ti

o
n

 

N
u

m
b

e
r 

o
f 

tr
an

si
ti

o
n

s 
𝑻

𝒓
𝒆

𝒇
:𝑻

𝒊𝒏
𝒇

𝒆
𝒓

𝒓
𝒆

𝒅
 

A
cc

u
ra

cy
 in

 b
in

ar
y 

cl
as

si
fi

ca
ti

o
n

s 

Er
ro

r 
p

re
d

ic
te

d
 n

u
m

b
er

 

o
f 

‘
w

e
t’

 d
ay

s 

Fa
ls

e
 ‘

w
e

t’
 

cl
as

si
fi

ca
ti

o
n

 

Fa
ls

e
 ‘

d
ry

’
 

cl
as

si
fi

ca
ti

o
n

 

N
u

m
b

e
r 

o
f 

tr
an

si
ti

o
n

s 
𝑻

𝒓
𝒆

𝒇
:𝑻

𝒊𝒏
𝒇

𝒆
𝒓

𝒓
𝒆

𝒅
 

S001 59 200 40 1 40:85 78 44 20 2 12:70 

S002 82 -3 8 10 38:62 75 26 18 7 18:88 

S003 97 -3 0 3 1:9 93 4 5 2 10:11 

S004 77 82 22 1 14:42 89 -4 4 7 6:17 

S005 66 129 34 0 10:31 68 175 32 0 4:39 

S006 96 -1 1 2 5:18 91 -15 0 9 6:10 

S008 69 55 27 4 2:71 70 69 26 4 4:91 

S010 97 -2 1 2 4:14      

S011 90 -14 1 9 8:32      

Median 81 49 15 4 22:40 80 43 15 4 8:47 
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Table 2-18: HMM observation inputs: in-stream variance, 30 day rainfall and lag in temperature profile 
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S001 83 49 13 4 40:49 84 18 11 4 12:34 

S002 81 -9 7 12 38:54 83 8 10 7 18:34 

S003 98 -3 0 2 1:5 93 5 5 2 10:11 

S004 80 64 18 2 14:28 87 -3 6 7 6:10 

S005 70 113 30 0 10:13 65 195 35 0 4:17 

S006 95 -7 0 5 5:12 90 -16 0 10 6:10 

S008 83 -31 2 15 2:17 69 93 30 1 4:17 

S010 90 -14 0 10 4:56      

S011 87 -19 1 12 8:60      

Median 85 16 8 7 22:33 82 43 14 4 8:19 

 

 

Table 2-19: HMM observation inputs: in-stream variance, 30 day rainfall and F(t) 
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S001 90% 5% 5% 5% 40:9 93% 2% 5% -5% 12:8 

S002 83% 7% 7% -6% 38:49 89% 7% 4% 5% 18:11 

S003 98% 0% 2% -3% 1:5 94% 5% 1% 5% 10:13 

S004 93% 0% 7% -26% 14:8 91% 3% 5% -3% 6:14 

S005 98% 1% 1% 3% 10:10 99% 0% 1% -7% 4:2 

S006 99% 0% 1% 0% 5:6 92% 2% 7% -11% 6:4 

S008 83% 0% 17% -40% 2:7 84% 15% 1% 45% 4:3 

S010 99% 0% 1% -2% 4:8      

S011 96% 0% 4% -6% 8:10      

Median 93% 2% -8% 10% 22:14 92% 5% 3% 4% 8:8 

 



 
 

62 
 

Table 2-20:HMM observation inputs: in-stream variance, difference in mean and lag in temperature profile 
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S001 60 160 39 1 40:85 79 28 16 5 12:78 

S002 82 -3 8 10 38:62 75 26 18 7 18:90 

S003 96 -4 2 4 1:19 93 -1 3 4 10:16 

S004 70 98 28 2 14:71 84 -3 5 7 6:30 

S005 65 133 35 0 10:33 67 182 33 0 4:47 

S006 98 0 1 1 5:15 91 -14 0 9 6:11 

S008 68 43 25 8 2:75 70 60 24 6 4:85 

S010 95 0 2 3 4:24      

S011 90 -14 1 9 8:32      

Median 80 46 16 4 22:46 79 40 14 5 8:51 
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Table 2-21: HMM observation inputs: in-stream variance, difference in mean and F(t) 

 Calibration Evaluation 
Site 

A
cc

u
ra

cy
 in

 b
in

ar
y 

cl
as

si
fi

ca
ti

o
n

s 

Er
ro

r 
p

re
d

ic
te

d
 

n
u

m
b

e
r 

o
f 

‘
w

e
t’

 

d
ay

s 

Fa
ls

e
 ‘

w
e

t’
 

cl
as

si
fi

ca
ti

o
n

 

Fa
ls

e
 ‘

d
ry

’
 

cl
as

si
fi

ca
ti

o
n

 

N
u

m
b

e
r 

o
f 

tr
an

si
ti

o
n

s 
𝑻

𝒓
𝒆

𝒇
:𝑻

𝒊𝒏
𝒇

𝒆
𝒓

𝒓
𝒆

𝒅
 

A
cc

u
ra

cy
 in

 b
in

ar
y 

cl
as

si
fi

ca
ti

o
n

s 

Er
ro

r 
p

re
d

ic
te

d
 

n
u

m
b

e
r 

o
f 

‘
w

e
t’

 

d
ay

s 

Fa
ls

e
 ‘

w
e

t’
 

cl
as

si
fi

ca
ti

o
n

 

Fa
ls

e
 ‘

d
ry

’
 

cl
as

si
fi

ca
ti

o
n

 

N
u

m
b

e
r 

o
f 

tr
an

si
ti

o
n

s 
𝑻

𝒓
𝒆

𝒇
:𝑻

𝒊𝒏
𝒇

𝒆
𝒓

𝒓
𝒆

𝒅
 

S001 51 136 38 11 40:95 82 32 16 2 12:68 

S002 82 0 9 9 38:63 73 48 24 3 18:87 

S003 97 -3 0 3 1:9 94 -2 3 4 10:16 

S004 83 56 16 1 14:44 88 2 7 5 6:22 

S005 98 3 1 1 10:10 99 2 1 0 4:4 

S006 99 1 1 0 5:7 93 -8 1 6 6:11 

S008 70 15 18 12 2:73 76 30 17 7 4:75 

S010 98 0 1 1 4:16      

S011 93 -8 1 6 8:14      

Median 86 25 9 5 22:37 86 18 10 4 8:40 

 

Table 2-22: HMM observation inputs: in-stream variance, temperature profile lag and F(t) 
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S001 56 143 36 8 40:84 93 6 5 2 12:20 

S002 82 -6 7 11 38:49 87 21 11 2 18:37 

S003 98 -3 0 2 1:5 94 1 4 3 10:12 

S004 86 25 10 4 14:26 67 -42 0 33 6:24 

S005 97 2 2 1 10:11 97 14 3 0 4:7 

S006 90 -12 2 8 5:62 93 -10 1 7 6:9 

S008 69 -69 1 29 2:29 73 11 15 12 4:17 

S010 88 -14 1 11 4:64      

S011 85 -22 1 14 8:64      

Median 83 33 7 10 22:44 86 15 6 8 8:18 
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5. Summarised results 

Table 2-23: The results of the five alternative inputs iterated in the two-state hidden Markov model which had been 
limited to a maximum of three inputs and with in-stream daily variance included on each calibration  

iteration 
# 

Observation response inputs, 𝑶 
(reference state used during algorithm 

training only) 

Calibration 
accuracy 

Evaluation 
Accuracy 

On-bank 
measurement 

required? 

1 • Daily in-stream temperature variance 83% 78% Χ 

2 • Daily in-stream temperature variance 

• Daily rainfall antecedent moisture  

86% 82% Χ 
 

3 • Daily in-stream temperature variance 

• Difference in daily in-stream to on-
bank temperature mean 

81% 80% ✓ 

4 • Daily in-stream temperature variance 

• Lag of in-stream to on-bank 
temperature profile 

82% 83% ✓ 

5 • Daily in-stream temperature variance 

• Ratio of on-bank to in-stream daily 
temperature variance 

93% 89% ✓ 

6 • Daily in-stream temperature variance 

• Daily rainfall antecedent moisture 

• Difference in daily in-stream to on-
bank temperature mean 

81% 80% ✓ 

7 • Daily in-stream temperature variance 

• Daily rainfall antecedent moisture 

• Lag of in-stream to on-bank 
temperature profile 

85% 82% ✓ 

8 • Daily in-stream temperature variance 

• Daily rainfall antecedent moisture 

• Ratio of on-bank to in-stream daily 
temperature variance 

93% 92% ✓ 

9 • Daily in-stream temperature variance 

• Difference in daily in-stream to on-
bank temperature mean 

• Lag of in-stream to on-bank 
temperature profile 

80% 79% ✓ 

10 • Daily in-stream temperature variance 

• Difference in daily in-stream to on-
bank temperature mean 

• Ratio of on-bank to in-stream daily 
temperature variance 

86% 86% ✓ 

11 • Daily in-stream temperature variance 

• Lag of in-stream to on-bank 
temperature profile 

• Ratio of on-bank to in-stream daily 
temperature variance 

83% 86% ✓ 

 

 

 

 



 
 

65 
 

Chapter 3.  

 

Does conceptualization of local-scale catchment runoff 

production matter in representation of intermittent 

streams across Mediterranean catchments? 

 

Alicja Makarewicza, Michael Leonarda, Seth Westraa, Daniel Partingtonb  

a School of Civil, Environmental and Mining Engineering, the University of Adelaide, North 
Terrace, Adelaide SA 5005, Australia. 

b National Centre for Groundwater Research & Training, Flinders University, Adelaide SA 5001, 
Australia 

 

Environmental modelling and software, in preparation 



 
 

66 
 



 
 

67 
 

 

 



 
 

68 
 

 



 
 

69 
 

Abstract 

The requirement to quantify the intermittency of streamflow on reaches distributed across 

Mediterranean catchments is crucial for the management of water resources with multi-scale 

implications, for example, decisions relating to environmental flows and small distributed dams. 

The scale of processes being represented is important because many methods and processes that 

are applicable at one scale are not applicable at another scale. Not capturing spatial variations and 

relying on a single metric downstream for the evaluation of a rainfall-runoff models could 

potentially result in the misrepresentation of runoff and hence less effective water management 

outcomes. This study investigated the implications of local-scale runoff production and the 

functioning of a small dam when different conceptualizations of hydrological models are 

calibrated to a single point estimate of streamflow variation. Using the 3D surface-subsurface flow 

code HydroGeoSphere a partly forested 10 km2 catchment with intermittent streamflow was 

calibrated to four competing conceptualisations of runoff-generation behaviour exhibiting near 

equivalent Nash-Sutcliffe coefficients for streamflow at the outlet. The four competing 

conceptualisations were: (1) saturation excess dominated, (2) saturation excess and groundwater 

dominated, (3) groundwater dominated and (4) groundwater dominated but containing 17% 

infiltration excess. The results demonstrated that subsurface pathways influence the behaviour of 

flow in and around the dam with groundwater dominant scenarios showing that simulated flow 

days downstream of the dam increased more than 20% compared to upstream. These differences 

show that more meaningful quantitative tools for process representation of streamflow 

intermittency are required. To resolve these catchment complexities, additional data on 

headwater reaches is required to better inform model parameterizations and to allow for the 

rejection of some competing conceptual models. Additionally, future research should investigate 

added model complexities, additional low-cost data and how to best balance the faithful 

representation on streamflow intermittency within a practical framework.  
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3.1 Introduction 

Understanding localized runoff generation is important for predicting intermittent flows and 

runoff responses that are nested across many scales. For many water management questions, 

such as low flows, land use management, distributed storages and environmental flows, gauged 

discharge data are typically exclusively used for policy, planning and design decisions. The 

aggregation of processes to the outlet can be limited in the representation of catchment-wide 

runoff production that can be highly variable due to the heterogeneities of surface and subsurface 

characteristics. Catchment slope, topography, soil, vegetation features, as well as hydroclimatic 

features depend on fluxes at scales that span multiple orders of magnitude. To represent this 

heterogeneity, many hydrological problems are bounded or idealized to focus on a subset of 

processes manifested at a specific scale, such as the microphysical modelling of soil properties (Li 

et al., 2013), ecohydraulic representation of individual reaches (Bockelmann et al., 2003) or 

catchment-scale assessment of outlet flows. 

There are many hydrological problems that require accurate representation across multiple 

scales, where larger-scale analyses cannot easily be decoupled from process scales orders of 

magnitude smaller. For example, over two million agricultural dams are distributed on hillslopes 

in Australia alone, each with limited storage volume but collectively storing over 8,000 GL of water 

(Land and Water Australia, 2010)—a volume equivalent to the total volume of water stored in 

large reservoirs supplying Australia’s major capital cities. Understanding the hydrological 

implications of small distributed storages therefore requires accurate representation of small 

reservoir dynamics at the hillslope scale, and how these dynamics scale up across larger drainage 

basins. Similarly, ecohydrological problems require the understanding of network intermittency 

which shapes local and catchment-wide aquatic ecosystems (Larned et al., 2010). Finally, 

understanding the generation of sediment and associated water quality issues requires multiscale 

process knowledge, where factors controlling runoff generation and associated sediment 

transport vary according to the spatial scale (Inoubli et al., 2017). 

To address these problems, it is necessary to accurately represent hydrological processes that 

span both the hillslope scale and larger catchment scale. This is challenging because of vast 

heterogeneity spanning both space and time scales, non-additivity of surface flows (with local-

scale infiltration often re-emerging further downstream) and limited or no availability of 

streamflow measurements in smaller-scale reaches (Kirchner, 2006). The hydrology of hillslopes 

is very different from the hydrology of catchments, whereby runoff at the hillslope is characterized 

by greater intermittency and variability than when flow is aggregated across the catchment. For 

example, preferential flows (Weiler and McDonnell, 2007) and threshold responses (Graham et 

al., 2010) observed at the hillslope can be poorly generalized at larger scales due to complexity in 

the processes as well as the lack of local scale data. The outcome is that upstream reaches which 

are typically more variable with intermittent flow and cease-of-flow periods having less data, 

whereas downstream reaches having more data are less variable due to flow aggregation. 

This paper demonstrates simulated differences in process representation at the hillslope scale, 

which can have implications for multi-scale decisions. This is represented conceptually in Figure 

3-1, where two extreme runoff generation mechanisms—infiltration excess and saturation excess 

runoff—are shown to influence drainage patterns around localized storages. Infiltration excess 

runoff is produced by saturation of the soil surface (saturation from above) when the intensity of 

precipitation exceeds the rate of infiltration. Figure 3-1 (a) illustrates how infiltration excess runoff 

travels through a storage with limited interaction with the subsurface. This conceptualization 
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implies high levels of additivity in surface flows at the hillslope and catchment scales, thereby 

allowing for idealized assumptions of flow behaviour (typical in node-link conceptual models) with 

little to no surface-subsurface interaction. Conversely, saturation excess runoff occurs when the 

entire soil profile is saturated (saturation from below) resulting in return flow as well as runoff 

from subsequent precipitation on the saturated area, and implies very different processes at the 

hillslope scale (e.g. lower proportion of saturated area; high infiltration rates; lower proportions 

of runoff) and the larger scale (higher proportion of saturated area; potential for return flow; 

higher proportions of runoff). Figure 3-1 (b) shows how the saturation excess mechanism 

increases the potential of flow pathways around the storage that include explicit interactions with 

the subsurface. How infiltration excess and saturation excess evolve over time will also vary. For 

example, infiltration excess could occur over the entire hillslope simultaneously whereas 

saturation excess might start in low-lying areas and work its way up the hillslope. 

 

Figure 3-1: Illustration of two main runoff generation mechanisms: (a) infiltration excess runoff; and (b) saturation excess 
runoff. Black arrows represent general processes in the hydrological cycle and red arrows represent processes directly 
relevant to each associated runoff mechanism and flow pathways around a small storage. 

