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Summary 

This thesis advances knowledge of wildlife monitoring techniques and demonstrates the 

potential of high-resolution, remotely sensed data to inform species conservation, improve 

ecosystem management and assess mitigation strategies for biodiversity loss. Drones can 

easily collect systematic, high spatial and temporal resolution data to detect fluctuations in 

key parameters such as abundance, range and condition of some species. Advances in 

drone-facilitated wildlife monitoring of sentinel species will provide rapid, efficient insights 

into ecosystem-level changes. This thesis focused on resolving knowledge gaps within three 

key areas of wildlife drone-ecology: disturbance, population monitoring and body condition.  

From the outset, we recognised drones might have undesirable or unforeseen behavioural and 

physiological effects on wildlife. To address this, I led a time-critical publication that 

advocated researchers adopt a precautionary approach given the limited understanding of the 

impacts. It also provided recommendations for conducting drone-facilitated research around 

wildlife as the basis for a code of best practice.  

Then, using colonial birds as a study group, we tested the utility of drone-derived data for 

population monitoring. First, life-sized, replica seabird colonies containing a known number 

of fake birds were used to robustly assess the accuracy of our intended approach compared to 

the traditional ground-based counting method. Drone-derived abundance data were, on 

average, between 43% and 96% more accurate, as well as more precise, than estimates from 

the traditional approach. Our open-source, semi-automated detection algorithm estimated 

abundance 94% similar to manual counts from the remotely sensed imagery. To apply this in 

the field, we collected drone-derived abundance data by repeatedly surveying representative, 

wild colonial birds (a tern, cormorant and pelican species). We used these data to develop a 

transferable technique requiring minimal user-input for adaptable and high spatiotemporal 

population monitoring.  

Finally, to investigate the use of drone-facilitated photogrammetry, we used a representative 

pinniped species to test if non-invasively acquired, morphometric data could infer body 

condition. Drone-derived measurements of endangered Australian sea lions (Neophoca 

cinerea) of known size and mass were precise and without bias. These two- and 

three-dimensional measurements from orthomosaics and digital elevation models were highly 

correlated with animal mass and body condition indices and not significantly different to 

those generated from ground-collected data.  

This work addresses and informs a range of issues arising from human activity in the 

Anthropocene, including rapid habitat loss, species extinctions and an altered climate. We 

have shown that using technology for wildlife monitoring enables timely, proactive 

environmental and conservation management.  
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1 General introduction 

1.1 Wildlife monitoring in a changing climate 

The intensification of human activities in the Anthropocene has transformed ecosystems and 

it continues to threaten global biodiversity (Steffen et al. 2006; Waters et al. 2016). Fauna are 

under pressure from climate change, habitat loss and degradation, overexploitation and the 

spread of invasive species (Pereira et al. 2010). Current animal extinction rates are estimated 

at hundreds to thousands of times faster than the rates that prevailed in the last tens of 

millions of years (Pimm et al. 2014; Ceballos et al. 2015). This has resulted in a sixth mass 

species extinction, which is accelerating (Ceballos, Ehrlich & Raven 2020). There is also 

evidence that beyond global species extinctions, the Earth is experiencing a huge episode of 

vertebrate population declines and extirpations – a ‘biological annihilation’ (Ceballos, 

Ehrlich & Dirzo 2017). These impacts will have negative, cascading consequences on 

ecosystem functioning, ecosystem services and human wellbeing. Accordingly, there is an 

urgent need to intensify conservation efforts to reduce the rate of biodiversity loss (Tilman et 

al. 2017).  

Ecological data are vital for understanding ecosystem responses to a changing climate, and 

ultimately, conserving biodiversity. Data are used to assess risks, identify change and predict 

future scenarios. Data also provide feedback on the effectiveness of management actions. 

Historical species presence data have been used to quantify extinction rates and to model this 

risk into the future. These estimates focus on the irreversible impacts of biodiversity change 

and, while important, they fail to capture changes on finer scales (e.g. a significant 

contraction in a species’ range) which are necessary to inform management actions (Pereira 

et al. 2010). Of the four broad types of biodiversity scenario metrics (Pereira et al. 2010), 

species abundance change derived analyses are particularly useful. These metrics draw on 

wildlife population variability using demographic data such as species presence, abundance 

and distribution (Couvet et al. 2011). Over time, these data reveal population trends.  

Sentinel species are defined as those that respond to ecosystem variability and/or change in a 

timely and measurable way (Hazen et al. 2019). By definition, these species can indicate an 

otherwise unobserved change in ecosystem function (Hazen et al. 2019). In the marine 

environment, top predators (including certain species of seabirds and marine mammals) that 

are conspicuous and integrate information from the bottom to the top of the food web are 
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ideal candidates (Piatt & Sydeman 2007; Hazen et al. 2019; Velarde, Anderson & Ezcurra 

2019). They offer the ability to collect multiple measurements, sometimes from a single 

population, that provide information over multiple scales about ecological processes that can 

be hard to observe directly. For example, demography can be measured using population 

counts over multiple breeding seasons, diet can be sampled on smaller scales through scat 

analysis or over broader and longer scales using stable isotope analysis. Changes in these 

parameters by sentinel species like seabirds and pinnipeds can help to identify thresholds or 

tipping points when physical processes (e.g. an increase in temperature) translate to 

broad-scale implications for the ecosystem (Hazen et al. 2019). An example of this is 

Cassin’s auklet (Ptychoramphus aleuticus) colony abandonment and juvenile California sea 

lion (Zalophus californianus) die-offs in response to the 2013–16 marine heatwave in the 

Northeast Pacific Ocean which depleted prey for both species (Cavole et al. 2016). This 

demonstrates how monitoring sentinel species of wildlife can provide very efficient insights 

into complex environmental processes. However, in a time of limited conservation funding 

(Waldron et al. 2013) and pressing time constraints for researchers (Fischer, Ritchie & 

Hanspach 2012), innovative approaches that improve the quality, speed and 

cost-effectiveness of data collection for these species are invaluable.    

1.2 Technology in wildlife ecology 

Technology, the application of scientific knowledge for practical purposes, is increasingly 

being adopted for wildlife monitoring. Emerging tools and techniques can facilitate improved 

data collection, as well as obtain novel data, while minimising ecosystem disruption (Moll et 

al. 2007; Hebblewhite & Haydon 2010; Pimm et al. 2015). For example, animal-borne 

telemetry devices have revolutionised our understanding of animal movements, including 

their interactions with the environment and species distribution (Hussey et al. 2015; Kays et 

al. 2015). Camera traps and acoustic recorders have become established tools for determining 

whether a species is present at a site and estimating population density (Rowcliffe & Carbone 

2008; Marques et al. 2013; Rowcliffe et al. 2016; Pfeffer et al. 2018). Remote sensing has 

provided researchers with spatiotemporal datasets that have been used to discover 

mega-colonies of seabirds in remote and hard to access locations (Borowicz et al. 2018). 

Similarly, artificial intelligence is assisting the automation of data extraction from an 

increasing number of data-rich collection techniques, including drone imagery and 

soundscapes (Lamba et al. 2019). These examples demonstrate the utility of harnessing 

technology for wildlife monitoring, yet there may be limitations that need addressing for 

these techniques to be applied more broadly.   

Despite advances in conservation technology, conventional field techniques are 

commonplace in ecology. A meta-analysis using 348 papers randomly selected from 

publications across the top 30 ecology-themed journals between 2004 and 2014 found that 

80% of sampled observations were collected using conventional field methods, with just 
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6.9% utilising remote sensing (Estes et al. 2018). Furthermore, observational durations and 

resolutions within that period were largely unchanged compared to those in studies from 

preceding years, although intervals had become finer and extents larger (Estes et al. 2018). 

While the perceived slow uptake of technology may be influenced by publishing timeframes, 

the results suggest that modern ecology’s observational domains are fairly narrow and 

methods are not keeping pace with new sampling techniques. The need for greater utilisation 

of technology is recognised in the literature. A recent call advocated for international 

leadership and coordination to realise the potential of conservation technology (Lahoz-

Monfort et al. 2019). Others have advocated a “lean start-up” based approach to bring 

conservation into the innovation era (Iacona et al. 2019), as well as fostering interdisciplinary 

collaborations to assist uptake of ‘technoecology’ (Allan et al. 2018). Even though 

publications since 2014 reporting the use of technology for wildlife monitoring are plentiful, 

it is apparent that more needs to be done to realise the effective integration of technologies 

for scalable ecology and conservation (Marvin et al. 2016) – especially those technologies 

that demonstrate considerable promise.   

1.3 Advancing ecological understanding with remote sensing 

Earth observation data, perhaps more than ever before, can play a critical role in supporting 

conservation science and environmental management (Buchanan et al. 2009). Satellite remote 

sensing is a common source of such data, offering repeatable, standardised and verifiable 

information on long-term trends of biodiversity indicators (Pettorelli et al. 2014; Turner 

2014). Recently, a group of leading remote sensing scientists identified ten questions in 

conservation that they considered analyses of Earth observation data could help to resolve 

(Rose et al. 2015). Not surprisingly, two questions specifically involved the use of these data 

to increase understanding of species distributions and abundances, as well as species 

movements and life stages. It was considered that remote sensing data on extrinsic 

environmental drivers (e.g. land cover, elevation and bathymetry) could be integrated with 

analyses of intrinsic biological factors and historical and current species distributions and 

abundances (Rose et al. 2015). While extremely valuable, this indicates that data at global 

extents (even very high-resolution satellite data) is not currently of sufficient resolution to 

quantify wildlife distributions and abundances directly (Turner 2014).  

The desire for spatial data at very high resolution led ecologists to use drones. Formative 

studies at the turn of the twenty-first century documented the potential of small remote 

controlled aircraft for ecological research of wildlife (Thome & Thome 2000). Building on 

the lessons learnt from monitoring wildlife from traditional aircraft, these studies targeted 

species that could be seen from above, such as many species of waterbirds and seabirds. In 

2002 and 2003, Jones, Pearlstine and Percival (2006) built a custom fixed-wing drone 

equipped with autonomous control and video equipment to test the potential usefulness of 

such an aircraft for wildlife research applications in Florida, USA. They were particularly 
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interested in assessing populations of midsize vertebrates and their habitats. After conducting 

more than 30 flights, Jones, Pearlstine and Percival (2006) concluded that “although new 

technical and operational challenges were discovered in our prototype UAV system for 

wildlife research, we still are confident in the utility of this tool…We encourage further 

experimentation with airframe and electronic design, types of sensors, and practical field 

applications”. Although the authors conceded they were unable to collect georeferenced 

imagery and that their aircraft was difficult to deploy in complex areas (e.g. heavily 

vegetated), theirs was a seminal study. It paved the way for the use of drones in ecological 

and conservation science in years to come (Watts et al. 2010; Anderson & Gaston 2013; 

Marris 2013; Chabot & Bird 2015; Linchant et al. 2015). Compared to traditional remote 

sensing, researchers had realised that drones offered the potential for scale-appropriate 

measurement of ecological phenomena, delivering fine spatial resolution at user-controlled 

revisit periods.     

1.4 Using drones to quantify key wildlife parameters 

As aircraft and sensor technology became more affordable and more reliable, ecologists 

increasingly recognised the utility of drone-facilitated wildlife population monitoring across 

various taxonomic groups and ecosystems. For example, Koh and Wich (2012) demonstrated 

the use of a prototype drone, dubbed a ‘Conservation Drone’, for surveying and mapping 

tropical forests. The inexpensive prototype was capable of flying pre-programmed missions 

autonomously using open-source software. Importantly, this work highlighted the potential 

for drones to directly survey for the presence of large arboreal mammals such as the 

Sumatran orang-utan (Pongo abelii), and indirectly by detecting their nests (constructed of 

decaying vegetation). Since this discovery other studies have compared drone-facilitated nest 

surveys to traditional ground-based nest surveys of orang-utans (Wich et al. 2016), as well as 

for other ape species (van Andel et al. 2015; Bonnin et al. 2018). However, given the 

difficulty of detecting nests from above using cameras operating at visible wavelengths, 

especially in complex forest structures, more recent efforts have focused on the use of 

thermal-infrared imagery to directly detect primates (Longmore et al. 2017; Kays et al. 2018; 

Spaan et al. 2019) and other arboreal mammal species (Corcoran et al. 2019; Hamilton et al. 

2020).  

Other large taxa have been the subject of novel drone-facilitated research and monitoring. For 

instance, imagery collected using drones has been used to study rhinoceros species and 

inform poaching mitigation endeavours (Mulero-Pazmany et al. 2014), survey elephants 

(Loxodonta africana) (Vermeulen et al. 2013) and hippopotamus (Hippopotamus amphibius) 

(Inman et al. 2019), and quantify the social interactions of migrating barren-ground caribou 

(Rangifer tarandus groenlandicus) (Torney et al. 2018). Drone imagery has also been used to 

detect individuals and estimate the nest density of a variety of crocodilian species (Evans et 

al. 2016; Ezat, Fritsch & Downs 2018; Scarpa & Piña 2019) and measure the spectral 
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signature and behaviour of polar bears (Ursus maritimus) (Barnas et al. 2018; Chabot, 

Stapleton & Francis 2019). Typically, study species have been those that can be consistently 

observed from above (i.e. unobstructed), thereby minimising detectability issues. The size of 

such animals has also meant that image resolution has not normally been a limiting factor for 

accurate detection and/or observation. However, as many large terrestrial animals have 

extensive ranges and can occur at very low density, careful consideration needs to be given to 

the availability of these animals relative to the sampling effort that can be realistically 

achieved with a given drone setup.  

In the marine context, monitoring sentinel species, such as seabirds and pinnipeds, is 

particularly efficient. As the majority of species in both of the groups aggregate on land or ice 

to breed within distinct breeding sites, their amenability to drone-facilitated monitoring was 

quickly realised.  

1.4.1 Colonial birds 

Birds, particularly colonial species including many seabirds and waterbirds, are highly suited 

to drone-facilitated monitoring. As these species aggregate to breed, researchers can sample 

them at their regular or opportunistic breeding sites, benefiting from collecting data when the 

species are at higher density and during times of reproduction. This increases sampling 

efficiency and provides the opportunity to collect data on key life stage metrics, including 

breeding effort and breeding success. Owing to their flight requirements, many colonial birds 

also tend to breed at sites with no to minimal overhead obstructions that simplifies their 

detection in aerial imagery. Similarly, non-flying seabirds (e.g. penguins) often utilise 

breeding sites that have simple, low-lying vegetation communities or that are highly 

substrate-dominated (e.g. rocky shorelines, ice-dominated ecosystems). Drone-facilitated 

monitoring of colonial birds can also overcome the need to enter colonies and allow the 

observation of areas that are hard to access on foot or view from traditional aircraft or using 

satellite imagery. This presents the opportunity to minimise wildlife disturbance (e.g. 

investigator disturbance) (Borrelle & Fletcher 2017), mitigate access-related damage to the 

surrounding environment (e.g. fragile flora) and for an alternative sampling technique that 

may be suitable for culturally sensitive locations (e.g. sacred sites).  

Not surprisingly, since Jones, Pearlstine and Percival (2006) surveyed white ibis (Eudocimus 

albus) and early attempts to automate the detection of birds in drone imagery (Abd-Elrahman, 

Pearlstine & Percival 2005), a plethora of bird species have been surveyed using an ever 

evolving drone-facilitated technique. Chabot and Bird (2012) presented initial comparisons of 

drone-derived photographic counts to visual ground counts of staging Canada geese (Branta 

Canadensis) and snow geese (Chen caerulescens). Drone-derived counts varied in precision, 

likely attributable to the differences in contrast between the different species and substrates, 

and shortcomings related to the unsophisticated imaging system. Using an improved aircraft 

and sensor to survey a large common tern (Sterna hirundo) colony, Chabot, Craik and Bird 
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(2015) found a strong correlation between photographic tern counts and ground nest counts. 

Then, Hodgson et al. (2016) demonstrated that drone-derived counts of colony nesting birds 

are an order of magnitude more precise than traditional ground counts and, importantly, 

proposed a method for ensuring compatibility with historic datasets. Concurrently, drones 

were being used to monitor Tristan albatross (Diomedea dabbenena) (McClelland et al. 

2016) through to black-vented shearwater (Puffinus opisthomelas) (Albores-Barajas et al. 

2018), gentoo penguin (Pygoscelis papua) (Goebel et al. 2015; Ratcliffe et al. 2015) and 

Antarctic shag (Leucocarbo bransfieldensis) (Oosthuizen et al. 2020). In combination, these 

studies demonstrated that drone-facilitated monitoring was now not only viable but was also 

an effective technique across a broad spectrum of species and biomes. Further research was 

needed to better understand the accuracy of drone-derived data relative to the spatial 

resolution and how it compares to more traditional monitoring methods (see Aim 2). The data 

collection, processing, analysis and interpretation workflow also needed to be further refined 

to ensure it could be reliably and cost-effectively integrated into both existing monitoring 

regimes and to establish new monitoring programs.  

In the previous decade of drone-facilitated bird monitoring, there has been increasing 

improvement of techniques to extract larger scale, more in-depth ecological insight. As is 

common across remote sensing, being able to process imagery to produce mosaics that are 

undistorted, geo-referenced and scaled is ideal. Sarda-Palomera et al. (2012) used repeated 

surveys of black-headed gull (Chroicocephalus ridibundus) to demonstrate that basic 

geo-referencing of drone imagery could provide locational data on individual nests without 

causing colony disturbance. Sarda-Palomera et al. (2017) extended this work using the same 

manual geo-referencing technique in an attempt to unravel spatial and temporal factors 

affecting the dynamics of colony formation and nesting success in the species, although these 

conclusions were met with some objection (Callaghan et al. 2018; and responded to by 

Sardà-Palomera et al. 2018). More advanced geo-referencing methods have been used to 

stitch drone-acquired imagery into seamless geo-referenced images, namely orthomosaics, 

using a photogrammetry technique called ‘structure from motion’. This process identifies 

points in overlapping digital photographs to reconstruct the landscape in three dimensions. 

Orthomosaics have been used to quantify the abundance and distribution, as well as conduct 

habitat analysis, for a variety of bird species (Chabot, Carignan & Bird 2014; Afán, Máñez & 

Díaz-Delgado 2018; Albores-Barajas et al. 2018; Borowicz et al. 2018; Lyons et al. 2019). 

These studies have shown tremendous promise, however, the robustness of the technique for 

large scale monitoring within and across species, sites and years is limited (see Aim 3).  

1.4.2 Marine mammals 

Population and habitat use monitoring for large marine mammals, particularly cetaceans, has 

traditionally been conducted using aerial line-transect surveys. The low density of these 

animals, coupled with the proportion of time they are detectable from above and their 
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potential to move long distances quickly, creates a suite of considerations necessary for 

effective sampling (Fewster et al. 2008). Transects surveys from conventional aircraft are 

ideal, as surveys can sample large areas relatively quickly while ensuring that parallel 

transects are sufficiently spaced to avoid the possibility of double counting. However, like 

any technique, there are limitations including the need for experienced observers and an 

inability to review observations, as well as safety risks to personnel involved in light aircraft 

operations. This had led to consistent interest in the suitability of drone technology for these 

type of surveys, and related spatially explicit occupancy and distribution modelling (Martin et 

al. 2012). Initial studies investigated the influence of environmental variables such as sea 

state and turbidity on detection rates, as well as operational parameters such as altitude 

(Koski et al. 2009; Hodgson, Kelly & Peel 2013). The promising results prompted further 

work, including to quantify the availability of specific species and observer perception biases 

(Koski et al. 2013; Hodgson, Peel & Kelly 2017; Ferguson et al. 2018), as well as ship based 

surveys (Moreland et al. 2015). Owing to the sampling effort needed for line transect 

surveys, these studies relied upon relatively large, long endurance, fixed-wing drones (e.g. 

Boeing Insitu ScanEagle) that are typically highly priced and their usage is generally subject 

to more stringent civil aviation regulation (Fiori et al. 2017).  

