
Personalised Signal Processing for

Cortical and Cardiac Applications

by

Simanto Saha

B.Sc. (Electrical and Electronic Engineering),
United International University, Bangladesh, 2014

Thesis submitted for the degree of

Master of Philosophy

in

Electrical and Electronic Engineering

University of Adelaide

2020



Supervisors:

Associate Professor Mathias Baumert, School of Electrical and Electronic Engineering

Professor Prashanthan Sanders, Adelaide Medical School

Associate Professor Dominik Linz, Adelaide Medical School

© 2020

Simanto Saha

All Rights Reserved



To my Mum, Dad, Satyam, Udita and Ullash.



Page iv



Contents

Contents v

Abstract ix

Statement of Originality xi

Acknowledgments xiii

Honours and Awards xv

Publications and Talks xvii

List of Figures xix

List of Tables xxiii

Chapter 1. Introduction 1

1.1 Sensorimotor Cortical Signal Processing . . . . . . . . . . . . . . . . . . . 2

1.2 Cardiac Signal Processing for AF Ablation . . . . . . . . . . . . . . . . . . 2

Chapter 2. Sensorimotor Brain Computer Interface: A Literature Review 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Sensorimotor Dynamics and BCI . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Motor learning process and brain function . . . . . . . . . . . . . 6

2.2.2 Motor imagery versus motor execution . . . . . . . . . . . . . . . 7

2.2.3 Neuroplasticity and BCI-driven motor rehabilitation . . . . . . . 8

2.3 Brain Topography and BCI Performance Predictors . . . . . . . . . . . . 9

2.3.1 Intra- and inter-subject variability in brain topography . . . . . . 9

2.3.2 BCI performance predictors . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.1 Covariate shift and transfer learning . . . . . . . . . . . . . . . . . 12

2.4.2 The concept of inter-subject associativity . . . . . . . . . . . . . . 12

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Page v



Contents

Chapter 3. Localisation of Inter-subject Sensorimotor Cortical Source 17

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 Data and experimental settings . . . . . . . . . . . . . . . . . . . . 19

3.2.2 Wavelet-based source localisation . . . . . . . . . . . . . . . . . . 23

3.2.3 Common spatial pattern with and without regularisation . . . . . 27

3.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.1 Selection of inter-subject associative channels . . . . . . . . . . . . 30

3.3.2 Motor imagery prediction performance . . . . . . . . . . . . . . . 31

3.3.3 Enhanced inter-subject associative sensorimotor dynamics . . . . 33

3.3.4 Study significance and limitation . . . . . . . . . . . . . . . . . . . 34

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Chapter 4. Intracardiac Electrogram Measurement Uncertainty 37

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.1 Study population . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.2 Electrophysiology study . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.3 HD-Grid catheter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.4 Mapping protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.5 Study protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.6 EGM processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.7 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.1 Patient characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.2 Effect of bipolar vector orientation on EGM-derived measures . . 46

4.3.3 Effect of inter-electrode spacing on measures derived from bipo-

lar EGM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.4 Quantification of threshold-based substrate characterisation . . . 47

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4.1 Major Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Page vi



Contents

4.4.2 Impact of bipolar vector orientation . . . . . . . . . . . . . . . . . 54

4.4.3 Impact of inter-electrode spacing . . . . . . . . . . . . . . . . . . . 56

4.4.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Chapter 5. Beamforming-inspired Spatial Filtering Technique 59

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2.1 Unipolar EGM and bipolar EGM construction . . . . . . . . . . . 60

5.2.2 Beamforming construction and spatial filtering . . . . . . . . . . . 62

5.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3.1 Measurement uncertainty and substrate characterisation . . . . . 63

5.3.2 Improved EGM detection and diversity gain . . . . . . . . . . . . 65

5.3.3 Directionality in bipolar EGM-based cardiac mapping . . . . . . 66

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Chapter 6. A Ventricular Artefact Filtering Technique 67

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.2.1 Intracardiac electrogram acquisition . . . . . . . . . . . . . . . . . 68

6.2.2 Ventricular artefact reduction method . . . . . . . . . . . . . . . . 69

6.2.3 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . 70

6.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Chapter 7. Thesis Summary and Future Work 77

7.1 Significance Of Personalised Signal Processing . . . . . . . . . . . . . . . 77

7.2 Inter-subject Associative BCI . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.3 Intracardiac EGM-based AF Mapping . . . . . . . . . . . . . . . . . . . . 78

7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Bibliography 81

Page vii



Page viii



Abstract

Biomedical signals reflect alterations in human physiological parameters in both healthy

and pathological conditions. Their inherent variability over time and across individu-

als reduces the reproducibility of results and utility of biomedical signals. Personalisa-

tion of signal processing schemes by including parameters associated with the sources

of inter-session and inter-subject variability can promote the usability of biomedical

signals for larger cohorts. This thesis explores strategies for personalising signal pro-

cessing techniques for the assessment of cortical and cardiac electrophysiological phe-

nomena.

A sensorimotor rhythm-based brain-computer interface (BCI) exploits changes in elec-

troencephalogram (EEG) during motor imagery tasks and can establish a direct com-

munication link between the brain and a computer, which may augment motor perfor-

mance. Dealing with the variability inherent in EEG signals is not trivial and yet to be

understood comprehensively to deliver BCI technology for practical use. A wavelet-

based signal processing method has been applied to model inter-subject associative

source activations, leading to a more generalised BCI design.

Intracardiac electrograms (EGM) are important for mapping electrical activation across

the heart. Multiple variables, including bipolar vector orientation relative to the wave

propagation vector, inter-electrode spacing, impact EGM recording. In this thesis, in-

tracardiac EGM recorded with a customised array of electrodes were analysed to assess

the impact of bipolar vector orientation and inter-electrode spacing on atrial fibrillation

mapping. A novel spatial filtering method has been proposed to reduce the measure-

ment uncertainty due to bipolar vector orientation. Besides, an independent compo-

nent analysis-based filtering has been proposed as a potential preprocessing method

for eliminating ventricular far-field artefact.
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Chapter 1

Introduction

B IOMEDICAL engineering is the field of study that integrates knowledge of engi-

neering, science and biology for healthcare purposes. It covers a broad spectrum

of applications including the development of artificial organs, robot-assisted surgical

procedures, artificial prosthetics, targeted drug delivery and diagnostic tools. As a

result, collaboration amongst diverse disciplines such as medicine, science and engi-

neering is essential to successfully translate a potential application for practical use.

Biomedical signal processing is a subdiscipline of biomedical engineering that utilises

signal processing algorithms to assess physiological changes over time.

Biomedical signals reflect fluctuations of human physiological parameters in healthy

and pathological conditions. Recent advances in both invasive and noninvasive sig-

nal acquisition techniques have inspired the inclusion of diverse signal processing al-

gorithms in the design of rehabilitative and therapeutic interventions (Baumert et al.

2016a). Applications include investigation of sensorimotor cortical dynamics (Saha et al.

2017b, Saha et al. 2019a) and disturbances in cardiac conduction pathway during atrial

fibrillation (Baumert et al. 2016b).

One of the key challenges in biomedical signal processing is the inherent inter-session

and inter-subject variability in recorded signals. The time-variant human physiologi-

cal parameters as well as experimental setup-related factors induce nonstationarity in

biomedical signals and often weaken the reproducibility of results (Anter and Josephson

2016, Saha et al. 2017b). Personalisation of a signal processing method by including pa-

rameters associated with the sources of inter-session and inter-subject variability can

promote the usability of a proposed method for larger cohorts. This thesis explores the

personalised application of signal processing techniques for the assessment of cortical

and cardiac electro-physiological phenomena.
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1.1 Sensorimotor Cortical Signal Processing

1.1 Sensorimotor Cortical Signal Processing

Brain computer interfaces (BCI) for the rehabilitation of motor impairments exploit

sensorimotor rhythm (SMR)-related cortical activities in electroencephalogram (EEG)

(Dobkin 2007). The cognitive and neurological processes underpinning the SMR often

vary over time and across subjects and affect EEG-based BCI performance (Blankertz et al.

2009, Vidaurre and Blankertz 2010, Hammer et al. 2012, Jeunet et al. 2015, Sannelli et al.

2019, Ahn and Jun 2015, Reichert et al. 2015, Zhang et al. 2015a, Vasilyev et al. 2017).

Such inherent variability causes covariate shift in data distributions that make the

transferability of model parameters amongst sessions/subjects onerous. A covariate

shift occurs when distributions of training and test datasets differ significantly al-

though their conditional distributions may remain unchanged (Krusienski et al. 2011).

Transfer learning includes signal processing and machine learning-based methods to

compensate for inter-subject and inter-session variability manifested in EEG-derived

feature distributions as a covariate shift for BCI (Jayaram et al. 2016). Chapter 2 re-

views the cognitive and neurological aspects of sensorimotor cortical dynamics that

affect BCI performance. Chapter 3 introduces a time-frequency analysis method for

the assessment of inter-subject SMR dynamics.

1.2 Cardiac Signal Processing for AF Ablation

Intracardiac catheter ablation (CA) is a widely used clinical procedure to terminate

atrial fibrillation (AF)-related electrical sources and to restore sinus rhythm. Electro-

grams (EGM) are recorded using catheter-based electrodes before CA for the identifi-

cation of ablation targets (Baumert et al. 2016b). Usually, bipolar EGM are constructed

from unipolar EGM to quantify the arrythmogenic substrates.

Multiple variables, including bipolar vector orientation relative to the wave propaga-

tion vector, inter-electrode spacing, electrode size and tissue contact, impact bipolar

EGM and EGM-derived measures (Anter and Josephson 2016). In addition, prepro-

cessing, i.e., filtering of undesired signal contents plays a critical role in arrythmogenic

substrate characterisation. Chapter 4 demonstrates the impact of bipolar vector orien-

tation and inter-electrode spacing on EGM.

Once EGM are already recorded using a catheter with certain specifications, bipolar

vector orientation could be integrated into a mapping tool when specially-designed
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multi-electrode catheters are available. Chapter 5 proposes a novel spatial filtering

technique to reduce measurement variability due to random bipolar vector orientation.

Also, preprocessing (filtering) techniques are crucial for AF-related target identifica-

tion. For example, ventricular far-field artefact contaminates local atrial EGM. Chapter

6 delineates a ventricular artefact reduction (VAR) technique based on wavelet trans-

form and independent component analysis (ICA).
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Chapter 2

Sensorimotor Brain
Computer Interface: A

Literature Review

BRAIN computer interfaces (BCI) for the rehabilitation of motor

impairments exploit sensorimotor rhythms (SMR) in the electroen-

cephalogram (EEG). However, the neurophysiological processes under-

pinning the SMR often vary over time and across subjects. Inherent intra-

and inter-subject variability causes covariate shift in data distributions that

impede the transferability of model parameters amongst sessions/subjects.

Transfer learning includes machine learning-based methods to compensate

for inter-subject and inter-session (intra-subject) variability manifested

in EEG-derived feature distributions as a covariate shift for BCI. Recent

studies have explored psychological and neurophysiological predictors as

well as inter-subject associativity assessment, which may augment transfer

learning in EEG-based BCI. This chapter highlights the importance of

measuring inter-session/subject performance predictors for generalised

BCI frameworks for both normal and motor-impaired people, reducing the

necessity for tedious and annoying calibration sessions and BCI training.

Associated Publication: Saha, S. and M. Baumert, ”Intra- and inter-

subject variability in EEG-based sensorimotor brain computer interface: a

review”, Frontiers in Computational Neuroscience, vol. 13, 2020.
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2.1 Introduction

Brain computer interfaces (BCI) exploiting sensorimotor rhythms (SMR) have shown

promise for both the improvement of motor performance in normal subjects and the

rehabilitation of motor function in patients (Wang and Jung 2011, Dobkin 2007). The

SMR can be elicited by motor imagery (MI) that shares common neurophysiological

mechanisms with overt motor execution (ME), the former being more convenient for

BCI users who cannot perform an overt ME task due to some degree of motor dis-

ability (Jeannerod 1995, Lotze and Halsband 2006, Vyas et al. 2018, Zich et al. 2015).

ME supplements the MI-based motor learning process for people with intact cognitive

functions (Allami et al. 2008, Ruffino et al. 2017).

Since the motor learning processes differ across individuals (Herzfeld and Shadmehr

2014, Wu et al. 2014), significant inter-subject variability in motor behaviour is antic-

ipated that manifests in the task-specific electrical activities in the cortico-subcortical

networks (Seghier and Price 2018). Consequently, the cortical activity observed in elec-

troencephalogram (EEG) varies across subjects during MI, impeding its utility for BCI

applications (Saha et al. 2017b). A study has suggested that time-variant brain func-

tions cause unreliable EEG signatures with poor reproducibility even within a particu-

lar subject (Meyer et al. 2013). Such inter-session, intra-subject variability together with

even larger inter-subject variability confounds BCI using SMR. This chapter discusses

how inter-session and inter-subject performance predictors could potentially augment

transfer learning to improve SMR-based BCI performance while reducing calibration

efforts significantly.

2.2 Sensorimotor Dynamics and BCI

2.2.1 Motor learning process and brain function

Motor variability due to variability in human kinematic parameters, e.g., force field

adaptation, speed and trajectory, and motivational factors such as level of user en-

gagement, arousal and feelings of competence, necessary for performing a motor task

is an integral part of the motor learning process (Duarte and Reinkensmeyer 2015,
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Úbeda et al. 2015, Edelman et al. 2019, Faller et al. 2019). Such variability does not nec-

essarily represent noise contents only, but may potentially be a manifestation of mo-

tor and perceptual learning processes. Motor variability may augment reinforcement-

based motor learning (Herzfeld and Shadmehr 2014, Wu et al. 2014, Singh et al. 2016).

Individuals with higher motor variability may learn a skill faster than individuals

with lower motor variability (Wu et al. 2014, Singh et al. 2016). The EEG patterns

associated with motor variability could therefore partly explain intra-individual vari-

ability in SMR-based BCI (Úbeda et al. 2015, Bradberry et al. 2010, Ostry and Gribble

2016). Furthermore, structural and functional differences between subjects are asso-

ciated with the motor learning process, which might explain the motor learning vari-

ability (Tomassini et al. 2011). On the other hand, motor variability could be leveraged

to augment motor learning and rehabilitation (Singh et al. 2016, Krakauer 2006). A

study has demonstrated that alterations in EEG signatures due to motor training are

dependent on intra- and inter-subject variability (Jochumsen et al. 2017).

2.2.2 Motor imagery versus motor execution

Motor imagery is the kinesthetic anticipation of corresponding overt ME without pro-

ducing an actual motor output. Jeannerod stated that MI is functionally equivalent to

its ME counterpart (Jeannerod 1995). More specifically, MI is related to the prepara-

tion of ME and represents meaningful neurophysiological dynamics of human motor

functions (Zich et al. 2015). Consequently, both MI and ME share common sensori-

motor areas such as primary motor area (M1), supplementary motor area (SMA) and

premotor cortex (PMC) (Jeannerod 1995, Lotze and Halsband 2006, Zich et al. 2015).

The neurophysiology underlying MI may differ in healthy people and patients with

motor-impairing conditions (Lotze et al. 2001). MI-based BCI may augment the mo-

tor learning process in healthy subjects (Ruffino et al. 2017). In patients with impaired

motor functions, MI is often the only viable option to drive rehabilitative BCI due to

users’ inability to perform overt ME (Jackson et al. 2001, Lotze and Halsband 2006).

The individuality and severity of motor impairments impact the underlying neuro-

physiology, for example, post-stroke neurophysiology relies on the lesion locations

(Niazi et al. 2013). Studies are essential to further delineate the roles of MI and ME

in motor learning or relearning for both healthy and impaired subjects to refine the

design of BCI for supplementing the motor learning process.
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2.2.3 Neuroplasticity and BCI-driven motor rehabilitation

Rehabilitative BCI designs either attach neural prostheses to the impaired upper/lower

limb or restimulate the damaged synaptic networks. In either case, the idea is to exploit

and promote neural plasticity (Wang et al. 2010a, Dobkin 2007). The plastic character-

istics of the brain are created by the time-variant behaviour of the synapses within

complex neural networks, first illustrated by Donald O. Hebb in 1949 (Brown and

Milner 2003). The motor learning process and associated variability promote plastic-

ity in the sensorimotor networks and adjust both motor and perceptual skills (Ostry

and Gribble 2016). This inherent plasticity is exploited by BCI systems to rehabilitate

impaired motor functions (Dobkin 2007). Ruffino et al. demonstrated that MI-based

mental training can contribute to corticospinal plasticity (Ruffino et al. 2017). This

might lead to BCI-driven rehabilitation systems for stroke and spinal cord injury pa-

tients (Niazi et al. 2013, Müller-Putz et al. 2014). Recent studies showed that BCI skill

acquisition and associated physiological changes may improve BCI performance in

both patients and healthy users (Perdikis et al. 2018, Edelman et al. 2019). Complex or

cognitively entertaining tasks that require greater user engagement or motivation can

compensate for intra- and inter-subject variability, leading to enhanced BCI learning in

adverse operating conditions (Perdikis et al. 2018, Edelman et al. 2019, Faller et al. 2019,

Li et al. 2019).