Although the presence of different runoff mechanisms at the hillslope is widely known (Horton, 

1933; Dunne, 1983), hydrological modelling at the catchment scale has been dominated by 

conceptual models representing aggregate characteristics calibrated to flows at the catchment 

outlet, with limited physical process realism at the local scale. Although conceptual models are 

often able to equal or out-perform more complicated physically-based distributed models in a 

standard calibration/validation setting (Smith et al., 2012), they are typically limited or unable to 

address intra-catchment behaviour. For example, even where there is the representation of an 

upstream process in a conceptual model (such as groundwater recharge or quickflow), it is not 

necessarily useful for interpretation (Partington et al., 2012; Li et al., 2013).  

Therefore, it is necessary to better understand the implication of process representation in 

hydrological models for problems that require faithful representation of hydrological stores and 

fluxes at both the hillslope and catchment scales. Where, commonly applied models, do not 

consider soil moisture and water table information. To this end, this paper aims to:  
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1. Understand the effect of spatial variability of alternative simulated runoff mechanisms 

calibrated exclusively to outlet discharge and;  

2. To investigate the influence of different runoff mechanisms on localized flow pathways.  

To achieve these aims a numerical modelling study of a 10 km2 South Australian catchment was 

used (Section 3.2). The fully integrated hydrological model, HydroGeoSphere, was selected to 

simulate multiple runoff scenarios while preserving the model discharge performance at the 

outlet (Section 3.3). The simulations were analysed to illustrate the spatial features of runoff 

generation mechanisms and the influence runoff production had on localized flow pathways for 

small distributed storages (Section 3.4). Discussion and implications of the comparison are 

outlined along with conclusions of the study (Section 3.5). 

3.2 Case study 

The implications of process representation at the hillslope scale and larger catchment scale were 

investigated using a small (10 km2) Mediterranean catchment in South Australia, GPS coordinates 

(-35.266420, 138.731021). Due to resource constraints a single catchment was selected. The 

catchment geometry, physical features and hydro-climatic characteristics were equally 

implemented for all simulated scenarios. The sub-catchment has three main tributaries (Figure 3-

2b), and contains 1st to 4th order streams that range from perennial to intermittent, with various 

sources and sinks located along the channels. The catchment ranges from 175 m to 420 m above 

sea level and is partially vegetated with closed shrub-land and open wood-land. Non-vegetated 

locations were made up of grasses and pastures. Soils in the area are primarily shallow, made up 

of loam and sandy loam over clay on rock. Fractured rock is common throughout the area. There 

are 50 dam storages ranging in size from 1 to 10 mega litres and were represented in the model 

DEM.  

 
Figure 3-2: (a) catchment location superimposed on Koppen climate classification and (b) a catchment map illustrating 
the main tributaries, stream orders, vegetated areas and surface areas of local storages that were represented in the 
model DEM 

Subdaily rainfall and daily potential evapotranspiration were obtained from a weather station less 

than 20 km southeast of the catchment, and given the small catchment size, were assumed to be 

uniform over the region. A two year period from 2017 to 2019 had been selected, with an average 

of 700 mm/year rain and 1800 mm/year potential evapotranspiration over this time. The region 
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is highly seasonal with hot dry summers, and while large rainfall events are possible, in summer 

there is typically little flow at many sites, other than immediately following the events. The 

majority of the rainfall arrives in the winter months, and the highest flows occur in the spring 

period. 

3.3 Methodology 

To investigate the potential influence of modelling assumptions on water management decisions, 

this study seeks to represent alternate flow pathways through alternative proportions of runoff 

generation mechanisms—infiltration excess, saturation excess and groundwater runoff—with 

similar discharge performance at the catchment outlet. The runoff mechanisms were simulated 

by adjusting the hydraulic conductivity in both the vertical and horizontal dimensions, as well as 

differences in the vertical discretization of the soil profile. This determines the infiltration rate 

(controlling the degree of ‘saturation from above’) as well as groundwater level and lateral flow 

(determining the degree of ‘saturation from below’).  

The selected soil properties were within the range of parameters expected for sandy loam and silt 

soil characteristics, which are present in the catchment being simulated. The parameters were 

adjusted to achieve a minimum Nash-Sutcliffe efficiency coefficient (NSE) of 0.5 at the outlet and 

to reflect typical aggregate runoff behaviour in Mediterranean catchments. Where the aim was to 

investigate the influence of assumption of commonly applied conceptual models that do not 

consider soil moisture and groundwater data.  

A Nash-Sutcliffe efficiency coefficient of 0.5 was deemed appropriate for this study given the 

simulation time constraints and the time consuming nature of model calibration with alterative 

HGS studies having produced similar NSE’s (Partington et al, 2013; Li et al. 2015; Glaser et al. 2016; 

Tang et al. 2017). To quantify different proportions of runoff generation, the hydraulic mixing-cell 

(HMC) method (Partington et al., 2013) was applied within a fully-coupled surface-subsurface flow 

model, HydroGeoSphere (HGS). Further details on the HMC method are outlined in Appendix A. A 

scenario was considered to be dominated by a particular runoff mechanism when that mechanism 

contributes the largest proportion to total flow at the outlet. The identified flow proportions were 

used to address the research aims regarding the spatial variability of runoff generation and their 

influence on local scale flow pathways. 

3.3.1 Model set-up: explicit simulation of surface/subsurface flows 

The process-based hydrological model HydroGeoSphere (HGS) (Therrien et al. 2009) was used as 

the basis for this study, as it is capable of providing insight into physical processes at scales not 

otherwise viable for empirical studies. The fully integrated surface/subsurface model can simulate 

surface and subsurface flows at high spatial and temporal resolution, allowing interrogation of 

flow pathways and runoff generation mechanisms. HGS simulates both 3D variably saturated 

subsurface flow using a modified Richards’ equation, and 2D surface flow (Brunner et al. 2012) 

using the diffusion wave approximation to the Saint Venant equations. HGS solves all governing 

flow equations simultaneously to simulate streamflow and groundwater discharge to the stream 

as a function of the catchment physical characteristics and hydrological inputs. The equations 

were solved using a control volume finite element method with Newton-Raphson linearization. 

The model domain was discretised as an irregular triangular mesh to simulate small-scale runoff 

in and around the channel. The element lengths range from 250m at the outer boundary to 25m 

in and around the catchment streams and reservoirs. The spatial discretization of the modelled 

domain was represented with 12,015 elements and 6,115 nodes (Figure 3-3a). In the z direction 
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the model domain consists of seven layers with a discretization of 0.3 m for the top 1.5 m. The soil 

depth ranges from 5-24 m beneath the surface domain, with greatest depths at the boundary and 

linearly becoming shallower towards the outlet. The maximum soil thickness was 26 m and the 

minimum was 6.5 m, selected to represent the relatively shallow soils characteristic of the area 

represented in soil maps. The groundwater depths of simulations were different for each scenario 

and were dependent on the soil profile parameters and the resulting dynamic equilibrium 

reached. The depth to water table around the catchment boundary ranged between 1-2 m 

(saturation excess) and 10-26 m (containing infiltration excess) depending on the scenario. The 

digital elevation model (DEM) features 50 on-stream and off-stream storages ranging from 1 to 

10 mega litres in size (Figure 3-3b). The outlet was set as the critical depth boundary and a no-

flow boundary was fixed for the bottom and lateral subsurface domain (i.e. water can only leave 

the model domain through a critical depth boundary at the outlet). The critical depth boundary 

simulates the transition from sub-critical to supercritical flow, e.g. as one sees with flow over a 

weir (Therrien et al., 2009). 

 

Figure 3-3: (a) Modelled catchment geometry and discretization showing smaller elements located in the channels with 
numbers 1-3 indicating the three main tributaries and the red dots indicating probe points to compare streambank and 
hillslope saturation behaviour, and (b) simulated overland flow channels (grey lines) and ponded water present in 
catchment dams, blue - deep and yellow – shallow shading, with the dam investigated in this study shown with a red 
circle. 

To allow the alternative scenario simulations to reach a dynamic equilibrium, the soil ranges used 

to develop the scenarios were initialized with a 20-30 year spin up period, depending on soil type. 

The spin up allows the water table distribution to adjust to the catchment conditions. The models 

were initialized with the water table at the land surface and then allowed to drain under gravity. 

The spin up was initialized with the catchment full saturated, and allowed to drain for 6 months. 

After this, 20-30 years of observed rainfall and evaporation time-series were applied, allowing for 

the transient adjustment of the subsurface flow paths and gradients relative to the catchment 

geomorphology. The simulation period for the studied scenarios reflects the length of discharge 

data available and was March 2016 to March 2019 (two years) of continuous simulation. The first 

12 months of data was used for calibration, and the second year was reserved for simulation 

evaluation. 
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The catchment was parameterized by dividing the model domain into two units based on 

vegetation; (1) densely vegetated and (2) grass and pastures (Figure 3-2b). The evapo-

transpiration (ET) properties were chosen to represent these two groups of vegetated sections. 

selected root and evapo-transpiration depth for the vegetated and clear areas were 3.5 m and 0.2 

m respectively, and were deemed reasonable given the type of vegetation present in the 

catchment. The values were taken from Canadell et al., 1996 and Specht and Rayson 1957 to 

reflect native trees in the area (e.g. Banksia and Eucalyptus). These parameters were selected to 

reflect physical characteristics for the location and were kept identical across the all scenarios 

(Table 3-1).  

3.3.2 Calibration of scenarios 

Each scenario was calibrated by adjusting soil properties to produce a minimum discharge NSE of 

0.5 at the outlet (Figure 3-4). The aim of model calibration was to simulate the scenarios with the 

required performance at the outlet while producing different proportions of runoff mechanisms 

on the hillslope (quantification of mechanisms is outlined in Section 3.3.3). The relationship 

between rainfall intensity and saturated hydraulic conductivity was used as the primary control of 

the dominant runoff generation mechanism (Mirus & Loague, 2013). Vertical and lateral saturated 

hydraulic conductivity were used to control runoff response and surface-subsurface flow 

pathways. For all scenarios, the applied soil properties remained within realistic values for the 

catchment soil types, which ranged from clay to sandy loam and were based on parameter ranges 

in Puhlmann et al. (2009).  

The infiltration excess runoff was achieved by impeding infiltration. This required a low vertical 

saturated hydraulic conductivity with silt/clay properties. This resulted in high velocity runoff 

events that quickly recede. Runoff was controlled with the lateral saturated hydraulic conductivity 

(x- and y-direction) to slow or accelerate runoff. The saturation excess runoff was parameterized 

by increasing the infiltration rate (i.e. fast saturated hydraulic conductivity in the z-direction) with 

sandy-loam soil properties. While a higher hydraulic conductivity in the vertical than horizontal 

direction is uncommon, this feature was plausible for the region given the shallow soils and 

fractured rock common in the study area, since vertical cracking would allow for rapid vertical 

flow, retarding horizontal flow. The applied soil properties were homogenous and were 

considered adequate given the small catchment size and soil map descriptions.  

To calibrate each of the scenarios a grid-based search was used where the range of each 

parameter (i.e. 𝐾𝑥𝑦
𝑖  and  𝐾𝑧

𝑖
) was discretised into 10 points. Given there were two parameters to 

calibrate, this results in 100 instances of parameter combinations to evaluate per iteration of the 

grid-search. For each of the 100 simulations the Nash-Sutcliffe efficiency and the proportions of 

runoff mechanisms were calculated for the discharge at the catchment outlet. An evaluation was 

made whether the identified region had suitably converged based on this performance criteria. 

When the parameter range had not converged, subsequent iterations of the grid-search were 

performed by selecting the best performing subdomain of the parameter space and further 

discretising that region. The initial conditions (e.g. soil moisture and groundwater state) were 

updated with each iteration using the best performing subdomain (Figure 3-4). The second year 

of the final simulation was used solely for performance evaluation. The selected parameters for 

the model calibrated to multiple sites are presented in Table 3-1.  
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Figure 3-4: Schematic of the method for identifying contrasting simulations that have a comparable discharge 

performance at the outlet by adjusting the lateral and vertical hydraulic conductivities 𝑲𝒙𝒚
𝒊  and  𝑲𝒛

𝒊  respectively. Four 

resulting scenarios were selected: (1) saturation excess dominant, (2) saturation excess & groundwater dominant, (3) 
groundwater dominant, and (4) groundwater dominant but with infiltration excess. 
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Table 3-1: Surface and subsurface parameters for the catchment model, parameter values follow (Partington et al., 2010; 
Li et al., 2013) 

Parameter Value 

Scenario 1 Scenario 2 Scenario 3 Scenario 4 

Description Saturation 
excess 

dominant 

Saturation 
excess and 

groundwater 
dominant 

Groundwater 
dominant 

Groundwater 
dominant and 

containing 
infiltration 

excess 

Lateral and vertical hydraulic 
conductivity (m/s) 

𝐾𝑥𝑦=2.0 x 10-6 

𝐾𝑧=1.3 x 10-4 

 

𝐾𝑥𝑦=1.3 x 10-6 

𝐾𝑧=1.5 x 10-6 

 

𝐾𝑥𝑦=4.8 x 10-5 

𝐾𝑧=7.0 x 10-6 

 

𝐾𝑥𝑦=9.8 x 10-5 

𝐾𝑧=2.8 x 10-7 

 

Surface Properties (uniform) 
Manning’s roughness (channel) 
(s/m1/3) 
Manning’s roughness (overland) 
(s/m1/3) 
Rill storage height (m) 
 
Transpiration fitting parameter c1 
Transpiration fitting parameter c2 
Transpiration fitting parameter c3 
Wilting point  
Field capacity 
Oxic limit 
Anoxic limit 
 
Limiting saturation (minimum) 
Limiting saturation (maximum) 
 
Surface – Vegetated (uniform) 
Leaf area index 
Root Depth (m) 
Canopy storage parameter (mm) 
Initial interception storage (mm) 
Evaporation depth (m) 
 
Surface – Cleared (uniform) 
Leaf area index 
Root Depth (m) 
Canopy storage parameter (m) 
Initial interception storage (m) 
Evaporation depth (m) 
 
Coupling length (m) 

 
0.15  

 
0.05  

 
0.001 

 
0.3 
0.2 

10.0 
0.1 

0.15 
0.9 
1.0 

 
0.2 

0.32 
 
 

2.08 
3.5  
0.5 
0.5 
3.5 

 
 

0.9 
0.2  
0.0  
0.0  
0.2  

 
0.00001  

 

3.3.3 Quantifying runoff generation mechanisms 

To quantify the components of runoff generation across the catchment model, the hydraulic 

mixing-cell (HMC) method was applied (Partington et al., 2011, 2013). The method had the ability 

to track surface and subsurface flows (Schilling et al., 2018) based on inflow boundary conditions 

such as rainfall. The method ‘tags’ inputs from boundary domains by delineating the inflow 

between infiltration excess and saturation excess with flow labelled as a function of the model 

cell’s surface saturation and depth to groundwater (e.g. saturation from below or saturation from 
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above). The tagged water volume was tracked as a fraction of the total water volume in each cell 

through the model domain using a modified mixing-cell approach (after Campana & Simpson, 

1984). The reason for tracking the fraction of water attributed to the runoff generation 

mechanism was to quantify the amount of flow contributing to a point of interest, such as the 

catchment outlet, as some flow remains stored within the catchment (Partington et al., 2013).  

The previous method of Partington et al. (2011, 2013) has been extended here by using additional 

HMC fractions to those previously implemented, which only considered direct rainfall to a cell 

without further delineation into saturation excess or infiltration excess. All in-stream and overland 

flow generation mechanisms were delineated by user defined model surface nodes as either 

overland or in-stream nodes, defined as nodes which were located overland (catchment surface) 

or within a stream network channel. The model provides unique runoff fractions of: (1) infiltration 

excess flow as return flow; (2) saturation excess flow as return flow; (3) direct rainfall as infiltration 

excess flow; (4) direct rainfall as saturation excess flow; (5) direct rainfall to the channel; and (6) 

groundwater discharge. Existing water within the catchment at the start of the simulation was 

delineated as “initial” which had an unknown origin. To check for any errors within the HMC 

analysis and ensure sensible results, a reset fraction and error were also computed (see Partington 

et al., 2013). Appendix 3-A outlines details of the HMC method. 

