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Abstract 

Alzheimer’s disease (AD) is a complex neurodegenerative disease that still evades 

effective treatment. Developing treatments to slow or prevent AD will require a 

detailed understanding of the early stages of AD at the molecular level. 

Unfortunately, the pathogenesis of AD progresses silently over decades and, in the 

case of genetically inherited familial AD, may involve subtle changes starting during 

young adulthood. The difficulties associated with studying human brains at young 

ages have meant that transcriptome analyses of accurate animal models are 

essential. This is the approach taken in the work here, which uses a data-driven, 

bioinformatics-led approach to analyse brain transcriptomes from knock-in zebrafish 

models of AD developed to resemble the genetic background of human AD. 

In the Introduction, the importance of transcriptome analysis in understanding AD at 

the molecular level is explained. Chapters 2, 3 and 4 describe the first brain 

transcriptome analyses of two different knock-in zebrafish mutation models 

(psen1K97fs and psen1Q96_K97del) modelling different aspects of human AD. In both 

zebrafish models, young adult brains revealed notable transcriptome changes, 

including changes to immune/stress responses and energy metabolism respectively. 

Gene network and gene set analysis approaches revealed that some of these gene 

expression changes were preserved in human AD datasets, suggesting the validity 

and utility of the approach used. The work in Chapter 4 supported an important role 

for iron dyshomeostasis in AD across animal models and human AD and 

demonstrated, for the first time, the viability of detecting iron dyshomeostasis 

IV



changes relevant to AD at the transcriptional level. This was achieved using a unique 

computational approach to the definition of gene sets based on predicted Iron 

Responsive Elements. Lastly, Chapter 5 used an advanced dimension reduction 

method to integrate zebrafish and mouse AD model datasets with human familial 

and sporadic AD. This resulted in the first preliminary comparison of human familial 

and sporadic AD transcriptomes as well as confirmation that the brains of a knock-in 

familial AD mutation-like zebrafish model (psen1Q96_K97del) and the commonly used 

5XFAD mouse model show extensive differences at the molecular level. 

Overall, analysis of young adult zebrafish brains revealed potential molecular 

mechanisms relevant to early stages of human AD that were significantly preserved 

in human familial and sporadic AD datasets. This work demonstrates the value to our 

understanding of AD of a bioinformatics-led approach involving transcriptome 

analysis of knock-in zebrafish models. 
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Chapter 1   Introduction 

Transcriptome analysis enables 

study of Alzheimer’s disease at 

the molecular level 
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1 Molecular and genetic basis of Alzheimer’s disease 
 
 

The cognitive decline experienced during normal aging is accompanied by structural, 

functional and molecular changes in the human brain [1]. These changes are 

exacerbated in individuals with dementia, who experience markedly accelerated 

cognitive decline. A complex neurodegenerative disease known as Alzheimer’s 

disease (AD) causes the majority (50–70%) of the >50 million dementia cases 

worldwide [2, 3]. Aging is the most significant risk factor for AD [2], but AD brains 

clearly differ from those undergoing normal, healthy aging. At the structural level, AD 

brains exhibit atrophy, astrogliosis, neuronal loss, synaptic loss and hypometabolism 

[4], while at the molecular level, they often display amyloid-beta (Aβ) protein 

aggregates in extracellular spaces and blood vessels [5–8], and aggregates of 

hyperphosphorylated tau proteins within neurons [8–11]. While tau aggregates 

contributes to neurodegeneration in other diseases including frontotemporal 

dementia, argyrophilic grain disease and Huntington’s disease [12–14], the 

accumulation of Aβ appears to be a unique molecular feature of AD. Consequently, 

significant efforts have been made to elucidate the “amyloid hypothesis”, describing 

the pathological role of Aβ in AD.  

 

The production, processing and pathological role of Aβ has been studied in detail. 

Figure 1 summarises the cellular production of Aβ and several of its proposed 

pathological roles in AD. Aβ peptide monomers of various lengths are formed when 

amyloid precursor proteins (encoded by APP) are sequentially cleaved by β-

secretase and γ-secretase enzymes. The catalytic subunit of γ-secretase is a 
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presenilin-1 or presenilin-2 aspartyl protease encoded by PSEN1 or PSEN2 (Li et al. 

2000). Familial forms of AD are mainly caused by heterozygous, autosomal 

dominant mutations in PSEN1, PSEN2 or APP, which seem to favour increased 

accumulation of the more neurotoxic Aβ-42 species relative to the more 

neuroprotective Aβ-40 species [15–20]. Studying Aβ kinetics suggests that soluble 

Aβ-42 species (including monomers, dimers and oligomers) are more neurotoxic 

than Aβ-40 species because Aβ-42 species readily undergo nucleation-dependent 

polymerisation along neuronal cell surfaces [21, 22]. The polymerisation process 

itself appears to permeabilise cell membranes [23] and contribute to widespread 

disruption of signalling pathways [24, 25]. Soluble Aβ species that re-enter neurons 

can also induce tau phosphorylation [26], and interfere with diverse cellular 

processes to further exacerbate AD progression. It is also likely that loss of the 

neuroprotective functions normally performed by Aβ-40 species may further worsen 

AD; for example, Aβ-40 is more effective at binding and transporting metal ions 

across membranes compared to Aβ-42 [27]. Although many mechanisms of Aβ-

mediated toxicity have been described, it is evident that excess Aβ in vivo is 

neurotoxic. Extraction of Aβ oligomers from human AD brains followed by direct 

injection into mice hippocampi impairs long-term potentiation, synaptic function, and 

memory, in addition to reducing dendritic spine density [28]. Likewise, repeated 

injections of soluble Aβ-42 oligomers into mice hippocampi induces neuronal loss, 

tau hyperphosphorylation and memory deficits [29]. Injection itself is unlikely to be 

responsible for these neurotoxic effects, as transgenic mouse lines producing high 

but physiologically relevant levels of soluble Aβ-42 species also display genotype 

and age-dependent reductions in dendritic spine density [30].  
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Figure 1. Cellular production of amyloid beta (Aβ) and its potential molecular 

mechanisms in Alzheimer’s disease. Amyloid precursor protein (APP) is an integral 

membrane protein cleaved by two distinct pathways. (1) The non-Aβ-producing pathway 

involves cleavage of APP by α-secretase, producing a membrane-bound C83 fragment and 

soluble APPα fragment. (2) Alternatively, the pathway generating Aβ involves initial 

cleavage of APP by β-secretase, producing a membrane-bound C99 fragment and soluble 

APPβ fragment. (3) C99 is subsequently cleaved by γ-secretase to release Aβ monomers of 

various lengths (usually either 40 or 42 amino acids) into the extracellular space. Notably, 

presenilin 1 or presenilin 2 is the active protein subunit of γ-secretase and is encoded by the 

PSEN1 or PSEN2 gene. The Aβ-42 isoform is more prone to polymerisation than Aβ-40. (4) 

Polymerisation of Aβ forms Aβ oligomers, which aggregate to form plaques. Plaques act as 

reservoirs of Aβ oligomers which are neurotoxic. They can (5) activate microglia and 

astrocytes, resulting in neuroinflammation, (6) permeabilise plasma membranes and disrupt 

calcium ion homeostasis, and (7) induce generation of reactive oxygen species which 

damage cellular structures and impair cellular processes. A cellular cascade of events is 

believed to be initiated, which eventually triggers 8 phosphorylation of cytoskeletal tau 

proteins, formation of neurofibrillary tangles, and neuronal loss, leading to the clinical 

symptoms of Alzheimer’s disease. Figure modified from Abcam [31]. 
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Despite evidence supporting the neurotoxicity of aberrant Aβ accumulation and its 

contribution to familial AD, there is insufficient evidence to conclude that Aβ is the 

primary cause of all cases of AD, particularly in sporadic AD which represents over 

95% of all AD cases [4].  Unlike familial AD, the etiology of sporadic AD is 

heterogenous and likely involves a combination of genetic and environmental 

factors. In contrast to familial AD genes, risk genes for sporadic AD are not 

necessarily related to amyloid precursor protein processing or Aβ accumulation. The 

most well-known genetic risk factor for sporadic AD is possession of the ε4 allele at 

APOE [32, 33]. APOE encodes an apolipoprotein involved in cholesterol transport in 

the brain. Although studies have been quick to implicate APOE in Aβ clearance [34–

36], it is important to note that ε4 allele possession is also associated with diseases 

like athleroschlerosis, HIV, sleep apnea and ischemic cerebrovascular disease, 

where evidence supports a broader role for APOE in innate immunity through 

suppressing TNF secretion from inflammatory cells [37, 38]. Genome-wide 

association studies have since identified several other genes consistently associated 

with sporadic AD in diverse populations, including CLU, CR1, PICALM, TREM2 and 

CD33 [39–44]. Unfortunately, the functions of these genes are still primarily 

interpreted in terms of Aβ processing or clearance [45–49], although it is important to 

note that most do not play direct roles in Aβ processing and also participate in 

diverse processes like innate immunity, inflammatory processes, macroautophagy 

and cholesterol homeostasis in the brain [50–52]. Likewise, environmental risk 

factors for sporadic AD show strong association with those in varied diseases 

including cerebrovascular disease [53, 54], metabolic diseases like type II diabetes 

[55–57], and chronic pathogenic infection [58–60].  
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Several key lines of evidence collectively imply that aberrant Aβ accumulation may 

not initiate AD or contribute significantly to its pathogenesis. First, rather than being 

the initiator of AD, Aβ appears to have a physiological role in innate immunity. Aβ 

oligomerisation, which is typically viewed as a pathological event in AD, appears to 

be required for Aβ-mediated antimicrobial activity against gram-positive and gram-

negative bacteria [61]. This response occurs in vivo with bacterial infection in the 

brain and seems to be evolutionarily conserved in organisms as diverse as 

nematodes and mice [62]. Association between infection and AD has been well-

documented, with a greater-than-expected incidence of fungal and bacterial 

infections detected in post-mortem brain tissues of AD patients [58, 60]. As not all 

AD patients display brain infections, it is unclear whether Aβ is responding to a real 

or perceived pathogenic threat in AD. However, it is evident that Aβ accumulation 

should not be viewed as an isolated event in AD, and the causes of its accumulation 

should be investigated in more detail. Second, while it is evident that Aβ is correlated 

with AD, it may not be sufficient or necessary to account for all AD cases; most 

notably, a sizable number (15 – 31%) of cognitively normal individuals apparently 

display substantial Aβ deposits in their brains [63–65], while 16 – 25% individuals 

clinically diagnosed with mild to moderate AD display only low levels of soluble and 

insoluble Aβ [63, 66]. The existence of these individuals with Aβ pathology 

seemingly uncorrelated to their cognitive state raises concerns about the current use 

of Aβ as a diagnostic marker of AD.  Lastly, no therapeutic aimed at reducing Aβ 

activity has improved patient outcomes to date. A long-term follow-up study with AD 

patients previously immunised with human Aβ-42 revealed that despite decreased 

mean Aβ load and plaque density in patients, AD symptoms worsened at the same 
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rate as the placebo group [67]. Similar results were obtained from recent Phase 3 

clinical trials of two different antibodies capable of binding and reducing soluble 

human Aβ, which demonstrated no differences in AD patient outcomes compared to 

placebo groups [68, 69].  

 

Collectively, these studies indicate that although Aβ is neurotoxic and tends to 

accumulate in at least some portion of AD brains, it may not possess a primary role 

in AD pathogenesis, underscoring the need to study other pathological mechanisms 

of AD that precede both cognitive decline and Aβ accumulation.   
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2 Transcriptome analysis reveals the diversity of 
molecular pathology in Alzheimer’s disease 

 
 

While the amyloid hypothesis of AD is a major area of research, the evidence 

against Aβ as the sole cause of AD underscores the importance of investigating 

other potential causes or underlying factors of AD. Importantly, in humans, 

longitudinal studies reveal early structural and functional brain changes decades 

before clinical onset of familial or sporadic AD. For example, young adult (18-26 

year-old) carriers of the familial AD E280A PSEN1 mutation already display 

accelerated brain atrophy and increased soluble Aβ levels in blood plasma and 

cerebrospinal fluid, despite dementia tests indicating they are cognitively normal [70]. 

Similarly, young adult carriers of the ε4 allele of APOE (the major sporadic AD risk 

gene) consistently display lower glucose metabolism rates in several brain regions 

corresponding to those with lowered glucose metabolism in AD patients [71]. These 

studies are valuable as they demonstrate clear structural and functional changes in 

the brains of individuals long before onset of AD, presence of amyloid plaques, or 

any cognitive deficits.  

 

The techniques used in these types of studies means that identifying the early 

cellular processes and molecular mechanisms driving these changes is beyond their 

scope. Instead, omics techniques that measure expression of genes 

(transcriptomics) or proteins (proteomics) are able to fill this need as they capture 

molecular changes without prior assumptions of disease etiology. This is especially 
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relevant for complex diseases such as AD where much of the underlying molecular 

pathology (aside from Aβ biology) is still not well characterised.  

 

The transcriptome of a particular biological sample describes its global RNA 

transcript expression at a particular time. Two techniques are commonly used to 

collect transcriptome data from biological samples: cDNA microarrays, and whole-

transcriptome sequencing (RNA-seq). The key differences between these methods 

is shown in Figure 2. Compared to microarrays, RNA-seq is more recent technology 

that allows for improved reproducibility as well as access to sequence-level 

information that facilitates observation of phenomena that are not readily detected by 

microarrays (e.g. splicing events, non-coding RNA quantification and discovery [72]). 

Comparing the transcriptomes of different conditions (e.g. disease state, time period, 

tissue type) allows changes in molecular pathways between conditions to be 

inferred.  

 

Existing transcriptome analyses of brain tissue from post-mortem AD brains 

suggests vast dysregulation of genes with roles in diverse biological activities 

including membrane organisation, immune responses, inflammation, vesicle 

trafficking, synaptic transmission and plasticity, axon transport, neuron 

differentiation, protein homeostasis, cytoskeletal rearrangement, and metabolic 

processes (see summarised findings of relevant studies in Table 1). It is important to 

note that all gene expression studies of AD are performed on tissue samples taken 

from post-mortem AD brains representing very late stages of AD. During these late 

stages, extensive disruption to normal brain function and structure is expected. A 
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major limitation of this is that it is difficult to discern earlier, causative events in AD 

pathogenesis from later changes arising as symptoms. From present transcriptome 

analyses, it is evident that dysregulation of diverse processes has occurred, but their 

order and contribution to AD remains uncertain.  
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Figure 2. Comparison of Affymetrix microarray and RNA-seq technologies for 

transcriptomic data collection. Microarrays and RNA-seq sample preparation initially 

involves the extraction of RNA from a sample, followed by fragmentation and conversion to 

complementary DNA (cDNA) by reverse transcription. For microarrays, cDNA samples are 

labelled with fluorescent probes, while for RNA-seq, the RNA samples are ligated with 

adapters. In Affymetrix microarrays, probe sequences complimentary to target RNA 

sequences are placed at pre-defined locations on the microarray. For the RNA-seq system, 

a flow cell and sequencing-by-synthesis method is used to generate millions of sequences 

per sample. The raw data from a microarray workflow are CEL files containing continuous 

intensities corresponding to gene expression for each probe, while for RNA-seq, the raw 

data are the reads corresponding to RNA sequences. By mapping RNA-seq reads to a 

reference genome, discrete gene counts can be obtained [72].  

  



 12 

Table 1. Selected microarray and RNA-seq studies focusing on brain transcriptome 
analysis of human patients with Alzheimer’s disease (AD). 

Technology Brain Regions Samples Accession  Summarised Results 

Microarray; 
Affymetrix 
Genechip 

19 brain regions 
from each sample 
including prefrontal 
cortex, temporal 
lobe, amygdala, 
hippocampus. 

125 AD 
patients 

GEO: 
GSE84422 
PMID: 
27799057 

1558 co-expressed gene 
network modules in AD, with 
enriched processes including 
actin cytoskeleton and axon 
transport [73]. 

Microarray; 
Illumina 
Human HT-12 
V3.0 
expression 
beadchip 

Brain (also skin, 
muscle, blood) 

>250 AD 
patients,  
>250 MCI 
patients,  
age-matched 
controls 

GEO: 
GSE63060 
PMID: 
26343147 

At least 150 gene markers of 
cognitive decline in MCI (Mild 
Cognitive Impairment) and 
AD implicated in aging-
related processes [74]. 
 

Microarray; 
Affymetrix 
Human 
Genome U133 
Plus 2.0 Array 

hippocampus, 
entorhinal cortex, 
superior frontal 
cortex, post-central 
gyrus 

55 controls,  
26 AD 
patients 

GEO: 
GSE48350 
PMID: 
23273601, 
18832152 

340 DE genes in AD, 
associated with synaptic 
vesicle trafficking, SNARE 
complex, neurotransmitter 
receptors, cell adhesion 
regulating synaptic stability, 
and neuromodulatory 
systems [75, 76]. 

Microarray; 
Affymetrix 
Human Exon 
1.0 ST Array 

temporal cortex 8 controls,  
8 AD patients 

GEO: 
GSE37264 
DOI: 
10.1016/j.gdata.
2014.09.002 

22 genes with evidence of 
differential splicing in AD; one 
gene, FynT, was linked to an 
astrocytic inflammatory 
response [77, 78]. 

Microarray; 
Affymetrix 
Human Gene 
1.1 ST Array 

posterior cingulate 7 controls,  
7 early-onset 
AD patients,  
7 PSEN1 
familial AD 
patients 

ArrayExpress:  
E-GEOD-39420 
PMID: 
23369545  

3183-3350 DE genes in AD 
associated with calcium and 
metal ion signalling, 
neuroactive ligand-receptor 
interactions, axon guidance, 
and long-term potentiation 
[79]. 
 

Microarray; 
Sentrix 
HumanRef-8 
Expression 
BeadChip 

cortex 187 controls, 
176 AD 
patients 

GEO: 
GSE15222 
PMID: 
19361613 

Dysregulation in processes 
including cholinergic 
transmission and ribosomal 
protein transport [80].  

Microarray; 
Affymetrix 
Human 
Genome 
U133A Array 

frontal cortex 8 controls,  
6 AD patients 

GEO: 
GSE12685 
PMID: 
19295912 

1838 DE genes in AD; 
increased expression of 
genes regulating translation 
in the synapse [81]. 

Microarray; 
Affymetrix 
Human 
Genome U133 
Plus 2.0 Array 

entorhinal cortex, 
hippocampus, 
medial temporal 
gyrus, posterior 
cingulate, superior 
frontal gyrus, 
primary visual cortex 

74 controls,  
76 AD 
patients 

GEO: GSE5281 
PMID: 
17077275 

At least 50-100 DE genes 
involved in synaptic plasticity, 
neuronal repair, cholinergic 
synaptic transmission, and 
phospholipase C activating 
pathway [82]. 
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RNA-seq; 
Illumina HiSeq 
2000 

prefrontal cortex 6 controls,  
6 late-stage 
AD patients 

GEO: 
GSE48552 
PMID: 
24014289 

32 differentially expressed 
micro RNAs (miRNAs), 
including miR-132-3p, which 
interacts with the influential 
FOXO1a transcription factor 
[83]. 

RNA-seq; 
Illumina 
Genome 
Analyser II 

total brain, frontal 
lobe, temporal lobe 

23 controls,  
1 AD patient 

SRA: 
SRA027308.2 
PMID: 
21283692 

Differential splicing patterns 
and promoter usage of the 
APOE gene in AD compared 
to controls; enrichment in 
protein localisation, vesicle 
transport, phosphate 
metabolic processes [84]. 

RNA-seq; 
Illumina HiSeq 
2000 

dorsolateral 
prefrontal cortex 

8 controls,  
9 late-stage 
AD patients 

GEO: 
GSE53697 
PMID: 
26894958 

Identification of 8681 binding 
sites on transcripts for the 
Neuronal ELAV-like RNA 
binding proteins; enrichment 
of stress response genes in 
AD [85]. 

RNA-seq; 
Illumina HiSeq 
2000 

hippocampus 4 controls,  
4 late-onset 
AD patients 

GEO: 
GSE67333 
ArrayExpress:  
E-GEOD-67333 
PMID: 
26402107 

Differentially expressed 
genes in AD, including 143 
protein-coding genes, 90 
lincRNAs, 31 antisense 
transcripts. Enriched 
pathways include nerve 
impulse transmission, 
neuropeptide signalling, Aβ 
clearance [86]. 

RNA-seq; 
Illumina 
NextSeq 500 

whole brain 1 control,  
1 AD patient 

GEO: 
GSE85075 
PMID: 
28127595 

125 upregulated piRNAs 
responsible for 
downregulation of 1923 
genes in AD. Enriched 
pathways include NMDA 
receptor trafficking and 
axonal transport [87]. 

RNA-seq; 
Illumina HiSeq 
2000 

whole brain 1 control (2 
time points),  
1 AD (2 time 
points) 

GEO: 
GSE65159 
PMID: 
25693568 

Upregulation of immune 
response genes, 
downregulation of synaptic 
plasticity genes [88]. 
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3 Limitations in the previous use of animal models for 
studying Alzheimer’s disease 

 
 

Post-mortem AD brains display extensive structural and molecular pathology, so it is 

clear that studying young adult brains predisposed to AD would give more insight 

into earlier disease pathogenesis. However, it is evidently not feasible to extract 

brain tissue from the living brains of young adults for transcriptome analysis. 

Because of this, animal models have been developed to investigate AD 

pathogenesis at any age.  

 

Early mouse models of AD possessed single endogenous knock-in mutations in 

mouse orthologs of familial AD-causing genes like PSEN1 or APP. This was done in 

an attempt to model the genetic state of familial AD as closely as possible. 

Unfortunately, further research with these models was largely abandoned when it 

was discovered that these mouse models only recapitulated partial AD phenotypes, 

with mutant APP mice demonstrating substantial Aβ plaque formation but negligible 

neurodegeneration [89], and mutant PSEN1 mice exhibiting neurodegeneration 

without Aβ plaques [90, 91]. Furthermore, these phenotypes were only observed in 

old (13-month-old) mutant mice, with young adult (6-month-old) mutant mice 

showing normal or only subtle phenotypes compared to age-matched, wildtype 

siblings. These findings were interpreted as a failure on the part of the models to fully 

capture human AD. At the time of these studies, transcriptome analysis was still in its 

infancy, so any potential changes to the brains of these models at the molecular 

level were not interrogated at all.   
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At the time, the common sentiment was that Aβ and tau aggregates comprised the 

characteristic molecular pathology causing AD, so the next mouse models that were 

developed prioritised Aβ and tau pathology over having a genetic background 

resembling human familial AD. To create models with extensive Aβ and tau 

pathology, transgenic mouse models were developed that possessed several human 

transgenes with multiple familial AD-linked mutations (e.g. 5XFAD [92] and 3XTG 

[93]). It is important to note that while these models phenotypically resemble human 

AD in terms of Aβ plaques and cognitive deficits being present, these characteristics 

are accomplished by overexpressing multiple mutant human familial AD genes [89, 

94]. There have been concerns that this could induce unnatural artifacts and 

confound AD pathogenesis. For example, the order of appearance and degree of 

severity of key symptoms like neuronal loss, synaptic impairment and cognitive 

decline is unexpectedly variable between different models [95, 96]. These 

observations are consistent with results from a recent meta-analysis comparing the 

transcriptomes of five mouse models of AD and human AD. While human AD cases 

displayed similar gene expression changes that differed from cognitively-normal, 

age-matched controls, the transcriptomes of AD mouse models differed from both 

each other and human AD [97]. This lack of similarity between different mouse 

models as well as human AD raises concerns about whether these transgenic 

mouse models are able to give relevant insight into AD pathogenesis, especially 

when findings from these models are being applied to pharmaceutical interventions. 

Concerningly, there has been evidence that overexpression of human wild-type APP 

in both wildtype and transgenic mice with familial AD mutations itself induces 
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memory deficits at 8 months of age despite minimal Aβ-42 levels [98]. Similarly, 

overexpressing APP and PSEN1 in at least one mouse model induces p25 

generation independently of increased Aβ levels [99]. The results of the latter study 

are particularly concerning, given that the p25 generation detected was an artifact, 

while multiple studies have interpreted p25 generation in the 5xFAD mouse model as 

a mechanism of Aβ-mediated neurotoxicity in AD [92, 100, 101].  

 

Collectively, these results suggest while overexpression of multiple human 

transgenes may result in animal phenotypes resembling AD, the underlying 

physiological state may not be informative for modelling human AD.  
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4 Recent knock-in zebrafish models of familial 
Alzheimer’s disease 

 
 

The concerns regarding transgenic models have seen an increase in popularity of 

knock-in mouse models in recent years [102, 103]. Aside from mouse models, 

zebrafish models have also been emerging in popularity as complementary model 

organisms of AD. They are optically transparent, undergo rapid development 

(reaching full maturity in 3-4 months), have comparable lifespans to mice (median 

lifespan of 31 months, maximum lifespan of 45 months [104], produce many 

offspring (50-200 embryos per week from one pair of parents), and are amenable to 

genetic manipulation with TALENs, CRISPR and morpholino antisense 

oligonucleotides [105–107]. Zebrafish share some advantages with other simpler 

vertebrate models (e.g. fly, nematode) that facilitate identification of highly conserved 

AD mechanisms [108–111], while possessing more similar brain physiology to 

humans [107, 112]. Approximately 70% of human genes have at least one zebrafish 

orthologue, so zebrafish models may be useful to independently verify genes 

implicated in AD from current mouse models [113]. Importantly, zebrafish express 

orthologues of human AD genes including APP, PSEN1, PSEN2, APOE and SORL1 

[105, 114], and their functions appear to be conserved. For example, zebrafish 

presenilin 1 possesses the critical aspartate residue required for cleavage of human 

APP to produce Aβ-42 [115]. Ultimately, applying transcriptome analysis to zebrafish 

models possessing endogenous familial AD mutations appears to be an unexplored 

and reasonable approach for investigating AD pathogenesis. 
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The Alzheimer’s Disease Genetics Laboratory (ADGL) has developed the first 

zebrafish models possessing distinct endogenous familial AD mutations at the 

zebrafish psen1 locus (orthologous to human PSEN1). Similar to humans with 

familial AD, these models express mutant psen1 in a heterozygous state, resulting in 

physiologically relevant levels of presenilin 1 protein [116]. Like early knock-in mouse 

models of familial AD with endogenous familial AD mutations, these zebrafish 

models avoid confounding effects that might arise from overexpression of human 

transgenes [90, 91, 99]. Consequently, the underlying physiological state of these 

zebrafish models are relevant for studying human familial AD at the molecular level.  

 

Although several zebrafish models have been developed by the ADGL, the 

Q96_K97del and K97fs zebrafish lines are important to introduce for the work done 

in the following manuscripts. In both of these lines, zebrafish are heterozygous for a 

different endogenous familial AD mutation at the psen1 locus. The Q96_K97del 

mutation is a double-codon deletion that preserves the open-reading frame to result 

in full-length, mutant presenilin-1 protein, similar to mutations causing familial AD in 

humans. This model will be termed the fAD-mutation-like model. In contrast, the 

K97fs line mimics a human mutation, K115fs, found in the human PSEN2 gene. In 

humans, this mutation results in increased expression of an alternative protein 

isoform, PS2V, that is also often seen to be increased in the brains of late onset, 

sporadic AD patients [117]. In previous studies by the ADGL, the PS2V isoform was 

shown to be evolutionarily conserved in zebrafish psen1 rather than psen2, where 

the zebrafish PS2V-like protein still retained γ-secretase activity, Notch signalling 

activity, and suppression of the unfolded protein response similar to human PS2V 
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[117]. Consequently, rather than being a direct familial AD model, the K97fs line 

models the effects of forced PS2V-like expression in the brain. The location of both 

zebrafish psen1 mutations on the orthologous human presenilin-1 protein are shown 

in Figure 3.  
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Figure 3. Human presenilin-1 protein. The location of the orthologous zebrafish 

psen1 mutations Q96_K97del and K97fs in Exon 4 are indicated. Other known 

mutations in human presenilin-1 are also colour coded. Figure from AlzForum [118].  
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Figure 4. Summary of experimental design and statistical comparisons 

between groups in the (A) K97fs zebrafish sibship and (B) Q96_K97del 

zebrafish sibship. Each sample represents a whole zebrafish brain. Samples are 

derived from total RNA (K97fs sibship) or polyA enriched RNA (Q96_K97del 

sibship). 6-month-old zebrafish represent a young adult stage while 24-month-old 

zebrafish represent an aged, infertile stage. The lines connecting each biological 

group indicate the statistical pairwise comparisons to be performed to identify 

differentially expressed genes between the two groups. n is the number of biological 

replicates per group (n=3 for K97fs sibship and n=4 for Q96_K97del sibship).  
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Figure 5. RNA-seq data processing workflow. Raw paired-end reads from RNA-

seq libraries are processed with a range of Unix-based computational tools to 

quantify gene expression in each library. At each step of the data processing 

pipeline, quality control is performed to assess the impact of program parameters on 

data quality. In this workflow, gene expression is quantified at both the transcript- 

and gene-levels. Quantification data is typically used for differential gene expression 

analysis.  
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5 Bioinformatics methods for transcriptome analysis  
 

In the manuscripts later described, RNA-seq is used to capture the transcriptional 

states present in whole brains of knock-in mutant zebrafish models and compare 

them to those of healthy, wild type siblings. The comparisons of interest are 

summarised in the experimental design diagrams in Figure 4. In this section, the 

methods underlying RNA-seq data processing and analysis are briefly described.  

 
A computational pipeline that can be used to process the raw RNA-seq data is 

shown in Figure 5. Raw paired-end or single-end RNA-seq reads are the initial input, 

which are then subject to adapter-trimming and quality-filtering using tools such as 

AdapterRemoval [119], alignment of trimmed reads to the zebrafish reference 

genome assembly with an alignment tool such as HISAT2 [120] or STAR [121], and 

quantification of gene expression from the aligned reads as gene-level counts using 

featureCounts [122]. Alternatively, instead of aligning reads to the reference genome 

assembly, it is also possible to obtain transcript abundance estimates from trimmed 

reads using approaches such as kallisto [123] or salmon [124], where transcript 

abundance estimates can then be imported into R using tools like tximport [125] or 

edgeR’s “catchSalmon” or “catchKallisto” functions [126]. Importantly, the effect of 

each pre-processing step on the quality of the output data is assessed through a 

range of diagnostic plots (e.g. per-base read quality, GC content of reads, average 

read length, k-mer content in reads) which are implemented in FastQC [127] and 

ngsReports [128]. Depending on output data quality, different parameters or 

computational tools will be tested, and additional steps to improve data quality (e.g. 
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discarding reads mapping to multiple loci, filtering out PCR duplicates or other 

technical artifacts) may be implemented.  

 

Gene-level counts are the primary output of the RNA-seq data pre-processing 

pipeline, and are typically analysed with various Bioconductor packages [129]. 

Bioconductor is an open-source, R-based collection of software packages focused 

on the statistical analysis of genomics data including microarrays, PCR, protein-

arrays and RNA-seq. The aim of differential gene expression analysis is to determine 

genes that are differentially expressed between specific experimental conditions. 

Numerous Bioconductor software packages support differential expression analysis 

[130]. They differ in statistical approaches like normalisation methods and 

assumptions about the distribution of gene counts in RNA-seq libraries. In the work 

later described, the limma package is utilised to determine genes which are 

differentially expressed between conditions. limma implements weights to handle 

variable quality across genes and libraries, making the differential gene analysis 

potentially more robust to outlier samples and genes without the need for ad hoc 

data removal [131–133]. limma also has favourable power to detect differential 

expression compared to other methods, even for small sample sizes [125]. After 

differentially expressed genes are identified for desired comparisons, a range of 

analyses can be performed to gain further insight on biological changes 

corresponding to gene expression pattern changes. These include gene ontology 

over-representation analysis, promoter motif over-representation, gene set 

enrichment analysis, and gene co-expression network analysis are summarised in 

Table 2.   
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Table 2. Summary of analyses performed on a processed RNA-seq dataset.  