BCI-driven prostheses can extend the degree of freedom of users with motor impair-

ments. The success of BCI control and rehabilitation depends on the user’s capacity

to modulate the intact neural ensembles (Dobkin 2007). Substantial changes in neu-

ral substrates that were observed following closed-loop BCI-driven motor learning of

prosthesis control provide evidence of neuroplasticity (Orsborn et al. 2014). In stroke

patients, post-rehabilitation electromyographic recordings showed increased activity

in the paretic finger following BCI-driven rehabilitation using an orthosis, which ex-

hibits improvement in neuromuscular coherence for movement control

(Ramos-Murguialday et al. 2013). Furthermore, BCI-driven proprioceptive feedback-

based and functional electrical stimulation-based rehabilitation strategies could rein-

force motor control (Darvishi et al. 2017, Zhao et al. 2016, Selfslagh et al. 2019).

The structural and functional changes in neural substrates induced by MI-based train-

ing with transcranial direct current stimulation or transcranial magnetic stimulation

provide further evidence for the induction of neuroplasticity that is essential for mo-

tor recovery (Hong et al. 2017, Johnson et al. 2018). Because the induction of plasticity
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by rehabilitation varies across subjects (Leamy et al. 2014, Vallence et al. 2015), subject-

specific training sessions may be required. Since the neurophysiology associated with

SMR dynamics varies between individuals, quantification of variability in healthy user

groups could be a beneficial first step that may guide the interpretation of altered neu-

rophysiology in diverse conditions of motor-impairment (Müller-Putz et al. 2014).

2.3 Brain Topography and BCI Performance Predictors

2.3.1 Intra- and inter-subject variability in brain topography

The functional relevance of brain topographical variability with the anatomical bound-

aries is still not fully understood; however, significant structure-function correspon-

dences may be derived at the aggregate level (Honey et al. 2009, Honey et al. 2010).

Smith et al. delineated structural differences, suggesting that the number of folds

and thickness of the cortex could be associated with whole-brain functional networks

(Smith et al. 2019). Furthermore, inter-subject variability in topography occurs due

to subject-specific cognitive style and strategy to perform a task over time (Seghier

and Price 2018), which could augment the underlying learning processes, e.g., mo-

tor and perceptual learning (Herzfeld and Shadmehr 2014, Wu et al. 2014, Baldas-

sarre et al. 2012, Singh et al. 2016, Krakauer 2006).

Intra- and inter-subject variability can be explained by scale-dependent brain networks

in spatial, temporal and topological domains (Betzel and Bassett 2017, Betzel et al.

2019). For example, diversity in spatial organisation of the brain networks can be inves-

tigated either at cellular or system level. The sources of intra- and inter-subject variabil-

ity in brain dynamics may be identifiable using multi-scale analysis tools (Betzel et al.

2019) although the interpretation of brain connectivity networks at different scales may

not be straightforward (Raichle 2009).

Integrating intrinsic brain activities (i.e., resting state activities) into BCI design could

offer experimental and methodological advantages for scrutinising task-specific brain

dynamics (Northoff et al. 2010). While it has been argued that the brain is primarily

reflexive, responding according to external stimuli/environmental demand, the brain

also performs many intrinsic functions including signal acquisition, maintenance, and

interpretation (Raichle 2009, Raichle 2010). Supporting the critical role of intrinsic brain

activity, it consumes 20% of the body’s energy (Clarke 1999). Thus, understanding the
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role of resting EEG might supplement BCI performance (Northoff et al. 2010, Suk et al.

2014, Morioka et al. 2015).

2.3.2 BCI performance predictors

Around 15-30% of users are inherently not able to produce task-specific signature ro-

bust enough to control a BCI (Blankertz et al. 2009, Vidaurre and Blankertz 2010). The

underlying causes of this BCI illiteracy are not well-understood; however, diverse psy-

chological and neurophysiological predictors appear to be associated with BCI per-

formance (Blankertz et al. 2009, Vidaurre and Blankertz 2010, Hammer et al. 2012, Je-

unet et al. 2015, Sannelli et al. 2019, Ahn and Jun 2015, Reichert et al. 2015, Zhang et al.

2015b, Acqualagna et al. 2016, Vasilyev et al. 2017, Jensen et al. 2011).

Cognitive and neurological factors including functions and anatomy along with emo-

tional and mental processes give rise to intra- and inter-subject variability affecting the

performance of SMR-based BCI (Smith et al. 2019, Seghier and Price 2018, Betzel and

Bassett 2017, Betzel et al. 2019, Wens et al. 2014, Reichert et al. 2015, Zhang et al. 2015b,

Acqualagna et al. 2016, Vasilyev et al. 2017). Time-variant cognitive factors such as fa-

tigue, memory load, attention and reaction time modulate instantaneous brain activity,

and can cause inconsistent SMR-based BCI performance (Fox et al. 2015, Hammer et al.

2012, Jeunet et al. 2015, Sannelli et al. 2019, Ahn and Jun 2015, Darvishi et al. 2018).

Furthermore, users’ characteristics such as lifestyle, gender, and age can influence BCI

performance (Ahn and Jun 2015). Kasahara et al. illustrated that a neuroanatomi-

cal feature, i.e., gray matter volume is associated with SMR-based BCI performance

(Kasahara et al. 2015).

The structural and functional differences may characterise dynamic baseline activities

manifested in resting-state network (RSN) dynamics. RSNs represent large-scale spa-

tiotemporal structures exhibiting intrinsic brain activities that are thought to be func-

tionally relevant (Deco et al. 2011). Studies have shown intra- and inter-subject variabil-

ity in sensorimotor RSN, which may have implications for BCI performance variability

(Wens et al. 2014, Reichert et al. 2015, Zhang et al. 2015b, Acqualagna et al. 2016, Vasi-

lyev et al. 2017, Jensen et al. 2011). It has been hypothesized that SMR-based BCI per-

formance predictor is reliable for people who display strong resting EEG amplitudes

(Sannelli et al. 2019, Suk et al. 2014, Blankertz et al. 2010). Table 2.1 shows a list of intra-

and inter-subject BCI performance predictors.
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Table 2.1. Intra- and inter-subject BCI performance predictors.

Study Subject* Task Type Task Description Predictor

(Edelman et al. 2019) 68 MI, Rest

LH, RH, LH+RH

User engagement(Continuous cursor or

robotic arm control)

(Faller et al. 2019) 40 Visuo-motor
Virtual reality-based

Arousal
plane control

(Sannelli et al. 2019) 80 MO, ME, MI

MO: LH, RH, Foot Tiredness, imagination

ME: LH, RH, RF strength, motivation,

MI: LH, RH, RF uneasiness

(Saha et al. 2019a) 5 MI RH, RF
Cortical regions

of interest

(Perdikis et al. 2018) 2 (SCI) MI

Mutual learning

(parameters derived

LH, RH, LH+RH, from interface-

LF+RF, Rest application, BCI output,

and EEG)

(Darvishi et al. 2018) 10 MI LH, RH Reaction time

(Jochumsen et al. 2017) 47 ME Palmar grasp Motor training

(Saha et al. 2017b) 9 MI
LH, RH, LF+RF,

Optimal channels
Tongue

(Úbeda et al. 2015) 5 ME
Continuous Cursor Kinematic parameters,

control i.e., speed, trajectory

(Jeunet et al. 2015) 18

Motor: LH Personality and

Mental Non-motor: mental Cognitive Profile;

Imagery rotation and Neurophysiological

mental subtraction markers

(Kasahara et al. 2015) 30 MI
LH, RH (Finger- Gray matter

thumb opposition) volume

(Suk et al. 2014) 83
Attention LH, RH,

Resting EEG
task Foot

(*Subjects were healthy unless specified otherwise; SCI: spinal cord injury; MI: motor imagery;

ME: motor execution; MO: motor observation; LH: left hand, RH: right hand; LF: Left Foot; RF:

right foot)
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2.4 Transfer Learning

2.4.1 Covariate shift and transfer learning

Transfer learning techniques originating from the field of machine learning have been

adopted to compensate BCI systems for inter-subject and inter-session variability of

EEG feature distributions (Fazli et al. 2015, Jayaram et al. 2016). A key idea is to regu-

larise BCI model parameters for covariate shift adaptation. Covariate shift occurs when

distributions of training and test data differ significantly although their conditional

distributions may remain unchanged (Krusienski et al. 2011). Figure 2.1 schematically

illustrates the idea of covariate shift when the training and test data distributions are

different. The underlying time-variant and subject-specific brain dynamics depends on

associated psychological and neurophysiological factors (Blankertz et al. 2009, Vidau-

rre and Blankertz 2010, Hammer et al. 2012, Jeunet et al. 2015, Sannelli et al. 2019, Ahn

and Jun 2015, Reichert et al. 2015, Zhang et al. 2015b, Acqualagna et al. 2016, Vasi-

lyev et al. 2017, Jensen et al. 2011) and cause covariate shift in EEG-derived feature

distributions (Fazli et al. 2015, Jayaram et al. 2016, Krusienski et al. 2011).

The earliest attempts to overcome inter-session variability include preliminary training

sessions to enhance the user’s ability to modulate brain signals robust enough to con-

trol BCI (Wolpaw et al. 1991, Wolpaw and McFarland 1994, Birbaumer et al. 1999). The

training sessions required for users are tedious and inconvenient. Therefore, machine

learning-based BCI models were introduced to reduce individual training session for

each BCI use, in which a model has to be calibrated based on the data at the beginning

of each session (Ramoser et al. 2000, Blankertz et al. 2002). Recent studies have pro-

posed SMR-based BCI without any session- and subject-specific calibration utilising

the concept of transfer learning (Fazli et al. 2015, Jayaram et al. 2016, Fahimi et al. 2018,

He and Wu 2019, Kang et al. 2009, Kang and Choi 2014, Saha et al. 2017a, Saha et al.

2017b, Saha et al. 2019a, Li et al. 2010, Lotte 2015, Niazi et al. 2013, Lu et al. 2010).

2.4.2 The concept of inter-subject associativity

Most of the existing transfer learning approaches are based on regularisation or inter-

session/subject transfer of model parameters, indirectly transferring knowledge per-

taining to the sources of intra- and inter-subject variability (Lotte 2015, Samek et al.

2013). Many works on transfer learning for SMR-based BCI proposed the use of a very
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Figure 2.1. A schematic illustration of covariate shift in the feature space and application of transfer

learning methods for covariate shift adaptation.

few training samples from the target subject (Lu et al. 2010, Fahimi et al. 2018, He and

Wu 2019, Kang et al. 2009, Kang and Choi 2014). Recent studies have utilised rest-

ing EEG from the target subject incorporated into the transfer learning model before

proceeding to the actual experiment (Morioka et al. 2015, Suk et al. 2014). While time

and effort for building those models could be significantly reduced, they still require a

training session. Others have recently demonstrated the feasibility of inter-subject BCI

models without any training trial from the target subject (Saha et al. 2017a, Saha et al.

2017b, Saha et al. 2019a). However, their performance must be improved significantly

prior to real-life use of such BCI systems.
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A transfer learning method is worthwhile if the subjects share nonstationarities that

can be modeled in an inter-subject context, but ineffective if the subjects exhibit un-

like nonstationarities (Samek et al. 2013). The term inter-subject associativity refers to

potential inter-subject BCI performance predictors, which could be incorporated into

BCI design to augment transfer learning (Kang and Choi 2014, Wronkiewicz et al.

2015, Saha et al. 2017a, Saha et al. 2017b, Saha et al. 2019a). Source-space analysis

for detecting inter-subject associative EEG channels can improve SMR-based BCI per-

formance (Wronkiewicz et al. 2015, Saha et al. 2017a, Saha et al. 2019a). For exam-

ple, the classification accuracies for two different subject pairs are 90.36± 5.59% and

63.21± 8.43%, suggesting not both subject pairs can be used to achieve a good perfor-

mance (Saha et al. 2019a).

A set of generalised BCI frameworks would be more feasible to implement as com-

pared to a common BCI framework for all users. Because, it is evident to observe

significant inter-subject variability in EEG signals (Saha et al. 2017b). Successful quan-

tification of inter-subject associativity may suggest clustering of subjects, each cluster

having subjects with EEG signal characteristics that are similar or can be interpreted in

an inter-subject context. Considering the increasing volume of EEG-BCI databases, it

may become feasible to quantify the exact sources of inter-subject/session variability as

well as indicators of inter-subject associativity allowing training sessions to be reduced

to a minimum (Lotte 2015). Recent advances in deep learning methods demonstrate a

potential application that alleviates intra- and inter-subject variability in BCI settings

(Chiarelli et al. 2018, Fahimi et al. 2018). Meanwhile, recent studies suggest that the

quantification of inter-subject associativity could be equally important to increase the

efficacy of only machine learning-based transfer learning strategies for covariate shift

adaptation (Perdikis et al. 2018, Saha et al. 2019a, Saha et al. 2017b, Wronkiewicz et al.

2015, Kang et al. 2009, Kang and Choi 2014).

2.5 Conclusion

Intra- and inter-subject variability is undeniable due to time-variant factors related to

the experimental setting and underlying psychological and neurophysiological param-

eters. Besides recent extensive use of transfer learning methods for the covariate shift

adaptation, many recent works have sought to find suitable psychological and neu-

rological predictors for BCI performance. The assimilation of such predictors into a
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subject independent context may reduce or eliminate the tedious session or subject-

specific training by supplementing the performance of existing transfer learning meth-

ods. However, collecting a priori information related to BCI performance predictors

could be challenging. Inter-subject topographical associativity characterised by rest-

ing EEG could provide a viable alternative solution to reduce the calibration time to a

minimum (Northoff et al. 2010, Suk et al. 2014, Morioka et al. 2015) assuming we under-

stand the significance of intrinsic brain activities, i.e., resting EEG signals, and the role

of RSN topographies on SMR-related brain functions.
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Chapter 3

Localisation of
Inter-subject Sensorimotor

Cortical Source

THIS chapter introduces an event-related cortical sources estimation

technique from subject-independent EEG recordings for SMR-based

BCI. By using wavelet-based maximum entropy on the mean (wMEM),

task-specific EEG channels are selected to predict right hand and right foot

sensorimotor tasks, employing common spatial pattern and regularised

common spatial pattern. EEG from five healthy individuals were evaluated

by a cross-subject paradigm. Prediction performance was evaluated

via a two-layer feed-forward neural network, where the classifier was

trained and tested by data from two subjects independently. The highest

mean prediction accuracy achieved for a specific subject pair by using

selected EEG channels was on average (90.36 ± 5.59) and outperformed

that achieved by using all available channels (86.07 ± 10.71). Spatially

projected cortical sources approximated using wMEM may be useful for

capturing inter-subject associative sensorimotor brain dynamics and pave

the way towards an enhanced subject-independent BCI.

Associated Publication: Saha, S., M.S. Hossain, K. Ahmed, R. Mostafa, L.

Hadjileontiadis, A. Khandoker and M. Baumert, ”Wavelet entropy-based

inter-subject associative cortical source localization for sensorimotor BCI”,

Frontiers in Neuroinformatics, vol. 13, 2019.
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3.1 Introduction

Most BCI require subject-specific training sessions, which can annoy users and limit

BCI applications such as affective states assessment (Andujar et al. 2015), lie detection

(Wang et al. 2016), and gaming (van de Laar et al. 2013). Furthermore, not all the users

are able to control BCI due to BCI illiteracy (Allison and Neuper 2010) and spatio-

temporally complex RSN dynamics over time and across individuals (Jensen et al.

