PUBLISHED VERSION

McCarthy, Jim; Wilkins, Andy
Induced Chern-Simons terms Physical Review D, 1998; 58(8):085007

© 1998 American Physical Society
http://link.aps.org/doi/10.1103/PhysRevD.58.085007

PERMISSIONS

http://publish.aps.org/authors/transfer-of-copyright-agreement

“The author(s), and in the case of a Work Made For Hire, as defined in the U.S.
Copyright Act, 17 U.S.C.

8101, the employer named [below], shall have the following rights (the “Author Rights”):
[...]

3. The right to use all or part of the Article, including the APS-prepared version without
revision or modification, on the author(s)’ web home page or employer’s website and to
make copies of all or part of the Article, including the APS-prepared version without
revision or modification, for the author(s)’ and/or the employer’s use for educational or
research purposes.”

15th April 2013

http://hdl.handle.net/2440/12758



http://hdl.handle.net/2440/12758�
http://link.aps.org/doi/10.1103/PhysRevD.58.085007�
http://link.aps.org/doi/10.1103/PhysRevD.62.093023�
http://hdl.handle.net/2440/12758�
http://publish.aps.org/authors/transfer-of-copyright-agreement�

PHYSICAL REVIEW D, VOLUME 58, 085007

Induced Chern-Simons terms

Jim McCarthy and Andy Wilking
Department of Physics and Mathematical Physics, University of Adelaide, Adelaide 5005, Australia
(Received 14 October 1997; published 10 September)1998

We examine the claim that the effective action of four-dimensional SU¢a)ige theory at high and low
temperature contains a three-dimensional Chern-Simons term which has the chemical potential for baryon
number as its coefficent. The four-dimensional theory has a two-dimensional analogue in which exact calcu-
lations can be performed. These calculations demonstrate that the existence of the Chern-Simons term in four
dimensions may be rather subtJ&0556-282(198)07118-3

PACS numbeps): 11.10.Wx, 98.80.Cq

I INTRODUCTION is to “vectorize” the model by adding/zD ¢ which yields

a theory of Dirac fermions with an axial quasi-conserved
Consider the the four-dimensional Euclidean SY(2) charge

gauge theory at finite temperatufe= 1/8, described by

— | iy paTa 0.5
s—[lar| ex-1uFmog0. @ | wtasignTe sy @
0

The coefficient ofu ATA% in the Chern-Simons term is
There are an even number of massless left-handed fermions

to avoid the global S(2) anomaly[1], and the Dirac opera-

tor is D=4+igA3T3+ uy°, where u is the real chemical F“O(p,M,T)=f tr Y*A(k,M)y°y°A(k,M)y°

potential for the particle-number charge k

_ XA(k+p,M). (5

BLZJ Ay YOy 2 , . . .
HereA (k,M) is the propagator of a Dirac fermion with mass

M and the integral over momentum space &

It has been suggested by Redlich and Wijewardnetia =B~ 1= ,d% for nonzero temperature. Following Refg,4]

Tsokos{3], and Rutherford4], that — at both high and low e add a mass for the fermions at low temperature. Ex-

temperature — the effective action obtained by integratin di the d nator | » + 0?) (K2
out the fermions contains a term reminiscent of the threef‘n 2')n_91 yie?ds enominator in powers  of K+ p%)(

dimensional Chern-Simons term with the coefficignt

B *%(p,M,T)=Ce™%*p*+0O(p?/M). (6)

Seff:,LLJ dTJ dSXEijk tr(Al(?]Ak—%gA,AJAk)-i--

0 3) Since C is mass independent, Pauli-Villars regularization
will yield, in apparent contradiction tf2—4],

This model has been us¢8,6] to describe baryogenesis \50
by weak interactions at temperatures around the weak scald’pv (p,m,T~0)
in the early universe. The authors note that because of the _ N X80
U(1) anomaly,B, is only quasi-conserved. Then, when the =NII|LnOC[F (p,m,T~0)=T""(p,M, T~0)]
gauge configurations tunnel from one vacuum sector to an-
other, baryons will be created or destroyed. Becguses =0+0(m™%). !
real, the “Chern-Simons” term in Eq.3) is not gauge in-
variant, and so breaks the degeneracy of the topological It is tempting to invoke gauge invariance in order to rule
vacua. Thus the system would be biased to “fall” in one out the appearance of the Chern-Simons term. However, this
particular direction resulting in more baryons being createds too naive, because—although the term is not gauge invari-
than antibaryons. ant by itself—it is still possible that the entire effective ac-
Let us now present a calculation that produces no Cherrtion may be invarianf4,7,8. In later sections we shall
Simons term at low temperature. We use Pauli-Villars regupresent simple examples of this phenomena.
larization which is manifestly gauge invariant. Singeis In light of the apparent contradiction of Pauli-Villars
real we are only interested in the real part of the effectiveregularization with the results of Ref$2—4], and the
action, log detdD'. The standard waf2,4,5] to obtain this  subtlety of gauge invariance, we feel that the problem needs
more study. Fortunately, there is a related model in two di-
mensions in which further calculations can be made more
*Electronic address: jmccarth@physics.adelaide.edu.au simply. We believe there is nothing in the following calcu-
Electronic address: awilkins@physics.adelaide.edu.au lations that suggests our results are particularly specific to
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two dimensions. Indeed, in the conclusion we reproduce the 9(x,r)=2mN7/B, for NeZ. (13)
result of Ref.[2] by performing an exact calculation in the ' ’
2D model. This shiftsA, by a constant