Similar to colonial birds, many marine mammal species make use of predictable habitats for 

social activities such as mating and feeding young, as well as resting. This aggregating 

behaviour provides an opportunity to collect remotely sensed data when animals are at high 

density, facilitating the efficient calculation of abundance estimates for sentinel species. This 

is particularly useful for species that are otherwise largely cryptic and unavailable for 

ground-based or remotely sensed detection, including many pinnipeds. For example, 

high-resolution satellite imagery has been shown to provide abundance estimates of southern 

elephant seals (Mirounga leonina) that are comparable to concurrent ground counts 

(McMahon et al. 2014). While satellite imagery is extremely useful, it can lack the spatial 

resolution needed to monitor most small- to medium-sized pinniped species. It can also be 

compromised by local climate conditions such as cloud cover. Drone-derived imagery can 

overcome these limitations, which has resulted in many researchers adopting this technology 

to monitor pinnipeds in recent years. For example, research on grey seals (Halichoerus 

grypus) has demonstrated that drone-derived abundance estimates are comparable to 

traditional aircraft surveys (Johnston et al. 2017), automating the detection of the species in 

drone-acquired thermal imagery is possible (Seymour et al. 2017) and entangled individuals 

can be identified at known haul-outs (Martins et al. 2019). Similar research has shown the 

suitability of drones as a research and monitoring platform for a variety of other species 

including Stellar sea lions (Eumetopias jubatus) (Sweeney et al. 2016), Antarctic fur seals 

(Arctocephalus gazella) (Goebel et al. 2015), Australian fur seals (A. pusillus doriferus) 

(McIntosh, Holmberg & Dann 2018; Allan et al. 2019; Sorrell et al. 2019), and New Zealand 
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fur seals (A. forsteri) (Gooday et al. 2018). In combination, these studies demonstrate that 

drones are a powerful tool for the collection of data to monitor marine mammals.  

1.5 Main aims 

Drones have become a powerful addition to the ecologist’s toolkit. The suitability of 

drone-derived data for a diverse array of ecological science is well documented by literature 

reviews (Anderson & Gaston 2013; Chabot & Bird 2015; Linchant et al. 2015; Christie et al. 

2016; Fiori et al. 2017; Rees et al. 2018; Johnston 2019; Joyce et al. 2019). In a relatively 

short time, the technology has evolved from primitive remote controlled devices using film 

photography (Thome & Thome 2000) to aircraft with considerable endurance, autonomy and 

capable of carrying high-quality, miniaturised sensors. The technology has also become more 

accessible, reliable and affordable, although there remain some challenges influencing their 

broader implementation (Duffy et al. 2018). Drones can provide researchers with a tool to 

sample at spatial and temporal resolutions that were not easily attained using existing remote 

sensing methods (e.g. space borne satellites and traditional aircraft). This has provided 

extensive new research opportunities within the field of wildlife ecology, as well as 

highlighted opportunities for improvement (Hollings et al. 2018) and gaps in our knowledge. 

Broadly, this thesis explores the utility of drone-derived data for wildlife monitoring at a 

variety of scales. Focusing on two groups of sentinel species, colonial birds and pinnipeds, 

we sought to develop workflows that used drone-acquired imagery for robust abundance 

surveys as well as more focal studies. The goal was to address gaps in knowledge within this 

area of important and evolving ecological science, thereby improving on traditional 

techniques in a time of drastic ecosystem change and species extinctions. To achieve this 

goal, four main aims have been addressed:  

Aim 1: recognise potential disturbance issues when using drones around wildlife 

Despite a rapid gain in the momentum of drone-facilitated wildlife monitoring 

between 2010 and 2015 (Anderson & Gaston 2013; Linchant et al. 2015; Christie et 

al. 2016), there were limited quantitative studies investigating the behavioural or 

physiological responses of wildlife to drone operations. Anecdotal evidence indicated 

that there would be a high degree of intra- and inter-species variability in responses, 

and the lag before substantive insight would be disseminated in the scientific literature 

was a concern. To raise awareness of this potential issue, we provided timely 

recommendations for conducting scientific research around wildlife using drones. 

These recommendations adopted a precautionary approach and aimed to provide the 

basis for best practice guidelines that would evolve as new research was completed.   
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Aim 2: quantify the accuracy of drone-facilitated wildlife abundance estimates, 

using manual detections of digital imagery and a semi-automated approach, 

relative to the traditional approach. 

Using colonial birds as a study group, we investigated the accuracy of 

drone-facilitated monitoring and traditional ground-based monitoring. To do this, we 

constructed replica colonies of a common seabird, the Greater Crested Tern 

(Thalasseus bergii), so that the true number of individuals was known, unlike in 

natural colonies. This robust experimental design allowed thorough testing of the two 

statistical components of accuracy, bias and precision, for each monitoring approach. 

A semi-automated detection algorithm was also developed, and the results were 

compared with manual human counts derived from the same imagery.  

Aim 3: develop a transferrable workflow for large-scale, drone-facilitated 

abundance monitoring and spatiotemporal analyses of aggregated wildlife.  

Given the demonstrated accuracy of drone-facilitated monitoring, we developed a 

workflow to collect and process drone-acquired imagery for abundance monitoring at 

user-specified spatial and temporal resolutions. To ensure the workflow was 

generalisable across different species and habitats, we applied it to repeated field 

surveys of three colonial bird species of varying size and nesting across a spectrum of 

habitat: crested tern (Thalasseus bergii), black-faced cormorant (Phalacrocorax 

fuscescens) and Australian pelican (Pelecanus conspicillatus). Subsequently, 

concentrating on a large breeding colony of pelicans in South Australia, we refined 

the approach so that it could be executed with minimal user-input to answer tailored 

spatiotemporal questions (e.g. flux in breeding effort).  

Aim 4: use drone-derived photogrammetry to estimate non-invasively the body 

condition of marine mammals. 

Using Australian sea lions (Neophoca cinerea) as a case study, we measured the size 

and mass of a subset of post-breeding individuals and compared these to 

measurements derived from high-resolution aerial photogrammetry. We assessed the 

variability in drone-derived dimensions and tested for bias in each measuring 

technique. Then we built and evaluated models to predict animal mass using 

straight-line distances and area measured from orthomosaics, as well as the 

3-dimensional measurement of volume determined from digital elevation models 

(DEMs). Based on our findings, we contrasted body condition indices developed from 

each of the datasets (ground, 2D and 3D measurements).  

Over the next four chapters, we address these aims using a combination of techniques. Given 

the pace at which high-resolution remote sensing has and will continue to evolve, this thesis 



22 

 

aimed to address pressing questions in this area of rapidly evolving ecological science, while 

also informing wildlife monitoring beyond the aircraft, sensors and software used. In the final 

part of this thesis, the findings of each chapter are synthesised and their implications for 

wildlife monitoring and future research are discussed. 

For the benefit of readers of this thesis, it is worth noting: 

1. The research chapters have been written concisely as manuscripts for publication and 

therefore there is some unavoidable repetition, particularly in each introduction. 

Statements of authorship precede each chapter clarifying the manuscript’s publication 

status at the time of thesis submission.  

2. There is inconsistency in the terminology used to refer to drones in the following 

chapters. ‘Drone’ is used wherever possible, with exceptions arising in Chapters Two 

and Three that were published with alternative terms. I have chosen to use drone as it 

is simple, inclusive (i.e. free of gendered terminology) and now widely used in both 

the scientific community and general populous (Chapman 2014; Granshaw 2018). 

Alternative descriptors include unmanned aerial vehicle (UAV), unmanned aerial 

system (UAS) and remotely piloted aircraft (RPA), although there are regional 

differences in the popularity of these terms.  

3. Science communication accompanied each of the published manuscripts in this 

thesis, including articles released by Creative Commons licence in The Conversation. 

These articles are available online, and are reproduced as Appendices to this thesis.  

  

https://theconversation.com/profiles/jarrod-hodgson-247691/articles
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2 Best practice for minimising unmanned aerial vehicle 

disturbance to wildlife in biological field research3 

 

The use of unmanned aerial vehicles (UAVs), colloquially referred to as ‘drones’, for 

biological field research is increasing (Watts et al. 2010; Anderson & Gaston 2013; Chabot & 

Bird 2015). Small, civilian UAVs are providing a viable, economical tool for ecology 

researchers and environmental managers. UAVs are particularly useful for wildlife 

observation and monitoring as they can produce systematic data of high spatial and temporal 

resolution (Linchant et al. 2015). However, this new technology could also have undesirable 

and unforeseen impacts on wildlife, the risks of which we currently have little understanding 

(Ditmer et al. 2015; Pomeroy, O'Connor & Davies 2015; Vas et al. 2015). There is a need for 

a code of best practice in the use of UAVs to mitigate or alleviate these risks, which we begin 

to develop here. 

Different wildlife populations can respond idiosyncratically to a UAV in proximity 

depending on a variety of factors, including the species, environmental and historical context, 

as well as the type of UAV and its method of operation. While we do not presently have 

sufficient information on how these factors might affect wildlife to develop prescriptive 

policies for UAV use, we could draw from existing guidelines for ensuring the ethical 

treatment of animals in research (Sikes, Gannon & Mammalogists 2011; National Health and 

Medical Research Council 2013). For example, the ARRIVE (Animals in Research: 

Reporting In Vivo Experiments) guidelines detail the minimum information all scientific 

publications reporting research using laboratory animals should include (Kilkenny et al. 

2010), which may serve as a good starting point for the UAV context. 

Considering the growing popularity of UAVs as a tool among field biologists, we advocate 

for the precautionary principle to manage these risks. Specifically, we provide a suite of 

                                                 
3 Hodgson, J.C. & Koh, L.P. (2016) Best practice for minimising unmanned aerial vehicle disturbance to wildlife in 

biological field research. Current Biology, 26, R404-405. https://doi.org/10.1016/j.cub.2016.04.001  
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recommendations as the basis for a code of best practice in the use of UAVs in the vicinity of 

animals or for the purpose of animal research, which supplement current standards in animal 

field research and reporting. 

Adopt the precautionary principle in lieu of evidence. When researchers cannot 

make informed decisions about minimum wildlife disturbance flight practices for their 

environment or study species, they should exercise caution, particularly if endangered 

species or ecologically sensitive habitats are involved. While reported observations of 

animal responses to UAVs are increasing, there is a need for more empirical evidence 

across a range of animals and environments. Experiments that ethically quantify 

disturbance using captive and wild animals to fill this knowledge gap are necessary to 

inform minimum wildlife disturbance practices. As an interim measure, expert advice 

on species and UAV monitoring should be obtained for operations involving taxa 

whose responses to UAVs are poorly quantified or unknown. 

Utilise the institutional animal ethics process to provide oversight to 

UAV-derived animal observations and experiments. UAV monitoring that 

involves animals will benefit from ensuring all UAV methods are in accordance with 

approved institutional ethics permits. We encourage UAV users to seek this approval 

when appropriate and explain the anticipated benefit of using UAV technology in 

their situation. Ethics committees should evaluate these claims relative to comparative 

traditional techniques (e.g. ground surveys or remotely sensed data from an 

alternative, higher altitude platform such as manned aircraft or satellites). 

Adhere to relevant civil aviation rules and adopt equipment maintenance and 

operator training schedules. UAV operations need to comply with all relevant civil 

aviation rules which may include restrictions on flying beyond visual line of sight, 

above a defined altitude, at night and near people or in the vicinity of important 

infrastructure and prohibited areas. In countries where rules are not present or are still 

evolving, operators are encouraged to exercise caution. UAV equipment should be 

regularly serviced to ensure good working order, and maintenance recorded 

appropriately. Experienced operators should be utilised for UAV operations (formal 

accreditation is necessary in some countries). Where appropriate, approval for flight 

should be sought from indigenous communities. 

Select appropriate UAV and sensor equipment. UAVs should be selected to 

minimise visual and audio stimulus to target and non-target organisms, while 

remaining capable of satisfying study objectives. Consideration should be given to the 

way different units move (e.g. the gliding motion of a fixed-wing unit) as well as their 

shape, volume and colour relative to the study environment. In some cases, it may be 

beneficial to modify UAVs to mimic non-threatening wildlife, e.g. a bird that is not a 
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predator of the target species. Sensors should be optimised (e.g. focal length) to 

enable collection of suitable data from a UAV operated, typically, as high or as far as 

possible from the subjects.  

Exercise minimum wildlife disturbance flight practices. Particular attention should 

be given to siting launch and recovery sites away from animals (out of sight if 

possible) and maintaining a reasonable distance from animals at all times during 

flight. Potentially threatening approach trajectories and sporadic flight movements 

should be avoided. Species-specific protocols, including optimum flight altitude, 

should be developed and implemented wherever possible. 

Cease UAV operations if they are excessively disruptive. Animal responses should 

be measured during UAV operations (and before and after if possible). Monitoring 

stress response at a physiological level is encouraged, as is the use of tracking 

technology to quantify potential displacement. Operations should be aborted if 

excessive disturbance results, especially in cases when quantification of UAV 

disturbance is not a research interest. The methods for such studies should be 

reviewed and only resumed with a refined protocol if justifiable.  

Detailed, accurate reporting of methods and results in publications. UAV 

specifications and flight practices should be reported accurately and in full. Thorough 

results should be reported to ensure findings can be integrated in future research. 

Notes of animal responses (see above) should be included in published studies to 

generate an evidence base for refined guidelines. We encourage authors to be 

proactive in sharing suggestions for improving UAV best practices in biological field 

research and also to guide the regulation of recreational use. Importantly, such reports 

should include both positive and negative observations, including accidents during 

operations and incidents of excessive disturbances to animals. Publishers may wish to 

consider minimum reporting requirements for manuscripts that involve UAV 

operations. 

Promoting the awareness, development and uptake of a code of best practice in the use of 

UAVs will improve their suitability as a low impact ecological survey tool. We consider this 

code to be a first and guiding step in the development of species-specific protocols that 

mitigate or alleviate potential UAV disturbance to wildlife. 
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3 Drones count wildlife more accurately 

and precisely than humans4 

 

3.1 Abstract 

Knowing how many individuals are in a wildlife population allows informed management 

decisions to be made. Ecologists are increasingly using technologies, such as Remotely 

Piloted Aircraft (RPA; commonly known as “drones”, Unmanned Aerial Systems or 

Unmanned Aerial Vehicles), for wildlife monitoring applications. Although RPA are widely 

touted as a cost-effective way to collect high-quality wildlife population data, the validity of 

these claims is unclear.  

Using life-sized, replica seabird colonies containing a known number of fake birds, we assessed 

the accuracy of RPA-facilitated wildlife population monitoring compared to the traditional 

ground-based counting method. The task for both approaches was to count the number of 

fake birds in each of 10 replica seabird colonies.  

We show that RPA-derived data are, on average, between 43% and 96% more accurate than 

the traditional ground-based data collection method. We also demonstrate that counts from 

this remotely sensed imagery can be semi-automated with a high degree of accuracy.  

The increased accuracy and increased precision of RPA-derived wildlife monitoring data 

provides greater statistical power to detect fine-scale population fluctuations allowing for 

more informed and proactive ecological management.   

                                                 
4 Hodgson, J.C., Mott, R., Baylis, S.M., Pham, T.T., Wotherspoon, S., Kilpatrick, A.D., Segaran, R.R., Reid, I., Terauds, 

A. & Koh, L.P. (2018) Drones count wildlife more accurately and precisely than humans. Methods in Ecology and 

Evolution, 9, 1160-1167. https://doi.org/10.1111/2041-210x.12974 

https://doi.org/10.1111/2041-210x.12974
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3.2 Introduction 

Human activities are creating environmental conditions that pose threats and present 

opportunities for wildlife. In turn, this creates challenges for conservation managers. Some 

species have benefited from anthropogenic actions. For example, many invasive species 

profit from human-assisted dispersal (Hulme 2009; Banks et al. 2015), and mesopredators 

may thrive following human-driven loss of top predators (Ritchie & Johnson 2009). 

However, in many cases, wildlife populations are undergoing alarming declines, and 

extinction rates are now as high as 100-fold greater than the background extinction rate 

(Ceballos et al. 2015). Ecological monitoring is essential for understanding these population 

dynamics, and rigorous monitoring facilitates informed management. The effectiveness of 

management decision-making is often dependent on the accuracy and timeliness of the 

relevant ecological data upon which decisions are based, meaning that improvements to data 

collection methods may herald improved ecological outcomes from management actions. 

Emerging technologies are increasingly being adopted by ecologists to improve data 

collection and capture novel data (Moll et al. 2007; Hebblewhite & Haydon 2010; Pimm et 

al. 2015). Advances in genetic techniques have resulted in the cost-effective application of 

environmental DNA sampling to the detection of endangered species and invasive species 

(Sigsgaard et al. 2015; Smart et al. 2015; Smart et al. 2016). Camera traps and acoustic 

recorders have become established tools for determining whether a species is present at a site, 

and estimating population density (Rowcliffe & Carbone 2008; Marques et al. 2013). 

Furthermore, animal-borne telemetry devices have revolutionised our understanding of 

animal movements, including their interactions with the environment, and species 

distributions (Hussey et al. 2015; Kays et al. 2015). Such technologies have been vital in 

advancing our understanding of wildlife and answering fundamental questions, such as how 

many individuals are in a population and whether that population trajectory is increasing or 

decreasing. 

Remotely Piloted Aircraft (RPA; commonly known as “drones”, Unmanned Aerial Systems 

or Unmanned Aerial Vehicles) have seen a rapid uptake by ecologists for data collection. 

This surge in popularity has arisen largely due to their ability to carry remote sensing 

instruments that collect data at scales highly suited to monitoring ecological phenomena 

(Anderson & Gaston 2013). Compared to remote sensing instruments mounted to spacecraft 

and conventional aircraft, RPA are more suited to collecting extremely fine spatial and 

temporal resolution data at the discretion of the user. These benefits have led many 

practitioners to label RPA as a powerful tool for wildlife ecology (Jones, Pearlstine & 

Percival 2006; Watts et al. 2010; Chabot & Bird 2015; Linchant et al. 2015; Christie et al. 

2016). Consequently, RPA are being used for data collection in an increasingly diverse suite 

of ecological applications, including transect counts of African Elephants Loxodonta africana 

(Vermeulen et al. 2013), monitoring for poaching activities (Mulero-Pazmany et al. 2014), 
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detecting reptile and arboreal mammal nests (Evans et al. 2016; Wich et al. 2016), and 

estimating the body condition of cetaceans and pinnipeds (Christiansen et al. 2016; Krause et 

al. 2017). 

Many bird species are highly suited to RPA-facilitated population monitoring. RPA have 

been used to assess the breeding status of the canopy-breeding Hooded Crow Corvus cornix 

(Weissensteiner, Poelstra & Wolf 2015) and to take a census of multi-species assemblages of 

songbirds (Wilson, Barr & Zagorski 2017). They have also been a useful tool in collecting 

valuable datasets of species which congregate and/or those that frequent known sites to breed. 

For example, RPA have been used to estimate the size of staging flocks of geese (Chabot & 

Bird 2012), take population censuses of colony nesting species of gull, tern and penguin 

(Sarda-Palomera et al. 2012; Chabot, Craik & Bird 2015; Ratcliffe et al. 2015; Sarda-

Palomera et al. 2017), and also make a rapid population estimate of the Tristan Albatross 

Diomedea dabbenena at a remote island where nests are at low density (McClelland et al. 

2016). While some studies have investigated the variability of RPA surveys compared to 

traditional methods (Chabot, Craik & Bird 2015; Hodgson et al. 2016a), to date, rigorous 

quantification of the accuracy of RPA-derived data has been limited. 

We assessed the accuracy of RPA-facilitated wildlife population monitoring compared to the 

traditional ground-based counting method. The task for both approaches was to count the 

number of fake birds in each of 10 replica seabird colonies. Each replica colony had a 

different known number of life-sized individuals. Although the replica colonies lacked the 

flying or moving individuals of real colonies, the stationary decoys provided a realistic 

representation of the nesting seabird stimuli that observers encounter in the field. We 

hypothesised that counts from RPA-derived imagery would be more accurate and more 

precise than those generated using the traditional approach, confirming that RPA technology 

is a significant advance for ecological monitoring.  

 

3.3 Materials and methods 

3.3.1 Study site and simulated colony set-up 

Fieldwork (#epicduckchallenge) was completed at a metropolitan beach in South Australia 

(Port Willunga, 35°15'33 S, 138°27'41 E). The beach comprised pale cream to 

golden-coloured sand, natural debris and was largely devoid of rocks. The terrain was 

representative of a low-lying sand cay, gently sloping from the high water mark up to a small 

(0 – 1.5 m), natural, vegetated embankment. The experimental design, including the majority 

of anticipated statistical analyses, was pre-registered (Hodgson et al. 2016b).  

Ten simulated Greater Crested Tern Thalasseus bergii breeding colonies were constructed 

using commercial, life-sized, plastic duck decoys (~ 25.5 x 11.3 cm, 185 cm-2 footprint). 
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Colonies were situated separately on the beach, above the high water mark, in sandy areas 

that were analogous to nesting habitat. These areas had minimal topographic variation, and 

were typically devoid of vegetation but often contained natural beach debris.  

As the interactions of individuals are thought to influence colony layout, a model of nesting 

pressure was applied to an underlying hexagonal grid to generate unique, unbiased colony 

layouts (Hodgson et al. 2016b). The hexagonal grid was re-created in the field using a wire 

mesh, upon which grid cell centres were marked (mean density: 11.39 m-2). Pre-counted 

wooden skewers were placed one per cell at a random location within all cells identified as 

occupied in the colony layout map. The mesh was removed and each skewer was replaced 

with a decoy facing approximately into the wind. One individual was placed in each occupied 

cell. The number of skewers retrieved was taken to be the true number of individuals in the 

colony. Colony sizes were between 463 and 1017 individuals.  