Analysis  Input Data Purpose Example Methods 

Differential gene 
expression 
analysis 

Gene counts Identify genes or which are 
differentially expressed 
between different 
conditions 

limma [133, 134]; 
edgeR [135]  

Gene ontology or 
KEGG over-
representation 
analysis 

List of genes 
differentially 
expressed between 
conditions; 
Access to gene 
ontology or KEGG 
terms 

Identify over-represented 
biological activities or 
pathways in the 
differentially expressed 
genes 

limma::goana and  
limma::kegga [133, 
136]; HOMER [137] 

Promoter motif 
over-representation 
analysis 

List of genes 
differentially 
expressed between 
conditions; Access to 
known promoter motifs 

Identify potential 
transcription factors 
regulating a set of 
differentially expressed 
genes 

HOMER [137]; 
MEME Suite [138] 

Gene set 
enrichment 
analysis (GSEA) 

Gene counts Identify overall changes in 
biological activities or 
pathways while taking into 
account expression of all 
genes 

GSEA [139], 
ROAST [140], 
camera [141] 

Co-expression 
network analysis  

Gene counts Infer relationships between 
genes; detect modules of 
co-regulated genes; infer 
biological functions of 
unknown genes 

Weighted gene co-
expression network 
analysis (WGCNA) 
[142] 

    

 
  



 26 

6 Integration of multiple datasets 
 

Many of the techniques described in Table 2 are effective at providing biological 

insight into a single gene expression dataset. However, different techniques are 

required for the integrative analysis of multiple datasets simultaneously (known as 

data integration). There are many reasons why data integration would be useful, 

especially in the context of studying complex diseases such as AD. These include 

being able to take advantage of existing publicly available datasets from past 

studies; analysing different omics data types (e.g. proteomics and transcriptomics) 

from the same samples to give greater confidence into findings; and getting insight 

into whether findings from animal models also apply to human AD datasets.  

 

Unfortunately, data integration is often not straightforward. Part of this is because the 

nature of high-throughput technologies like microarrays or RNA-seq depends on a 

complex system of reagents, hardware, and highly trained individuals to facilitate 

accurate measurements. Variance in these conditions (e.g. differences in RNA-seq 

library preparation or sequencing platform used) will cause the measurements to be 

affected by both technical and biological factors in ways that are not fully predictable 

or reproducible. This phenomenon is known as introducing batch effects into the 

data. Concerningly, when multiple gene expression datasets are analysed together 

without accounting for batch effects, the majority of differentially expressed genes 

tends to occur across batches rather than across biological conditions [143]. Many 

bioinformatics tools have been developed that use statistical approaches to account 

for and reduce batch effects within datasets (e.g. RUVSeq [144] or surrogate 

variable analysis (sva) [145]). In contrast, techniques for the integration of different 
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datasets must be capable of accounting for batch effects between datasets. These 

techniques include network-based approaches, dimension reduction, gene set 

enrichment analysis, and meta-analysis and are summarised in Table 3.  
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Table 3. Approaches for omics dataset integration. 
Approach  Summary Reduction of batch effects Examples 

Network-
based 
approaches 

Convert each dataset into 
graph to model interactions 
or correlations between 
genes and/or proteins. 
 
Datasets are represented as 
separate graphs (nodes, 
edges) which can then be 
compared using graph-based 
measures (e.g. degree, 
connectivity, subgraphs, 
clusters)  

Filtering of genes / proteins 
before constructing the graph 
limits batch effects arising from 
low-expressed or low-variance 
genes / proteins; comparing 
graph-based measures (e.g. 
clusters) between datasets 
rather than individual 
measurements reduces impact 
of individual noisy genes. 

Multi-omics interaction 
networks to infer 
relationships between 
genes and/or proteins 
[146]; co-expression 
network analysis for 
comparing multiple gene 
expression datasets [142] 

Dimension 
reduction 

Unsupervised method for 
summarising dataset into 
fewer latent variables 
capturing the majority of 
information. The small 
number of latent variables 
from multiple datasets can 
be simultaneously visualised 
and compared in an 
interpretable manner. 

As batch effects are strong, 
they are typically isolated into 
separate latent variables away 
from biological sources of 
variation. 

Non-negative matrix 
factorisation with latent 
variables representing 
data-driven sources of 
variation [147]; sparse 
Principal Component 
Analysis approaches like 
AES-PCA reduce the 
number of genes 
contributing to latent 
variables [148]  

Meta-
analysis  

Each dataset is analysed 
separately, and significantly 
preserved changes in 
measurements (e.g. genes, 
proteins) between datasets is 
determined using post-hoc 
statistical meta-analysis 
methods. 

Meta-analysis techniques can 
take direction of the change as 
well as dataset-specific 
weighting into account across 
multiple datasets, making the 
findings more robust to batch 
effects. 

Concordance analysis for 
assessing whether gene 
expression changes are 
similar between datasets 
[149]; fixed-effects or 
random-effects model 
[150] 
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7 Conclusion 
 

AD is a complex neurodegenerative disease that is still yet to respond to any 

pharmaceutical intervention. While current paradigms emphasise the importance of 

protein aggregates such as amyloid beta and tau, the molecular basis of the disease 

is more complicated than expected, highlighting the need for further studies to 

understand how the disease initially develops. While late stages of AD have been 

extensively characterised from studies of post-mortem AD brains, the earliest 

molecular changes in the brain driving incipient stages of AD are still unclear. In 

familial AD, these earliest changes may start during young adulthood, making it 

clearly unfeasible to study these early stages in humans and emphasising the 

necessity of accurate animal models of AD. Due to confounding artifacts associated 

with humanised, transgenic models of AD, knock-in models in particular appear more 

suitable for this purpose. Importantly, several large gaps remain in the field. For 

example, no transcriptome analysis has ever been performed on any knock-in model 

of AD, despite the earliest knock-in mouse models existing for decades. There have 

been no studies to assess whether the brain transcriptomes of knock-in models of 

AD might resemble human AD more than transgenic models. In addition, while 

zebrafish have several advantages compared to mice as complementary model 

organisms, comparisons of these AD models at the transcriptome level have not 

been performed. The earliest molecular events and cellular pathways in the brain 

driving early stages of familial AD remain unclear, along with potential differences in 

molecular mechanisms between different familial AD mutations. Importantly, familial 

and sporadic AD brains have not been subject to a single comparison at the 

transcriptional level, and this may be associated with the difficulties associated with 
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data integration. While high-throughput omics technologies and bioinformatics 

methods have been increasing in popularity, there remain significant gaps in their 

application to the context of AD. The following manuscripts aim to address these 

gaps through using bioinformatics-focused strategies to analyse novel zebrafish 

datasets from the ADGL and integrate findings with existing knowledge from publicly 

available mouse model and human AD datasets.  
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Abstract

Background

The molecular changes involved in Alzheimer’s disease (AD) progression remain unclear
since we cannot easily access antemortem human brains. Some non-mammalian verte-
brates such as the zebrafish preserve AD-relevant transcript isoforms of the PRESENILIN

genes lost from mice and rats. One example is PS2V, the alternative transcript isoform of
the PSEN2 gene. PS2V is induced by hypoxia/oxidative stress and shows increased
expression in late onset, sporadic AD brains. A unique, early onset familial AD mutation of
PSEN2, K115fs, mimics the PS2V coding sequence suggesting that forced, early expres-
sion of PS2V-like isoforms may contribute to AD pathogenesis. Here we use zebrafish to
model the K115fs mutation to investigate the effects of forced PS2V-like expression on the
transcriptomes of young adult and aged adult brains.

Methods

We edited the zebrafish genome to model the K115fs mutation. To explore its effects at the
molecular level, we analysed the brain transcriptome and proteome of young (6-month-old)
and aged (24-month-old) wild type and heterozygous mutant female sibling zebrafish.
Finally, we used gene co-expression network analysis (WGCNA) to compare molecular
changes in the brains of these fish to human AD.

Results

Young heterozygous mutant fish show transcriptional changes suggesting accelerated
brain aging and increased glucocorticoid signalling. These early changes precede a
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transcriptional ‘inversion’ that leads to glucocorticoid resistance and other likely pathological
changes in aged heterozygous mutant fish. Notably, microglia-associated immune
responses regulated by the ETS transcription factor family are altered in both our zebrafish
mutant model and in human AD. The molecular changes we observe in aged heterozygous
mutant fish occur without obvious histopathology and possibly in the absence of Aβ.

Conclusions

Our results suggest that forced expression of a PS2V-like isoform contributes to immune
and stress responses favouring AD pathogenesis. This highlights the value of our zebrafish
genetic model for exploring molecular mechanisms involved in AD pathogenesis.

Introduction

Alzheimer’s disease (AD) is the leading cause of dementia, a condition characterised by the

progressive decline of memory and cognition. Like other neurodegenerative diseases, AD

affects diverse cellular processes in the brain, including mitochondrial function [1, 2], metal

ion homeostasis [3–5], lipid metabolism [6–8], immune responses [9, 10], synaptic transmis-

sion [11], and protein folding and trafficking [12, 13]. Dysregulation of these processes eventu-

ally results in severe atrophy of several brain regions (reviewed by Braak and Braak [14] and

Masters et al. [15]). Consequently, late stages of AD are likely to be much more difficult to

treat than earlier stages of AD, contributing to our failure to discover ameliorative drugs [16].

The pathological processes that result in AD are likely to initiate decades before clinical

symptoms arise. Decreased levels of soluble amyloid beta (Aβ) peptides in the cerebrospinal

fluid is one of the earliest markers of both sporadic and familial forms of AD, preceding disease

onset by 20–30 years [17, 18], while vascular changes are likely to occur even earlier [19].

Individuals possessing highly penetrant, dominant mutations in genes linked to the familial

form of AD (fAD) such as PSEN1 show structural and functional changes in their brains as

early as 9 years of age, despite being cognitively normal [20, 21]. Similar findings are evident

in young adults carrying the ε4 allele of APOE, the major risk gene for the sporadic form of

AD [22]. To prevent AD, we must identify the stresses underlying these early pathological

changes. However, detailed molecular analysis of the brains of asymptomatic young adult fAD

mutation carriers is currently impossible.

Analysing high-throughput ‘omics data (e.g. transcriptomic, proteomic) is a comprehensive

and relatively unbiased approach for studying complex diseases like AD. Over the past decade,

numerous post-mortem AD brains have been profiled using microarray and RNA-seq technol-

ogies, exposing an incredibly complex and interconnected network of cellular processes impli-

cated in the disease [23, 24]. Unfortunately, analysing post-mortem AD brains does not discern

which cellular processes are responsible for initiating the cascade of events leading to AD.

Animal models can assist exploration of the early molecular changes that promote AD.

However, early “knock-in” mouse models that attempted to model the genetic state of

human fAD showed no obvious histopathology [25–27]. Modern ‘omics technologies pro-

vide molecular-level descriptions of disease states, but these technologies were not available

when the early knock-in models were made. Subsequent transgenic models of AD con-

structed with multiple genes and/or mutations have displayed what are assumed to be AD-

related histopathologies and these have also been analysed by ‘omics methods. However

recent analysis of brain transcriptomes from five different transgenic AD models showed
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little concordance with human, late onset, sporadic AD brain transcriptomes. Worse still,

none of the models were concordant with each other [28].

The overwhelming majority of fAD mutations are present in a heterozygous state in human

patients. Despite this, there has been a lack of detailed molecular investigation of the young

adult brains of any animal model closely imitating the human fAD genetic state–i.e. heterozy-

gous for a fAD-like mutation in a single, endogenous gene. Previously, we used zebrafish to

analyse the unique, frameshifting fAD mutation of human PRESENILIN2 (PSEN2), K115fs,

that inappropriately mimics expression of a hypoxia-induced truncated isoform of PSEN2 pro-

tein, PS2V [29–32]. Mice and rats have lost the ability to express PS2V [33] (and the fAD genes

of these rodents are evolving more rapidly than in many other mammals [33]), but in zebra-

fish, this isoform is expressed from the animal’s psen1 gene [32]. Consequently, to model and

explore early changes in the brain contributing to AD pathogenesis, we have now used gene-

editing technology to introduce a K115fs-equivalent mutation into the zebrafish psen1 gene,

K97fs. In this paper, we analyse data collected from young adult (6-month-old) and aged

(24-month-old) adult heterozygous mutant and wild type zebrafish brains to comprehensively

assess gene and protein expression changes in the brain due to aging and this mutation. At

the molecular level, we find that the young heterozygous mutant brains show elements of

accelerated aging while aged heterozygous mutant brains appear to ‘invert’ into a distinct,

and presumably pathological, state. Our results highlight the important role that non-trans-

genic models of fAD mutations in a heterozygous state play in elucidating mechanisms of AD

pathogenesis.

Results

Gene editing in zebrafish to produce the psen1 K97fs mutation is described in the Materials

and Methods and in Fig A in S1 File. To confirm that the K97fs mutation of psen1 forces

measurable expression of a PS2V-like transcript under normoxic conditions we performed

digital quantitative PCR (dqPCR) specifically detecting either heterozygous mutant or wild

type transcript sequences in cDNA synthesised from the brains of female 6-month-old

(young) and 24-month-old (aged) psen1K97fs/+ (heterozygous mutant) and psen1+/+ (wild type)

zebrafish (Fig 1). We only included female fish to reduce variability between samples and

minimise confounding by potential gender-specific gene expression patterns, given that

females are more vulnerable to AD and that gender-specific changes have been documented in

AD [34, 35]. K97fs transcripts constitute approximately 30% of the psen1 transcripts detected

in young brains and over 70% of the detected transcripts in aged brains. Despite these different

biases in heterozygous mutant and wild type transcript expression, the total levels of psen1
transcript appeared similar between heterozygous mutant and wild type fish at either age. This

supports that the K97fs mutant transcript (like PS2V transcripts in humans) is not completely

degraded by nonsense mediated decay despite possession of a premature termination codon

[29]. PCR tests on cDNA from heterozygous mutant brains did not detect aberrant splicing of

the psen1 gene due to the K97fs mutation. We currently have no explanation for the observed

bias, or its age-dependent change, between the expression of the heterozygous mutant versus

wild type psen1 transcripts. The extent of the decrease in the wild type psen1 transcript in the

aged heterozygous mutant brains means that this may contribute to any molecular phenotype

caused by heterozygosity for the K97fs mutation in addition to the effects of the PS2V-like

transcripts.

To determine whether the K97fs mutation in the zebrafish psen1 gene induces changes in

the expression of other genes and proteins, we removed entire brains of heterozygous mutant

and wild type adult zebrafish for total RNA sequencing (RNA-seq) and label-free tandem mass

Accelerated brain aging towards transcriptional inversion in a zebrafish model of a human PSEN2 mutation
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spectroscopy (LC-MS/MS) when zebrafish were 6 months (young adult) and 24 months (aged

adult) old. We used three biological replicates to represent each of the four experimental

conditions (young wild type, young heterozygous mutant, aged wild type, aged heterozygous

mutant), and performed pairwise comparisons between experimental conditions to determine

differentially expressed (DE) genes and differentially abundant (DA) proteins (Fig 2). Full lists

of DE genes and DA proteins are provided in S1 and S2 Tables.

Gene expression changes in the heterozygous mutant zebrafish reveal

accelerated brain aging followed by inversion into a presumably

pathological state

The brains of children or young adults carrying fAD mutations display morphological and

functional differences compared to age-matched individuals without these mutations

[20, 21]. Consequently, we hypothesised that gene expression in the brains of young adult

(6-month-old) zebrafish carrying this K115fs-like mutation would also be altered when

compared to wild type zebrafish siblings. Overall, we find supporting evidence for 105 genes

that are differentially expressed in young heterozygous mutant brains relative to wild type

brains (65 up-regulated, 40 down-regulated; FDR-adjusted p-value < 0.05) (Fig B in S1 File).

Fig 1. Quantification of heterozygous mutant and wild type allele relative transcript expression. Digital quantitative

PCRs specifically detecting transcripts from the heterozygous mutant (K97fs) or wild type (+) alleles of psen1 were performed

using cDNA synthesised from total brain mRNA from fish at 6 and 24 months of age. Means and standard error of the means

are indicated, and p-values are from two-sample t-tests assuming unequal variances.

https://doi.org/10.1371/journal.pone.0227258.g001
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Of these 105 genes, 65 have an estimated log2 fold change greater than 0.5 (or less than -0.5)

in the ‘young heterozygous mutant vs. young wild type’ comparison (Fig 3A). By examining

the expression of these genes in the other three comparisons described in Fig 2, we observe

two important phenomena:

1. Accelerated aging genes are associated with increased immune response: 62% (65/105)

of the genes that are DE in 6-month-old heterozygous mutant brains (‘young heterozygous

mutant vs. young wild type’) show the same direction of expression change during normal

aging (‘aged wild type vs. young wild type’). However, far more genes are DE during normal

aging (1,795 compared to 105). This suggests that the 6-month-old heterozygous mutant

brains may demonstrate accelerated aging for a subset of cellular functions. As an initial

step to explore these altered cellular functions, we applied functional enrichment analysis

on these 65 genes and discovered significant enrichment in an MSigDB gene set relating to

immune response genes that are up-regulated following lipopolysaccharide treatment

“GSE9988 LPS VS VEHICLE TREATED MONOCYTE UP” (Bonferroni adjusted p-value

0.000948) (S3 Table).

Fig 2. Summary of experimental groups, differentially expressed (DE) genes and differentially abundant (DA) proteins. Three

biological replicates (entire zebrafish brains) were subjected to RNA-seq and LC-MS/MS for each of the four experimental

conditions. Arrows indicate pairwise comparisons (to identify DE genes and DA proteins) between experimental conditions. The

numbers of DE genes and DA proteins determined from RNA-seq and LC-MS/MS analyses are indicated underneath the arrow for

each comparison. We considered genes to be DE and proteins to be DA if the False Discovery Rate [FDR]-adjusted p-value of their

moderated t-test (limma) was below 0.05. All zebrafish of the same age are siblings raised in the same tank.

https://doi.org/10.1371/journal.pone.0227258.g002
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2. Age-dependent ‘inversion’ pattern: A subset of 63 genes with increased expression in

6-month-old heterozygous mutant brains (‘young heterozygous mutant vs. young wild

type’) show decreased expression in 24-month-old heterozygous mutant brains (‘aged het-

erozygous mutant vs. aged wild type’). We call this expression pattern an age-dependent

‘inversion’ between heterozygous mutant and wild type brains, and explore the biological

relevance of the genes involved in this inversion pattern later.

By comparing gene expression in 24-month-old heterozygous mutant and wild type zebra-

fish brains, we can gain insight into a putatively pathological transcriptomic state present in

the brains of aged zebrafish carrying this mutation. We find supporting evidence for 177 genes

that are differentially expressed in heterozygous mutant brains relative to wild type brains (139

down-regulated, 38 up-regulated; FDR-adjusted p-value < 0.05) (Fig 3B; Fig B in S1 File).

Note that not all of these genes are shown in Fig 3B, which only includes genes with log2 fold

change values greater than 0.5 or less than -0.5. To allow for easier interpretation of these 177

genes, we used hierarchical clustering to separate them into groups with distinct expression

patterns based on all four brain-types:

• Inverted (63 genes): Defined as genes showing opposite fold-changes in young heterozygous

mutant brains (‘young heterozygous mutant vs. young wild type’) compared to aged

Fig 3. Differential gene expression between heterozygous mutant (psen1K97fs/+) and wild type (psen1+/+) zebrafish brains at 6

months (young) and 24 months (aged). Only genes with absolute log2 fold change> 0.5 are shown. Genes were considered

differentially expressed if their moderated t-test FDR-adjusted p-value was below 0.05. (A) Differentially expressed genes at 6

months. (B) Differentially expressed genes at 24 months. The differentially expressed genes are grouped into clusters based on

gene expression changes across the four comparisons. Overall, note the similar expression changes in ‘young heterozygous mutant

vs. young wild type’ and ‘aged wild-type vs. young wild-type’ and the contrast of these to comparisons involving aged heterozygous

mutants. This illustrates the accelerated brain aging in young heterozygous mutant brains and the "inverted" gene expression pattern

of aged heterozygous mutant brains.

https://doi.org/10.1371/journal.pone.0227258.g003
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heterozygous mutant brains (‘aged heterozygous mutant vs. aged wild type’). To be included

in this group, genes were required to have an FDR-adjusted p-value < 0.05 in either the

‘young heterozygous mutant vs. young wild type’ or ‘aged heterozygous mutant vs. aged wild

type’ comparison and an unadjusted p-value < 0.05 in the other comparison.

• Inappropriately down-regulated (57 genes): Defined as genes that are down-regulated in

the ‘aged heterozygous mutant vs. young heterozygous mutant’ and ‘aged heterozygous

mutant vs. aged wild type’ comparisons (FDR-adjusted p-value< 0.05 in both).

• Failure to up-regulate (94 genes): Defined as genes that are up-regulated during normal

aging (FDR-adjusted p-value < 0.05 in the ‘aged wild type vs. young wild type’ comparison)

but not up-regulated in the ‘aged heterozygous mutant vs. aged wild type’ comparison.

• Failure to down-regulate (26 genes): Defined as genes that are down-regulated during

normal aging (FDR-adjusted p-value < 0.05 in the ‘aged wild type vs. young wild type’

comparison) but not down-regulated in the ‘aged heterozygous mutant vs. aged wild type’

comparison.

To determine whether these different component groups of the gene expression patterns

are biologically relevant, we assessed each group’s functional enrichment using Gene Ontology

terms, MSigDB gene sets, and Reactome and Interpro pathways (summarised in S3 Table; full

results in S4 Table. Overall, we find statistically significant enrichment (Bonferroni adjusted

p-value< 0.05) for all groups except for the ‘failure to down-regulate’ group. The ‘inverted’

group is significantly enriched in several gene sets related to stress and immune response; the

‘inappropriately down-regulated’ group is significantly enriched in developmental transcrip-

tion factors including homeobox genes; the ‘failure to up-regulate’ group is significantly

enriched in immune responses.

Gene expression changes during aging of the heterozygous mutant

zebrafish brains partially overlap with normal brain aging

Gene expression changes associated with aging in the wild type and heterozygous mutant zeb-

rafish brains only partially overlap. When comparing 24-month-old and 6-month-old wild

type zebrafish brains, 1,795 genes show differential expression. However, when comparing

24-month-old and 6-month-old heterozygous mutant zebrafish brains, 1,072 genes show

altered expression (FDR-adjusted p-value < 0.05). When comparing these two sets of genes,

only 525 genes show fold-changes in the same direction during wild type and heterozygous

mutant aging. These genes can be considered an ‘aging signature’ and are functionally

enriched in gene ontology terms relating to immune function (S3 Table). This suggests that

the heterozygous mutant fish still preserve some immune-related gene expression changes that

occur during normal aging.

Gene expression changes are likely not due to changes in proportions of

brain cell types

It is possible that changes in the proportions of different cell types in the brain could result in

genes being falsely interpreted as differentially expressed. As a preliminary test to see whether

our observations of differential gene expression were artefacts of change in the proportions of

major brain cell types (e.g. astrocytes, microglia, neurons, oligodendrocytes), we checked for

noticeable changes in the average expression for sets of marker genes characteristic of each of

the major brain cell types across the samples in each experimental condition (young wild type,

young heterozygous mutant, aged wild type, aged heterozygous mutant). Representative
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marker genes for microglia were obtained from Oosterhof et al. [36] while gene markers for

astrocytes, neurons, and oligodendrocytes were obtained from Lein et al. [37] The number of

genes used to calculate the average gene expression (in logCPM) was 41 (astrocyte), 99 (micro-

glia), 77 (neuron) and 78 (oligodendrocyte). Although this method is limited in that it does

not account for the significant diversity within these broader cell types nor regional brain dif-

ferences, this level of analysis suggests that broadly, the average expression of gene markers for

the major neural cell types does not appear to change much across experimental conditions. In

addition, no obvious outlier samples were evident (Fig C in S1 File).

Regulation of gene expression in the heterozygous mutant zebrafish brains

differs from normal brain aging

A transcription factor can regulate gene expression by binding to a specific DNA motif in the

promoter region of a gene. We hypothesised that changes in gene expression during normal

aging or differences in gene expression between heterozygous mutant and wild type brains

could be driven by differences in transcription factor activity. To test this, we examined gene

promoter regions for enriched motifs corresponding to known transcription factor binding

sites (summarised in S5 Table; full results in S6 Table). Overall, we find:

1. Numerous known transcription factors likely drive the gene expression changes that

occur during normal zebrafish brain aging. As wild type brains age, the genes which are

differentially expressed are significantly enriched in many known motifs. These motifs cor-

respond to binding sites for interferon regulatory factors (e.g. IRF1, IRF2, IRF8); a binding

site for the PU.1-IRF8 complex; an interferon-stimulated response element (ISRE); and

binding sites for various transcription factors important for essential cellular processes like

proliferation, differentiation, and apoptosis (Atf3, Fra2, Ets-distal, AP-1, Fra1, JunB, BATF,

and ZNF264).

2. Altered glucocorticoid signalling in heterozygous mutant zebrafish brains is likely to

contribute to a pathological state. Promoters of genes that are differentially expressed in

the ‘aged heterozygous mutant vs. aged wild type’ comparison are significantly enriched in

the glucocorticoid receptor element motif (GRE) (Bonferroni p-value = 0.0057). Interest-

ingly, the subset of genes showing inappropriate downregulation (down-regulated in the

‘aged heterozygous mutant vs. young heterozygous mutant’ and ‘aged heterozygous mutant

vs. aged wild type’ comparisons) is more strongly enriched again in the GRE motif (Bonfer-

roni p-value = 0.0001), suggesting that genes that are normally activated by glucocorticoid

signalling during aging may not be activated in aged heterozygous mutant brains. This

altered glucocorticoid signalling appears to be present even in young zebrafish brains, as

genes showing inverted behaviour (opposite direction of differential expression in ‘young

heterozygous mutant vs. young wild type’ and ‘aged heterozygous mutant vs. aged wild

type’ comparisons) are also enriched in the GRE motif (Bonferroni p-value = 0.0047).

Because these inverted genes tend to show high expression in young heterozygous mutant

brains (i.e. up-regulated in the ‘young heterozygous mutant vs. young wild type’ compari-

son) and low expression in aged heterozygous mutant brains (i.e. down-regulated in the

‘aged heterozygous mutant vs. aged wild type’ comparison), this suggests that young hetero-

zygous mutant zebrafish brains may initially exhibit abnormally increased glucocorticoid

signalling, while aged heterozygous mutant brains later exhibit abnormally decreased glu-

cocorticoid signalling. Notably, the inverted genes containing a GRE motif in their promot-

ers include COQ10A (encodes Coenzyme Q10, a key component of the electron transport

chain and free-radical scavenging antioxidant); pik3r3a (encodes regulatory subunit
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gamma of phosphoinositide 3-kinase, an enzyme that interacts with insulin growth factor 1

receptor among other proteins); mmadhc (encodes a protein involved in an early and essen-

tial step of vitamin B12 metabolism), plk3 (polo-like kinase 3, involved in stress response

and double-stranded DNA repair), and fkbp5 (encodes FK506 binding protein, involved in

regulating immune and stress responses, protein trafficking and folding, and glucocorticoid

receptor regulation). A list of zebrafish genes containing the GRE promoter motif is pro-

vided in S7 Table.

Gene expression changes in the heterozygous mutant zebrafish indicate

vast changes to cellular processes and pathways

A gene set is a group of genes that contribute to a known biological function, pathway, or

state. A gene set test is an analysis used to evaluate whether a particular gene set is differen-

tially expressed for a particular comparison. We used the FRY method to test whether

‘Hallmark’ gene sets from the Molecular Signatures Database, MSigDB [38] were associ-

ated with differential expression in each of the four comparisons (Fig 4 and S8 Table).

Using an FDR-adjusted p-value < 0.05 to define a gene set as differentially expressed, we

find:

1. 50 gene sets are differentially expressed during normal brain aging (‘aged wild type vs.

young wild type’) (middle row of heatmap, Fig 4A). This supports that many biological

functions and pathways are altered during normal aging. For some gene sets, the propor-

tion of genes that are up-regulated and down-regulated is similar (e.g. interferon alpha

response, E2F targets, early estrogen response). However, other gene sets contain a predom-

inance of up-regulated genes (e.g. epithelial mesenchymal transition, TNFA signalling via

NFKB) or down-regulated genes (e.g. coagulation, reactive oxygen species pathway).

2. 22 gene sets are differentially expressed in young heterozygous mutant brains (‘young

heterozygous mutant vs. young wild type’) (top row of heatmap, Fig 4A). These 22 gene

sets may represent earlier functional changes in the brain that occur due to this mutation.

The gene sets implicate diverse processes including Wnt/β-catenin signalling, early estro-

gen response, DNA repair, hedgehog signalling and fatty acid metabolism. Similar to the

pattern of accelerated aging observed in Fig 3, we also observe that most of the gene sets

up-regulated in young heterozygous mutant brains are regulated in the same direction

during normal aging. This is consistent with the idea that the biological changes in young

heterozygous mutant brains may partially recapitulate those that occur during normal

brain aging.

3. 44 gene sets are differentially expressed between aged heterozygous mutant and aged

wild type brains (bottom row, Fig 4A). These differentially expressed gene sets may repre-

sent the pathological state of aged zebrafish brains bearing this mutation. Importantly, 21 of

the 22 gene sets that were differentially expressed in young heterozygous mutant brains

(‘young heterozygous mutant vs. young wild type’) remain altered also when these are aged

(‘aged heterozygous mutant vs. aged wild type’). However, the proportions of up- and

down-regulated genes tend to differ; notably, several gene sets containing a predominance

of up-regulated genes in the young heterozygous mutant brains contain a predominance of

down-regulated genes in the old heterozygous mutant brains. These ‘inverted’ gene sets

include biological functions and pathways as diverse as Wnt/β-catenin signalling, early

estrogen response, hedgehog signalling, androgen response, epithelial mesenchymal transi-

tion, DNA repair, apical surface, and TGF-β signalling.
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4. Aging in the heterozygous mutant brains is similar but distinct from aging in wild type

brains. The 50 gene sets differentially expressed during normal brain aging are also differ-

entially expressed during heterozygous mutant brain aging (‘aged heterozygous mutant vs.

young heterozygous mutant’) (Fig 4B). However, proportions of up- and down-regulated

genes differ from those in normal brain aging. This suggests that zebrafish brains bearing

this mutation may not properly regulate certain gene sets during aging (e.g. cholesterol

homeostasis, adipogenesis, DNA repair, hypoxia, Wnt/β-catenin signalling).

Altered protein abundance in the heterozygous mutant zebrafish brains

Despite its high sensitivity, estimating gene expression does not capture regulatory processes

or post-transcriptional modifications that might affect the amount of active protein. Correla-

tion between gene expression and protein abundance in samples from multicellular organisms

has been notoriously low [39], but analysing proteomics data alongside gene expression data

has been shown to be an effective complementary approach [40]. Because of this, we decided

to use LC-MS/MS to compare protein abundance in heterozygous mutant zebrafish brains rel-

ative to wild type siblings. Overall, 323 proteins were reliably quantified across all samples

aged 6 or 24 months. Testing for differential protein abundance was done analogously to

Fig 4. Differential gene set expression in heterozygous mutant (psen1K97fs/+) zebrafish brains compared to wild type siblings.

Values in each cell are the estimated proportions of up- and down-regulated genes for each gene set, for any particular pairwise

comparison shown to the left of the cells. A missing cell indicates that the particular gene set is not differentially expressed for that

particular pairwise comparison. Colours of cells are proportional to the difference between the proportion of up- and down-

regulated genes in a gene set. Differentially expressed gene sets have Mixed FDR below 0.05, indicating genes within the gene set

show statistically significantly altered (up and/or down) expression for a particular comparison. The genes in each gene set are

defined using the “Hallmark” gene set collection at the Molecular Signatures Database (MSigDB). (A) Gene sets showing

differential expression between heterozygous mutant (psen1K97fs/+) and wild type (psen1+/+) zebrafish brains at 6 months

(young) and 24 months (aged). The comparison representing normal aging (aged wild type vs. young wild type) is also shown to

highlight the ‘accelerated aging’ phenomenon in the young heterozygous mutants. (B) Gene sets showing differential expression

during normal aging. The aged K97fs/+ vs. young K97fs/+) comparison is also shown to highlight the phenomenon of aberrant

aging in the heterozygous mutants.

https://doi.org/10.1371/journal.pone.0227258.g004
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testing for differential gene expression, with differences at FDR-adjusted p-value < 0.05 con-

sidered statistically significant. 22 proteins were differentially abundant between 6-month-old

heterozygous mutant and wild type brains, while 65 proteins were differentially abundant

between 24-month-old heterozygous mutant and wild type brains (Fig 5; Fig D in S1 File).