Il. THE TOY MODEL Ag—Ag—2mN/ep. (14)

We work in a flat two-dimensiondRD) Euclidean space The Chern-Simons term in this context is
M with coordinates £,x) where 0< 7< . Our gamma ma-
trices are Hermitian and satisfy

m f Al (15)

[, v"]+=26"" and ys=—iyoy1. )
Let us first present some perturbative calculations that sug-
gest that this term does not appear in the effective action.
Then we will study the effective action nonperturbatively.

The 2D equivalent of the vectorized theory of E4) is

Z[All’(ﬂ;! 7]]: f [dgdw]eisif;wfaﬂ, (9)
Ill. PERTURBATIVE RESULTS

with Sinceu is constant, it is efficient to put it into the propa-
gator

s:f YDy and D=4+m+uy’yS+ieA. (10
M 1 1

)=- =- . ]
iK+m+uy®y®  iK+m—iuyt

Ak (16)

A mass term has been included for generality at this point.
We shall see later on that it infrar¢tR) regulates the theory 1o second equality holds in two dimensions because of the
at zero temperature. The chemical potentiafor the Her- identity y*y5= —i €*%y® and shows that a constaatsimply
mitian axial charggQ5.=f<//y°y51,/; is real. One can check  shifts the momentum in the loop. Expanding the path integral
this through a derivation of the path-integral representatiofin powers ofA we find the coefficient of the linear term is
of the partition functiort. the superficially linearly divergent one-point function
The U1) gauge transformations are
_ _ m—i¥
A,—A, —ie el e 1 '"(m,T, zf tr ey  ——, 1
w AL P (M, T, ) e (17)
e'ly. 12 ~
y—et (12 wherek;=k;— u.
To regulate this expression we will use Pauli-Villars regu-
larization in which a massive spingris added into the path
integraf

A gauge transformation is called “small” whea is well
defined onM, while if only €'? is well defined(but not @
itself) the transformation is called “large.” An example of a
large gauge transformation is B B
Z= lim J [dydydydy]e” SHHAMTSXXAM) - (18)

M —o0

Yn the derivation of the path-integral representation of the parti-_l_his is manifestly gauge invariant and. in the usual fashion
tion function Tr exp-B(H+uQs), we insert a complete basis at . y gaug ! '

each time slice and then express the action thus derived in terms §ves
relativistic fields in Euclidean space. This last part is relatively non-
trivial, but it is found that with the choiceés=¢"y°, the path inte-

gral of Eq.(9) correctly calculates the partition function. This care-

ful calculation thereby confirms the recent work of Waldetral.  gince the momentum integral is now finite we can shift away
[9] who studied the continuous rotation of spinors from Minkowsky all dependence op. It is possible to go further and explic-

to Euclidean space. It was found that with the definitiGmgscripts ity calculate each separate term on the right-hand side
M andE refer to Minkowsky and Euclidean, respectively (RHS) of Eq. (19). The mass term in the numerator of Eq.
(17) gets killed by try*=0. Whenx =0 symmetric summa-
tion (or integration givesI'°(m, T)=0. ForA =1 the answer
obtained depends on the order of integration. Performing the
Yl = ple i 11 k' integral first gives

Cpy(m)= lim [T*(m)—=T*M)]. (19)

M—oo

.05
Yp=e""M 4y
and

with yy=iy2, Y= 7k, andyy =72, the S@4) invariant Euclid-
ean action was given by E¢L0). Parity, for example, acts on the