3.3.2 Ground counting approach 

Ground-based counts (ground counts) were made using a standard field technique (Hodgson 

et al. 2016a). All observers were ecologists with experience observing and counting birds, 

primarily in a professional or academic capacity. Counters used tripod-mounted spotting 

scopes or binoculars as required. Hand-held tally counters were used to assist counting. For 

each colony, the observation viewpoint (Figure 3.1e) was selected because it provided the 

optimum vantage, was at a similar altitude to the colony and was 37.5 m from the nearest 

bird. This distance is a biologically plausible minimum approach distance as it is the flight 

initiation distance of the Caspian tern Hydroprogne caspia (Moller et al. 2014), a similar 

species to that being replicated. Counts (n = 61) were 7 ± 2.65 min (SD) in duration. Each of 

the four to seven counters made a single blind count of the number of individuals in each 

colony. The numbers of counters were selected based on a preliminary power analysis 

(Hodgson et al. 2016b) which investigated the sample sizes necessary to detect small (~ 10%) 

differences in mean counts and count variances between ground and counts from 

RPA-derived imagery to high (80%, 90%, and 95%) power. Counters had no knowledge of 

the true number of individuals in the colonies or the colony set-up technique. Counts were 

made between 0930 and 1645 on one day in late autumn, resulting in variation in illumination 

and shadows. During this period, wind speed was low to moderate (~ 5 – 20 kt), cloud cover 

varied (15% – 75%) and visibility was high (> 500 m).  

3.3.3 RPA description, flight characteristics and data collected by RPA 

A small, off-the-shelf quadcopter (Iris+, 3D Robotics) was used as a platform to image each 

colony. After positioning the RPA in the centre of the colony at 15 m above ground level, it 

was piloted in ‘altitude hold’ mode to make a vertical ascent without movement in other axes. 

The RPA was loitered for short periods (~ 10 seconds) at 30 m, 60 m, 90 m and 120 m above 

ground level (sample heights) to enable the capture of several photographs at each height. 
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Sampling was restricted to a height of 120 m as this is a common maximum limit for standard 

RPA flight. Ground control station connection (Mission Planner, planner.ardupilot.com) was 

utilised and total flight time for missions was 5 to 7 min. All missions were in accordance 

with local regulations and flown by the same licenced pilot. Samples were collected within 

40 min of the completion of ground counts.  

Imagery was captured using a compact digital camera (Cyber-shot RX100 III, Sony – 

resolution: 5,472 x 3,648 px; sensor: CMOS; sensor size: 13.2 x 8.8 mm; lens: ZEISS 

Vario-Sonnar T). Exposure time was set at 1/2000 seconds using “shutter priority” mode. 

Photographs were captured successively (~ 1 sec intervalometer) using the Sony 

PlayMemories Time-lapse application in jpeg format and at a focal length of 8.8 mm for all 

sample heights. The camera was mounted facing downward using a custom vibration 

dampening plate. The footprint of a single image at each height encompassed the colony for 

all replicates. For analysis, only the image captured closest to the middle of the loiter time 

period for each sample height was used. These images (scenes; n = 40) were cropped (colony 

area < 50% of footprint) so that the image footprint was identical for each sample height for a 

given colony. High-quality imagery was obtained for six of the ten colonies. Imagery for the 

remaining four colonies was affected by vibration-blur caused by a failure of the sensor 

attachment, likely due to wind speeds near the limit of the capability of the RPA platform. 

Scenes are archived online (https://doi.org/10.5061/dryad.rd736).  

The ground sample distance (GSD), being the distance between adjacent pixel centres on the 

ground, for sample heights were 0.82 cm, 1.64 cm, 2.47 cm and 3.29 cm (Figure 3.1). When 

photographed at nadir, this approximated to 275, 69, 30 and 17 pixels per individual 

respectively. The variance in GSDs was intended to represent the resolutions commonly 

achieved in wildlife monitoring applications, which result from sensor and sampling height 

variations.  

3.3.4 Manual counting approach for RPA-derived imagery 

Manual counts of perceived individuals in digital imagery were completed following a 

technique previously implemented for RPA-facilitated monitoring of living seabirds 

(Hodgson et al. 2016a). Systematic counts were made using the multi-count tool within an 

easy-to-use, open source, java-based scientific image processing program (ImageJ, 

http://imagej.net/). This tool is used by manually placing a mark on each object to be counted 

and then computing a tally of the number of marks placed. A grid plugin was used to overlay 

a square matrix (cell sizes: 70,000, 15,000, 8,000 and 4,000 pixels for each sample height) 

and counters were instructed to view the colony sequentially (gridcell by gridcell: left to 

right, top to bottom). Counters were encouraged to zoom in to each cell as they progressed 

and, upon completion, review their count at different levels of zoom until they were satisfied 

they had counted all individuals. For each sample height, seven to nine individuals counted 

https://doi.org/10.5061/dryad.rd736
http://imagej.net/
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each colony. Counters had no knowledge of the experimental setup and only one had 

experience in ground counting colonial birds.  

3.3.5 Semi-automated counting approach for RPA-derived imagery 

In each scene, digital bounding boxes were used to manually delimit a percentage of 

individual birds (Figure 3.2a). Four larger areas of background without birds were also 

delimited. These data were used to train a linear support-vector machine (a discriminative 

classifier; Cortes & Vapnik 1995), which predicted the likelihood of each pixel being a bird 

or background when applied to the corresponding scene (Figure 3.2b). Instead of relying on 

colour intensities, for each pixel used in the training processes, we computed 

rotation-invariant Fourier histogram of oriented gradient (Liu et al. 2013) features. This 

resulted in the classifiers being trained to determine which features distinguished birds from 

the background. The predicted likelihood (score) maps indicated the approximate locations of 

birds in the scenes, and detections were generated by applying a threshold to the score maps. 

This process unavoidably resulted in redundant bird proposals (Figure 3.2c) and so the final 

detection results were obtained by suppressing redundant proposals by minimising an energy 

function (Pham et al. 2016; Figure 3.2d). This function encoded the spatial distribution of 

objects and was informed by our knowledge of how the birds nest (e.g. two birds cannot 

occupy the same location). The source code and dataset are archived online 

(https://doi.org/10.4225/55/5a57f969d82e0).  

To determine the minimum amount of training data required for accurate detections relative 

to manual image counts, we varied the percentage of individual birds used as training data 

from 1% to 30% for each scene. 

3.3.6 Statistical methods 

All analyses were carried out in R version 3.2.2 (R Core Team 2016). Pre-registered analyses 

were designed to investigate how within-colony absolute count error, within-colony 

variability of counts and within-colony bias of counts differed between count techniques 

(Hodgson et al. 2016b). For analyses of count error, we consider our contrasts of 

experimental conditions to be conservative compared to typical field conditions. In the field, 

ground counters contend with the movement of live birds while counters of RPA-derived 

imagery use static images. Our use of decoys, therefore, removes a potential source of error 

for ground counters, whereas that source of error is minor or non-existent for counts made 

from RPA-derived images. 

For each test, a generalised linear mixed model was fit between the response (e.g. absolute 

count error) and the technology used to make the count (e.g. ground count, manually counted 

RPA-derived image captured at 30 m height, semi-automatically counted RPA-derived image 

captured at 30 m height), with colony included in the model as a random effect. To 

https://doi.org/10.4225/55/5a57f969d82e0
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investigate effects of counting technique on absolute count error, we defined the response as 

the absolute difference between the true number of birds in a colony and the counted number 

of birds. To investigate effects of counting technique on count variability, we defined the 

response as the absolute difference between each count and the mean of counts of the same 

colony taken using the same method. Count variability was not estimated for semi-automated 

counts as there was only a single semi-automated count per colony. To investigate the effect 

of counting technique on relative count bias, we defined the response as the difference 

between the true number of birds in the colony and the counted number of birds. For the 

absolute count error model we used a Poisson distribution with quasi-likelihood estimation, 

and for the variability and bias models we used a Gaussian distribution. For each model, 

post-hoc Tukey tests were used to test for differences in the response between all pairs of 

treatment levels. 

Semi-automated count data were added to the experimental design after our pre-registration 

of the analysis, and caused minor changes to the planned analysis. The addition of 

semi-automated count data, with a single replicate per colony, required fitting colony as a 

random effect instead of as a fixed effect in each model. 

Statements comparing the accuracy of counts from RPA-derived imagery to ground counts 

are based on the mean within-colony Root Mean Squared Error (RMSE) of that counting 

approach, standardised as a proportion of the true count within each colony. For instance, a 

statement that counts from RPA-derived imagery are '95% more accurate than ground counts' 

means that, within-colony, the RMSE for counts from RPA-derived imagery is 5% of the 

RMSE for ground counts, representing a 95% reduction in RMSE. 

To compare the semi-automated counts to that of the people counting the images, we first 

took the semi-automated count after 10% of training data had been used for each scene. Ten 

percent of training data was consistently identified as a threshold over which little 

improvement in counts occurred for all scenes. We compared this count to each of the manual 

counts of the same image using ANOVA for all scenes, and also for those scenes of high 

quality. We also used log-linear models with a Poisson distribution to make more quantitative 

comparisons of the two approaches.  
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3.4 Results 

3.4.1 Manual counts from RPA-derived imagery versus ground counts 

On average across all colonies, counts from RPA-derived imagery were between 43% and 

96% more accurate than ground counts, depending on the sample height (between 92% and 

98% for the colonies with high-quality imagery; Table S3.1). The mean absolute error was 

significantly smaller for counts from RPA-derived imagery at all heights compared to ground 

counts (all P < 0.001; Figure 3.3a).  

No significant increase in count accuracy was achieved by obtaining imagery from heights 

lower than or equal to 90 m. Using data only from colonies with high-quality imagery, there 

was no significant change in count accuracy across the range of heights. The lower accuracy 

of ground counts was due to significant underestimations of the true number of individuals in 

colonies (Figure 3.3b). Counts from RPA-derived imagery obtained at 30 m and 60 m did not 

significantly under- or over-estimate the true number of individuals in a colony, and there 

was no evident bias in counts from RPA-derived imagery at any height for colonies with 

high-quality imagery (Figure 3.3b). 

Counts from RPA-derived imagery were more precise (i.e. had lower inter-counter 

variability) than ground counts, regardless of the height at which imagery was obtained (t4,560 

-10.21 to -13.37, all P < 0.001; Figure S3.1). Counts from RPA-derived imagery were more 

precise for imagery obtained at 30 m compared to those obtained from 120 m (P = 0.01), 

however, there were no significant differences in precision among counts from RPA-derived 

imagery at different heights for colonies with high-quality imagery (all P > 0.98).  

3.4.2 Semi-automated counts from RPA-derived imagery 

By increasing the percentage (from 1% to 30%) of individuals used as training data for the 

image-analysis algorithm, 10% training data was consistently identified as a threshold above 

which little improvement in count accuracy was achieved (Figure S3.2). There was no 

significant difference between counts that were made with 10% training data and those made 

by manual counting from RPA imagery across all scenes. The semi-automated results were 

94% similar to manual counts across all scenes (98% for the colonies with high-quality 

imagery; see also Table S3.1).   
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3.5 Discussion 

RPA-derived data were more accurate and more precise than the traditional data collection 

method, validating claims that RPA are a highly beneficial tool for ecologists. By facilitating 

accurate census data, RPA can provide ecologists with more confidence in population 

estimates from which management decisions can be made. Furthermore, the superior 

precision of counts from RPA images increases statistical power to detect population trends, 

owing to the lower type II error rate in statistical analysis that comes with comparing 

measures with smaller variance (Gerrodette 1987). The improved precision of completing 

wildlife population censuses using RPA has been demonstrated for free-living seabird 

colonies (Hodgson et al. 2016a), suggesting our results are generalisable to natural settings. 

Differences in accuracy and precision between RPA-facilitated and traditional survey 

methods can be attributed to the sources and magnitudes of variance for each method, which 

are strongly affected by the different vantages (Hodgson et al. 2016a).  

Manual counting from RPA-derived imagery returned high-quality data. We estimate that a 

reasonable detection rate for manual counting is at least 72 birds per minute (unpublished 

data), demonstrating the suitability of this approach for colonies of less than a few thousand 

individuals. However, when the number of individuals is high, or repeat counts of colonies 

are required at different time points, the labour investment needed for manual counting can 

be substantial, so image-analysis techniques have been increasingly employed to streamline 

the detection process (Chabot & Francis 2016). Our semi-automated image-based object 

detection algorithm required the manual delineation of a proportion of birds and four areas of 

background without birds to be used as training data. Delineations were comfortably made at 

a rate of 30 birds per minute, and user intervention was not required once processing started. 

Accordingly, given 10% training data was sufficient for accurate counts, our semi-automated 

approach reduced user time investment without diminishing data quality compared to the 

manual, RPA-derived census. While processing time will vary with computing power, we 

still consider employing the algorithm and inputting training data a more efficient use of user 

time. This will be of particular interest in today’s research environment where funding for 

conservation is limited (Waldron et al. 2013) and researchers are under ever more pressing 

time constraints (Fischer, Ritchie & Hanspach 2012). 

The capture quality and resolution of RPA-derived imagery heavily influenced the results of 

both human and semi-automated detection. Consequently, ecologists should determine the 

minimum required GSD for their context and optimise their sensor accordingly (e.g. 

resolution, focal length) relative to sample height. When determining an appropriate sample 

height, best practice protocols should be considered to minimise potential disturbance to 

wildlife (Hodgson & Koh 2016), while complying with relevant local aviation legislation and 

achieving an acceptable sample area within the possible survey time period.  
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The ability to collect data with higher accuracy, higher precision and less bias than the 

existing approach confirms that RPA are a scientifically rigorous data collection tool for 

wildlife population monitoring. This approach produces a permanent record, providing the 

unique opportunity to error-check, and even recount with new detection methods, unlike 

ground count data. RPA-facilitated monitoring also presents the opportunity to collect 

population data without entering breeding grounds or ecologically sensitive areas, thereby 

avoiding the disturbance associated with ground surveys. Furthermore, as RPA platforms, 

sensors and computer vision techniques continue to develop, it is likely that the accuracy and 

cost-effectiveness of RPA-based approaches will also continue to improve.  
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Figure 3.1: Aerial vantage of a replica seabird colony compared with the ground 

counter’s viewpoint. One colony represented by a mosaic of images (a-d) photographed 

from an RPA-mounted camera at varying heights (30 m, 60 m, 90 m and 120 m) and 

resulting ground sample distances (GSD; 0.82 cm, 1.64 cm, 2.47 cm and 3.29 cm). Insets are 

of the same individual (square; c) at each height, displaying the decrease in resolution relative 

to an increase in GSD. (e) View of the colony from a ground counter’s standing position.  
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Figure 3.2: Semi-automated detection and counting of wildlife using computer vision 

techniques. (a) User annotation of perceived target objects (red) and background (blue). 

(b) Predicted likelihood (score) map generated by the trained classifier which has 

automatically determined which image features distinguish objects from background, 

independent of scale and orientation. Warmer colours indicate increasing likelihood of the 

pixel being a target object. (c) Target object proposals (red) computed by thresholding the 

score map. Object size is estimated from the annotations. (d) Final output (which includes a 

total count and detection co-ordinates) where detected individuals are delineated (red) after 

redundant detections have been automatically suppressed.   
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Figure 3.3: Accuracy and bias of RPA and traditional wildlife monitoring approaches. 

The absolute error (a) and difference from the true count (b) of each method. Data from all 

colonies (n = 10; shaded) and also for the subset of colonies with high-quality imagery 

(n = 6; unshaded) are presented for manual counts from RPA-derived imagery (blue) and 

ground counts (green). Manual (Man) and semi-automated (Auto) counts from RPA-derived 

imagery are displayed and data are grouped by height, which reflects ground sample distance 

(GSD; 30 m height = 0.82 cm GSD, 60 m = 1.64 cm, 90 m = 2.47 cm, 120 m = 3.29 cm).   
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Table S3.1: Mean percentage increase in accuracy of RPA wildlife monitoring 

approaches compared with the traditional ground count approach. Percentages are 

calculated for manual (Man) and semi-automated (Auto) counts from RPA-derived imagery 

using data from all colonies (n = 10) as well as the subset of colonies with high-quality 

imagery (n = 6). Data are grouped by height, which reflects ground sample distance (GSD; 30 

m height = 0.82 cm GSD, 60 m = 1.64 cm, 90 m = 2.47 cm, 120 m = 3.29 cm). 

 

Height (m) All colonies (%) Colonies with 

high-quality imagery (%) 

Man Auto Man Auto 

30 96 77 98 88 

60 90 84 97 88 

90 74 80 94 89 

120 43 77 92 85 
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Figure S3.1: Precision of RPA and traditional wildlife monitoring approaches. Data 

from all colonies (n = 10; shaded, lower box in each course) and also for the subset of 

colonies with high-quality imagery (n = 6; unshaded, upper box in each course) are presented 

for manual counts from RPA-derived imagery (blue) and ground counts (green). Data are 

grouped by height, which reflects ground sample distance (GSD; 30 m height = 0.82 cm 

GSD, 60 m = 1.64 cm, 90 m = 2.47 cm, 120 m = 3.29 cm).  
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Figure S3.2: Accuracy of semi-automated counts from RPA-derived imagery with 

varied amounts of training data. Colonies (n = 10) are represented by individual colours at 

each height, which reflects ground sample distance (GSD; 120 m height = 3.29 cm GSD (a); 

90 m = 2.47 cm (b); 60 m = 1.64 cm (c); 30 m = 0.82 cm (d)). Lowess smoothed trendlines 

are displayed. Analyses were computed using count estimates generated from 10% training 

data (dashed line).  
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4 Improving spatiotemporal monitoring of aggregated sentinel 

species with drones5 

 

4.1 Abstract 

As climate change continues to alter the global environment, more species will become 

extinct and species not currently of high conservation concern will become vulnerable. The 

ability to efficiently identify changes in wildlife abundance and distribution is essential to 

stem drastic increases in biodiversity loss, as well as to track the performance of climate 

change mitigation strategies. To do this, we present a generalisable drone-derived remote 

sensing technique requiring minimal user-input. Our approach achieves spatially accurate 

population monitoring of colonial birds, ideal sentinel species given their conspicuous 

breeding aggregations at all latitudes and timely amplification of trophic information.   

4.2 Main text 

Monitoring ecosystem sentinels can reveal changes in ecosystem function (Hazen et al. 

2019). In the marine environment, the population trends and phenology of top predators such 

as seabirds are ideal for detecting variability and changes in ocean processes over multiple 

timescales. Conveniently, as most seabirds aggregate to breed along coastlines, on islands 

and on ice, remotely sensed data collected from air- and space-borne instruments can be used 

to estimate changes in their abundance. If imagery of sufficient spatiotemporal resolution can 

be collected of these colonies, and population data can be extracted automatically, there is the 

potential to rapidly detect ecosystem changes over large-scales.  

While satellite imagery can be valuable for estimating the extent of large colonies of seabirds, 

drones are currently better suited to collecting higher spatial resolution data needed for 

monitoring the trajectories of these populations (Borowicz et al. 2018). The sub-centimetre 

image resolution that can be achieved with drones allows individual birds that can be seen 

                                                 
5 Prepared for submission to Nature Ecology and Evolution (brief communication format) 
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from above to be readily delineated. Drone-facilitated monitoring also results in accurate 

abundance estimates which exceed those achieved using traditional ground-based methods 

(Hodgson et al. 2016; Hodgson et al. 2018). It also overcomes many of the difficulties of 

sampling hard to access sites and is likely to mitigate the disturbance impacts that can result 

from on-ground monitoring (Hodgson & Koh 2016; Borrelle & Fletcher 2017). Despite these 

benefits, drone-facilitated population monitoring of these sentinel species is not yet fully 

realised. Research in recent years has improved each part of the process, from data collection 

to analysis. What is lacking is a robust demonstration of the approach, with intra- and inter-

seasonal and site replication. Such an example is needed to better convey the benefits of this 

remote sensing technique and facilitate broader uptake by practitioners.  

Here, we validate drone-facilitated population monitoring for colonial birds. We used a small, 

affordable multirotor drone to fly autonomous missions to capture overlapping digital 

photographs of breeding sites. Our primary objective was to develop a transferable process to 

generate abundance estimates from the imagery with minimal user-input. Additionally, we 

sought to generate positional information for each bird of sufficient relative accuracy across 

the surveys to infer which birds made a breeding attempt.  