Unexpectedly, three proteins found to be differentially abundant between 6-month-old hetero-

zygous mutant and wild type zebrafish have causative roles in human neurodegenerative dis-

eases: apolipoprotein Eb (encoded by the zebrafish apoeb gene, orthologous to the major

human genetic risk factor for sporadic AD, APOE), superoxide dismutase (encoded by the zeb-

rafish sod1 gene, orthologous to the human SOD1 gene mutated in familial amyotrophic lateral

sclerosis), and protein DJ-1 (encoded by the zebrafish park7 gene, orthologous to the human

PARK7 gene mutated in familial Parkinson’s disease). Overall, correlation between gene

expression and protein abundance was low with rs = 0.4 at 6 months of age and rs = 0.28 at

Fig 5. Protein abundance changes in the brains of heterozygous mutant (psen1K97fs/+) zebrafish compared to wild type (psen1+/+)

siblings at 6 months (young) and 24 months (aged). Protein abundance was quantified at the peptide-level with LC-MS/MS (liquid

chromatography tandem mass spectrometry) and differential abundance was assessed using moderated t-tests (limma). Differentially

abundant proteins are defined as those with FDR-adjusted p-value< 0.05. Protein names were used to retrieve equivalent gene

symbols for display purposes on these heatmaps. (A) Differentially abundant proteins between young heterozygous mutant and

wild type zebrafish brains. (B) Differentially abundant proteins between aged heterozygous mutant and wild type zebrafish

brains. The proteins have been clustered according to their abundance changes across the four comparisons.

https://doi.org/10.1371/journal.pone.0227258.g005
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24 months of age (Figs E and F in S1 File). However, this is overall consistent with previously

reported correlation coefficients in multicellular organisms that range from 0.09 to 0.68 [39]).

Gene expression changes in the heterozygous mutant zebrafish brains can

be compared to those in human AD

Our results indicate that gene expression changes involving diverse cellular processes occur in

aged heterozygous mutant zebrafish brains. The K115fs mutation is a human fAD mutation,

but the majority of human AD cases are sporadic, arise from diverse environmental and

genetic risk factors, and can involve heterogenous pathological changes in the brain. Neverthe-

less, it may be informative to explore the extent to which the changes in aged heterozygous

mutant zebrafish can model those in human AD.

To assess the similarity of these changes to human brains with AD, we compared gene

expression patterns in our zebrafish RNA-seq dataset and an independent human RNA-seq

dataset from the Mayo RNA-seq study. The Mayo RNA-seq dataset includes not only patients

with AD (defined as having dementia symptoms, Braak neurofibrillary tangle stage IV or

greater, and presence of amyloid pathology) and similarly aged controls, but also patients with

other brain afflictions that recapitulate aspects of AD (“pathological aging” patients possessing

amyloid pathology without dementia symptoms, and progressive supranuclear palsy patients

possessing neurofibrillary tangle pathology but no amyloid pathology) [41].

We constructed separate gene co-expression networks from the zebrafish and human

RNA-seq datasets. Each network only included genes that were orthologs in humans and zeb-

rafish. Whilst there are many methods for constructing a co-expression network of gene

expression [42], we used the weighted gene co-expression network analysis (WGCNA) method

[43], which has previously been used to group genes expressed in the brain into “modules”

associated with biological functions or activities [44–48]. The zebrafish brain co-expression

network is shown in Fig 6, and the human brain co-expression network is provided in Fig G

in S1 File.

We identified 30 modules (i.e. groupings of genes) in the zebrafish brain co-expression

network containing between 54 and 1221 genes each and 27 modules in the human brain co-

expression network containing between 62 and 921 genes each. We used two methods to

confirm that most modules represented functional relationships between genes: enrichment

analysis (for identifying enriched biological functions and enriched promoter motifs), and

correlating modules with particular traits of interest (age and/or psen1 genotype). By corre-

lating modules with particular zebrafish traits (age and psen1 genotype), we identified 13

(out of 30) modules showing evidence of altered expression patterns in heterozygous mutant

zebrafish brains (Fig 6B). Using enrichment analysis, we identified the biological relevance

of each module in the zebrafish co-expression network (see Table 1 for a summary, and full

enrichment analysis results are shown in S9–S11 Tables). Overall, the majority of modules in

the zebrafish and human networks show significant enrichment in known functional anno-

tations (e.g. Gene ontology terms, MSigDB gene sets, KEGG pathways, with Bonferroni-

adjusted p-value < 0.05), supporting the idea that these modules are likely to represent bio-

logically relevant groupings of genes. Some of the biological functions represented by differ-

ent modules in the zebrafish brain include: G-protein coupled receptor signalling pathway

(represented by module 13), TGF-β and Wnt/β-catenin signaling (represented by module

15), PI3K/AKT activation (represented by module 18), immune response (represented by

module 20), regulation of MAPK cascade (represented by module 26), and oxidative phos-

phorylation (represented by module 27). The genes in several modules in the zebrafish net-

work were also significantly enriched in promoter motifs including the glucocorticoid
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Fig 6. Zebrafish brain gene co-expression network. (A) Gene co-expression network visualisation. Each node

represents one gene, with node size proportional to the number of connected nodes (co-expressed genes). Edges represent

co-expression between two genes, with edge weight proportional to the strength of co-expression. The co-expression

network is a signed adjacency matrix constructed from RNA-seq data from wild type and heterozygous mutant zebrafish

brains at 6 and 24 months of age. Only nodes with at least four connections are shown. Gene "modules" are groups of

genes with similar expression patterns across heterozygous mutant and wild type zebrafish brains. In this network, 30

gene modules were identified using a hierarchical clustering and branch cutting method. Modules showing no significant

changes in expression are coloured grey, modules showing significantly increased expression during wild-type brain

aging are coloured red, while modules showing significantly decreased expression during wild-type brain aging are
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receptor element (GRE) motif (for genes in module 18), GATA3 motif (for genes in module

23), and numerous ETS transcription factor motifs (for genes in module 20) (Bonferroni-

adjusted p-values < 0.05) (S12 Table).

Several pathological changes in the heterozygous mutant zebrafish brains

are similar to those in human AD brains

There are several methods for assessing whether modules are preserved across two indepen-

dent gene co-expression networks constructed using the same genes [49]. The most easily

interpretable method is to compare directly the assignment of equivalent genes to modules

identified in each network. The resulting overlap in gene co-expression patterns across the two

networks can be visualised using a Sankey diagram (Fig 7). Overall, the gene co-expression

patterns in the zebrafish brain appear to be broadly similar to the gene co-expression patterns

in the human brain, despite differences in RNA-seq platform and brain regions used, which

would be expected to make the networks less comparable. A more sophisticated method of

assessing module preservation involves using permutation-based Z-statistics to test whether

certain properties of modules (e.g. density, connectivity) defined in one co-expression network

are preserved in another network [49]. Z-statistics for each module property can be summa-

rised into a Z-summary score, with Z-summary scores less than 2 indicating no module preser-

vation, scores between 2 and 10 indicating weak to moderate module preservation, and scores

above 10 indicating strong preservation [49]. When comparing zebrafish and human brain co-

expression networks, four of the 30 zebrafish modules (16, 20, 13, 26) have Z-summary scores

between 2 and 10, indicating weak to moderate preservation in the human co-expression net-

work (Table 1, S9 Table). While modules 16 (enriched in functions relating to ribosome and

nonsense mediated decay) and 13 (enriched in G-protein coupled receptor activity) do not

show significant differences between heterozygous mutant and wild-type brains as they age,

modules 20 and 26 display distinct coordinated changes in expression during aging of wild-

type brains. Module 20 genes are enriched in immune response functional terms and tend to

be up-regulated with aging (correlation p-value 0.01), while module 26 genes are enriched in

terms relating to regulation of the MAPK cascade and tend to be down-regulated with aging

(correlation p-value 0.05, Fig 6). Importantly, these coordinated gene expression changes

appear to be lost in aged heterozygous mutant brains (correlation p-values of 0.3 and 0.3

respectively), suggesting the K97fs mutation in psen1 may contribute to alterations in at least

these biological functions. Notably, module 26 which is enriched in immune response func-

tions also displays significant enrichment in ETS and IRF promoter motifs (see Table 1, all

FDR-adjusted p-values < 0.05). The equivalent module in the human co-expression network

also displays enrichment in these particular motifs, suggesting that the regulation of immune

and microglial gene expression responses is likely well conserved between aged zebrafish and

human brains.

coloured blue. Modules with other colours also show signficantly altered expression during heterozygous mutant brain

aging. See B for details. Asterisks indicate zebrafish brain gene modules which are significantly preserved in a co-

expression network constructed from an independent human brain dataset. (B) Gene expression patterns of modules in

the gene co-expression network across heterozygous mutant and wild type zebrafish brains at 6 months and 24

months of age. Values shown in cells are hybrid Pearson-robust correlations between the overall gene expression in a

module (summarised using the first principal component) and experimental condition encoded as a binary variable

(6-month-old heterozygous mutant, 24-month-old heterozygous mutant, 6-month-old wild type, 24-month-old wild

type). Values in parentheses are unadjusted Student correlation p-values. Modules showing potentially altered expression

patterns during heterozygous mutant aging compared to wild-type aging are labelled with coloured text, with colours

corresponding to module colours in (A). Asterisks indicate zebrafish brain gene modules which are significantly

preserved in a co-expression network constructed from an independent human brain dataset.

https://doi.org/10.1371/journal.pone.0227258.g006
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Table 1. Summary of modules in a co-expression gene expression network constructed from zebrafish RNA-seq data and their preservation in an independent

human brain microarray data set.

Module

ID

Number of

Genes

Z-Summary

Score

Top Functional Enrichment Terms

(FDR p-value < 0.05)

Promoter Motif Enrichment

(FDR p-value < 0.05)

Cell Type Marker

Enrichment

(FDR p-

value < 0.05)

Random 1000 -0.450372394 - - -

1 262 0.951510976 Sarcomere, muscle structure

development

- -

2 209 1.967152607 Extracellular matrix organisation EKLF(Zf) -

3 137 0.864232356 Sequence specific DNA binding,

AP2 transcription factors

- -

4 54 0.097738923 - - -

5 133 0.342079228 Homeobox genes - -

6 212 -0.201216548 L27 protein domain - -

7 98 1.004032939 - - -

8 67 0.62219677 Vacuolar membrane - -

9 1493 3.032384176 - - -

10 57 -0.720174553 - - -

11 319 -0.828726101 Mismatch repair - -

12 163 0.101290609 - - -

13 668 3.95602259 G-protein coupled receptor

signalling pathway

- Neuron

14 81 0.842726312 Gland morphogenesis, Notch Hoxb4(Homeobox) -

15 82 1.741071825 Transcription factor binding - -

16 62 5.804071733 Ribosome, nonsense mediated

decay

GFX, ZBTB33(Zf), ERG(ETS) -

17 59 1.92925347 Synapse part, regulation of synaptic

plasticity

- -

18 189 -0.849139273 PI3K/AKT activation GRE(NR) -

19 1221 0.552830789 Cholesterol biosynthesis - -

20 381 5.071793968 Immune response SpiB(ETS), ELF3(ETS), PU.1(ETS), IRF1(IRF), IRF8(IRF), PU.1-IRF

(ETS:IRF), EWS:ERG-fusion(ETS), ELF5(ETS), IRF3(IRF), IRF2(IRF),

ISRE(IRF), EHF(ETS), PU.1:IRF8(ETS:IRF), EBF(EBF), SPDEF(ETS)

Microglia

21 97 -0.689019253 Semaphorin receptor activity,

integral component of membrane

- -

22 127 0.53275753 - - -

23 309 1.081006115 Zinc Finger C2H2 GATA3(Zf) -

24 103 0.322883371 Oxidative phosphorylation, fatty

acid metabolism

- -

25 55 -0.250719822 - - -

26 90 2.432423753 Regulation of MAPK cascade - -

27 69 -0.222869961 Oxidative phosphorylation - -

28 59 0.023104171 Pattern specification process,

cardiovascular system development

- -

29 171 0.553682784 Phototransduction - -

30 549 -0.624680799 Response to DNA damage ETS1 -

The Z-Summary preservation score is a statistic that aggregates various Z-statistics obtained from permutation tests of the coexpression network to test whether network

properties such as density and connectivity in the zebrafish co-expression network are preserved in an independent co-expression network constructed from human

brain gene expression data. In this analysis, 200 permutations were used. Z-summary scores less than 2 indicate no preservation, while scores between 2 and 10 indicate

weak-to-moderate evidence of preservation. The top functional enrichment and cell type marker enrichment terms are used to give insight into possible biological

functions represented within each module. Cell type marker enrichment gene sets are from MSigDB, while functional enrichment terms are from Gene Ontology and

MSigDB gene sets. The “Random” module is a random sample of 1,000 genes in the zebrafish co-expression network expected to show non-significant preservation (Z-

summary < 2) in the human co-expression network. Shaded rows indicate zebrafish gene modules identified as showing significant preservation in the human network.

https://doi.org/10.1371/journal.pone.0227258.t001
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Fig 7. Module overlap between co-expression networks constructed using zebrafish and human brain gene expression data.

Zebrafish and human co-expression networks were constructed using 7,118 genes that were orthologs in zebrafish and humans and

expressed in brain gene expression data. Modules of co-expressed genes were separately identified for both the zebrafish and human co-

expression networks, resulting in 30 modules in the zebrafish network (left) and 27 modules in the human network (right). Several

zebrafish modules (indicated with asterisks) were found to have Z-summary preservation score> 2, indicating statistically significant

weak-to-moderate preservation of these modules (i.e. genes in these modules still tend to be co-expressed) in the human brain co-

expression network. Four out of five of these modules also showed statistically significant functional enrichment. See Table 1 for more

details on the Z-summary preservation scores and functional enrichment for each module in the zebrafish co-expression network.

https://doi.org/10.1371/journal.pone.0227258.g007
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Aged heterozygous mutant brains possess increased abundance of

microglia

The changes we observed in immune-microglia gene co-expression in the aged heterozygous

mutant brains prompted us to ask whether differences might be observable in microglial form

or even abundance. We used immunostaining for the pan-leukocyte marker L-plastin to detect

microglia on sections of fixed brain material from 24-month-old wild type and heterozygous

mutant zebrafish (Fig 8). An increased abundance of cells expressing L-plastin was evident in

psen1K97fs/+ heterozygotes in both ventricular (Fig 8C.i and 8E.i) and parenchymal (Fig 8C.ii

and 8F.i) regions compared to wild type brains (Fig 8D.i and 8D.ii). We observed significant

differences in mean fluorescent intensity (MFI) of the image in the L-plastin channel indicat-

ing increased abundance of cells expressing L-plastin in the forebrain, midbrain and hindbrain

regions of heterozygous mutant and wild type fish (Fig 8G, p = 0.0048, p = 0.0005, p<0.0001

respectively; two-way ANOVA with Sidak’s multiple comparisons test). This immunostaining

was also capable of distinguishing between distinct morphologies of microglia in the ventricu-

lar (amoeboid “activated” morphology) and parenchymal (ramified morphology) regions in

the zebrafish brain (Fig H in S1 File) although there was no obvious variation in morphology

observed between heterozygous mutant and wild type brains.

Molecular changes in the aged heterozygous mutant zebrafish brains occur

without obvious histopathology

Teleosts (bony fish) such as the zebrafish show impressive regenerative ability following tissue

damage that includes repair of nervous tissue. Previous attempts to model neurodegenerative

Fig 8. Cells expressing L-plastin are more abundant across the heterozygous mutant (psen1K97fs/+) zebrafish brain than in wild type siblings at 24

months. Immunostaining for the pan-leukocyte marker L-plastin supports increased numbers of microglia in the forebrain (A-B), midbrain (C-D) and

hindbrain (E-F). Increased microglial abundance is evident in psen1K97fs/+ heterozygotes in both ventricular (D.i, F.i) and parenchymal (D.ii) regions

compared to wild types (C, E). (G) Significant differences in MFI were observed between the forebrain, midbrain and hindbrain of psen1K97fs/+ and

psen1+/+ fish; ��p = 0.0048, ���p = 0.0005, ����p< 0.0001; two-way ANOVA with Sidak’s multiple comparisons test. Data presented as means with

SEM. Scale bar 50 μm in all images.

https://doi.org/10.1371/journal.pone.0227258.g008
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diseases in adult zebrafish have failed to show cellular phenotypes [50]. Also, zebrafish are

thought unlikely to produce the Aβ peptide [51] that many regard as central to AD pathologi-

cal mechanisms [52]. The analyses described in this paper support that a fAD mutation mim-

icking PS2V formation may accelerate aspects of brain aging and promote a shift in aged

heterozygous mutant brains towards an altered, pathological state of gene and protein expres-

sion. We therefore made histopathological comparisons of aged (24 months) wild type and

heterozygous mutant brains equivalent to those used in our ‘omics analyses. Analysis of vari-

ous brain regions using markers of aging, senescence and amyloid accumulation (lipofuscin,

senescence-associated β-galactosidase, and Congo Red staining respectively) revealed no

discernible differences (see Materials and methods and Figs I-K in S1 File). This is consistent

with the lack of neurodegenerative histopathology observed in a heterozygous knock-in model

of a PSEN1 fAD mutation in mice [25].

Discussion

Fig 9 summarises the main molecular changes that occur with aging and heterozygous

mutation.

Evidence of increased stress long preceding AD

We identified a subset of ‘inverted’ genes that are up-regulated in young heterozygous mutant

brains, but down-regulated in aged heterozygous mutant brains. Although this pattern might

be overlooked, similar patterns have been observed in human cases. Patients with Mild Cogni-

tive Impairment, pre-clinical AD, or Down Syndrome (who often develop AD in adulthood)

initially display increased expression of particular genes, which show decreased expression

when AD symptoms become more severe [23, 53–55]. Collectively, results from these studies

and our heterozygous mutant zebrafish suggest that early increases in brain activity likely pre-

cede AD symptoms in both PSEN1-mutation carriers and more general cases of AD. Evidently,

to find strategies for preventing AD progression while patients are still asymptomatic, it is

important to understand the causes of this increased gene activity in the brain.

Our results suggest that stress responses likely contribute to early increases in brain activity

for fAD mutation carriers. In heterozygous mutant zebrafish, the inverted gene expression pat-

tern seems to arise from altered glucocorticoid signalling. In humans, chronically increased

glucocorticoid signalling in the brain can lead to glucocorticoid resistance, whereby the brain

is unable to increase glucocorticoid signalling even during stressful conditions [56, 57]. We

did not confirm whether glucocorticoid signalling and cortisol levels were altered in zebrafish

brains in vivo. However, many of the inverted genes possess glucocorticoid receptor elements

in their promoters, with one particular inverted gene (fkbp5) encoding a protein which is

known to bind directly to the glucocorticoid receptor to negatively regulate its activity. Previ-

ous studies in humans demonstrate that fkbp5 levels are highly responsive to chronic stress

and stress-related diseases (e.g. bipolar disorder; depression in AD [58]), implying that fkbp5
expression is a sensitive marker of glucocorticoid signalling. Our analysis supports this idea,

with fkbp5 mRNAs showing a significant difference in expression between heterozygous

mutant and wild type brains (logFC = 2.1, FDRp = 1.77e-06 in young heterozygous mutant vs

wild type; logFC = -3.9, FDRp = 3.16e-08 in aged heterozygous mutant vs wild type). Aside

from altered glucocorticoid signalling, we also found altered gene expression patterns associ-

ated with diverse biological changes in heterozygous mutant zebrafish brains. If we assume

that these heterozygous mutant zebrafish model some aspects of human AD, then these alter-

ations may offer insight into early changes in the brains of human fAD-mutation carriers and,

potentially, other individuals predisposed to AD. The brains of young heterozygous mutant
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zebrafish exhibit changes relating to developmental signalling pathways (Wnt/β-catenin sig-

nalling, hedgehog signalling, TGF-β signalling), stress and immune responses (DNA repair,

IL2-STAT5 signalling, complement system, IFN-γ response, inflammatory response), hor-

monal changes (early and late estrogen responses, androgen response), and energy metabolism

(glycolysis, oxidative phosphorylation). Appropriate regulation of these biological processes is

critical for brain function, so it is unsurprising that disruption of these processes in the brain

Fig 9. Summary of the molecular changes in the brains of zebrafish due to aging and/or the K115fs-like mutation (psen1K97fs/+). For each of the

four pairwise comparisons shown, the summarised molecular changes (" = overall increased, # = overall decreased, • = significant alterations but not in

an overall direction) were inferred from a combination of the following analyses: functional enrichment analysis of differentially expressed genes and

proteins, promoter motif enrichment analysis of differentially expressed genes, gene set enrichment analysis of differentially expressed genes, and

weighted co-expression network analysis of the gene expression data.

https://doi.org/10.1371/journal.pone.0227258.g009
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has been linked previously to various pathological states, including early stages of neurodegen-

eration [59–62].

Quantifying protein abundance in young heterozygous mutant zebrafish brains revealed

additional sources of early-life stress. In young heterozygous mutant zebrafish brains, proteins

associated with oxidative stress responses and energy metabolism in mitochondria already

demonstrated altered abundance. Overall, stress responses were increased, consistent with the

RNA-seq data, and decreased abundance of metabolic and antioxidant proteins imply mito-

chondrial function was likely already impaired. Both increased oxidative stress and altered

energy metabolism are known to be early events in AD [2, 63–69], consistent with the idea

that these events may contribute to early stress responses in the brain.

Involvement of microglia-mediated immune responses in AD

Our analysis identified two modules with altered gene co-expression patterns in both the aged

heterozygous mutant zebrafish brains and post-mortem human AD brains. These modules

demonstrated significant functional enrichment in immune and microglial responses (module

20 in the zebrafish network) and regulation of the MAPK cascade (module 26 in the zebrafish

network), consistent with their well-established dysfunction in human AD [9, 36, 70, 71].

Gene co-expression changes associated with the immune-microglia responses and the MAPK

cascade were evident in aged but not young heterozygous mutant brains, suggesting that these

changes are likely to occur in later stages of AD pathogenesis. Our results are consistent with

two independent studies involving co-expression analysis of AD brains by Miller et al. [47]

and Zhang et al. [48] which also identified a prominent immune-microglia module demon-

strating similar changes in gene co-expression in AD patients, despite differences in patient

cohorts used, brain regions and tissue types sampled, RNA-seq or microarray platforms,

and methodology used to construct the gene co-expression networks. Collectively, the results

from these studies and our analysis support the involvement of microglia-mediated immune

responses in late stages of AD pathogenesis.

Our analysis reveals additional insights that help explain the involvement of the immune-

microglia module in AD. Promoter enrichment analysis of genes in the immune-microglia

module indicates statistically significant enrichment in several known motifs. Interestingly, all

of these motifs are binding sites for transcription factors from either the ETS (SpiB, ELF3,

ELF5, PU.1, EHF) or IRF (IRF3, IRF8, IRF1) families. This finding is important, because 1)

ETS and IRF transcription factor motifs are also enriched in the promoters of genes that are

up-regulated with brain aging in wild type zebrafish, but not in genes that are up-regulated

with brain aging in heterozygous mutant zebrafish. This suggests that the genes they regulate

are important during normal brain aging and that their dysregulation may contribute to

pathology. 2) ETS and IRF transcription factors are known to mediate critical biological func-

tions, with ETS factors regulating cellular differentiation, proliferation, cell-cycle control, apo-

ptosis, migration and mesenchymal-epithelial interactions [72, 73], and IRF factors mediating

immune and other stress responses. Our results are consistent with those in a previous study

by Gjoneska et al. [74] that analysed RNA-seq and ChIP-seq (chromatin immunoprecipitation

sequencing) data from mouse and human brain tissues, which found that immune response

genes were up-regulated in both the CK-p25 mouse model and in human sporadic AD, that

these genes were enriched in ChIP-seq peaks corresponding to ETS and IRF transcription

factor motifs, and that microglia-specific activation was likely responsible for these gene

expression changes.

Immunohistochemistry on sections from aged brains to identify L-plastin-expressing

cells, (thought to represent microglia), revealed an increased abundance of these cells in
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heterozygous mutant fish compared to wild type fish but no obvious genotype-dependent dif-

ferences in cell morphologies. The concentration of these cells in ventricle-proximal regions

suggests an involvement with neural cell proliferation [75] which might occur in the regenera-

tive zebrafish brain if the rate of cell turnover was increased due to pathological processes and

this deserves future investigation. The increased abundance of L-plastin-expressing cells was

not reflected in a noticeable increase in the mean expression of multiple microglial marker

genes from the RNA-seq data. However, the RNA-seq data was derived from entire zebrafish

brains and this may have obscured region-specific differences in microglial abundance, mor-

phology, and activation.

Heterozygous mutant zebrafish in our study overall appear to recapitulate partially cer-

tain transcriptional and molecular changes that occur in more general cases of sporadic AD.

Although revealing valuable insights, our comparison of the gene co-expression patterns in

the zebrafish and human datasets is limited by inherent differences in species-level gene

expression, differences in the brain regions and tissues sampled in each dataset, and differ-

ence in the RNA-seq platforms used to collect data, which has been previously shown to

affect network properties including connectivity and density of modules [42]. In addition,

the heterogeneity of sporadic AD would likely result in variation in gene expression patterns

which may also confound our ability to identify reliably gene modules showing similar

expression patterns across all samples. All of these differences would likely have contributed

to decreasing our ability to detect preservation of modules between the zebrafish and human

co-expression networks.

AD-like gene expression changes can occur without amyloid pathology

typically associated with AD

Somewhat surprisingly, the gene and protein expression changes observed in our aged hetero-

zygous mutant zebrafish were not reflected in an obvious histopathology. However, this is

consistent with an attempt to model neuronal ceroid lipofuscinosis in adult zebrafish [50]

and with observations from heterozygous fAD mutation knock-in models in mice [25–27]

(although, in general, mouse single heterozygous mutation brain histology phenotypes have

not been reported). It is important to realise that differences in scale between the mass of

a human brain and the brains of mice and zebrafish, (~1,000-fold and ~200,000 fold

respectively) mean that any metabolic or other stresses in the small brains of the genetic mod-

els are likely exacerbated in the huge human brain [76]. Human brains also lack the regenera-

tive ability of zebrafish, while mice and zebrafish both show sequence divergences in the Aβ
regions of their APP orthologous genes greater than seen in most mammals [33, 77, 78]. Nev-

ertheless, the heterozygous fAD-like mutation models of mice and (with this paper) zebrafish

are probably the closest one can come to modelling AD in these organisms without subjec-

tively imposing an opinion of what AD is by addition of further mutations or transgenes.

It is important to remember that the pathological role in AD of Aβ, neuritic plaques, and

neurofibrillary tangles is still debated and that around one quarter of people clinically diag-

nosed with AD lack typical amyloid pathology upon post-mortem examination [79]. By the

current definition, these people do not have AD [80] although this restrictive definition has

been questioned [81, 82]. Many people also have brains containing high levels of Aβ [83] or

Braak stage III to VI neurodegeneration [79] without obvious dementia. Thus the connection

between amyloid pathology, histopathological neurodegeneration and Alzheimer’s disease

dementia is unclear. Our data indicate that the AD cellular pathologies may occur subsequent

to cryptic but dramatic changes in the brain’s molecular state (gene and protein expression)

that are the underlying drivers of AD.
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Finally, it is also important to acknowledge that the specific fAD mutation modelled in this

study (K115fs of PSEN2) is an uncommon fAD mutation which produces novel alternative

transcripts and splice isoforms, and it is unclear how pathogenic effects of this mutation might

compare to other more common fAD mutations [84]. When beginning this research, we ini-

tially hypothesised that the alternative protein product PS2V (exon 6 deletion) produced from

mutant K115fs PSEN2 played a pathogenic role in AD. PS2V has previously been detected in

sAD brains [29], and our previous research suggested dominant-negative effects of the func-

tionally similar PS2V-like protein product produced from zebrafish psen1 [32, 85]. Recent

research suggests that some aberrant transcripts derived from the human K115fs mutant allele

may, in fact, follow the "fAD mutation reading frame preservation rule" that is obeyed by all

other fAD mutations in the PSEN genes [84]. If this is true, then our zebrafish model of K115fs

is best regarded as illuminating the contribution that PS2V-mimicry by the K115fs mutation

can make to its overall fAD phenotype. Nevertheless, our results indicate that the contribution

made by such PS2V-mimicry is likely to be very significant. Our laboratory has been develop-

ing additional heterozygous mutant zebrafish modelling other forms of fAD mutation [86],

and future analysis incorporating these zebrafish to produce a consensus co-expression net-

work should help to identify and refine a “signature” of the transcriptome and proteome

changes that cause fAD.

Materials and methods

Zebrafish husbandry and animal ethics

This study was approved under permits S-2014-108 and S-2017-073 issued by the Animal Eth-

ics Committee of the University of Adelaide. Tübingen strain zebrafish were maintained in a

recirculated water system.

Generation of TALEN coding sequences and single stranded

oligonucleotide

TALEN coding sequences were designed by, and purchased from, Zgenebio (Taipai City,

Taiwan). The DNA binding sites for the TALEN pair targeting psen1 were (5’ to 3’): left site,

CAAATCTGTCAGCTTCT and right site, CCTCACAGCTGCTGTC (Fig A in S1 File). The coding

sequences of the TALENs were provided in the pZGB2 vector for mRNA in-vitro synthesis.

The single stranded oligonucleotide (ssoligo) sequence was designed such that the dinucleotide

‘GA’ deletion was in the centre of the sequence with 26 and 27 nucleotides of homology on

either side of this site (Fig A in S1 File). The ssoligo was synthesized by Sigma-Aldrich

(St. Louis, Missouri, USA) and HPLC purified. The oligo sequence was (5’ to 3’): CCATCAAA
TCTGTCAGCTTCTACACACAAGGACGGACAGCAGCTGTGAGGAGC (Fig A in S1 File).

In-vitro mRNA synthesis

Each TALEN plasmid was linearized with Not I. Purified linearized DNA was used as a tem-

plate for in-vitro mRNA synthesis using the mMESSAGE mMACHINE SP6 transcription kit

(Thermo Fisher, Waltham, USA) as per the manufacturer’s instructions as previously

described [85].

Microinjection of zebrafish embryos

Embryos were collected from natural mating and, at the 1-cell stage, were microinjected with a

~3nl mixture of 250ng/μl of left and right TALEN mRNA and 200ng/μl of the ssoligo.
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Genomic DNA extraction of zebrafish tissue

Embryos. A selection of 10–20 embryos were collected at 24 hpf and placed in 150μl of a

50mM NaOH 1xTE solution and then incubated at 95˚C until noticeably dissolved (10-

20mins). The lysis solution was cooled to 4˚C and 50μl of Tris solution (pH 8) was added. The

mixture was then centrifuged at maximum speed for 2 mins to pellet cellular debris. The

supernatant was transferred into a fresh microfuge tube ready for subsequent PCR.

Adult fin clips. For fin clips, adult fish were first anesthetised in a 0.16 mg/mL tricaine

solution and a small section of the caudal fin was removed with a sharp blade. Fin clips were

placed in 50μl of a 1.7 μg/ml Proteinase K 1xTE solution and then incubated at 55˚C until

noticeably dissolved (2-3hours). The lysis solution was then placed at 95˚C for 5mins to inacti-

vate the Proteinase K.