Euclidean space spinors ag— nPyELpE and ¢ye— 7p szyg, o] 2In principle two spinors are needed, however, this is an unneces-
that theu Qs term breaks parity invariance as required. sary notational complication.
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Ap k Ao a similar problem when naively applying Pauli-Villars regu-
Fl(m,T):ej j dT<1~2—12 — J 0=0. larization at zero temperature. Namely, after taking the trace
kod —A—p T+ m2+ kg ko over gamma matrices,
(20)
However, performing thé, summation first yields TM(M#0,T=0)=ieMr y°y*y" fk(sz’ M)~

k =—2eme"’, 29

Fl(m,T)zﬁzej dkl—lqr tani 7B \Vk2+m?) 29

g\/k:§+ m? while
=2emu. (21 [%(M=0T=0)=0. (30)

The same result is obtained at zero temperature. However, afjg implies, in contradiction to the null result obtained us-
answers are mass independent, so Pauli-Villars regularlzqf-1g the one-point function

tion yields
0 m+#0,

s (mT)=0 V¥m,T. 22 10 —=0)=
pv(mM,T) (22) TeAmT=0)=}, o

(31
An alternative treatment is not to pyitinto the propaga-

tor, but to expand the path integral in powers of batland

A. The correlation function of interest is the logarithmically

divergent two-point function

However, this occurs only because the IR divergence has
made the result somewhat arbitrary. In this situation a natural
prescription is to define the massless theory as the limit of
the massive one:

m—ikK m—ikK
om,T =J tr 055 i
(m.T) K k2+m27 4 kZ4+m

Jieyh. (29 Ta(m,T=0)=0 Vm. (32

At nonzero temperature there is no IR problem becéyse
This method has the advantage that we can easily make is never zero. Pauli-Villars regularization gives zero in
nonconstant. The momentum flowing into the associated agreement with the one-point function. The Adler argument
Feynman diagram will then be nonzero, and only after calis more complicated because the heat bath breaks Lorentz
culating will we set p=0. With nonzerop, Adler's invariance and s&’ can depend on the normal vector in
regularization-independent meth@#i0] can be applied. At thep, direction. It turns ouf11], thatI''° has the same form
zero temperature, the most general expression with the coas Eq.(27). However, this timey, is quantized, which means

rect Lorentz structure and parity is it cannot be taken to zero smoothly. We argue that this im-
plies thatpy, must be set to zero from the very start, and so
I'*°(p,m, T=0)=Y(p?m*)e"’+Z(p? m?)p,e”*p?. ) the top limit in Eq.(28) is the correct one.
(24

A o . . IV. NONPERTURBATIVE RESULTS
The parentheses indicate symmetrization. Gauge invariance

implies The partition function can also be calculated directly to all
NS 0. 0 L orders inw by functional method3.To make the eigenvalue
P=0=p I =pl'™"=Y==3p°Z. (25  proplem well definedM is chosen to be the torus with 0

<7< and 0=x=<R. Here we can make the Hodge decom-

However,Z is finite so we can calculate it. For the massweposmon on the background gauge field

case we findZ<m™ 2+ 0(p?). Then settingp?=0 gives

1 1
Y=0=TI"(m#0,T=0)=0. (26) A= g0u0t S €udpth,. (33

However, form=0 we obtain The fieldso andp are well defined oo\ andh , is constant.
262 Our case differs from the Schwinger modl&2] on the torus
Po (277  only by the u term. However, using the identity®y®

p3+pi

I'%p,m=0T=0)=

Interestingly, this is ambiguous in the zero-momentum fimit 3We are interested in the trivial sector of the model. The effective

action when the gauge field is in a nontrivial winding sector is also
Flo(mZO,T:O)—> 0 Po—0 then p,—0, 28) well known [15,16. Nontrivial sectors may be of interest when
2em p;—0 then py—0. studying baryogenesis in the early universe. A nonzero chemical
potential for the conserveelectriccharge has also been considered
We attribute this to the IR divergence contained in the[17]. In this case the Dirac operator is no longer Hermitian and the
two-point function of Eq(23) for M=0 andT=0. We find  phase in the partition function leads to interesting results.
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=—iy! we can shift thew into h;. The form of the generat- o
ing functional is well knowr{ 13]

Z[A,7, 77]=6Xp(f;e‘”*/5moeioysp,7 m

1 ) q
+ E.f pOp | detDy. (39 (a) (b)

FIG. 1. Contours of integration in tteeplane.(a) The contourC

HereDo=4+ieh—iuy! and has associated propagaigy. encircles the imaginary axis, angh) contour C, passes up the

The determinant of this operator can be calculated usingmaginary axis anc, (C_) encircles the RHELHS) of the plane.

zeta-function regularization. The result can be written in

terms of a theta function and Dedekind’s eta funcfib, 160  where, in the last equality, the Chern-Simons term has been
extracted. The term by itself is not gauge invariant. In the
Appendix we study the one dimensional analogue,@iemn
the circle. Once again zeta-function regularization results in
a nonlocal but gauge-invariant result. Each term in the ex-
pansion in powers of the gauge field is not gauge invariant.
We also study the limit to the line. One would not expect the
limit to depend upon whether the boundary conditions on the
circle were initially periodic or antiperiodic. The only

(35  subtlety is that one has to be careful with IR divergences
(zeromodek In the 2D model there are no IR problems be-
cause the fermions are antiperiodic along the time direction.