3.4 Results and discussion 

3.4.1 Runoff response comparison at the catchment outlet 

The four calibrated scenarios show different proportions of runoff generation mechanisms: 

infiltration excess, saturation excess and groundwater (Figure 3-5). The four calibrated scenarios 

selected for analysis were: 

(1) Scenario 1: dominated by saturation excess runoff  
(2) Scenario 2: similarly dominated by saturation excess and groundwater runoff  
(3) Scenario 3: dominated by groundwater runoff 
(4) Scenario 4: dominated by groundwater runoff but containing the greatest proportion of 

infiltration excess achieved while maintaining performance at the outlet. 

Figure 3-5 illustrated the breakdown in the runoff generation mechanisms showing that Scenario 

1 simulates 57% saturation excess runoff, with groundwater contributing to 30% of runoff at the 

outlet. Scenario 2 was similarly dominated by saturation excess and groundwater runoff, with 44% 

and 47% contributing to flow at the outlet respectively. In contrast, Scenario 3 was dominated by 

groundwater runoff with 57% contributing to the outlet and 30% contributed from saturation 

excess runoff. Additionally, 0.2% of runoff was infiltration excess overland flow and 3.5% of 

infiltration excess was infiltrated, re-emerging at the outlet. Finally, Scenario 4 while also 

dominated by groundwater runoff (51%) contains both saturation excess (21%) and infiltration 

excess (17%) runoff at the outlet, noting that 4% was overland runoff and 13% was infiltrated, re-

emerging at the outlet (i.e. return flow). While every attempt was made by the authors to produce 

a scenario dominated by infiltration excess the task proved to be difficult because some infiltration 

excess that was simulated on the hillslope was infiltrated into the groundwater table (being re-

tagged as groundwater) and was not flowing to the outlet. Scenarios 1 and 2 simulated negligible 

infiltration excess runoff and infiltration. All scenarios produced less than 0.5% of saturation 

excess that was infiltrated and later re-emerging. 
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Figure 3-5: The different fractions of runoff contributing to total flow at the catchment outlet over a two year continuous 
period for the four simulated scenarios. 

The four scenarios were calibrated with a minimum Nash-Sutcliffe efficiency coefficient (NSE) of 

0.50 at the outlet over the first year of simulations. The simulations were evaluated with outlet 

discharge over the second year of simulations are shown in Figure 3-6. Scenarios 1, 2, 3 and 4 each 

achieved a calibration NSE of 0.52, 0.54, 0.62 and 0.69 respectively. All four scenarios reduced in 

performance over the evaluation period achieving an NSE of 0.32, 0.48, 0.29 and 0.15 respectively. 

Difference in timing of flow onset and cessation for the four scenarios were identified. Scenarios 

1 and 2, dominated by saturation excess and saturation excess and groundwater runoff 

respectively, had continuous flow for the majority of the year. In contrast, Scenarios 3 and 4, both 

dominated with groundwater but containing 3.5% and 17% infiltration excess respectively, 

simulated seasonal flow characteristics where continuous flow began in early April and late June 

over the first year of simulations, respectively. Scenarios 3 and 4 streamflow receded in mid-

December and early-December respectively. All simulations had a negative total flow bias with 

Scenario 1, 2, 3 and 4 each under-estimating total flow by 25%, 7%, 8% and 29%. 
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Figure 3-6: Showing model outputs over the calibration and evaluation periods for the (a) applied rainfall and 
hydrographs of the four simulated scenarios; (b) scenario 1: saturation excess dominated; (c) scenario 2: saturation 
excess and groundwater dominated; (d) scenario 3: groundwater dominated; and (e) groundwater dominated with 
infiltration excess. 
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3.4.2 Comparison of runoff response across the catchment 

The spatial distribution of moisture stores and fluxes during the first major rain event of this series 

(day 250) was shown in Figure 3-7. Scenario 1, dominated by saturation excess, shows that surface 

saturation (Figure 3-7a) occurs in areas where the groundwater table was at the surface (Figure 

3-7b), illustrating ‘saturation from below’. The results also indicate that the groundwater table in 

unsaturated areas on the hillslope remains close to the surface (i.e. less than 0.5m below the 

surface). In contrast, Scenario 4, containing 17% infiltrated excess runoff, shows that the surface 

of the catchment was saturated (Figure 3-7g) while the depth to the groundwater table was 

significantly below the surface elevation on the hillslope, (Figure 3-7h), illustrating ‘saturation 

from above’. Figure 3-7h shows that the depth to groundwater table ranged from 26.0 m below 

the surface at the boundary to approximately 2.0 m within the catchment and closer to the 

channel. The results show that the depth to groundwater table within the channel was at the 

surface for some sections and below the channel surface (less than 1.0 m below) in other sections 

of the channel. Scenarios 2 and 3 show behaviour that ranges between Scenario 1 and 4, where 

the surface saturation increased from Scenarios 1 to 4, the hillslope saturation approximately 17%, 

53%, 77% and 95% respectively (at day 250 of the simulation). The groundwater table does not 

show a similar pattern of behaviour with the depth to groundwater table in Scenario 3 

(groundwater dominated) than Scenario 2 (saturation excess and groundwater dominated). 



 
 

82 
 

 

Figure 3-7: Simulated spatial behaviour at day 250 of the surface saturation (a) and depth to groundwater table (b) for 
Scenario 1, surface saturation (c) and depth to groundwater table (d) for Scenario 2, surface saturation (e) and depth to 
groundwater table (f) for Scenario 3, and surface saturation (g) and depth to groundwater table (h) for Scenario 4. 
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3.4.3 Analysis of saturation and groundwater behaviour for the runoff mechanisms 

To compare and investigate the on-bank and hillslope saturation and groundwater behaviour for 

the scenarios, a daily time series of surface saturation was compared at two points (Figure 3-8). A 

point of the hillslope and an on-bank (directly next to the channel) where selected (Figure 3-4). 

The on-bank point was located directly next to the channel of downstream tributary 3 and the 

hillslope point was located approximately 300 m uphill. The results illustrated for Scenario 1, show 

that on the hillslope surface saturation remains less than 20% over the one year period with an 

average depth to gropundwater depth of 1.98 m (Figure 3-8a), while near the channel the 

saturation remains above 80% during the same period, with satuation becoming 100% during high 

flow periods (Figure 3-8b). The average depth to groundwater table was 0.03 m reflecting the 

behaviour of Sceanrio 1 show in Figure 3-7. 

Scenario 2 shows the hillslope becoming more saturated, where during dry periods saturated 

remains at approximately 10%, with jumps in saturation, up to 56%, observed during rainfall 

events. The average depth to groundwater table was 5.19 m (Figure 3-8c). Conversely, saturation 

next to the channel was approximately 60% during dry periods and becomes completely saturated 

during the high flow months, with a relatively shallow depth to groundwater talbe of 0.04 m 

(Figure 3-8d). Scenario 3, shows that on the hillslope the saturation reached a maximum of 

approximately 78% while average depth to groundwater table was 2.43 m (Figure 3-8e). Next to 

the channel, Scenario 3 illustrates that during wet periods the bank completely saturated, while 

during dry periods saturation ranged between 40% to 20%, with an average depth to groundwater 

table of 0.09 m. 

Finally, Scenario 4 shows that surface saturation was highly responsive to rainfall with maximum 

saturation of 95% simulated at the end of July (note that the plot was at an instananeous daily 

scale and that 100% saturation occuring at a sub-daily scale). The average depth to groundwater 

table was determined at 5.88 m. On-bank Scenario 4 behaves differently compared to other 

simulations, where continuous 100% saturation was not simulated over the high flow period. 

Additionally the period of high saturation (i.e. greater than 80%) was significantly shorter 

compared to other scenarios. For example, Scenario 4 had high satuation for approximately three 

months, while 100% saturation was simulated for Scenario 3 for over nine months. 
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Figure 3-8: Comparison of hillslope and on-bank saturation for (a-b) Scenario 1, (c-d) Scenario 2, (e-f) Scenario 3 and 
(g-h) Scenario 4, with daily rainfall shown in the top panel. 

To further compare the saturation behaviour of each of the scenarios, scatter plots are illustrated 

in Figure 3-9 showing the relationship of saturation (which leads to runoff) and 7-day antecedent 

rainfall. The 7-day antecendent rainfall was selected because saturation excess was influenced by 

long-term rainfall (e.g. 30-day rainfall), with infiltration excess was influenced by daily (or sub-

daily) rainfall intensity and the 7-day rainfall provides a mid-range of comparative purposes. Figure 

3-9 shows that there was a strong linear rainfall-saturation (or runoff) relationship of the hillslope 

(~0.71) for  Scenario 4 (containing infiltration excess), while in contrast Scenario 1 (dominated by 

saturation excess), illustrates a weak linear relationship (0.35). This linear relationship strenghens 

for Scenario 2 (~0.74) and for Scenario 3 (~0.68). 
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Figure 3-9: Comparison of scatter plots of the saturation behaviour on the hillslope and on the bank to 7 day antecedent 
moisture for (a-b) Scenario 1, (c-d) Scenario 2, (e-f) Scenario 3, and (g-h) Scenario 4. 

3.4.4 Comparison of flow at the local scale 

There were differences in storage dynamics as well as inflows and outflows in and around the dam 

under the four scenarios (Figure 3-10). Each simulation was initialized with the 10ML in-stream 

storage at full capacity (depth of 2.6 m). A volume of 0.08 ML/day, approximately 0.02 m/day, was 

extracted from the dam on days where the 30 day antecedent rainfall was less than 50 mm. These 

conditions equate to a total volume of approximately 18 ML/year being extracted from the 

storage and 230 extraction days per year. These conditions were implemented in order to 
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realistically simulate water extraction behaviour, which would typically occur during dry periods 

of the year.  

The total annual simulated inflow into the storage for scenarios 1, 2, 3, and 4 was 112 ML, 140 

ML, 123 ML and 87 ML (Table 3-2). Despite having similar inflows into the dam, the total number 

of inflow days differ. For example, above the dam, Scenario 2 flows all year, while Scenario 4 flows 

for approximately 40% of the year. A comparison of the number of spill days per year shows that 

the number of days flow was present above and below the dam for Scenario 1 and 2, both 

dominated by saturation excess, were the same (325 days and 365 days respectively). However 

the results in Table 3-2 show that for Scenario 3, which was dominated by groundwater runoff the 

number of flow days below the dam increase by 38% compared to the number of flow days above 

the dam (257 days to 355 days). Similarly, for Scenario 4, which was also dominated by 

groundwater but also contained infiltration excess runoff, the number of flow days increased by 

22.5% (141 days to 182 days). Therefore, simulated flow days for groundwater dominated 

scenarios increased more than 20% compared to upstream. This was significant because this infers 

that the groundwater component of runoff was bypassing flow around the dam via subsurface 

flow pathways in order to produce low flows. For example, the onset of streamflow below the 

dam in Scenario 3 (dominated be groundwater runoff) begins in late March, this was despite there 

being no spill from the dam, i.e. below full capacity (Figure 3-10). 

The number of days per year for which the storage in Scenarios 1, 2, 3 and 4 was at capacity (>2.6 

m depth) was 173 days, 332 days, 146 days and 77 days respectively (Figure 3-10). The results 

demonstrate a difference of 33% for the volume spilled for every spill day, 0.10 ML/spill day for 

Scenario 1 and 0.15 ML/spill day for Scenario 2 (Table 3-2). Scenario 3 shows that the dam became 

empty for 74 days of the year (Figure 3-10l), while all other scenarios remain above 0.5 m full. 

Therefore, the volume of water extract from the storage for Scenario 4 was 17% less (15 ML 

extracted/year) compared to Scenarios 1 to 3 (18 ML extracted/year). 
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Figure 3-10: Comparison of the small storage (dam) inflows, outflows and water level depth for Scenario 1 (a-c), Scenario 
2 (d-f), Scenario 3 (g-i) and Scenario 4 (j-l). The blue shading represents periods where flow was present and the grey 
shading represents periods when flow was not present in-stream. 
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Table 3-2: Comparison of flow and storage behaviour for the four scenarios 

 Scenario 1 Scenario 2 Scenario 3 Scenario 4 

 SE 
dominated 

SE&GW 
dominated 

GW 
dominated 

GW 
dominated 

with IE 

Annual inflow (ML) 112 140 123 87 

Number of annual inflow days 325 365 257 141 

Annual outflow (ML) 34 40 43 28 

Number of annual outflow days (spill 
days) 

325 365 355 182 

Percentage difference in inflows and 
outflows (%) 

-69 -71 -65 -68 

Percentage difference of flows days 
above and below dam (%) 

0 0 +38 +22.5 

Volume spilled per spill day (ML/day) 0.10  0.11 0.12 0.15 

Day per year dam was at capacity 
(>2.6m) 

173 332 146 77 

Number of days dam was empty (days) 0 0 0 74 

Number of days period year water was 
extracted 

230 230 230 188 

Total volume extract per year (ML) 18  18  18  15  

 

3.5 Conclusions 

This paper has compared four scenarios having very different proportion of runoff generation 

mechanisms (infiltration-excess, saturation excess and groundwater), yet retaining similar 

discharge performance at the outlet (NSE>0.5). Despite having similar NSE’s at the outlet, 

differences were shown in numerous aspects of internal representation, including the spatial 

representation of saturation as well as the behaviour of inflows, outflows and storage levels of a 

small storage. The observed difference in flows for the four scenarios demonstrates the potential 

for hydrological modelling assumptions to arrive at different approaches for managing water 

resources, particularly those relating to environmental and low flows.  

In terms of spatial variability, the results suggest that model parameterization and structures with 

a priori process assumptions (i.e. surface or subsurface flow-dominated) influence the estimation 

of flows throughout a catchment. This is significant because many catchment management 

practices require accurate predictions in both surface and subsurface domains. Examples include: 

increasing or decreasing flow, retarding flows, enhancing recharge and preventing recharge. The 

study showed that there were large differences in the catchment state of including saturation and 

depth to water table across the catchment. These processes influence how both lumped and 

distributed model structures should be developed and parameterized to effectively estimate 

runoff. Commonly applied conceptual models cannot adequately account for these differences in 

mechanism because of aggregation of processes to an outlet, as well as their inability to explicitly 

simulate subsurface flows (Li et al., 2013). 

The influence on local flow pathways was shown to affect surface and subsurface flow volumes in 

and around an in-stream storage. The groundwater dominant scenarios illustrated that there was 

the potential of more than a 20% increase in the number of flow days directly below a storage 

compared to directly above due to subsurface generated runoff. The implication is that the 

representation of processes can be limited by the selection of the model. While process-based 

models are one way to address this challenge, the significant parameterization required for these 
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models mean that challenges remain validating these models at the local scale due to data 

limitations in upstream reaches. Further studies could investigate alternative data sources that 

provide information at the hillslope and on dam volumes (e.g. low-cost sensors, remote sensing, 

crowd sourcing) to augment data from downstream streamflow gauges.  

Further studies could use the results from this investigation as a baseline to determine the 

influence that different volumes and patterns of extraction have on the dynamics of the storage. 

Alternative storage configurations, such as multiple storages in series and parallel can also be 

compared as well as the storage behaviour of in-stream versus off-stream. Research questions 

around the influence that increasing storage density per unit area has on flows upstream and 

downstream using process models is also significant in managing water resources across scales. 

While the example of in-stream storages was used in this study, there are other management 

questions that are influenced at multiple scales, such as changes in upstream land use or changes 

to the characterization of stream intermittency and low flows. 