We monitored a range of small to large colonial bird species over time. Drone-derived 

photographs of each survey (n = 46) were processed with a batch script (Figure S4.2) using a 

photogrammetry technique called ‘structure from motion’. For each survey, this process 

automatically reconstructed the environment using 3-dimensional point cloud that allowed 

the photographs to mosaicked into a single image that was free of distortion. These 

orthomosaics were co-registered with high precision using natural features (n = 4 – 8), which 

facilitated spatiotemporal analyses as each mosaic was located in the same, relative position 

in space. Repeated surveys were conducted at a tern (n = 11), cormorant (n = 4) and pelican 

(n = 31) breeding site. The suite of species provided variation in bird size (0.28 – 6.8 kg), 

nest-density (0.32 – 0.93 m mean nearest-neighbour distance) and habitat (Figure 4.1). The 

approach was successful for all three species, demonstrating it generalises across colonial 

birds and the different habitats in which they breed.  

To investigate reproducibility of the survey technique and spatial accuracy over time, we 

focused on one of the species (Australian pelican, Pelecanus conspicillatus). An island in 

South Australia on which pelicans consistently breed was regularly sampled from the 

adjacent shore year-round, and at higher frequency during the breeding season (n = 31 

surveys over 29 months). Pelicans were present for the majority of the surveys (68%) and 

abundance during each breeding season peaked in October. However, maximum abundance 

reduced considerably over the three breeding seasons (2017 = 3,953 individuals, 2019 = 305 

individuals; Figure S4.1). This was reflected in the number of chicks detected on the island, 

with abundance peaking in December in each year (Figure S4.1). 
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We also developed a technique to use drone-derived imagery to infer the traditionally 

ground-collected parameter of breeding effort. Breeding attempts were defined as adults 

detected in the same location (< 40 cm) in consecutive surveys. Using data from the first two 

seasons, we found breeding effort decreased by 41.8% (Figure 4.2). We observed that colony 

sites between the two years rarely overlapped and also that vegetation growth patterns appear 

to be spatiotemporally associated with bird breeding (Figure 4.2). Our results demonstrate 

that drone-facilitated population monitoring of colonial birds that can be seen from above is 

not only robust across seasons and sites, but that the spatiotemporal insights exceed those 

achievable with traditional, ground-based techniques.   

The precise co-registration of imagery across surveys shows this technique can be adapted for 

broad scientific inquiry at user-defined spatial and temporal resolution. Drone-facilitated 

monitoring provides a tremendous opportunity to extend understanding of the more specific 

breeding ecology of colonial birds, through to the environmental drivers influencing their 

demography and phenology. The technique is also suitable for other taxa who are not 

constrained to a nest. For example, imagery of aggregations of pinnipeds (e.g. elephant seals) 

could be processed with an adapted method. Larger buffers around individuals could be used 

to automatically delineate breeding harems and there is also potential for concurrent body 

condition monitoring (Alvarado et al. 2020; Hodgson et al. 2020).  

It is conceivable that this approach could be fully automated if the manual detection of birds 

can be overcome. Researchers are continually refining computer vision and machine learning 

techniques to automate this process (Chabot & Francis 2016; Lyons et al. 2019), and ongoing 

advances in artificial intelligence may soon provide a solution. Once this step is automated 

with sufficient accuracy, the entire processing workflow presented here could be coded into a 

pipeline, benefitting from our co-ordinate derived metrics (e.g. breeding effort). This would 

provide drastic time- and cost-efficiencies.   

 

Flexible monitoring techniques that can be applied to new areas will be vital as the range and 

trends in abundance of species continue to change in response to a changing climate. Birds, 

particularly those that aggregate to breed, are ideal indicators of the health and changes in the 

ecosystems that support them. We contend our technique is suitable for targeted data 

collection of unconcealed colonial birds at a global scale. Current consumer-grade drones can 

capture suitable resolution imagery at low cost. This means authorised local researchers and 

drone operators can work collaboratively to rapidly document the range and abundance of 

species at large scales. This technique could also be used to process other remotely sensed 

data of birds. With access to super-high resolution (e.g. < 10 cm) satellite data, the population 

trends of sentinels species could be quantified on an unprecedented, global scale.  

While remotely collected data will not provide some of the detail possible through ground 

census techniques (Callaghan et al. 2018), the benefits eclipse the limitations for monitoring 
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suitable colonial birds. Anderson and Gaston’s (2013) prediction that drone-derived data 

would revolutionise spatial ecology can now be realised for marine sentinels. Now, more than 

ever before, we need to harness technological solutions to collect and extract the data needed 

to improve our understanding of global ecosystem change and, ultimately, conserve 

biodiversity. 
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4.3 Materials and methods 

4.3.1 Study sites 

Three colonial bird species were monitored in South Australia. Australian pelicans 

(Pelecanus conspicillatus) on North Pelican Island, in the Coorong, (-36.043771, 

139.558515) were sampled routinely (n = 31) between October 2017 and February 2020, 

encapsulating three breeding seasons. A crested tern (Thalasseus bergii) colony that formed 

on the same island was repeatedly surveyed (n = 11) during the 2017-18 summer. 

Black-faced cormorant (Phalacrocorax fuscescens) data was collected (n = 4) on a rock 

outcrop during routine drone-facilitated monitoring of pinnipeds in 2018 at Dangerous Reef, 

Spencer Gulf (-34.816993, 136.206227).   

4.3.2 Drone flight protocol 

A small, off-the-shelf quadcopter drone (Phantom 4 Pro, DJI) was used as a platform to 

collect high resolution, digital imagery of all colonies. Imagery was captured using the 

aircraft’s integrated, gimballed sensor and lens (sensor: CMOS; sensor size: 13.2 x 8.8 mm; 

lens focal length (35 mm equivalent): 24 mm). The aircraft, including remote controller with 

tablet (iPad Mini 2, Apple) and hood, was prepared and calibrated for flight prior to each 

survey.  

For each site, the same automated mission/s were flown each survey to collect digital 

photographs at nadir. The missions were planned, and subsequently piloted, using Ground 

Station Pro (GS Pro, DJI) at a height of 60 m above surface level. This height resulted in an 

intended ground sample distance of 1.6 cm/px. Front and side overlap were both set to 85%, 

with photographs (jpeg format, 5472 x 3648 px) captured using the ‘at equal distance 

interval’ mode which produced an intended flight speed of 4.5 m/s and a capture interval of 

approximately 2 seconds. The aircraft was launched from the shore adjacent the island 

(Coorong) or from a boat (Dangerous Reef). All flights were in accordance with local 

regulations and permits, and flown by the same licensed pilot. 

4.3.3 Image processing 

Digital photographs were grouped by survey. Each group was manually reviewed and 

unsatisfactory images (e.g. overexposed photographs due to light reflecting on water) were 

removed. Datasets were then batch processed using a python script in the photogrammetry 

pipeline software Agisoft Metashape Professional (version 1.5.2, Agisoft, LLC, St. 

Petersburg, Russia)(Appendix Code A1). After initial processing, a selection of the same, 

discrete natural features from each survey were labelled and used as ground control points for 

co-registration of survey products (i.e. to ensure each orthomosaic was in approximately the 

same position in 3-dimensional space). Ground control could be automated if coded targets of 

known positions were placed in the study sites (for Supplementary Information in Hodgson et 
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al. 2020). Then, batch processing was resumed to generate a variety of products at 

medium-high quality (see Appendix Table A2 for processing parameters).  

4.3.4 Detecting individual birds 

Orthomosaics were imported as raster layers into an open-source geographical information 

system application, QGIS (version 3.8.3, QGIS Development Team). After ensuring 

orthomosaics were free of processing artefacts, the abundance of birds for each survey was 

determined using a standardised technique (Hodgson et al. 2016; Hodgson et al. 2018). To do 

this, a 15 m grid was overlayed and individuals were manually detected and digitised using a 

point shapefile (one file per class, per species, per survey). The same person completed all 

annotations by moving cell-by-cell (left-to-right, top-to-bottom) across the island and 

zooming as needed to error-check detections. When necessary, the annotator toggled between 

sequential surveys to differentiate birds from other features (e.g. a rock versus a small, down-

covered chick). Only non-flying individuals above the high-water line were digitised (white 

polygon; Figure 4.2). For pelicans, individuals were categorised into two classes using 

standard features and behavioural characteristics: 

 Adult: individuals of mature size in adult plumage. This class included courting birds 

(which, for pelicans, could often be differentiated by their gular pouch colouring and 

‘pairing’ behaviour), incubating individuals which were at a consistent density and 

adult birds of unknown breeding status. Dead birds were excluded.  

 Chick: this class ranged from small, down-covered chicks to fledglings. As chicks are 

altricial and naked when the hatch, they are restricted to the nest and are covered by 

their parents until they can independently thermoregulate. The period chicks are 

restricted to the nest typically lasts for 10 days (Johnston 2016). Additionally, given 

pelicans usually lay multiple eggs but ultimately raise a maximum of one to fledging, 

dead chicks were not digitised. 

Shapefiles were exported to provide a total count of each class per survey.  

4.3.5 Automating the estimation of breeding effort 

When pelicans were breeding, surveys were completed at a frequency less than their 

incubation period. This meant there were multiple opportunities to image a given breeding 

attempt, which has a duration greater than the incubation period given at least one bird is 

present in that location for nest preparation and hatchling incubation if the attempt is 

successful. Breeding effort (nests) were defined as an adult bird in the same position in two 

or more consecutive surveys. To automate this classification, a series of steps were completed 

using a processing model (Figure S4.2). The script took all shapefiles of adult detections (e.g. 

12) during one breeding period (< 12 months) as inputs. These were merged into a single 

layer reprojected in the appropriate coordinate system, with every point then buffered by 0.2 
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m. This value was selected by trial and error to encapsulate variability in: bird position on the 

nest, the position of the detection on the bird and the co-registration of the orthomosaics. 

Resulting vectors that were overlaying were dissolved and separated into individual parts 

(yellow polygons; Figure 4.1A). Then, by iterating through the input shapefiles, the 

individual bird detections (points) were added to the ‘parts’ that had been created (points in 

the insets; Figure 4.1A). This resulted in birds that had been detected within 0.2 m through 

the sampling period being grouped together as a ‘nest’. Conveniently, this meant any partners 

resting next to the incubating bird were ‘absorbed’ into that nest. A centroid was generated 

for each group to create a new point shapefile and metadata (i.e. bird presence/absence for 

each nest across time points) written into the attribute table. To remove any instances where 

birds in the same position in non-consecutive surveys had been falsely deemed a ‘nest’, the 

attribute data was processed using an R script which calculated the length of time (days) each 

‘nest’ persisted in consecutive surveys (using the greatest length in the unlikely case of a nest 

having two periods with consecutive detections) (R Core Team 2018). These cleaned data 

were reimported to QGIS to visualise nests (Figure 4.2).  
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Figure 4.1. Drone-facilitated population monitoring generalises across colonial bird 

species. A – Australian pelican (Pelecanus conspicillatus), a large colonial waterbird species, 

were repeatedly monitored at one site over three breeding seasons. The yellow polygons 

delineate ‘nests’, defined as areas where adult birds that have been detected within 40 cm 

over consecutive surveys. Coloured circles represent the position of detection on each survey, 

which demonstrates the precision of the imagery co-registration. See Figure 4.2.  

B – a black-faced cormorant (Phalacrocorax fuscescens) breeding colony on a rock outcrop. 

These are a medium sized species.  

C – an example of a small seabird species being monitored, the crested tern (Thalasseus 

bergii).   
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Figure 4.2. Drone-facilitated wildlife surveys (n = 25) are spatially accurate over time. 

Breeding effort of Australian pelican (Pelecanus conspicillatus) at a key site over two 

breeding seasons (2017-18 = red circles, 2018-19 = blue squares). Drone-derived geo-located 

nests (2017-18 = 3,965; 2018-19 = 2,308) are defined as point locations where an adult bird 

was present (within 0.2 m) in two or more consecutive surveys. Colour intensity of symbols 

represents nesting duration (i.e. darker shades = nest occupied for more consecutive surveys). 

The orthomosaic displayed is of the same survey (T16, September 2018). A – the extent of 

breeding at the site. Detections were constrained within the island perimeter (white polygon). 

B – colony locations in opposing years depicting pelican nest-site choice and vegetation 
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response to nesting impacts. C – examples of the technique detecting two nests with partner 

birds present, and one bird assumed not to have made a breeding attempt at that location (i.e. 

the unmarked birds).   
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Appendix Table A4.1. Agisoft Metashape processing parameters. Chosen parameters for 

initial (prior to co-registration) and final batch processing of imagery.  

Parameters Processing parameters 

Initial stage Final stage 

Point cloud – alignment   

   Accuracy Highest Highest 

   Generic preselection Yes Yes 

   Reference preselection No No 

   Key point limit 40,000 40,000 

   Tie point limit 4,000 4,000 

   Adaptive camera model fitting Yes Yes 

Dense point cloud   

   Depth map quality High Ultra high 

   Depth map filtering mode Mild Mild 

Model – reconstruction   

   Surface type Height field Height field 

   Source data Dense cloud Dense cloud 

   Interpolation Enabled Enabled 

   Strict volumetric masks No No 

Texturing   

   Blending mode Mosaic Mosaic 

   Enable hole filling Yes Yes 

   Enable ghosting filter Yes Yes 

DEM   

   Source data Dense cloud Dense cloud 

   Interpolation Enabled Enabled 

Orthomosaic   

   Blending mode Mosaic Mosaic 

   Surface DEM DEM 

   Enable hole filling Yes Yes 
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Appendix Code A4.1. Agisoft Metashape processing script  

import os 

import Metashape 

 

#path where images are stored 

main_path = r"D:\Data"  # Alter this as needed 

 

#path where the scalebars.csv file is stored 

#scalebar_path = r"D:\Data\Scalebars\scalebars.csv" 

 

paths = os.listdir(main_path) 

 

lstpaths = [os.path.join(main_path, x) for x in paths] 

 

print(lstpaths) 

 

basedir, imagedir = os.path.split(main_path) 

print(basedir) 

 

if not os.path.exists(basedir + r"\Projects"): 

    os.makedirs(basedir + r'\Projects') 

 

if not os.path.exists(basedir + r"\Exports"): 

    os.makedirs(basedir + r"\Exports") 

 

def process(input_path): 

 

    print(input_path) 

    project_name = os.path.basename(input_path) 

    print(project_name) 

    project_path = basedir + r"\Projects\\" + os.path.basename(os.path.normpath(input_path)) 

    global doc 

    doc = Metashape.app.document 

    doc.save(project_path + "_project.psx") 

 

    #app = QtGui.QApplication.instance() 

    #parent = app.activeWindow() 

 

    #path to photos 

    path_photos = input_path 

    path_export = basedir + r"\Exports\\" + os.path.basename(os.path.normpath(input_path)) 

    #print(path_export) diagnostic 

 

 #####################################################################

#################################### 

 

    #processing parameters 

    accuracy = Metashape.Accuracy.HighAccuracy  #align photos accuracy 

    #preselection = Metashape.Preselection.GenericPreselection 
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    keypoints = 40000 #align photos key point limit 

    tiepoints = 4000 #align photos tie point limit 

    source = Metashape.DataSource.DenseCloudData #build mesh source 

    surface = Metashape.SurfaceType.HeightField #build mesh surface type 

    quality = Metashape.Quality.HighQuality #build dense cloud quality 

    filtering = Metashape.FilterMode.MildFiltering #depth filtering 

    interpolation = Metashape.Interpolation.EnabledInterpolation #build mesh interpolation 

    face_num = Metashape.FaceCount.HighFaceCount #build mesh polygon count 

    mapping = Metashape.MappingMode.AdaptiveOrthophotoMapping #build texture 

mapping 

    surface1 = Metashape.DataSource.ElevationData #build ortho surface type 

    pointformat = Metashape.PointsFormat.PointsFormatLAZ 

    rasterformat = Metashape.RasterFormat.RasterFormatTiles 

    tiff_compression = Metashape.TiffCompression.TiffCompressionNone 

    #cref = Metashape.CoordinateSystem 

    #projection = Metashape.CoordinateSystem("EPSG::4326") 

    #atlas_size = 8192 

    blending = Metashape.BlendingMode.MosaicBlending #blending mode 

    color_corr = False 

    #elevation_data = Metashape. 

 

 #####################################################################

#################################### 

 

    #LOAD IMAGES 

  

    print("Script started") 

 

    #remove existing chunk 

    chunk = doc.chunk 

    doc.remove(chunk) 

    #creating new chunk 

    doc.addChunk() 

    chunk = doc.chunks[-1] 

    chunk.label = input_path 

    #chunk.crs = Metashape.CoordinateSystem("EPSG::4326") 

 

 #camera.label = camera.path.rsplit("/",1)[1] 

 

    #loading images 

    image_list = os.listdir(path_photos) 

    photo_list = list() 

    for photo in image_list: 

        if ("jpg" or "jpeg" or "JPG" or "JPEG") in photo.lower(): 

            photo_list.append(path_photos + "\\" + photo) 

 

    chunk.addPhotos(photo_list) 

    chunk.addSensor() 

    doc.save(chunks = [doc.chunk]) 

    sensor = chunk.addSensor() 
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 #####################################################################

#################################### 

 

 #CALCULATE AND OUTPUT IMAGE QUALITY 

    chunk.estimateImageQuality() 

 

    file = open(path_export + "_Cameras.txt", "wt") 

    for camera in chunk.cameras: 

        if "Image/Quality" in camera.meta.keys(): 

            file.write(path_export + ", " + project_name + ", " + camera.label + ", " + 

camera.meta["Image/Quality"]+ "\n") 

        else: 

            file.write("There are no camera quality values to export - why not?") 

    file.close() 

 

    

###########################################################################

############################## 

 

 #ALIGN PHOTOS 

    #align photos 

    chunk.matchPhotos(accuracy = accuracy, generic_preselection = True, 

reference_preselection = False, filter_mask = False, keypoint_limit = keypoints, 

tiepoint_limit = tiepoints) 

    chunk.alignCameras(adaptive_fitting = True) 

 

    

###########################################################################

############################## 

 

 ##COREGISTER HERE IF NEEDED 

  

 #####################################################################

#################################### 

 

 #BUILD PRODUCTS AND EXPORT 

 

    #building dense cloud 

    Metashape.app.gpu_mask = 1  #GPU devices binary mask 

    Metashape.app.cpu_enable = True 

    chunk.buildDepthMaps(quality = quality, filter = filtering) 

    chunk.buildDenseCloud(point_colors = True) 

 

    doc.save(chunks = [doc.chunk]) 

 

 #building mesh 

    chunk.buildModel(surface = surface, source = source, interpolation = interpolation, 

face_count = face_num) 
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    #build texture 

    chunk.buildUV(mapping = mapping, count = 1) 

    chunk.buildTexture(blending = blending) 

 

    doc.save(chunks = [doc.chunk]) 

 

 #build DEM 

    chunk.buildDem(source = source, interpolation = interpolation) 

 

    #Build Orthomosaic 

    chunk.buildOrthomosaic(surface = surface1, blending = blending, fill_holes = True) 

 

    doc.save(chunks = [doc.chunk]) 

 

    Metashape.app.update() 

 

 #####################################################################

#################################### 

 

    #EXPORT PRODUCTS 

 

    chunk.exportPoints(path_export + ".laz", source = source, format = pointformat, colors = 

True, projection = projection) 

    chunk.exportOrthomosaic(path_export + "_Ortho.tif", format = rasterformat, 

tiff_compression = tiff_compression) 

    chunk.exportDem(path_export + "_DEM.tif", format = rasterformat) 

    chunk.exportReport(path_export + "_Report.pdf", title = project_name) 

 

    doc.save(chunks = [doc.chunk]) 

 

    print("Script finished") 

 

    #Metashape.app.addMenuItem("Process #", process) 

 

 

for path in lstpaths: 

    process(path) 

 

print('Congratulations, all projects have finished! The script is complete') 
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Figure S4.1. Estimated abundance from drone-facilitated population monitoring of 

Australia pelican (Pelecanus conspicillatus) on North Pelican Island, South Australia. 

Individuals (adults = orange, chicks = grey) were detected in orthomosaics using repeated 

surveys (n = 31) over three breeding seasons.   
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Figure S4.2. Geographic Information System (GIS) processing model used to automate 

the estimation of breeding effort.  
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5 Rapid condition monitoring of an endangered 

marine vertebrate using precise, non-invasive 

morphometrics7 

 

5.1 Abstract 

Understanding causes of population change is critical for conservation. Quantifying them can be 

difficult, especially for hard to sample animals like marine vertebrates (e.g. pinnipeds). One 

solution is to investigate spatiotemporal differences in a species’ body condition by measuring 

body size and mass. Collecting traditional morphological measurements is risky and labour 

intensive, making less invasive and more efficient techniques desirable. Using Australian sea 

lions (Neophoca cinerea) of known size and mass as a case study, we tested the suitability of 

using drone-derived photogrammetry to estimate morphological measurements and assess body 

condition. Drone-derived measurements were precise and without bias. Animal mass was highly 

correlated with the 2-dimensional and 3-dimensional measurements of simplified area and 

volume, explaining > 77% and > 84% (all P < 0.01) of the variation in mass, depending on the 

age-sex class. The juvenile class exhibited the strongest associations (both 2D and 3D R2 > 0.99). 