Genomic DNA PCR and sequencing for mutation detection

To genotype by PCR amplification, 5 μl of the genomic DNA was used with the following

primer pairs as relevant. Primers to detect wild type (WT) sequence at the mutation site:

primer psen1WTF: (5’TCTGTCAGCTTCTACACACAGAAGG3’) (GA nucleotides in italics)

with primer psen1WTR: (5’AGTAGGAGCAGTTTAGGGATGG3’). Primers to detect the pres-

ence of the GA dinucleotide deletion: primer psen1GAdelF: (5’AATCTGTCAGCTTCTACAC
ACAAGG3’) with primer psen1WTR. To confirm the presence of the GA dinucleotide dele-

tion mutation by sequencing of extracted genomic DNA, PCR primers were designed to

amplify a 488 bp region around the GA mutation site: primer psen1GAsiteF: (5’GGCACA
CAAGCAGCACCG3’) with primer psen1GAsiteR: (5’TCCTTTCCTGTCATTCAGACCTG
CGA3’). This amplified fragment was purified and sequenced using the primer psen1seqF:

(5’ AGCCGTAATGAGGTGGAGC 3’). All primers were synthesized by Sigma-Aldrich. PCRs

were performed using GoTaq polymerase (Promega, Madison, USA) for 30 cycles with an

annealing temperature of 65˚C (for the mutation-detecting PCR) or 61˚C (for the WT

sequence-detecting PCR) for 30 s, an extension temperature of 72˚C for 30 s and a denatur-

ation temperature of 95˚C for 30 s. PCR products were assessed on 1% TAE agarose gels run

at 90V for 30 mins and subsequently visualized under UV light.

Whole brain removal from adult zebrafish

Adult fish were euthanized by sudden immersion in an ice water slurry for at least ~30 seconds

before decapitation and removal of the entire brain for immediate RNA or protein extraction.

All fish brains were removed during late morning/noon to minimise any influence of circadian

rhythms.

RNA extraction from whole brain

Total RNA was isolated from heterozygous mutant and WT siblings using the mirVana

miRNA isolation kit (Thermo Fisher). RNA isolation was performed according to the manu-

facturer’s protocol. First a brain was lysed in a denaturing lysis solution. The lysate was then

extracted once with acid-phenol:chloroform leaving a semi-pure RNA sample. The sample was

then purified further over a glass-fiber filter to yield total RNA. This procedure was formulated

specifically for miRNA retention to avoid the loss of small RNAs. Total RNA was then sent to

the ACRF Cancer Genomics Facility (Adelaide, Australia) to assess RNA quality and for subse-

quent RNA sequencing on the Illumina NextSeq platform as paired-end 100bp reads.

RNA extraction and cDNA synthesis from entire brains for digital PCR. Total RNA was

extracted using the QIAGEN RNeasy Mini Kit according to the manufacturer’s protocol. The
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RNA was DNase-treated using RQ1 DNase (Promega) according to the manufacturer’s proto-

col prior to cDNA synthesis. Equal concentrations of total RNA from each brain were used to

synthesise first-strand cDNA by reverse transcription with random priming (Superscript III kit;

Invitrogen). cDNA was RNaseH treated before use in 3D Quant Studio Digital PCR.

Allele-specific digital quantitative PCR. Digital PCR was performed on a QuantStudio™
3D Digital PCR System (Life Technologies, Carlsbad, California, USA). 20μL reaction mixes

were prepared containing 9 μL 1X QuantStudio™3D digital PCR Master Mix (Life Technolo-

gies), 2 μL of 20X Sybr1 dye in TE buffer, 25ng cDNA per total reaction (determined from the

RNA concentration under the assumption that single strand cDNA synthesis from total RNA

was complete), 200nM of specific primers and 6.3 μL of nuclease-free water (Qiagen). 14.5μL

of the reaction mixture was loaded onto a QuantStudio™3D digital PCR 20 K chip (Life Tech-

nologies) using an automatic chip loader (Life Technologies) according to manufacturer’s

instructions. Loaded chips underwent thermo-cycling on the Gene Amp 9700 PCR system

under the following conditions: 96˚C for 10 min; 45 cycles of 60˚C for 2 min and 98˚C for 30

sec; followed by a final extension step at 60˚C for 2 min. After thermo-cycling, the chips were

imaged on a QuantStudio™ 3D instrument [87, 88]. Primers used for psen1 allele detection

were: wild-type allele forward 5’ CTACACACAGAAGGACGGACAGC 3’, K97fs allele forward

5’ TCTGTCAGCTTCTACACACAAGGA 3’ and both were paired with a common reverse

primer 5’ GCCAGGCTTGAATCACCTTGTA 3’.

PCR test for aberrant splicing in the region of the K97fs mutation in zebrafish psen1.

Total RNA was extracted from each 24-month-old zebrafish brain using the QIAGEN RNeasy

mini Kit (QIAGEN, Hilden, Germany). 250ng of total RNA from each brain was then used to

synthesise 20μL of first-strand cDNA by reverse transcription (SuperScript III kit, Invitrogen,

Camarillo, California, USA). 10ng of each cDNA preparation (a quantity calculated from the

RNA concentration on the assumption that reverse transcription of RNA into cDNA was com-

plete) was used to perform PCR using Phusion high-fidelity DNA polymerase (New England

Biolabs, Ipswich, Massachusetts). Each 25μL PCR reaction contained 0.2mM of deoxyribonu-

cleotide triphosphates (dNTPs), 0.4μM of each PCR primer, 1 unit of Phusion polymerase and

10ng of zebrafish brain cDNA template. PCR cycling was performed with 35 cycles of a dena-

turation temperature of 95˚C for 30s, then an annealing temperature of 60˚C for 30s and then

an extension temperature of 72˚C for 2 minutes. PCR products were electrophoresed through

a 1% agarose gel in 1×TAE buffer for separation and identification.

Protein extraction and proteomic analysis of adult brain

Sample preparation. Freshly removed entire adult zebrafish brains were lysed under

denaturing conditions in 7 M urea (Merck, Darmstadt, Germany) plus complete protease

inhibitors (Roche) using a Bioruptor (Diagenode, Seraing, Belgium) in ice cold water. Samples

were quantified using the EZQ protein assay (Life Technologies) and the extracts were trypsin-

digested using the FASP method [89]. Protein samples were then sent to the Adelaide Proteo-

mics Centre (Adelaide, Australia) for quantification and data acquisition.

Data acquisition. Nano-LC-ESI-MS/MS was performed using an Ultimate 3000 RSLC

system (Thermo Fisher Scientific) coupled to an Impact HD™ QTOF mass spectrometer

(Bruker Daltonics, Bremen, Germany) via an Advance Captive Spray source (Bruker Dal-

tonics). Peptide samples were pre-concentrated onto a C18 trapping column (THC164535,

Thermo Fisher) at a flow rate of 5 μL/min in 2% (v/v) ACN 0.1% (v/v) FA for 10 minutes.

Peptide separation was performed using a 75μm ID 50 cm C18 column (THC164540, Thermo

Fisher) at a flow rate of 0.2 μL/minute using a linear gradient from 5 to 45% B (A: 5% (v/v)

ACN 0.1% (v/v) FA, B: 80% (v/v) ACN 0.1% (v/v) FA) over 180 minutes. MS scans were
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acquired in the mass range of 300 to 2,200 m/z in a data-dependent fashion using Bruker’s

Shotgun Instant Expertise™ method (singly charged precursor ions excluded from acquisition,

CID from 23% to 65% as determined by the m/z of the precursor ion).

Data analysis. The acquired peptide spectra were identified and quantified using the mass

spectrometry software MaxQuant with the Andromeda search engine against all entries in the

non-redundant UniProt database (protein and peptide false discovery rate set to 1%). The

MaxQuant software allows for the accurate and robust proteomewide quantification of label-

free mass spectrometry data [90].

RNA-seq analysis

Data processing. We used FastQC [91] to evaluate the quality of the raw paired-end

reads. Using AdapterRemoval [92], we trimmed reads and removed adapter sequences. From

the FastQC reports, some over-represented sequences in the raw and trimmed reads corre-

sponded to ribosomal RNA, possibly from insufficient depletion during library preparation.

We removed ribosomal RNA sequences in silico by aligning all trimmed reads to known zebra-

fish ribosomal RNA sequences and discarding all reads that aligned. Next, we used HISAT2
[93] to align reads to the Ensembl zebrafish genome assembly (GRCz10). Using Picard [94]

and the MarkDuplicates function, we removed optical and PCR duplicates from the aligned

reads. To quantify gene expression, we used FeatureCounts [95], resulting in a matrix of gene

expression counts for 32,266 genes for the 12 RNA-seq libraries.

Differential gene expression analysis. Differential gene analysis was performed in R [96]

using the packages edgeR [97] and limma [98–100]. We retained 18,296 genes with>1.5 cpm

in at least 6 of the 12 RNA-seq libraries. We then calculated TMM-normalisation factors to

account for differences in library sizes and applied the RUVs method from the RUVseq pack-

age [101] to account for a batch effect with one factor of unwanted variation (k = 1). Differen-

tial gene expression analysis was performed using limma. We considered genes differentially

expressed if the FDR-adjusted p-value associated with their moderated t-test was below 0.05.

We used the pheatmap R package [102] to produce all heatmaps.

Gene set testing. We downloaded the Hallmark gene set collection from MSigDB v6.1

[38]. Using biomaRt [103, 104], we converted human Entrezgene identifiers to zebrafish

Entrezgene identifiers. To perform gene set testing, we applied the fast rotation gene set testing

(FRY) method [105] for each comparison. We considered all gene sets with non-directional

(Mixed) FDR< 0.05 as differentially expressed. To obtain estimates of the proportions of up-

regulated and down-regulated genes for each significant gene set, we used the ROAST [106]

method with 9,999 rotations with the ‘set.statistic’ option set to ‘mean’, to maintain consistency

with the results obtained from FRY.

Promoter motif analysis. We performed promoter motif enrichment analysis using

HOMER [107, 108] and downloaded a set of 364 zebrafish promoter motifs from published

ChIP-seq experiments, as collated by HOMER authors, using the command ‘configureHomer.pl

-install zebrafish-p’. We retained default parameters with the findMotifs.pl program with the fol-

lowing modifications: the 18,296 Ensembl genes considered as expressed in the differential gene

expression analysis were specified as the background; and promoter regions were defined as 1500

bp upstream and 200 bp downstream of the transcription start site. We defined motifs as being

significantly enriched in a set of genes if the Bonferroni-adjusted p-value was less than 0.05.

LC-MS/MS analysis

Data processing. Raw MS/MS spectra were analysed using MaxQuant (V. 1.5.3.17). A

False Discovery Rate (FDR) of 0.01 for peptides and a minimum peptide length of 7 amino
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acids was specified. MS/MS spectra were searched against the zebrafish UniProt database.

MaxQuant output files for the 6-month-old and 24-month-old samples were processed in

separate batches with the MSStats R package [109] due to an unresolvable batch effect. Briefly,

peptide intensities were log2-transformed and quantile normalised, followed by using an accel-

erated failure time model to impute censored peptides. Peptide-level intensities were summa-

rised to protein-level intensities using Tukey’s median polish method. This resulted in 2,814

peptides (summarised to 534 proteins) for the 6-month-old data and 3,378 peptides (summa-

rised to 582 proteins) for the 24-month-old data. After summarisation, both sets of protein

intensities were combined, quantile normalised and filtered to retain the 323 proteins that

were detected across all samples.

Differential protein analysis. Differential protein abundance analysis was performed

using limma [110] using moderated t-tests. Proteins were identified as being differentially

abundant if FDR-adjusted p-values were below 0.05. Over-representation analysis using the

‘goana’ and ‘kegga’ functions from limma were used to test for enriched gene ontology terms

and KEGG pathways respectively.

Gene co-expression network analysis

Network construction. We used the WGCNA R package to construct co-expression

networks for our zebrafish RNA-seq data and a processed human RNA-seq dataset from the

Mayo RNAseq study [41]. The human RNA-seq data consists of 101 bp paired-end reads

sequenced with the Illumina HiSeq 2000 platform and derived from cerebellum and temporal

cortex samples from North American Caucasian subjects with either AD (n = 86), progressive

supranuclear palsy (PSP, n = 84), pathological aging (PA, n = 28) or controls lacking neurode-

generation (n = 80). The Mayo RNAseq study authors performed read alignment and counting

using the SNAPR software with the GRCh38 reference human genome and Ensembl v77 gene

models, and provided TMM-normalised gene counts as output by the edgeR package [97, 111].

We matched zebrafish genes to human homologous genes via orthologous Ensembl gene iden-

tifiers and retained genes that were expressed in both the human and zebrafish datasets, leav-

ing 8,396 genes for network construction. To reduce noise during network construction, we

calculated connectivities for each gene in each dataset and retained 7,576 genes with connec-

tivities above the 10th percentile of all connectivities. To construct approximately scale-free

weighted networks, the Pearson correlation was calculated between each pair of genes, and

the resulting correlation matrix was raised to the soft-thresholding power of 14 to produce a

signed adjacency matrix for each dataset [43]. Next, we applied a transformation to obtain a

measure of topological overlap for each pair of genes. Lastly, we hierarchically clustered genes

in each dataset based on the measure 1—Topological Overlap. To identify modules of co-

expressed genes, we used the Hybrid Tree Cut method from the dynamicTreeCut package

[112] with default parameters except for the following modifications: minimum module size

set at 40 genes, 0.90 as the maximum distance to assign previously unassigned genes to mod-

ules during PAM (Partioning Around Medoids) stage, and the deepSplit parameter to 1 for

both the human and zebrafish datasets.

Network analysis. We assessed functional enrichment of each module using default set-

tings in the anRichment R package. We assessed promoter motif enrichment using HOMER

as described earlier. To calculate the correlation between modules and phenotypic traits, we

calculated the hybrid-robust correlation between the first principal component of each module

and four binary variables defining the experimental conditions [113]. We evaluated the preser-

vation of zebrafish modules in the human network and vice versa using the modulePreserva-

tion function from WGCNA, which uses a permutation-based approach to determine whether
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module properties (e.g. density, connectivity) are preserved in another network [49]. We also

used the Sankey diagram functionality in the networkD3 package to visualise overlap between

zebrafish and human modules [114].

Network visualisation. To visualise networks, we imported edges and nodes into Gephi
and applied the OpenOrd algorithm with default settings [115]. We coloured the nodes

(genes) based on their assigned modules from WGCNA.

psen1K97fs/+ vs. wild type L-plastin immunostain

Anti-L-plastin immunostain. Frozen cryosections of adult psen1K97fs/+ (n = 3 fish) or

psen1+/+ (n = 4 fish) brains were dried for >1hr at room temperature, then rehydrated in

1x PBS for >30 min. Sections were then washed twice with 0.3% Triton X-100 in 1x PBS

(PBS-Tx 0.3%) for 15 min at room temperature (RT). Sections were subsequently incubated

with polyclonal rabbit anti-L-plastin primary antibody [116, 117] (a kind gift from Prof. Dr.

Michael Brand, Centre for Regenerative Therapies, Technische Universität Dresden) at

1:2500 concentration in PBS-Tx 0.3%, overnight at 4˚C in a humid chamber. Sections were

then washed 3 x 20 min in PBS-Tx 0.3% at RT, followed by 1 h incubation at RT with goat

anti-rabbit Alexa 488 secondary antibody (Thermo Fisher, 1:750 in PBS-Tx 0.3%) alongside

DAPI at 1:5000 concentration. Sections were subsequently washed once for 10 min with

PBS-Tx 0.3%, then twice for 20 min with 1x PBS at RT, then mounted with 50% glycerol in

1 x PBS.

Imaging. Z-stacks of brain sections were acquired on a Leica TCS SP8 confocal micro-

scope equipped with a HyD detector, and using the Leica LASX software suite. Stacks were

captured at 1024 x 1024 resolution at scanning speed of 600, with bidirectional X scanning

active. No averaging or accumulation was applied to stack acquisitions, and laser power and

gain were kept constant throughout image acquisition. Overview stacks were captured with

either a 10x dry objective (midbrain, hindbrain overviews) or a 20x oil-immersion objective

(forebrain overviews), while higher magnification stacks were acquired with a 40x water-

immersion objective. ~3 stacks were captured per fish (one of each forebrain, midbrain and

hindbrain at approximately equal levels).

Image processing and statistical analysis. Stacks were opened in Fiji 2 (https://imagej.

net/Fiji/Downloads), and split into individual channels. The green channel (corresponding to

L-plastin in all stacks) was max-projected and the MFI of the entire image was recorded using

the Measure function. Statistical analysis was conducted in Prism 7 (GraphPad); MFI between

brain regions in psen1K97fs/+ and psen1+/+ fish was compared via two-way ANOVA with

Sidak’s multiple comparisons test. Statistical significance was defined as p<0.05, with all data

presented as means with SEMs.

Histological analysis

Tissue preparation. Two-year-old adult zebrafish heterozygous for the psen1K97fs

mutation and their wild type siblings were sacrificed by immersion in ice-water, then tails

were nicked to exsanguinate the fish and prevent blood clotting on neural tissue. The dorsal

neurocranium was subsequently resected to expose the brain. Fish were then decapitated

and heads were incubated in a decalcification solution (100 ml 0.5M EDTA, 22 g sucrose, 11

ml 10x phosphate buffered saline solution, PBS) for four hours on a slow shaker at room

temperature. Decalcified heads were then fixed overnight in 4% paraformaldehyde in phos-

phate buffer (PFA in PB), at 4˚C on a slow shaker. Heads were then embedded in a sucrose-

gelatin medium (20% sucrose, 8% cold-water fish gelatin in 1x PBS), frozen on dry ice and

cryosectioned at 16 μm thickness on a Leica CM3050-S cryostat. Serial sections were
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mounted on SuperFrost Plus microscope slides (Menzel-Gläser). Sections were subse-

quently dried at room temperature for four hours, and then stored at -20˚C until staining.

Prior to all stains, sections were retrieved from -20˚C and brought to RT, then rehydrated in

1x PBS.

Senescence-associated β-galactosidase (saβgal) staining. Sections were prefixed with 4%

PFA in PB for one hour in a humid chamber at room temperature, then washed twice for 15

minutes with 0.3% Triton X-100 in 1x PBS (PBS-Tx (0.3%)). The pH of sections was then

equilibrated with two 30 minute washes with 1x PBS at pH 5.5 (all washes were performed in

a humid chamber). Sections were then stained for 16 hours at 37˚C in a humid chamber in

staining solution (2 mM MgCl2, 5 mM K3Fe(CN)6, 5 mM K3Fe(CN)6�3H2O, 1 mg/ml X-gal,

with the remaining volume made up of 1x PBS at pH 5.5). Following incubation, staining was

arrested by a 20-minute wash in 4% PFA in PB at room temperature. Sections were then

washed well in PBS at pH 5.5 and mounted in 50% glycerol. Sections were then imaged on an

Olympus Provis AX70 widefield microscope with an Olympus DP70 camera, with images

acquired at 4080x3072 resolution.

Congo Red staining for amyloid. Following rehydration in 1x PBS, sections were stained

for 20 minutes in Congo Red staining solution (0.5% Congo Red in 50% ethanol). Sections

were then rinsed in distilled water, and quickly differentiated by dipping five times in an alka-

line alcohol solution (1% NaOH in 50% ethanol). Sections were rinsed for 1 minute in distilled

water, then mounted in 50% glycerol. Sections were imaged in both brightfield and birefrin-

gence on a Leica Abrio polarising microscope at 1024x1024 resolution.

Autofluorescent detection of lipofuscin. Following rehydration in 1x PBS, sections were

mounted in 50% glycerol and imaged confocally on a Leica TCS SP8 invert confocal laser scan-

ning microscope with a Leica HyD hybrid detector using 20x and 63x oil-immersion objec-

tives. Lipofuscin has an emission maximum at 590 nm when excited at 488 nm; samples were

thus excited with a 488nm laser at power 5.00, and the detector was gated for emission wave-

lengths between 560–700 nm. Images were acquired at 1024x1024 resolution with gain at

137.8%.
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Abstract

To prevent or ameliorate Alzheimer’s disease (AD) we must understand its molecular basis. AD develops over
decades but detailed molecular analysis of AD brains is limited to postmortem tissue where the stresses initiating
the disease may be obscured by compensatory responses and neurodegenerative processes. Rare, dominant
mutations in a small number of genes, but particularly the gene PRESENILIN 1 (PSEN1), drive early onset of familial
AD (EOfAD). Numerous transgenic models of AD have been constructed in mouse and other organisms, but
transcriptomic analysis of these models has raised serious doubts regarding their representation of the disease
state. Since we lack clarity regarding the molecular mechanism(s) underlying AD, we posit that the most valid
approach is to model the human EOfAD genetic state as closely as possible. Therefore, we sought to analyse brains
from zebrafish heterozygous for a single, EOfAD-like mutation in their PSEN1-orthologous gene, psen1. We
previously introduced an EOfAD-like mutation (Q96_K97del) into the endogenous psen1 gene of zebrafish. Here, we
analysed transcriptomes of young adult (6-month-old) entire brains from a family of heterozygous mutant and wild
type sibling fish. Gene ontology (GO) analysis implies effects on mitochondria, particularly ATP synthesis, and on
ATP-dependent processes including vacuolar acidification.

Keywords: Alzheimer’s disease, Presenilin 1, Mutation, Transcriptome, Brain, ATP synthesis, Mitochondria, Vacuolar
acidification, Zebrafish, Genome editing

Background
AD is the most common form of dementia with severe
personal, social, and economic impacts. Rare, familial
forms of AD exist caused by autosomal dominant muta-
tions in single genes (reviewed by [1]). The majority of
these mutations occur in the gene PRESENILIN 1
(PSEN1) that encodes a multipass integral membrane
protein involved in intra-membrane cleavage of numer-
ous proteins [1].
A wide variety of transgenic models of AD have been

created and studied. These are aimed at reproducing
histopathologies posited to be central to the disease
process, i.e. amyloid plaques and neurofibrillary tangles

of the protein MAPT [2]. However, analysis of the ef-
fects on the brain transcriptome of the transgenes driv-
ing a number of these mouse models showed little
concordance with transcriptomic differences between
human AD brains and age-matched controls [3] (al-
though a recent study asserts that this lack of concord-
ance for the popular “5XFAD” transgenic mouse model
is due to previous failure to analyse the effects of its
transgenes in a variety of genetic backgrounds [4]). We
posit that, in the absence of an understanding of the mo-
lecular mechanism(s) underlying AD, the most objective
approach to modeling this disease (or, at least, modeling
its genetic form, EOfAD) is to create a genetic state as
similar as possible to the EOfAD state in humans.
Mouse “knock-in” models of EOfAD mutations were
created over a decade ago and showed subtle phenotypic
effects but not the desired histopathologies (e.g. [5, 6]).
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Table 1 GOs enriched for genes differentially expressed between heterozygous mutant and wild type sibling fish brains

Gene Ontology Term Ontology Total Genes DE Genes p-value FDR p-value

ATP biosynthetic process BP 29 7 3.48987E-08 0.00041

ribonucleoside triphosphate biosynthetic process BP 49 8 9.41317E-08 0.00045

nucleoside triphosphate biosynthetic process BP 54 8 2.06555E-07 0.00060

purine nucleoside triphosphate biosynthetic process BP 41 7 4.46237E-07 0.00060

purine ribonucleoside triphosphate biosynthetic process BP 41 7 4.46237E-07 0.00060

hydrogen transport BP 60 8 4.783E-07 0.00060

proton transport BP 60 8 4.783E-07 0.00060

energy coupled proton transport, down electrochemical gradient BP 27 6 5.89038E-07 0.00060

ATP synthesis coupled proton transport BP 27 6 5.89038E-07 0.00060

transport BP 2072 48 2.11748E-06 0.00165

purine nucleoside monophosphate biosynthetic process BP 54 7 3.09019E-06 0.00172

purine ribonucleoside monophosphate biosynthetic process BP 54 7 3.09019E-06 0.00172

hydrogen ion transmembrane transport BP 54 7 3.09019E-06 0.00172

ribonucleoside triphosphate metabolic process BP 133 10 3.8448E-06 0.00178

establishment of localization BP 2123 48 4.20295E-06 0.00182

ATP metabolic process BP 109 9 5.50772E-06 0.00230

nucleoside triphosphate metabolic process BP 140 10 6.08925E-06 0.00245

cation transport BP 452 18 6.61154E-06 0.00258

monovalent inorganic cation transport BP 219 12 1.10729E-05 0.00392

ribonucleoside monophosphate biosynthetic process BP 65 7 1.08944E-05 0.00392

nucleoside monophosphate biosynthetic process BP 68 7 1.47269E-05 0.00492

purine ribonucleoside triphosphate metabolic process BP 125 9 1.68142E-05 0.00546

purine nucleoside triphosphate metabolic process BP 126 9 1.79263E-05 0.00552

transmembrane transport BP 654 21 2.93288E-05 0.00797

purine nucleoside monophosphate metabolic process BP 136 9 3.2951E-05 0.00837

purine ribonucleoside monophosphate metabolic process BP 136 9 3.2951E-05 0.00837

energy coupled proton transmembrane transport, against electrochemical gradient BP 35 5 5.20342E-05 0.01106

ATP hydrolysis coupled proton transport BP 35 5 5.20342E-05 0.01106

ATP hydrolysis coupled transmembrane transport BP 35 5 5.20342E-05 0.01106

ATP hydrolysis coupled ion transmembrane transport BP 35 5 5.20342E-05 0.01106

ATP hydrolysis coupled cation transmembrane transport BP 35 5 5.20342E-05 0.01106

ion transport BP 737 22 5.61478E-05 0.01152

localization BP 2621 52 6.0913E-05 0.01207

ribonucleoside monophosphate metabolic process BP 147 9 6.06496E-05 0.01207

nucleoside monophosphate metabolic process BP 150 9 7.09445E-05 0.01360

single-organism localization BP 819 23 9.51294E-05 0.01738

single-organism transport BP 776 22 0.000119082 0.02109

ribonucleotide biosynthetic process BP 129 8 0.000143028 0.02423

ribose phosphate biosynthetic process BP 129 8 0.000143028 0.02423

vacuolar acidification BP 11 3 0.000246582 0.04101

ribonucleotide metabolic process BP 220 10 0.000281352 0.04506

proton-transporting two-sector ATPase complex, proton-transporting domain CC 25 6 3.59375E-07 0.00060

proton-transporting two-sector ATPase complex CC 45 7 8.65692E-07 0.00078

mitochondrial membrane CC 285 15 1.42199E-06 0.00119
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However, at that time, researchers did not have access to
RNA-Seq technology. To the best of our knowledge,
transcriptome analysis of the EOfAD mutation knock-in
mouse models was never performed.
In humans, AD is thought to develop over decades

and the median survival to onset age for EOfAD muta-
tions in human PSEN1 considered collectively is 45 years
[7]. Functional MRI of human children carrying EOfAD
mutations in PSEN1 has revealed differences in brain

activity compared to non-carriers in individuals as young
as 9 years of age [8]. Presumably therefore, heterozygos-
ity for EOfAD mutations in PSEN1 causes early molecu-
lar changes/stresses that eventually lead to AD.
Transcriptome analysis is currently the most detailed

molecular phenotypic analysis possible on cells or tissues.
Here we present an initial analysis of the transcriptomic
differences caused in young adult (6-month-old) zebrafish
brains by the presence of an EOfAD-like mutation in the

Table 1 GOs enriched for genes differentially expressed between heterozygous mutant and wild type sibling fish brains (Continued)

Gene Ontology Term Ontology Total Genes DE Genes p-value FDR p-value

mitochondrial envelope CC 303 15 3.0322E-06 0.00172

membrane part CC 4868 85 1.1722E-05 0.00403

organelle membrane CC 789 24 1.84982E-05 0.00555

mitochondrial inner membrane CC 195 11 1.97958E-05 0.00579

integral component of membrane CC 4419 78 2.52479E-05 0.00720

intrinsic component of membrane CC 4453 78 3.37749E-05 0.00840

organelle envelope CC 420 16 3.76291E-05 0.00917

envelope CC 422 16 3.98337E-05 0.00950

organelle inner membrane CC 215 11 4.86028E-05 0.01106

Cul2-RING ubiquitin ligase complex CC 7 3 5.4156E-05 0.01131

proton-transporting ATP synthase complex CC 19 4 6.25883E-05 0.01220

mitochondrial membrane part CC 117 8 7.21148E-05 0.01360

mitochondrial part CC 404 15 8.83156E-05 0.01639

membrane CC 5379 88 0.000106964 0.01924

vacuolar proton-transporting V-type ATPase, V0 domain CC 9 3 0.000127733 0.02229

mitochondrial proton-transporting ATP synthase complex, coupling factor F(o) CC 12 3 0.000325933 0.04885

proton-transporting V-type ATPase, V0 domain CC 12 3 0.000325933 0.04885

ATPase activity, coupled to transmembrane movement of ions, rotational mechanism MF 34 7 1.1446E-07 0.00045

hydrogen ion transmembrane transporter activity MF 84 9 6.11883E-07 0.00060

ATPase activity, coupled to transmembrane movement of substances MF 98 9 2.27123E-06 0.00166

hydrolase activity, acting on acid anhydrides, catalyzing transmembrane movement
of substances

MF 101 9 2.92425E-06 0.00172

primary active transmembrane transporter activity MF 104 9 3.73269E-06 0.00178

P-P-bond-hydrolysis-driven transmembrane transporter activity MF 104 9 3.73269E-06 0.00178

cation-transporting ATPase activity MF 56 7 3.96731E-06 0.00178

ATPase coupled ion transmembrane transporter activity MF 56 7 3.96731E-06 0.00178

ATPase activity, coupled to movement of substances MF 112 9 6.88692E-06 0.00260

active ion transmembrane transporter activity MF 96 8 1.72916E-05 0.00546

active transmembrane transporter activity MF 281 13 2.87859E-05 0.00797

proton-transporting ATP synthase activity, rotational mechanism MF 16 4 3.02121E-05 0.00803

transporter activity MF 991 25 0.000249051 0.04101

substrate-specific transmembrane transporter activity MF 709 20 0.000263528 0.04279

ion transmembrane transporter activity MF 660 19 0.000293184 0.04572

substrate-specific transporter activity MF 828 22 0.000297009 0.04572

monovalent inorganic cation transmembrane transporter activity MF 264 11 0.000297217 0.04572

GOs are grouped by ontology (BP, CC or MF) and ranked by FDR-corrected p-value
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gene psen1 that is orthologous to the human PSEN1 gene.
GO analysis supports very significant effects on mitochon-
drial function, especially synthesis of ATP, and on
ATP-dependent functions such as the acidification of lyso-
somes that are critical for autophagy.

Materials and methods
The mutant allele, Q96_K97del, of psen1 was a bypro-
duct identified during our introduction of the K97fs mu-
tation into psen1 (that models the K115fs mutation of
human PSEN2 – see [9] for an explanation).
Q96_K97del is a deletion of 6 nucleotides from the

coding sequence of the psen1 gene. This is predicted to
distort the first lumenal loop of the Psen1 protein. In
this sense, it is similar to a number of EOfAD mutations
of human PSEN1 [10]. Also, in common with all the
widely distributed EOfAD mutations in PSEN1, (and
consistent with the PRESENILIN EOfAD mutation
“reading frame preservation rule” [1]), the Q96_K97del
allele is predicted to encode a transcript that includes
the C-terminal sequences of the wild type protein.
Therefore, as a model of an EOfAD mutation, it is su-
perior to the K97fs mutation in psen1 [9].
To generate a family of heterozygous Q96_K97del al-

lele (i.e. psen1Q96_K97del/+) and wild type (+/+) sibling
fish, we mated a psen1Q96_K97del/+ individual with a +/+
individual and raised the progeny from a single spawn-
ing event together in one tank. Zebrafish can live for up
to 5 years but, in our laboratory, typically show greatly
reduced fertility after 18 months. The fish become fertile
after around 3 months of age, so we regard 6-month-old
fish as equivalent to young adult humans. Therefore we
analysed the transcriptomes of entire young adult,
6-month-old fish brains using poly-A enriched RNA-seq
technology, and estimated gene expression from the
resulting single-end 75 bp reads using the reference
GRCz11 zebrafish assembly transcriptome [11, 12]. Each
zebrafish brain has a mass of approximately 7 mg. Since
AD is more prevalent in human females than males, and
to further reduce gene expression “noise” in our ana-
lyses, we obtained brain transcriptome data from four fe-
male wild type fish and four female heterozygous
mutant fish. This data has been made publicly available
at the Gene Expression Omnibus (GEO, see under Avail-
ability of data and materials below).

Results
Differentially expressed genes (DE genes)
Genes differentially expressed between wild type and het-
erozygous mutant sibling fish were identified using moder-
ated t-tests and a false discovery rate (FDR)-adjusted
p-value cutoff of 0.05 as previously described [9, 13, 14]. In
total, 251 genes were identified as differentially expressed
(see Additional file 1). Of these, 105 genes showed

increased expression in heterozygous mutant brains relative
to wild type sibling brains while 146 genes showed de-
creased expression.