A possible limitation of this study was the assumption that the coupled HGS model is a realistic 

representation of reality. However, the benefit of physically based models is the ability to 

investigate processes across a wide range of scales, which is not otherwise feasible from empirical 

studies. To address this limitation, additional data could be collected and used to validate 

simulations or potentially eliminate candidate hypotheses. The study was conducted in a small 10 

km2 catchment, and there would be benefit from additional studies over larger regions or different 

catchment types. To better represent alternative runoff mechanisms, flexible model structures 

(Clark et al., 2015) could also be investigated that explicitly represent groundwater flows and 

coupled interactions. 

The results highlight the need for greater attention to process modelling and better 

representation of flow dynamics at the local scale than aggregated models calibrated at an outlet. 

Additionally, the results show that the parameter uncertainty is so large that it allows equifinality 

of the model, where different processes emerged based on the fully integrated model structure 

providing the same downstream model performance. distinction is important for policy planning, 

as many engineering, ecological and water management problems exist at the local scale but can 

have catchment wide implications. With improved representation of hydrological complexity in 

space and time, planning and implementation of environmental water policies can be based on 

more accurate representation of flow stores and fluxes across all relevant scales. 
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Appendix 3-A 

HMC method 

The hydraulic mixing-cell (HMC) method developed by Partington et al. (2011, 2013) allows for 

delineation of simulated runoff mechanisms through an entire catchment. For the purpose of 

delineating runoff mechanisms, any water that enters as rainfall was tracked throughout the 

model domain. In this study, when rainfall enters the model domain during each time-step of the 

simulation, ponded water (water in the rill storage) was identified as either being infiltration 

excess (IE) or saturation excess (SE) (e.g. Gutierrez-Jurado et al., 2020). It was at this point that 

incoming water from boundary conditions (i.e. rainfall) was tagged as either infiltration excess or 

saturation excess water to be further tracked and delineated during simulations. Figure 3-11 

illustrates that to define the ponded fraction of water, the model checks the state of groundwater 

in the cell, at that time step, if the water table was below the surface domain, the ponded water 

was tagged as infiltration excess ponding (i.e. IE-ponding), if the water table was at the surface, 

the ponded water was tagged as saturation excess ponding (i.e. SE-ponding). Tagging of the 

inflowing water within a simulation timestep as IE-ponding or SE-ponding was a local temporary 

tagging to classify the water in the particular inflowing cell only. Any movement of that tagged 

water to an adjacent cell will result in a reassignment of the water to something more meaningful 

with respect to runoff as follows. 

The IE-ponding and SE-ponding fractions were further tracked over each time step and delineated 

as either infiltration (i.e. IE-infiltration and SE-infiltration) or overland flow (IE-overland flow and 

SE-overland flow). If the IE-infiltration and SE-infiltration fractions of water discharge to the 

overland domain after tracking a shallow subsurface pathway, they were delineated as return flow 

(i.e. IE-return flow and SE-return flow). Alternatively, if these fractions of infiltrated water undergo 

deep infiltration, they were delineated as groundwater. Water that was present within the model 

domain at simulation initialization was assumed to be groundwater. All cells in the model were 

defined as subsurface cells, overland cells or channel cells. For ponding that occurs in a cell defined 

as a channel cell, the fraction of water was defined as ‘rainfall direct to channel’. 

 

Figure 3-11: Illustrates soil column of a single cell in the model where (a) shows the tagging of infiltration excess (IE) 
fractions and (b) shows the tagging of saturation excess (SE) fractions. The return flow for IE and SE can re-emerge in 
any downstream cell providing that deep infiltration does not occur, causing the fraction of water to be tagged as 
groundwater. 
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HMC fraction definitions 

The unique fractions used in this study to determine the contributions of different flow generation 

mechanisms to total runoff are defined in Table 3-3.  

Table 3-3: Definitions of the unique fractions tracked in the HMC method that are updated at each time step. 

Flow generation 
mechanism delineated 
fractions 

Unique fraction Definition 

Infiltration excess overland 
flow 

f_IE-OL The fraction of water of infiltration excess 
runoff that is overland runoff 

Saturation excess overland 
flow 

f_SE-OL The fraction of saturation excess runoff 
that is overland runoff 

Infiltration excess 
infiltration 

f_IE-infil The fraction of water of infiltration excess 
ponding that is infiltrated in a cell 

Saturation excess 
infiltration 

f_SE-infil The fraction of water of saturation excess 
ponding that is infiltrated in a cell 

Infiltration excess return 
flow 

f_IE-OL-RF The fraction of water of infiltration excess 
infiltration that re-emerges downstream as 
overland return flow 

Saturation excess return 
flow 

f_SE-OL-RF The fraction of water of saturation excess 
infiltration that re-emerges downstream as 
overland return flow 

Groundwater flow f_GW The fraction of water of groundwater 
discharge 

Rainfall direct to channel f_river_flux The fraction of water that enters a channel 
while ponded 

Initial water f_initial The fraction of water that was present in 
the model domain at the time of simulation 
initialisation. 

 

HMC mathematical formulation 

For each package of water entering the model defined from boundary conditions (e.g. rainfall), 

the water volume is assigned a unique fraction 𝑓 (defined in Table 3-3). For each cell and over 

each time step, fractions assigned to the boundary condition flows (i.e. 𝐵𝐶𝑖𝑛 or 𝐵𝐶𝑜𝑢𝑡), the inflow 

and outflow from subsurface (i.e. 𝑠𝑢𝑏𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑄𝑖𝑛 or 𝑠𝑢𝑏𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑄𝑜𝑢𝑡) and the inflow and 

outflow from neighboring surface cells (i.e. 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟 𝑄𝑖𝑗) are summed for all fractions. The sum 

of all fractions is equal to 1 for an error free fluid mass balance (Figure 3-12). 
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Figure 3-12: For each cell in the model a fluid mass balance is applied to determine the fractions of runoff generation 
mechanisms with the example of a surface cell shown 

The method begins with the conservation of mass equation calculated for each cell: 

 ∆𝑆

∆𝑡
= 𝑄𝑖𝑛 − 𝑄𝑜𝑢𝑡 

 

(1) 

 ∆𝑆 = 𝑄𝑖𝑛∆𝑡 − 𝑄𝑜𝑢𝑡∆𝑡 

 

(2) 

 𝑉𝑁+1 = 𝑉𝑁 + 𝑄𝑖𝑛∆𝑡 − 𝑄𝑜𝑢𝑡∆𝑡 

 

(3) 

where at time step ∆𝑡, the change in storage ∆𝑆 is the sum of all the inflows and outflows, 

𝑄𝑖𝑛 𝑎𝑛𝑑 𝑄𝑜𝑢𝑡. The volume of water storage 𝑉 in a cell for a given time period 𝑁 is determined by 

the addition of the change in storage to the volume of the cell in the previous time step. 

The inflows and outflows for a cell 𝑖 include all the fluxes from neighboring cells 𝑄𝑖𝑗  and 𝑄𝑗𝑖, and 

boundary conditions 𝑄𝐵𝐶 . 

 𝑉𝑁+1 = 𝑉𝑁 + ∑ 𝑄𝑗𝑖∆𝑡

∀𝑗∈𝑛

+ ∑ 𝑄𝐵𝐶𝑖𝑛∆𝑡

∀𝐵𝐶𝑖𝑛

− ∑ 𝑄𝑖𝑗∆𝑡

∀𝑗∈𝑚

− ∑ 𝑄𝐵𝐶𝑜𝑢𝑡∆𝑡

∀𝐵𝐶𝑜𝑢𝑡

 

 

(4) 

 

where 𝑛 denotes the set of inflowing neighboring cells into cell 𝑖 and 𝑚 denotes the set of 

outflows from cell 𝑖 into neighboring cells. The 𝑖𝑗 subscripts denotes the volume into cell 𝑗 

leaving cell 𝑖 and subscript 𝑗𝑖 denotes the volume of neighbor cell 𝑗 into cell 𝑖.  

Applying the modified mixing-cell approach of Campana and Simpson (1984), each fraction 𝑓 for 

the runoff generation mechanism 𝑘 in cell 𝑖 is calculated as: 

𝑓𝑖(𝑘)
𝑁+1𝑉𝑁+1 = 𝑓𝑖(𝑘)

𝑁 𝑉𝑁 + ∑ 𝑄𝑗𝑖∆𝑡

∀𝑗∈𝑛

𝑓𝑗(𝑘)
𝑁 + ∑ 𝑄𝐵𝐶𝑖𝑛∆𝑡

∀𝐵𝐶𝑖𝑛

− 𝑓𝑖(𝑘)
𝑁 ∑ 𝑄𝑖𝑗∆𝑡

∀𝑗∈𝑚

− 𝑓𝑖(𝑘)
𝑁 ∑ 𝑄𝐵𝐶𝑜𝑢𝑡∆𝑡

∀𝐵𝐶𝑜𝑢𝑡

 

 

(5) 
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where 𝑓𝑖(𝑘)
𝑁  denotes fraction 𝑘 at time 𝑁 in the cell 𝑖 and 𝑓𝑗(𝑘)

𝑁  in the neighboring cell 𝑗. The 

superscript of the volume 𝑉 denotes the time state.  

The volume 𝑉 of water for the current time step 𝑁 + 1 is calculated by summing the volume of 

the cell in the previous times step, denoted as 𝑉𝑁 and the inflow and outflow volumes from 

neighboring cells 𝑉𝑗𝑖
𝑛+1 and 𝑉𝑖𝑗

𝑛+1 and the inflows and outflows from the boundary 

conditions 𝑉𝐵𝐶
𝑛+1. 

 𝑉𝑁+1 = 𝑉𝑁 + 𝑉𝐵𝐶𝑖𝑛
𝑁+1 + 𝑉𝑗𝑖

𝑁+1 − 𝑉𝑖𝑗
𝑁+1 − 𝑉𝐵𝐶𝑜𝑢𝑡

𝑁+1  

 

(6) 

 

Therefore, for any given fraction, 𝑓𝑖(𝑘)
𝑁+1 is calculated as: 

 
𝑓𝑖(𝑘)

𝑁+1 =
𝑓𝑖(𝑘)

𝑁 𝑉𝑁

𝑉𝑁+1
+

∑ 𝑄𝑗𝑖∆𝑡∀𝑗∈𝑛 𝑓
𝑗(𝑘)
𝑁

𝑉𝑁+1
+

∑ 𝑄𝐵𝐶𝑖𝑛∆𝑡∀𝐵𝐶𝑖𝑛

𝑉𝑁+1

− 𝑓𝑖(𝑘)
𝑁 (

∑ 𝑄𝑖𝑗∆𝑡∀𝑗∈𝑚

𝑉𝑁+1
+

∑ 𝑄𝐵𝐶𝑜𝑢𝑡∆𝑡∀𝐵𝐶𝑜𝑢𝑡

𝑉𝑁+1
) 

 

(7) 
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Abstract 

Calibrating physically-based hydrological models is difficult due to the significant heterogeneity of 

many catchments, leading to complex non-linear dynamics across nested spatial and temporal 

scales. Without sufficient data it can be difficult to resolve this multi-scale variability, and/or 

distinguish between multiple competing hypotheses of runoff generation. Beyond conventional 

streamflow measurements, inexpensive data collection methods can provide valuable ancillary 

data that can be used to constrain model parameters and allow the model to more faithfully 

represent key hydrological processes. The value of additional data was demonstrated on a case 

study catchment in South Australia. A multi-hypothesis framework was adopted where initially 

four candidate calibrations of the physically based model HydroGeoSphere—each representing a 

different conceptualization of runoff but with reasonable performance at the catchment outlet—

were identified. When evaluated at nine upstream sites, it was shown that no single candidate 

calibration performed consistently well. The results were compared with a locally calibrated 

model that also incorporated additional upstream information on binary ‘wet’-‘dry’ (flowing-not 

flowing) state using low-cost temperature sensors. The outcomes were that eight out of nine sites 

showed significant improvement in performance, with only a small deterioration to the calibration 

results at the outlet. These results highlight that as sensing and communications technologies 

continue to improve, there will be increasing opportunities to use information sources such as 

local-scale intermittency to supplement reliable streamflow records for representing hydrological 

processes across scales. With improved model performance there can be many benefits of getting 

the internal processes right, such as: simulating conditions that are outside a calibration period or 

infilling and completing data sets. 
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4.1 Introduction 

Water management decisions such as those related to environmental flows, water quality, land 

use and dispersed water stores often require information on hydrological processes throughout a 

catchment, not just at scales that are routinely measured using streamflow gauging’s. Accurate 

representation of hydrological processes across multiple scales is critically important for local 

scale water resource problems that can have cascading implications across the catchment, from 

local reaches and hillslopes through to more flows further downstream. Because physically based 

models explicitly solve the fundamental equation of water movement overland and through soils, 

they are in theory able to represent processes across multiple scales. However, data scarcity 

means that in practice they are often limited in their capacity to identify parameters at all 

locations. The outcome is that although these models can be calibrated to streamflow at a 

particular gauge, the dynamics upstream responsible for streamflow generation may not be 

correctly represented (Gaukroger and Werner, 2011; Li et al., 2015; Wellen et al., 2015). One 

option to remedy this issue is to collect additional data or exploit data already available but under-

utilized. Such data need not be of the same nature as traditional long-term sources such as 

continuous streamflow measurements at the outlet, but can be collected for a limited time from 

low-cost sensors.  

Physically based models have the potential to add a lot of value because they are able to represent 

heterogeneous processes with variations at all scales influencing flow pathways and runoff 

production due to characteristics such as catchment size, slope, topography, soil and vegetation 

features (Mirus & Loague, 2013). However, physically based models are limited in their ability to 

deal with heterogeneity due to the ‘curse’ of dimensionality and the impossibility of parameter 

calibrations (Beven, 1989). This is because catchment-scale models only have a partial view of the 

physical processes and miss essential characteristics of the functioning of the catchment that is 

influenced by small scale complexity, non-stationarity and non-linearity of water stores and fluxes 

(Soulsby et al., 2015; Blumstock et al., 2015; Kirchner, 2006). For example, ecohydrological 

understanding of network intermittency, which shapes local and catchment-wide aquatic 

ecosystems (Larned et al., 2010). Similarly, understanding the generation of sediment and 

associated water quality issues requires multiscale process knowledge, where factors controlling 

runoff generation and associated sediment transport vary according to the spatial scale (Inoubli 

et al., 2017). The representation of these flow patterns remains a challenge because many 

numerical parameters cannot be adequately measured, with complex models having high 

uncertainty and prone to equifinality (Beven, 1993). 

The scarcity of data at sites distributed throughout a catchment, let alone the vast number of 

ungauged catchments, causes significant uncertainty in the representation of hydrological 

processes. In order for physically based models to capture catchment heterogeneity, they need 

local scale data. Some datasets such as high resolution topography using lidar (Brubaker et al., 

2013; Thomas et al., 2017), or other spatial data such as vegetation (Brubaker et al., 2014; Chance 

et al., 2016) now are commonly available, but datasets that reflect catchment fluxes (e.g. flows) 

are still not available at an appropriate scale. For example, stream flow intermittency is rarely 

observed or measured on headwater reaches (typically first to third order streams) despite their 

ecological importance in many arid and semi-arid environments (Larned et al., 2010).  

Recent technological advances present opportunities to strategically collect additional data using 

increasingly cost effective means enabling high-density and widespread environmental data 

collection. For example, low-cost environmental sensors (Lovett et al., 2007; Ruiz-Garcia et al., 



 
 

103 
 

2009; Wickert et al., 2018) and citizen science data (Turner et al., 2011; Le Coz et al., 2016; David 

et al., 2018), while often less accurate, have the potential to improve model calibration. This data 

is complementary to existing high-quality data sources such as gauged records, and thus 

calibration methods are that balance the relative strengths of the alternative data sources are 

likely to outperform those that rely on a single data source in isolation. This is especially important 

for representation in headwaters where data scarcity is more pronounced.  