Using each measurement as a proxy for mass, we calculated body condition indices for each class 

by standardising the variables by animal length. Photogrammetric indices ranked individuals 

comparably to those generated from ground-collected data (rs = 0.77 – 1, depending on age-sex 

class). Our technique provides a workflow for the non-invasive collection of morphometric 

data to quantify animal condition, which is transferrable to other pinniped species with 

species-specific calibration. It will also facilitate the efficient collection of morphometric data 

of vertebrates from remotely sensed imagery.  

                                                 
7 Hodgson, J.C., Holman, D., Terauds, A., Koh, L.P. & Goldsworthy, S.D. (2020) Rapid condition monitoring of an 

endangered marine vertebrate using precise, non-invasive morphometrics. Biological Conservation, 242, 108402. 

https://doi.org/10.1016/j.biocon.2019.108402 
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5.2 Introduction 

Wildlife are threatened by anthropogenic impacts. Human activities have changed the global 

climate and biodiversity at unprecedented rates (Steffen et al. 2006). Analyses of time-series 

species data indicate that the animal extinction rate in the last century is up to 100 times 

higher than the background rate (Ceballos et al. 2015), and possibly even higher (Pimm et al. 

2014). Estimates indicate that a sixth mass extinction is already underway (Ceballos, Ehrlich 

& Dirzo 2017), reinforcing the need for intensified conservation efforts to reduce the rate of 

biodiversity loss.  

While measuring spatial and temporal change at the community level (e.g. species richness) 

is important, understanding the impact of threats at the population level is critical to 

mitigating extinctions. For example, detecting changes in abundance, and quantifying 

distribution and reproductive success over time are fundamental to effective conservation. 

However, estimating absolute values (e.g. absolute abundance) is often difficult and cost 

prohibitive where conservation funding is limited (Waldron et al. 2013). In many cases, 

relative measurements (e.g. an index of abundance) that are statistically robust and cost 

effective can be employed (e.g. Hopkins & Kennedy 2004). Such metrics provide the 

opportunity to detect spatial and temporal variations at the population scale, which can be 

used to better understand the mechanisms underlying change. In the case of population 

trajectories, understanding the underlying causes is important for informed conservation 

management (Krebs 1991; Keith et al. 2015).  

Body condition can be used to investigate drivers of population change. Although 

terminology and definitions vary, body condition indices (BCIs) have been used by ecologists 

as a surrogate for fitness or fitness-related traits (Stevenson & Woods 2006). Specifically, 

many BCIs seek to non-destructively estimate the nutritional state of an animal (i.e. relative 

fat reserve), based on the assumption that this is a likely indicator of factors such as past 

foraging success and ability to cope with environmental pressures, which may ultimately 

impact fitness (Jakob, Marshall & Uetz 1996). Generally, BCIs use a measure of body mass 

standardised by a linear measure of body size to help differentiate individuals of the same 

length but different masses. Two main techniques for calculating a BCI are: a simple ‘ratio 

index’ (e.g. body mass divided by length) or a ‘residual index’ (i.e. body mass regressed on 

body size after appropriate transformations) where the residual distances of individual points 

from the regression line serve as the estimators of condition (Jakob, Marshall & Uetz 1996; 

Schulte-Hostedde et al. 2005). While some limitations of BCIs have been identified (Green 

2001; Peig & Green 2010; Cox, Calsbeek & Blanckenhorn 2015; Wilder, Raubenheimer & 

Simpson 2016), when implemented appropriately they provide a useful metric for rapidly 

investigating the health of a population (e.g. Bradshaw et al. 2000). This may be especially 

valuable for monitoring indicator species (Siddig et al. 2016; Hazen et al. 2019), such as 

many marine mammals, as geographical variation in condition may reflect regional variation 
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in the health of the ecosystems that support them (Zacharias & Roff 2001). Collecting 

morphometric data that underpin BCIs of marine mammals is challenging, as they are often 

highly mobile, have large ranges and spend limited or no time ashore. Sampling can also 

require complex, risky techniques (e.g. anaesthesia). For these reasons, time and 

cost-efficient data collection techniques that mitigate the risks of invasive sampling are 

desirable. 

Photogrammetry, the science of making measurements through the use of photographs (Baker 

1960), has been used to estimate a variety of morphological measurements in mammals 

(Postma et al. 2015). Once calibrated, this technique can remove the need for animal 

handling, reduce disturbance and provide field efficiency, resulting in greater sample sizes. 

The technique has been used for marine vertebrates that can be observed at the surface, such 

as cetaceans (Cheney et al. 2018; Noren et al. 2019), and taxa that congregate on land to 

breed or rest, including pinnipeds (Sweeney et al. 2015). Techniques that provide scale to 

ground-acquired photographs, such as placing an object of known size near to the animal, 

have been used to estimate the size and mass of a variety of seal species (Haley, Deutsch & 

Leboeue 1991; Bell, Hindell & Burton 1997; Ireland et al. 2006; McFadden, Worthy & 

Lacher 2006; Beltran et al. 2018). Scaling in single-photograph studies has also been 

achieved by measuring the distance between the sensor and the focal individual with a laser 

distance metre (Meise et al. 2014). Multiple ground-acquired photographs captured either 

synchronously (Steller sea lions (Eumetopias jubatus);Waite et al. 2007) or sequentially 

(southern elephant seals (Mirounga leonina); de Bruyn et al. 2009) have been used to create 

three-dimensional reconstructions of pinnipeds. These techniques have overcome some of the 

constraints of single-photograph approaches, which typically require specific animal postures 

and camera orientations.  

Recent advances in drone (also known as remotely piloted aircraft, RPA) technology have 

provided researchers with a powerful tool for robust, marine mammal photogrammetry 

(Joyce et al. 2019). Compared to remote sensing instruments mounted to spacecraft and 

conventional aircraft, drones are well suited to collecting fine spatial resolution data needed 

for morphometric analyses (Johnston 2019). For example, single images have been used to 

measure whales (Durban et al. 2015; Christiansen et al. 2019; Gray et al. 2019), provide 

estimates of the mother-calf energy transfer in southern right whales (Eubalaena australis; 

Christiansen et al. 2018), and predict the mass of adult female leopard seals (Hydrurga 

leptonyx; Krause et al. 2017). Allan et al. (2019) used mosaicked, geo-referenced imagery 

(i.e. an orthomosaic) to estimate the length and auxiliary girth of Australian fur seals 

(Arctocephalus pusillus doriferus). These recent studies demonstrate the tool’s diverse utility 

for ecological research applications beyond estimating pinniped presence and abundance (e.g. 

Koski et al. 2009; Hodgson, Kelly & Peel 2013; Adame et al. 2017; Johnston et al. 2017; 

McIntosh, Holmberg & Dann 2018). However, as the accuracy of drone-derived 
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photogrammetry has only been directly tested for one age-sex class of a single species of 

pinniped (Krause et al. 2017), the technique requires broader validation.  

We investigated the ability of using drone-acquired imagery and photogrammetry to quantify 

the morphology and condition of the Australian sea lion (ASL; Neophoca cinerea), which is 

classified as endangered by the International Union for the Conservation of Nature (IUCN; 

Goldsworthy 2015). The species is endemic to Australia and breeds primarily on islands off 

the southern and south-western coasts (Gales, Shaughnessy & Dennis 1994; Shaughnessy et 

al. 2011). Sealing in the 18th and early 19th centuries by European colonists reduced 

distribution and population size to an unknown extent (Ling 1999). Although now protected, 

the cumulative impact of localised threats such as bycatch from demersal gillnet fisheries and 

pollution, as well as global-scale threats such as entanglement in marine debris and impacts 

related to climate-change, ASL in South Australia have declined by an estimated 78% over 

the past three generations (ca 38 years; Page et al. 2004; Goldsworthy & Page 2007; 

Goldsworthy et al. 2010; Australian Government 2013; Goldsworthy et al. 2015). The 

species’ low abundance, rapid decline, genetically-fragmented range and complex life history 

(e.g. non-annual and temporally asynchronous breeding), mean enhanced understanding is 

needed to inform conservation and management measures. As drone-derived morphometric 

data can be collected non-invasively, a robust and scalable technique can provide time-

critical quantification of animal size across subpopulations without subjecting animals to the 

considerable risks of anaesthesia traditionally required to collect measurements. If this study 

generates accurate morphometric data, the techniques outlined could be used to investigate 

spatial and temporal variations in body condition across the ASL range to better inform 

conservation and management. 

Using ASL individuals of known size and mass, we compared high resolution aerial 

photogrammetric and ground measurements to: 1) quantify the variability of 2-dimensional 

(2D) measurements in post-processed, drone-acquired imagery, 2) quantify biases in 

measurements of each technique, and 3) build and evaluate models to predict animal mass 

using straight-line distances and area measured from orthomosaics, as well as the 

3-dimensional (3D) measurement of volume determined from digital elevation models 

(DEMs). Based on our findings, we contrast BCIs developed from each of the datasets 

(ground, 2D and 3D measurements) and discuss its utility for providing a relative index of 

body condition in otariid seals, as well as the applicability for this approach to provide 

accurate morphometric information for pinnipeds in general.  
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5.3 Materials and methods 

5.3.1 Study site 

Fieldwork was completed over six days in April 2019 on the north coast of Olive Island, 

South Australia (32.72°S, 133.97°E) at the end of the ASL breeding season. Research was 

conducted in accordance with wildlife research (Department for Environment and Water: 

A2468-20) and animal ethics (The University of Adelaide and Primary Industries and 

Regions South Australia Animal Ethics Committees: S-2018-062 and 32-12 respectively) 

permits.  

5.3.2 Ground capture and measurement protocol 

We selected focal individuals that were on or near flat terrain and in a relaxed state. To 

minimise disturbance to surrounding animals, we targeted individuals that were isolated or in 

areas of low ASL density. Juveniles were captured using a custom hoop net. Adults were 

immobilised using Zoletil® (~1.3 mg/kg, range 0.8 to 1.6, Virbac, Sydney, Australia), 

administered intra-muscularly using remote syringe darts (1.5 ml capacity) fired from a dart 

gun (MK24c, Paxarms, Cheviot, New Zealand). Dosages were determined using a visual 

weight estimation of each individual prior to darting. Animals were maintained under gas 

anaesthesia during data collection using Isoflurane® (Veterinary Companies of Australia, 

Artarmon, Australia), administered via a purpose-built gas anaesthetic machine with a 

Cyprane Tec III vaporiser (Advanced Anaesthetic Specialists, Sydney, Australia). 

Various morphometric measurements were collected while each animal was anaesthetised 

(Table 5.1). Prior to taking measurements, animals were placed in a standard and natural 

position (i.e. prone position, ensuring the animal was not stretched along the longitudinal 

axis, with fore flippers outstretched). The dorsal standard length (GSL; linear distance from 

nose tip to end of tail) was measured using a caliper (custom made using ‘T-track’ and Lexan 

scales; Incra, Dallas, USA), while a tape was used to measure the curvilinear distance 

between the same points (GCL). Width (GW1 – GW4) and girth (GG1 – GG4) were 

measured at 20% intervals along the GSL and also on the head at the base of the ears (GWE, 

GGE) using calipers (60 cm anthropometer; Cescorf, Porto Alegre, Brazil) and a tape 

measure respectively. Auxiliary girth (GAG) was also recorded. Mass (GMA) was measured 

using a 300 kg x 0.1 kg digital hanging scale (WS603, Wedderburn, Australia). The majority 

of animals were weighed in a stretcher suspended from a pole held at shoulder height by two 

people. Large males were placed in a cargo net and lifted using a block and tackle system 

attached to a safety tripod (TM-9, Zero, Christchurch, New Zealand). To aid monitoring 

recovery, and to ensure animals were not recaptured, a temporary identification number was 

placed on the centre of the back using bleach or permanent marker. Tags were also placed on 

the trailing edge of both fore flippers. Finally, the animal was placed in the prone position 
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and orientated toward the sun when possible, with fore flippers outstretched. Recovery was 

monitored from nearby. 

5.3.3 Drone flight protocol 

A quadcopter drone was used as a platform to collect high resolution, digital imagery (Inspire 

2, DJI, Shenzhen, China). Imagery contained objects of known size for scaling (see following 

paragraphs) and was captured using an integrated, gimballed sensor (Zenmuse X7, DJI – 

sensor: CMOS (Super 35), sensor size: 23.5 x 15.7 mm) fitted with a standard range, prime 

lens (DL 50 mm F2.8 LS ASPH, DJI) angled at nadir. The aircraft, including remote 

controller with tablet (iPad Mini 2, Apple, California, USA) and hood, was prepared for flight 

prior to each animal capture, with calibration completed as necessary. 

Upon the completion of the ground protocol for each animal, the aircraft was launched away 

from the focal individual (> 75 m) at a site of the same elevation. After launching, the drone 

was manually piloted to 20 m above surface level and then positioned directly above the 

individual using the sensor’s live feed. A small number of photographs (jpeg and RAW 

format) were immediately captured at 20 m as a precaution in case the animal recovered 

before subsequent mapping missions were completed. An automated mission was then 

planned in situ using Ground Station Pro (GS Pro, DJI) to map the animal and its immediate 

surroundings by creating a region of interest (~ 15 m square) centred on the animal. Front and 

side overlap were set to 80% and 60% respectively, with photographs (jpeg format, 6016 x 

4008 px) captured using the ‘hover and capture at point’ mode. Parameters, including survey 

height and overlap, were selected to optimise drone sampling. Upon mission completion, it 

was repeated at a perpendicular course angle. All missions (mean flight time = 9 ± 1 mins) 

were in accordance with local regulations and flown by the same licensed pilot. As ASL were 

recovering from anaesthesia during drone flights, behavioural response data were not 

collected (Hodgson & Koh 2016).  

Prior to each flight, custom calibration boards (n = 3-5) were positioned approximately 1-5 m 

from the animal. Boards were placed in level locations as close as possible to the elevation on 

which the animal was lying. Each board contained a unique pair of coded targets (diameter: 

22 cm) to provide scale references for image processing (Appendix 5.2).  

5.3.4 Image processing and measurement protocol 

Digital photographs were grouped by animal. Each group was manually reviewed and 

unsatisfactory images (e.g. overexposed photographs) were removed. Data were then batch 

processed using a Python script in the photogrammetry pipeline software, Agisoft Metashape 

Professional (version 1.5.2, Agisoft LLC, St. Petersburg, Russia). In the initial processing, the 

coded targets on the calibration boards were automatically detected and scale bars were 

created using the known distance between target pairs (0.5515 m) before a variety of outputs 
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were produced at medium-high quality (Table A5.1). Adding scale bars enhanced the 

dimensional accuracy of the projects, ensuring later-collected measurements were absolute. 

To standardise the spatial extent of the outputs and minimise processing, a marker was 

manually placed on the spine of each animal at the GW3 position. A variation of the batch 

script was then executed which duplicated the initial processing (i.e. the ‘chunk’), resized the 

horizontal plane of the bounding box from encapsulating the entire project to a 7 m square 

centred on the manually inserted marker and subsequently completed all steps as per the 

initial script but at maximum quality (Table A5.1). The mean ground sample distance (GSD 

or the distance between adjacent pixel centres on the ground) for the orthomosaics and DEMs 

was 1.6 ± 0.11 mm. 

Using the shape tool, the perimeter of each animal was manually delineated (mean vertices = 

99.1 ± 10.1) in the DEM. Shapes were reviewed in the corresponding model and 

orthomosaic, with individual vertices moved as necessary. The orthomosaics were then 

updated by assigning only the highest ranked photograph for each shape to ensure there was 

minimal photograph mosaicking of the animal. A batch script was used to export the final .tif 

orthomosaics including world files for georeferencing.  

To make 2D measurements of animals, the orthomosaics were imported into Autodesk 

AutoCAD 2019 (version P.46.0.0, Autodesk Inc, California, USA) and georeferenced using 

the LISP utility, GeoRefImg (Figure 5.1A). Independent observers (n = 10) then measured 

standard length (PSL) by drawing a straight line from the nose tip to the end of the tail. A 

subset of observers’ lengths (n = 3) were segmented into 5% intervals by automatically 

inserting nodes. In Ortho mode, observers then drew perpendicular width lines (PW01 – 

PW16) at each node excluding those positioned in line with the fore flippers (45, 50 and 55% 

increments). The endpoints of all lines were joined using a polyline; the polyline length 

provided a simplified perimeter (PSP), while the area within the polyline provided a 

standardised simplified area (PSA). All measurements were extracted via a Data Extraction 

Table. Three-dimensional measurements were extracted within Metashape by selecting the 

shape delineating the perimeter of each animal in the DEM (Figure 5.1B) and using the 

‘measure shape’ tool. The planar perimeter (PPE) and area (PAR) as well as the total volume 

(PVO; using the ‘best fit plane’) were recorded. For simplicity, these three measurements 

were grouped as 3D as they were all extracted from an output containing 3D information. See 

Table 5.1 for an overview of all measurements. 

To investigate the need to have known scale when sampling free-ranging animals, the 

processing steps were repeated without detecting the coded targets. The unscaled 

orthomosaics and DEMs were used to generate a second dataset (non-scaled dataset) of the 

key morphometric measurements (i.e. relative measurements of PSL, PSA and PVO).  
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5.3.5 Statistical methods 

We were interested in the accuracy of the drone approach, so we postulated four key 

questions. The aim of the first two was to quantify (1) variability and (2) bias. We then 

developed and assessed models to (3) estimate mass and (4) quantify differences in BCI 

animal ranking using ground, 2D and 3D data, as well as the influence of using unscaled 

imagery.  

1. Photogrammetric variability: how similar are photogrammetric measurements made 

by independent, naïve observers? We compared the precision of our photogrammetric 

observers using measurements of PSL (n = 10 per animal) by fitting a linear 

mixed-effects model with Animal and Observer as random effects using lme4 (Bates 

et al. 2015). Given that the vast majority of the random variation in PSL was due to 

among-animal variability, in order to identify the relative magnitudes of the other 

random effect of interest (i.e. Observer), we fitted a second linear mixed-effects 

model which we conditioned on the sampled set of animals by fitting Animal as a 

fixed effect. Then we assessed observer bias by testing the level of repeatability (i.e. 

the intra-class correlation coefficient, ICC) of Observers to measure PSL (Nakagawa 

& Schielzeth 2010). We estimated confidence intervals (95%) and standard errors by 

completing parametric bootstrapping (n = 1000) using the rptR package (Stoffel, 

Nakagawa & Schielzeth 2017).  

2. Bias between techniques: how similar were the 2D photogrammetric observations 

compared to the ground measurement? We used measures of standard length to test 

this as they were common to both techniques. Given the repeatability of individuals to 

measure PSL, we used the multi-observer mean PSL for each animal. However, as we 

only had one ground measurement, which is unlikely to be free of error, we did not 

assume it to be ‘true’ (Sokal 2012). Accordingly, we completed a standardised major 

axis estimation (SMA, or Model II regression) between mean PSL and GSL using the 

smatr package (Warton et al. 2012). This procedure was chosen as it did not assign 

dependence to a given variable and because we were interested in summarising the 

relationship between the two variables rather than predicting Y from X (Warton et al. 

2006; Sokal 2012). In this way, as is common in morphometric studies, we estimated 

the line best describing the bivariate scatter of the two variables. We evaluated the 

slope of the SMA against a null hypothesis of isometry (i.e. a slope of 1) by using a 

slope test (Warton et al. 2006). 

3. Mass estimation: how strong is the relationship between GMA and a) 2D and b) 3D 

photogrammetic measurements (see Table 5.1), such that a given candidate variable 

could be used as a proxy for (i.e. estimate) GMA? Given our interest in summarising 

the relationship between candidate photogrammetric variables and GMA, and that the 

same conditions applied in terms of measurement error and variable dependence, we 

again completed SMA estimation using the smatr package (Warton et al. 2012). GMA 
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ranged 229.5 kg across animals but less within age-sex classes, particularly within 

adult females (Table 5.2), so we fitted models for each class separately. Although 

slope tests found no difference between many of the age-sex classes, we consider the 

grouping to be necessary for interpreting results given the biological differences 

between the age-sex classes. The juvenile class included both sexes, while sub-adult 

males (n = 2) were pooled with adult males. Measurements were log-transformed as 

necessary. Models were evaluated based on the strength of the association (R2) 

between GMA and candidate variables.  