GO analysis
To understand the significance for brain cellular function
of the differential gene expression identified in young adult
heterozygous mutant brains we used the goana function
[15] of the limma package of Bioconductor software [14] to
identify GOs in which the DE genes were enriched at an
FDR-corrected p-value of less than 0.05. Seventy-eight GOs
were identified (Table 1) of which 20 addressed cellular
components (CC). Remarkably, most of these CCs con-
cerned the mitochondrion, membranes, or ATPases. Seven-
teen GOs addressed molecular functions (MF) and largely
involved membrane transporter activity, particularly ion
transport and ATPase activity coupled to such transport.
Forty-one GOs addressed biological processes (BP) and in-
volved ATP metabolism, ribonucleoside metabolism, and
transmembrane transport processes including vacuolar
acidification (that has previously been identified as affected
by EOfAD mutations in PSEN1 [16]). Overall, our GO ana-
lysis indicates that this EOfAD-like mutation of zebrafish
psen1 has very significant impacts on cellular energy metab-
olism and transmembrane transport processes.

Additional file

Additional file 1: Genes differentially expressed between heterozygous
mutant and wild type brains at 6 months. Lists the genes identified as
differentially expressed between the brains of heterozygous psen1Q96_K97del

mutant fish and the brains of their wild type siblings at an age of 6months.
Genes are ranked according to FDR-corrected p-value. Only genes with a
FDR-corrected p-value less than 0.05 are shown. “FC” denotes fold change.
“DE” denotes differential expression. For DE_Direction, “1” denotes increased
expression in the mutant and “-1” denotes decreased expression in the mu-
tant. (XLSX 39 kb)
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AD: Alzheimer’s disease; ATP: Adenosine triphosphate; BP: Biological process
(GO term); CC: Cellular component (GO term); DE genes: Differentially expressed
genes; EOfAD: Early onset familial Alzheimer’s disease; FDR: False discovery rate;
GEO: Gene Expression Omnibus; GO: Gene ontology; MAPT: MICROTUBULE-
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Abstract 

Background: Iron trafficking and accumulation has been associated with 

Alzheimer’s disease (AD) pathogenesis. However, the role of iron dyshomeostasis in 

early disease stages is uncertain. Currently, gene expression changes indicative of 

iron dyshomeostasis are not well characterised, making it difficult to explore these in 

existing datasets.  

Methods: We identified sets of genes predicted to contain Iron Responsive 

Elements (IREs) and used these to explore iron dyshomeostasis responses in gene 

expression datasets. 

Results: IRE gene sets were sufficiently sensitive to distinguish not only between 

iron overload and deficiency in cultured cells, but also between AD and other 

pathological brain conditions in different brain regions. Notably, we see changes in 

IRE transcript abundance as amongst the earliest observable changes in zebrafish 

familial AD (fAD)-like brains, preceding other AD-typical pathologies such as 

inflammatory changes. Unexpectedly, while some IREs in the 3’ untranslated regions 

of transcripts show significantly increased stability under iron deficiency in line with 

current assumptions, many such transcripts instead show decreased stability, 

indicating that this is not a generalizable paradigm.  

Conclusions: Our results reveal iron dyshomeostasis as a likely early driver of fAD 

and as able to distinguish AD from other brain pathologies. Our work demonstrates 

how differences in the stability of IRE-containing transcripts can be used to explore 
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and compare iron dyshomeostasis responses in different species, tissues, and 

conditions.  

 

Key words 

Iron responsive element, iron homeostasis, Alzheimer’s disease, gene expression, 

RNA-seq, gene set enrichment analysis, familial Alzheimer’s disease 

 

Background 

The pathological processes underlying Alzheimer’s Disease (AD) commence 

decades before symptoms become evident [1,2].  Since the early days of AD 

research, iron trafficking and accumulation has been observed to be altered in AD 

[3–7]. However, it is still unclear whether iron dyshomeostasis represents a late 

symptom or an early pathological driver of AD. Iron homeostasis is closely linked to 

many critical biological processes including cellular respiration, hypoxia, and immune 

responses, all of which are disrupted in AD. Consistent with this, discoveries over the 

past decade have shown that disruptions to iron homeostasis can drive feedback 

loops that worsen AD pathology [8,9]. However, evidence for iron dyshomeostasis as 

an early driver of the disease is only just emerging. Recently, amyloidogenic 

processing of the Amyloid Precursor Protein (APP) was shown to impair the export 

of iron from cells, potentially disrupting iron homoeostasis to drive excessive iron 

accumulation during aging with pathological consequences[10]. While iron 

accumulation associated with amyloid plaque formation has been observed in 
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various transgenic mouse models of AD [11–14], the age at which iron 

dyshomeostasis first occurs is uncertain [15].  

 

Currently, gene expression patterns representing responses to iron dyshomeostasis 

are not well-characterised. Cellular responses to iron dyshomeostasis are complex 

and involve several systems and layers of regulation. The stability of the transcription 

factor HIF1a, (a component of HIF1, a master regulator of responses to hypoxia) is 

regulated by an iron-dependent mechanism so that transcriptional responses to iron 

deficiency can resemble hypoxia responses [16]. However, cellular iron homeostasis 

is also regulated at the post-transcriptional level by the IRP/IRE system [17–19]. In 

this system, altered levels of available ferrous iron (Fe2+) cause Iron Responsive 

Proteins (IRP1 or IRP2) to change conformation or stability respectively [20,21]. This 

alters their ability to bind cis-regulatory Iron Responsive Element (IRE) stem-loop 

motifs in the 3’ or 5’ untranslated regions (UTRs) of genes encoding products related 

to iron metabolism. Only a few IRE-containing genes have been characterised in 

detail, including TfR1 (transferrin receptor 1; 3’ UTR IRE), DMT1 (divalent metal 

transporter 1; 3’ UTR IRE), H- and L-ferritin (both 5’ UTR IRE), and ferroportin (5’ 

UTR IRE) [19]. In general, these well-characterised IRE-containing genes suggest 

that IRPs binding to 3’ IREs tend to stabilise transcripts to increase protein 

translation, while binding to 5’ IREs suppresses translation [18]. Currently however, 

global gene expression changes mediated by the IRP/IRE system have not been 

well-defined, and the overall expression patterns of IRE-containing genes have not 

been explored in the context of AD. In addition, it is unclear how expression of these 
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genes might differ between AD and other neurodegenerative diseases, or how AD 

risk factors such as aging and hypoxia might contribute.  

 

In this study, we utilised the SIREs (Searching for Iron Responsive Elements) tool 

[22] to predict and identify sets of IRE-containing genes in human, mouse, and 

zebrafish. We then applied these gene sets to explore overall IRP/IRE-mediated iron 

dyshomeostasis responses in datasets involving: (1) a cultured cell line subjected to 

iron overload and deficiency treatments, (2) a cohort of AD patients, healthy controls, 

and two other pathological conditions affecting the brain, (3) 5XFAD mice used to 

model the amyloid and tau pathology seen in AD, and (4) a zebrafish knock-in model 

possessing a familial AD (fAD)-like mutation.  

 

Our IRE gene sets displayed significant enrichment in AD, the 5XFAD mouse model, 

and an fAD-like zebrafish model, demonstrating for the first time the early and 

extensive involvement of IRP/IRE-mediated iron dyshomeostasis responses in the 

context of AD. IRE gene sets were sufficiently sensitive to distinguish not only 

between iron overload and deficiency in a cultured cell line dataset, but also between 

AD and other pathological conditions affecting the brain (pathological aging and 

progressive supranuclear palsy), implying that the dysregulation of IRE-containing 

genes and iron dyshomeostasis responses in AD could differ from other conditions. 

Iron dyshomeostasis was already evident in young adult brains (3 month old FXFAD 

mice, 6 month old fAD-like zebrafish). Overall, our observations do not support the 

current assumption that IRP binding to 3’IREs generally stabilizes transcripts as we 
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observed both increases and decreases in abundance of transcripts with either 3’ or 

5’ IREs under most conditions. 

 

 

Results 

Defining sets of genes containing Iron Responsive Elements (IREs) 

We utilised the SIREs (Searching for Iron Responsive Elements) tool, to define 

species-specific IRE gene sets by searching for IRE and IRE-like motifs in the 3’ and 

5’ untranslated regions (UTRs) of the reference transcriptomes of human (hg38), 

mouse (mm10), and zebrafish (z11). SIREs assigns a quality-score to all detected 

IREs, with “high-quality” scores corresponding to canonical IREs and “medium-

quality” or “low-quality” scores reflecting deviations from the canonical IRE 

(alternative nucleotide composition in the apical loop, one bulge at the 3’ or one 

mismatch in the upper stem) that would still produce an IRE-like motif with the 

potential to be functional [22–26]. Figure 1 summarises the IRP/IRE interaction 

effects on transcripts and gives examples of canonical and non-canonical IREs.  

 

We defined four gene sets for each species as follows: HQ 3’ IREs (high-quality 

predicted 3’ IRE genes), HQ 5’ IREs (high-quality predicted 5’ IRE genes), all 3’ 

IREs (including all low, medium, and high-quality predicted 3’ IRE genes), and all 5’ 

IREs (including all low, medium, and high-quality predicted 5’ IRE genes). The size 

of these gene sets for each species and the overlap present is shown in Figure 2 

and the gene sets are provided in Supplementary Table 1. Overall, searching 
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through human UTRs uncovered the largest number of predicted IRE genes, 

followed by mouse, and then zebrafish. Overlap between homologous genes from 

the IRE gene sets of different species was generally poor. The largest sets of genes 

shared between species were consistently found between human and mouse, which 

is reflective of their closer evolutionary divergence. While not many high-quality IRE 

genes were identified across all three species, the few we identified are consistent 

with known and well-characterised IREs in the literature [27,28]. For example, the 

single shared HQ 3’ IRE gene between the three species was TFRC (transferrin 

receptor), while the shared HQ 5’ IRE genes between the three species included 

FTH1 (ferritin heavy chain 1) and ALAS2 (5'-aminolevulinate synthase 2).  

 

IRE gene sets are over-represented within up-regulated AD genes, but 

overall not well-represented in existing gene sets 

We explored the biological relevance of the predicted IRE gene sets described 

above by testing whether genes within them were over-represented in existing gene 

sets from the Molecular Signatures Database (MSigDB; available at 

https://www.gsea-msigdb.org/gsea/msigdb). MSigDB represents one of the largest 

publically-available collection of gene sets collated from existing studies and other 

biological databases [29]. We limited our analysis to gene sets from the following 

collections: Hallmark (non-redundant sets of ~200 genes each representing various 

biological activities), C2 (gene sets from databases including KEGG and Reactome 

and published studies), C3 (gene sets containing genes with motif elements), and C5 

(gene sets based on gene ontology terms) (see Methods). We performed over-

representation analysis for the predicted IRE gene sets (all 3’ IREs and all 5’ IREs) 
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separately for each species (human, mouse, zebrafish), and used Wilkinson’s meta-

analytic approach to determine gene sets that were significantly over-represented 

across the three species’ IRE gene sets. Our results indicated that 1,148 of 10,427 

tested gene sets displayed over-representation of IRE gene sets across all three 

species (Bonferroni-adjusted Wilkinson’s p-value < 0.05) (Supplementary Table 2). 

Remarkably, the “Blalock Alzheimer’s Disease Up” gene set from the C2 collection 

was significantly over-represented in both the sets of all 3’ IREs (Bonferroni-

adjusted Wilkinson’s p-value = 3.9e-14) and all 5’ IREs (Bonferroni-adjusted 

Wilkinson’s p-value = 2.1e-26) in the meta-analysis, and was also the gene set with 

the most significant over-representation of the human all 3’ IREs set (Bonferroni-

adjusted Fisher’s exact test p-value = 7.8e-58) (Supplementary Table 2). This 

supports that disturbance of iron homeostasis particularly distinguishes Alzheimer’s 

disease from other disease conditions and pathways represented within the C2 

collection. In addition, the top 15 MSigDB gene sets showing the most significant 

over-representation generally differed between species. However, in all cases, a 

large proportion of IRE genes from the predicted IRE gene sets were not contained 

within any of these top-ranked MSigDB gene sets or within the Heme Metabolism 

geneset belonging to the Hallmark collection (Figure 3). This demonstrates that the 

predicted IRE genes we defined are not fully captured by existing gene sets and so 

may be uniquely useful for investigating gene expression changes during the IRE-

IRP response to iron dyshomeostasis.  
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Involvement of transcription factor regulation within IRE gene sets 

To be confident that IRE gene sets accurately capture information about the 

IRP/IRE-mediated responses, we needed to investigate possible co-ordinate 

regulation by other factors. As a starting point, we examined whether known binding 

motifs for transcription factors were significantly over-represented in the promoter 

regions of genes within each IRE gene set (all 3’ IREs, all 5’ IREs, HQ 3’ IREs, and 

HQ 5’ IREs) for each species. We detected significant over-representation of several 

transcription factors including the Klf14 motif in the zebrafish all 3’ IREs set (FDR-

adjusted p-value = 0.049), the E2F motif in the human all 5’ IREs set (FDR-adjusted 

p-value = 0.049) and the Bach1 (FDR-adjusted p-value = 0.012), Nrf2 (FDR-adjusted 

p-value = 0.013),  and NF-E2 (FDR-adjusted p-value = 0.019) motifs in the zebrafish 

HQ 5’ IREs set (Supplementary Table 3). This suggests that the expression of 

subsets of genes in some of the IRE gene sets may be influenced by other factors. 

 

Gene set enrichment testing approach 

Our predicted IRE gene sets can be used in any standard gene set enrichment 

testing approach to detect potential changes in iron homeostasis between 

conditions. Our workflow, which we later successfully apply on human, mouse, and 

zebrafish datasets, is shown in Figure 4. Due to variability in the results produced by 

different gene set enrichment testing methods, we were inspired by the EGSEA 

framework [30] to combine the results from different methods. Based on an initial 

analysis using EGSEA, we chose fry/mroast [31,32], camera [33], and fgsea [34,35] 

as the representative methods to use. (See Supplementary Figure 1 for a principal 

component analysis of results from different gene set enrichment analysis 
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approaches.) A summary of the different characteristics of the three methods is 

shown in Table 1. The raw enrichment p-values from these approaches can be 

combined to obtain an overall enrichment p-value for each gene set. In accordance 

with EGSEA default parameters, we used Wilkinson’s method to combine raw p-

values, and then applied adjustment for multiple testing on all combined p-values. 

Along with performing this gene set enrichment testing on our IRE gene sets, we 

also recommend using the same method to test for enrichment for the MSigDB 

Hallmark gene sets as the diverse biological activities they represent help to provide 

context for interpreting the IRE enrichment results. To explore further the results of 

IRE gene set enrichment analysis, we use UpSet plots to display the overlap 

between sets of “leading-edge” genes in the all 3’ IREs and all 5’ IREs gene sets. 

The leading-edge genes can be interpreted as the core (often biologically important) 

genes of a gene set that account for the significant enrichment as calculated by 

GSEA [35]. 

 

Differences in IRE gene set enrichment during iron deficiency and iron 

overload in a cultured cell line 

We first tested how our enrichment approach illuminated the effects of iron overload 

and deficiency in a cultured cell line microarray dataset from Caco-2 cells (GEO 

accession: GSE3573). As only one cell type contributed to this dataset, interpretation 

of the IRE enrichment results is simplified by not having to consider the differing iron 

requirements of different cell types. This allowed us to focus on whether the iron 

dyshomeostasis treatments (iron overload and iron deficiency) could be detected 

and distinguished in terms of their IRP/IRE system-driven transcript abundance 
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response. Because the dataset was from a microarray experiment, we performed 

only the differential gene expression and gene set enrichment testing portions of our 

workflow. The results of Principal Component Analysis and differential gene 

expression analysis are provided in Supplementary Figure 2.  

 

In general, we found iron deficiency and iron overload treatments resulted in different 

gene expression responses. In terms of differential gene expression, iron deficiency 

was associated with 96 differentially expressed genes of which 10 possess predicted 

IREs while iron overload was associated with 212 differentially expressed genes 

(FDR-adjusted p-value from limma < 0.05) of which 33 possess predicted IREs 

(Supplementary Figure 2). There were 17 differentially expressed genes in 

common between iron deficiency and iron overload treatments, and all moved in 

opposite directions according to the treatment (i.e. increased abundance under iron 

deficiency and decreased abundance under iron overload, or vice versa). These 

differences between iron deficiency and iron overload were reflected in gene set 

enrichment analyses using the MSigDB Hallmark gene sets, where the gene sets 

involved and the proportions of gene transcripts with increased or decreased 

abundance differed (Figure 5A). As expected, IRE gene sets also showed significant 

enrichment under iron deficiency and overload conditions (Figure 5B) (Bonferroni 

adjusted p-value < 0.05).  

 

We expected that iron deficiency would result in increased expression of genes with 

3’ IREs under the IRP/IRE paradigm. However, both the 3’ and 5’ IRE gene sets 

displayed mixed patterns of increased and decreased expression under both the iron 

101



deficiency and iron overload treatments (Figure 5B). This indicates it would be 

difficult to distinguish between these conditions based purely on overall increases or 

decreases in the expression of IRE gene sets. Despite this, we see that the iron 

deficiency and iron overload treatments can be distinguished by their “leading-edge” 

genes (those genes contributing most to the enrichment signal for the predicted IRE 

gene sets (all 3’ IREs and all 5’ IREs) (Figure 5C). This supports that gene set 

enrichment using our predicted IRE gene sets is sufficiently sensitive to detect 

whether iron dyshomeostasis is present and to distinguish between different IRE-

mediated gene expression responses in iron deficiency and iron overload 

treatments.  

 

A distinct iron homeostasis response in human AD patients compared to 

other neuropathologies 

Given that IRE gene sets could distinguish between iron overload and deficiency in a 

cultured cell line, we next tested our gene sets on a more complex data set including 

cerebellum and temporal cortex tissue samples from post-mortem human brains. 

The brains originated from either healthy controls or patients with one of three 

conditions: AD; pathological aging (PA), a condition involving amyloid pathology but 

no significant dementia symptoms; or progressive supranuclear palsy (PSP), a 

tauopathy without amyloid pathology [36]. An important characteristic of the dataset 

is that both cerebellum and temporal cortex tissue samples were available from each 

patient. A summary of the 236 patients whose data we included in this analysis is 

shown in Table 2 and the results of differential gene expression analysis and IRE 

gene set enrichment analysis are shown in Table 3 and Figure 6A. In our analyses, 
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we focus mainly on comparing conditions within each tissue rather than between 

tissues. This is because we found significant differences in the AD vs. control 

comparison in the temporal cortex compared to the cerebellum (see Supplementary 

Figure 3).  

 

Overall, our IRE enrichment analyses indicate significant enrichment of IRE gene 

sets in all pathological conditions (AD, PA or PSP) compared to healthy controls 

within the cerebellum and temporal cortex (Figure 6A). In all pathological conditions, 

3’ and 5’ IRE gene transcripts show overall mixed patterns of abundance (e.g. 

increased and decreased). Further examination of the leading-edge genes from 

these IRE gene sets gives more insight regarding potential differences and 

similarities between AD, PA, and PSP (Figure 6B). Overall, AD, PSP, and PA 

appear to involve distinct yet partially overlapping IRE gene expression responses in 

a tissue-specific manner. Within the temporal cortex, there are 435 3’ IRE leading-

edge genes and 178 5’ IRE leading-edge genes exclusively present in the “AD vs. 

control” comparison. These are greater numbers than for the other two conditions. 

Interestingly, AD and PA share only relatively small numbers of leading-edge genes 

despite the fact that many regard PA as a prodrome of AD [37]. These observations 

suggest that iron dyshomeostasis may be an essential component of AD cognitive 

change. Interestingly, in the cerebellum, while AD and PSP share many 3’ and 5’ 

IRE leading-edge genes, PA is associated with a large number of unique leading-

edge 3’ and 5’ IRE genes, further emphasising its difference from AD and also PSP. 

In general, our IRE gene sets appear sufficiently sensitive to discern and identify 
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potentially interesting biological differences between these different pathological 

conditions affecting the brain.  

 

Age-dependent disruption of IRE-driven iron homeostasis in the 5XFAD 

mouse model  

Alzheimer’s disease is thought to develop over decades [38–40]. However, detailed 

molecular studies of AD brains can only be based on post-mortem tissues. To reveal 

the early molecular changes that initiate the progression to AD we must study the 

brains of animal disease models. Given that the IRE gene sets appear to work well in 

human datasets, we then tested our mouse IRE gene sets on an RNA-seq dataset 

derived from brain cortex tissue of the 5XFAD transgenic mouse AD model (GEO: 

GSE140286). The 5XFAD mouse is one of the most common systems used to 

model the amyloid beta and tau histopathologies of AD brains. It possesses two 

transgenes that include a total of five different mutations, each of which individually 

causes fAD in humans. In this dataset, the mice analysed were either 3, 6 or 12 

months of age. 

 

Using gene set enrichment testing methods as before, we observed significant 

enrichment of the all 3’ IREs and all 5’ IREs gene sets in several comparisons. 

These included 5XFAD vs. wild type comparisons and wild type aging comparisons 

(Bonferroni-adjusted enrichment p-value < 0.05) (Figure 7A). Notably, even the 

youngest age group of 5XFAD mutant mice (3 months) displayed significant 

enrichment of genes containing 3’ or 5’ IREs compared to age-matched wild types. 

This is consistent with an enrichment of immune-related Hallmark gene sets that we 
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observed in this age group (see Figure 7B) and with a previous transcriptome 

analysis suggesting immune activation in 5XFAD mice as early as 2-4 months [41]. 

UpSet plots of overlapping leading-edge genes suggest that the IRE responses due 

to aging and due to the 5XFAD transgenes may involve partially overlapping gene 

expression changes (Figure 7C). In addition, the UpSet plots reveal subsets 

containing large numbers of IRE-containing genes which uniquely contribute to 

enrichment of IRE gene sets in only one comparison (e.g. 256 3’ IRE genes only 

contribute to enrichment in the “5xFAD vs WT at 6 months” comparison). Notably, 

there are 126 shared 3’ IRE genes contributing to enrichment in the “5xFAD vs WT 

at 6 months” and “5xFAD vs WT at 3 months” comparisons, but no genes shared 

between these comparisons and the “5xFAD vs WT at 12 months” comparison. 

These 126 genes were found to show over-representation of Gene Ontology terms 

including “Hsp70 protein binding” and “nuclear import signal receptor” (FDR-adj. p-

value < 0.05) (Supplementary Table 4), suggesting that subsets of leading-edge 

genes may have biological relevance, and that these may give clues into the 

biologically distinct age-dependent iron dyshomeostasis responses caused by the 

5XFAD transgenes. Although beyond the scope of our current analysis, further 

investigation into these subsets of genes may further help to define differences in 

iron dyshomeostasis responses under different biological conditions of interest.  

 

Similarities in IRE-driven iron homeostasis responses during hypoxia 

and a familial AD-like mutation in a zebrafish model 

Concerns have been raised over the relevance of transgenic mouse models in 

modelling the early stages of AD (reviewed by [42]). In contrast, knock-in models of 
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familial AD (fAD) only exhibit subtle pathological changes with little to no visible 

amyloid or tau pathology present [43]. However, because they more closely mimic 

the genetic state of fAD, knock-in models may reveal the early molecular changes 

that drive later fAD pathology. We had access to whole-brain RNA-seq data from a 

knock-in zebrafish model of fAD possessing a single fAD-like mutation in its 

endogenous psen1 gene (psen1Q96_K97del/+). Previous analysis of a subset of this 

dataset involving young adults (6-month-old brains) revealed gene expression 

changes related to altered energy metabolism [44]. (In contrast, the 3-month-old 

young adult 5XFAD mouse brain dataset is dominated by immune/inflammation 

responses, Figure 7B). Considering the critical role of iron homeostasis in energy 

metabolism, we decided to revisit this zebrafish dataset. We performed IRE gene set 

enrichment on the entire dataset in order to include exploration of the effects of aging 

and acute hypoxia (two important risk factors for sporadic late onset AD) and to 

analyse how these effects interact with the fAD-like psen1Q96_K97del/+ mutant 

genotype. The experimental design and the results of the differential gene 

expression analyses and gene set enrichment tests are summarised in Figure 8.  

 

We first turned our attention to the comparison between young adult (6-month-old) 

psen1Q96_K97del/+ mutant zebrafish and their wild-type siblings. At this age, gene 

expression changes in the mutant fish likely represent early stresses driving the 

development of fAD in humans. Gene set enrichment tests in this comparison 

identify alteration of energy metabolism-related Hallmark gene sets (e.g. OXIDATIVE 

PHOSPHORYLATION, GLYCOLYSIS) (Figure 8B) which is consistent with a 

previous analysis of gene ontology terms with this dataset [44]. In addition, we see 
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enrichment of other gene sets including FATTY ACID METABOLISM, PI3K AKT 

MTOR SIGNALLING, MTORC1 SIGNALLING, and HEME METABOLISM. All of 

these gene sets which show enrichment in 6-month-old psen1Q96_K97del/+ mutants 

relative to wild-type siblings are also enriched in 24-month-old psen1Q96_K97del/+ 

mutants relative to their wild-type siblings (Figure 8B). This supports that the 

biological activities represented in these gene sets are amongst the earliest altered 

in this particular fAD mutation model. 

 

In Lumsden et al. [15] we predicted that fAD mutations in the major locus PSEN1 

would cause an early cellular deficiency of ferrous iron due to the observation of 

insufficient acidification of the endolysosomal pathway in in-vitro PSEN1 mutation 

studies [45,46]. In Newman et al. [44] we saw that GO analysis of 6 month old 

psen1Q96_K97del/+  zebrafish brain supported that lysosomal acidification was affected. 

Therefore, we decided to apply our IRE enrichment analysis to test for evidence of 

iron dyshomeostasis in these fish. The enrichment of the all 3’ IREs set in 6 month 

old psen1Q96_K97del/+  zebrafish brains supports that iron dyshomeostasis is an 

important stress in the early stages of fAD (Figure 8C). 

 

While almost all pairwise comparisons in the zebrafish dataset show significant 

enrichment of at least one IRE gene set (Figure 8C), the expression of IRE genes 

appears to differ in terms of the proportions of IRE-containing transcripts which show 

increased versus decreased abundance (Figure 8D). In addition, the Principal 

Component Analysis plot of expression of the all 3’ IREs set over all samples shown 

in Figure 8E suggests that different conditions appear to have distinct expression 

107



patterns of these genes. Across the first principal component, different age groups 

(6- and 24-month-old brains) differ in their expression of predicted 3’ IRE genes, 

while the second principal component appears to separate psen1Q96_K97del/+ mutants 

from their wild-type siblings. This separation between psen1Q96_K97del/+ mutants and 

wild type siblings is even more pronounced when both are exposed to hypoxia.   

 

To gain more insight into the similarities and differences between the IRE responses 

in the psen1Q96_K97del/+ vs. wild type comparison, we plotted UpSet plots of 

overlapping leading-edge genes (Figure 8F). These plots suggest that the IRE 

responses during hypoxia, aging, and due to this fAD-like mutation are mostly 

distinct from each other with unique leading-edge genes. However, similarities in the 

IRE response between different conditions are suggested by the existence of some 

shared leading-edge genes. For example, for the set of all 3’ IREs, the “6-month-old 

psen1Q96_K97del/+  vs. wild type” comparison shares 19 leading-edge genes with the 

“24-month-old psen1Q96_K97del/+  vs. wild type” comparison. As an initial exploration of 

the biological relevance of these genes, we submitted them to the STRINGR tool. 

This indicated that the proteins products of these genes were significantly associated 

with each other (e.g. in terms of text-mining from Pubmed articles, experimentally 

determined interactions, and co-expression). These proteins were significantly over-

represented in the sets “MAPK pathway”, “AP-1 transcription factor”, “Jun-like 

transcription factor”, and “signaling by TGF-beta family members” (FDR-adjusted 

over-representation p-value < 0.05; Supplementary Figure 4). The AP-1 and MAPK 

pathways have previously been shown to be stimulated by iron depletion [47,48]. 

Therefore, mechanistically, it is possible that the IRE-IRP response to iron 
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dyshomeostasis in the fAD-like zebrafish mutant might involve these pathways, 

although this requires confirmation in vivo.  

 

The fact that aging, hypoxia, and a fAD-like mutation all cause changes in the 

abundance of IRE-containing transcripts in zebrafish raised concerns regarding the 

specificity of such changes. Therefore, as a negative control, we examined changes 

in IRE transcript abundance in a brain transcriptome dataset derived from zebrafish 

heterozygous for a psen1 mutation now thought not to be fAD-like, psen1K97fs [49]. In 

this dataset, psen1K97fs/+ zebrafish are compared to their wild type siblings at 6 and 

24 months. We tested this dataset for enrichment using our zebrafish 3’ and 5’ IRE 

gene sets but found no significant enrichment of any of our predicted IRE gene sets 

in psen1K97fs/+ vs. wild type comparisons at any age (Table 4; Supplementary 

Figure 5). Reassuringly, we still observed significant enrichment of both 3’ and 5’ 

IRE gene sets during wild type aging (24-month-old wild types vs. 6-month-old wild 

types), consistent with the equivalent comparison in the psen1Q96_K97del/+ dataset. 

These results support that IRE-containing transcript abundance changes are 

sufficiently sensitive to reflect differences in iron homeostasis between different 

mutation models. 

 

Simultaneous stabilisation of some 3’ IRE transcripts and destabilisation 

of others 

In the cultured cell line dataset analysed above, we noticed that even a 

straightforward iron deficiency treatment resulted in the simultaneous increase and 

decrease in expression of 3’ IRE-containing genes. These findings are difficult to 
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reconcile with the current paradigm that stabilisation of 3’ IRE-containing genes 

occurs under iron deficiency and suggest that the current model of the IRP/IRE 

system may be incomplete or insufficient for describing the regulation of non-

canonical IREs. Given that many predicted 3’ IRE genes with non-canonical IREs 

(e.g. in the all 3’ IREs set) displayed enrichment and different gene expression 

patterns in the fAD-like zebrafish dataset, we decided to explore further the stability 

changes of these genes by comparing the expression of spliced and unspliced 

transcripts for each gene (Supplementary Text 1). We found that transcripts of 

some predicted 3’ IRE genes were significantly increased in stability while others 

were significantly decreased in stability (Supplementary Figure 6; Supplementary 

Table 5).  

 

Discussion 

In this study we successfully identified sets of genes predicted to contain IREs in 

human, mouse, and zebrafish. We found that IRE genes were generally not well-

represented in the existing gene sets in MSigDB. Importantly, these genes were 

most significantly over-represented in an existing gene set previously shown to be 

up-regulated in AD brains (the “Blalock Alzheimer’s Disease Up” gene set from 

MSigDB). This supports the importance of iron dyshomeostasis in sporadic late 

onset Alzheimer’s disease. Furthermore, our IRE gene sets displayed significant 

enrichment in postmortem brains from a human AD cohort, from the 5XFAD mouse 

model, and from a zebrafish model of a fAD-like mutation. This demonstrates for the 

first time the involvement of a coordinated IRE-containing gene expression response 
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to iron dyshomeostasis in the context of AD. 

 

Overall, IRE-containing gene sets were sensitive enough to capture several 

interesting phenomena. The relatively tightly controlled conditions in the mouse and 

zebrafish model datasets revealed a strong age-dependent effect on the transcript 

abundances of these predicted IRE-containing genes. Notably, 3’ IRE gene 

expression changes were amongst the earliest changes observable in the zebrafish 

fAD-like mutation model alongside changes in energy metabolism. These 3’ IRE 

gene expression changes preceded other signals of pathological change in the 

transcriptome (such as altered expression of inflammatory response pathways) 

commonly associated with AD. In addition, IRE gene sets were sufficiently sensitive 

to distinguish not only between iron overload and deficiency in a cultured cell line 

dataset, but also between AD and other pathological conditions affecting the brain 

(i.e. pathological aging and progressive supranuclear palsy). This suggests that the 

dysregulation of IRE-containing genes and iron homeostasis in AD may differ from 

other conditions.  