While there is a clear imperative and opportunities for additional data, there is a strong parallel 

need to improve calibration methods to manage and exploit all available data. A significant 

challenge is the demonstration of multi-objective and multi-site calibration methods that can 

account for trade-offs between overall catchment performance and local biases, since improved 

spatial representation can risk a deterioration of performance at the outlet. Techniques for 

efficient optimization are important given the computational demand of many models and the 

potential burden of managing increased volumes of data within calibration. The provenance and 

quality of data is an important consideration, especially when there are multiple sources, and the 

errors, biases and level of uncertainty in each source can have a significant impact on the 

calibration process.  

To avoid unwanted effects of equifinality and to fully utilize additional data requires the 

application and improvement to methods for multi-site calibration. To this end, this study seeks 

to demonstrate the extent to which data collected in a headwater catchment, in particular low-

cost intermittent data, can be applied to improve model calibration. The specific objectives were: 

1. To quantify the upstream performance of multiple candidate calibrations based on an 
outlet-only calibration method; 

2. To illustrate a multi-site calibration method for a physically based model that utilizes 
additional collected data to improve the representation of upstream physical flow 
processes; and 

3. To compare the performance of the outlet-only and multi-site calibrated models. 

To achieve these aims a numerical modelling study of a 10 km2 South Australian catchment was 

used where a two year data collection campaign had provided daily ‘wet’-‘dry’ binary 

classifications of stream-flow intermittency at multiple locations (Section 4.2). Here, the data’s 

usefulness was evaluated by complementing outlet flow measurements and constraining a 

model’s solution space in order to identify a more representative model configuration. The fully 

integrated hydrological model, HydroGeoSphere, was selected to simulate flow processes and was 

calibrated to multiple upstream sites while preserving the Nash-Sutcliffe coefficient at the outlet 

(Section 4.3). The results are used to illustrate the potential benefit of additional data for process 

understanding (Section 4.4). Discussion and implications of the comparison are outlined along 

with conclusions of the study (Section 4.5).  

4.2 Case study and data 

4.2.1 Catchment characteristics  

A Mediterranean headwater catchment located in South Australia was selected to assess the 

usefulness of additional data for more accurate representation of hydrological processes (Figure 

4-1). The catchment, approximately 10 km2 in size, has three main tributaries with a total length 

of approximately 5 km and with vegetated areas that cover a large proportion of two of the 

tributaries. The elevation ranges from 175 m to 420 m above sea level and contains mainly 

fractured rock aquifers with a shallow to moderately thick topsoil layer of acidic, sandy loam soils. 
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The reaches range from first- to fourth-order streams and flow mostly in the winter/spring 

months, with limited or no flow in the summer and autumn. Based on fieldtrips and interviews 

with landowners, it was qualitatively known that some sites have significant recharge while other 

sites retain a permanent trickle due to fractured rock prominent in the area. The wider region is 

an important water resource to local properties for domestic water use, irrigation of crops and 

stock as well as providing water for environmental purposes, with environmentally significant 

assets such as Fleurieu Peninsula swamps and numerous pools/springs located downstream.  

The catchment contains shallow soils with acidic loam over clay on rock. The vegetated area is 

40%, with closed and open woody trees, with the remaining catchment covered with grass (8%), 

pastures (50%) and sparse woody trees (2%). A majority of woody trees have a root depth of at 

least 2 m (Canadell et al., 1996) with native tree of the area (e.g. Banksia) growing as much as 2.4 

m (Specht and Rayson, 1957) and Eucalyptus growing more than 15 m in depth (Kimber, 1974). 

The average slope in the catchment is 5.8% and two of the main tributaries have an average slope 

of 6% or greater due to the steepness around the top boundary. The average channel slope ranges 

between 2% and 4%. 

 

Figure 4-1: The case study is located in (a) South Australia, South East of Adelaide with 10 sites instrumented within the 
catchments three main tributaries and outlet. The 10 km2 headwater catchment contains (b) loam and clay soil 
parameters and is (c) partially vegetated. 

4.2.2 Meteorological data 

Rainfall and potential evapotranspiration data were obtained from the nearest weather station, 

20 km southeast of the catchment. Given the small catchment size, the climatic data were 

assumed to be uniform over the catchment. A two-year period from March 2017 to March 2019 

was selected for analysis, where the first year was used for calibration and the second for 

evaluation. This period was selected as it corresponds to a field campaign of data collection 

(Makarewicz et al., 2020a). The average rainfall over the period was 780 mm/year rain and 
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1800 mm/year average potential evapotranspiration. The region is highly seasonal with hot dry 

summers, and while large rainfall events are possible, in summer there is negligible flow at most 

sites, other than immediately following rainfall events. The majority of the rainfall arrives in the 

winter months, and the highest flows occur during the spring period.  

4.2.3 Discharge and intermittency data  

There were seven upstream sites and the outlet within the catchment with a majority of sites 

containing two years of continuous measurements between 01/03/2017 to 01/3/2019 (Figure 

4-1a). Additional sites S010 and S011 each contain one year of data, available for the second year 

of the simulation period. Discharge data was available for sites S001, S003 and S006 (the outlet). 

Additional data (binary ‘wet’-‘dry’ classifications) was available for sites S004, S005, S008, S010 

and S011.  

Data was collected using low-cost temperature sensors installed on streambeds to determine 

when a stream was flowing (‘wet’) or not flowing (‘dry’). The observations were previously 

classified using a two-state hidden Markov model to derive a time series of binary ‘wet’-‘dry’ 

values, with a 92% classification accuracy (Makarewicz et al., 2020a). The emphasis of the data 

collection was to use low-cost techniques, with the trade-off that flow magnitude was not 

available for calibrating the model. 

4.2.4 Calibration and evaluation time-series 

To calibrate and evaluate simulations, two years of observations (01/03/2017 to 01/3/2019) were 

used in the study. Two types of data were applied: discharge data and additional binary ‘wet’ – 

‘dry’ classifications. The calibration strategy was designed such that both temporal and spatial 

performance of simulations were evaluated. A total of five sites were used for model calibration. 

This comprised four upstream sites that contained information on binary classifications (S001, 

S004, S005 and S008). This data was split with the first year used for calibration (01/03/2017 to 

01/3/2018) and the second year reserved for evaluation (01/03/2018 to 01/3/2019). 

To evaluate how effectively the use of only binary data upstream is at estimated flow volumes, 

discharge data available upstream (i.e. S001 and S003) was used exclusively for evaluation. 

Additionally, binary classification as sites S003, S010 and S011 were reserved exclusively for model 

evaluation to determine the spatial performance of the simulations. A detailed list and summary 

of data used for model calibration and evaluation is illustrated in Table 4-1. 

Table 4-1: Description of data available for each site and the calibration and evaluation periods applied to analysis 

Site Data Type Calibration range Evaluation range 

Outlet (S006) Discharge March 2017-March 2018 March 2018-March 2019 

Outlet (S006) Binary March 2017-March 2018 March 2018-March 2019 

S001 Binary March 2017-March 2018 March 2018-March 2019 

S001 Discharge  - March 2017-March 2019 

S002 Binary March 2017-March 2018 March 2018-March 2019 

S003 Binary - March 2017-March 2019 

S003 Discharge  - March 2017-March 2019 

S004 Binary March 2017-March 2018 March 2018-March 2019 

S005 Binary March 2017-March 2018 March 2018-March 2019 

S008 Binary March 2017-March 2018 March 2018-March 2019 

S010 Binary - March 2018-March 2019 

S011 Binary - March 2018-March 2019 
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4.3 Methodology 

4.3.1 Model parameterisation 

HydroGeoSphere (HGS) (Therrien et al., 2009) is a fully integrated surface-subsurface model that 

can simulate surface and subsurface flows at high spatial and temporal resolutions. HGS simulates 

3D variably saturated subsurface flow using a modified Richards’ equation, and 2D surface flow 

(Brunner et al., 2012) using the diffusion wave approximation to the Saint Venant equations. HGS 

solves all governing flow equations simultaneously to simulate surface and groundwater flows to 

the stream as a function of the catchment physical characteristics and hydrological inputs. The 

equations were solved using a control-volume finite element method with Newton-Raphson 

linearization.  

The model domain was discretised as an irregular triangular mesh to simulate small-scale runoff 

in and around the channels. The element lengths range from 250m at the outer boundary to 25m 

in and around the catchment streams. The spatial discretization of the modelled domain was 

represented with 12,015 elements and 6,115 nodes (Figure 4-2). In the z-direction the model 

domain consists of seven layers with a discretization of 0.6 m for the top 3.0 m. Beneath the top 

3.0 m, the soil extends a further 5.0 m to 24.0 m below the surface to represent the characteristics 

of the area, with greatest depths at the boundary and linearly becoming shallower towards the 

outlet. The outlet was set as the critical depth boundary and a no-flow boundary was fixed for the 

bottom and lateral subsurface domain (i.e. water can only leave the model domain through a 

critical depth boundary at the outlet). The model simulation uses sub-daily adaptive time steps.  

The vegetation and evapotranspiration parameters were zonally applied using vegetation zones 

shown in Figure 4-1c. These parameters were grouped into two categories, (1) vegetated area and 

(2) cleared area (Figure 4-2). The vegetated areas correspond to locations where closed and open 

woody trees are located within the catchment. The remaining catchment area contains grass and 

pastures and was categorized as cleared. The selected root and evapo-transpiration depth for the 

vegetated and clear areas are 3.5 m and 0.2 m based on the type of vegetation present in the 

catchment (discussed in Section 4.2.1). The overland properties were adopted from Panday and 

Huyakorn (2004), with the exception of the channel Manning’s roughness coefficient. The rill 

storage, which provides a threshold of flow, was set as 1.0 mm and the overland Manning’s 

roughness was set as 0.15 s/m1/3. The channel roughness parameter was set to 0.05 s/m1/3 which 

is typical for a natural channel, with light vegetation and pools.  
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Figure 4-2: (a) Modelled catchment geometry and discretization showing smaller elements located in the channels with 
numbers 1-3 indicating the three main tributaries. (b) Simulated overland flow channels (grey lines) and ponded water 
in the catchment (blue shading). 

4.3.2 Outlet-only model calibration and evaluation 

To investigate the performance of multiple conceptual models (i.e. different parameterizations 

that can represent different process conceptualizations of the system) based on an outlet-only 

calibration, four alternative calibrations were applied. The four parameterisations, here referred 

to as ‘Scenarios’, were previously demonstrated to achieve a Nash-Sutcliffe efficiency coefficient 

of 0.5 at the outlet while having different process representations on the hillslope (Makarewicz et 

al., 2020b), comprising different proportions of saturation excess, infiltration excess and 

groundwater runoff. This led to the following parameterisations:  

• Scenario 1 was dominated with saturation excess runoff and contains groundwater;  

• Scenario 2 was dominated by both saturation excess and groundwater runoff;  

• Scenario 3 was dominated by groundwater runoff and contains saturation excess runoff; and  

• Scenario 4 was dominated by groundwater runoff and contains both infiltration excess and 
saturation excess runoff (outlined in Appendix 4-A).  

See Makarewicz et al. (2020b) for further details on the model parameterization and calibration 

process. 

4.3.3 Multi-site model calibration and evaluation 

To demonstrate the influence of additional ‘wet’-‘dry’ binary data on the calibration performance 

and flow representation of upstream reaches, the catchment was divided into five sub-

catchments. The outlets of the sub-catchments each correspond to the sites used for calibration: 

S001, S004, S005, S008 and the overall catchment outlet (see Section 4.2.1). Figure 4-3 illustrates 

the method for calibration to multiple sites, and comprises nine steps and two iteration points. 

Step 1: Determine which parameters should remain ‘fixed’ and which parameters should be 

‘varied’: This decision was based on previous work (Makarewicz et al., 2020b) and all parameters 

were fixed except for the soil characteristics (i.e. lateral and vertical hydraulic conductivity. 

Catchment characteristics such as vegetation parameters were ‘fixed’ on estimated based on 

available data as outlined in Section 4.2.2, and were not modified during model calibration. 
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Step 2: Identify initial values and bounds for the calibration parameters: The lateral (𝐾 𝑥𝑦
𝑖 ) and 

vertical (𝐾𝑧
𝑖) hydraulic soil conductivity were identified as the two key parameters for calibration 

in each sub-catchment since they strongly influence runoff response (Mirus & Loague, 2013). To 

reflect the realistic conditions in the catchment, the bounds on parameter values were based on 

soil properties ranging from clay to sandy loam (Puhlmann et al., 2009). The initial soil properties 

for each sub-catchment were based on the preferred values from modelling conducted for outlet-

only calibration (Makarewicz et al., 2020b). 

Step 3: Spin-up model with selected parameters until dynamic equilibrium is reach: For physically 

based models a long spin-up is generally required to allow the initial and boundary conditions to 

run forward and stabilize. In this case, a 20 year period was selected and initialized with soil 

properties with the preferred values. The spin-up contained observed climate data for the region 

(1985-2005) and was used to allow for the water table to adjust to the soil properties applied for 

each sub-catchment. Whenever the soil properties were altered during calibration, the model 

required an additional spin up period to allow for some adjustment of the subsurface state. A one 

year spin-up period was used due to the similarity of soil hydraulic conductivities and simulation 

time restrictions. 

Step 4 to Step 8: Calibrate parameters for each sub-catchment:  A single model evaluation for sub-

catchment i (i =1 to 5 sub-catchments) proceeds by specifying an instance of the two hydraulic 

conductivity parameter values (all other parameters fixed). A grid-based search was used where 

the range of each parameter was discretised into 10 points uniformly between bounds. Given 

there were two parameters to calibrate, this results in 100 parameter combinations to evaluate. 

For each of the 100 simulations, streamflow intermittency was calculated for comparison to 

observed streamflow intermittency. An objective function was used to determine the best 

performing parameter combinations from the 100 instances. An evaluation was made whether 

the identified region has suitably converged based on the performance criteria outlined in the 

next section (Section 3.4). When the parameter range has not converged, subsequent iterations 

of the grid-search were performed by selecting the best performing subdomain of the parameter 

space and further discretising that region. Once a parameter set for a sub-catchment was 

calibrated, they were ‘fixed’ for all remaining calibration runs. 

Step 9: Evaluate the model: The second year of the final simulation was used solely for 

performance evaluation (Table 4-1). The selected parameters for the model calibrated to multiple 

sites are presented in Table 4-2. While a higher hydraulic conductivity in the vertical than 

horizontal direction is uncommon, this feature was plausible for the region given the clayey 

shallow soils common in the study area, since vertical cracking, due to drying, would allow for 

rapid vertical flow. 

All simulations were conducted on a High-Performance Computer (HPC). The approximate 

runtime for a two year simulation was approximately 48-72 hours and was dependent on soil 

properties being simulated. The simulations required for calibration comprised 100 parameter 

combinations multiplied by several grid search iterations for each sub-catchment, and took 

approximately 3000 days of CPU time. 
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Figure 4-3: Flow chart illustrating method for the calibration and evaluation of the model to multiple sites 
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Table 4-2: Model parameters used to represent the catchment physical characteristics and the soil parameters applied 
to each sub-catchment. 

Parameter  Value 

Porous media (soil)  

 S001 S004 S005 S008 Outlet 

  Lateral hydraulic conductivity (m/s) 4.6x10-6 4.6x10-6 5.0x10-7 4.5x10-5 4.6x10-5 

  Vertical hydraulic conductivity (m/s) 8.4x10-6 8.4x10-6 1.3x10-5 4.7x10-5 8.4x10-5 

Evapotranspiration  

  Vegetated area Evaporation depth (m) 3.5  

  Cleared area Evaporation depth (m) 0.2 

  Vegetated area Root depth (m) 3.5 

  Cleared area Root depth (m) 0.2 

  Vegetated area Canopy storage (mm) 0.5 

  Cleared area Canopy storage (mm) 0.0 

  Vegetated area Initial interception 
(mm) 

0.5 

  Cleared area Initial interception (mm) 0.0 

Overland  

  Rill storage height (mm) 1.0 

  Obstruction storage height (mm) 0.0 

  x and y friction (s/m1/3) 0.05  

Channel 

  Rill storage height (mm) 1.0 

  Obstruction storage height (mm) 0.0 

  x and y friction 0.15 

 

4.3.4 Quantification of model performance with binary observations, censored 

simulations and discharge  

To evaluate the calibrated simulations, five metrics of model performance were used. The five 
performance metrics were applied depending on whether the comparison data corresponded to 
the binary streamflow state or to the combined streamflow state and magnitude (Table 4-3). 