4. Body condition indices: to what extent are BCIs derived from 2D and 3D 

photogrammetric measurements comparable to indices calculated from 

ground-collected data? Our aim was not to make a direct assessment of the condition 

of the sampled animals nor were we seeking to validate a specific BCI (Hayes, 

Shonkwiler & Speakman 2001). Rather, we wanted to test the suitability of BCIs 

derived solely from photogrammetric measurements compared to those from ground 

measurements. Due to the small sample sizes of each cohort, we present the simplest 

BCI which is a ratio of sizes, namely mass divided by length (i.e. BCI = GMA/GSL). 

For photogrammetric BCIs, we used the best 2D and 3D proxies for GMA (i.e. PSA 

and PVO), divided by PSL. We assumed ranks of condition derived from ground data 

to be the best estimates of condition and so we compared these ranks with those 

derived from photogrammetric data using Spearman's rank correlation coefficient (rs). 

We used this non-parametric approach as each format’s BCI was on a different scale 

and we were interested in the ranking of animals in each cohort per format rather than 

the absolute BCI values. We used the same method to compare the 2D and 3D BCIs 

with those indices computed from the non-scaled dataset.  

All analyses were completed using data from animals with both ground and photogrammetric 

measurements, unless otherwise indicated. The level of significance used for all tests was 

p < 0.05. Confidence intervals were set at 95%. All values are listed as mean ± standard 

deviation (s.d.) unless otherwise indicated. Analyses were carried out in R version 3.5.0 (R 

Core Team 2018).  
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5.4 Results 

Twenty-one free-ranging animals were surveyed over six consecutive days. Weather 

conditions were consistent, with all flights conducted in low winds (< 10 knots) and 

partly-cloudy skies across a spectrum of light conditions. Ground morphometric 

measurements were recorded for all animals (n = 21; Table 5.2), while suitable 

drone-acquired imagery was collected for 20 animals (95.2%).  

5.4.1 Photogrammetric variability 

The mean range in animal PSL was very low (1.19 ± 0.67 cm), particularly given this 

translated to a mean variation of 7.4 pixels (based on the mean GSD). Due to the differences 

in animal length (range: GSL = 109.3-193.1 cm, PSL = 111.3-195.6 cm; Table 5.2), animal 

identity accounted for 99.97% of the observed variation in PSL. After controlling for this 

effect, residual error accounted for the majority of variation in PSL (84.8%, SE = ± 7.9%, CI 

= 66.9% - 97.6%) while observer had a negligible effect (15.2%, SE = ± 7.9%, CI = 2.4% - 

33.1%).  

5.4.2 Bias between techniques 

There was a highly significant, positive, linear relationship between GSL and mean PSL 

(R2 = 0.99; p < 0.001; Figure 2). The estimated regression coefficient (1.02, CI = 0.98-1.07) 

was not significantly different from 1, indicating that measures of length are isometric, which 

suggests that neither technique is biased.  

5.4.3 Mass estimation  

Of the 2D measurements, PSA was most correlated with GMA for each age-sex class 

(R2 = 0.77 – 0.99; Figure 3,Table 3). Within the 3D measurements, PVO was most correlated 

with GMA for each cohort (R2 = 0.83 – 0.99; Figure 5.3,Table 5.3). The strength of the 

correlation was highest in the juvenile cohort, followed by the adult male and then adult 

female age-sex classes for both 2D and 3D datasets (Figure 5.3, Table 5.3). 

5.4.4 Body condition indices 

Photogrammetric-derived BCI ranks of individuals for each age-sex class were comparable to 

BCI ranks derived from ground data (Table 5.4). The 3D-derived index ranks were more 

similar to ground-ranks than those from 2D data (Table 5.4). The juvenile cohort was ranked 

in the same order irrespective of approach, however, the two adult cohorts varied in their 

correlation strength and significance across the approaches. Non-scaled BCI ranks were also 

comparable to those derived from scaled data for both 2D and 3D indices (Table 5.4).  
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5.5 Discussion 

5.5.1 Photogrammetric variability and bias between techniques 

Drone-derived morphological measurements were precise and without bias. Independent 

measurements of PSL exhibited low variability and were highly repeatable, as demonstrated 

by the extremely small proportion of total error attributable to observer. Additionally, across 

all animals, there was no significant bias in either technique, however, larger deviations in 

length were observed among the adult males. These deviations may be explained by 1) the 

time of day when these animals were sampled, 2) the increased height of this age-sex class 

which produced longer shadows and reduced the probability of observers to identify the 

extremities of the animals, and 3) a potential allometric scaling effect whereby small 

differences in the position of larger animals between the two sampling events causes greater 

differences in length compared to smaller-sized animals. To minimise these differences, we 

suggest sampling when shadows are at their minimum (i.e. solar noon), sampling individuals 

who are orientated so that their shadow is adjacent to areas of the body least important for 

measuring (e.g. if measuring PSL is of primary interest, an animal whose sagittal plane is 

perpendicular to the direction of the sun would be optimum), using experienced observers, 

and/or adjusting the orthomosaic (e.g. altering contrast) to increase the likelihood of detecting 

edges of interest. In combination, the high precision and lack of bias in the technique 

demonstrates that the drone sampling and data processing procedures produced orthomoasics 

and DEMs that accurately represented the animals and associated environment.  

In general, photogrammetry reduces several sources of observer error. Unlike ground-based 

measurements, the location of drone-derived measurements can be more effectively 

standardised across animals. For example, width measurements can be automatically located 

at desired increments of PSL and made at exactly perpendicular to PSL (i.e. PW01:PW16). 

On the ground, the repeatability of making these measurements between semilandmarks 

(non-discrete anatomical loci; Zelditch, Swiderski & Sheets 2012) is lower. Also, in the case 

of repeat, independent measurements, observers are utilising identical data, free of animal 

movement and changes in environmental conditions. A related advantage is that drone-

derived measurements can be error-checked – actual measurements can be reviewed to 

interrogate the reason for statistical outliers. Although field restrictions prohibited multiple, 

independent ground measurements in this study, the high precision and high repeatability of 

our drone-derived morphometrics support the conceptual advantages of the technique that 

have been observed for other pinniped species (Krause et al. 2017). 

5.5.2 Mass estimation and condition indices 

Variation in the strength of the relationship between photogrammetric measurements (i.e. 

PSA and PVO) and GMA for age-sex classes could be attributed to several related factors. 

Firstly, there were considerable differences in the size variation among the age-sex classes, 
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with a range of 174.1 kg in adult males compared to just 13.3 kg across adult females. While 

these differences were expected given the sexual dimorphism exhibited by ASL, they resulted 

in some data points being highly influential on model fits. Secondly, the relatively small 

sample sizes per age-sex class (n = 6 – 8) compounded the influence of particular individuals 

on the analyses. Despite these inherent constraints, the consistent relationship between the 

size measurements provides good evidence of a strong relationship, which would possibly 

strengthen with larger sample sizes.  

Given PSA and PVO correlated strongly with GMA, they were used as proxies for GMA to 

calculate separate ratio BCIs of ASL. Similar to the mass estimations, the small sample sizes 

and the spread of individuals within each age-sex class likely resulted in conservative BCI 

comparison estimates. For example, these factors meant some individuals of relatively similar 

size were ranked differently in each BCI, despite only minor differences in actual BCI scores. 

From a population monitoring perspective, subtle differences in BCI ranking are of minor 

interest relative to detecting significant spatiotemporal differences in body condition.  

The suitability of BCI monitoring has been debated in recent years. Using residuals from a 

regression of body mass on a linear measure of body size to calculate a BCI is a common 

method employed in vertebrate studies that has attracted some criticism. Green (2001) argued 

that mass/length residual indices have a suite of underlying statistical assumptions which are 

likely to be violated in some or all studies. However, proponents maintain, through analyses 

of small mammal data and simulations, that with appropriate caution, residual based indices 

are legitimate (Schulte-Hostedde et al. 2005). Another criticism has been that many 

traditional BCIs fail to account for the scaling relationship between different size measures 

(Kotiaho 1999), although an alternate index has been shown to successfully overcome this 

issue (i.e. scaled mass index; Peig & Green 2009; Peig & Green 2010). More broadly, BCIs 

have been criticized for the lack of consensus in the definition of ‘condition’ and the best 

index (Wilder, Raubenheimer & Simpson 2016), the limited quantification of the relationship 

between observed ‘condition’ and fitness (Cox, Calsbeek & Blanckenhorn 2015) and their 

susceptibility to inter-observer bias (Krebs & Singleton 1993). However, when implemented 

and documented appropriately, BCIs can yield useful data without the cost or invasive 

procedures associated with many alternative methods (Wilder, Raubenheimer & Simpson 

2016). 

A benefit of BCIs is that they can be useful for rapid and non-invasive insight at the 

population level. For example, our workflow could be used to complete a non-destructive, 

preliminary assessment of the variation in condition across the ASL range. Given the marked 

variation in trends in abundance among ASL populations across their range (Goldsworthy et 

al. 2015), determining whether there is any geospatial correlation between population trends 

in abundance and BCIs could provide critical insights into how environmental variability is 

mediating anthropogenic impacts across the species range. Photogrammetric-only condition 
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assessments could be completed at key representative colonies with known trends in 

abundance, and with consideration of ecological (e.g. colony size, foraging strategy and 

range), environmental (e.g. likelihood of impacts of threats) and sampling practicality factors. 

Any observed spatial variation in condition, calculated using the most appropriate index 

formula, could be investigated relative to the possible genotypic and environmental drivers 

(e.g. population sub-structure, prey availability, habitat suitability, proximity and risk to 

threatening processes) to inform future conservation and research efforts. Such an assessment 

benefits from its ability to target age-sex classes of interest (e.g. juveniles, who had the 

strongest associations and are not subject to possibly confounding variables of pregnancy and 

the marked breeding season related changes in mass composition present in adult males), and 

the capacity to add additional ground-measurements at any time to increase the robustness of 

mass estimation analyses. In turn, this presents the opportunity to rapidly acquire more 

frequent species level insights, and with considerably lower risk to animals and researchers, 

than by solely collecting on-ground measurements. The insights provided by such an 

assessment would be formative in determining the need and best approach for more detailed 

measures of animal body composition or fitness-related traits (Wilder, Raubenheimer & 

Simpson 2016). 

5.5.3 Considerations for future drone-derived pinniped morphometrics 

Despite 2D and 3D measurements having similar relationships to GMA for each age-sex 

class, consideration should be given to the relative benefits and limitations of each format. As 

expected, our 3D measurement of animal size (PVO) had the highest correlation with mass. 

This indicates that the drone sampling technique (i.e. the total number of images and their 

GSD, which result from the mission parameters, and the sensor and lens specifications and 

their sampling height, respectively) and image processing parameters yielded robust 3D 

models. The quality and resolution of the 3D information is evident from visual examination 

of animals of similar length but with variation in mass (Figure 5.4). However, generating 3D 

data requires subjects to remain stationary, which may not be a practical requirement for 

free-ranging animals. A potential solution to this issue would be to use a swarm of drones 

(e.g. > 5 small multirotor aircraft operating synchronously) that capture photographs 

simultaneously, thereby rendering animal movement inconsequential. Controlled experiments 

could be used to determine the optimum number of drones for this approach. On the other 

hand, while orthomosaic-derived, 2D measurements contain less dimensional information 

than 3D measurements of size, they provide several benefits over single-photograph 

approaches. Such approaches assume that images are sampled at nadir, even in windy 

conditions, and that images are free of distortion. While these assumption may be satisfied in 

some circumstances, the orthorectification process overcomes these strict requirements. 

Additionally, animal movement artefacts can be overcome by selecting just one photograph 

to be used in the orthomosaic for the entire area of the animal. In this way, and similar to 

previous 3D solutions (e.g. de Bruyn et al. 2009), the surrounding area (i.e. stationary 
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surfaces) provides sufficient detail to generate an accurate point cloud which will be used to 

correct any distortions in the photograph selected to express the subject.  

In transitioning to exclusively capturing photogrammetric data of pinnipeds, there are a 

variety of relevant considerations and research opportunities for future studies: 

1. All data in this study were sampled from anaesthetised individuals at a similar time in 

their breeding cycle, with the assumption that an anaesthetised animal is analogous to 

a resting individual exhibiting the same posture. Imagery was sampled at a low height 

(20 m), resulting in a very high GSD. While lower resolution imagery may achieve 

comparable results (Krause et al. 2017), the sampling height could be increased while 

maintaining the GSD by utilising a larger sensor and/or a greater focal length. Flying 

at an increased height is desirable for free-ranging animals as a precaution to avoid 

disturbance, particularly for species where behavioural and physiological response 

data are lacking (Hodgson & Koh 2016). 

2. Although the prone position is a common posture in free-ranging ASL that are resting, 

care should be exercised in extrapolating the results to other postures. The PSA 

measurement process attempts to provide redundancy for posture variation, 

particularly fore flipper orientation, by being unconstrained by animal width in that 

region (i.e. width >40% and <60% of PSL). For concave postures, the technique could 

be modified so that PSL curved with the shape of the spine. In the 3D context, the 

very high correlation between PVO and GMA suggests that animal density is 

relatively constant, indicating that estimates may not be significantly influenced by 

small to moderate variations in body posture (e.g. prone position with fore flippers 

parallel and adjacent to the body rather than outstretched).  

3. Drone sampling was optimised by placing anaesthetised individuals on relatively 

level, rock planes, orientating them in the direction of the sun to minimise shadows 

and avoiding areas with nearby vertical interferences (e.g. another animal, protruding 

rocks). It is assumed that these practices reduced the likelihood of orthomosaic and 

DEM artefacts, thereby increasing the accuracy of photogrammetric data derived from 

these sources. Individuals satisfying these criteria could be selected when sampling in 

free-ranging colonies.  

4. Our results suggest using non-scaled imagery is adequate for BCI monitoring, 

however, if absolute measurements are needed, the use of a scaling technique is 

recommended.  

5. When possible, we recommend collecting ground measurements for species-specific 

calibration. This is likely important for studies that need to summarise the relationship 

between mass and photogrammetric measurements.  

6. Morphometric data sampling can be completed concurrently with colony-level 

abundance monitoring of pinnipeds (McIntosh, Holmberg & Dann 2018; Sorrell et al. 

2019), as well as accurate and precise estimates of other, co-located indicator species 
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such as seabirds (Hodgson et al. 2016; Hodgson et al. 2018). Such broadened surveys 

will provide time and cost efficient data with the potential to provide multi-species 

ecosystem insights.  

5.6 Conclusion 

We have developed a non-invasive, practical technique to make accurate body measurements 

of an otariid seal species. Drone-derived measurements were highly repeatable and not 

dissimilar to traditional, ground-collected data. This means that morphometric data can be 

collected without the risks involved with anaesthetising and handling animals. It also presents 

considerable time and cost efficiencies when imagery can be processed easily and quickly. 

Importantly, both 2D and 3D measurements (PSA and PVO, respectively) were highly 

correlated with ASL mass, particularly for juveniles. We have shown these measurements can 

be used to develop condition indices comparable to those from ground-collected data. While 

these indices should be interpreted carefully, they could be used to make rapid, preliminary 

assessments of the spatial and temporal variation in the condition of this endangered, marine 

indicator species relative to environmental fluctuations. With species-specific calibration, we 

anticipate that our technique will be transferrable to other pinniped species. 
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Table 5.1. Abbreviations of the ground and photogrammetric measurements made for 

each individual. Ground measurements (abbreviations starting with a ‘G’) were made in the 

field, while photogrammetric measurements (abbreviations starting with a ‘P’) were derived 

from orthomosaics (2-dimensional; 2D) and digital elevation models (3-dimensional; 3D). 

The numbers in square parentheses indicate the number of independent measurements per 

animal. 

Measurement (scale) Ground Photogrammetric 

  2D 3D 

Mass (kg) GMA [1] - - 

Standard length (cm) GSL [1] PSL [10] - 

Curvilinear length (cm) GCL [1] - - 

Width at ears (cm) GWE [1] - - 

Girth at ears (cm) GGE [1] - - 

Width at 20% intervals (cm)a GW1 – GW4 [1] - - 

Girth at 20% intervals (cm) GG1 – GG4 [1] - - 

Auxiliary girth (cm) GAG [1] - - 

Width at 5% intervals, 

excluding 45%, 50% and 55% 

(cm)a 

- PW01 – PW16 

[3] 

- 

Simplified area (cm2) - PSA [3] - 

Simplified perimeter (cm) - PSP [3] - 

Perimeter (cm) - - PPE [1] 

Area (cm2) - - PAR [1] 

Volume (cm3) - - PVO [1] 

aGround width interval positions were calculated relative to ground standard length (GSL) 

and photogrammetric intervals were positioned automatically from photogrammetric standard 

length (PSL). Therefore, 20% interval measurements for each individual are not necessarily 

at identical locations (e.g. GW1 versus PW04).   



106 

 

 

Figure 5.1. An example of photogrammetric measurements of an adult female Australian sea lion. Two-dimensional measurements were 

made in geo-referenced orthomosaics (A) and digital elevation models (DEMs; shown with ‘hillshading’ on) were used to calculate 

measurements such as volume (i.e. ‘PVO’; B). Open orange circles (A) depict 5% intervals of photogrammetric standard length (PSL). The 

colour gradient (B) represents height above mean sea level. See Table 1 for descriptions of abbreviated labelled measurements.   
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Table 5.2. Mean ground and photogrammetric measurements (± s.d.) for juvenile and adult Australian sea lions at Olive Island, South 

Australia. Measurement ranges (minimum – maximum) are displayed in square parentheses.  

Age-sex 

class 

Ground Photogrammetric 

n Mass 

(GMA; kg) 

Standard length 

(GSL; cm) 

Curvilinear 

length 

(GCL; cm) 

Auxiliary girth 

(GAG; cm) 

n Simplified area 

(PSA; cm2)a 

Volume (PVO; cm3) 

Juvenile 

(male and 

female) 

6 48.4 ± 13.3 

[32.3 – 66.3] 

124.1 ± 12.7 

[109.3 – 139.6] 

132.9 ± 12.8 

[118.2 – 149.8] 

87.2 ± 8.6  

[73.0 – 96.8] 

6 3,377.8 ± 635.5 

[2,596.7 – 4,279.7] 

51,040 ± 11,972 

[36,214 – 66,963] 

Adult 

female 

8 89.7 ± 4.8 

[84.9 – 98.2] 

158.1 ± 3.2 

[154.3 – 162.4] 

169.2 ± 3.8 

[163.3 – 173.8] 

106.0 ± 3.2 

[102.7 – 110.5] 

8 5,281.0 ± 226.8 

[4,975.3 – 5,621.3] 

95,341 ± 6,098 

[87,577 – 105,072] 

Adult male 7b 164.2 ± 55.4 

[87.7 – 261.8] 

179.1 ± 11.9 

[155.0 – 193.1] 

192.3 ± 13.4 

[165.8 – 207.8] 

128.4 ± 13.7 

[105.2 – 142.9] 

6b 7,036.3 ± 1,163.9 

[5,062.0 – 8,590.3] 

153,065 ± 34,397 

[93,311 – 195,102] 

aCalculated using the mean PSA (n = 3) of each individual.   
bTwo sub-adult males are included in this group.  
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Figure 5.2. Measurement technique bias. Standardised major axis estimation (SMA, or 

Model II regression) of mean photogrammetric standard length (PSL, n=10 measurements; 2-

dimensional) to ground-measured standard length (GSL, n=1 measurement)(R2 0.99 and P < 

0.001). The estimated regression coefficient (1.02, CI = 0.98-1.07) indicated that measures of 

length are isometric. Age-sex classes are indicated by the colours of the data points (see 

legend). 
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Table 5.3. Standardised major axis estimation (SMA, or Model II regression) parameters and results for the models which best 

summarise the relationship between 2-dimensional (simplified area, PSA) and 3-dimensional (volume, PVO) photogrammetric 

measurements and mass (GMA). Models were fitted for each age-sex class.   

Equation Age-sex class n Slope (95% CI) Intercept (95% CI) R2 p 

log(GMA) ~ log(PSA) Juvenile 6 1.49 (1.32 – 1.68) -3.58 (-4.22 – -2.95) 0.992 <0.001 

 Adult female 8 1.23 (0.77 – 1.95) -2.61 (-4.82 – -0.41) 0.766 0.004 

 Adult male 6 1.99 (1.19 – 3.34) -5.48 (-9.60 – -1.37) 0.850 0.009 

log(GMA) ~ log(PVO) Juvenile 6 1.18 (1.13 – 1.23) -3.88 (-4.12 – -3.62) 0.999 <0.001 

 Adult female 8 0.83 (0.56 – 1.23) -2.17 (-3.85 – -0.49) 0.834 0.002 

 Adult male 6 1.38 (0.86 – 2.23) -4.99 (-8.52 – -1.46) 0.874 0.006 
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Figure 5.3. Mass estimation. Standardised major axis estimation (SMA, or Model II regression) for mean photogrammetric simplified area 

(PSA; A) and volume (PVO; B) by animal age-sex class. Parameter estimates and presented in Table 3. Axes are log transformed and displayed 

using true values. Age-sex classes are indicated by the colours of the data points (see legend).   
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Table 5.4. Comparisons of the ranking of individuals by body condition indices (BCI) calculated using ground and photogrammetric 

measurements. Ranks derived from ground-data were compared to 2-dimensional and 3-dimensional ranks using Spearman's rank correlation 

coefficient (rs). Within each photogrammetric type, scaled and non-scaled derived ranks were also compared.  