2011). Many factors, including time-variant psychophysiological, neuroanatomical

traits and user’s basic characteristics, essentially cause unreliable estimates of RSNs,

which engender short and long-term brain signal variation over time and across indi-

viduals (Goncalves et al. 2006, Zhang et al. 2015a, Acqualagna et al. 2016, Kasahara et al.

2015, Ahn and Jun 2015, Athanasiou et al. 2017). Resting state EEG-derived spectral en-

tropy and power spectral density are associated with sensorimotor BCI performance

(Zhang et al. 2015a, Acqualagna et al. 2016). Attention and motivation are psychologi-

cal predictors that reflect sensorimotor BCI performance (Hammer et al. 2012). Taking

anatomical information such as electrode positioning and head morphologies into con-

sideration can augment subject-to-subject transfer learning and thus BCI performance

(Wronkiewicz et al. 2015).

The inter-subject and inter-session variabilities of brain dynamics significantly degrade

the performance of EEG-based BCI (Saha et al. 2017b). Subjects who show dissociative

brain responses, i.e., responses with negligible commonalities across individuals, can-

not be accommodated by a generic BCI framework. On the contrary, subjects showing

significant commonalities in their brain responses achieve relatively high performance

in the context of subject independent MI classification (Saha et al. 2017b, Saha et al.

2017a). A recent EEG-based experiment on drowsiness detection signifies the influ-

ences of intra- and inter-subject variability and has proposed multi-subject transfer

framework for reducing calibration time (Wei et al. 2018).

This chapter explores inter-subject associative brain responses to identify pairs of in-

dividuals who demonstrate similar EEG dynamics during MI tasks. We anticipate

higher classification accuracy in people with higher inter-subject associativity. Previ-

ous works used the Indian Buffet process and Kullback-Leibler divergence to iden-

tify inter-subject associative individuals prior to classifying multi-subject EEG signals

and showed that inter-subject associativity could be potentially used for multi-subject
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subspace learning (Kang et al. 2009, Kang and Choi 2014). Thus, inter-subject asso-

ciative BCI could eliminate the need for subject-specific calibrations despite differ-

ences in cortical activities across subjects, mostly because of various time variant psy-

chophysiological factors (Goncalves et al. 2006) and individuals’ basic characteristics

(Ahn and Jun 2015). Compensating for inter-subject difference in brain responses can

be crucial for improving BCI performance. One approach is to select inter-subject

associative EEG channels that exhibit robust activation during specific cortical tasks

(Saha et al. 2017a). The implicit assumption is that eliminated channels represent

RSN and subject-specific MI dynamics free from signatures that are common between

subjects. Moreover, individual brain dynamics sometimes show inter-subject cortical

association during external stimulation, i.e., visual (Hasson et al. 2004) and auditory

(Abrams et al. 2013) events. Subjects having common psychological perspective share

associative brain responses during natural vision (Lahnakoski et al. 2014). An ensem-

ble of classifiers has been used to classify mental states from single trial inter-subject

EEG recordings (Fazli et al. 2009). In carefully selected subjects, common spatial pat-

tern (CSP)-based subspaces learning methods deal with inter-subject/session data ef-

ficiently (Samek et al. 2013, Samek et al. 2014). Subject independent BCI is currently

feasible (Abibullaev et al. 2013) and could be used in research, rehabilitation and gam-

ing. A recent study used a particle swarm optimization based inter-subject common

feature learning technique for BCI implementation without subject-specific training

(Atyabi et al. 2017). An unsupervised spectral transfer using information geometry

has shown promising classification accuracy in cases using fewer or no trials from the

target subject (Waytowich et al. 2016).

The aim of this study is to identify inter-subject associative electromagnetic sources,

estimated from wavelet-based maximum entropy of the mean (wMEM) on single trial

EEG, and project them into a three-dimensional (3D) head model. Results show that

wMEM captures associative inter-subject sensorimotor dynamics, which can be utilised

to assess inter-subject cortical associativity.

3.2 Methods

3.2.1 Data and experimental settings

We used dataset IVa of BCI Competition III, comprising of EEG of five healthy sub-

jects specified as aa, al, av, aw and ay recorded during right hand and right foot MI
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(Blankertz et al. 2006). The dataset consists of 280 trials for each subject, i.e., 140 trials

for each class. A visual cue was given before each trial, consisting of 3.5 sec of EEG

recordings with 118 electrodes (Extended 10/20 system). To eliminate the effect of vi-

sual cues, 2.5 sec of recordings following 0.5 sec of the visual cues were considered

corresponding to MI for experimentation. Figure 3.1 illustrates the spatial distribution

of EEG channels (Extended 10/20 System) and the timing of recording paradigm.

Two experiments for evaluating the inter-subject associative sources and estimating

the inter-subject classification performance, respectively, were carried out on any two

subjects at once as shown in Figure 3.2, i.e., all possible pairs of the subjects set were

considered. Then, we compared the classification performance achieved by using all

118 channels versus that achieved by the selected channels.

Any two subjects’ EEG from the set of five participants (aa, al, av, aw and ay) are repre-

sented as X and Y, respectively. The total number of trials Tr available for each subject

(280) was divided into 10 equal sets as follows:

X = [x1, x2, ........., x10]; Y = [y1, y2, ........., y10]. (3.1)

Then, sets of inter-subject EEG are formed:

XY = [x1y1, x2y2, ........., x10y10], (3.2)

where each component of XY contains Tr
10 trials from subject X that were used to train

the classifier and Tr
10 trials from subject Y that were used to test the classifier. On each

set of XY, wMEM was computed to estimate inter-subject associative cortical sources

and to test the classification performance. The classification performance was averaged

over the ten sets.

Figure 3.2 shows the block diagram demonstrating the experimental settings corre-

sponding to preprocessing, channel selection and classification of inter-subject EEG

signals. In the preprocessing step, inter-subject set of EEG trials were band-pass filtered

(8 Hz and 40 Hz), using a Butterworth filter of order ten (Saha et al. 2017b, Saha et al.

2017a). For each class, trials were separated to apply the wMEM method to investigate

class-specific inter-subject associative cortical sources and then to select EEG channels

representing the mostly activated sensorimotor sources. The union of two channel sets

corresponding to right hand and right foot was considered the optimal channel set for

a specific subject pair. The numbers of channels used in this study varied between two

different cases: Case I – all available 118 channels were employed for classification;

Page 21



3.2 Methods

Figure 3.2. Block diagram representing the EEG trial structure and the proposed methodology to

identify inter-subject associative EEG channels and to evaluate the BCI performance.

Preprocessing step includes constructing a set of EEG trials from two different subjects

with a ratio of 1:1 and applying a Bandpass filter with corner frequencies of 8Hz and

40Hz. Inter-subject trials are separated according to the nature of motor imagery tasks,

i.e., right hand or right foot. Then the class-specific set of trials were used to estimate

inter-subject cortical sources and consequently EEG channels. For evaluating the BCI

performance, trials from one subject were used to establish the single-trial BCI classifier

model, which was then evaluated on the trials acquired from a different subject.

Case II – only those channels selected by the wMEM approach (<118) were employed

for classification. Apart from the numbers of channel, all other parameters were kept

identical for evaluating BCI classification performance.

To evaluate inter-subject BCI performance, CSP without and with covariance estima-

tion regularisation (Ramoser et al. 2000, Lotte and Guan 2011) were computed to spa-

tially project multichannel EEG. Wavelet decomposition-based subband entropy
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(Daubechies 3, level: 3) was calculated to obtain features (Saha et al. 2017b, Saha et al.

2017a) for a two-layer feed-forward neural network classifier as described previously

(Svozil et al. 1997).

3.2.2 Wavelet-based source localisation

Time-frequency forward model and source distribution

Assuming that oscillatory brain activities result from underlying processes occurring

at different frequency bands located in extended cortical areas (Lina et al. 2014), a time-

frequency (t-f) forward model utilising discrete wavelet transform of the data as well

as the brain sources along with spatial clustering in homogeneous parcels can be de-

fined (Tadel et al. 2011). To calculate the discrete wavelet transform, real Daubechies

filter banks with four vanishing moments were used. The complete details of the nu-

merical implementation of wMEM method can be found in (Lina et al. 2014). In this

study, we assume that single trial inter-subject EEG signals result from diverse phys-

iological background activity and MI induced cortical activities. Ensemble-averaging

over class-specific MI trials effectively reduces the effect of independent physiological

fluctuations, and thus offers a potential tool for locating sensorimotor cortical sources.

The underlying hypothesis is that wMEM-based cortical sources on an inter-subject

EEG trials set would give only inter-subject associative cortical sources, in which only

the inter-subject common EEG patterns related to right hand or right foot MI are de-

tected.

The t-f forward model depends on the lead field matrix that governs the relationship

between co-registered bioelectric sources and the set of sensors. A generalised anatom-

ical MRI template (ICBM152), estimated from MRI scans acquired from 152 healthy

subjects, was used to create a realistic head model (Fonov et al. 2011). The template

is included in the Brainstorm software (Tadel et al. 2011). The template comprises of

three head layers, i.e., scalp, outer skull and inner skull, which were approximated us-

ing T1 MRI sequences. It exhibits greater contrast and captures fine definition of top

boundary of the brain. OpenMEEG software was then used to solve the steady-state

Maxwell’s equations to calculate the lead field matrix by establishing a realistic rela-

tionship between the bioelectric sources in the ICBM152 and the co-registered sensors

on the scalp (Gramfort et al. 2010).
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The EEG inverse solution utilises a distributed source model, where a large number of

dipolar sources is disseminated beside the cortical surface. Depending on the anatomi-

cal restrictions, each dipole is oriented orthogonally with the local cortical surface. The

linear relation of the source amplitude to the recordings can be written as

M = GJ + E, (3.3)

where M is the recording matrix of dimension (q× τ) which contains EEG signals of q

channels at τ time samples. E represents Gaussian recording noise. J is an unknown

matrix of the size (r × τ) that represents the current density of the r dipolar sources

along the tessellated cortical surface. G represents the lead field matrix (q× r) and is

estimated by solving the t-f forward problem that evaluates the contributions of every

dipolar source on the electrodes. Hence, the inverse solution approximates J from the

recorded data M and the evaluated lead field matrix G.

wMEM inverse solution

Solving the ill-posed inverse problem of source localisation requires some a priori infor-

mation to be incorporated inside the regularisation framework so that a unique solu-

tion is obtained. In the MEM framework, the amplitude of the sources J is considered

a multivariate random variable j of length r that has a probability distribution dp(j). In

the MEM framework, to regularise the inverse problem some previous knowledge on j

is incorporated as reference distribution dv(j). This reference distribution represents a

realistic spatial model which presumes the brain activity is organised into K(K << r)

cortical parcels and every parcel is related to a secret state variable. This variable con-

trols the parcel’s activity, whether or not the parcel is active during a certain activity. A

data driven parcellization method is used to spatially cluster the cortical surface into K

nonoverlapping parcels. The technique consists of first applying a projection method

named as the multivariate source prelocalisation technique, estimating a probability-

like coefficient for every dipolar sources distributed along the cortical mesh. This co-

efficient characterises the contribution of every source to the data, followed by region

growing around local maxima.

In the MEM reference model, every parcel is assigned a secret variable to model the

probability of the parcel’s activity, whether or not it is active. It is to be noted that

the multivariate source prelocalisation coefficients of all the sources within the parcel

was used to initialize this probability. Based on the state of activation of the parcels,
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Chapter 3 Localisation of Inter-subject Sensorimotor Cortical Source

MEM inference can switch any of these parcels on or off. It is also able to approximate

a contrast of source intensities within the selected active parcels. Usually, MEM is

applied for solving the inverse problem in the time domain. wMEM is the wavelet

variant of MEM that operates in the time-frequency (Lina et al. 2014).

While the joint probability of the wavelet coefficient of all sources at a specific time and

scale is represented as p(w), the MEM estimation deduces the expectation Ep[w] by

assuming a reference probability µ(w) from which the entropy deviation is minimised

under the goodness-of-fit data constraint. The entropy Sµ( f ) of any µ density, p(w) =

f (w)µ(w), can be described as follows:

Sµ( f ) = −
∫

w
f (w)ln f (w)µ(w)dw, (3.4)

where w is the wavelet coefficients of the sources. The optimum solution is given by

w∗ = Ep∗ [w], where p∗(w) = f ∗(w)µ(w), considering f ∗ = argmax f Sµ( f ).

with
∫

w Gw f (w)µ(w)dw = d∗,
(3.5)

where d∗ can be obtained from d∗ = W−1δτ(Wd) and W = ∑
− 1

2
d is the whitening ma-

trix. This whitening matrix can be evaluated from a baseline EEG recording assuming

no signal of interest is contained in the baseline recording. δτ(w) represents the soft

shrinkage of the wavelet coefficient which can be defined as

δτ(w) =

(
1− τ

|w|

)
+

w, (3.6)

where w+ = w for w > 0 and w+ = 0 for other cases. The threshold τ of each channel

is obtained from the variance of the highest frequency wavelet coefficients, evaluated

using a median estimator.

With respect to optimum µ-density f ∗, the mean of the wavelet coefficients of the

sources is used to estimate the expectation of the coefficient. Finally, the expectation of

the coefficient with respect to the f ∗, can be expressed as the a posteriori mean estimate

of the wavelet coefficients:

w∗ =
∫

w f ∗(w)µ(w)dw =
d

dξ
F∗µ (ξ)

∣∣∣∣
ξ=Gtλ∗

, (3.7)

with F∗µ (ξ) = ln
∫

eξtwµ(w)dw and lnZ(λ) = F∗µ (Gtλ). In (3.7) λ∗ is the unique solution

of

λ = argmaxλD(λ)
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(a)

(b)

Figure 3.3. Motor imagery induced inter-subject (subject pair al-ay) cortical sources on a MRI head

model estimated via wMEM: from left-right, coronal view, sagittal view and axial view,

respectively for two motor imagery tasks: (a) right hand and (b) right foot movement.

where

D(λ) = λtd∗ − F∗µ (G
tλ)− 1

2
λtη∗λ

and η∗ is a covariance matrix of residual noise.

For localising cortical sources, either the time courses of the sources obtained by in-

verse wavelet transform or spatial cortical map of the wavelet coefficients have been

considered. A complete description of wMEM-based localisation can be found in

(Lina et al. 2014).

To implement the wMEM-based source localisation for the inter-subject EEG, the open

source Brainstorm software was used (Tadel et al. 2011). MI-induced sources were

projected into the 3D anatomical head model. For each class, all available trials were

averaged and a noise covariance matrix was estimated. Finally, the BrainEntropy MEM

with the wMEM option was used to calculate the sources from the averaged data.

Inter-subject associative EEG channel selection

Following class-specific wMEM-based cortical source localisation, careful visual in-

spection on the MRI head images (i.e., coronal, sagittal and axial view) and 3D cortex
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(a)

(b)

Figure 3.4. wMEM based inter-subject (subject pair al-ay) associative cortical source localisation

illustrated on 3D cortex cartoon model: from left-right, top view, side view (right

hemisphere) and side view (left hemisphere), respectively for (a) right hand and (b)

right foot motor imagery. In (b), the activity visible on the top view is not clearly

projected on the side view (left hemisphere) as the activated sources lie mostly within

relatively inner part of the cortex (in between gyri).

cartoon model as shown in Figure 3.3 and Figure 3.4, respectively, was carried out. For

each class, all time instances were examined for activated sources within the trial du-

ration, i.e., 0-2.5 sec. The EEG channels located on/around the estimated sources on

the 3D head model template were considered as task-specific inter-subject associative

optimal channels. Figure 3.3 and Figure 3.4 illustrate inter-subject associative cortical

source estimation for subject pair al-ay at a time instance. Notably, 3D cortex head

model can be examined visually by rotating the view at any of the 360◦.

3.2.3 Common spatial pattern with and without regularisation

The aim of CSP is to maximise the difference between class specific features (Ramoser et al.

2000). Here, we use CSP with tuning the covariance estimation, which effectively deals
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with undesired outliers and is suitable in case of small training trials (Lu et al. 2010,

Lotte and Guan 2011).

The EEG signal is represented by E and of size N × P, where N is the number of chan-

nels and P is the number of samples per trial. For the conventional CSP algorithm, esti-

mation of the sample based covariance matrix is required. The sample covariance ma-

trix of a trial E is normalised to the total variance as (Lu et al. 2010, Ramoser et al. 2000).