• The Nash-Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970) provides an overall measure of 
the goodness of fit for discharge data. The minimum criteria of performance for the NSE was 
set to be 0.5, based on typical performance of several previous studies applying HGS 
(Partington et al., 2013; Li et al., 2015; Glaser et al., 2016; Tang et al., 2017). 

• The correlation coefficient provides a measure of the strength of relationship between the 
observed and simulated discharge values. The minimum performance criteria applied for 
calculations of the correlation coefficient was defined as 0.65. 

• The bias in flow volume was used to determine whether simulations over- or under- estimated 
total discharge. The maximum bias in flow volume was defined as 15%. 

• Bias in number of flow days was defined as the percentage of days within a year where there 
is flow present in a streambed (e.g. number of flow days divided by 365), and was selected to 
determine the effectiveness of simulated total flow days. The maximum criteria for the 
calculated bias in flow days (using binary data) was 15% . 
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• The percentage matching observations was defined at the count of days that observed and 
simulated flow classifications (wet-dry) match. The minimum criteria for the percentage 
matching observations was defined as greater than or equal to 80%.  

The bias in simulated flow permanence and percentage matching binary observations 

performance metrics all depend on the simulated streamflow dry/wet state, but this can be 

sensitive to the definition of zero flows. Therefore, to determine the simulated streamflow 

intermittency, the simulated discharge data was censored using flow thresholds. The thresholds 

were defined for each monitoring location using Manning’s equation with inputs of the sensor 

height above the streambed, the channel cross-section and the average slope of the channel (see 

Supplementary material). The flow threshold values are kept constant for all performance 

comparisons (Step 6, Figure 4-3). To benchmark the model calibrations across multiple locations 

within the catchment, the four alternative scenarios representing plausible yet differing runoff 

generation mechanisms were evaluated (see Section 4.3.2).  

Table 4-3: Description of performance measures used to evaluation model simulations. 

Performance measure Data type Definition Accepted 
performance 

criteria 

Daily Nash-Sutcliffe 
efficiency coefficient 

Continuous 
 𝑁𝑆𝐸 = 1 −

∑ (𝑄𝑚𝑡
− 𝑄𝑜𝑡

)
2𝑇

𝑡=1

∑ (𝑄𝑜𝑡
− 𝑄𝑜

̅̅̅̅ )
2𝑇

𝑡=1

 

where 𝑄𝑚𝑡
is the modelled flow at time, 𝑡, 

𝑄𝑜𝑡
is the observed flow at time, 𝑡, and 𝑄𝑜

̅̅̅̅  is 

the mean of the observed data over the 
total time period, 𝑇.  

 
𝑁𝑆𝐸 ≥ 0.5 

Correlation coefficient Continuous 
 

𝑟 =
𝜎𝑠𝑖𝑚,𝑜𝑏𝑠

𝜎𝑠𝑖𝑚𝜎𝑜𝑏𝑠

 

where 𝜎𝑠𝑖𝑚,𝑜𝑏𝑠 is the covariance of the 

binary or flow data, 𝜎𝑠𝑖𝑚  is the standard 
deviation of the binary or flow simulations 
and 𝜎𝑜𝑏𝑠 is the standard deviation of the 
binary classifications or flow of the 
observations. 

 
𝑟 ≥ 0.65 

Bias in flow volume  Continuous 𝑏𝑖𝑎𝑠 =
∑ (𝑄𝑚,𝑡−𝑄𝑜,𝑡)𝑇

𝑡=1

∑ 𝑄𝑜,𝑡
𝑛
𝑖

 *100 

where 𝑄𝑚,𝑡is the modelled flow at time 𝑡, 

𝑄𝑜,𝑡is the observed flow at time 𝑡, and the 

total time period is 𝑇. 

 
𝑏𝑖𝑎𝑠 ≤ 15% 

Bias in number of flow 
days 

Binary 
𝑏𝑖𝑎𝑠 =

∑ (𝑆𝑚,𝑡
𝑏𝑖𝑛𝑎𝑟𝑦

− 𝑆𝑜,𝑡
𝑏𝑖𝑛𝑎𝑟𝑦

)𝑇
𝑡=1

𝑆𝑜,𝑡
𝑏𝑖𝑛𝑎𝑟𝑦

 

where 𝑆𝑚,𝑡
𝑏𝑖𝑛𝑎𝑟𝑦

is the simulated flow 

censored for the binary state, no-flow = 0 

and flowing = 1, 𝑆𝑜,𝑡
𝑏𝑖𝑛𝑎𝑟𝑦

 is the observed 

time-series of intermittent (binary) flow. 

 
𝑏𝑖𝑎𝑠 ≤ 15% 

Percentage matching 
binary observations 

Binary 
%𝑚𝑎𝑡𝑐ℎ =

∑ 𝑆𝑚,𝑡
𝑏𝑖𝑛𝑎𝑟𝑦

 𝑖𝑛 𝑆𝑜,𝑡
𝑏𝑖𝑛𝑎𝑟𝑦𝑇

𝑡=1

𝑇
*100 

where 𝑆𝑚,𝑡
𝑏𝑖𝑛𝑎𝑟𝑦

 is the simulated flow 

censored and classified in binary form, no-

flow = 0 and flowing = 1, 𝑆𝑜,𝑡
𝑏𝑖𝑛𝑎𝑟𝑦

 is the 

observed time-series of intermittent 
(binary) flow and T is the total length of the 
series. 

 
%𝑚𝑎𝑡𝑐ℎ ≥ 80% 
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4.4 Results and discussion 

4.4.1 Upstream site performance of outlet-only model calibrations 

To determine effectiveness of the simulated upstream dynamics for the four scenarios calibrated 

at the catchment outlet, performance metrics were calculated both at the outlet and at the 

upstream sites (Table 4-4). The results show there was no single simulated scenario that performs 

well at all upstream sites. In particular, each scenario outperforms the other scenarios for at least 

a single site, highlighting that no single scenario can be removed based on it being inferior to the 

other scenarios at all the sites. For instance, Scenario 4 shows relatively high performance metrics 

at site S005 and low performance at site S004, whereas Scenario 2 shows relatively high 

performance at site S004 and low performance at site S005. The percentage matching binary 

observations for simulated flow at the outlet ranged between 14% and 89%. Of the 25 metrics 

calculated across the sites, the best performing was Scenario 2 with 52% of calculated metrics 

passing the specified criteria. 

Table 4-4: Comparison of calculated performance metrics for four scenarios conditioned to the outlet. The yellow boxes 
indicate metrics that pass the criteria. 

  Scenario 1 Scenario 2 Scenario 3 Scenario 4 

 Outlet Performance 

1 NSE  0.52,0.32 0.54,0.48 0.62,0.29 0.69,0.15 

2 Correlation coefficient  0.74,0.70 0.71,0.77 0.74,0.70 0.80,0.68 

3 Total flow volume bias (%) 45 -4 -33 -46 

4 Percentage matching binary observation (%) 89 22 14 72 

5 Number of flow days bias (%) 11 87 89 -55 

 S001 

6 NSE  0.28, -0.90 0.27,0.24 0.31, -0.83 0.34, -0.48 

7 Correlation coefficient  0.71,0.64 0.67,0.70 0.71,0.64 0.77,0.45 

8 Total flow volume bias (%) -24 -57 -70 -75 

9 Percentage matching binary observation (%) 88 91 89 45 

10 Number of flow days bias (%) 28 11 28 46 

 S003 

11 NSE  0.29, -0.77 0.33, -0.06 0.27, -0.90 -0.23, -0.30 

12 Correlation coefficient  0.79,0.74 0.68,0.76 0.79,0.74 0.79,0.66 

13 Total flow volume bias (%) 60 -3 -32 -43 

14 Percentage matching binary observation (%) 81 92 81 56 

15 Number of flow days bias (%) 20 24 13 -56 

 S004 

16 Percentage matching binary observation (%) 80 82 80 76 

17 Number of flow days bias (%) 50 -3 54 -21 

 S005 

18 Percentage matching binary observation (%) 66 75 66 90 

19 Number of flow days bias (%) 228 139 178 11 

 S008 

20 Percentage matching binary observation (%) 76 77 76 66 

21 Number of flow days bias (%) 24 51 24 -45 

 S010 

22 Percentage matching binary observation (%) 77 83 38 66 

23 Number of flow days bias (%) 37 26 26 -54 

 S011 

24 Percentage matching binary observation (%) 71 80 79 40 

25 Number of flow days bias (%) -54 34 39 36 

 Percentage of metrics passing criteria 35% 52% 32% 24% 
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4.4.2 Upstream site performance of multi-site calibration 

Whereas the previous section described the upstream performance of four alternative scenarios 

that were calibrated to the catchment outlet, we now explore the performance of a the multi-site 

calibration that included the additional streamflow intermittency information using the approach 

described in Figure 4-3. Figure 4-4 shows the simulated versus observed ‘wet’-‘dry’ flow patterns 

across both the calibration and evaluation periods. Despite some discrepancy at sites S004 and 

S005, the multi-site calibration was able to achieve the objective of significantly improving the 

metric for the timing of flow onset and secession. At site S001 (reach 1) intermittent-flow was 

shown to begin in early March 2017 with flow becoming continuous in June 2017. Similarly, for 

site S004, located on reach 1 and upstream of site S001, intermittent-flow becomes continuous in 

June 2017. Sites S001 and S004 both recede in early to mid-September. Site S005 (upstream of 

reach 2) is a relatively steep intermittent channel with dense vegetation located upstream and at 

the site of sensor deployment. The stream becomes continuous in mid- July 2017 in response to 

large rainfall events and recedes in mid- September 2017 similar to sites S001 and S004. 

There were many obvious differences between the sites, for example S004 and S005 have only 

33% and 27% ‘wet’ days respectively, while sites S010 and S011 nearer the outlet have much more 

permanent flow of 60% ‘wet’ days. Figure 4-4 shows that, overall, the onset and period of 

permanent flow was reproduced well and the high degree of variation between sites was well 

represented in the model. This was not otherwise the case when the model was calibrated only 

at the outlet and therefore had the same parameters for all sub-catchments. The use of binary 

data provides significant improvement to the representation of the permanent flow period at the 

upstream sites. Some sites, notably S004 and S005, show differences in the scattered days of flow.  
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Figure 4-4 Comparison of binary simulations to observed intermittent flow, showing improved representation of ‘wet’-
‘dry’ patterns across all site, where the blue shading represents periods on flow. Site S010 and S011 contain only one 
year of observations, the first year which does not contain data is shown as grey. 

Figure 4-5 shows the percentage of days that the simulated binary data matches observed binary 

classification for the calibration and evaluation period, and demonstrates significant 

improvements in the capacity of the multi-site calibration to represent upstream processes. In 

particular, Figure 4-5 shows that the percentage of matching states exceeds 80% during the 

calibration and evaluation periods for all sites. In contrast, the outlet-only calibrations showed 

results ranging between 14% and 92%, with no single scenario producing percentage of simulated 

binary data matches observations results that exceed 80% across all sites (Table 4-4). The best 

performing site was S003 (the outlet for tributary 1 and 2), where the percentage matching was 
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88% with only a small decrease in performance during the evaluation period (87%). Sites S010 and 

S011, which were reserved exclusively for spatial evaluation, also performed well with percentage 

matching binary observations of 85% and 83%. 

 

Figure 4-5: Percentage matching binary observations for the calibration and evaluation period for the multi-site 
conditioned simulation. Sites S010 and S011 were reserved exclusively for evaluations of performance across the 
catchment. The coloured markers compare the percentage matching binary observations for the four scenarios over a 
two year period. 

The remaining performance metrics were calculated and presented for each location in Table 4-

5. The table shows that performance had significantly improved at upstream sites when compared 

to the outlet-only calibration. For example, the outlet-only calibration had a correlation coefficient 

ranging from 0.36 to 0.76 across all sites (Table 4-4), whereas the multi-site calibration had 0.61 

to 0.79 across all sites (Table 4-5). A comparison of binary and non-binary performance metrics 

also shows there’s a trade-off between calibrating to intermittency and getting volumes right, in 

that, while stream flow intermittency maybe be well represented, discharge volumes may be less 

accurately represented. For example, site S001 flow data (which was reserved for evaluation) 

shows that there was a negative bias of 50% over the two year period, underestimating the total 

flow.  



 
 

116 
 

Table 4-5: Comparison of multi-site simulated results to the observed data for each site are illustrated 

Site Outlet S001 S003 S004 S005 S008 S010
* 

S011
* 

Performance measures 

r  0.75,0.77 0.74,0.70 -0.59, -0.52 - - - - - 

NSE  0.50,0.49 0.54,0.32 -0.08, -0.13 - - - - - 

Observe zero flow days 130 105 86 248 290 160 119 143 

Simulated zero flow days 104 141 79 244 262 178 145 149 

Error in zero flow days (%) -20 35.5 -11.6 -1.6 -9.7 11.2 21.8 4.0 

Number of flow days bias 
(%) 

11.6 -14.2 2.4 2.9 34.9 -9.0 -10.9 -2.6 

Flow volume bias (%) 1.5 -50 -12 - - - - - 

Simulated flow characteristics 

Simulated flow volume 614 132 300 203 103 203 322 285 

Q20 (high flow threshold) 
[Simulated] (ML/d) 

2.15  0.47  1.07  0.24  0.33  0.73  1.14  1.01  

Q20 (high flow threshold) 
[Observed] (ML/d) 

3.5  1.24  1.34  - - - - - 

Q70 (low flow threshold) 
[Simulated] (ML/d) 

0.22  0.06  0.14  0.03  0.04  0.02  0.15  0.07  

Q70 (low flow threshold) 
[Observed] (ML/d) 

0.0 0.43  0.45  - - - - - 

* indicates site data is used for evaluation only 

4.4.3 Outlet performance of multi-site calibration 

The multi-site calibration approach utilizing the additional ‘wet’-‘dry’ information was able to 

capture the main characteristics of the outlet hydrograph over the two year simulation period 

(Figure 4-6). Over the calibration period, the multi-site calibrated model had slightly reduced 

performance at the outlet (NSE=0.5) when compared to the outlet-only calibrations (NSE=0.52 to 

0.69). In contrast, for the evaluation period the multi-site calibration retains or improves its 

performance (NSE=0.49) relative to the outlet (NSE=0.15 to 0.48). Importantly, the multi-site 

calibration had improved upstream performance at all sub-catchment sites. 

Figure 4-6 illustrates that the simulation calibrated to multiple sites reasonably simulated peak 

flows compared to the observed data. The baseflow was underestimated in the first year of 

simulations, resulting in an under-estimation of flows over the two years (24 mm or negative bias 

of 15%). Figure 4-6c illustrates observed streamflow state and simulated flow, censored to 

represent flow intermittency at the catchment outlet. The figure shows that while the timing of 

the onset of flow was accurately simulated in the first year, flow onset begins approximately a 

month sooner than was observed in the classified data for the second year.  



 
 

117 
 

 

Figure 4-6: Outlet hydrograph showing the calibration (Mar 2017-Mar 2018) and evaluation (Mar 2018-Mar 2019) 
periods with the (a) rainfall forcings shown and the (b) simulated discharge closely flowing the observed data and (c) 
comparison of simulated and observed intermittent flow where 0=’no-flow’ and 1=’flowing’. 