In this formula¢=— Beh’/2r and ¢= 3 +R(eht—pu)/2z  Thus, by settingg=0 in Eq. (37), we see that there is no

and the parametay=e~2"R/5, induced Chern-Simons term on the cylinder according to

The partition function is clearly invariant under small Z&ta-function regularization.

gauge transformations sin@’» and its conjugate are in-

variant. It is also invariant under large gauge transformations V. CONCLUSIONS

in thex and 7 directions

0 2

1
n(iR/B)Lﬁ

detDo=‘ }(O,iR/B)

2

2 .
q1/24nH1 (1_qm)nzz q(n+ ) /2e2m(n+ 0)

The effective action of the 2D toy model of baryogenesis

has been calculated in various ways. Because the chemical

2N L potential is real, the _Chern-Simons-type_ term that has be_en

x direction: sSh'=——— and 7— 7e2™N¥R proposed to appear in the effective action is not gauge in-
eR variant. As we have seen in one and two dimensions, this

does not rule out its appearance in the effective action. How-

ever, all our gauge-invariant calculations at nonzero tempera-

2aN . ture gave no Chern-Simons term. It was only for the mass-

7 direction: 5h°:e— and »— ne?™N7E_ (36) less theory at zero temperature that there was any chance of
B getting a term. This was attributed to an ambiguity brought

about through an IR divergence.

X . ”
The first transformation changes the summand in(Bg). by T How then, did other author] obtain a nonzero result?

a phase which is then canceled by the mod squared. T he regularization scheme was to subtract off the zero-
P which 1S 1 y quared. t‘t%mperature, zerge result. Let us perform the same calcula-
second transformation can be soaked up by relabeling t

. : fon in 2D. The one-point function of Eq17) can be written
index of summation.

Let us study the partition function as we take the Cylin-In the form
drical limit. The determinant35) of D, obtained by zeta- I, T, u)
function regularization is nonlocal in the gauge field. Also, Il
each term in the expansion of the effective actiBgy dz /

- [k $
c 2|

k —
=log detD, in powers ofh*=(1/RB) fA} is not gauge in- 7o 5 1 5
variant. For example, at lardge (the limit to the cylindey or T =2+ (ky— )+ m
small 8 (high temperature the parameteq is small. Then (39)
we can expand, fod=0,

5 |tanh 3Bz,

R where the contour of integration is shown in Figa)l Using
artial fractions and expressing tanh in terms of exponentials
SEﬁZB\/a,EeMj Aldee, (37) Ioeads to P ’ P
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dz APPENDIX A: DETERMINANT ON A ONE-DIMENSIONAL

— éﬁ _— MANIFOLD
C, 27i

Ky—
w

Fl(m,T,,u)=J dk,

A nonperturbative result for the partition function on the
1 1 1 torus has been presented. The effective action was nonlocal
) 1+ ob? and the expansion in small naively looked gauge variant.
The one-dimensional theory has these properties too. It also
3€ dz / 1 1 ) 1 provides us with a testing ground to check for nontrivialities

Z+w  z—w

) : — in the torus— cylinder limit. Start with the operator
c 2mi\z+w z—w

f dz/ 1 1 )
+ - - —_
Co2mi\z+w  z—w

where o=+/(k;—u)?+m? and the various contours are
shown in Fig. 1b). Evaluating these integrals leads to " —ex;{i
=

1+e P2
D=ig+eAt)+iM,

: (39  where— wR<t<xR. We have included a mass teitv for
generality, and it will serve to IR regulate the theory. On the
circle the eigenvectors are

t
)\t—ef A)—Mt

The boundary conditions then imph,=.A+ (n/R) where
Thus, if we follow Ref.[2] and regulate by subtracting off

rY(m,T,u)=2emm+IY(m,0,0). (40)

the zero-temperature, zego+esult, we will obtain a Chern- — | A=iM periodic,
Simons term. This is in contrast to Pauli-Villars regulariza- ) 27R
tion which gave no Chern-Simons term. =] 1 e

One might try to justify this procedure by casting it into a srtsg| A-IM antiperiodic.