S =
EET

trace
[
EET] , (3.8)

where T denotes the transpose of a matrix.

If K trials are available for training corresponding to each class for a subject, indexed

by k as E(c,k) that refer to the S(c,k), based on (7), k = 1, 2, ......, K, the mean sample

covariance matrix across the trials is given by

S̄c =
1
K

K

∑
k=1

S(c,k), (3.9)

where c ∈ {1, 2} represents two classes of the trial associated with the MI tasks.

The discriminative spatial patterns in CSP are calculated based on the sample mean

covariance matrix estimation based on (3.9). The next section will introduce regulari-

sation in CSP.

Covariance matrix estimation with regularisation:

Regularisation is achieved by biasing the covariance estimation away from their sample-

based values towards more physically plausible values, which reduces the variance of

the sample-based estimates while tending to increase bias (Lu et al. 2010). This is done

by using one or more regularisation parameters (i.e., β and γ in this paper).

The regularised average spatial covariance matrix for each class is defined as

∑̂c(β, γ) = (1− γ)Ω̂c(β) +
γ

N
trace

[
Ω̂c(β)

]
· I. (3.10)

Here, β and γ are regularisation parameters (0 ≤ β, γ ≤ 1) and I is the identity matrix.

Ω̂c(β) comprises the covariance matrix for the trials from the specific subjects, as well

as generic trials, and is given by

Ω̂c(β) =
(1− β).Sc + β.Ŝc

(1− β).M + β.M̂
. (3.11)
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Here, Sc is the sum of the sample covariance matrices for all M training trials for class

c :

Sc =
K

∑
k=1

S(c,k). (3.12)

Ŝc is the sum of the sample covariance matrices for K̂ generic training trials with co-

variance matrix E(c,k̂) for class c:

Ŝc =
K̂

∑
k̂=1

S(c,k̂). (3.13)

Here, Sc and Ŝc are normalised and are analogous to the sample covariance matrix in

(6.1). The objective of Ŝc is to reduce the variance in the covariance matrix estimation

and produce more reliable results.

Feature Extraction In RCSP

The regularised composite spatial covariance is formed and factorised as (Lu et al. 2010)

∑̂(β, γ) = ∑̂1(β, γ) + ∑̂2(β, γ) = Û∧̂ÛT. (3.14)

Here, Û denotes the matrix eigenvectors and ∧̂ denotes the diagonal matrix of corre-

sponding eigenvalues. The eigenvalues are assumed to be sorted in descending order

throughout this paper (Lu et al. 2010), (Ramoser et al. 2000).

Finally, the projection matrix is formed as (Lu et al. 2010)

Ŵ = B̂T∧̂−1/2ÛT, (3.15)

where B̂ denotes the matrix of eigenvectors for the whitened spatial covariance matrix

and defined as

B̂ = ∧̂−1/2ÛT∑̂c(β, γ)Û∧̂−1/2. (3.16)

In RCSP, an input trial E is projected as (Lu et al. 2010)

X̂ = ŴTE. (3.17)

To obtain the most discriminative features for both classes, the optimal channels are to

be selected from the leftmost and rightmost channels. For example, the first channel
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Table 3.1. Number of selected EEG channels.

Subject Pair RH RF Total

aa-al 36 36 43

aa-av 33 39 42

aa-aw 40 42 44

aa-ay 42 37 45

al-av 36 37 43

al-aw 40 23 46

al-ay 28 30 33

av-aw 42 37 46

av-ay 47 45 55

aw-ay 46 54 59

(RH: Right Hand, RF: Right Foot)

represents the most distinguished features for class 1 and the last channel represents

the most distinguished features for class 2. As the channel selection converges to the

central channel of the X̂, the features become poor and may hardly distinguish dif-

ferent classes. It is to be noted that RCSP equals traditional CSP when β = γ = 0.

The following combinations of γ and β values were considered during regularisation

(Wang et al. 2006, Lu et al. 2010, Saha et al. 2017b):

β = (0, 0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9)

γ = (0, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9) .

A total of four CSP components, two for each class, were selected for extracting fea-

tures (Wang et al. 2006).

3.3 Results and Discussion

3.3.1 Selection of inter-subject associative channels

Figure 3.3 and Figure 3.4 illustrate inter-subject associative source locations for subject

pair al-ay at a time instance. Table 3.1 lists the total number of selected channels used to

classify MIs (Case II). Although the number of selected channels differed between right

hand and right foot MI, many common channels were identified for both classes. Some

of the projected cortical sources lie within deeper regions of the brain, thus maintaining
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good signal-to-noise ratio in the scalp EEG becomes critical. Modelling the signal at-

tenuation from cortical sources located within deeper brain areas to the EEG electrode

montages might play an important role for dealing with noise efficiently (Cosandier-

Rimélé et al. 2008). Specific parts of the interconnected cortico-subcortical networks

show sensorimotor signatures. For example, basal ganglia and the ventrolateral part of

the thalamus show sensorimotor activations (Gerardin et al. 2000, Hétu et al. 2013). Pro-

jections of sensorimotor activities to deeper brain areas are present in motor cortex and

supplementary area (Hétu et al. 2013). Possibly, sensorimotor activities in subcortical

networks manifest in EEG signals. Previous works have exploited subject-specific EEG

source localisation based information for improving sensorimotor BCI performance

(He et al. 2015, Congedo et al. 2006). The cortical sources corresponding to MI shown

in Figure 3.3 and Figure 3.4 lie mostly within subcortical areas. The validation of the

implication about the subcortical sources as mostly activated during inter-subject MI

requires further investigation. Notably, it has been hypothesized that the estimated

sources delineate only the inter-subject associative sources; the MI sources that are not

common in the subject pair should not present in this experimental context, because the

source localisation method was applied on inter-subject set of EEG comprising equal

number of trials from each subject.

3.3.2 Motor imagery prediction performance

Table 3.2 shows the MI prediction performance averaged over ten sets of inter-subject

data of two subjects. Each set consisted of 56 trials in total, the first 28 trials from

a subject were used to train the classifier and the remaining 28 trials from another

subject were used to evaluate the performance. Each subject pair was used twice, al-

ternating the training and evaluation subjects. The highest prediction performance

(90.36± 5.59%) was achieved for subject pair ay-al using CSP with covariance regu-

larisation. This demonstrates the feasibility of inter-subject BCI for subjects who show

similar EEG patterns. In this case, only 33 of the 118 available channels were em-

ployed, reflecting the inter-subject associative cortical areas. Alternating the order

of training and evaluation trials for subject pair al-ay reduced the prediction perfor-

mance to (84.64 ± 13.15%), suggesting that the performance of CSP depends on the

training data. Since CSP is a data driven method it can be overfitted, adapting to out-

liers in the training set (Sannelli et al. 2016). Tuning of the covariance estimation via
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Figure 3.5. Box plots illustrating mean prediction performances for different subject pairs: the per-

formances were measured while applying common spatial pattern (c)-(d) with (RCSP)

and (a)-(b) without (CSP) covariance estimation regularisation.

two regularisation parameters, γ and β can alleviate this problem. Overall, regularisa-

tion of the covariance matrix enhanced prediction performances compared to standard

CSP. For subject pair aa-al, significant improvements in performances were evident

(64.64± 14.33% vs. 76.79± 9.11%), further demonstrating the potential of wMEM as a

tool for localising inter-subject associative cortical sources.

Figure 3.5 compares average prediction performance and highlights cases where se-

lected EEG channels outperformed results obtained when using all available 118 chan-

nels. In Figure 3.5, (a) and (c) compare the mean performances of the first ten sub-

ject pairs summarised in Table 3.2, while (b) and (d) compare the mean performances

of the last ten subject pairs for CSP without and with covariance regularisation, re-

spectively. Applying CSP with covariance estimation, the median values of average

classification accuracies for the first ten subject pairs using all channels and selected

channels are 71.43% and 71.79%, respectively, while they were 69.46% and 70% for the

last ten subject pairs. Thus, the overall results might not indicate a generalised trend
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of improved performance of inter-subject BCI performance. However, particular sub-

ject pair-specific (al − ay) improved performance would suggest a novel application

of wMEM and a probable role in investigating inter-subject sensorimotor dynamics.

A reduced number of channels can be used to achieve comparable performance while

lessening the computational cost.

3.3.3 Enhanced inter-subject associative sensorimotor dynamics

Localising task-induced cortical sources is important because specific sources provide

more informative and inter-class distinguishable attributes for predicting sensorimo-

tor events. The minimum current estimates algorithm, applied to magnetoencephalo-

gram recordings, suggest that the contralateral motor cortex is highly active during

intended movement direction (Wang et al. 2010b). Estimating sensorimotor cortical

sources with fine spatial resolution EEG source imaging could augment BCI in de-

coding complex MI tasks (Edelman et al. 2016). Measurement of entropy by different

means was shown to be useful for cortical source localisation. For example, Von Neu-

mann entropy was applied to classify MI tasks (Kamousi et al. 2007) and wavelet ridge

analysis-based MEM was applied to localise EEG sources (Zerouali et al. 2013). How-

ever, the cortical sources widely vary in the spatiotemporal domain across subjects that

makes the inter-subject source localisation challenging, as is evident from an electro-

magnetic spatiotemporal independent component analysis-based multi-subject EEG

study (Tsai et al. 2014).

Selecting inter-subject associative cortical sources can not only be used to sort out op-

timal task-induced EEG channels, but also can provide enhanced weight of associa-

tivity between subjects. Not well-understood variability due to functionally relevant

RSN (Wens et al. 2014) and sometimes outliers (Arvaneh et al. 2011) manifest in unde-

sired channels, which negatively contribute to the prediction performance. Basically,

efficiently dealing with the EEG inverse problem is challenging as the solution is non-

unique and unstable (Grech et al. 2008). However, the results presented here have

demonstrated that wMEM is a potential tool for approximating cortical sources orig-

inating inside/on the cortico-subcortical networks. Improved prediction accuracies

with reduced number of selected inter-subject channels indicate enhanced associativity

of the subjects’ sensorimotor dynamics. In (Hossain et al. 2016), wMEM was adopted

as a channel selection tool in subject-specific BCI settings in the first instance. Clarke

and Janday proposed MEM for solving the inverse problem (Clarke and Janday 1989)
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and Rice had proposed this method as the most probable solution to the inverse prob-

lem in EEG considering realistic neurophysiological constraints (Rice 1990). Lina et.

al. have recently proposed wMEM in the context of localising epileptic sources from

EEG data (Lina et al. 2014). The present study has adopted the wMEM method to

investigate inter-subject associative channels for improving subject independent BCI

performance. It demonstrates that selecting inter-subject associative channels could be

used to supplement transfer learning across subjects.

3.3.4 Study significance and limitation

Subject-to-subject and session-to-session transferability of trained model parameters

is inevitably critical for the generalisation of a BCI system (Jayaram et al. 2016). In

supervised machine learning-based applications, a principal assumption is that the

training and test data follow similar distributions. This assumption often fails and,

consequently, covariate shift occurs (Pan and Yang 2010). Covariate shift adaptation

has been a key strategy to compensate inter-subject and inter-session variability in BCI

(Sugiyama et al. 2007). However, this study aims at investigating inter-subject asso-

ciativity in cross-subject BCI paradigm (Saha et al. 2017b, Saha et al. 2017a). The aim

is to evaluate if there are similarities between two subjects’ neural substrates quanti-

fied by wMEM-based inter-subject cortical source localisation for MI tasks. Exploit-

ing inter-subject associativity, i.e., leveraging source space related neuroscience priors,

may augment transfer learning (Wronkiewicz et al. 2015) and reduce/eliminate the

calibration effort for BCI. The advantage of this cross-subject paradigm over pooled-

subject paradigm is that it directly investigates associativity of any two subjects’ brain

dynamics in source space. This study suggests that WMEM selection of EEG channels

could advance this goal beyond the reduction in computational cost due to fewer anal-

ysed channels because it has been hypothesized that the selected channels manifest the

inter-subject associative sensorimotor dynamics in source space.

It is to be noted that our results do not indicate a common trend of BCI prediction

performance for all subject pairs. Our goal was to identify pairs of subjects sharing

common sensorimotor dynamics. Thus, achieving poor BCI prediction performance

for any subject pair might manifest dissimilar MI-related dynamics between subjects

(Saha et al. 2017b, Saha et al. 2017a). On the other hand, it might not be improbable to

achieve good prediction performance for a subject pair only, assuming both subjects

share common sensorimotor dynamics related to right hand and right foot MI. Further
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studies would be necessary to explore the role of wMEM-based cortical source estima-

tion in subject pairs showing poor classification performance. This study is limited by

using data from a few subjects with no individual information on head/brain anatomy.

Another key limitation of this study is the manual selection of EEG channels by visu-

ally inspecting the MI-related source activation projected on the 3D head geometry. To

the best of my knowledge, this study is the first attempt to investigate the role of any

source localisation method on inter-subject EEG signals in the BCI context to evaluate

inter-subject associativity. Future studies should aim at extracting optimal channels

automatically, by imposing selection criteria in the 3D head model geometry source

space.

3.4 Conclusion

Brain dynamics reflected on RSN are complex and variable across individuals and,

thus, compensating inter-subject diversity is important for calibration-free BCI. In this

chapter, I have demonstrated that wMEM could be used to identify inter-subject asso-

ciative sources within the cortico-subcortical networks, which allow selecting optimal

EEG channels for classifying subject independent MI tasks. The improved prediction

performance utilising fewer, optimal EEG channels result in enhanced inter-subject co-

herence and suggest the suitability of wMEM for assessing inter-subject associative

sensorimotor oscillations.
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3.4 Conclusion

Table 3.2. Single trial motor imagery prediction performances.

CSP RCSP

Subject Case I Case II Case I Case II

Pair Mean±SD Mean±SD Mean±SD Mean±SD

aa-al 51.79±14.70 64.64±14.33 73.21±9.71 76.79±9.11

aa-av 54.64±10.25 55.71±7.38 66.79±6.53 66.07±10.00

aa-aw 55.36±10.28 62.86±11.93 68.93±10.92 72.86±7.93

aa-ay 53.93±12.76 58.93±17.11 75.00±8.58 72.14±13.24

al-av 53.93±6.40 51.07±4.47 68.21±6.40 65.71±7.75

al-aw 62.50±7.39 53.93±11.22 72.50±11.91 71.79±10.44

al-ay 73.57±13.38 71.78±11.47 83.21±12.26 84.64±13.15

av-aw 49.29±8.55 53.93±14.43 70.36±6.74 68.57±9.34

av-ay 62.50±10.81 62.86±11.81 72.50±10.39 71.79±8.49

aw-ay 47.50±10.39 53.21±11.84 66.79±7.54 70.00±9.25

al-aa 56.79±10.97 58.93±11.82 72.50±5.84 70.71±13.55

av-aa 52.14±13.70 52.50±5.84 67.14±9.34 64.29±7.14

aw-aa 56.07±9.68 56.43±13.86 64.64±7.23 63.21±8.43

ay-aa 57.86±9.49 56.07±10.11 69.29±6.56 70.36±11.05

av-al 46.07±8.82 55.36±12.17 71.79±7.80 71.79±9.74

aw-al 63.93±14.72 68.21±20.86 69.64±12.05 75.71±15.50

ay-al 63.21±20.55 77.14±14.40 86.07±10.71 90.36±5.59

aw-av 54.29±11.88 55.36±5.89 66.43±5.38 65.71±4.52

ay-av 53.93±8.82 54.29±5.53 68.93±8.08 66.07±4.84

ay-aw 50.36±10.02 55.71±5.11 70.00±6.12 69.64±5.39

Mean(Mean)±SD(Mean) 55.98±6.53 58.95±6.90 71.20±5.32 71.41±6.65

(CSP: Common Spatial Pattern, RCSP: Regularised Common Spatial Pattern, Case I: all channels,

Case II: selected channels)
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Chapter 4

Intracardiac Electrogram
Measurement Uncertainty

MAPPING of clinical atrial fibrillation (AF) remains challenging.