4.4.4 Summary of single site versus multi-site calibration 

The multi-site calibration showed more than a 60% (i.e. [84%-52%]/52%) improvement in 

upstream catchment performance compared to the best performing single-site calibration. That 

is, the multi-site calibration had 84% of metrics passing criteria compared to the single-site 

calibrations with 24% to 52% of metrics passing the criteria (see Supplementary material, Table 4-

8). Figure 4-7  visually illustrates a summary of performance across the sites within the catchments 

and refers to metrics at the outlet as well as metrics from sites S001, S004, S005 and S008. The 

metrics calculated were determined and illustrated in a panel where yellow refers to the 

performance criteria passing and orange refers to metrics that fail the criteria. Figure 4-7  shows 

that regardless of metric and site, the multi-site model performs better than the outlet-only 

calibrations for upstream sites, while having comparable performance at the outlet. The exception 

to this is site S005 where Scenario 4 outperforms all other calibrations for this site.  
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Figure 4-7: Comparison of multi-site conditioned simulation and simulations calibrated to the outlet only i.e. Scenarios 
1, 2, 3 and 4. 

4.5 Conclusions 

The goal of this study was to illustrate the benefit of low-cost data collected in a headwater 

catchment in the context of physically based hydrological model calibration. The upstream 

performance of four conceptual models of runoff generation mechanisms simulated using a 

surface-subsurface flow model, HydroGeoSphere, and producing similar streamflow at the outlet 

were assessed and compared using the additional intermittency data. The data was applied to 

illustrate a multi-site calibration method where the overall performance of all candidate 

simulations compared. 

The challenge of quantifying high resolution intermittent streamflow across scales can be 

addressed with insights from improved modelling approaches which incorporate additional low-

cost data. There is significant benefit in additional data to test hypotheses around alternative 

model configurations and structures to assess the most plausible runoff mechanisms behaviour 

present in the studied catchment. Table 4-4 shows that of the four calibrated outlet-only simulates 

there was no single scenario that was applicable over the whole catchment. This indicates that 

model methodologies that perform single-site calibrations are likely to have significant 

deterioration in flow performance upstream of the outlet. An outcome of placing a lumped 

parameter set across the catchment.  

With the multi-site calibration approach, the study was able to improve the representation of 

performance of all sites across the catchment. In addition, the evaluation sites (S003, S010 and 

S011) show significant improvements compared to the outlet-only simulations (Figure 4-7) 

showing that additional data, even if it is of binary streamflow state, provides significant additional 

information for constraining a models solution space. An outcome of applying five lumped 

parameters sites, each representing an individual section of reach. By increasing the resolution of 

the model, there is still the question of whether the five sub-catchments are the adequate spatial 

resolution or whether the data points are in the correct locations to capture the heterogeneous 

behaviour of runoff, given that upstream on each data point location at catchment is 
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homogeneous. These questions in part can be answered by considering the scale of the water 

management question and the influence of decisions being made. If the water management 

question is at the outlet, does it matter that the model used it is lumped? Alternatively, if the 

water management question is at the reach scale, is the scale which the temperature sensors 

deployed the correct scale to lump parameter sets? 

As is the case with all modelling studies, the simulations were not a true representation of reality. 

However, the aim of this study was to illustrate the usefulness of additional low-cost data to 

improve spatial representation within a catchment. The lack of groundwater metering in the 

catchment area is also an acknowledged limitation of this work. While the data may have served 

in assisting with hypothesis testing the scenarios, again the aim of the study was to illustrate the 

benefits that a short-term data campaigned may have a model representation, which may not 

require the explicit representation of groundwater in the model being applied. 

The censoring of simulated discharge data was also dependent on the threshold flow rating being 

applied to the data. The calculation results of simulation performance were sensitive to these 

thresholds. However, to overcome this, the flow threshold was applied consistently across all 

sites. Long simulation times and the vast number of parameters in fully-coupled processes models 

also restricted the calibration method applied, with a semi-manual approach adopted. This 

approach means that the model is not truly optimized and was conditioned to the best possible 

representation of the data. Additional calibration of the model would see improvement of 

simulated outputs given that performance criteria for calibration parameters were pre-defined in 

this study. There is significant opportunity to investigating alternative model structures as well as 

compared process, semi-distributed and conceptual models which have been calibrated with the 

additional data.  

The study serves as a caution that calibrating a hydrological model against a single point can 

produce results that may not reproduce catchment functioning which may be required for water 

management questions that are nested across scales. This is particularly the case when there is a 

large amount of heterogeneity throughout the catchment (e.g. vegetated vs cleared areas and 

sources vs sinks) as showed with the small catchment used in this study. In contrast, the 

consideration of additional data to supplement high-quality streamflow records can improve the 

ability to constrain the model’s solution space in simulating in-stream fluxes of water. The study 

has highlighted the benefit of combining alternative data sources, collected through a short-term 

data campaign that encompasses both hillslope-scale hydrological features as well as flow further 

downstream.  
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Appendix 4-A 

The results of four simulated scenarios are plot against the observed discharge data. The 

simulated scenarios were calibrated to a single point at the outlet (Figure 4-8). The breakdown of 

different runoff proportions is detailed in Table 4-6. Additional details on simulations and results 

are given in Chapter 2. 

 

Figure 4-8: Showing (a) applied rainfall over two years and (b) the hydrographs of the four single-site calibrations 
compared to the observed discharge. 

Table 4-6: Details of the single-site calibrations for four Scenarios representing alternative conceptualizations of runoff 
generation. 

 Scenario 1 Scenario 2 Scenario 3 Scenario 4 

 SE with GW SE & GW GW with SE GW with IE&SE 

Lateral hydraulic conductivity 2.0x10-6 1.3x10-6 4.8x10-5 9.8x10-5 

Vertical hydraulic conductivity 1.3x10-4 1.5x10-6 7.0x10-7 2.8x10-7 

Percentage saturation excess runoff  61% 51% 31% 69% 

Percentage infiltration excess 
runoff 

0% 0% 0% 7% 

Percentage groundwater runoff 35% 46% 57% 19% 

Percentage error 4% 3% 2% 5% 
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Supplementary material 

 

Threshold for censoring simulated discharge  

The threshold flow response for each site used to censor the simulated flow data was determined 

using Manning’s equation. Individual site details are outlined in Table 4-7. 

Table 4-7: Threshold values applied to censor simulated flows for binary 'wet'-'dry' classification to determine stream 
flow intermittency 

Site Contributing 
area (km2) 

Height above 
streambed (m) 

Average 
channel slope 

Manning’s n 
applied 

Threshold 
flow (m3/s) 

S001 1.8 0.02  0.04 0.4 0.001 

S003 4.4 0.03  0.036 0.3 0.002 

S004 0.9 0.05  0.05 0.4 0.001 

S005 1.5 0.10  0.04 0.4 0.002 

S006 8.6 0.02  0.036 0.4 0.002 

S008 2.6 0.03  0.02 0.2 0.002 

S010 4.1 0.03  0.036 0.4 0.002 

S011 4.5 0.04  0.02 0.2 0.002 
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Detailed results comparing all parameterised simulations 

The detailed results for each site for the calculated performance metrics were compared and 

presented in Table 4-8. The yellow shading indicated when a metric had passed the defined criteria 

(outlined in Section 4.4.4, Figure 4-7). The results show that 82% of the metrics pass the 

performance criteria for the multi-site calibration. In contrast less than 50% of all the outlet-only 

scenarios pass the performance criteria. 

Table 4-8: Comparison of multi-site conditioned simulation to simulations calibrated to the outlet only. The yellow, 
colours indicate where the individually calculated metric have passed the criteria. 
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 Outlet Performance 

1 NSE (continuous) 0.50 0.52 0.54 0.62 0.69 

2 Correlation coefficient (continuous) 0.76 0.72 0.74 0.72 0.74 

3 Total flow volume bias (%) 1 45 -4 -33 -46 

4 Percentage matching binary observation (%) 83 89 22 14 72 

5 Flow permanence bias (%) 3 11 87 89 -55 

 S004 

6 Percentage matching binary observation (%) 84 80 82 80 76 

7 Flow permanence bias (%) 4 50 -3 54 -21 

 S005 

8 Percentage matching binary observation (%) 83 66 75 66 90 

9 Flow permanence bias (%) 38 228 139 178 11 

 S008 

10 Percentage matching binary observation (%) 81% 76 77 76 66 

11 Flow permanence bias (%) -8% 24 51 24 -45 

EV
A

LU
TI

O
N

 S
IT

ES
 

 S001 

12 NSE (continuous) 0.23 -0.31 0.26 -0.26 -0.07 

13 Correlation coefficient (continuous) 0.72 0.65 0.69 0.68 0.65 

14 Total flow volume bias (%) -50 -24 -57 -70 -75 

15 Percentage matching binary observation (%) 84 88 91 89 45 

16 Flow permanence bias (%) -14 28 11 28 46 

 S003 

17 NSE (non-binary) -0.08 -0.24 0.27 -0.31 -0.26 

18 Correlation coefficient (continuous)  0.75 0.77 0.72 0.77 0.73 

19 Total flow volume bias (%) -12 60 -3 -32 -43 

20 Percentage matching binary observation (%) 92 81 92 81 56 

21 Flow permanence bias (%) 0 20 24 13 -56 

 S010 

22 Percentage matching binary observation (%) 91 77 83 38 66 

23 Flow permanence bias (%) 12 37 26 26 -54 

 S011 

24 Percentage matching binary observation (%) 94 71 80 79 40 

25 Flow permanence bias (%) 2 -54 34 39 36 

  Percentage of metrics passing criteria 84% 36% 52% 32% 24% 
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Chapter 5.  

5.1 Summary of research objectives 

Knowledge of intermittent flows and the variation of flow throughout a catchment is critical for 

managing water resources in semi-arid and Mediterranean environments. There are multiple 

examples where understanding local scale processes can significantly improve efficiencies in 

water allocation, for example the interaction of farm dams and environmental flows or the impact 

of land-use changes throughout a catchment. Current modelling methodologies typically 

aggregate catchment processes to a single point-estimate of discharge at the outlet. As a result, 

approaches that aggregate catchment function are less likely to represent upstream catchment 

dynamics adequately.  

This thesis was focused on investigating intermittent flow processes and understanding the 

implications of commonly applied modelling assumptions on water management within the 

catchment, for example the limitation of aggregate representation of catchment flow at the 

outlet. The research combined relatively underutilised methods of data collection such as low-

cost environmental sensors with a physically-based model, HydroGeoSphere.  

The overall objective of this research was to demonstrate the value of additional data for 

characterising intermittent flow processes within a Mediterranean catchment. The specific 

objectives were: 

Objective 1: To quantify streamflow intermittency and signatures with low-cost sensing 

technology. Low-cost temperature sensors were used to collect in-stream data on individual 

reaches. Methods of analysing data were compared and developed to classify the stream state as 

either ‘wet’ (flowing) or ‘dry’ (not flowing). Timeseries and statistics of streamflow intermittency 

were developed to address the needs of subsequent model calibration to account for upstream 

catchment dynamics.  

Objective 2: To assess implications of modelling assumptions on the representation of local-

scale intermittent streamflow. Four alternative simulations were calibrated exclusively to 

discharge at the outlet and were parameterised to represent different conceptualisations of 

runoff generation. The four simulations were calibrated to represent a minimum Nash-Sutcliffe 

efficiency co-efficient of 0.5 while simulating different proportions of runoff mechanisms on the 

hillslope (i.e. infiltration excess, saturation excess and groundwater). This objective demonstrated 

the significance of internal model misspecification.  

Objective 3: To represent intermittent streamflow in headwaters using additional data in a 

multi-site calibration. To demonstrate the value of additional low-cost data for the representation 

of catchment processes in hydrological model, the binary ‘wet’-‘dry’ classifications of streamflow 

intermittency were applied to investigate the effectiveness of the four aggregated 

conceptualisations of catchment runoff (simulations from Objective 2). The data was used for 

multi-site calibration of the catchment and illustrated the improved representation of 

intermittent flow processes at the local scale. 

5.2 Key research findings and contributions 

Objective 1 – Quantifying streamflow intermittency and signatures with low-cost sensing 

technology 
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Headwaters, here defined as first to third order streams, can often be difficult to access, especially 

during raining periods, and unlike lower reaches, often lack continuous long-term data collection 

of streamflow onset and secession. Intermittent streamflow signatures, based on flow surrogates 

at multiple points in a catchment, were used to provide additional understanding of streamflow 

regimes within individual reaches. Paired low-cost temperature sensors at nine headwater sites 

were implemented within a 10 km2 catchment. 

Chapter 2 outlined an approach to collect continuous time-series of in-stream and on-bank 

temperature measurements at 15-minute intervals across nine sites within a small 10 km2 

catchment.  Thermal properties of the data were assessed and compared to investigate their 

effectiveness of streamflow delineation as ether a ‘wet’ or ‘dry’ state. Two methods of flow 

detection were compared and developed to determine their effectiveness. The two methods of 

classification were: (1) the standard deviation method, where a threshold deviation was applied 

(Constantz, et al. 2001; Blasch, et al. 2004) and; (2) the two-state hidden Markov model (HMM), 

used as an unsupervised signal detection method (Arismendi, et al. 2017). Both methods were 

further developed to maximise classification accuracy. 

A two-state hidden Markov model (HMM) improving the overall accuracy of ‘wet’ – ‘dry’ stream 

state classification compared to a naïve streamflow classification, applying a threshold variance 

for delineation. Alternative configurations of the HMM were investigated to maximise overall 

accuracy. The HMM method was able to achieve an average accuracy of 92% across the sites and 

also has the advantage of being an unsupervised method of flow detection. The study enabled the 

unsupervised HMM method of flow detection with three required inputs including:  

(1) In-stream temperature variance was selected based on thermal characteristics of the 

data showing temperature variance as the strongest signal of flow detection and of 

previous studies (Constantz et al. 2001; Blasch et al., 2004; Arismendi, et al. 2017).  

(2) 30 day antecedent rainfall was used to provide the algorithm with additional seasonal 

statistical characteristics of streamflow persistence. 

(3) The ratio of in-stream to on-bank variance (defined as the 𝑭(𝒕)𝒓𝒂𝒕𝒊𝒐) was developed as 

an additional signal of flow detection. 

This approach allowed the inference of binary (‘wet’–‘dry’) classifications which were used to 

interpret the properties of the small headwater catchment across multiple locations.  Differences 

between the tributaries were demonstrated in terms of onset and secession of flow, number of 

zero flow days, number of zero flow periods, and percentage of flow permanence annually and by 

season. The study quantified the high degree of variability in intermittent flow throughout the 

small catchment area, demonstrating the benefits of alternative data collection methods that are 

not otherwise accessible with the existing network of streamflow gauges. Such data has the 

potential to be applied to model calibration and evaluation approaches for improved local scale 

flow representation. 

Objective 2 – Implications of modelling assumptions on the representation of local-scale 
intermittent streamflow 

Many water management questions rely on a single point of gauged discharge data for policy, 

planning and design decisions. However, the hydrology of hillslopes is very different from the 

hydrology of catchments, whereby runoff at the hillslope is characterized by greater intermittency 

and variability than when flow is aggregated across the catchment. The key research motivation 

here was to understand the implications of commonly made modelling assumptions (such as 
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calibration of hydrological models to a single discharge point at the outlet) on the representation 

of processes at the hillslope and how this may influence water management decisions. 

Chapter 3 outlined the approach of calibrating four candidate simulations to a single point 

estimate of streamflow using the process-based model HydroGeoSphere. Four alternative 

conceptualisations of runoff-generation were calibrated to represent different proportions of 

runoff mechanisms on the hillslope and near equivalent Nash-Sutcliffe coefficients for streamflow 

at the outlet. The four competing conceptualisations were: (1) saturation excess dominated, (2) 

saturation excess and groundwater dominated, (3) groundwater dominated and (4) groundwater 

dominated but containing 17% infiltration excess. Despite having similar performance at the 

outlet, differences were shown in numerous aspects of upstream representation, including the 

spatial representation of catchment saturation. The results demonstrated that subsurface 

pathways influence the behaviour of flow in and around a small in-stream dam with groundwater 

dominant scenarios showing that low flows were greater than 20% more likely to be simulated 

directly downstream compared to upstream.  