 

Whether iron deficiency or iron overload was present in the AD brain tissue samples 

(taken from either temporal cortex or cerebellum) was unclear. Most previous work 

has assumed that accumulation of iron in the brain with age (a phenomenon 

observed broadly across animal phyla [50,51]) is indicative of cellular iron overload 

driving oxidative stress[52]. Indeed, iron accumulation and oxidative stress 

apparently contribute to the insolubility of amyloid plaques and neurofibrillary tangles 

in AD brains [53]. However, a recent publication by [54] showed that disturbed 

111



lysosomal function leading to increased lysosomal pH causes a deficiency of 

functional ferrous iron (Fe2+) while non-functional ferric iron (Fe3+) accumulated in 

lysosomes. The deleterious effects of this on the brains of mice (defective 

mitochondrial biogenesis and function and stimulation of inflammatory responses) 

could be alleviated by increasing the levels of iron in their diet. The observations of 

Nixon and colleagues that acidification of the endolysomal pathway is affected both 

by fAD mutations in PSEN1 [45] and excessive dosage of the APP gene [55], 

together with our observations from our fAD-like psen1Q96_K97del/+ mutant zebrafish, 

support the possibility that fAD brains may suffer a ferrous iron deficiency in a 

background of ferric iron overload. Intriguingly, the greatest genetic risk factor for late 

onset AD, the e4 allele of the gene APOE, appears to increase lysosomal pH [56] but 

e4’s increased risk of AD is alleviated in individuals who possess the HFE 282Y 

allele that predisposes to the iron overload disease hemochromatosis [57]. Given 

that many other risk loci for sporadic late onset AD also affect endolysosomal 

pathway function (reviewed in [58]) it is reasonable to suggest that disturbed of iron 

homeostasis may afflict brains with this disease. 

 

Outside our interest in AD, our analyses also revealed the surprising finding that 3’ 

IRE-containing genes could be both upregulated and downregulated by iron 

deficiency (at least in a cultured cell line). We also observed simultaneous 

stabilisation of some 3’IRE transcripts and destabilisation of others in our analysis of 

zebrafish brains. This challenges the simplistic paradigm of stabilisation of 3’ IRE-

containing transcripts under ferrous iron deficiency. Previous research holds that 

under iron deficiency, 3’ IRE-containing genes such as DMT1 (divalent metal 
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transporter 1) and TFRC (transferrin receptor protein) are stabilised and hence 

increased in expression [21] in order to increase ferrous iron availability. However, 

our findings reveal that this same principle may not apply to other, less-characterised 

3’ IRE-containing genes, including IREs deviating from the canonical IRE sequence. 

Many of these IRE-like sequences are likely to have some functionality [24–26], and 

their expression and stability changes in our analyses indicate that they are likely to 

be important in iron dyshomeostasis responses in AD. We emphasise the need to 

characterise further the stability of these predicted 3’ IRE-containing transcripts 

under conditions of altered iron availability to better understand iron dyshomeostasis 

responses at the gene expression level.  

The limitations of our study, the conservation of IRE gene sets between species, and 

the role of iron dyshomeostasis in AD are discussed further in Supplementary Text 

2. 

 

Conclusions 

Our results demonstrate for the first time the involvement of a coordinated IRE-

containing gene expression response to iron dyshomeostasis in the context of AD. 

By searching entire human, mouse, and zebrafish transcriptomes for all genes 

containing potential IREs, we formed comprehensive gene sets effective for 

exploring iron homeostasis in any human, mouse, or zebrafish gene expression 

dataset. While, for the first time, our work suggests the existence of iron 

dyshomeostasis in the young, pre-pathology brains of PSEN1 fAD mutation carriers, 

it also reinforces the critical importance of iron dyshomeostasis in the development 
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of the late onset, sporadic form of AD. More broadly, our approach highlights how 

changes in the stability and abundance of IRE-containing transcripts can be used to 

give insight into iron dyshomeostasis responses in different species, tissues, and 

conditions.  
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Methods 

Defining IRE gene sets for human, mouse, and zebrafish 

We extracted all 3’ and 5’ UTR sequences from the human, mouse and zebrafish 

genome assemblies using the Bioconductor packages 

BSgenome.Hsapiens.UCSC.hg38, BSgenome.Mmusculus.UCSC.mm10 and 

BSgenome.Drerio.UCSC.danRer11, and gene definitions from the Ensembl 94 

release. Each set of UTR sequences was then submitted input into the SIREs web 

server (v.2.0 [22]). The SIREs algorithm assigns quality scores to predicted IREs 

taking into account whether the sequence is canonical, whether it contains any 

mismatches and bulges, and the free energy of the secondary structure. Canonical 

sequences are tagged by SIREs as being high-quality, while IRE-like sequences are 

tagged as low or medium quality. Given that High-quality IRE predictions miss the 

majority of true IREs, this enables a more comprehensive sampling of IRE motifs. 

For human, mouse, and zebrafish, we separately defined the following four gene 

sets: HQ 3’ IREs and HQ 5’ IREs (representing genes with high-quality predicted 

IREs), along with all 3’ IREs and all 5’ IREs, which included genes containing any 

predicted IRE in the respective UTR. Comparisons between gene sets were 

performed using the UpSetR package (v.1.4.0 [59]) with mappings between species 

obtained by BioMart [60].  

 

Over-representation of IRE gene sets in existing MSigDB gene sets 

We downloaded the following gene set collections from MSigDB (v.6.0 [29]): 

Hallmark, C2 (gene sets from online pathway databases and biomedical literature, 
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including KEGG and the REACTOME databases), C3 (motif gene sets based on 

regulatory targets), and C5 (gene sets defined by Gene Ontology terms). We 

excluded the following collections from analysis: C1 (specific to human 

chromosomes and cytogenetic bands, while our analysis involves different species), 

C4 (computationally-defined cancer-focused gene sets), C6 (oncogenic signatures) 

and C7 (immunologic signatures). C4, C6, and C7 were not included as the level of 

detail in the gene sets in these specific collections is more domain-specific rather 

than broad-level.  We used Fisher’s exact test to determine whether any IRE 

geneset was significantly over-represented in each MSigDB gene set. Gene sets 

were defined as having significant enrichment for IRE gene sets if the FDR-adjusted 

p-value from Fisher’s exact test was below 0.05. UpSet plots were produced using 

the UpSetR package (v.1.4.0 [59]) while network representations were produced in 

Gephi (v.0.9.3 [61]). To produce network visualisations, we exported node and edge 

tables from R. The nodes table contained the following gene sets: top 15 gene sets 

(ranked by Fisher’s exact test p-value), Hallmark Heme Metabolism gene set, all 3’ 

IREs, all 5’ IREs, and all genes contained within these gene sets. The edges table 

contained gene – gene set edges which indicated the gene set(s) that genes 

belonged to. To create the network plots, we used “Force Atlas 2” as the initial layout 

algorithm, followed by the “Yifan Hu” [62] layout algorithm to improve the separation 

between groups of genes.  
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Over-representation analysis of transcription factor motifs in IRE gene 

promoters 

Defining promoter regions as being 1500 bp upstream and 200 bp downstream of 

the transcription start site for each gene, we used the findMotifs.pl script from 

HOMER (v.4.11) [63,64] to search for known transcription factor binding site (TFBS) 

motifs in the promoters of each IRE gene set. The HOMER Motif database contains 

363 vertebrate transcription factor binding motifs based on analysis of high-quality 

public ChIP-seq datasets 

(http://homer.ucsd.edu/homer/motif/HomerMotifDB/homerResults.html). We 

considered TFBS motifs as being significantly enriched in a gene set if the FDR-

adjusted p-value was less than 0.05.  

 

Gene set enrichment testing 

We performed all gene set enrichment tests in R v3.6.1 [65] using fry [31,32], 

camera [33], and fgsea [34,35]. For fry, and camera, we used model fits obtained 

using limma [66,67], whilst for fgsea, a ranked list was obtained using moderated t-

statistics taken from limma. All genes were used in gene set enrichment tests (i.e. 

not just DE genes). We combined the raw p-values from fry, camera, and fgsea 

using Wilkinson’s method [68] with default parameters, followed by FDR-adjustment. 

When performing gene set enrichment testing on the MSigDB Hallmark gene sets, 

we applied FDR-adjustment to combined p-values and defined significant enrichment 

as gene sets having an adjusted p-value < 0.05. When performing gene set 

enrichment on the four IRE gene sets (all 3’ IREs, all 5’ IREs, HQ 3’ IREs, HQ 5’ 

IREs), we applied Bonferroni-adjustment to combined p-values to further protect 
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against Type I errors and defined significant enrichment as gene sets having an 

adjusted p-value < 0.05. Depending on the species in the dataset being analysed, 

we used the respective IRE gene sets defined for human, mouse, or zebrafish.  

 

Analysis of the Caco-2 cultured cell line dataset 

We downloaded processed microarray data from the GEO dataset GSE3573. This 

study investigated gene expression responses to iron treatments, including iron 

deficiency (cells treated with ferric ammonium citrate), and iron overload (cells grown 

in DMEM-FBS medium with hemin) [69]. We performed differential gene expression 

analysis using the “lmFit” and eBayes” functions in limma [66]. Genes were defined 

as differentially expressed when their FDR-adjusted p-value < 0.05.  

 

Analysis of the Mayo Clinic RNA-seq dataset 

We downloaded processed CPM count data from Synapse 

(https://www.synapse.org/#!Synapse:syn5550404). We matched cerebellum and 

temporal cortex samples by their patient ID, and only retained genes which were 

present across all samples and patients for which there were both cerebellum and 

temporal cortex samples (n=236 patients with measurements for cerebellum and 

temporal cortex, 472 samples in total). We performed analysis using limma [66,67] 

and determined differentially expressed genes between conditions. In addition, we 

used the “duplicateCorrelation” function in limma, setting the “block” parameter to the 

patient ID. Genes were considered differentially expressed if their FDR-adjusted p-

value < 0.05.  
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fAD-like psen1Q96_K97del/+ zebrafish 

The isolation of the psen1Q96_K97del mutation has previously been described [44]. 

Mutations were only analysed in the heterozygous state in this study. 

 

Zebrafish husbandry and animal ethics 

This study was approved under permits S-2014-108 and S-2017-073 issued by the 

Animal Ethics Committee of the University of Adelaide. Tübingen strain zebrafish 

were maintained in a recirculated water system. 

 

Hypoxia treatment of female adult zebrafish 

psen1Q96_K97del/+ mutants and their wild-type siblings were treated in low oxygen 

levels by placing zebrafish in oxygen-depleted water for 3 hours (oxygen 

concentration of 6.6 ± 0.2 mg/L in normoxia and 0.6 ± 0.2 mg/L in hypoxia.  

 

Whole brain removal from adult zebrafish 

After normoxia or hypoxia treatment adult fish were euthanized by sudden immersion 

in an ice water slurry for at least ~30 seconds before decapitation and removal of the 

entire brain for immediate RNA or protein extraction. All fish brains were removed 

during late morning/noon to minimise any influence of circadian rhythms. 

RNA extraction from whole brain 

Total RNA was isolated from heterozygous mutant and WT siblings using the 

mirVana miRNA isolation kit (Thermo Fisher). RNA isolation was performed 

according to the manufacturer’s protocol. First a brain was lysed in a denaturing lysis 
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solution. The lysate was then extracted once with acid-phenol:chloroform leaving a 

semi-pure RNA sample. The sample was then purified further over a glass-fiber filter 

to yield total RNA. Total RNA was DNase treated using the DNA-free™ Kit from 

Ambion, Life Technologies according to the manufacturer’s instructions. Total RNA 

was then sent to the Genomics Facility at the South Australian Health and Medical 

Research Institute (Adelaide, Australia) to assess RNA quality and for subsequent 

RNA sequencing (using poly-A enriched RNA-seq technology, and estimated gene 

expression from the resulting single-end 75 bp reads using the reference GRCz11 

zebrafish assembly transcriptome) 

 

Pre-processing of the fAD-like psen1Q96_K97del/+ zebrafish dataset: 

RNA-seq libraries contained single-end 75bp Illumina NextSeq reads. We performed 

quality trimming with AdapterRemoval using default parameters, followed by quality 

assessment with FastQC and ngsReports. Trimmed reads were pseudo-aligned to 

the reference zebrafish transcriptome using Kallisto (v.0.45) [70] and transcript 

descriptions from Ensembl release 94. The “catchKallisto” function from edgeR [71] 

was used to import and summarise counts from transcript-level to gene-level, with all 

subsequent analyses performed at the gene-level.  

Differential gene expression analysis for fAD-like zebrafish dataset 

For differential gene expression analysis, we retained all genes with expression of at 

least 1 cpm in 4 or more samples, and used voomWithQualityWeights to downweight 

lower quality samples [67]. Contrasts were defined to include all relevant pairwise 

comparisons between conditions, and genes were considered as differentially 

expressed using an FDR-adjusted p-value < 0.05.  
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Estimation of spliced and unspliced gene expression in fAD-like zebrafish dataset 

For spliced transcripts in Ensembl release 94, we additionally defined unspliced 

genes including intronic regions. Unspliced transcripts were appended to the end of 

the reference transcriptome and used to build a new Kallisto [70] index. Estimated 

counts for spliced transcripts and unspliced genes were imported into R using the 

“catchKallisto” function from edgeR [71].  

 

Gene set enrichment tests for non-fAD-like (K97fs/+) zebrafish dataset 

Please refer to [44] for details on RNA-seq data processing and analysis of the non-

fAD-like dataset. In the current work, we used the gene expression counts matrix 

with limma. The voom, design, and contrasts objects produced as part of the limma 

analysis were used for gene set enrichment analysis with the zebrafish IRE gene 

sets we defined as well as the MSigDB Hallmark gene sets. Significantly enriched 

Hallmark gene sets had FDR-adjusted p-value < 0.05 while IRE gene sets were 

considered significantly enriched if the Bonferroni-adjusted p-value < 0.05.  

 

Gene set enrichment tests for 7-day-old Q96_K97del/+ dataset 

Please refer to Dong et al. (GEO accession: GSE148631, manuscript in preparation) 

for details on RNA-seq data processing and analysis. In the current work, we used 

the gene expression counts matrix with limma to perform gene set enrichment 

analysis. IRE gene sets we defined as well as the MSigDB Hallmark gene sets. 

Significantly enriched Hallmark gene sets had FDR-adjusted p-value < 0.05 while 
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IRE gene sets were considered significantly enriched if the Bonferroni-adjusted p-

value < 0.05. 

 

Differential transcript stability analysis 

The estimated spliced and unspliced transcript count estimates from kallisto [70] 

were imported into R using the catchKallisto function from edgeR [71]. We used 

limma [66] to determine the logFC of spliced transcripts and unspliced transcripts for 

each comparison. To test for whether there was a significant difference in the logFC 

of the spliced and unspliced transcripts, we used Welch’s t-test with the s2.prior 

values from limma as the variances of the spliced and unspliced transcripts. We 

defined the null (no stabilisation of transcript) and alternate (stabilisation of 

transcript) hypotheses for each gene as follows, where s and u refer to the spliced 

and unspliced versions of a particular gene:  

 

𝐻!:			logFC" = logFC#	

𝐻$:			logFC" ≠ logFC# 

 

We defined genes with FDR-adjusted p-values < 0.05 as having differential stability.   

Checks that observed gene expression differences are not artifacts of 

differences in proportions of cell types 

The Mayo Clinic RNA-seq study, 5XFAD mice, and fAD-like zebrafish datasets are 

bulk RNA-seq datasets. To confirm that any gene expression changes were likely 

due to altered transcriptional programs rather than changes in cell type proportions, 

we compared expression of marker genes for four common neural cell types 

122



(astrocytes, neurons, oligodendrocytes, microglia) in conditions within each dataset.  

The marker genes for astrocytes, neurons, and oligodendrocytes were obtained from 

MSigDB gene sets from [72] which were based on studies in mice. The marker 

genes for microglia were derived from [73] which was based on studies in human 

and mouse. All gene IDs were converted to human, mouse, or zebrafish Ensembl 

IDs using BioMart [60] for each dataset. Please refer to Supplementary Text 3 and 

Supplementary Figures 7-9 for details. 
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Tables 

 

Table 1. Summary of gene set testing approaches used in our analyses.   

 

Method Hypothesis Focused / 
battery 
approach 

Accounts 
for inter-
gene 
correlation 

R 
implementation 

 
Fry / Roast 

 
Self-contained null 
hypothesis (genes 
within a set have no 
association with 
experimental 
condition) 

 
Focused (each 
gene set is 
tested on its 
own terms, and 
multiple testing 
adjustment is 
applied 
afterwards) 
 

 
Yes 

 
fry() and mroast() 
functions in the 
limma 
Bioconductor 
package (Wu et 
al. 2010) 

Camera Competitive null 
hypothesis (genes 
within a set do not 
have a stronger 
association with 
experimental condition 
compared to a random 
gene set) 
 

Focused (each 
gene set is 
tested on its 
own terms, and 
multiple testing 
adjustment is 
applied 
afterwards) 

Yes camera() function 
in the limma 
Bioconductor 
package (Wu & 
Smyth 2012) 

fgsea (fast 
implementation 
of GSEA in R) 

Self-contained null 
hypothesis (genes 
within a set have no 
association with 
experimental 
condition) 

Battery (gene 
sets are pitted 
against each 
other to 
determine which 
ones are more 
significantly 
enriched) 

No fgsea() function in 
the fgsea 
Bioconductor 
package 
(Subramanian et 
al. 2005) 
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Table 2. Samples analysed from Mayo Clinic RNA-seq study. 

 

Group Total 
number % Female Mean age ± 

s.d (years) Diagnosis 

Alzheimer's disease 
(AD) 134 56.7 82.6 ± 7.3 

Braak Stage ≥ 4, diagnosis 
according to NINCDS-ADRDA 
criteria 

Control 130 46.2 82.9 ± 8.3 

Braak Stage ≤ 3, No or sparse 
CERAD neuritic and cortical 
plaque density, no diagnoses 
for any neurodegenerative 
disease 

Pathological Aging 
(PA) 44 54.5 84.5 ± 4.3 

Braak Stage ≤ 3, CERAD 
neuritic and cortical plaque 
density of 2 or more, no 
diagnoses for any 
neurodegenerative disease or 
mild cognitive impairment 

Progressive 
supranuclear palsy 
(PSP) 

164 40.2 73.8 ± 6.5 
Braak Stage ≤ 3, no or sparse 
CERAD neuritic and cortical 
plaque density 
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Table 3. Differential gene expression and IRE gene set enrichment results from 

Mayo Clinic RNA-seq study. Asterisks (*) indicate significant enrichment 

(Bonferroni-adjusted Wilkinson’s p-value from fry, camera, and fgsea < 0.05). 

  Comparison 

No. of DE 
genes (FDR p-
value < 0.05 
and 
abs(logFC) > 
0.5) 

All 3’ IREs 
enrichment p-
value 

All 5’ IREs 
enrichment p-
value 

HQ 3’ IREs 
enrichment 
p-value 

HQ 5’ IREs 
enrichment p-
value 

Effect of 
Alzheimer's 
disease 

AD vs. control 
(cerebellum) 

Down: 1,422 
Up: 1,308 0.0109* 0.128 0.770 0.770 

  
AD vs. control 
(temporal 
cortex) 

Down: 1,650, 
Up: 1,929 9.03E-15* 2.44E-14* 4.50E-15* 8.95E-08* 

Effect of 
pathological 
aging (amyloid 
pathology, no 
dementia 
symptoms) 

PA vs. control 
(cerebellum) 

Down: 254, Up: 
463 

0.000116* 0.00139* 0.0201* 0.770 

  
PA vs. control 
(temporal 
cortex) 

Down: 466, Up: 
512 0.000521* 0.0461* 0.000065* 0.0000682* 

Effect of 
progressive 
supranuclear 
palsy (PSP) 

PSP vs. 
control 
(cerebellum) 

Down: 2,550, 
Up: 1,080 

1.81E-22* 3.45E-22* 1.43E-12* 0.0399* 

  

PSP vs. 
control 
(temporal 
cortex) 

Down: 1,271, 
Up: 622 

3.58E-11* 5.17E-13* 1.39E-06* 0.0399* 
Differences 
between 
Alzheimer's 
disease and 
pathological 
aging 

AD vs. PA 
(cerebellum) 

Down: 1,728, 
Up: 1,006 

0.000116* 0.00139* 0.0201* 0.770 

  
AD vs. PA 
(temporal 
cortex) 

Down: 2,633, 
Up: 2,174 0.000521* 0.0461* 0.000065* 0.0000682* 

Differences 
between 
Alzheimer's 
disease and 
progressive 
supranuclear 
palsy 

AD vs. PSP 
(cerebellum) 

Down: 108, Up: 
659 

0.0019* 0.00184* 0.158 0.158 

  
AD vs. PSP 
(temporal 
cortex) 

Down: 2,052, 
Up: 2,354 9.12E-22* 2.10E-22* 5.35E-16* 0.040* 

Differences 
between 
cerebellum and 
temporal 
cortex tissue 

Cerebellum vs. 
temporal 
cortex in 
controls 

Down: 10,925, 
Up: 9,302 

0.00E+00* 0.00E+00* 2.82E-269* 1.60E-81* 

  
Cerebellum vs. 
temporal 
cortex in AD 

Down: 11,966, 
Up: 9,950 0.00E+00* 0.00E+00* 7.71E-302* 9.35E-92* 

 

Cerebellum vs. 
temporal 
cortex in PA 

Down: 10,200, 
Up: 8,737 1.87E-153* 5.88E-160* 1.22E-89* 1.31E-88* 

  

Cerebellum vs. 
temporal 
cortex in PSP 

Down: 11,552, 
Up: 9,576 0.00E+00* 0.00E+00* 0.00E+00* 4.74E-104* 

138



Table 4. Enrichment of Iron Responsive Element (IRE) gene sets in fAD-like 
zebrafish dataset. Raw p-values from fry, camera and fgsea were combined with 

Wilkinson's method, with combined p-values then Bonferroni-adjusted for multiple 

testing. The same process was repeated for the K97fs/+ dataset, which involves an 

independent family of fish (†). 

  Comparison 
All 3’ IREs 
enrichment p-
value 

All 5’ IREs 
enrichment p-
value 

HQ 3’ IREs 
enrichment p-
value 

HQ 5’ IREs 
enrichment p-
value 

Effect of psen1 
mutation 

6-month-old 
Q96_K97del/+ vs. 6-
month-old +/+ all under 
normoxia 0.0109 0.128 0.770 0.770 

  

6-month-old 
Q96_K97del/+ vs. 6-
month-old +/+ all under 
hypoxia 9.03E-15 2.44E-14 4.50E-15 8.95E-08 

  

24-month-old 
Q96_K97del/+ vs. 24-
month-old +/+ all under 
normoxia 0.000116 0.00139 0.0201 0.770 

  

24-month-old 
Q96_K97del/+ vs. 24-
month-old +/+ all under 
hypoxia 0.000521 0.0461 0.000065 0.0000682 

  
6-month-old K97fs/+ vs. 
6-month-old +/+ all under 
normoxia † 0.199 0.289 0.0197 0.289 

  
24-month-old K97fs/+ vs. 
24-month-old +/+ all 
under normoxia † 0.116 0.115 0.00000118 0.979 

Effect of 
hypoxia 

6-month-old +/+ under 
hypoxia vs. 6-month-old 
+/+ under normoxia 1.10E-18 1.10E-18 8.19E-13 1.27E-08 

  
24-month-old +/+ under 
hypoxia vs. 24-month-old 
+/+ under normoxia 3.67E-15 7.98E-11 2.94E-07 3.31E-05 

  

6-month-old 
Q96_K97del/+ under 
hypoxia vs. 6-month-old 
Q96_K97del/+ under 
normoxia 1.13E-24 9.88E-22 2.28E-13 2.86e- 3 

  

24-month-old 
Q96_K97del/+ under 
hypoxia vs. 24-month-old 
Q96_K97del/+ under 
normoxia 0.000521 0.015 0.128 0.770 

Effect of aging 
24-month-old +/+ vs. 6-
month-old +/+ all under 
normoxia 6.80E-35 4.82E-27 3.41E-18 1.26E-21 

  
24-month-old +/+ vs. 6-
month-old +/+ all under 
hypoxia 1.55E-35 6.84E-31 2.36E-20 7.40E-23 

  

24-month-old 
Q96_K97del/+ vs. 6-
month-old Q96_K97del/+ 
all under normoxia 1.85E-27 1.03E-21 8.09E-17 1.07E-17 

  

24-month-old 
Q96_K97del/+ vs. 6-
month-old Q96_K97del/+ 
all under hypoxia 3.77E-30 1.59E-23 2.11E-19 2.46E-16 

  
24-month-old +/+ vs. 6-
month-old +/+ all under 
normoxia (K97fs family) † 1.69E-10 3.96E-08 5.95E-10 4.59E-06 

  
24-month-old K97fs/+ vs. 
6-month-old K97fs/+ all 
under normoxia † 0.199 0.289 0.0197 0.289 
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Figure 1. IRE background. A. Model of altered transcript stability due to the IRP/IRE system 
under iron dyshomeostasis. When cellular iron levels (through FeS) are low, ACO1 will undergo 
a conformational transformation and act as an IRP to bind IREs in the 5’ or 3’ untranslated 
region (UTR) of genes involved in iron homeostasis. In general, genes with IREs in their 3’ UTR 
will be stabilised and increased in expression while genes with IREs in their 5’ UTR will have 
their translation inhibited by the IRP. B. Consensus IRE secondary structure and examples 
of high-quality and IRE-like motifs predicted by SIREs. IRE-like motifs with non-canonical 
structure are able to be detected by SIREs if they have up to one mismatch pair in the upper stem 
(e.g. Hao1) or 1 unpaired bulge nucleotide on the 3’ strand of the upper stem (e.g. EPAS1). For 
more details on the prediction of non-canonical IRE motifs, please refer to Figure 1 of Campillos 
et al. [24].
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Figure 1. Overlap between predicted IRE gene sets for human, mouse, and zebrafish. The number of genes in the gene set for each 
species is shown at the bottom-left bars of each UpSet plot, while genes with shared homologs across species are indicated in the main plot 
region. IRE genes in mouse and zebrafish gene sets were excluded from this plot if they did not have a human homolog. 

Figure 2. Overlap between predicted IRE gene sets for human, mouse, and zebrafish. The 
number of genes in the gene set for each species is shown at the bottom-left bars of each UpSet 
plot, while genes with shared homologs across species are indicated in the main plot region. IRE 
genes in mouse and zebrafish gene sets were excluded from this plot if they did not have a human 
homolog. 

141



Figure 3. MSigDB gene sets showing over-representation of predicted 3’ and 5’ IRE 
genes in human, mouse, and zebrafish. The top 15 MSigDB gene sets ranked by Fisher’s 
exact test p-value (testing for over-representation of the all 3’ IREs and/or all 5’ IREs sets) 
are shown for each species. In the network plots, the top 15 MSigDB gene sets are shown as 
large nodes, with genes represented as small nodes. Edges connecting genes to gene sets in-
dicate the gene set(s) that a gene belongs to. Overall, the all 3’ IREs and all 5’ IREs gene sets 
have a large proportion of genes which are not included in any of the top ranked MSigDB 
gene sets for each species.

142



Differential gene 
expression analysis
with limma

Gene set 
enrichment tests 
with mroast/fry, 
camera, and fgsea

Identification of 
candidate 3’ IRE 
genes stabilised 
under iron 
deficiency

Inputs

Gene counts matrix

• Predicted IRE gene sets
• MSigDB Hallmark gene sets

Gene counts matrix
including both spliced
and unspliced genes

Results

Combine raw p-values with 
Wilkinson’s method + 
adjustment for multiple tests

• Differentially 
expressed genes

• limma objects 
(design, contrasts, 
and either fit and 
expression matrix, or 
voom-adjusted 
counts)

Significantly 
enriched gene sets

Welch’s t-test on logFC of 
spliced and unspliced genes 
to determine if changes in 
stability between 
experimental conditions are 
significant 3’ IRE genes 

showing significant 
increase in 
expression and 
stability

• Leading edge genes 
contributing to fgsea
enrichment signal for IRE 
gene sets• Proportions of genes in 
each gene set showing 
increased or decreased 
expression 

Figure 4. IRE-containing gene expression analysis workflow. The section including identification of can-
didate 3’ IRE genes stabilised under iron deficiency was only applied to the fAD-like zebrafish dataset due 
to unavailable raw RNA-seq reads for the other datasets needed to identify expression of unspliced genes. 
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Figure 4. Analysis of Caco-2 cultured cell line microarray dataset. A. Gene 
set enrichment testing results for human predicted IRE gene sets for the iron 
overload and iron deficiency treatments. Dots indicate if a gene set was consid-
ered significantly enriched (Bonferroni-adjusted p-value < 0.05) in the iron overload 
(on left) or iron deficiency (on right) treatment. B. Gene set enrichment testing 
results for MSigDB Hallmark gene sets in the iron overload and iron deficien-
cy treatments. Dots indicate if a gene set was considered significantly enriched 
(FDR-adjusted p-value < 0.05) in the iron overload (on left) or iron deficiency (on 
right) treatments. C. UpSet plots showing overlap between iron overload and 
iron deficiency treatments in GSEA leading-edge genes for the “All predict-
ed 3’ IRE genes” and “All predicted 5’ IRE genes” gene sets.  The bars to the 
lower-left indicate the number of the leading-edge genes for iron overload and iron 
deficiency treatments, while the bars in the main plot region indicate the number of 
leading-edge genes which are unique or shared between the treatments. 
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Figure 7. Analysis of 5XFAD mouse dataset. A. Experimental design and results of IRE gene set enrichment analysis. 
The gene sets all 3’ IREs and all 5’ IREs derived from searching for IRE sequences in the UTRs of genes in the reference 
mouse genome mm10 are represented here as “3’ IRE” and “5’ IRE” respectively. Asterisks (*) indicate that the gene set was 
significantly enriched in a particular comparison (Bonferroni-adjusted p-value < 0.05). B. Proportions of genes in IRE and 
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Figure 8. UpSet plots showing the overlap in GSEA leading-edge genes between all comparisons in 
the 5XFAD mouse datasets for the gene sets all 3’ IREs and all 5’ IREs. Numbers of genes for each 
intersection are shown above intersection bars.
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Figure 9. Differential gene expression and gene set enrichment analysis in the fAD-like zebrafish dataset. A. Re-
sults of differential gene expression analysis. Genes which were significantly increased or decreased in expression 
are indicated in boxes. These differentially expressed genes have FDR-adjusted p-value < 0.05. B. Gene set enrich-
ment with MSigDB Hallmark gene sets. The comparisons between Q96_K97del/+ fAD-like mutants and their
wild-type siblings are shown for the 6-month-old (young adult) and 24-month-old (infertile adult) age groups. 
Dots indicate gene sets which are significantly enriched (FDR-adjusted p-value < 0.05). 

Figure 9. Differential gene expression and gene set enrichment analysis in the fAD-like zebrafish data-
set. A. Results of differential gene expression analysis. Genes which were significantly increased or de-
creased in expression are indicated in boxes. These differentially expressed genes have FDR-adjusted p-value 
< 0.05. B. Gene set enrichment with MSigDB Hallmark gene sets. The comparisons between Q96_
K97del/+ fAD-like mutants and their wild-type siblings are shown for the 6-month-old (young adult) 
and 24-month-old (infertile adult) age groups. Dots indicate gene sets which are significantly enriched 
(FDR-adjusted p-value < 0.05). 
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conditions generally have distinct expression of genes in the all 3’ IREs set but not in the all 5’ IREs set. D. UpSet 
plot showing overlap in leading-edge genes for the “all predicted 3’ IRE genes” for select comparisons. 

Figure 10. Iron Responsive Element (IRE)-containing gene expression in the fAD-like zebrafish dataset. A. 
Results of gene set enrichment testing using predicted IRE gene sets. We represent the gene sets all 3’ IREs and all 
5’ IREs derived from searching for IRE and IRE-like sequences from z11 reference zebrafish gene UTRs as “3’ IRE” 
and “5’ IRE” in the panel. B. Proportions of predicted IRE genes which are increased (t > 2)  or decreased (t < -2) 
in expression  for each pairwise comparison in the dataset. C. Principal component analysis of all genes in the 
sets all 3’ IREs and all 5’ IREs for all samples. Circles on the 3’ IRE plot show that different conditions generally 
have distinct expression of genes in the all 3’ IREs set but not in the all 5’ IREs set. D. UpSet plot showing overlap 
in leading-edge genes for the “all predicted 3’ IRE genes” for select comparisons. 149



Supplementary Information Legends 

 
Note: Supplementary Tables and Text files are hosted on Figshare 

(https://figshare.com/s/104097febc1b8970fc5d).  