Several characteristics of the local atrial bipolar electrograms

(EGM) are clinically used to guide ablation and include peak-to-peak volt-

age (Vpp), dominant frequency (DF) and Shannon entropy (ShEn). The ef-

fect of bipolar vector orientation and inter-electrode spacing on these EGM-

derived measures during AF is unclear. To quantify the impact of bipolar

vector orientation and inter-electrode spacing, bipolar EGM (23, 589 and

20, 968 atrial recording sites, respectively) were reconstructed from unipo-

lar EGM recorded with an array of 18 electrodes (HD Grid, Abbott Med-

ical) in 14 patients with persistent AF. We compared Vpp, DF and ShEn

between two diagonally orthogonal bipolar vectors representing a com-

mon recording site during AF characterisation. Vpp, DF and ShEn values

were categorised as ‘high’ and ‘low’ value. To quantify the effect of inter-

electrode spacing, bipolar EGM were constructed from electrodes spaced

4mm, 8mm, and 12mm apart, respectively. Bipolar vector orientation and

inter-electrode spacing both significantly affect bipolar EGM-derived mea-

sures that may result in significant uncertainty around the electroanatomi-

cal substrate characterisation in AF patients. These factors require consid-

eration in developing and evaluating newer tools and in the interpretation

of EGM during clinical mapping.
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4.1 Introduction

4.1 Introduction

Atrial fibrillation (AF) is the most common arrhythmia in humans, which occurs due

to the presence of irregular and disorganised electrical activities (Lip et al. 2016, Nattel

2002). The underlying causes of AF include structural remodeling of the arrhythmo-

genic substrates that potentially disrupt the regular cardiac conduction dynamics in

sinus rhythm (Lau et al. 2017). Intracardiac catheter ablation is a widely used clinical

procedure to terminate AF-related atrial electrical sources and to restore sinus rhythm.

As a predecessor step of any catheter ablation (CA), intracardiac eletrograms (EGM)

are recorded using catheter-based electrodes to select ablation targets. Usually, bipolar

EGM are constructed from unipolar EGM to quantify the arrythmogenic substrates,

because bipolar EGM are less prone to be contaminated by far-field potentials, i.e.,

ventricular artefacts. However, bipolar EGM are heavily dependent on bipolar vector

orientation and inter-electrode spacing, which has been discussed in this chapter.

Peak-to-peak voltage (Vpp) of local bipolar EGM are used to quantify areas of low volt-

age (Thanigaimani et al. 2017). Low voltage areas (Vpp< 0.5mV) have been used as an

indication of structural change, diseased myocardium and electrical scar (Baumert et al.

2016b, Burstein and Nattel 2008, Dimitri et al. 2012, John et al. 2010, Oakes et al. 2009,

Rolf et al. 2014, Sanders et al. 2003, Schreiber et al. 2017, Stiles et al. 2009, Verma et al.

2005). Additional bipolar EGM-derived measures such as dominant frequency (DF)

and Shannon entropy (ShEn) have been clinically used to examine the propagation of

predominant waves and to detect the pivot of a rotor, respectively, which may help to

guide substrate-based ablation (Atienza et al. 2009, Ganesan et al. 2013, Sanders et al.

2005).

Bipolar EGM are less prone to far-field potentials but are naturally dependent on bipo-

lar vector orientation and inter-electrode spacing (Anter and Josephson 2016), which is

not sufficiently incorporated in the design of many clinically-used mapping catheters

or software algorithms. Particularly during AF, where the coordinated activation of the

atrium is replaced by a complex and multidirectional activation pattern, the impact of

vector orientation and inter-electrode distance on bipolar EGM-derived measures is

difficult to predict.

This study aims to quantify the effect of bipolar vector orientation and inter-electrode

spacing on Vpp, DF and ShEn derived from bipolar EGM recordings in patients with

persistent AF using a novel 18 unipolar electrodes grid catheter.
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Chapter 4 Intracardiac Electrogram Measurement Uncertainty

4.2 Methods

4.2.1 Study population

This is an ancillary study of a prospective, multicentre clinical study for evaluating

the use of HD-Grid catheter in humans (EnSiteTM HD Grid Catheter AF/AT Mapping

Study; NCT02656537). All recordings were obtained at the Royal Adelaide Hospital

from 14 patients with symptomatic drug-refractory persistent AF, before they under-

went catheter ablation. All patients provided written informed consent to participate

in the study. The protocol was approved by the Ethics Committee of the Royal Ade-

laide Hospital (HREC/15/RAH/344).

Baseline patient characteristics are provided in Table 4.1. The inclusion criteria were

presence of non-paroxysmal AF referred for catheter ablation, an age of 18 years or

older at the time of enrollment, continuous anticoagulation (INR 2− 3) for > 4 weeks

prior to the ablation. Exclusion criteria included secondary AF, presence of a pros-

thetic valve(s) or hemodynamically significant valvular heart disease as determined

by the study investigator, active systemic infection, presence of left atrial thrombus or

myxoma, or interatrial baffle or patch via the transseptal approach, contraindication to

systemic anticoagulation, a history of cerebrovascular accidents, previous myocardial

infarction, unstable angina pectoris or coronary artery by-pass, left atrial size > 55mm,

a NYHA functional class I I I or IV, left ventricular ejection fraction < 35%.

4.2.2 Electrophysiology study

All patients were studied in the fasted state under general anesthesia. Procedures were

undertaken on uninterrupted oral anticoagulation. All patients who were not utilising

Amiodarone stopped anti-arrhythmic medications for 5 days prior to the procedure.

Prior to the insertion of catheters, all patients underwent trans-esophageal examination

to exclude the presence of left atrial thrombus. Femoral venous access was obtained

using ultrasound guidance.

A 10 pole catheter (2− 5− 2mm spacing, Abbott Medical) was positioned in the coro-

nary sinus with the proximal pole at the coronary sinus ostium in best septal left an-

terior oblique projection. A SLO sheath was used with a BRK1 needle (Abbott Med-

ical) to undertake a TEE-guided transseptal puncture. The one transseptal puncture

was used to introduce a D/F Flexibility externally-irrigated ablation catheter (Abbott
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Table 4.1. Baseline patient characteristics (n = 14).

Demographics

Age, year 65.3± 6.4

Male gender, n(%) 10(71.4)

Weight, kg 98.9± 12.2

Height, cm 178.1± 6.6

Body Mass Index 31.4± 5.3

AF-specific

Persistent AF, n(%) 14(100)

Electrical Cardioversion, n 8

CHA2DS2-VASc 2(1, 3)

Anticoagulation, n(%) 14(100)

Riskfactors

Sleep apnea, n(%) 3(21.4)

Hypertension, n(%) 10(71.4)

Hyperlipidemia, n(%) 2(14.3)

Diabetes, n(%) 2(14.3)

Medication

Flecainide, n(%) 3(21.4)

Sotalol, n(%) 3(21.4)

Amiodarone, n(%) 1(7.1)

L-type CCB, n(%) 4(28.6)

ACEI/ARB, n(%) 12(85.7)

Beta-blockers, n(%) 6(42.9)

Echocardiography

LA diameter, cm 4.5± 0.6

LA area, cm2 28.1± 4.5

LA volume, cm3 99.7± 24.8

LV ejection fraction , % 55± 6.1

LV interventricular septum, cm 1.1(1, 1.2)

(Values are presented as mean±SD, median (interquartile range) or n (%). LV: left ventricle. LA:

left atrium. CCB: calcium channel blockers. ACEI/ARB: ACE inhibitors/ Angiotensin receptor

blockers.)
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Figure 4.1. HD grid catheter used to collect atrial EGM.

Medical) through an Agilis sheath (Abbott Medical). The HD Grid catheter (Abbott

Medical) was introduced through the SLO sheath. Repeated boluses of heparin was

used to maintain the ACT > 350 seconds for the duration of the study.

4.2.3 HD-Grid catheter

The high-density grid catheter (EnSiteTM HD Grid Catheter, Abbott Medical) with an

18 unipolar electrodes grid within 357mm2 surface area was used to collect local atrial

EGM (Figure 4.1; (Bellmann et al. 2018)). The unipolar electrodes are aligned in four

parallel struts and the spacing between two adjacent struts is 4mm(±0.5mm). The

centre-to-centre distance between two adjacent electrodes along a strut is 4mm(±0.5mm).

The inter-electrode spacing (centre-to-centre) is 4mm for any two adjacent electrodes

along or across the strut. The length of each electrode is 1mm with an outer diameter

of 0.81mm. The HD grid catheter is made of nickel-titanium alloy (Nitinol). Nitinol is

characterised especially by its shape memory and superelasticity. The deformation of

catheter under pressure is negligible and as a result, the spacing between electrodes

remain same throughout the mapping.

4.2.4 Mapping protocol

Electroanatomic maps were created using two versions of NAVX systems, i.e., Velocity

V4.2/V5.0.1 (commercial) and Velocity Research Software (Abbott Medical). Patients

were mapped during AF. If patients presented to the laboratory in sinus rhythm, AF

was induced by burst pacing and mapping commenced only after AF had been sus-

tained for ≥ 10 minutes. Detailed left atrial geometry was initially created. Following
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this electrophysiological parameters were collected. At each map site, the catheter was

held stationary for 8 seconds, after fluoroscopic contact verification before the point

was collected. EGM were recorded for 3 seconds. Mapping sites were evenly dis-

tributed to cover the entire left atrium. Recordings were acquired at 2034.5Hz and

preprocessed using a notch filter (50Hz) and a band-pass filter (30− 300Hz) to elimi-

nate the power-line interference and to extract clinically important band of the signal

with locations annotated on NAVX system. In order to reduce selection bias, we did

not exclude scar areas or areas with marked EGM fractionation handled, as these EGM

characteristics could also depend on inter-electrode spacing or bipolar vector orienta-

tion. Following mapping, ablation was undertaken in accordance with the operator’s

preference and constituted pulmonary vein or posterior wall isolation in all and addi-

tional ablation based on available online EGM characteristics.

4.2.5 Study protocol

To quantify the impact of bipolar vector orientation on EGM during AF, two EGM

with diagonally orthogonal bipolar vectors were constructed for each atrial recording

site. Figure 4.2 illustrates the orientations of the two bipolar vectors around a common

centre. Reflecting the geometry and dimensions of the HD-Grid catheter, the bipolar

inter-electrode spacing was 5.65mm and the angular distance between two bipolar

vector orientations was 90◦. To quantify the bipolar EGM characteristics across two

diagonally orthogonal orientations, Vpp, DF and ShEn values were computed as de-

scribed in the section EGM processing. Finally, EGM-derived features were classified

according to ’high’ and ’low’ values for statistical inference.

To assess the effect of inter-electrode spacing on bipolar EGM, vectors were derived for

electrodes spaced at 4mm, 8mm, and 12mm apart, respectively. One unipolar electrode

was kept common while constructing EGM signals along or across the strut (i.e., the

same bipolar vector for each set of three EGM). Figure 4.3 shows three bipolar EGM

constructed along a bipolar vector corresponding to the inter-electrode spacing of 4mm,

8mm, and 12mm, respectively.

Each shot captures 18 unipolar EGM simultaneously. A total of 2621 shots were recorded

from 14 patients (187.21± 68.17 shots/patient). Notably, only 16 electrodes were used

for a single shot to construct two sets of nine diagonally orthogonal bipolar vectors.
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Figure 4.2. Examples of EGM constructed for two diagonally orthogonal bipolar vector orientations

around a common centre. The angle between the two bipolar vectors is 90◦. EGM and

corresponding measures differ due to bipolar vector orientation.

Therefore, a total of 23, 589 and 20, 968 atrial sites were assessed to investigate the im-

pact of bipolar vector orientation and inter-electrode spacing, respectively.
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Figure 4.3. Examples of constructed bipolar EGM with an inter-electrode spacing of 4mm, 8mm,

and 12mm, respectively, while keeping a common reference unipolar electrode. EGM

and corresponding measures differ due to diverse inter-electrode spacing.

4.2.6 EGM processing

Bipolar EGM-derived measures, i.e., Vpp, DF and ShEn have potential in clinical abla-

tion and are being undertaken as previously described in various studies (Atienza et al.

2009, Ganesan et al. 2013, Sanders et al. 2005, Takigawa et al. 2018).

Peak-to-peak voltage (Vpp): Vpp was calculated as the difference between maximum and

minimum value within EGM.

Dominant frequency (DF): DF estimation involves filtering EGM using the nonlinear

method proposed by Botteron and Smith (Botteron and Smith 1995). First, EGM were

filtered using a band-pass filter with corner frequencies of 30Hz and 300Hz, followed

by rectification and filtering using a secondary band-pass filter with corner frequen-

cies of 3Hz and 15Hz (Baumert et al. 2016b, Sanders et al. 2005). DF was estimated as
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the frequency corresponding to the peak of the power spectrum density derived by

an 8192-point fast Fourier transform. To reduce the effect of spectral leakage, edge

tapering was performed by a Hanning window. The regularity index (RI) was then es-

timated as a marker of DF detection reliability, defined as the ratio between the power

at DF and its adjacent frequencies (≈ 0.75Hz bandwidth).

Shannon entropy (ShEn): Assuming p1, p2, . . . . . . . . . , pN are the discrete probabilities

(bins) of an EGM time series, then ShEn is defined as (Shannon 1948):

ShEn = −
N

∑
i=1

pi log2 pi (4.1)

The number of bins was set to N = 100 (Ganesan et al. 2014).

4.2.7 Statistical analysis

To evaluate the effects of bipolar vector orientation and inter-electrode spacing on

EGM measures, either of the analysis of variance (ANOVA) or the Kruskal-Wallis test

was conducted for normal and non-normal distributed variables, respectively. The Lil-

liefors test was performed to test variables for Gaussianity. For post-hoc analysis, the

Tukey-Kramer method was applied. Results are presented as mean±SD (SD: standard

deviation). P-values < 0.01 were considered statistically significant.

4.3 Results

4.3.1 Patient characteristics

Patient characteristics are summarised in Table 4.1. All 14 patients (mean age 65.3± 6.4

year, 10 males, weight 98.9± 12.2kg, height 178.1± 6.6cm and body mass index 31.4±
5.3) had persistent AF and eight patients underwent electrical cardioversion. The

median (interquartile range) of CHA2DS2-VASc score was 2(1, 3) and all 14 patients

were taking anticoagulants. A proportion of patients were receiving antiarrhythmic

medications (i.e., Flecainide (3/14), Sotalol (3/14), Phenylalkylamines (4/14), Amio-

darone (1/14), Beta-blocker (6/14)). The average left ventricular ejection fraction was

55± 6.1%. Left atrial volume was 99.7± 24.9cm3 (left atrial area 28.1± 4.5cm2 and left

atrial diameter 4.5± 0.6cm). The AF cycle length was 203.9± 31.1ms estimated from

coronary sinus EGM.
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Table 4.2. Summary of extracted measures using two diagonally orthogonal bipolar vector orienta-

tions.

Measure
high value low value

p-value
Mean±SD Mean±SD

Vpp 1.023± 1.714 0.691± 0.855 1.10−155

DF 7.873± 2.595 6.707± 1.487 0.00

RI 0.246± 0.068 0.209± 0.063 0.00

ShEn 4.646± 0.607 4.251± 0.684 0.00

(Vpp: peak-to-peak voltage, DF: dominant frequency, RI: regularity index and ShEn: Shannon

entropy.)

4.3.2 Effect of bipolar vector orientation on EGM-derived measures

A total of 23, 589 atrial sites were assessed to investigate the impact of bipolar vec-

tor orientation on EGM-derived measures. Table 4.2 shows EGM-derived Vpp, DF

and ShEn measures using two diagonally orthogonal bipolar vector orientations. The

number of constructed bipolar EGM signals collected from 14 patients for each class

(high or low value) was 23, 589. All measures are significantly different between ‘high’

and ‘low’ groups (p < 0.01). Patient-specific statistics are included in Tables 4.3-4.5.

4.3.3 Effect of inter-electrode spacing on measures derived from

bipolar EGM

From 14 AF patients, a total 20, 968 bipolar EGM have been constructed to investigate

the effect of inter-electrode spacing. Table 4.6 shows the EGM measures corresponding

to the inter-electrode spacing of 4mm, 8mm, and 12mm, respectively. All three measures

were significantly affected by inter-electrode spacing (p < 0.01). For example, the Vpp

value increased from 0.854 ± 1.299mV to 0.958 ± 1.483mV and 1.013 ± 1.302mV for

4mm, 8mm, and 12mm, respectively. Post-hoc comparisons (Tukey-Kramer method)

were all significant except for DF and RI values between 8mm and 12mm, respectively.