The results suggested that model parameterisation and structures with a priori process 

assumptions influence the estimation of flows throughout a catchment. The results highlight the 

need for greater attention to process modelling and better representation of flow dynamics than 

aggregated models calibrated at an outlet. This distinction is important for policy planning, as 

many engineering, ecological and water management problems exist at the local scale but can 

have catchment wide implications. With improved representation of hydrological complexity in 

space and time, planning and implementation of environmental water policies can be based on 

more accurate representation of flow stores and fluxes across all relevant scales.  

Objective 3 – Representing intermittent streamflow in headwaters using additional data in 

multi-site calibration 

Calibrating physically-based models is difficult given the complexity of catchments, having non-

linear dynamics across nested spatial and temporal scales. A significant advantage of fully 

integrated hydrological models, is that no process hypotheses have to be chosen. The data 'selects' 

the process and without sufficient it can be difficult to distinguish between multiple competing 

hypotheses of catchment processes. Inexpensive data collection on the hillslope can provide 

supplementary information of intermittent streamflow that can be used to constrain a model 

parameter space. While there are opportunities for the application of additional data, there is a 

strong parallel with the need to improve calibration methods to manage and exploit all available 

data. 

Chapter 4 demonstrated the extent to which data collected in a headwater catchment can be 

applied to improve model calibration. The analysis showed that for the four candidate simulations, 

calibrated exclusively to discharge at the outlet, there was no single simulation that was able to 

represent upstream intermittency across all sites. Binary ‘wet’-‘dry’ classifications of streamflow 

intermittency at multiple sites were applied to calibrate the model. The multi-site calibration was 

evaluated showing that the simulation was able to significantly improve upstream representation 

of the catchment.  

The multi-site calibrated model improved performance at eight out of nine sites, with only a small 

deterioration to the calibration results at the outlet. The approach increased the overall 

performance of the model with 84% of performance metrics across the catchment passing a pre-

defined criterion compared to the best performing single-site calibration with 52% of performance 



 
 

129 
 

metrics passing. The study demonstrated that applying constraints to the model configurations 

allowed for greater confidence in outputs. The results suggest that as sensing and transmission 

technologies continue to improve, there will be increasing opportunities to use information 

sources such as local-scale intermittency to supplement reliable streamflow records in order to 

faithfully represent hydrological processes across scales. With improved representation of runoff 

across scales there are many benefits of getting the internal processes right. For example, 

simulating conditions that are outside the range of calibration or even reanalysis datasets that 

utilise 3D simulations. 

5.3 Research limitations and challenges 

This thesis presents an investigation of intermittent flow processes within a Mediterranean 

environment. This research had a number of limitations relating to data collection, data analysis 

methods, and data availability, modelling and simulation challenges. These limitations are further 

discussed with respect to each research objective. 

Objective 1 – Quantifying streamflow intermittency and signatures with low-cost sensing 

technology 

The applications of low-cost sensors introduce the potential for poor quality and accuracy of 

measurements. There were also limitations in the methods used to deploy sensors. These were: 

• Sensors touching the streambed when the soil moisture may persist and cause inference, 

leading to false ‘wet’ day classifications.  

• Sensors placed marginally above the streambed; a trickle of very low flows can pass under the 

sensor. When the sensor is not touching the base, sedimentation may cause rivulets at very 

low flows to bypass flow around the sensor. 

• Build-up of sediment may cause the sensor to become buried and result in spurious readings.  

• Sensors do not detect truly ‘zero’ flow conditions, but represent the intermittency of the 

stream above some very minor base threshold.  

• Differences in site conditions could result in unique diurnal patterns, the use of paired sensors 

over a single in-stream sensor has partly addressed this limitation.  

• Cloudy days and cold days can result in a reduced diurnal temperature range and can mimic 

the in-stream signal when flow is present. This can result in a false ‘wet’ classification. 

• The time and man power required to collect data were the largest resource required for the 

low-cost method applied in this study. That is, monthly visits were conducted to multiple sites 

with multiple people. This is achievable for a research study, but for wider adoption, low cost 

telemetry would be required to support a similar field campaign. 

• Site access was a significant limitation. Permission from property owners was required to 

access reaches located in the study area. Additionally, some sites could only be accessed on 

foot. Preferred sites within the catchment (e.g. the confluence of two reaches) were 

inaccessible and not able to be used for data collection. 

• The battery life of low-cost sensors can limit the time the sensors are deployed. The battery 

life also influences the resolution of measurements taken. That is, increased resolution 

decreased battery life. 

• Telemetry is a significant barrier when applying such sensors to headwater areas. Typically, 

telephone coverage in rural areas is limited, meaning the manual nature of data collection 

may not be completely eliminated. Alternatives could be investigated such as Bluetooth to 

limit the disturbance of deployed sensors. 
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• Temperature may not be the best measurement for data collection. There are other potential 

methods for inferring streamflow intermittency, for example, EC probes, video or time-

delayed images. 

• The lack of other data is a significant limitation of this study. Data such as groundwater, soil 

moisture measurements, tracers, and pluviometer gauges within the study location are just 

some example of additional data that could further inform the study. 

Objective 2 – Implications of modelling assumptions on the representation of local-scale 
intermittent streamflow 

There were a number of modelling limitation as a result of the selection of the complex fully 

coupled surface-subsurface groundwater model. These include: 

• Long simulation times and the large number of parameters required to simulate the model 

restricted the parameters used to calibrate the model. The primarily parameters applied were 

the lateral and vertical hydraulic conductivity to limit the search space to two dimensions. 

• The semi-manual method of calibration meant that the models were not exhaustively 

optimised. 

• The discretisation of the model domain was selected to simulate fine scale processes in and 

around the stream (irregular elements approximately 25m) while the elements became larger 

around the catchment boundary (~250m). There was no analysis conducted on what the best 

resolution of elements was. The selection of the size of elements was based on the DEM 

resolution with the aim of reducing simulation run times. 

• Fast and shallow storm-water runoff (or interflow) were not represented in the selected 

model, this runoff process has the potential to have a significant influence on how fluxes move 

in and around agricultural storages and in individual reaches in the landscape. 

• The spin-up of the models was a limiting factor of the calibration process, where the models 

may not have entirely reached equilibrium for each of the calibration runs, with simulation 

runtimes a limiting factor. 

• The region is characterised by fractured rock. This feature was not explicitly modelled for the 

catchment and instead the hydraulic conductivity was used to represent an equivalent porous 

media. 

Objective 3 – Representing intermittent streamflow in headwaters using additional data in 

multi-site calibration  

The study’s modelling methods and the application of data had a number of limitations. These 

include:  

• The lack of soil moisture or groundwater data meant that these elements of the model could 

not be evaluated and that alternative model conceptualisation could not be eliminated. 

• Limitations of the computational budget and long simulation runtimes resulted in a semi-

manual (using a grid search) calibration method, meaning an optimiser was not used. 

• Long simulation times and the vast number of parameters in fully-coupled process models 

restricted the calibration method, with a semi-manual approach adopted. This approach 

means that the model was not exhaustively optimized.  

• Spin-up dependences resulted due to the difficulty of truly spinning up the model with all 

updated parameters while also calibrating. This was a challenge due to simulation and time 

constraints as well as convergence issues. Therefore, simulations were initiated with initial 

conditions updated from the previous simulation outputs for each subsequent grid search.   
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• Step-wise approach to the multi-site calibration was a simplified approach to model 

calibration and allowed for a two-dimensional search space. With improved computer power, 

alternative approaches can be investigated with multidimensional search spaces, e.g. all sites 

calibrated at once. 

• Data issues - model performance results were dependent on the flow threshold rate applied 

to simulated data and the threshold applied to the observed binary classification where a zero 

flow day was not a true zero flow day and was dependent on the location of the sensor used 

for data collection. 

• The censoring of simulated discharge data was dependent on the threshold flow rating being 

applied to the data. The calculation results of simulation performance were sensitive to these 

thresholds.  

• Reliance on super-computing facilities means that the approach is not yet able to be adopted 

more widely and that further investment is needed in numerical methods for computational 

efficiency. 

5.4 Further recommendations for future work 

There are significant opportunities for further work, with the current limitations also presenting 

potential options for future developments. 

Objective 1 – Quantifying streamflow intermittency and signatures with low-cost sensing 

technology 

• Investigating and comparing alternative environmental sensors: There is significant potential 

to investigate the viability and accuracy of other on-ground environmental sensor 

technologies as well as their potential for upscaling. While work has been conducted in this 

field for two decades (Constantz et al., 2001; Bradley et al., 2002;  Blasch et al., 2004;  Goulsbra 

et al., 2009; Tsubaki et al., 2011; Jaeger & Olden, 2012;  Chapin et al., 2014; Hofer et al., 2018; 

Paillex et al., 2019) there is still a disproportionate focus of improving modelling methods. 

Additionally, investigations could include: direct comparisons of electrical conductivity 

sensors, temperature sensors and other water quality measurements.  

• Image analysis as a low-cost option: Adding to the field of research, investigating low-cost 

methods of image analysis to provide flow depths or velocities presents opportunity to 

provide additional data on headwater streamflow intermittency. Examples include: time-

delay photography, video and thermal imaging analysis. 

• Telemetry and similar technologies: The application of radio transmitters on sensors means 

that studies can be dramatically up-scaled without the requirement of large human resources 

for data collection.  

• Upscaling sensor deployment: This research was a pilot study to illustrate what could be 

achieved with a short-term data campaign. There is significant potential to upscale the study 

to quantify intermittent streamflow across larger catchments and across wider regions. 

• Regression of additional data: There is scope to determine the relationship between 

downstream (outlet) flow data and upstream intermittency and catchment characteristics 

which can be applied to delineate flow events upstream. Therefore, regression techniques 

could be developed that can be applied in similar catchment when only outlet data and 

catchment features are available. 

Objective 2 – Implications of modelling assumptions on the representation of local-scale 
intermittent streamflow 
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• Agricultural storage dynamics:  Additional studies can determine the influence that different 

volumes and patterns of extraction have on the dynamics of the storage. Alternative storage 

configurations, such as multiple storages in series and parallel can also be compared as well 

as the storage behaviour of in-stream versus off-stream. Research questions around the 

influence that increasing storage density per unit area has on flows upstream and downstream 

using process models is also significant in managing water resources across scales.  

• Sophisticated calibration approaches: Opportunities for further work to include the 

application of more sophisticated calibration approaches using the collected data. For 

example, a likelihood method that accounts for binary wet-dry classifications within model 

calibration and uncertainty. 

• Alternative model structures: The investigation and comparison of alternative model 

structures, such as conceptual, semi-distributed and flexible models provide an opportunity 

to further develop a framework for the application of additional data. 

• Hypothesis testing: Further analysis using hypothesis testing methods and additional data 

such as groundwater depth to eliminate some or all of the candidate simulations. 

• More case studies: Alternative catchments and/or paired catchments provide an additional 

insight to understand how modelling assumptions may impact the representation of flow 

processes at the local scale. With further insights modelling frameworks could be updated to 

better reflect the climate and catchment characteristics 

• Alternative model resolutions: Investigation of the model resolutions could provide additional 

information on what resolutions are required to effectively simulate flow for alternative 

problems 

• Virtual laboratories: Virtual laboratories allows for additional model structures and processes 

equations to be investigated. For example, comparing alternative infiltration equations. 

• More direct validation of method quantifying runoff mechanisms: There is a requirement to 

directly validate the Hydraulic mixing cell method (Partington et al., 2011). For example, tracer 

studies could provide data to track the accuracy of the simulated runoff generation 

mechanisms. 

Objective 3 – Representing intermittent streamflow in headwaters using additional data in 

multi-site calibration 

• Alternative calibration approaches: There are numerous alternative approaches for 

calibration (this study used a grid search). For example, with increased computing power 

optimisers can be used. Additionally, parameters can also be investigated for calibration such 

as the vertical discretization of the soil profile depths. 

• Lumping of parameters: Additional research is required to investigate the lumping of 

parameters used for the study. Whether the discretization to five sub-catchments provides 

adequate parameter representation or whether distributed vegetation and soil properties 

could provide further insights. 

• Investigate model resolution: By increasing the resolution of the model, there is still the 

question of whether the five sub-catchments are the adequate spatial resolution or whether 

the data points are in the correct locations to capture the heterogeneous behaviour of runoff, 

given that upstream region of each data location was assumed to be homogeneous. More 

research is need to determine the resolution required to adequately capture the required 

processes. 
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• Local vs global tradeoffs: An analysis of the tradeoffs between improved representation of 

processes upstream and the deterioration of performance at the outlet can provide further 

answers for the development of frameworks that require coarse resolution modelling. 

• Parameter uncertainty: An investigation of the impact and measurement and sampling error 

and how they propagate through the model. 

5.5 Conclusions 

This thesis has illustrated the importance of representing of intermittent flows and the variation 

of flow throughout a catchment. The adequate representation and understanding local scale 

processes can significantly improve efficiencies in water allocation, such as the interaction of farm 

dams and low flows and impacts of land-use changes throughout a catchment. The results of this 

work have highlighted that current modelling methodologies which typically aggregate catchment 

processes to a single point-estimate of discharge at the outlet, can have significant implications 

for water management outcomes.  The research has showed that by combining relatively 

underutilised methods of data collection such as low-cost environmental sensors with a fully-

integrated modelling the characterising intermittent flow processes within a catchment were 

improved.   

Finally, technological advancements are increasing at exponential rates and providing 

unprecedented opportunities to learn and gather data from our environment. Unconventional 

sources of data, if managed correctly, can significantly assist in making more informed water 

decisions. The availability of new data streams (remote sensing, drones, infrared, video imagery, 

etc) will mean that more studies are needed to demonstrate the potential benefits of alternative 

data and how to blend them into modelling frameworks alongside established sources of 

measurements from streamflow gauges. 
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Appendices 

Appendix A: Field trip photos 

 

 

Photo taken of the study catchment headwaters 
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Site S001 

  

25/01/2017 (10:32AM) 25/01/2017 (10:32AM) 

 

  

25/01/2017 (10:33AM) 25/01/2017 (10:34AM) 

  

25/01/2017 (10.35AM) 25/01/2017 (10:59AM) 

  

25/01/2017 (10:57AM) 25/01/2017 (10:57AM) 
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25/01/2017 (11:00AM) 25/05/2018 11am 

 

 

 9/08/2018 (10:43am) 
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S002 

  

25/01/2017 (10:35AM) 25/01/2017 (10:35AM) 

 

 

9/08/2018  (10:59am) 25/05/2018 
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S003 

  

11/10/2017 (12pm) 11/10/2017 (12pm) 

  

11/10/2017 (12pm) 11/10/2017 (12pm) 
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9/11/2019 (11:26)  
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S004 

 

 

23/08/2017 11am  

 

 

18/03/2019 (12:14) 18/03/2019 (12:14) 
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18/03/2019 (12:14) 9/08/2018  (10:59am) 

 
 

9/08/2018  (10:59am) 9/08/2018  (10:59am) 
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S006 

 

 

23/08/2017 (10:40 AM) 23/08/2017 (10:40 AM) 

 

 

23/08/2017 (10:40 AM)  
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9/08/2018 (11:23am) 9/08/2018 (11:23am) 
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S008 

 

 

19/07/2018 (12:23)  

 

 

23/08/2017 (10:54AM)  
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23/08/2017 (15:56AM) 23/08/2017 (11:02AM) 

 

 

 

 

9/11/2018 (11am) 9/11/2018 (11am) 
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9/11/2018 (11am) 9/11/2018 (11am) 
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S005 

  

23/08/2017 (10:19AM) 23/08/2017 (10:19AM) 

 

 

23/8/2018 (11:01am) 23/8/2018 (11:14am) 
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23/8/2018 (11:08am) 23/8/2018 (11:06am) 
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S010 

 

 

8/11/2018 (11:30am)  

 

 

S011 

  

8/11/2018 (11:20am) 8/11/2018 (11:20am) 
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9/08/2018 (11.23am)  

 