Age-sex class n Types of BCI data used in rank comparisona 

Ground to  

2D (scaled) 

Ground to  

3D (scaled) 

2D (scaled) to  

2D (non-scaled) 

3D (scaled) to  

3D (non-scaled) 

Juvenile (male 

and female) 

6 rs = 1,  

p = 0.003 

rs = 1,  

p = 0.003 

rs = 1, 

p = 0.003 

rs = 0.943, 

p = 0.017 

Adult female  8 rs = 0.86,  

p = 0.01 

rs = 0.88,  

p = 0.007 

rs = 0.90,  

p = 0.004 

rs = 0.905, 

p = 0.005 

Adult malea 6 rs = 0.77,  

p = 0.1 

rs = 0.94,  

p = 0.02 

rs = 0.829, 

p = 0.058 

rs = 0.943, 

p = 0.017 

aScaled = datasets with scale bars added during processing to give absolute measurements, non-scaled = datasets with no scale bars added during 

processing which resulted in measurements considered to be relative.  

bTwo sub-adult males are included in this class.   
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Figure 5.4. Polygonal meshes (models, in ‘solid’ view mode) of two adult male Australian sea lions constructed using Agisoft Metashape. 

The animals are of similar length (5.7 % difference; A = 193.1 cm, B = 182.4 cm) but vary in their mass (66.3 % difference; A = 261.8 kg, B = 

131.4 kg). The difference in mass is visually noticeable, particularly in the neck, shoulder and pelvic regions. The larger individual has a higher 

body condition index score across all input measurement datasets (i.e. ground and photogrammetric). The white hashed lines represent the 

standard length extremities of the larger individual (A).    
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Appendix Table A5.1. Agisoft Metashape processing parameters. Chosen parameters and 

summary statistics for initial and final batch processing of imagery.  

Parameters Processing parameters 

Initial stage Final stage 

General   

  RMS 0.26 ± 0.07 0.37 ± 0.49 

  Mean coverage (m2) 441.65 ± 60.49 48.37 ± 10.96 

Point cloud – alignment   

   Accuracy Highest Highest 

   Generic preselection Yes Yes 

   Reference preselection No No 

   Key point limit 40,000 40,000 

   Tie point limit 4,000 4,000 

   Adaptive camera model fitting Yes Yes 

Dense point cloud   

   Mean points (x 1,000,000) 49.3 ± 8.6 20.5 ± 3.7 

   Depth map quality High Ultra high 

   Depth map filtering mode Mild Mild 

Model – reconstruction   

   Surface type Height field Height field 

   Source data Dense cloud Dense cloud 

   Interpolation Enabled Enabled 

   Strict volumetric masks No No 

Texturing   

   Blending mode Mosaic Mosaic 

   Enable hole filling Yes Yes 

   Enable ghosting filter Yes Yes 

DEM   

   Source data Dense cloud Dense cloud 

   Interpolation Enabled Enabled 

   Mean resolution (mm/pix) 3.23 ± 0.22 1.6 ± 0.11 

Orthomosaic   

   Blending mode Mosaic Mosaic 
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   Surface DEM DEM 

   Enable hole filling Yes Yes 

   Mean resolution (mm/pix) 1.62 ± 0.11 1.6 ± 0.11 

 

 

Appendix 5.2. Digital file (.pdf) containing unique pairs of coded targets to provide 

scaling. Coded targets can be automatically detected during Agisoft Metashape processing.  

Supplementary data to this article can be found online at 

https://doi.org/10.1016/j.biocon.2019.108402. 

 

https://doi.org/10.1016/j.biocon.2019.108402
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6 General conclusions 

This thesis examined how we can use drones to monitor sentinel species of wildlife more 

efficiently. Using a multi-faceted approach (including a robust experiment to test the quality 

of drone-derived abundance data, drone-facilitated monitoring of three species of colonial 

birds and in-field photogrammetric calibration of a representative pinniped) this research 

resolved knowledge gaps within three key areas of wildlife ecology: disturbance, population 

monitoring and body condition. The findings within each of these areas built on previous 

research to provide timely contributions within the quickly evolving field of wildlife 

drone-ecology and, more broadly, the integration of technologies for scalable ecology and 

conservation (Marvin et al. 2016).  

6.1 Wildlife disturbance 

From the outset, we recognised that drones might have undesirable or unforeseen effects on 

wildlife and encouraged researchers to adopt a precautionary approach (Chapter 2; Hodgson 

& Koh 2016). It was important to recognise this potential issue, especially because wildlife 

may display no, or limited, behavioural responses, while still experiencing physiological 

impacts that can be difficult to quantify (e.g. Vas et al. 2015). This was highlighted by an 

initial study on free-roaming American black bears (Ursus americanus) who all had an 

increase in heart rate when overflown by a drone but rarely exhibited a detectable behavioural 

response (Ditmer et al. 2015). Later, a similar response pattern was also shown by adult King 

Penguins (Aptenodytes patagonicus) (Weimerskirch, Prudor & Schull 2017). Our timely 

contribution raised awareness of the potential disturbance issues when very few quantitative 

studies had investigated wildlife responses to drone operations.  

Since the publication of the correspondence, the body of literature on wildlife responses to 

drones has increased considerably. In 2017, a systematic review of the available literature 

attempted to identify the factors influencing the probability and magnitude of wildlife 

reactions to drones (Mulero-Pazmany et al. 2017). Using data extracted from 36 published 

studies and 17 unpublished field campaigns, Mulero-Pazmany et al. (2017) concluded that 

wildlife reactions depended on both the drone attributes (flight pattern, engine type and size 
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of aircraft) and the characteristics of the animals themselves (type of animal, life-history 

stage and level of aggregation). Unsurprisingly, these findings supported the authors’ 

hypothesis but importantly also provided evidence the authors used to inform the 

development of the best practice guidelines for which we had garnered awareness. Others 

have refined them for specific regions (e.g. Antarctica; Leary 2017; Harris, Herata & Hertel 

2019), integrated them into procedures for standardising methodological reporting (Barnas et 

al. 2020) and discussed them in the policy arena (Wallace, Martin & White 2017).  

Given the suitability of many colonial bird species to drone-facilitated monitoring, their 

responses to drones are of ongoing interest (e.g. Lyons et al. 2018; Collins, Giffin & Strong 

2019; Irigoin-Lovera et al. 2019; Barr et al. 2020). Findings to date have used an array of 

experimental designs with vastly different approach paths and flight heights but in 

combination they continue to suggest that responses are species- and status-specific. For 

example, Vas et al. (2015) approached unaffected birds to within 4 m during 80% of flights 

(n = 204). McEvoy, Hall and McDonald (2016) also found little or no obvious disturbance 

effects on wild, mixed species flocks of waterbirds. Bevan et al. (2018), however, reported 

that Crested Terns (Thalasseus bergii) displayed disturbance behaviours when overflown at 

60 m, although this was limited to repeated overflights of the same colony. Brisson-Curadeau 

et al. (2017) reported an average of 8.5% of Common Murres (Uria aalge) flew off in 

response to the drone, but >99% of those birds were non-breeders. The authors did not detect 

any impact of the drone on breeding success of murres, except at a site where aerial predators 

were abundant and several birds lost their eggs to predators following drone flights. Initial 

findings by Weston et al. (2020) suggest that the flight-initiation distance varies between 

species (n = 22), although the flight heights tested (4 and 10 m) were not representative of 

those used during population monitoring. Regardless of the species- and status-specific 

differences that have been observed and quantified, the limited evidence available 

encouragingly suggests that drones reduce disturbance to surface-nesting birds compared 

with traditional in-colony data-collection methods (Borrelle & Fletcher 2017).  

There has been increasing interest in the effects of drone operations on marine mammals 

(Smith et al. 2016; Erbe et al. 2017). For cetacean research, the utility of drones for data 

collection is extensive (e.g. Christiansen et al. 2016a; Fiori et al. 2017; Pirotta et al. 2017; 

Christiansen et al. 2018; Torres et al. 2018; Christiansen et al. 2019; Fiori et al. 2019; Horton 

et al. 2019; Christiansen et al. 2020a). Evidence also suggests the technique poses minimal 

disturbance risk. Given that sound stimulus is the most likely factor to cause disturbance, 

Christiansen et al. (2016b) recorded the in-air and in-water noise from two commonly used 

multi-rotor drones to assess the potential for negative noise effects on marine mammals. They 

concluded that while some marine mammals may hear drone noise underwater at close range 

(e.g. baleen whales and pinnipeds but not toothed whales), it is implied that the underwater 

noise effect is small, even for animals close to the water surface (Christiansen et al. 2016a). 

Behavioural response studies have reported that southern right whales (Eubalaena australis) 
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(Christiansen et al. 2020b) are not disturbed by drones, however low altitude flights have 

caused responses in dolphins (Ramos et al. 2018; Fettermann et al. 2019). For pinnipeds that 

are ashore (e.g. in breeding colonies), it is generally considered that the sound caused by 

drone overflight is also the stimulus most likely to elicit a response. This means the 

variability in the level of the background noise at colony sites, due to intra- and inter-site 

differences in wind and sea conditions, is likely to influence the ability of pinnipeds to detect 

drones aurally for a particular flight. While surveying Australian fur seals (Arctocephalus 

pusillus doriferus), McIntosh, Holmberg and Dann (2018) reported that a large multirotor 

drone flying at 80 m caused low disturbance to a small number of animals, but flying at 60 m 

caused unacceptable disturbance. However smaller drones (DJI Phantom 4 and Phantom 4 

Pro) were undetected by the seals and did not cause observable disturbance. This is consistent 

with observations of long-nosed fur seals (Arctocephalus forsteri) and Australian sea lions 

(Neophoca cinerea) which have rarely been observed responding to small multirotor 

overflight at or above 40 m (J. Hodgson, unpublished data). More research is needed to 

robustly quantify the influence of different factors (e.g. drone sound versus size stimulus) on 

pinniped response, however, the anecdotal evidence suggests that small drones flying at or 

above 40 m cause less disturbance at the colony level than on-ground surveys.  

6.1.1 Future research 

Understanding the effects of drone-facilitated research on wildlife is in its infancy. Further 

research is required to understand potential short- and longer-term behavioural and 

physiological impacts, the latter of which we have very limited knowledge. Obtaining 

physiological response data can be difficult, however innovative approaches may negate 

confounding factors and avoid unnecessarily invasive techniques (e.g. using a microphone 

inside a replica egg to record the heart rate of an incubating bird; Howard, Hodgson & Koh 

2018). Results will continue to inform research best practice, as well as assisting wildlife 

managers and regulators when issuing permits and setting guidelines for drone operations. 

Concerted effort is needed to continue to establish an informed and standardised overarching 

code of best practice for drone operations in the vicinity of wildlife. This should be freely 

available and integrate previous recommendations (e.g. Ratcliffe et al. 2015; Vas et al. 2015; 

Hodgson & Koh 2016; Smith et al. 2016; Mulero-Pazmany et al. 2017; Bevan et al. 2018; 

Lyons et al. 2018; Harris, Herata & Hertel 2019). It is important that the code not only 

recognises and endeavours to mitigate disturbance to subject animals, but also to wildlife that 

may be encountered incidentally during drone operations (e.g. raptors).  

While advancing knowledge of wildlife responses to drone-facilitated monitoring is a 

recommended research priority, it is worth recognising this in a broader and progressive light, 

specifically:  

 The drone stimulus (e.g. flight path, flight height) used in a considerable number of 

studies is not representative of the stimulus that wildlife would be exposed to during 
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drone-facilitated population monitoring (e.g. Rümmler et al. 2015; Weimerskirch, 

Prudor & Schull 2017; Weston et al. 2020). This has largely resulted from the worthy 

intention of researchers to quantify the proximity at which wildlife respond (e.g. flight 

initiation distance; Weston et al. 2020) to establish safe operating distances. These 

results should be interpreted with care, and unnecessary extrapolations avoided, to 

ensure permitting bodies have a quantitative evidence base to inform their regulatory 

duties rather taking an overly precautionary approach. Ideally, in addition to testing 

for the effect of drone proximity on wildlife responses, the actual stimulus 

encountered by wildlife when conducting monitoring should be quantified (as this 

may be completed from a considerably greater distance from the subject animals). 

 Few studies have contrasted the effects of drone-facilitated monitoring with the 

disturbance which can result from obtaining the same data using traditional 

approaches, as commented by Borrelle and Fletcher (2017). Although traditional 

techniques are often more easily accepted (e.g. by institutional ethics committees), it 

is not uncommon for the disturbance caused by these practices to be unquantified. 

Although drones have a potential to cause disturbance they may mitigate many of the 

commonly accepted impacts of traditional techniques (Zemanova 2020).  

 Little attention has been given to quantitatively investigating the benefit of 

engineering solutions with the potential to mitigate disturbance (e.g. propellers that 

create less sound). Similarly, factors such as the visual appearance may influence the 

responses of some species and taxonomic groups and these options should also be 

investigated as potential mitigation strategies (e.g. Klug et al. 2020). 

 As wildlife response data continue to be collected, it will be important to investigate 

longer-term effects and the potential for animals to habituate to the presence of drones 

(e.g. Ditmer et al. 2019) and related monitoring technologies.  

 Finally, with the increasing quality and miniaturisation of aircraft and their sensors, it 

is increasingly feasible to collect data of satisfactory quality from a flying position of 

a sufficient distance from wildlife to remove any potential disturbance. This requires 

researchers to understand the spatial resolution (e.g. ground-sample distance, GSD) 

that is required for their use-case. Quantifying this is relatively straightforward and 

can often be completed with simulated data (e.g. Hodgson et al. 2018) prior to field 

data collection. This allows the selection of an appropriate sensor and lens 

combination to achieve the required GSD from a ‘safe’ flight height/distance. Given 

this reality, the benefits of response studies that are heavily invasive should be 

evaluated carefully on a case-by-case basis.  

6.2 Wildlife population monitoring 

The #EpicDuckChallenge (Chapter 3; Hodgson et al. 2018) provided unique insight into the 

bias and precision of drone-derived abundance estimates as well as those obtained using the 

traditional ground approach. Prior to this, the quality of the data derived from 
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drone-facilitated wildlife population monitoring had not been as robustly quantified, nor had 

that of the traditional, accepted approach. This may have been because in wild populations 

the true population size is unknown and so it is not possible to assess the accuracy of any 

count method. This meant previous studies were limited to assessing precision (Hodgson et 

al. 2016), defined as the variance between replicated counts by different counters attempting 

to count the same sample (Gregory, Gibbons & Donald 2004), or simple contrasts between 

estimates (e.g. the correlation between the two count types; Chabot, Craik & Bird 2015). We 

overcame this issue using life-sized, replica seabirds in ‘colonies’ where the true numbers of 

individuals was known. The research demonstrated that drone-derived abundance estimates 

of colonial birds were more accurate and more precise than ground counts. We consider these 

benefits will generalise to other aggregations of wildlife than can be detected in 

drone-imagery; a notion which is supported by the tests of precision which have been 

completed in natural settings for birds and seals (Hodgson et al. 2016; Sorrell et al. 2019). 

This means that drone-derived wildlife monitoring data provides greater statistical power to 

detect fine-scale population fluctuations allowing for more informed and proactive ecological 

management. 

Despite the numerous studies that have used drones to monitor populations of aggregated 

animals, few have done so on large scales (Hollings et al. 2018). We demonstrated this is 

readily achievable with inexpensive drones by monitoring across different species, sites and 

years (Chapter 4). Our study sites were hard to access (islands). Drone-facilitated monitoring 

minimised researcher risks by avoiding island landings and the drone overflights were likely 

to have caused considerably less disturbance to the wildlife compared to on-island surveys.  

Automating drone-facilitated monitoring is key to unlocking the technique’s full potential 

and implementation on a large scale. Data collection is already achievable with minimal 

user-input thanks to stable and advanced flight programming software and, regulations 

permitting, this step could be fully automated (e.g. a remotely deployed drone that docks at a 

base to recharge from a self-sustaining power source and upload data). Similarly, image 

processing can be completed without user input (e.g. to create products of interest such as 

geo-referenced orthomosaics; Chapter 4). However, the automatic and accurate extraction of 

required data, such as the detection and counting of a target species, is a challenge yet to be 

fully resolved (Hollings et al. 2018). The open-source computer vision technique we 

developed (Chapter 3; Hodgson et al. 2018) demonstrated a semi-automated solution which 

advanced earlier methods (Chabot & Francis 2016) although it did not process particularly 

quickly and may not generalise across all habitats (Lyons et al. 2019). Since then, an array of 

studies have reported semi-automated approaches using ‘off-the-shelf’ object-based image 

analysis and supervised classifications (Afán, Máñez & Díaz-Delgado 2018; Chabot, Dillon 

& Francis 2018) through to more advanced machine learning approaches with promising 

results (Kellenberger, Marcos & Tuia 2018; Gray et al. 2019; Lyons et al. 2019; Francis et al. 

2020). Dujon and Schofield (2019) reviewed manuscripts in ecology that used drones 
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(n = 213), reporting that 42% used machine learning to assess the visual data. They 

concluded that while drone use has recently rapidly increased in ecology studies, with 93% of 

the manuscripts that were reviewed being published between 2012 and 2018, the uptake of 

machine learning to process imagery has been slower. Fully harnessing artificial intelligence, 

including machine learning (Lamba et al. 2019), will be key to overcoming manual 

processing and thereby creating a truly powerful tool for ecological science. 

6.2.1 Future research 

While this thesis complements existing research to advance drone-facilitated wildlife 

population monitoring, there remains a plethora of research opportunities in this area, 

including: 

 Using geo-referenced orthomosaics for comprehensive spatiotemporal analyses. As 

our orthomosaics co-registered well (Chapter 4) individual nests could be identified 

over time. These data are suitable for many analyses including demography. Habitat 

information from ground flora surveys to data extracted from drone-derived 

3-dimensional digital ecosystems (e.g. D'Urban Jackson et al. 2020; Oosthuizen et al. 

2020) could be added to analyses to discern, for example, what factors drive nest-site 

choice. This would benefit the prediction of suitable nesting habitat that could be 

managed accordingly, especially for sensitive species or those of conservation 

concern in need of refugia. We expect the same method could be employed to collect 

similar information for other taxonomic groups.   

 Further investigation into the use of non-visual spectrums, as well as sampling 

concurrently in multiple spectrums. The use of thermal imagery for wildlife detection 

has long been of interest and recent improvements in sensor resolution have led to the 

technology being highly useful for drone-facilitated wildlife monitoring (Seymour et 

al. 2017; Corcoran et al. 2019; Beaver et al. 2020; Hamilton et al. 2020; Santangeli 

et al. 2020). We predict that if the sampling and processing barriers associated with 

multispectral sampling can be overcome, the benefits to drone-facilitated wildlife 

monitoring will be considerable. 

 Calibrating coarser resolution imagery collected by other platforms (e.g. satellite 

imagery). This technique has tremendous potential for wildlife detection and 

monitoring. It was validated recently by combining Landsat medium resolution 

satellite imagery with drone and ground surveys to discover a major hotspot of 

Adèlie penguin (Pygoscelis adeliae) abundance in the Danger Islands off the 

Antarctic Peninsula (an estimated 751,527 nesting pairs of penguins; Borowicz et al. 

2018). Similarly, Bowler et al. (2020) demonstrated that large seabirds can be 

detected solely from very high resolution satellite imagery; however, adding drone 

imagery to this workflow is likely to improve results as it would provide better 



 

121 

ground truth data. This process may also allow sufficient calibration for satellite 

imagery-only detections of smaller individuals.  

 Developing statistical models to account for imperfect detection. Modelling could 

improve machine learning abundance estimates by accounting for overall probability 

of detection, false detection and duplicate detection (Martin et al. 2012; Brack, 

Kindel & Oliveira 2018; Corcoran, Denman & Hamilton 2020; Williams, Schroeder 

& Jackson 2020).  