Detailed patient-specific statistics are shown in Tables 4.7-4.9.
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Table 4.3. Patient-specific summary of Vpp using two diagonally orthogonal bipolar vector orienta-

tions.

Measure
high value low value

p-value N
Mean±SD Mean±SD

Vpp

0.731± 0.887 0.497± 0.634 3.92−13 1161

0.559± 0.794 0.387± 0.557 3.27−15 1269

0.506± 0.726 0.331± 0.408 3.08−10 846

0.554± 0.508 0.379± 0.330 1.26−27 1314

0.668± 3.356 0.269± 0.478 1.19−04 864

1.454± 1.354 1.060± 0.962 1.45−20 1350

0.895± 0.686 0.632± 0.482 8.15−34 1539

1.934± 1.399 1.432± 1.043 4.70−27 1431

1.377± 3.168 0.869± 0.879 6.23−12 1998

0.573± 0.741 0.379± 0.491 1.57−23 2124

2.238± 2.129 1.564± 1.510 1.56−32 2151

0.662± 0.718 0.466± 0.469 1.46−29 2475

0.554± 0.828 0.371± 0.528 9.95−23 2817

0.994± 1.848 0.590± 0.516 3.06−23 2250

(Vpp: peak-to-peak voltage and N is number of bipolar electrogram signals for each class.)

4.3.4 Quantification of threshold-based substrate characterisation

For all EGM-derived measures (Vpp, DF and ShEn), five thresholds were defined

based on each measure’s distribution (10th, 20th, 30th and 40th percentile and the me-

dian value), because no established thresholds exist for DF and ShEn. In the case of

Vpp, the previously used threshold for low voltage areas (Vpp< 0.5mV) was included.

Figure 4.4 shows the comparison of Vpp, DF and ShEn values derived using diag-

onally orthogonal bipolar vector orientations, i.e., two bipolar vectors placed at 90◦

with an inter-electrode spacing 5.65mm. For example, the percentage of atrial sites be-

low low voltage threshold (Vpp< 0.5mV) differed across bipolar vector orientations,

i.e., 58.45% and 47.34% for ‘high’ and ‘low’ groups, respectively.

Figure 4.5 illustrates the variability in Vpp, DF and ShEn values due to the difference

in inter-electrode spacing, i.e., 4mm, 8mm, and 12mm. The percentage of atrial sites
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Table 4.4. Patient-specific summary of DF and RI using two diagonally orthogonal bipolar vector

orientations.

Measure
high value low value

p-value N
Mean±SD Mean±SD

DF

7.350± 2.141 6.442± 1.047 3.01− 37 1161

5.525± 3.927 4.519± 3.032 2.04−46 1269

8.961± 3.057 7.775± 2.147 2.74−34 846

6.722± 2.786 5.682± 1.653 8.28−48 1314

6.087± 3.978 4.851± 2.715 4.79−38 864

7.988± 2.865 7.309± 2.119 1.06−30 1350

7.305± 2.461 6.149± 1.213 7.81−59 1539

6.835± 1.974 6.062± 0.987 6.63−39 1431

8.995± 2.643 7.916± 1.543 2.35−54 1998

7.399± 2.653 6.274± 1.291 8.66−67 2124

8.235± 2.530 7.208± 1.407 4.48−59 2151

7.782± 2.677 6.384± 1.472 3.98−109 2475

8.103± 2.728 6.582± 1.332 7.74−147 2817

8.081± 2.293 6.954± 1.084 4.86−94 2250

RI

0.262± 0.076 0.225± 0.071 3.86−32 1161

0.171± 0.108 0.148± 0.095 1.51−45 1269

0.261± 0.104 0.212± 0.089 3.66−33 846

0.231± 0.076 0.195± 0.068 1.63−62 1314

0.193± 0.109 0.161± 0.094 9.05−36 864

0.276± 0.105 0.235± 0.095 8.06−47 1350

0.217± 0.043 0.184± 0.040 1.12−98 1539

0.250± 0.052 0.215± 0.050 2.70−71 1431

0.272± 0.080 0.229± 0.071 1.04−70 1998

0.261± 0.079 0.224± 0.075 2.78−54 2124

0.258± 0.067 0.220± 0.063 1.06−82 2151

0.221± 0.053 0.187± 0.048 4.88−117 2475

0.227± 0.057 0.191± 0.052 9.53−127 2817

0.237± 0.055 0.199± 0.049 5.55−118 2250

(DF: dominant frequency, RI: regularity index and N is number of bipolar electrogram signals for

each class.)
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Table 4.5. Patient-specific summary of ShEn using two diagonally orthogonal bipolar vector orien-

tations.

Measure
high value low value

p-value N
Mean±SD Mean±SD

ShEn

4.595± 0.623 4.188± 0.680 1.21−48 1161

3.420± 2.022 3.148± 1.881 2.47−47 1269

4.690± 1.117 4.319± 1.119 8.00−35 846

4.539± 1.120 4.172± 1.093 5.36−63 1314

3.950± 1.967 3.600± 1.850 2.63−38 864

4.200± 1.208 3.872± 1.151 3.92−52 1350

4.515± 0.551 4.122± 0.600 1.15−75 1539

4.341± 0.509 3.991± 0.545 4.98−67 1431

4.663± 0.515 4.289± 0.616 1.46−91 1998

4.642± 0.674 4.222± 0.739 4.07−80 2124

4.595± 0.705 4.194± 0.762 2.33−69 2151

4.838± 0.600 4.456± 0.682 7.21−93 2475

4.732± 0.586 4.327± 0.697 1.83−117 2817

4.594± 0.565 4.141± 0.684 5.98−122 2250

(ShEn: Shannon entropy and N is number of bipolar electrogram signals for each class.)

Table 4.6. Summary of extracted EGM measures using an inter-electrode spacing of 4mm, 8mm,

and 12mm obtained along a common bipolar vector orientation.

Measure
4mm 8mm 12mm

p-value
Mean±SD Mean±SD Mean±SD

Vpp 0.854± 1.299 0.958± 1.483 1.013± 1.302 1.82−32

DF∗ 7.316± 2.239 7.238± 2.140 7.234± 2.124 6.31−05

RI∗ 0.226± 0.068 0.231± 0.069 0.231± 0.069 4.20−14

ShEn 4.364± 0.714 4.481± 0.647 4.514± 0.624 9.09−129

(∗ indicates measures that were not significantly different between 8mm and 12mm; All other

measures are significantly different amongst classes)
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Table 4.7. Patient-specific summary of Vpp using an inter-electrode spacing of 4mm, 8mm, and

12mm.

Measure
4mm 8mm 12mm

p-value
post hoc

N
Mean±SD Mean±SD Mean±SD analysis

Vpp

0.576± 0.679 0.686± 0.870 0.762± 0.968 4.02−06 ∗# 1032

0.654± 0.795 0.756± 0.822 0.795± 0.787 8.44−05 ∗# 1128

0.480± 0.755 0.536± 0.748 0.603± 0.790 7.54−03 # 752

0.514± 0.525 0.565± 0.520 0.631± 0.547 5.90−07 ∗#∧ 1168

0.638± 2.981 0.598± 2.400 0.589± 1.923 9.18−01 768

1.269± 1.308 1.420± 1.247 1.584± 1.344 2.24−08 ∗#∧ 1200

0.783± 0.646 0.829± 0.583 0.851± 0.548 8.79−03 # 1368

1.65± 1.25 1.79± 1.22 1.89± 1.20 4.68−06 ∗# 1272

1.188± 1.174 1.335± 2.471 1.273± 1.112 3.49−02 ∗ 1776

0.482± 0.733 0.550± 0.704 0.621± 0.733 2.70−08 ∗#∧ 1888

1.879± 2.050 2.124± 2.246 2.175± 2.214 4.04−05 ∗# 1912

0.595± 0.726 0.646± 0.716 0.672± 0.673 9.94−04 ∗# 2200

0.440± 0.634 0.492± 0.669 0.541± 0.926 1.38−05 ∗# 2504

0.716± 1.393 0.893± 1.722 1.017± 1.482 4.69−09 ∗#∧ 2000

(Vpp: peak-to-peak voltage, N is number of bipolar electrogram signals for each class, ∗ means

4mm and 8mm groups are significantly different from each other, # means 4mm and 12mm groups

are significantly different from each other and ∧ means 8mm and 12mm groups are significantly

different from each other.)

differed when Vpp< 0.5mV, i.e., 53.77%, 46.85% and 42.03%, respectively for 4mm,

8mm and 12mm.

Figure 4.6 compares left atrial maps reconstructed for Vpp (Figure 4.6A), DF (Figure

4.6B) and ShEn (Figure 4.6C) for ‘high’ and ‘low’ values obtained from diagonally or-

thogonal bipolar vector orientations (inter-electrode spacing = 5.65mm) (for quantifi-

cation please refer to Figure 4.4).

4.4 Discussion
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Table 4.8. Patient-specific summary of DF and RI using an inter-electrode spacing of 4mm, 8mm,

and 12mm.

Measure
4mm 8mm 12mm

p-value
post hoc

N
Mean±SD Mean±SD Mean±SD analysis

DF

6.942± 1.993 6.813± 1.598 6.876± 1.798 0.266 1032

6.725± 2.485 6.625± 2.560 6.546± 2.549 0.244 1128

8.798± 2.221 8.830± 2.196 8.705± 2.090 0.512 752

6.541± 1.945 6.422± 1.845 6.476± 1.864 0.317 1168

6.557± 2.302 6.519± 2.361 6.509± 2.175 0.908 768

8.182± 1.748 8.149± 1.717 8.190± 1.712 0.827 1200

6.767± 2.069 6.672± 1.873 6.682± 1.928 0.380 1368

6.52± 1.68 6.55± 1.76 6.51± 1.69 0.794 1272

8.376± 2.038 8.386± 2.084 8.438± 2.174 0.642 1776

6.934± 2.256 6.764± 2.051 6.696± 2.011 0.002 ∗# 1888

7.824± 2.267 7.706± 2.096 7.799± 2.218 0.215 1912

7.164± 2.417 6.970± 2.094 6.973± 2.089 0.004 ∗# 2200

7.307± 2.233 7.271± 2.145 7.228± 2.017 0.244 2504

7.472± 2.014 7.446± 1.904 7.417± 1.729 0.657 2000

RI

0.241± 0.070 0.249± 0.075 0.246± 0.076 0.046 ∗ 1032

0.210± 0.052 0.218± 0.056 0.218± 0.057 0.001 ∗# 1128

0.241± 0.088 0.252± 0.093 0.258± 0.092 0.001 ∗# 752

0.223± 0.060 0.226± 0.061 0.226± 0.059 0.365 1168

0.219± 0.066 0.224± 0.068 0.227± 0.069 0.069 768

0.270± 0.082 0.271± 0.079 0.272± 0.080 0.780 1200

0.200± 0.045 0.202± 0.046 0.202± 0.044 0.414 1368

0.23± 0.05 0.23± 0.05 0.23± 0.05 0.526 1272

0.256± 0.080 0.254± 0.078 0.253± 0.078 0.564 1776

0.236± 0.078 0.250± 0.081 0.254± 0.083 0.000 ∗# 1888

0.238± 0.068 0.243± 0.070 0.241± 0.067 0.067 1912

0.205± 0.055 0.209± 0.056 0.210± 0.053 0.007 ∗# 2200

0.208± 0.060 0.211± 0.059 0.212± 0.058 0.025 # 2504

0.215± 0.057 0.218± 0.055 0.216± 0.053 0.159 2000

(DF: dominant frequency, RI: regularity index, N is number of bipolar electrogram signals for each

class, ∗ means 4mm and 8mm groups are significantly different from each other and # means

4mm and 12mm groups are significantly different from each other.)
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Table 4.9. Patient-specific summary of ShEn using an inter-electrode spacing of 4mm, 8mm, and

12mm.

Measure
4mm 8mm 12mm

p-value
post hoc

N
Mean±SD Mean±SD Mean±SD analysis

ShEn

4.295± 0.679 4.415± 0.662 4.445± 0.665 5.67−07 ∗# 1032

4.257± 0.680 4.338± 0.622 4.402± 0.607 4.68−07 ∗#∧ 1128

4.624± 0.733 4.710± 0.668 4.727± 0.663 7.62−03 ∗# 752

4.463± 0.654 4.582± 0.577 4.587± 0.554 1.02−07 ∗# 1168

4.546± 0.729 4.625± 0.690 4.643± 0.661 1.57−02 # 768

4.215± 0.674 4.375± 0.591 4.389± 0.564 1.56−12 ∗# 1200

4.238± 0.615 4.321± 0.560 4.358± 0.510 1.44−28 ∗# 1368

4.08± 0.57 4.26± 0.51 4.31± 0.51 6.89−40 ∗#∧ 1272

4.297± 0.604 4.484± 0.576 4.547± 0.534 7.56−40 ∗#∧ 1776

4.382± 0.808 4.463± 0.700 4.486± 0.667 2.15−05 ∗# 1888

4.281± 0.793 4.429± 0.730 4.478± 0.709 1.94−16 ∗# 1912

4.557± 0.709 4.652± 0.650 4.684± 0.606 2.17−10 ∗# 2200

4.445± 0.703 4.559± 0.654 4.593± 0.646 1.25−14 ∗# 2504

4.385± 0.743 4.479± 0.633 4.491± 0.616 2.89−07 ∗# 2000

(ShEn: Shannon entropy, N is number of bipolar electrogram signals for each class, ∗ means 4mm

and 8mm groups are significantly different from each other, # means 4mm and 12mm groups

are significantly different from each other and ∧ means 8mm and 12mm groups are significantly

different from each other.)

4.4.1 Major Findings

Mapping of AF has been dependent heavily on EGM analysis. However, little is known

of the variability in EGM characteristics based on bipolar vector orientation or inter-

electrode distance. This ancillary study undertaking detailed mapping in patients with

persistent AF demonstrates the following:

• Bipolar vector orientation impacts EGM amplitude and EGM-derived measures.

It may limit the reproducibility of 3D atrial surface reconstruction during AF-

related substrate characterisation.

• Inter-electrode spacing also influences the EGM-derived measures.
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Figure 4.4. Percentage of points (atrial sites) below or above certain thresholds defined as 10, 20,

30 and 40 percentiles and the median. In case of Vpp, the previously used low voltage

threshold (i.e., 0.5mV) is also included. Deviation in the measurement due to 2 bipolar

vector orientations placed at 90◦ angular distance, cause variability in EGM-derived Vpp,

DF and ShEn.

These findings highlight the variability using current mapping techniques and have

important implications for the reproducibility and interpretation of substrate-based

AF mapping.
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Figure 4.5. Percentage of points (atrial sites) below or above certain thresholds defined as 10,

20, 30 and 40 percentiles and the median. In case of Vpp, the previously used low

voltage threshold (i.e., 0.5mV) is also included. Deviation in the measurement due to

bipolar electrodes placed at 4mm, 8mm, and 12mm, respectively cause variability in

EGM-derived measures.

4.4.2 Impact of bipolar vector orientation

Assuming a single planar wave propagation in a 2D homogenous medium/surface,

the EGM amplitude is at a theoretical maximum if the propagation vector is exactly
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Figure 4.6. 3D atrial maps, i.e., (a) Vpp, (b) DF and (c) ShEn, reconstructed using two diagonally

orthogonal bipolar EGM measurement (‘high’ vs. ‘low’ group), i.e., bipolar EGM were

recorded with two bipolar vectors having an angular distance of 900. [Note: to maintain

a defined spatial resolution, triangles having any of the three lines > 6mm were excluded

and kept disconnected.]

parallel to the bipolar lead vector; in the case of perfect perpendicular orientation, the

EGM amplitude is zero. Consequently, a bipolar vector can detect activation waves

with the maximum directional uncertainty of 180◦ (Deno et al. 2016). Studies have

demonstrated altered Vpp values for two diagonally orthogonal bipolar vector orien-

tations while maintaining an identical centre (Beheshti et al. 2018, Takigawa et al. 2018).

Beheshti et al. have shown larger amplitudes occur when the bipolar vector is perfectly
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parallel to the propagation vector (at 0◦) as compared to perpendicular bipolar vector

(at 90◦).