Pauli-Villars-like form

If M+#0 there are no zero modes, howeveit=0 there is
7= lim f [dEd (/fd;d)(]exr[ _ S(Z, s AMT, w0 a possibility of one zero mode depending on t.he \_/aluﬁmf

The product of eigenvalues needs regularization. A non-
gauge-invariant way to proceed is to calculate Déto

M —

—S

n+A
R

+S(x, x,AM, T=0,u=0)]. (41 +iM) 1. This leads to a sine in the periodic case and a
cosine for antiperiodic boundary conditions. Alternately,
In the second action the spinor fielgsare defined over the zeta-function regularization is gauge invariant, and results in
plane. The gauge field must be the same in both actiongfor values of the Riemann zeta function see R&8], Sec.
Presumably it is extended periodically to the plane in the9.53

second action. The second action also has no axial charge. A

standard argument shows that there are no new divergences detD:exp{ _ EE }

introduced by insertions of the charge of a conserved current. ds5 s=0p»

In the present cas&)s is the charge of an anomalous cur-

rent, so this argument must be reexamined. Clearly it is =1—g 2m4R

somewhat uncertain as to whether this scheme can be imple-

mented as a gauge-invariant regularization to all orders ifconsider the antiperiodic massless theory. Expanding the ef-
perturbation theory. In contrast, the regularization schemetective action in powers o gives

used in this paper are gauge invariant and implementable to

all order_s. If the unusual re_gularization schem_e _ir_1 &) S.i=log —%eif A+O(A).

can be implemented then it amounts to a definition of the

theory, and it would be interesting to reexamine the cosmo- . o . . ,
logical models using it to see whether the Chern-Simong\lthough the whole effective action is gauge mvarlfmt, this
term arises in their effective description. Using zeta functiorterm is only invariant undeA— A—27N/eR for evenN. It
regularization, the effective action for gauge fields in non-is clear that the effective action for the periodic massless
trivial winding sectors has also been calculafé8,16. It  case does not have an expansion in srallhis is because
would be of interest to calculate matrix elements correspondthere is a zero mode which must be removed
ing to baryogenesis in the early universe with this action.

l_e—iefA
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removing the zero mode, the effective action would not have
had an expansion in small. It is only when the compact
theory is properly IR regulated that the noncompact effective
action can be properly defined. In our 2D example, the anti-
periodicity over the time direction at nonzero temperature
will provide the necessary IR regulator.

Let us compare this with the expression obtained from
detD(i9+iM) ™. The Green’s function foid+iM with
TheM-dependent normalization is physically unimportant. If M # 0 is
we had taken the limit of the massless periodic case without

log detD— —7R(M —|M|)—i8(—M)e
i periodic,
X +
f A 0 antiperiodic,
for M # 0, while for M =0 the antiperiodic case gives

log detD— log(1+e'*/*).

for x—y#0,

dk eke-y) ie " MY (M) O(x—y)— O(—M)O(y—x)]
G(x—y)=

27 —k+iM | —1j sgnM for x—y=0,
where @ is a step function. Expanding the effective action in poweré othe step functions destroy all terms but the linear
one, resulting in

detD(ia+iM)1=exp(%i sgnMJ' dxA(x)).

Because there are no large gauge transformations on the line this is gauge invariant. It it differs from the zeta function result
—if8(—M)[A. Itis well known that the imaginary part of the effective action can be defined in many (segsRef[19] for
a review.

As in the 2D case, zeta function regularization has resulted in a nonlocal expression for the effective action. It is of interest
to see if the derivative expansion, which is local, feels these nonlocalities in any way. To calculate the derivative expansion we
use the heat-kernel method. This has the disadvantage that only the real part of the effective actior) DY detn be
calculated, because the heat kernel is then quadratic in derivatives. However, it has the advantage th& asficéte apply
the well-known result that the heat kernel is not temperatRjedependentsee, for example, Ref20]). Then

»de
log deDDTzf — T g~ 0D’
0

_ wEeeMZJ %eikxe—e[—a2+2iAa+(iaA+A2)]
0 € 2

eikx

= IWE iefeM2 % e~ k?g—2/ekDy—eDgDy
0o € \/; 2

:foo% 1 e_EMZ’

0 € \4me

whereD,=id+ A. The last line follows by expanding the exponential in powers.dfhus, the real part of the effective action
does not depend on the gauge fidldThis does not agree with the nonlocal zeta-function result. It is, however, the same as
detD(ig+iM) ! on the line.
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