 

Supplementary Table 1. Iron Responsive Element (IRE) gene sets defined from 

human, mouse, and zebrafish transcriptomes. The untranslated regions (UTR) of 

all known genes were searched for IRE and IRE-like motifs. Four gene sets are 

included for each species: all 3’ IREs (all genes with predicted IRE in their 3’ UTR), 

all 5’ IREs (all genes with predicted IRE in their 5’ UTR), HQ 3’ IREs (genes with 

high-quality predicted IRE in 3’ UTR), and HQ 5’ IREs (genes with high-quality 

predicted IRE in 5’ UTR).  

 

Supplementary Table 2. MSigDB gene sets with significant over-representation 

of IRE gene sets in human, mouse, and zebrafish. Gene sets were defined to 

have significant over-representation of IRE gene sets if the FDR-adjusted Fisher’s 

exact test p-value was < 0.05.  

 

Supplementary Table 3. Promoter motif over-representation analysis results 

for all IRE gene sets in human, mouse, and zebrafish. Promoter regions were 

defined as being 1500 bp upstream and 500 bp downstream of genes. See methods 

for details. Significant over-representation of a promoter occurred when the FDR-

adjusted enrichment p-value < 0.05.  

  

150



Supplementary Text 1. Identifying predicted 3’ IRE genes with altered stability.  

 

Supplementary Text 2. Additional discussion.  

Supplementary Text 3. Proportions of  neural cell type markers (in astrocytes, 

neurons, oligodendrocytes, and microglia) in datasets analysed.  

 

Supplementary Figure 1. Principal Component Analysis of results from 

different gene set testing methods. 

 

Supplementary Figure 2. Analysis of cultured Caco-2 cell line dataset. A. 

Principal Component Analysis plot of gene expression in the cultured Caco-2 cell line 

dataset. B. Volcano plots indicating differential gene expression due to iron overload 

(DMEM-FBS Medium + Hemin vs. DMEM-FBS Medium) and iron deficiency (Iron-

free medium vs. Iron-free medium + FAC) treatments in the Caco-2 cell line dataset. 

 

Supplementary Figure 3. Gene set enrichment testing results for the AD vs. 

control comparison in cerebellum and temporal cortex.  

 

Supplementary Figure 4. STRINGR protein-protein interaction network plot 

between the 19 shared leading-edge genes between the psen1Q96_K97del/+ 

and psen1+/+ comparisons at 6 and 24-months-old. 
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Supplementary Figure 5. Principal Component Analysis plots demonstrating 

the minimal association between IRE gene expression and the psen1K97fs/+ 

mutant genotype. 

 

Supplementary Figure 6. Predicted 3’ IRE containing transcripts with 

significant differences in stability between conditions in the fAD-like zebrafish 

dataset. 

 

Supplementary Figure 7. Age-dependent expression of neural marker genes 

(microglia, astrocyte, neuron, oligodendrocyte) in human Mayo Clinic RNA-seq 

dataset analysed. 

 

Supplementary Figure 8. Age-dependent expression of neural marker genes 

(microglia, astrocyte, neuron, oligodendrocyte) in 5XFAD mouse cortex RNA-

seq dataset. 

 

Supplementary Figure 9. Age- and hypoxia- dependent expression of neural 

marker genes (microglia, astrocyte, neuron, oligodendrocyte) in fAD-like 

zebrafish whole-brain RNA-seq dataset analysed. 
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Supplementary Figure 1. 

 
 
 
Principal Component Analysis of results from different gene set testing 
methods.  
 
We used EGSEA (v.1.10.1) with default settings with R objects (design, contrasts, 
voom) from limma analysis of the fAD-like zebrafish dataset (n=32). EGSEA was run 
with the following methods: camera (limma v.3.38.3), safe (safe v.3.22.0), gage 
(gage v.2.32.1), plage (GSVA v.1.30.0), zscore (GSVA v.1.30.0), gsva 
(GSVA:1.30.0), ssgsea (GSVA v.1.30.0), globaltest (globaltest v.5.36.0), ora (stats 
v.3.5.2), fry (limma v.3.38.3). The Principal Component Analysis plot shows the 
relative similarity of the results obtained from running different methods, overall 
revealing three main groupings. To minimise the chance of p-value inflation from 
combining multiple methods that give essentially the same results, we decided to 
use one representative method from each group in our final analyses: camera, fry, 
and fgsea. Although fgsea is not a method included in EGSEA, we chose to include 
it as it implements the classic GSEA algorithm and also includes information about 
leading-edge genes which we make use of in our analyses.  
  

(ssgsea, 
gsva, safe, 
globaltest, 
ora) 
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Supplementary Figure 2. 
 
A 

 
 
B 

 
 
 

A. Principal Component Analysis plot of gene expression in the cultured 
Caco-2 cell line dataset. The plot uses pre-processed and normalised 
expression values for 22,153 probesets across all samples.  
 

B. Volcano plots indicating differential gene expression due to iron overload 
(DMEM-FBS Medium + Hemin vs. DMEM-FBS Medium) and iron deficiency 
(Iron-free medium vs. Iron-free medium + FAC) treatments in the Caco-2 cell 
line dataset. Horizontal lines indicate an FDR-adjusted p-value of 0.05, with all 
genes with FDR-adjusted p-value < 0.05 considered significantly differentially 
expressed (DE). In the iron deficiency treatment, this resulted in 96 significantly 
DE genes (65 down, 31 up), while in the iron overload treatment there were 212 
significantly DE genes (55 down, 157 up). 
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Supplementary Figure 3 
 
A 

 
B 

 
 

 
Gene set enrichment testing results for the AD vs. control comparisons in 
cerebellum and temporal cortex.  
 
A. Enrichment results for MSigDB Hallmark gene sets 
B. Enrichment results for human IRE gene sets 
Dots to either the left or right side of the gene set name indicate that the gene set is 
significantly enriched in either the “AD vs. control with cerebellum tissue” or “AD vs. 
control with temporal cortex tissue” comparisons respectively (Bonferroni-adjusted p-
value < 0.05). 
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Supplementary Figure 4. 
 

 
 
 
STRINGR protein-protein interaction network plot between the 19 shared 
leading-edge genes between the psen1Q96_K97del/+ and psen1+/+ comparisons at 6 
and 24-months-old. Nodes are named with gene symbols and edges indicate a 
known or predicted protein-protein interaction. Coloured nodes indicate genes 
contributing to significant over-representation of particular gene sets (FDR-adjusted 
p-value < 0.05).  
 
  

KEGG: MAPK signaling pathway

INTERPRO: Jun-like transcription factor

INTERPRO: AP-1 transcription factor

Reactome: Signaling by TGF-beta family members
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Supplementary Figure 5. 

A    3’ IRE genes  5’ IRE genes 

B   All genes (18,296 genes) 

Principal Component Analysis plots demonstrating the minimal association 
between IRE gene expression and the psen1K97fs/+ mutant genotype. A. 
Principal Component Analysis plots using expression of the zebrafish “all 
predicted 3’ IRE genes” and “all predicted 5’ IRE genes” gene sets. B. 
Principal Component Analysis plot of all genes detected in the dataset. Unlike 
for the fAD-like psen1Q96_K97del/+ mutant, the non fAD-like psen1K97fs/+ mutant does 
not show significant changes in gene expression of 3’ and 5’ IRE genes. 
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Supplementary Figure 6. Predicted 3’ IRE-
containing transcripts with significant 
differences in stability between conditions 
in the fAD-like zebrafish dataset. Tran-
scripts are defined to be stabilised if the log2 
fold-change of the spliced transcript is sig-
nificantly greater than the log2 fold-change 
of the unspliced transcript. Likewise, tran-
scripts are defined to be destabilised if the 
log2 fold-change of the spliced transcript is 
significantly less than the log2 fold-change of 
the unspliced transcript. All tests were done 
using Welch’s t-test with FDR-adjusted p-val-
ue < 0.05. 
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Supplementary Figure 7.  
 
Age-dependent expression of neural marker genes (microglia, astrocyte, 
neuron, oligodendrocyte) in human Mayo Clinic RNA-seq dataset analysed.  
 
Microglia marker gene expression (20 genes) 

 
Astrocyte marker gene expression (44 genes) 

 
 
 

159



Neuron marker gene expression (74 genes) 

 
 
Oligodendrocyte marker gene expression (83 genes) 

 
 
Error bars represent the 95% confidence interval. Overall, while we see differences 
in expression, there does not appear to be an overall systematic difference between 
AD vs. control for oligodendrocyte, neuron and microglial marker gene expression. 
For the astrocyte markers, AD brains appear to systemically have higher expression 
of these genes.   
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Supplementary Figure 8. 
 
Age-dependent expression of neural marker genes (microglia, astrocyte, 
neuron, oligodendrocyte) in 5XFAD mouse cortex RNA-seq dataset.  
 
Microglial marker gene expression (22 genes) 

 
 
Astrocyte marker gene expression (51 genes) 
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Neuron marker gene expression (67 genes) 

 
 
Oligodendrocyte marker gene expression (77 genes) 

 
 
  

162



Supplementary Figure 9. 
 
Age- and hypoxia- dependent expression of neural marker genes (microglia, 
astrocyte, neuron, oligodendrocyte) in fAD-like zebrafish whole-brain RNA-seq 
dataset analysed.  
 
Microglial marker gene expression (16 genes) 

 
 
Astrocyte marker gene expression (61 genes) 

 
 
 

163



Neuron marker gene expression (87 genes) 

 
 
Oligodendrocyte marker gene expression (107 genes) 
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Abstract 

Characterisation of the global transcriptional states underlying Alzheimer’s disease 

(AD) is an ongoing effort, challenged by the complexity and heterogeneity of the 

disease as well as access to samples. Many publicly available gene expression 

datasets representing different animal models of AD and human cohorts are not 

immediately applicable to general research due to technical and biological batch 

effects. Here, we describe the application of a advanced dimensionality reduction 

technique, Adaptive, Elastic-Net Principal Component Analysis (AES-PCA) on the 

integrative analysis of several animal model and human familial and sporadic AD 

datasets. Notably, we find that latent variables captured by AES-PCA and the 

Hallmark gene set collection effectively reduce noise within datasets and batch 

effects between datasets, thus enabling (a) interpretable visualisation of key 

differences underlying the early pathology of two different animal models of AD 

(psen1Q96_K97del/+ fAD mutation-like zebrafish and 5XFAD mice), (b) cross-species 

comparison of alterations in these animal models to a human familial AD dataset, 

and (c) integrative analysis of human familial and sporadic AD in a biologically 

interpretable manner despite major platform-specific differences.  
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Introduction 

Conventional approaches to gene expression analysis have focused on identifying 

marker (differentially expressed) genes to gain insight into the molecular biology and 

gene expression changes underlying a particular biological condition (reviewed in [1, 

2]). This has posed difficult in the context of Alzheimer’s disease (AD), where 

typically, human brain tissue available for analysis is derived from post-mortem 

brains displaying significant pathology and alteration of diverse biological activities 

[3–6]. Fortunately, utilising animal models of AD allows for the extraction of brain 

tissue at a younger age, which in turn permits characterisation of early AD pathology. 

Many such studies have been performed on various animal models of AD, 

particularly humanised transgenic models with multiple fAD-linked mutations such as 

the 5XFAD model [7–9] (reviewed in [10])  and knock-in models that introduce fAD-

like mutations into endogenous genes [11–18]. However, detailed analyses 

comparing gene expression patterns between different animal models of AD to each 

other and to the human disease are rare. Largely, this is due to the presence of 

noise within datasets and batch effects (e.g. platform, tissue, library preparation) 

between datasets (reviewed in [19]). This has meant that a large amount of publicly 

available gene expression data from many different animal models of AD and human 

AD cohorts is not immediately usable for integrative and comparative analyses.  

 

Previous research has addressed the difficulty behind integration and comparison of 

different gene expression datasets through several approaches, including meta-

analysis (e.g. [20]), matrix factorisation (reviewed in [21]), as well as methods that 

attempt to compare overall systematic changes in the biology of a system at the 
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gene set or pathway level (e.g. GSEA [22] and PLAGE [23]). Recently, pathwayPCA 

was released which provides an R/Bioconductor interface to the Adaptive, Elastic-net 

Sparse Principal Component Analysis (AES-PCA) approach [24, 25]. AES-PCA is an 

unsupervised method for dimension reduction developed for preserving biologically 

correlated information in gene expression data while reducing noise. Similar to other 

dimension reduction methods (e.g. non-negative matrix factorisation, PCA) it is able 

to summarise a gene expression dataset into latent variables that can then be used 

to calculate significant associations with experimental conditions/groups, similar to 

the purposes of using conventional gene set enrichment analysis (GSEA) 

approaches. However, as AES-PCA is specifically designed for use with predefined 

gene sets with biological relevance, the latent variables themselves are also 

amenable to a variety of further analyses including clustering of samples and 

integration of different datasets at both the gene- and gene set levels. 

 

Here, we present applications of AES-PCA to address currently unanswered 

research questions relevant to gene expression changes underlying Alzheimer’s 

disease, including: 

1. How do animal models of AD differ in the gene expression patterns underlying 

the earliest detectable changes? 

2. How can we make preliminary comparisons between the overall biological 

activities that are altered in animal models vs. familial AD in humans? 

3. For large, complex and heterogeneous datasets (e.g. sAD cohort), how can 

we find biologically meaningful and interpretable clusters 
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Importantly, we illustrate the utility of AES-PCA for the integration and comparison of 

different datasets by (a) reducing noise and emphasising relevant biological activities 

correlated to particular conditions within datasets, (b) enabling cross-species 

analysis and comparison of different animal models and human AD, and (c) 

improving integration of different datasets through enabling cross-platform analysis 

in a biologically interpretable manner. 

 

 

Results 

Overview of method 

We consider a gene expression matrix, M, consisting of n samples arranged as 

columns and p genes arranged as rows, which we use to characterise transcriptional 

states of interest. When applying the unsupervised dimension reduction method 

known as AES-PCA [25], the first step is to map the p genes to pre-defined gene 

sets s, such as those provided by external databases such as MSigDB [26], KEGG 

[27] or WikiPathways [28]. This is followed by selecting a coherent subset of genes 

for each predefined gene set using the elastic-net estimator [29], which combines 

both L1 (absolute values) and L2 (quadratic) penalties into the model. The adaptive 

lasso component (L1) of the AES-PCA enables a consistent subset of genes to be 

chosen for each dataset via the shrinkage properties of the lasso. The latent 

variables (i.e. Principal Components) extracted by AES-PCA represent activities 

within each gene set (i.e. overall up-regulation or down-regulation of genes within 

these gene sets). As these latent variables are calculated for each sample, they 

represent sample-specific estimates of gene set activities, and their sparse loadings 
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allow for the extraction of relevant genes contributing to variation in gene set activity 

across samples. In addition, latent variables can be used to calculate significant 

associations with experimental conditions/groups similar to the purposes of using 

conventional gene set enrichment testing approaches (e.g. GSEA), through using a 

linear regression model or permutation test [24, 25]. 

 

In our analyses below, we use AES-PCA with the Hallmark gene set collection from 

the Molecular Signatures Database (MSigDB). The Hallmark gene set collection 

comprises 50 gene sets representing diverse and well-characterised biological 

activities (e.g. “oxidative phosphorylation”, “inflammation”), each containing ~200 

non-redundant genes, based on expert manual curation from multiple studies and 

existing gene sets [30]. The AES-PCA approach we use in our analyses is 

summarised in Figure 1 and more detail can be found in [24, 25, 30].  

 

 
Gene expression data can be summarised using the Hallmark gene set 

collection and AES-PCA to provide an interpretable representation of 

altered biological activities 

 

The first step of the AES-PCA approach involves summarisation of gene expression 

data into gene set activities. Because we use the Hallmark gene set collection 

throughout our analyses, we first demonstrate that the biological activities 

represented within the Hallmark gene set collection are sufficient to distinguish 

subtle, early changes within young adult brains of two different animal models of AD 
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(transgenic 5XFAD mouse model and psen1Q96_K97del/+ fAD-like zebrafish model) in a 

biologically-interpretable manner. 

 

The transgenic 5XFAD mouse model is a popular animal model of AD, expressing 

human APP and PSEN1 transgenes with a total of 5 fAD-linked mutations. It is 

characterised by extensive and rapid development of amyloid and tau brain 

pathology with age [7, 8, 31]. In contrast, the psen1Q96_K97del/+ zebrafish model is a 

knock-in model that possesses a single fAD-like mutation in a heterozygous state 

[13]. Knock-in models with similar fAD-like genetic backgrounds typically do not 

show amyloid and tau brain pathology with aging [14, 32]. The clearly different 

genetic backgrounds of these two animal models would be expected to result in 

different changes to their brains at the molecular level. For example, a previous 

transcriptome comparison of different transgenic mouse models such as 5XFAD and 

3xTg showed extensive differences between these models [20]. However, to our 

knowledge, analyses comparing the 5XFAD mouse model to any fAD-like model 

have not previously been done.  

 

We first applied conventional gene set analysis methods (fgsea [33], fry [34], camera 

[35]) with the Hallmark gene set collection to these two datasets, resulting in the 

identification of significantly enriched gene sets in young adult (6-month-old) 

psen1Q96_K97del/+ zebrafish brains and young adult (3-month-old) 5XFAD mouse 

brains when compared to their wild-type siblings (FDR-adjusted Wilkinson’s p < 

0.05) (Figure 2). The gene sets which were significantly enriched in the 

psen1Q96_K97del/+ zebrafish and 5XFAD mouse brains were largely non-overlapping, 
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indicating clear differences in the earliest detectable pathological changes in the 

brains of these models. Hallmark gene sets uniquely enriched in 5XFAD brains 

included “interferon alpha response”, “interferon gamma response”, “complement”, 

and “inflammatory response” while those uniquely enriched in fAD mutation-like 

zebrafish brains included “glycolysis”, “oxidative phosphorylation” and “MTORC1 

signalling”. Gene sets that were enriched in both mouse and zebrafish included “fatty 

acid metabolism”, “heme metabolism”, “E2F targets” and “cholesterol homeostasis”. 

The enriched gene sets in young adult 5XFAD and fAD mutation-like brains are 

consistent with known information about these models: previous transcriptome 

analyses of young adult psen1Q96_K97del/+ brains demonstrated highly significant 

changes in gene expression corresponding to energy metabolism deficits [13, 36], 

while previous transcriptome analyses of young 5XFAD mouse brains indicated that 

2-3 month-old brains were characterised by immune activation gene expression 

responses [9]. This gave us confidence that the subset of genes represented in the 

Hallmark gene set collection would likely be sufficient to capture relevant biological 

signals within our analysed datasets.   

 

We repeated the above analysis using the AES-PCA method (see Supplementary 

Figure 1 for a more detailed comparison of results from conventional gene set 

testing methods and AES-PCA). The sparse loadings of the latent variables (PCs) 

calculated with AES-PCA give additional information on relevant genes accounting 

for the variation in gene set activity between samples within each dataset, hence 

giving further insight on the differences between the psen1Q96_K97del/+ zebrafish and 

5XFAD mouse models at the gene expression level (Figure 3). In the previous 
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result, our gene set analysis results indicated that several gene sets were 

significantly enriched in both the psen1Q96_K97del/+ zebrafish and 5XFAD mouse brains 

compared to their wild-type siblings. However, by inspecting the sparse loadings of 

these gene sets, we are able to see that there are extensive differences in the genes 

contributing to enrichment of these gene sets in most cases (Figure 3). Only two 

genes are in common: zebrafish oxtr and mouse Oxtr [oxytocin receptor] for the 

“epithelial mesenchymal transition” gene set; and, zebrafish tsc2 and mouse Tsc2 

[tuberin] for the “PI3K AKT MTOR signalling” gene set. Notably, both of these genes 

are in opposite directions, supporting overall differences between these models at 

the gene expression level.  

 

Overall, while there are some similarities in the biological activities being altered in 

the young adult brains of these two animal models at the gene set level, there are 

extensive and biologically relevant differences at the gene expression level. We 

hence show that the AES-PCA approach in conjunction with the Hallmark gene set 

collection is able to provide unique and complementary biological insights to 

conventional GSEA methods. 

 

 

AES-PCA latent variables enable cross-species comparison of global 

transcriptional states of human familial AD and animal models of AD 
 

An important area of AD research focuses on evaluating similarities and differences 

between animal models of AD and the human disease at the molecular level. These 

types of studies are important in the context of translational uses for animal AD 
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models (e.g. identification of relevant molecular pathways for therapeutic 

intervention). Currently, comparing animal and human gene expression datasets is 

not straightforward due to biological and technical sources of variation that cause 

batch effects and noise within and between datasets. Additionally, the lack of 

statistical power within low-replicate published datasets, and differences in scope 

between experimental design for studies in human and model organisms, can make 

meta-analytic approaches challenging. This motivated us to investigate whether the 

sparse latent variables calculated using AES-PCA could reduce noise and batch 

effects sufficiently to enable preliminary cross-platform and cross-species 

comparisons of different datasets.  

 

Here, we consider a comparison of gene expression alterations in post-mortem 

brains of human early-onset familial AD (eofAD) patients compared to aged adult 

brains of the two animal models of AD introduced earlier (24-month-old 

psen1Q96_K97del/+ fAD-like zebrafish and 11-month-old 5XFAD mice). Typically, gene 

expression studies involving fAD patients are rare, and the only gene expression 

study of fAD that is available publicly to our knowledge is a microarray dataset by 

Antonell et al. [37]. Samples in this dataset are derived from posterior cingulate 

tissue from post-mortem brains of eofAD patients with PSEN1 mutations (n=7), 

early-onset AD (eoAD) patients without mutations in fAD-causing genes (n=7), and 

age-matched healthy controls (n=7). Note that the psen1Q96_K97del/+ zebrafish and 

5XFAD mouse datasets differ in the platform used to acquire gene expression data 

(RNA-seq) as well as on the brain tissue sampled (zebrafish: whole brain; mouse: 

cortex tissue). An initial Principal Component Analysis (PCA) plot of the gene 
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expression data from the three datasets supports the presence of batch effects that 

would normally make it difficult to analyse these datasets together (Supplementary 

Figure 2). In addition, applying a conventional GSEA approach using the Hallmark 

gene set collection indicates extensive disruption to many biological activities, which 

is difficult to interpret. 

 

We applied AES-PCA separately to each dataset and applied dataset-specific 

standardisation (z-score) to transform the AES-PCA latent variable PC1 of each 

dataset to a comparable scale. The reason why we only consider PC1 is because 

this latent variable represents the major source of variation in each dataset, and in 

the AES-PCA method, the direction of PC1 corresponds directly to the overall 

direction of gene set activity. This gives the PC1 values a straightforward 

interpretation as the “pathway activity” of each gene set per sample. Interestingly, 

the PC1 latent variable representing Hallmark gene set activities for patients with 

early-onset fAD strongly resemble those with early-onset AD (without mutations in 

fAD-causing genes) (Supplementary Figure 3), indicating that the overall biological 

activities in eoAD in this particular dataset (regardless of whether they have an fAD-

causing mutation or not) appear similar.  

 

Finally, we used a mixed effects linear model on the AES-PCA latent variable PC1 to 

investigate whether similar biological changes were present in either aged 5XFAD 

mice or psen1Q96_K97del/+ zebrafish brains when compared to the eoAD human 

patients. The majority of Hallmark gene sets (48/50) in human eoAD were 

significantly captured by at least one of the zebrafish or mouse models (FDR-
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adjusted p-value < 0.05) (Figure 4). Overall, aged fAD mutation-like zebrafish and 

5XFAD mouse brains tended to capture complementary biological activities to each 

other, suggesting that perhaps these models may have complementary utility when 

studying molecular activities altered during human eoAD and eofAD. There were 

also several gene sets showing similar changes in both the aged psen1Q96_K97del/+ 

zebrafish and 5XFAD mouse brains when compared to human eoAD (including 

“xenobiotic metabolism”, “heme metabolism”). We stress that the similarities and 

differences shown in these comparisons should be considered preliminary results as 

only one dataset was used for each animal model and for human eoAD, and the 

brain tissue sampled in each dataset was different. This represents a common 

scenario when relying on publicly available data, where it may not be possible to find 

datasets that are comparable in terms of tissue, platform, and other factors. Our 

results demonstrate that AES-PCA is capable of reducing noise within datasets and 

batch effects between datasets to allow for preliminary cross-species and cross-

platform comparisons between different datasets. 

 
 
 
AES-PCA reduces platform-specific batch effects to enable integrative 

analysis of independent familial and sporadic AD datasets 

 

We next investigated whether AES-PCA would enable us to analyse two human 

Alzheimer’s disease datasets differing in key aspects including tissue, platform, and 

whether AD was early-onset vs. late-onset. One dataset comprises posterior 

cingulate cortex-derived microarray data from early-onset AD (n=7), familial early-
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onset AD (n=7) brains and healthy controls (n=7) (dataset referred to as eoAD, 

microarray) while the other comprises temporal cortex-derived RNA-seq data from 

sporadic AD brains (majority late-onset cases) (n=67) and healthy controls (n=65) 

(dataset referred to as sAD, RNA-seq).  

 

After applying AES-PCA to both datasets separately, latent variables representing 

Hallmark gene set activity across all samples demonstrated reduced noise (e.g. 

dataset-, platform- and tissue-specific batch effects) and greater emphasis of the 

biologically meaningful signal in the data corresponding to AD diagnosis. Figure 5 

shows PCAs of both datasets before and after applying AES-PCA. While the sAD, 

RNA-seq samples still display a high level of heterogeneity compared to the eoAD, 

microarray samples, applying AES-PCA results in clearly improved separation of 

AD and control samples across Principal Component 2 in both datasets.  

 
 
While separation between AD and control samples in the eoAD, microarray was 

pronounced based on latent variables captured by AES-PCA, samples in the sAD, 

RNA-seq dataset still displayed high heterogeneity, with some AD samples 

overlapping with control samples across PCs. We tested whether this variation 

might be explained through different age at death or ApoE genotype and found no 

significant correlation between age at death with AD diagnosis (Logistic regression 

p = 0.82) along with a strong association between ApoE genotype and AD diagnosis 

(Fisher’s exact test p = 7.7e-07) consistent with increased AD risk through 

possessing at least one copy of ApoE4.  
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To explore other biologically-relevant signals within the data that could explain this 

variation in the sAD, RNA-seq samples besides ApoE genotype, we applied 

bootstrapped k-means clustering to the Hallmark AES-PCA latent variable PC1 of 

the sAD, RNA-seq samples, resulting in the identification of three clusters with high 

stability (Jaccard index > 0.9) (Supplementary Text 1). Interestingly, while each of 

the three clusters contains both AD and control samples, Clusters 1 and 2 display 

distinct patterns of gene set activity (AES-PCA PC1 values) that are both 

remarkably homogenous for the samples within and are in the opposite direction to 

each other (Figure 6). It would seem that Cluster 3 is comprised of samples with 

Hallmark gene set activity that does not clearly resemble either Clusters 1 or 2. The 

opposite Hallmark gene set activity shown by Clusters 1 and 2 is biologically 

interesting as both clusters contain both AD and control samples showing very 

similar activities in Hallmark gene sets. This may imply that AD samples exhibit a 

large amount of diversity in the underlying molecular pathology at the gene 

expression level. Additionally, the idea that AD and control samples could show 

such similar gene set activity (AES PC1 values) within either Clusters 1 or 2 may 

indicate that perhaps the Hallmark gene set collection may not be sufficient to 

capture all aspects of AD pathology that differentiate them from healthy controls. 

To test whether choice of gene set used in the calculation of AES-PCA latent 

variables would be able to detect these differences between AD and control within 

clusters, we used a different gene set collection (IRE gene sets) previously found to 

have little overlap with the Hallmark gene set collection [36]. The IRE gene sets 

comprise four gene sets containing genes computationally predicted to contain Iron 

Responsive Elements in their 3’ or 5’ UTR. Without clustering, running AES-PCA 
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with the IRE gene sets from the sAD, RNA-seq data results in no significant 

differences detected between AD and control samples for any of the IRE gene sets 

(Figure 7B). Notably however, when samples are separated into the three clusters 

defined based on the Hallmark gene set AES-PCA PC1 values, each cluster shows 

distinct differences in AES-PCA PC1 activity for the IRE gene sets. Notably, there 

are clear significant differences between AD and control samples in AES-PCA PC1 

activity for the “high-quality 3’ IRE genes”, “all predicted 5’ IRE genes” and “high-

quality 5’ IRE genes” sets for Cluster 2 (Figure 7A, p-value from t-test < 0.05). The 

decreased activity of the “all predicted 5’ IRE genes” set along with the increased 

activity of the “high-quality 5’ IRE genes” set is similar to that observed in the early-

onset AD dataset (Supplementary Figure 5). This result highlights how the reduced 

representation of gene expression data by AES-PCA is amenable to clustering, 

particularly in the identification of potentially biologically relevant subgroups.  

 

In this example, we have shown that AES-PCA is an effective approach to 

comparing gene set activity across different platforms and sources of data and 

provides a noise-reduced representation of data that is amenable for identifying 

potentially biologically relevant subgroups or clusters of samples. However, we also 

note that effective use of AES-PCA to distinguish differences between conditions 

require careful consideration of gene sets that are representative of these gene 

expression differences.  
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Discussion 

 

AD is a complex and heterogeneous disease that necessitates the use of animal 

models to explore early pathological states of the disease at the molecular level. In 

this paper we highlight an application of the AES-PCA approach and the utility in 

addressing problems related to the interpretation, integration, and comparison of 

different gene expression datasets across different platforms and species in the 

context of AD. Notably, we find that latent variables captured by AES-PCA and the 

Hallmark gene set collection effectively reduce noise within datasets and batch 

effects between datasets, thus enabling (a) interpretable visualisation of key 

differences underlying the early pathology of two different animal models of AD 

(psen1Q96_K97del/+ fAD mutation-like zebrafish and 5XFAD mice), (b) cross-species 

comparison of alterations in these animal models to human eofAD dataset, and (c) 

integrative analysis of human fAD and sAD in a biologically interpretable manner 

despite major platform-specific differences.  

 

AES-PCA compared to conventional batch correction and meta-analytic 

approaches 

Beyond finding enriched gene sets, a unique aspect of AES-PCA is the dimension 

reduction step where genes are selected to summarise overall gene set expression. 

In AES-PCA, the unsupervised nature of this step also shows effectiveness at 

implicitly reducing batch effects between datasets, which we demonstrated in this 

work. It is important to note that conventional batch effect removal methods such as 

RUVseq [38] and ComBat [39, 40] may also be used to explicitly remove batch 
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effects in gene expression datasets. However, the removal of batch effects using 

these methods works on the entire gene expression dataset, and typically require 

tuning of parameters (e.g. manually selecting the value of k in RUVseq, which is 

typically dataset-dependent) or specifying the experimental design (e.g. defining 

which samples belong to which groups in ComBat). RUVseq and ComBat estimate 

batch effects by using the entire set of genes for each dataset, and do not take gene 

set information into account by design. Instead, after batch correction, gene set tests 

are performed as a separate step using methods such as GSEA [22] or ROAST/FRY 

[34, 41]. This means that use of conventional batch correction methods is not directly 

comparable to the batch effect reduction that AES-PCA accomplishes. AES-PCA 

performs integrated analysis across all datasets, and appears to achieve batch effect 

reduction by prioritising the most representative genes of each gene set across all 

samples. In doing this, AES-PCA appears to reduce technical noise and batch 

effects between datasets in a reproducible manner when viewed at the gene set-

level. This suggests that by reducing the complexity in the batch correction step 

compared to conventional methods such as ComBat or RUVseq, AES-PCA may be 

a useful alternative approach to these methods. 