During AF, the coordinated activation of the atria is replaced by an irregular multi-

directional activation pattern. Additionally, with the progression of the underlying

arrhythmogenic substrate, the complexity of the fibrillatory process increases and is

characterised by more and narrower activation wave fronts, slower conduction, higher

number of breakthrough waves and electrical dissociation likely reflecting an increase

in transmural conduction and the development of a 3D AF substrate (Eckstein et al.

2010, Lau et al. 2017, Thanigaimani et al. 2017, Verheule et al. 2014). Therefore, wave

propagation vectors during persistent AF are not stable and activation patterns are

often not stationary during continuous bipolar EGM recording.

By using the novel high-density grid catheter, which allows characterisation of one

continuous 3-second EGM recording by reconstructing different bipolar vectors, we

showed, that Vpp, DF and ShEn are highly dependent on bipolar vector orientation.

The percentage of bipolar EGM having Vpp < 0.5mV differed due bipolar vector ori-

entations maintaining an angular distance of 90◦ between two diagonally orthogonal

bipolar vectors (inter-electrode spacing ≈ 5.65mm), indicating that threshold-based

substrate characterisation is not independent of bipolar vector orientation and, thus

potentially induce measurement uncertainty that might make it hard to unravel the

AF-related substrates.

This study further demonstrates that DF and ShEn maps are highly sensitive to bipo-

lar vector orientation. Alteration in DF and ShEn values might be caused by multiple

variables such as the amplitude of the wavefronts that are captured by EGM. Small

amplitudes of local activations may impact power spectrum density estimation for DF

calculation and increase the probability of values in the histogram used for determin-

ing ShEn.

4.4.3 Impact of inter-electrode spacing

This is the first study assessing the effect of inter-electrode distance on EGM-derived

measures in humans with persistent AF. Increased Vpp values with increasing inter-

electrode spacing, i.e., 4mm, 8mm, and 12mm, respectively, was observed in human

AF patients. This study quantifies the variability in EGM measurement due to the

difference in inter-electrode spacing. Specifically, the percentage of atrial recording
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sites below a previously used low voltage threshold, i.e., Vpp< 0.5mV, varies for

altered inter-electrode spacing. A recent study has furthermore demonstrated that

bipolar voltage distributions differ regionally according to the underlying rhythm, i.e.,

sinus rhythm, AF and other arrhythmias, which implicates the low voltage thresh-

old might be adjusted to be regionally specific for each different rhythm (Rodrı́guez-

Mañero et al. 2018). It would be clinically more relevant to evolve a methodology of

defining patient- and rhythm-specific voltage threshold, which must also be further

adjusted as bipolar EGM amplitude increases with increasing inter-electrode spacing,

evident from an ex vivo magnetic resonance imaging-defined ventricular scar areas on

the porcine infarct model (Tung et al. 2016). Mori et al. have suggested taking the

impact of inter-electrode spacing into account while characterising atrial substrates

(Mori et al. 2018). Closer inter-electrode spacing offers better local field EGM while

reducing the far-field effects significantly, and that would better differentiate scar and

surviving myocardium tissue (Nguyen and Tumolo 2019, Takigawa et al. 2018). Further

studies are required to understand the exact role of inter-electrode spacing in bipolar

EGM-derived measures and the gravity of this effect on AF-ablation.

Interestingly, the DF values are not significantly different when extracted from EGM

signals with an inter-electrode spacing of 8mm and 12mm, respectively. This finding

could be explained by the effect of the wave propagation vector and its prevalent influ-

ence on the EGM. Assuming the wave propagates uniformly through the whole 12mm

distance, EGM collected using bipolar electrodes spaced at 4mm, 8mm, and 12mm apart

would differ in amplitude; however, the predominant wave should be clearly present.

To date, ShEn has been used to characterise the pivot of a rotor that has been hypoth-

esized as potential source of AF. Previous findings suggest pivots have higher ShEn

values than the periphery of a rotor (Ganesan et al. 2014, Ganesan et al. 2013). This

study implicates that variability in ShEn measurement due to diversity in bipolar vec-

tor orientation and inter-electrode spacing could influence the detection of rotors.

4.4.4 Limitations

This study demonstrated EGM measurement variability due to bipolar vector orienta-

tion with an uncertainty of 90◦. It is inconclusive from this study if any of the orien-

tations could detect the wave propagation dynamics with maximal impact. Because

the wave propagation vector with respect to the bipolar vector orientation is unknown
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and not all possible bipolar vector orientations spanning the whole 360◦ can be stud-

ied in practice. Additionally, the findings of this study are derived from EGM recorded

during AF in the included 14 patients with persistent AF. Theoretically, the impact of

inter-electrode spacing and bipolar vector orientation on EGM-derived measures may

be even higher, when less complex fibrillatory processes with more regular and repet-

itive activation patterns (self-terminating AF episodes, AF after antiarrhythmic drug

treatment or atrial flutter) are analysed (Eckstein et al. 2010, Verheule et al. 2014). This

needs to be investigated in future studies.

4.5 Conclusion

Bipolar vector orientation and inter-electrode spacing both significantly affect EGM

measures that may result in significant uncertainty around the electroanatomical char-

acterisation of atrial substrates and potentially lead to misinterpretation of AF sources

and ablation targets. This observation has important implications for atrial substrate

characterisation and the assessment and definition of low voltage areas, which should

be considered in the development of future mapping catheter tools and algorithms.
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Beamforming-inspired
Spatial Filtering Technique

THE interpretation of bipolar EGM is not straightforward. Variables

including bipolar lead (vector) orientation relative to the wave

propagation dynamics significantly impact the EGM and EGM-derived

measures, which are clinically used to select target sources for catheter

ablation. In this study, left atrial unipolar EGM were recorded using a 4× 4

grid of 16 unipolar electrodes. A set (node) of 4 unipolar EGM were used to

construct 6 bipolar EGM to evaluate the measurement uncertainty within

a particular node. A novel beamforming-inspired spatial filtering (BiSF)

method is proposed to reduce the potential measurement uncertainty

inevitable in bipolar EGM. Results show greater signal power gain (at

least around 10dB) for all BiSF EGM with better or similar signal-to-noise

ratio as compared to their respective bipolar counterparts. In conclusion,

reduced uncertainty in BiSF EGM improve the interpretation of EGM and

EGM-derived measures used in clinical practice after further validation on

a larger dataset.

Associated Publication: Saha, S., D. Linz, P. Sanders and M. Baumert,

”Beamforming-inspired spatial filtering technique for intracardiac elec-

trograms,” 2019 41st Annual International Conference of the IEEE

Engineering in Medicine and Biology Society (EMBC), Berlin, Germany,

2019, pp. 4254-4257.
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5.1 Introduction

Bipolar EGM are naturally dependent on bipolar lead (vector) orientation. The EGM

amplitude is at the theoretical maximum if the wave propagation vector is exactly par-

allel to the bipolar lead vector. In case of perpendicular orientation, the EGM ampli-

tude is zero while assuming a single planar wave propagation in a 2D homogeneous

surface/medium (Deno et al. 2016). Larger EGM amplitudes occur when the bipolar

lead is perfectly parallel to the wave propagation vector (at 0◦) as compared to per-

pendicular placement (at 90◦) (Beheshti et al. 2018). Another recent study has demon-

strated that two orthogonally bipolar leads provide altered EGM amplitudes although

both leads represent a common atrial site in a 3D atrial map during catheter ablation

(Takigawa et al. 2018). In addition, the previous chapter demonstrated the impact of

bipolar vector orientation on EGM. The findings show significant variability in EGM

measurement due to the directed placement of the bipolar lead orientation.

In multiuser wireless communications, the beamforming technique is used to achieve

the maximum gain of a signal arriving from only the direction of interest while min-

imising the effect of undesired signals arriving from other random directions

(Wongchampa and Uthansakul 2017). Diversity gain achieved using a set of beam-

formers placed in particular directions can augment the signal strength (Jeong et al.

2015). The concept of the proposed spatial filtering technique is based on the same mo-

tivation of conventional beamforming used in wireless communications. The underly-

ing hypothesis was to detect enhanced intracardiac signal while maximising diversity

gain by forming hypothetical beamformers within a node of four unipolar electrodes.

In this study, the measurement uncertainty quantified by the signal-to-noise ratio (SNR)

and signal power has been evaluated on a set of six bipolar EGM constructed using 4

unipolar electrodes in a common node. A novel beamforming-inspired spatial filtering

(BiSF) is used to intertwine bipolar components into an improved signal that not only

offers better or comparable SNR but higher signal power.

5.2 Methods

5.2.1 Unipolar EGM and bipolar EGM construction

Data used in this experiment were recorded from a human subject undergoing catheter

ablation due to symptomatic drug-refractory persistent AF. The ethics committee of
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Figure 5.1. Illustration of four beamforming centres, each constructed using set of three bipolar leads

placed equally at 45◦: (a) 4× 4 grid of electrodes, (b) 4 unipolar electrodes at each

node, (c) possible six bipolar leads, (d)-(g) construction of hypothetical beamformers

centered at unipolar electrodes.

the Royal Adelaide Hospital had approved the study. A high-density grid catheter

(Abbott) with a grid of 18 unipolar electrodes was used. The unipolar electrodes are

aligned in four parallel struts and the spacing between two adjacent struts is 4mm

(±0.5mm). The centre-to-centre distance between two adjacent electrodes along a strut

is 4mm (±0.5mm). The inter-electrode spacing (centre-to-centre) is 4mm for any two

adjacent electrodes along or across the strut. The length of each electrode is 1mm with

an outer diameter of 0.81mm. Recordings were acquired at 2034.5Hz and preprocessed
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using a notch filter (50Hz) and a bandpass filter (30− 300Hz) to eliminate the power-

line noise and to extract the clinically important band of the signal.

The prerequisite for applying the proposed filtering technique is that the grid of elec-

trodes has to be of size N × N as shown in Figure 5.1(a). For this experiment only 16

electrodes were considered to define 9 nodes, each having 4 unipolar electrodes (des-

ignated as A, B, C and D in Figure 5.1(b)) placed at an equal distance to each other.

Using 4 unipolar EGM at each node, the maximum possible six bipolar leads were

constructed (Figure 5.1(c)). Total of 24 nodes were included in the analysis in which

the visual annotation of signal and noise as possible. The inclusion of each node was

determined by visual inspection, i.e., for this study bipolar EGM from a node were con-

sidered if distinct atrial local activation patterns can be annotated. While EGM from all

54 nodes (i.e., 6 shots of recording) were visually inspected, EGM from only 24 nodes

were identified suitable for demonstrating the effect of beamforming.

For each node, bipolar EGM, beamforming EGM and BiSF EGM were visually in-

spected. Signal components and noise components were annotated carefully. Finally,

SNR and signal power were calculated. The signal power was calculated as the sum of

the absolute squares of its time-domain samples divided by the signal length. A ratio

of signal and noise power measured in the dB scale is the SNR of a signal.

5.2.2 Beamforming construction and spatial filtering

At each node, a beamforming EGM was constructed centered at a unipolar electrode

combining three different hypothetical beamformers (i.e., bipolar leads). Notably, a

unipolar electrode was kept common for constructing bipolar leads used for construct-

ing beamforming EGM as indicated in Figure 5.1(d-g). The related bipolar EGM were

simply added. The underlying assumption was that wave propagation vector arriving

toward each beamforming centre does not change the direction abruptly within the 4×
4mm2 areas spanned by 4 electrodes. Each beamforming EGM would achieve diversity

gain within at least 90◦ radius. After constructing four beamforming EGM, peak cross-

correlation coefficients were estimated between any two beamforming EGM. The two

beamforming EGM with the highest correlation were added to get BiSF EGM.

5.3 Results and Discussion
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Figure 5.2. Four unipolar electrodes, six bipolar leads and bipolar EGM and corresponding

Beamforming-inspired Spatial Filtered EGM.

5.3.1 Measurement uncertainty and substrate characterisation

Figure 5.2 shows six bipolar EGM and corresponding BiSF EGM for a particular node.

It is evident that bipolar EGM varies significantly due to diverse lead orientations rel-

ative to the wave propagation. Notably, the EGM for leads AC and BD differ sig-

nificantly although both represent a common atrial site during the 3D reconstruction

of atrial anatomy. The frequency of annotated signal components seems unchanged

here. However, the difference in the amplitudes intensify measurement uncertainty

that would have an explicit impact on voltage threshold-based substrate characterisa-

tion. For example, peak-to-peak voltage threshold (< 0.5mV) is often used clinically
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Figure 5.3. Signal-to-noise ratio (SNR) of bipolar EGM, beamforming EGM and corresponding BiSF

EGM for 24 different nodes.

to specify low voltage areas assumed to manifest scar/fibrotic tissues. In this circum-

stance, BiSF EGM would be a potential alternative to using conventional bipolar EGM

to propose a more reliable mapping tool.

The addition of signals from multiple bipolar orientations should be larger than any

single EGM. This must be studied further to formulate any scaling factor for a BiSF

signal to make a comparison with its bipolar counterparts. The significance of scaling

would essentially be on threshold-based AF-related substrate characterisation. How-

ever, the mathematical interpretation of the BiSF method is difficult by using data with

a regular clinical setup. An alternative way of further investigating the effectiveness of

the proposed BiSF method is in silico simulation of wave propagation dynamics with

diverse wavefront characteristics in 2D or 3D homogeneous surface (Deno et al. 2016).
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Figure 5.4. Signal power of bipolar EGM, beamforming EGM and BiSF EGM for 24 different nodes.

Before validating on clinical setting, the BiSF method could then be applied to HD-grid

recordings from an animal model in a more controlled environment.

5.3.2 Improved EGM detection and diversity gain

Figure 5.3 illustrates the SNR values for bipolar EGM, beamforming EGM and BiSF

EGM. Results suggest significant variability occurs in SNR values regarding the six

bipolar leads at each node, which further quantifies the probable uncertainty in bipolar

EGM measurement. The SNR values for beamforming EGM also vary considerably. In

contrast, BiSF EGM offer comparable SNR values relative to their bipolar counterparts.

Figure 5.4 elucidates the power of only the signal components annotated for bipolar

EGM, beamforming EGM and BiSF EGM, respectively. Results clearly indicate in-

creased signal gain for BiSF EGM as compared to its bipolar counterparts. This is

Page 65



5.4 Conclusion

analogous to the idea of diversity gain while combining signals arriving from different

directions (Jeong et al. 2015).

5.3.3 Directionality in bipolar EGM-based cardiac mapping

Multiple variables including bipolar lead orientation as relative to the wave propaga-

tion vector, inter-electrode spacing, electrode size and tissue contact, impact bipolar

EGM (Anter and Josephson 2016). Both inter-electrode spacing and electrode size are

predefined during catheter design. Tissue contact relies on the accuracy of placing elec-

trodes during signal acquisition and it is an onerous task to maintain stable electrode

placement in the presence of pulsatile blood flow and contraction of the heart muscles.

Once EGM are already recorded using a catheter with certain specifications, the only

variable that could be integrated into a mapping tool is the bipolar lead orientation.

Previous studies have demonstrated the critical impact of bipolar lead orientation in

cardiac mapping (Beheshti et al. 2018, Takigawa et al. 2018). This study has endeav-

ored to quantify the impact of bipolar lead orientation in intracardiac EGM from a

signal processing perspective. The idea of beamforming (combining spatially directed

beamformers) is to maximise the diversity gain when signals may arrive from multi-

ple directions. A bipolar EGM is related to the directionality of the lead orientation

(Deno et al. 2016) and directional diversity of multiple bipolar leads would inspire to

adopt the strategy like beamforming in the development of a cardiac mapping tool.

The recently proposed Omnipolar technology is another potential strategy based on

local electric field measurement to compensate for the impact of bipolar vector orien-

tation (Deno et al. 2016). While Omnipolar technology relies on the cell physiology and

biophysical model, the BiSF method can be implemented using a specially designed

multi-electrode catheter.