 Developing and testing a fully autonomous wildlife population monitoring system 

with an integrated processing and analysis pipeline.  Such a system could be 

contained in a suitably robust equipment structure with a drone entering and exiting 

to complete missions as programmed. A self-sustaining power supply (e.g. via solar 

electricity on the drone itself or via battery storage at a ground station) could 

recharge the drone batteries when not in operation as well as facilitate wireless data 

transfer to the cloud. This setup would be particularly useful in remote locations 

where human visitation is difficult or undesirable. The system could also take the 

form of a small satellite, such as a cubesat (Pimm et al. 2015). The goal would be to 

collect data over large areas, at required spatial and temporal resolutions, that is 

rapidly processed and analysed via a pipeline to provide near-real time insights. The 

processing side of such a system could be advanced as needed for automated change 

detection through to predictive modelling of areas not sampled at a given time point.  

6.3 Wildlife body condition 

The final data chapter in this thesis demonstrated that accurate morphometrics of an eared 

seal (otariid) can be collected non-invasively using drones (Chapter 5; Hodgson et al. 2020). 

While using photogrammetry to measure mammals is not new (Bell, Hindell & Burton 1997; 

McFadden, Worthy & Lacher 2006; de Bruyn et al. 2009; Postma et al. 2015), using aerial 

drones as a platform to capture the data has only occurred in recent years. Initial attempts that 

focused on marine mammals relied on single photograph approaches but, given they 

investigated free-living cetaceans, they either lacked calibration with animals of known size 

and mass (Durban et al. 2015; Gray et al. 2019) or, inventively, used a proxy for these 

measurements (i.e. historical catch records; Christiansen et al. 2019). As pinnipeds haul-out 

to rest and breed, morphometric data obtained from photogrammetry can be more easily 

ground-truthed. Allan et al. (2019) were able to use historical length and auxiliary girth 

measurements of a colony of Australian fur seals (Arctocephalus pusillus doriferus) to 

compare with their estimates from mosaicked, geo-referenced imagery (i.e. an orthomosaic). 

However, Krause et al. (2017) appear to be the first to have tested the accuracy of 

drone-derived photogrammetric data using adult female leopard seals (Hydrurga leptonyx) of 

known body size and mass. Our research extended on these studies by sampling Australian 

sea lion (Neophoca cinerea) individuals from all age-sex classes (juvenile, adult female and 

adult male) and estimating both 2-dimensional and 3-dimensional measurements of our study 
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species. Drone-derived measurements were highly repeatable and not dissimilar to traditional, 

ground-collected data, as has been reported for similar techniques on other pinnipeds (Krause 

et al. 2017; Alvarado et al. 2020).  

Our investigation ultimately sought to develop and test a technique that used our accurate 

drone-derived morphometrics to quantify the body condition of a sentinel species of marine 

mammal. The plight of our endangered study species provided extra motivation to develop a 

non-invasive technique without the considerable risks involved with anaesthetising and 

handling animals. Our technique produced body condition indices that ranked animals 

comparably to those generated from ground-collected data. While these indices should be 

interpreted carefully, they have great potential to be used in the rapid assessment of the 

spatial and temporal variation in the condition of this indicator species relative to 

environmental fluctuations. Two recent cetacean studies provide examples of such spatial and 

temporal investigations into a species’ condition. Christiansen et al. (2020a) conducted a 

population estimate of right whale body condition, showing that critically endangered 

juvenile, adult and lactating female North Atlantic right whales (Eubalaena glacialis) were 

all in poorer body condition than those from three seemingly healthy (i.e. growing) 

populations of southern right whales (E. australis). Similarly, Soledade Lemos et al. (2020) 

investigated the temporal variation in body condition of eastern North Pacific gray whales 

(Eschrichtius robustus) over three consecutive years. They documented improvement in body 

condition with the progression of the feeding season in all three years, but discovered 

significantly better body condition in the first year which they correlated with a difference in 

prey availability and/or quality using upwelling patterns from a six year period (Soledade 

Lemos et al. 2020). The spatial and temporal ecosystem insights from these studies 

exemplifies the utility of drone-derived morphometrics for body condition analyses. They 

demonstrate the potential for this type of research to inform marine mammal conservation 

efforts and, importantly, the use of these sentinel species to understand the impacts of climate 

change on marine ecosystems at a global scale.  

6.3.1 Future research 

The use of drone-derived morphometrics is an exciting and quickly evolving area of 

drone-ecology. In addition to those already discussed (see 5.5.3), future research 

opportunities include: 

 Using the technique we developed to investigate spatial and temporal variation in the 

body condition of Australian sea lion (N. cinerea) populations across the species’ 

range, which spans more than 3,000 km of southern Australian coastline (Gales et al. 

1992; Shaughnessy et al. 2011) within the ‘Great Southern Reef’ (Bennett et al. 

2016). This could provide valuable insight into the relationship between individual 

health and colony trends in abundance. For example, if a colony is in decline and its 

members are in poor condition, it could be that factors such as food availability or 
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disease are driving the decline. However, if there is no difference in the condition of 

animals from declining and recovering colonies, then declines may be due to direct 

human impacts such as bycatch in commercial fisheries, entanglement in marine 

debris or impacts from climate change. Results would be beneficial for identifying the 

most likely threats to the species’ survival, thereby contributing to informed 

conservation strategies.  

 Refining the technique we developed with additional calibration sampling, especially 

if applying it to other species. This would increase confidence in the relationship 

between mass and photogrammetric variables (e.g. area and volume); however, the 

need for increasing this confidence for Australian sea lions (N. cinerea) should be 

carefully balanced against the risks of anaesthetising and handling animals. It is also 

possible that photogrammetric-only data are sufficient as scale independent indicies 

can be employed (i.e. relative measurements) to compare animals. Any future 

sampling should embrace advances in technology to improve the technique while 

maintaining compatibility with existing datasets.  

 Developing an automated processing workflow. This could be accomplished using 

artificial intelligence, such as deep learning using convolutional neural networks 

which have shown considerable potential in similar studies (e.g. Gray et al. 2019). A 

robust workflow would provide time and cost efficiencies, and possibly reduce error, 

thereby allowing researchers to scale-up their data inputs and increase statistical 

power.  

 Integrating body condition research into broader scale drone-facilitated wildlife 

monitoring. For example, morphometric data sampling could be completed 

concurrently with colony-level abundance monitoring of pinnipeds and other, 

co-located indicator species (e.g. seabirds) (Hodgson et al. 2016). Such broadened 

surveys will provide time and cost-efficient data, particularly if processed 

automatically, with the potential for more powerful, multi-species ecosystem insights. 

6.4 Summary 

This thesis highlights the utility of drones for monitoring sentinel wildlife species. The 

findings resolve knowledge gaps in three key areas of wildlife drone-ecology: disturbance, 

population monitoring and body condition. A time-critical publication recognised that drones 

might have undesirable or unforeseen behavioural and physiological effects on wildlife and 

provided important recommendations for conducting drone-facilitated research around 

wildlife as the basis for a code of best practice. The wildlife population monitoring 

component of the thesis quantified the accuracy benefits of using drone-derived data to 

estimate the abundance of aggregated animals. Then, using wild colonial birds, we developed 

a generalisable and repeatable technique requiring minimal user input for adaptable and high 

spatiotemporal population monitoring. Finally, we used drone-facilitated photogrammetry to 

acquire accurate morphometric data to infer body condition in pinnipeds. Together, these 
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findings improved drone-facilitated wildlife monitoring. Multi-faceted monitoring 

approaches that utilise ground, drone and Earth observation data, as well as those from 

innovative techniques yet to be realised, will be vital for continuing to detect the ecological 

impacts of climate change and informing conservation.    
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Technological advances have provided many benefits for environmental research. Sensors

on southern elephant seals have been used to map the Southern Ocean, while tracking

devices have given us a new view of mass animal migrations, from birds to zebras.

Miniaturisation of electronics and improvements in reliability and affordability mean that

consumer drones (also known as unmanned aerial vehicles, or UAVs) are now improving 

scientific research in a host of areas. And they are growing more popular for wildlife

management, as well as research.

Wildlife drones can be used in many different ways, from small multi-rotor units that can 

scare invasive birds away from crops, to fixed-wing aircraft that fly above rainforests to

spot orangutan nests. UAVs have also been shown to provide more precise data than

traditional ground-based techniques when it comes to monitoring seabird colonies.

Other industries, from mining to window-cleaning, are looking at using drone technology. Some

forecasts predict that the global market for commercial applications of UAVs will be valued at more 

than US$127 billion. Given their usefulness in the biologist’s toolkit, the uptake of UAVs for

environmental monitoring is likely to continue.

But this proliferation of drones raises questions about how best to regulate the use of these aircraft,

and how to ensure that wildlife do not come to harm.

A UAV’s perspective of southern elephant seals (Mirounga leonina) on Australia’s sub-Antarctic Macquarie Island. J. Hodgson, Author provided
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Wildlife disturbance

Biologists carrying out field studies are typically interested in animals’

natural state, or how their behaviour changes when conditions are

altered. So it is important to know whether the UAVs disturb the animals

and, if so, exactly how.

Of course, different species in different environments are likely to have

very different responses to the presence of a UAV. This will also depend

on the type of UAV and how it is used. Our current understanding of

wildlife responses is limited.

A team of French and South African biologists observed the reaction of 

semi-captive and wild birds to UAVs. They found that the approach angle

had a significant impact on the birds’ reaction, but approach speed, UAV

colour and flight repetition did not.

In polar regions, where UAVs may be particularly useful for sampling

inaccessible areas, researchers found that Adélie penguins were more 

alert when a UAV was in range, particularly at low altitudes.

These studies, and similar observational studies on other animals

besides birds, provide an initial understanding of wildlife behaviour. But

the animals’ behaviour is only one aspect of their response – we still

need to know what happens to their physiology.

Cardiac bio-loggers fitted to a small number of free-roaming American black bears in northwestern

Minnesota have shown that UAV flights increased the bears’ heart rates by as much as 123 beats per

minute. Even an individual in its winter hibernation den showed stress responses to a UAV flying

above.

Interestingly, the bears rarely showed any behavioural response to the drones. This shows that just

because animals do not appear visually disturbed, that doesn’t necessarily mean they’re not stressed.

A code of practice

We have developed a code of best practice, published today in the journal Current Biology, which

seeks to mitigate or alleviate potential UAV disturbance to wildlife. It advocates the precautionary

principle in lieu of sufficient evidence, encouraging researchers to recognise that wildlife responses

are varied, can be hard to detect, and could have severe consequences.

A UAV-mounted camera provides an aerial view of a
Sumatran elephant (Elephas maximus sumatranus) in North
Sumatra. L. P. Koh
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It also provides practical recommendations. The code encourages the use of equipment that

minimises the stimulus to wildlife. Using minimum-disturbance flight practices (such as avoiding

threatening approach trajectories or sporadic flight movements) is advised. The code also recognises

the importance of following civil aviation rules and effective maintenance and training schedules, and

using animal ethics processes to provide oversight to UAV experiments.

The code isn’t just food for thought for biologists. It is relevant to all UAV users and regulators, from

commercial aerial videographers to hobbyists. Unintentionally or otherwise, such users may find

themselves piloting drones close to wildlife.

Our code urges the UAV community to be responsible operators. It encourages awareness of the

results of flying in different environments and the use of flight practices that result in minimum

wildlife disturbance.

Low-impact conservation

As researchers continue to develop and refine UAV wildlife monitoring techniques, research that

quantifies disturbance should be prioritised. This research will need to be multi-faceted, because

responses could vary between species or individuals, as well as over time and in different

environments. Greater knowledge could help us to draw up species-specific guidelines for drone use,

to minimise disturbance on a case-by-case basis.

UAVs are a useful wildlife monitoring tool. We need to proactively develop and implement low-impact

monitoring techniques. Doing so will expand our technological arsenal in the battle to manage Earth’s

precious and increasingly threatened wildlife.

Jarrod Hodgson launches a fixed-wing UAV on Macquarie Island. J. Hodgson
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Ecologists are increasingly using drones to gather data. Scientists have used

remotely piloted aircraft to estimate the health of fragile polar mosses, to measure

and predict the mass of leopard seals, and even to collect whale snot. Drones have

also been labelled as game-changers for wildlife population monitoring.

But once the take-off dust settles, how do we know if drones produce accurate

data? Perhaps even more importantly, how do the data compare to those gathered

using a traditional ground-based approach?

To answer these questions we created the #EpicDuckChallenge, which involved

deploying thousands of plastic replica ducks on an Adelaide beach, and then

testing various methods of tallying them up.

As we report today in the journal Methods in Ecology and Evolution, drones do

indeed generate accurate wildlife population data – even more accurate, in fact,

than those collected the old-fashioned way.

A drone image of a breeding colony of Greater Crested Terns. Researchers used plastic bird decoys to replicate this species in an experiment
that compared different ways of counting wildlife. Jarrod Hodgson, CC BY-ND

‘Epic Duck Challenge’ shows drones can outdo people at
surveying wildlife
February 14, 2018 12.11am AEDT
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Assessing the accuracy of wildlife count data is hard. We can’t be sure of the true number of animals

present in a group of wild animals. So, to overcome this uncertainty, we created life-sized, replica

seabird colonies, each with a known number of individuals.

From the optimum vantage and in ideal weather conditions, experienced wildlife spotters

independently counted the colonies from the ground using binoculars and telescopes. At the same

time, a drone captured photographs of each colony from a range of heights. Citizen scientists then

used these images to tally the number of animals they could see.

Counts of birds in drone-derived imagery were better than those made by wildlife observers on the

ground. The drone approach was more precise and more accurate – it produced counts that were

consistently closer to the true number of individuals.

Jarrod Hodgson standing in one of the replica colonies of seabirds constructed for the #EpicDuckChallenge. S. Andriolo
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The difference between the results was not trivial. Drone-derived data were between 43% and 96%

more accurate than ground counts. The variation was due to how many pixels represented each bird,

which in turn is related to the height that the drone was flown and the resolution of the camera.

This wasn’t a surprise. The experienced ground counters did well, but the drone’s vantage point was

superior. Observing photos taken from above meant the citizen scientists did not have to contend with

obscured birds that often occur during ground counts. The imagery also benefited the citizen

scientists as they could digitally review their counts as many times as they needed. This reduced the

likelihood of both missing an individual and counting an individual more than once.

However, even though it proved to be more accurate, making manual digital counts is still tedious and

time-consuming. To address this, we developed a computer algorithm in the hope that it could further

improve efficiency without diminishing data quality. And it did.

We delineated a proportion of birds in each colony to train the algorithm to recognise how the animal

of interest appeared in the imagery. We found that using 10% training data was sufficient to produce a

colony count that was comparable to that of a human reviewing the entire scene.

This computerisation can reduce the time needed to process data, providing the opportunity to cut the

costs and resources needed to survey wildlife populations. When combined with the efficiencies

drones provide for surveying sites that are hard to access on foot, these savings may be considerable.

Comparing the vantages: drone-derived photographs and the ground counter’s view. J. Hodgson

The scientists were assisted by many volunteers, without whom the #EpicDuckChallenge would not have been possible. J.
Hodgson
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Using drone monitoring in the field

Our results have important implications for a range of species. We think they are especially relevant to

aggregating birds, including seabirds like albatrosses, surface nesting penguins and frigatebirds, as

well as colonial nesting waterbirds like pelicans.

Other types of animals that are easily seen from above, including hauled-out seals and dugongs, are

highly suited to drone monitoring. The nests or tracks of animals, such as orangutans and turtles, can

also be used to infer presence.

Additional experiments will be useful to assess the ability of drones to survey animals that prefer to

stay hidden and those within complex habitats. Such assessments are of interest to us, and

researchers around the globe, with current investigations focused on wildlife such as arboreal

mammals and cetaceans.

We are still learning about how wildlife react to the presence of drones, and more research is required

to quantify these responses in a range of species and environments. The results will help to refine and

improve drone monitoring protocols so that drones have minimal impact on wildlife. This is

particularly important for species that are prone to disturbance, and where close proximity is not

possible or desirable.

Read more: How drones can help fight the war on shark attacks

The world is rapidly changing, with many negative outcomes for wildlife. Technology like drones can

help scientists and managers gather data fast enough to enable timely assessment of the implications

of these changes.

When monitoring wildlife, increasing the accuracy and precision of animal surveys gives us more

confidence in our population estimates. This provides a stronger evidence base on which to make

management decisions or policy changes. For species and ecosystems threatened with extinction or

irreparable damage, such speedy action could be a literal lifeline.
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Academic rigour, journalistic flair

Australian sea lions are in trouble. Their population has never recovered from the impact

of the commercial sealing that occurred mainly in the 19th century.

Currently, the Australian sea lion is a threatened species (listed as endangered by the 

International Union for Conservation of Nature or IUCN) with the population estimated at

10,000 – 12,000. More than 80% of these animals live in the coastal waters of South

Australia, where their numbers are estimated to have fallen by more than half over the

past 40 years.

The sea lions’ survival is threatened by many factors, including bycatch in commercial

fisheries, entanglement in marine debris and impacts related to climate change.

With time running out, the sea lions’ survival depends on informed management. One

important step is to establish a low-risk way of quickly assessing the health of the current

population. The results could help us identify how to stop the population declining.

Australian sea lions (Neophoca cinerea) are one of the rarest pinnipeds in the world and they are declining. Jarrod Hodgson, CC BY-ND

Australian sea lions are declining. Using drones to check their
health can help us understand why
January 17, 2020 2.19pm AEDT
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Read more: Australia's 'other' reef is worth more than $10 billion a year - but have 

you heard of it?

Technological insight

One common way to get a quick idea of an animal’s health is to assess its body using a measure

equivalent to the body mass index (BMI) for humans, which is calculated from a person’s mass

divided by the square of their height. But using a tape measure and scales to obtain the size and mass

of Australian sea lions is time consuming, costly and involves risky anaesthesia of endangered

animals.

With our colleagues Dirk Holman and Aleks Terauds, we recently developed a technique to non-

invasively estimate the body condition of Australian sea lions by using a drone to collect high-

resolution photos of sedated sea lions. We then used the photos to digitally reconstruct a 3D model of

each animal to estimate its length, width and overall volume – and compared these to physical

measurements.

The technique, recently published in Biological Conservation, worked better than expected.

Low-lying rock islands and outcrops make important breeding
sites for Australian sea lions but many are threatened by sea-
level rise. J. Hodgson

Drone-captured photographs were processed to create 2D mosaics of images and 3D models. These were used to
measure area and volume, both of which approximated animal mass. J. Hodgson
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The measurements were accurate, and we found a strong correlation between the mass of an

individual and the area and volume measurements derived from the drone pictures. These are the key

ingredients needed to assess sea lion condition without handling animals.

Conserving an iconic species

While simple body condition measurements have limitations, they are useful for conservation because

they provide rapid health insights across a species’ range.

Australian sea lions breed at around 80 known sites spanning more than 3,000 km of southern

Australian coastline within the Great Southern Reef.

Our technique can be used to study free-ranging animals at colonies across this range, from Kangaroo

Island in South Australia to the Houtman Abrolhos Islands in Western Australia, and test for

differences in condition.

This can give us valuable information about how individual health and colony trends in abundance

are related. For example, if a colony is in decline and its members are in poor condition, it could be

that factors such as food availability and disease are driving the decline.

However, if there is no difference in the condition of animals from declining and recovering colonies,

then declines may be due to direct human impacts such as bycatch in commercial fisheries and

entanglement in marine debris. We could then target the most likely threats identified using this

technique to better understand their impact and how to protect the sea lions against them.

3D models of animals measured in the study. J. Hodgson
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This technique could be used to complete a population-wide survey of Australian sea lion condition

and help ensure the species’ survival. It would build on past mitigation measures which include

successfully reducing by-catch from gillnet fishing along the sea floor.

It will also complement current initiatives, including a trial to control a parasite that may improve 

pup survival.

Australian sea lions are an icon of Australia’s Great Southern Reef. As an important top-order

predator in these coastal waters, they are indicators of ocean health. Understanding and mitigating

the causes of their decline will not only help the species recover, but it will also help to ensure the

unique coastal ecosystems on which Australian sea lions depend remain intact and functional.

These two adult male Australian sea lions differed by just 11 cm in length but more than 130 kg in mass. J. Hodgson

https://theconversation.com/topics/conservation-72
https://theconversation.com/topics/drones-2513
https://www.afma.gov.au/sites/default/files/uploads/2014/03/Australian-Sea-Lion-Management-Strategy-2015-v2.0-FINAL.pdf
http://www.doi.org/10.1007/s00436-015-4481-4
https://sydney.edu.au/news-opinion/news/2019/07/22/saving-our-sea-lions.html

	Thesis_v4.1
	high res attachments
	A guide to using drones to study wildlife_ first, do no harm
	'Epic Duck Challenge' shows drones can outdo people at surveying wildlife
	Australian sea lions are declining