 

AES-PCA also differs fundamentally to traditional meta-analysis approaches like p-

value combination methods and joint-analysis of datasets using a generalised linear 

model (GLM) (described in [42]). p-value combination methods (e.g. Fisher’s method 

or Stouffer’s method) occur after results have been independently obtained for each 

dataset separately. In contrast, AES-PCA analyses datasets simultaneously. GLMs 

are also a popular meta-analytic approach used to perform integrated analysis 
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between datasets, and a strength of this method is that known batch effects are able 

to be specified as random or fixed effects in the model. However, using a GLM 

requires that all batch effects must be known beforehand. In contrast, the 

unsupervised nature of the AES-PCA method means that knowledge of batch effects 

present within or between datasets is not required, meaning that use of AES-PCA 

may serve as a useful complementary approach to independently assess results 

from established methods like GLMs.     

 

Applicability of AES-PCA in analysing Alzheimer’s disease datasets 

Our results reveal several preliminary insights of relevance to AD research that are 

consistent with existing literature and may act as starting points for further research.  

 

As the first gene expression comparison of a knock-in fAD model and a transgenic 

model of AD, our results highlight clear, interpretable differences in the underlying 

molecular pathology in their young adult brains. Our results are consistent with 

previous work on these models suggesting that immune activation responses form 

the earliest pathological changes in the 5XFAD model [9], while young 

psen1Q96_K97del/+ zebrafish brains are characterised by early deficits in energy 

metabolism [13, 36]. In general, knock-in models have recently shown increasing 

popularity in AD research despite showing milder pathology compared to transgenic 

models as their genetic background is considered to resemble more closely that of 

human fAD [11, 12, 43]. Our results are in support of this idea (see Figure 4) and 

indicate that changes present in aged psen1Q96_K97del/+ zebrafish brains are better 

able to capture changes in human eoAD and eofAD related to energy metabolism 
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and other biological activities that are not captured in aged 5XFAD mouse brains. 

However, our results also suggest that 5XFAD mice are able to provide 

complementary information by capturing activity of other gene sets involving immune 

responses that are similar in human AD. Overall, our results highlight the importance 

of having access to younger age groups from animal AD models to investigate early 

changes in the brain at the molecular level, and emphasise the importance of 

comparative studies to assess the utility of different animal models of AD.  

 

It has been well-established that the progression of symptoms and molecular 

pathology present in fAD resembles sAD [44, 45]. Our comparison of eofAD, eoAD 

(without known fAD mutation) and an independent cohort of sporadic AD brains 

supports this overall similarity at the gene expression level for the first time. The 

latent variables captured by AES-PCA suggest that overall changes in molecular 

activities in eoAD and eofAD are very similar to each other and largely consistent 

with sAD brains, despite the extensive heterogeneity observed in the sAD brains that 

remained even after AES-PCA. In our analyses, clustering of the sAD samples 

based on latent variables captured by AES-PCA indicated that some cases of sAD 

resembled fAD more than others. This may reflect the extensive diversity in sAD 

cases (e.g. environmental and genetic factors) in addition to diverse effects on the 

aging brain in both controls and sAD, and further highlights the need to better 

understand molecular differences underlying the heterogeneity of sAD.  

 

Importantly, with the increasing popularity of data integration approaches and 

comparative analysis of different datasets across species and platforms (reviewed by 
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[46]), our results reveal the need for robust and representative gene sets across 

different biological activities of interest. In general, AES-PCA used in conjunction 

with the Hallmark gene set collection enabled interpretable, biologically relevant 

insights into the molecular activities underlying different conditions that could be 

straightforwardly compared between different species, platforms, and datasets. 

However, this approach was not able to distinguish all important differences between 

AD and control samples in the sAD dataset, which showed extensive heterogeneity. 

The use of IRE gene sets with AES-PCA however, was able to reveal significant 

differences in iron homeostasis activity between AD and control samples that were 

not captured by the Hallmark gene sets. This suggests that results can be influenced 

by the initial choice of gene sets chosen for inclusion, which is an important limitation 

to acknowledge in cases where the system under study (e.g. AD) is complex and not 

well-characterised at the molecular level. Despite this, we suggest that unsupervised 

techniques such as AES-PCA are a useful complementary approach alongside 

conventional gene expression analysis techniques as they have several unique 

advantages including ease of interpretation and reduction of biological and technical 

noise. These advantages make AES-PCA highly applicable to cross-platform and 

cross-species integration of multiple datasets, opening up possibilities for extracting 

further value from publicly available datasets which may otherwise have not been 

easily integrated.  
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Methods 

Dataset availability, pre-processing and normalisation 

The animal model RNA-seq datasets used in this work include: a zebrafish fAD 

mutation-like model derived from psen1Q96_K97del/+ and +/+ whole brains from 6- and 

24-month-old fish (see [13, 36]; GEO accession GSE149149); and 5XFAD (C57BL6) 

mice derived from 5XFAD and +/+ cortex tissue from 3-, 6-, 11- and 12-month-old 

mice (GEO accessions GSE140286 and GSE142633). Raw fastq files were 

downloaded from GEO and re-processed using AdapterRemoval to perform quality 

trimming with default parameters, followed by pseudoalignment with Kallisto (v.0.45) 

to either the zebrafish or mouse reference transcriptome using transcript descriptions 

from Ensembl Release 96 [47]. The “catchKallisto” function from the edgeR 

R/Bioconductor package was used to import count estimates [48]. Transcript-level 

count estimates were then summed to result in gene-level count estimates. Raw 

gene-level counts were normalised using the TMM method using the 

“calcNormFactors” function in edgeR. Normalised counts were transformed into log2 

cpm counts prior to analysis with AES-PCA. 

 

The human eoAD dataset is a microarray dataset (Affymetrix Human Gene 1.1 ST 

Array) originally from a study by Antonell et al. [37]. We obtained raw data from GEO 

(accession GSE39420) and converted raw probe intensities to probeset expression 

while applying RMA normalisation using the “rma” function from the oligo 

R/Bioconductor package [49]. For probeset to gene annotations, we used the 

hugene11sttranscriptcluster.db R/Bioconductor package [50]. However, as there 

were many 1:many probeset:gene annotations, we performed analyses at the 
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probeset level. Normalised probeset expression was log2 transformed prior to 

analysis. 

 

The human sAD dataset is a subset of AD and control RNA-seq samples obtained 

from the Mayo Clinic RNA-seq study [51]. As raw data was not available for public 

download, we downloaded pre-processed, normalised count data from the Synapse 

database (https://www.synapse.org/#!Synapse:syn5550404) and filtered to only 

contain temporal cortex AD and control samples. Data was log2 cpm transformed 

prior to analysis using the “cpm” function from edgeR.  

 

Conversion of gene IDs in the Hallmark gene set collection 

Gene sets used were Hallmark collection gene sets from MSigDB (v.7.0) [26, 30] 

which were downloaded from https://www.gsea-

msigdb.org/gsea/msigdb/collections.jsp as .gmt files and imported into R using the 

GSEABase R/Bioconductor package [52]. The imported gene sets contained human 

entrezgene identifiers, so we used the biomaRt R/Bioconductor package [53] to 

retrieve homologous Ensembl gene IDs for human, zebrafish, and mouse, in order to 

maintain compatibility with our processed RNA-seq datasets which used Ensembl 

gene identifiers for their respective species. For the human eoAD microarray dataset 

which used Affymetrix Human Gene 1.1 ST Array probesets, we used the 

hugene11sttranscriptcluster.db R/Bioconductor package to convert human 

entrezgenes in the gene sets into compatible probeset IDs.  
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Gene set enrichment analysis 

Initially, gene set enrichment analysis was performed on the zebrafish and mouse 

normalised datasets using 3 gene set enrichment methods, fgsea [33], camera [35], 

and fry [34, 41] inspired by the EGSEA methodology [54]. Raw p-values were 

combined using Wilkinson’s method and FDR-adjusted, with significantly enriched 

gene sets defined as having an FDR-adjusted p-value < 0.05. See Hin et al. [36] for 

further details on the gene set enrichment testing method.  

 

AES-PCA  

AES-PCA with the MSigDB Hallmark gene set collection was performed using the 

“AESPCA_pVals” function from the pathwayPCA R/Bioconductor package [24, 25] 

with default parameters, including FDR-adjustment for raw p-values calculated using 

permutation tests.  

 

Testing for significant preservation of PC1 changes between different datasets 

Prior to integrated analysis, PC1 latent variables calculated using AES-PCA for each 

dataset were standardised (z-score) by scaling by the dataset-specific mean and 

standard deviation. PC1 only was chosen as this variable captures the largest 

amount of variability, and was assumed to capture the majority of the biological 

signal. 

 

Using the lme4 [55] and lmerTest [56] R packages, we set up a mixed linear effects 

model (lmer(value ~ group + (1|dataset)) with dataset as a random effect 

(i.e. nesting term) in order to detect significant differences between AD (or AD-like 
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condition) and controls that were preserved across the following comparisons: fAD 

mutation-like zebrafish brains and human eofAD; 5XFAD mouse brains and human 

eofAD. Gene sets with AES-PCA PC1 values significantly preserved across 

comparisons were defined as having FDR-adjusted p-value < 0.05.  

 

Clustering of sAD human dataset 

The “clusterboot” function from the fpc R package [57] was used to identify stable 

clusters in the sAD human dataset including AD and control samples. The default 

“bootmethod = boot” was used along with 1000 bootstraps and k-means clustering 

as the clustering method. We repeated this for k = 3, 4, 5. The Jaccard index 

(measure of cluster stability) was calculated for each cluster in each case. We used 

k=3 for the final clusters as cluster stability of all 3 clusters had Jaccard index > 0.9 

indicating highly stable clusters (Clusters with Jaccard index > 0.85 are considered 

highly stable while those with Jaccard index < 0.6 indicate unstable clusters).  

 

AES-PCA using IRE gene sets 

For the human datasets, we ran AES-PCA again with default settings but with 

numCores = 8 and human IRE gene sets obtained from [36] instead of Hallmark 

gene sets, as the IRE gene sets have been previously shown to have little overlap 

with Hallmark gene sets [36]. Differences in AES-PCA PC1 values between AD and 

control groups were calculated using t-tests.  
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Figure 1. Schematic showing the application of AES-PCA method to gene 

expression analysis. Refer to Chen [25] for further details on the AES-PCA 

method.  
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Zebrafish (6 months old)      Mouse (3 months old) 
psen1Q96_K97del/+ vs. +/+       5XFAD vs. +/+ 

 

Figure 2. Comparison of molecular pathological changes in young adult brains of fAD 

mutation-like (psen1Q96_K97del/+) zebrafish (6 months old) and 5XFAD mice (3 months 

old) compared to wild-type siblings using gene set enrichment testing of the MSigDB 

Hallmark sets. Gene sets were considered significantly enriched if the Wilkinson FDR-

adjusted p-value (from fgsea, fry, and camera) was < 0.05 (indicated with dots to either left 

or right of gene set names). The proportion of genes within each gene set which were 

increased (limma t-statistic > 2) or decreased (limma t-statistic < -2) in expression are also 

indicated.  
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Figure 3. Genes contributing significantly to variation in gene set activity as 

determined from AES-PC1 in young adult fAD mutation-like zebrafish (6 months old) 

and 5XFAD mouse (3 months old) brains when compared to wild-type siblings. Gene 

sets shown here were found to be significant in both the young adult (6 month old) fAD 

mutation-like zebrafish (psen1Q96_K97del/+) and young adult (3 month old) 5XFAD mice 

using a combination of fgsea, fry and camera. Homologous genes which are present in both 

the mouse and zebrafish datasets are indicated in red colour. 
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Figure 4. Preservation of brain gene expression changes between AD-like models and 

human early-onset fAD. Gene expression changes shown here are PC1 values calculated 

using AES-PCA and standardised through scaling by dataset-specific mean and standard 

deviation. Significant preservation was determined through linear mixed model (FDR-

adjusted p-value < 0.05). Zebrafish values derived from whole-brain gene expression, 

mouse values derived from cortex gene expression, human values derived from posterior 

cingulate gene expression.   
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Figure 5. Principal Component Analysis (PCA) plots for two human AD gene 

expression datasets obtained from different platforms (eoAD, microarray; sAD, RNA-

seq). A. PCA plot of genes expressed in both datasets. The eoAD, microarray dataset 

contained 23,076 genes identified by Ensembl gene identifiers (from 33,297 probesets), 

while the sAD, RNA-seq dataset contained 48,984 genes identified by Ensembl gene 

identifers. Only 19,583 genes which were present in both datasets were used for the PCA. 

Gene expression values were log2 transformed for each dataset prior to PCA. B. PCA plot 

of PC1 values from AES-PCA from 50 Hallmark gene sets for both datasets. AES-PCA 

PC1 values were standardised (z-score) for each dataset prior to PCA.  
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Figure 6. Heatmap of PC1 values calculated using AES-PCA for MSigDB Hallmark 

gene set activities in the sAD, RNA-seq dataset. PC1 values for the samples were 

clustered using bootstrapped k-means clustering (k=3). Annotations on top of the heatmap 

indicate ApoE genotype, age at death, diagnosis, and cluster assigned for each sample. 

There was no significant association between Cluster and ApoE genotype or age at death. 

The unclustered heatmap is provided in Supplementary Figure 4.  
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Figure 7. AES-PCA PC1 values for IRE gene sets (“all 3’ IRE genes”, “high-quality 3’ 

IRE genes”, “all 5’ IRE genes”, high-quality 5’ IRE genes”) calculated for the sAD, 

RNA-seq samples. A. Dataset split into three clusters determined using bootstrapped 

k-means with k=3. B. Full dataset. Differences between AD and control groups were 

tested using t-test (significance defined as p < 0.05). For further information on how IRE 

gene sets were defined, see Hin et al. [36]. 
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Supplementary Figures  
Supplementary Figure 1 
 

psen1Q96_K97del/+ vs. +/+ zebrafish (6-months-old) 

 
5XFAD vs. +/+ mice (6-months-old) 

 
Comparison of significantly enriched gene sets using conventional GSEA 
methods and AES-PCA in 6-month-old age groups of zebrafish and mouse 

datasets. The gene set enrichment analysis methods used (indicated as “GSEA” in 

the diagrams) were fgsea, camera, and fry, with raw p-values being combined using 

Wilkinson’s method and FDR-adjusted (gene sets significantly enriched have FDR-

adj. p < 0.05). For the zebrafish and mouse datasets shown, fgsea, camera, and fry 

were run on the complete dataset (including all age groups), using limma contrasts 

to test for associations between gene sets and specific comparisons (i.e. 6-month-

old psen1Q96_K97del/+ vs. +/+ zebrafish and 6-month-old 5XFAD vs. +/+ mice). In 

contrast, AES-PCA was run on each age group for each dataset separately. AES-

PCA is an unsupervised technique and hence requires additional permutation testing 

on the latent variables calculated in order to determine whether significant 

GSEA
17

AESPCA
31

11

GSEA
49

AESPCA
44

44
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associations with conditions exist. Currently, this permutation testing does not allow 

for “contrasts” to be specified in the same way as limma, and it is possible that 

running AES-PCA on age groups separately may result in decreased power to detect 

significant gene set associations compared to limma with conventional gene set 

enrichment testing methods. However, other properties of AES-PCA were proposed 

by Chen [25] to result in increased power for detecting significant gene set 

associations. The comparisons here suggest that neither AES-PCA or conventional 

gene set enrichment methods tested are clearly better than each other. The 

permutation testing for AES-PCA is implemented in the default functionality of the 

“AESPCA_pVals” function in pathwayPCA, and all p-values were FDR-adjusted 

(significantly enriched gene sets have FDR-adj. p < 0.05).  Given that AES-PCA 

uses a different method to test for significant gene set associations compared to the 

way that fgsea, fry, and camera were used in a limma workflow, we would not expect 

results to be exactly the same, but somewhat similar. Here, the similarity between 

AES-PCA to the conventional gene set enrichment analysis methods tested (fgsea, 

fry, and camera) appears acceptable.  
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Supplementary Figure 2 

 
 

Principal Component Analysis (PCA) plot of log2 normalised brain gene 
expression for three datasets: post-mortem human eoAD and controls 

(posterior cingulate tissue), 24-month-old psen1Q96_K97del/+ zebrafish and wild-

type siblings (whole brains), and 11-month-old 5XFAD and wild-type siblings 
(cortex tissue). The PCA indicates clear differences (batch effects) between the 

three datasets, with the largest source of variation (PC1) correlating with 

platform/technology (Mouse and Zebrafish datasets are RNA-seq while Human is 

microarray). The second largest source of variation (PC2) correlates with the 

differences between the Zebrafish and Mouse datasets. Only the 12,638 genes 

which were in common across all datasets were included in this PCA.  
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Supplementary Figure 3 

 
Heatmap of latent variables (PC1) representing Hallmark gene set activities 
calculated using AES-PCA for a microarray eoAD (early onset Alzheimer’s 

disease) dataset. eoAD samples include tissue samples with known psen1 fAD 

mutations (“eoAD_psen1” group) and without known fAD mutations (“eoAD” group). 

Overall, the latent variables representing Hallmark gene set biological activities are 

similar between eoAD_psen1 and eoAD samples, and clearly distinct from the age-

matched controls.  
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Supplementary Figure 4 

 
 

Heatmap of latent variables (PC1) representing Hallmark gene set activities 
calculated using AES-PCA for a sAD (sporadic Alzheimer’s disease) dataset. 

This visualisation shows a clear trend of differences between AD and control 

samples, although a large amount of heterogeneity is still present. This 

heterogeneity was not fully explained by ApoE genotype and was not correlated to 

age (see main manuscript text), which formed the motivation to perform additional 

clustering on this dataset.  
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Supplementary Figure 5 

 
AES-PCA PC1 values for IRE gene sets (“all 3’ IRE genes”, “high-quality 3’ IRE 
genes”, “all 5’ IRE genes”, high-quality 5’ IRE genes”) calculated for the 
microarray eoAD dataset. Differences between AD and control groups were tested 

using t-test (significance defined as p < 0.05). For further information on how IRE 

gene sets were defined, see Hin et al. [1]. 
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Supplementary Text 1. Determination of stable clusters for 
the RNA-seq, sAD dataset. 
 
Prior to clustering, the PC1 values were standardised by scaling the data to have 

zero mean and unit variance. Bootstrapped k-means clustering was performed using 

the fpc R package [1] and the “clusterboot” function, using the clustering method 

“kmeansCBI” and 1000 bootstraps, for k = 3, 4, and 5. Running the “clusterboot” 

function gives cluster assignments (i.e. which genes are assigned to which clusters) 

as well as cluster stability assessments which are shown below. As a general guide, 

Hennig [2] suggests that a valid, stable cluster should have a mean Jaccard 

similarity value ≥ 0.75, while clusters considered highly stable should have a mean 

Jaccard similarities ≥ 0.85. Clusters with mean Jaccard similarity values between 0.6 

and 0.75 are not considered stable, although may indicate patterns in the data. 

Clusters with mean Jaccard similarity values < 0.6 are considered unstable [2]. For 

the purposes of our analysis, we used k = 3 as all three clusters had Jaccard 

similarity values > 0.85 indicating highly stable clusters.  

 

k = 3 

* Cluster stability assessment * 

Cluster method:  kmeans  

Full clustering results are given as parameter result 

of the clusterboot object, which also provides further statistics 

of the resampling results. 

Number of resampling runs:  1000  

Number of clusters found in data:  3  

 Clusterwise Jaccard bootstrap (omitting multiple points) mean: 

[1] 0.9391498 0.9486744 0.9019909 

dissolved: 

[1]  1  4 12 

recovered: 

[1] 985 964 913 
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k = 4 

* Cluster stability assessment * 

Cluster method:  kmeans  

Full clustering results are given as parameter result 

of the clusterboot object, which also provides further statistics 

of the resampling results. 

Number of resampling runs:  1000  

Number of clusters found in data:  4  

 

 Clusterwise Jaccard bootstrap (omitting multiple points) mean: 

[1] 0.8238979 0.5824745 0.6560716 0.4268291 

dissolved: 

[1]  52 361 161 781 

recovered: 

[1] 721 147 232  91 

 

k = 5 
* Cluster stability assessment * 

Cluster method:  kmeans  

Full clustering results are given as parameter result 

of the clusterboot object, which also provides further statistics 

of the resampling results. 

Number of resampling runs:  1000  

Number of clusters found in data:  5  

 Clusterwise Jaccard bootstrap (omitting multiple points) mean: 

[1] 0.5658384 0.6252707 0.5852597 0.5082613 0.6743152 

dissolved: 

[1] 578 315 414 618 215 

recovered: 

[1] 345 244 193 182 364  
 

210



211

Chapter 6 
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Future Directions 
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Conclusions and Future Directions 

A significant gap in the field of AD research lies in our understanding of the 

molecular mechanisms underlying incipient stages of AD. This is particularly relevant 

in familial AD, where subtle changes in the brain may begin as early as young 

adulthood. To better understand these early stages of AD at the molecular level, 

transcriptome analyses of accurate animal models is essential. This strategy 

underpins the research within the manuscripts here, where transcriptome analysis 

and other bioinformatics-focused approaches are applied to knock-in zebrafish 

models to investigate molecular mechanisms relevant to human AD. 

It is important to note that prior to these manuscripts, no transcriptome analysis of 

any knock-in animal model of a mutation causing AD had been performed. This is a 

major gap in the field considering that the biological effects of knock-in familial AD 

mutations are known to be subtle and potentially overlooked without appropriate 

methodologies to capture these effects [1–4]. To address this research gap, the 

manuscripts in Chapters 2, 3, and 4 contained the first such transcriptome analyses 

on two different knock-in zebrafish models capturing different aspects of AD 

pathology. Chapter 2 described the analysis of a unique zebrafish model of the 

human K115fs mutation (psen1K97fs zebrafish) that modelled a particular aspect of 

sporadic AD (increased expression of the PS2V isoform). Importantly, the results of 

this chapter indicated the presence of biologically relevant stress and immune gene 

expression responses in young adult brains despite no visible amyloid pathology. 

Meanwhile, Chapters 3 and 4 highlighted a viewpoint more relevant to familial AD by 
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describing the first transcriptome analysis of a familial AD mutation-like model 

(psen1Q96_K97del). In particular, glucose metabolism deficits were shown to be 

amongst the most significant changes in young adult familial AD mutation-like brains 

(see Chapter 3). As the first transcriptome analysis of a knock-in model of a familial 

AD-like mutation, these results represent an important contribution to the field as 

they provide support for a potential role of decreased glucose metabolism in early 

stages of familial AD. Decreased glucose metabolism has been similarly observed in 

the brains of cognitively normal young adults predisposed to sporadic AD (carrying 

the ε4 APOE allele) [5], which highlights the importance of studying these early 

events in AD to determine if it is possible to slow or prevent the progression of AD. 

Existing evidence points towards a role for decreased glucose metabolism in both 

early-onset familial AD and later-onset sporadic AD, as FDG-PET scans show 

hypometabolism occurs in similar brain regions across both early-onset and late-

onset AD patients (although early-onset brains show a greater magnitude of 

hypometabolism) [6]. Because of this, further studies elucidating the molecular 

mechanisms of glucose metabolism in familial AD mutation-like models may be 

useful for giving insights relevant to AD in general. In addition, there is evidence that 

the specific glucose hypometabolism patterns in AD may be important for 

distinguishing AD from other dementias, particularly in the parieto-temporal, frontal 

and posterior cingulate cortices [7], and this further underscores the ongoing 

importance of ‘omics studies to characterise differences between AD and other 

dementias at the molecular level. 
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The results shown in Chapter 4 extend upon the findings of glucose metabolism 

deficits in the familial AD mutation-like model and showed that transcriptional 

changes indicative of iron dyshomeostasis were also likely to be important in the 

early stages of the disease. Importantly, this finding has not been previously shown. 

Given that iron dyshomeostasis pathways have been known to interact with diverse 

pathways implicated in AD (e.g. energy metabolism, immune responses and 

inflammation, hypoxia) [8], the results in Chapter 4 contribute to current knowledge 

regarding the early pathogenesis of AD, and generate new questions regarding the 

events surrounding iron dyshomeostasis in early stages of AD. Overall, as the first 

transcriptome analyses of zebrafish knock-in models of AD, the results in Chapters 

2, 3, and 4 represent the first steps towards characterisation of the transcriptional 

states underlying early stages of AD.  

Future steps continuing this work may involve integration of transcriptomes from 

different knock-in models to further define key molecular mechanisms that are 

common or different between familial AD and sporadic AD. For example, the brain 

transcriptome of a sorl1 zebrafish knock-in mutation model developed by the 

Alzheimer’s Disease Genetics Laboratory has recently been characterised [9]. In 

humans, SORL1 has been implicated in both familial and sporadic AD, so the 

analysis of a zebrafish sorl1 mutation model could provide further insight into how 

these two subtypes of AD are similar at the molecular level. Similarly, knock-in 

models of APP and PSEN1 in mice have been developed [10, 11], and comparative 

analysis with zebrafish knock-in mutation models would be useful for further 

elucidating conserved molecular mechanisms and how gene regulation and 
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expression may differ between these animals. Unfortunately, no transcriptome 

analysis has been performed for these mouse models yet, meaning that currently, a 

key gap still remains in the field.  

Another important future step will involve the integration of different ‘omics layers 

including proteomics and metabolomics from zebrafish knock-in mutation models. 

The majority of the work here has relied on transcriptome data. Findings in Chapter 2 

indicated only mild correlation between genes in the transcriptome and encoded 

proteins in the proteome of the psen1K97fs mutation model. This lack of correlation 

between genes and proteins has been well-documented in other species and studies 

[12, 13]. Recently, modelling the interactions between genes, proteins, and 

metabolites in interaction networks has emerged as a powerful method of integration 

of these ‘omics types to give more biologically relevant results [14]. The 

incorporation of different ‘omics data types will continue to play an important role in 

providing a greater understanding of the molecular changes and regulatory programs 

underlying familial and sporadic AD.  

The rapidly improving availability of high-throughput omics technologies implies that 

bioinformatics will also continue to play an important role in elucidating molecular 

mechanisms of complex diseases such as AD. A recurring theme of the manuscripts 

included in this work involved the use of bioinformatics to provide systems-level 

insights into relationships between gene expression patterns, molecular pathways, 

and regulatory factors in human AD and animal models. For example, in Chapter 2, 

a network representation of gene co-expression patterns was instrumental in 
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summarising the expression patterns of over 20,000 expressed genes to less than 

30 interpretable modules of co-expressed genes in a zebrafish dataset. Using the 

same technique on an independent human sporadic AD dataset allowed for a 

systems-level comparison of biological processes represented by these modules 

between these datasets. This revealed an important molecular mechanism 

(microglial responses regulated by ETS transcription factors) preserved between the 

zebrafish and human datasets and also independently replicated by another lab 

using human datasets [15] (see Chapter 2 for more details). This finding was not 

evident in a straightforward differential gene expression analysis of the datasets, 

hence highlighting the importance of bioinformatics strategies that incorporate 

analysis at multiple levels (e.g. promoter motif analysis to identify potential 

transcription factors regulating a common group of genes, identifying gene co-

expression modules to group genes meaningfully) across different datasets to 

ensure that findings are replicable and relevant to the human disease. 

Comparison of clusters of co-expressed genes was not the only effective method for 

data integration found, with Chapter 4 focusing on the use of gene sets for 

summarising overall changes in biological activities between biological groups and 

datasets. Typically, gene sets are defined based on prior knowledge and manual 

curation of genes involved in a particular pathway or biological activity. The unique 

approach taken here to investigate iron homeostasis changes at the gene 

expression level (by defining gene sets computationally based on genes predicted to 

contain Iron Responsive Element motifs) underscores the importance of tailoring a 

bioinformatics strategy to the biological question being asked. The success of this 
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approach was demonstrated by finding that iron dyshomeostasis is implicated at the 

transcriptional level across human sporadic AD and two animal models 

(psen1Q96_K97del zebrafish and 5XFAD mice) which was not captured by gene sets 

from existing databases. Similar approaches of defining gene sets based on 

predicted regulatory motifs might be useful to explore further a range of different 

regulatory systems at the transcriptional level, beyond those currently available in 

existing gene set databases. For example, sterol regulatory elements are present on 

genes involved in cholesterol homeostasis, a biological activity known to be 

disrupted in AD (reviewed in [16]) and also shown to be significantly enriched in 

familial AD mutation-like (psen1Q96_K97del) zebrafish (see Chapter 4). There is some 

evidence that sterol regulatory element-binding proteins are dysregulated by tau 

alterations in AD [17], but no gene set exists that contains all genes with sterol 

regulatory elements. In addition, AD-linked genes including APP and PSEN1 are 

under the control of several regulatory elements [18], yet comprehensive gene sets 

containing other genes with these elements have not been defined. The definition of 

gene sets based on regulatory elements still appears to be an under-explored 

strategy for investigating regulatory systems at the transcriptome level. This strategy 

would be particularly relevant for further delineating molecular mechanisms and 

regulatory systems of complex diseases such as AD.  

Currently, many different animal models of AD are available to researchers, with 

different models potentially recapitulating different aspects of AD pathology. 

Understanding the key differences between these models at the molecular level is an 

ongoing area of research. Through the manuscripts included here, it is evident that 



218 

bioinformatics will continue to play an important role in accomplishing this goal. The 

integration of different datasets is a key area of current research in bioinformatics, 

and Chapters 2 and 4 investigated two targeted approaches to exploration and 

comparison of particular biological activities between zebrafish and human datasets 

(using gene co-expression modules and gene sets respectively). The manuscript in 

Chapter 5 extended this work and used a combination of advanced dimension 

reduction (the AES-PCA approach) and predefined gene sets to compare broadly 

the global transcriptional states of zebrafish, mouse, and familial and sporadic 

human AD datasets while allowing for cross-species and cross-platform differences. 

Overall, the approach was successful at performing preliminary integration of 

different datasets in a straightforward and interpretable manner, whilst also providing 

biological insights to generate further hypotheses.  

Currently, data integration studies between animal model and human AD datasets 

are not widely described in the literature despite their importance for assessing the 

relevance of different animal models to AD. One of the only studies directly 

comparing the brain transcriptomes between animal models of AD and human AD 

was performed by Hargis and Blalock [19], where meta-analysis was used to assess 

concordance of brain gene expression patterns between several transgenic mouse 

models and human AD. The results indicated that different transgenic mouse models 

of AD did not show concordance to each other, and no transgenic mouse model was 

able to fully recapitulate the transcriptional changes characteristic of human AD. In 

Chapters 4 and 5, it was further demonstrated that 5XFAD mouse brain 

transcriptomes also differed extensively compared to familial AD mutation-like 
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zebrafish. Considering that many drugs developed to treat human AD have showed 

success when tested in transgenic mouse models but not in human AD (reviewed in 

[20]), it will be important in coming years to further compare a number of different 

transgenic and knock-in models of AD to each other and determine which models 

accurately capture important aspects of human AD.  

Another limitation of the work shown here is the reliance on bulk tissue samples 

where results give insight into global transcriptional states while obscuring potential 

differences in transcriptional programs between different cell types. Single-cell RNA-

seq technology is emerging as an important approach for overcoming this limitation. 

For the first time, a large-scale study in 2019 used single-cell RNA-seq to capture 

80,660 cell transcriptomes over 48 individuals with varying amounts of AD pathology 

[21]. Importantly, the study showed that when AD pathology was not severe, many 

disease-associated gene expression changes involved in myelination and 

inflammation were highly cell-type specific. However, when AD pathology was 

severe (i.e. late stages of the disease), many of the gene expression changes that 

occurred were common across cell types and indicative of a global stress response 

[21]. Given that the results in Chapters 2, 3, 4, and 5 indicated important events 

occurring in young adult brains with relevance to human AD, it will be important in 

future work to delineate these global transcriptional states observed by 

understanding the cell types responsible for specific gene expression changes.  

Overall, these manuscripts have described the first steps to characterisation of the 

early AD transcriptome through the use of zebrafish models. The results further our 
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understanding of familial and sporadic AD at the molecular level and are a valuable 

source of hypothesis generation for future work. In addition, bioinformatics-focused 

strategies were instrumental in extracting biologically relevant insights from these 

datasets and aiding in their integration. Collectively, the work here represents an 

initial contribution towards the ultimate goal of being able to develop therapeutic 

interventions capable of slowing or preventing the molecular progression of AD using 

a data-driven, bioinformatics-led approach.   
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