5.4 Conclusion

Exploiting directional diversity of bipolar lead orientations could enhance the repro-

ducibility of EGM measurement. However, further analysis on a larger dataset is war-

ranted to validate the potentiality of BiSF method after evaluating the clinical aspects

of substrate characterisation during AF.
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Chapter 6

A Ventricular Artefact
Filtering Technique

A filtering technique integrating independent component analysis

(ICA) and wavelet decomposition has been proposed to signifi-

cantly reduce the ventricular far-field contents while preserving the EGM

morphology related to atrial activations. First, the wavelet decomposition

is applied to each unipolar EGM. Then, ICA is applied to the decomposed

unipolar EGM components and surface ECG template. Each independent

component is cross-correlated with the simultaneously recorded ECG

template and the three components with higher correlation coefficients

were eliminated before applying inverse ICA. Total of 126 unipolar EGM

collected from an atrial fibrillation patient have been included. Results

indicate that the proposed filtering can reduce the ventricular signal power

by around 17dB. Furthermore, the signal-to-noise ratio is increased by

approximately 17dB after applying the proposed filtering. In conclusion,

the proposed filtering method could be used for atrial fibrillation-related

intracardiac mapping for catheter ablation.

Associated Publication: Saha, S., S. Hartmann, D. Linz, P. Sanders

and M. Baumert, ”A ventricular far-field artefact filtering technique for

atrial electrograms,” 2019 Computing in Cardiology (CinC), Singapore,

Singapore, 2019, pp. 1-4.
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6.1 Introduction

Ventricular far-field potentials often influence local EGM recordings. Specifically, unipo-

lar EGM are more likely to be influenced by the ventricular artefacts. Although current

mapping systems use bipolar EGM that are assumed to be less sensitive to the far-field

potentials, bipolar EGM are constructed from unipolar EGM. Thus, it is important to

characterise the influence of inevitable ventricular far-field effects on local unipolar

EGM. It is essential to further evaluate the effects on bipolar EGM.

Rieta and Hornero have studied the effect of ventricular activities on both unipolar and

bipolar EGM signal and described three different techniques for removing ventricular

artefacts (Rieta and Hornero 2007). The techniques are independent component analy-

sis (ICA)-based filtering, template matching, and subtraction and adaptive ventricular

cancellation.

In this study, a combination of ICA and wavelet decomposition (WD) has been utilised

to reduce the effects of ventricular contents on local unipolar EGM. Previous studies

integrated wavelet transform and independent component analysis for source separa-

tion in single channel recording (Mijovic et al. 2010, Hartmann and Baumert 2019). The

underlying motivation of using ICA is that atrial and ventricular activities can be con-

sidered statistically independent originated from two distinct sources (Rieta et al. 2004).

In that case, in the electrode output, i.e., unipolar EGM is the mixture of both atrial and

ventricular contents.

6.2 Methods

6.2.1 Intracardiac electrogram acquisition

This study had been approved by the ethics committee of the Royal Adelaide Hospi-

tal. An array of 18 unipolar electrodes (EnSiteTM HD Grid Catheter, Abbott Medical)

was used to record the left atrial intracardiac EGM from a patient undergoing catheter

ablation due to symptomatic drug-refractory persistent AF. The detailed specifications

of the electrode array are discussed in Chapter 4 and 5. The sampling rate was set at

2034.5 Hz.

The EGM were acquired for 3 seconds for each shot along with surface ECG. Each

shot consists of simultaneously recorded 18 unipolar EGM. A total of 7 shots were
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included in this analysis after visually inspecting them for the annotation of significant

contamination of ventricular far-field potentials in local atrial EGM. As a result, the

performance of the proposed filtering technique has been validated on 126 unipolar

recordings.

Wavelet Decomposition

Raw Unipolar
EGM

Bandpass Filter (0.005-1 kHz)

Cross-correlation

Ventricular Artefacts
Reduction

Inverse ICA

Filtered Unipolar
EGM

Independent Component
Analysis (ICA)

ECG
Template

Figure 6.1. A basic block diagram illustrating the proposed filtering technique integrating indepen-

dent component analysis and wavelet decomposition.

6.2.2 Ventricular artefact reduction method

Figure 6.1 illustrates the basic block diagram of the proposed filtering method for ven-

tricular artefact reduction. The raw unipolar EGM were first filtered using a bandpass

(Butterworth) filter of order 4. The corner frequencies were 5 Hz and 1 kHz. The low
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cut-off was used to eliminate any baseline drift from the raw EGM and the high cut-

off is selected to maintain the Nyquist rate (approximately half of the sampling rate).

Then, each unipolar EGM was decomposed up to level 6 using wavelet transform. The

used wavelet basis was Coiflet 5 due to its morphological resemblance to the QRS com-

plex morphology. Simultaneously recorded lead II ECG (30− 300 Hz) was considered

as a template for characterising ventricular contents, i.e., QRS event related to ventric-

ular depolarization. The lead II was selected because it provides a relatively higher

amplitude as compared to other ECG leads. A notch filter was applied to eliminate

powerline interference, i.e., 50 Hz from both EGM and ECG.

ICA was then applied to the 8 signal contents including the 7 contents of unipolar EGM

extracted by wavelet decomposition and one simultaneously recorded ECG. As a blind

source separation technique, ICA works with N observed signals that are considered

as mixtures of multiple signal contents from diverse independent sources. Assuming

x(t) ∈ RM represents the observed signals in M sensors (i.e., electrodes) and s(t) ∈ RN

represents N source signals, then the linear mixtures model for ICA decomposition can

be written as follows (Hyvärinen and Oja 2000)

x(t) = As(t). (6.1)

Here, A ∈ RM×N is the unknown mixing matrix that has to be estimated. ICA algo-

rithms work by assuming the statistical independence of the source signals. In this

study, the FastICA algorithm is used. FastICA transforms the observed signals by

maximising non-gaussianity of the components, which is an alternative manifesta-

tion of statistical independence. For more details of FastICA algorithm, please refer

to (Hyvärinen and Oja 1997, Hyvärinen and Oja 2000).

Each of the eight independent components was cross-correlated with the ECG tem-

plate. Finally, three independent components showing higher cross-correlation were

eliminated proceeding to inverse ICA to reconstruct the filtered EGM. The number of

independent components to be eliminated was selected based on empirical investiga-

tion for this preliminary study.

6.2.3 Performance evaluation

The performance of the proposed filtering technique was evaluated by estimating the

reduction in signal power in QRS events as defined by a 125 ms window. Figure 6.2
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Figure 6.2. Illustration of defining ventricular signal contents as characterised by QRS complexes,

top-bottom: lead II surface ECG and R-peak annotations, signal and noise contents

before and after ventricular artefact elimination (Note: a 125ms window is placed at

each QRS event to define the ventricular signal).

depicts the definition of the ventricular contents (characterised by the QRS complex)

and the contents of the remaining signal. Ventricular artefact power was calculated on

signal contents in the QRS-defined windows. Furthermore, the signal-to-noise ratio

(SNR) was calculated by considering the signal contents at QRS events as noise and

the remaining signal contents as a signal. It is to be noted that the SNR measurement
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would be useful to investigate the contribution of ventricular far-field potentials in

local atrial EGM.

Finally, statistical analysis was carried out to evaluate if the power at QRS-defined

signal contents and SNR were significantly different. The Lilliefors test was applied to

check the distributions of the power and SNR values with and without filtering. As

the distributions do not follow Gaussianity, the Mann–Whitney U test was applied.

P-values < 0.01 were considered significant.

6.3 Results and Discussion

Figure 6.2 delineates the effectiveness of the proposed filtering technique for ventricu-

lar artefact reduction. Specifically, the significant reduction of signal amplitudes in the

QRS-defined ventricular artefacts implicates the potential use of the proposed method

during intracardiac mapping for AF catheter ablation. The unipolar EGM included in

this study are significantly contaminated with ventricular artefacts, i.e., QRS-defined

events due to ventricular depolarization. As a surface ECG template includes the P-

wave originating in atria, a more sophisticated method is further to be studied for

minimising the effect of P-wave while eliminating only the QRS-defined ventricular

event. Similarly, the definition of noise does not include T-wave originating in ven-

tricles. Future improvements may consider this for a more precise interpretation of

ventricular artefacts.

Figure 6.3 compares the power of QRS-defined ventricular artefacts for all 126 unipo-

lar EGM with and without applying the proposed filtering technique. Overall, the

ventricular power is decreased by around 17 dB after applying the filtering. Figure 6.4

indicates an increase in SNR by approximately 17 dB. Both the increase in SNR and the

decrease in QRS-defined ventricular signal power are evidence of the applicability of

the proposed method in intracardiac mapping.

To date, there is no automatic filtering technique in commercially available mapping

tools. Generally, the ventricular artefact reduction is done by visually inspecting the

EGM in an electrophysiology laboratory, which is a tedious process. With the advance-

ment of high density and high-resolution mapping tools, the proposition of an auto-

mated filtering method for ventricular artefact reduction would be practical. Typically,

a band of 30− 300 Hz is used clinically to extract meaningful signal attributes that are
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Figure 6.3. Comparison of the power of ventricular contents before and after ventricular artefact

reduction filtering (VAR: ventricular artefact reduction).

used to identify ablation targets. However, the clinical significance of the signal con-

tents in the eliminated bands would require to be further studied for scrutinising the

effects of filtering in substrate-based AF ablation. As the peak-to-peak voltage is typ-

ically used for AF-related atrial substrate characterisation, it might be critical to filter

the raw unipolar EGM carefully while preserving local amplitude and morphology.

Bipolar EGM are considered less sensitive to ventricular far-field potentials relative to

unipolar EGM and current cardiac mapping tools use bipolar EGM for atrial substrate

characterisation. There are multiple variables, including bipolar vector, inter-electrode

spacing, electrode size and tissue contact that influence the interpretation of bipolar

EGM (Anter and Josephson 2016, Saha et al. 2019b). Tissue contact depends on the ac-

curacy of electrode placement during signal acquisition although it is very difficult to
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Figure 6.4. Comparison of the signal-to-noise ratio before and after ventricular artefact reduction

filtering (VAR: ventricular artefact reduction).

maintain stable electrode placement in the presence of pulsatile blood flow and con-

traction of the heart muscles. As the bipolar EGM are constructed using unipolar EGM,

it might be critical to carefully filter out undesired artefacts, i.e., ventricular far-field po-

tentials while preserving the local EGM morphology for more accurate interpretation

of bipolar EGM.

The elimination of three independent components was an arbitrary selection based

on the experimental context. As mentioned earlier, all the unipolar EGM used in this

study are severely contaminated with ventricular far-field effects. Notably, the unipo-

lar EGM included in this preliminary study were selected from the atrial sites near

the mitral valve. Future studies may consider algorithms for adaptive elimination of

independent components for better preserving the local EGM morphology.
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6.4 Conclusion

Intracardiac unipolar EGM are usually contaminated with ventricular far-field effects

that may cause misinterpretation of AF-related target sources during catheter ablation.

The proposed ICA and wavelet decomposition-based ventricular artefact reduction

technique seems effective, which could be incorporated in future mapping tools after

further validation on a larger dataset.

Page 75



Page 76



Chapter 7

Thesis Summary and
Future Work

7.1 Significance Of Personalised Signal Processing

Biomedical signals often convey meaningful information that is associated with di-

verse physiological phenomena essential for a healthy human lifestyle. However, the

interpretation of biomedical signals is a non-trivial task due to the time-variant and

subject-specific physiological parameters. The signal acquisition-related variables fur-

ther influence the characterisation of biomedical signals. This thesis delineates the

impact of intra- and inter-subject variability and the signal acquisition-related vari-

ables in the context of cortical signal (i.e., noninvasive EEG) and cardiac signal (i.e.,

intracardiac EGM) processing.

To compensate for the variable (biomedical) signal dynamics, personalisation of signal

processing algorithms is important. Personalisation refers to the inclusion of intra- and

inter-subject variability and signal acquisition-related parameters to be included in the

proposed signal processing-based strategies, which were investigated in the contexts

of inter-subject associative BCI and intracardiac EGM-based AF mapping, respectively.

7.2 Inter-subject Associative BCI

Although the SMR-based BCI are often useful to augment human motor performance

or to reinstate motor function in patients, inherent intra- and inter-subject variability

in EEG dynamics hinders the generalisation of a proposed model for its use by a larger

community. While such variability is related to the intrinsic motor learning process,

it is essential to understand the associated nonstationary nature of EEG for enhanced

BCI design.
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Covariate shift adaptation strategies based on data-driven approaches (i.e., transfer

learning) have been studied extensively for the reproducibility of a BCI model across

subjects. But, a transfer learning strategy is ineffective if the subjects share dissimilar

EEG nonstationarities that can not be efficiently modeled in an inter-subject context.

The most significant contribution of this dissertation is the proposition of an inter-

subject associative BCI. Results suggest that inter-subject associativity, i.e., predictors for

subject independent BCI can augment only data-driven transfer learning strategies.

More comprehensive studies should aim at investigating the role of inter-subject associa-

tivity in data-driven transfer learning strategies for the proposition of more generalised

BCI frameworks. Finding a potential psychological or neurophysiological predictor

sometimes seems another tedious process, which is counterproductive for reducing or

eliminating the calibration time. Although recent literature on intra- and inter-subject

BCI performance predictors have reinforced our understanding of performance varia-

tion, a little is known about how the calibration time can be reduced to a minimum. The

functional relevance of resting EEG is being extensively investigated. Studies found

that resting EEG might be associated with SMR dynamics. As a result, the successful

integration of resting EEG-related parameters into a BCI design could offer a signifi-

cant reduction in the calibration time using only a few minutes of EEG before each use.

Future studies may include the assessment of resting EEG as a potential measure of

inter-subject associativity for SMR-based BCI.

7.3 Intracardiac EGM-based AF Mapping

Atrial fibrillation occurs due to the presence of disorganised and irregular electrical

activities in atrial cardiomyocyte substrates. Patient-specific AF-related source (i.e.,

substrate) identification is the precursor to restoring sinus rhythm. However, the elec-

trical activities recorded as intracardiac bipolar EGM are heavily dependent on bipolar

vector orientation and inter-electrode spacing, which may hinder the reproducibility

of AF maps and, thus, the target source identification.

Inter-electrode spacing is specified during the catheter design although recent multi-

electrode array may offer multiple options. For example, this thesis demonstrated the

impact of inter-electrode spacing on EGM by constructing EGM with electrodes spaced

at 4mm, 8mm, and 12mm, respectively. From a signal processing perspective, the im-

pact of bipolar vector orientation seems relatively more interesting. Directionality is
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related to the conventional ideas of signal processing algorithms that have been widely

used in wireless communication.

The concepts, i.e., the direction of arrival of a signal (e.g., radar) and the use of mul-

tiple spatially directed antennas are well-studied in wireless communication. In this

thesis, the idea of beamforming was inspired by the direction of arrival of a signal

and spatially directed multiple antennas to capture a signal of interest with increased

gain. It has been hypothesized that the proposed beamforming-based filtering may be

integrated using a multi-electrode catheter to produce more reliable AF maps.

Future studies should focus on the translational aspect of the demonstrated BiSF-based

strategies after validation with clinical markers of AF-related substrates. The impact

of bipolar vector orientation on EGM is apparent; notwithstanding, how to utilise the

structure of specially designed multi-electrode catheters is yet to be studied compre-

hensively. With the advancement of signal processing and data-driven algorithms, tak-

ing advantage of spatially diverse bipolar vector orientations should not be unfeasible.

Existing algorithms can be redesigned easily, but it is an important question on how to

assess the efficacy of those methods for enhanced detection of AF-related substrates.

In my opinion, the substrate characterisation is highly dependent on a cardiologist’s

individual perspective leading to potentially greater inter-rater disagreement. Build-

ing a database with expert cardiologists’ mutually agreed annotations of AF-related

sources can inspire engineers and scientists to apply available signal processing and

data-driven methods for the development of a better mapping tool.

7.4 Conclusion

Quantification of variables that can potentially impact the biomedical signal charac-

terisation is the predecessor step to personalised signal processing algorithm develop-

ment. Once the role of a variable associated with intra- and inter-subject variability or

signal acquisition is known, the signal processing algorithms could be customised to

comprehend physiological changes in healthy and pathological conditions.

Page 79



Page 80



Bibliography

ABIBULLAEV-B., AN-J., JIN-S.-H., LEE-S. H., AND MOON-J. I. (2013). Minimizing inter-subject vari-

ability in fnirs-based brain–computer interfaces via multiple-kernel support vector learning, Med-

ical engineering & physics, 35(12), pp. 1811–1818.

ABRAMS-D. A., RYALI-S., CHEN-T., CHORDIA-P., KHOUZAM-A., LEVITIN-D. J., AND MENON-V.

(2013). Inter-subject synchronization of brain responses during natural music listening, European

Journal of Neuroscience, 37(9), pp. 1458–1469.
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