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ABSTRACT 31 

In this paper, a new model, which can be solved either numerically or analytically, is presented 32 

for predicting the shear strength of fibre reinforced concrete beams. This approach is based on 33 

predicting the sliding capacity of an inclined crack through the application of fundamental 34 

partial-interaction and shear friction theories. A segmental approach is applied to predict this 35 

capacity because it has been shown to be able to produce simple analytical solutions while 36 

explicitly allowing for the influence of fibre reinforcement and tension stiffening. Once 37 

developed, the model is validated against a range of experimental tests and the accuracy is 38 

compared to both codified approaches and other approaches in the literature.  39 

 40 

INTRODUCTION 41 

Fibre reinforced concrete (FRC) beams have been shown experimentally to have superior shear 42 

capacity compared to conventional reinforced concrete beams (Lim et al. 1999; Kwak et al. 43 

2002; Dinh et al. 2011; Aoude et al. 2012; Conforti et al. 2013; Amin & Foster 2016). This 44 

improvement has led to the suggestion that steel fibres could either reduce the quantity of 45 

transverse reinforcement, or completely replace it, particularly in ultra-high performance fibre 46 

reinforced concrete (UHPFRC) members (Casanova & Rossi 1997; Noghabai 2000; Singh & 47 

Jain 2014). Given the often catastrophic nature of shear failure, if this is to occur, it is essential 48 

that rational and reliable methods for predicting the shear capacity of FRC members are 49 

developed. 50 



The observed increase in the shear capacity of FRC compared to RC members can be attributed 51 

to both the direct bridging of shear cracks (Choi et al. 2007), and also to an improvement in 52 

shear resistance of the uncracked FRC (Valle & Buyukozturk 1993; Sturm et al. 2018a). It is 53 

therefore necessary that models which predict the shear capacity of FRC members incorporate 54 

these behaviours. 55 

In a recent review of the shear capacity of FRC members, Lansoght (2019) identified that the 56 

majority of approaches are empirical and are, therefore, difficult to extend to each new type of 57 

FRC developed. In addition to these empirical models, a number of mechanics based models 58 

have been developed. These can be categorised into two main types: (i) those that are based on 59 

the modified compression field theory (Minelli & Vecchio 2006; Baby et al. 2013; Lee et al. 60 

2016b; Zhang et al. 2016a; Barros & Foster 2018), which was originally developed by Vecchio 61 

& Collins (1986) for conventional reinforced concrete, and (ii) those based on stresses that 62 

form along a critical diagonal shear crack (Voo et al. 2006; Choi et al. 2007; Lee et al. 2016a).  63 

Approaches based on modified compression field theory can be further subdivided into those 64 

that consider the full solution and those that apply the simplified approach. For the full solution, 65 

the beam is divided into a series of 2 dimensional elements while for simplified modified 66 

compression field theory a single element is considered. In both approaches, the shear capacity 67 

of an element is controlled by either the principal stresses on the element or is limited by the 68 

stresses that can be transferred across the shear crack due to aggregate interlock. The effect of 69 

the fibres is included into the approach either by modifying the constitutive relationships for 70 

the concrete (Minelli & Vecchio 2006; Baby et al. 2013; Lee et al. 2016b) or by adding an 71 

additional stress due to fibres in the element (Zhang et al. 2016a; Barros & Foster 2018). For 72 

Voo et al. (2006), the shear capacity is controlled by the intersection of the cracking and sliding 73 

load determined using an effective plastic compressive and tensile stress where, for FRC, the 74 

fibres alter the effective tensile stress.  75 



For approaches that consider the development of stresses along the critical diagonal shear 76 

crack, Choi et al. (2007) define the shear capacity as being controlled by both: the uncracked 77 

concrete in the flexural compression region of the beam; and the stress carried by the fibres 78 

across the shear crack in the tension region. Alternatively in the work of Lee et al. (2016a), the 79 

shear capacity is controlled by the aggregate interlock in the flexural tension region and by the 80 

uncracked concrete in the flexural compression region. The effect of the fibres is allowed for 81 

by increasing the shear capacity of the flexural tension region. 82 

In addition to models developed for research, numerous models are available in national codes 83 

of practice. These include the fib Model Code 2010 (fib 2013) which suggests two approaches 84 

which are either based on the expression in the Eurocode 2 (CEN 2004) or on a simplified 85 

modified compression field theory. The Australian concrete design standard AS3600:2018 86 

(Standards Australia 2018) similarly suggests that the shear capacity of FRC members can be 87 

based on the application of a simplified version the modified compression field theory. French 88 

recommendations for UHPFRC (AFGC 2013) have a more simplified approach, in which a 89 

constant tensile stress due to the fibres is applied along the shear crack. As this crack is inclined, 90 

there is a vertical component of this stress that contributes to the shear capacity. The magnitude 91 

of this tensile stress is assumed to be equal to the average stress in the fibres at the ultimate 92 

limit state. 93 

As highlighted in Lansoght’s (2019) review, the existing empirical approaches have limited 94 

accuracy with the best performing empirical approach being that suggested by Kwak et al. 95 

(2002) which  has a coefficient of variation of 28% and a mean of 1.01 when compared to a 96 

database of 488 experiments. While the best performing codified approach is that suggested by 97 

DAfSt B (2012) with a mean of 1.12 and a coefficient of variation of 27%. The accuracy of the 98 

mechanics-based approaches was not compared in Lansoght’s (2019) review, however, it was 99 



highlighted that none of the approaches accounted for all the mechanisms that contribute to the 100 

shear capacity.  101 

This paper will seek to address this limitation via extending the application of the mechanical 102 

model of Zhang et al. (2014a,b;2015;2016b) to FRC. This model has previously been applied 103 

to reinforced and prestressed concrete with steel or fibre reinforced polymer (FRP) 104 

reinforcement, and its accuracy has been demonstrated by comparison to more than 1100 105 

experimental test results. In Zhang’s approach, the shear capacity of a beam is based on the 106 

shear capacity of the critical diagonal crack, where the shear is primarily resisted by the flexural 107 

compression region. In this approach, the width of the shear crack is directly quantified through 108 

fundamental partial interaction theory. This is important because the direct application of 109 

partial interaction theory has made the approach able to predict the capacity of both steel and 110 

FRP reinforced concrete members without modification because the variation in bond and, 111 

therefore, tension stiffening between these two types of materials is explicitly considered. For 112 

application to FRC, this is also beneficial because it allows for the direct incorporation the fibre 113 

contribution through a stress-crack width relationship.  114 

In the remainder of the paper, the extension of Zhang’s approach to incorporate FRC is first 115 

explained qualitatively. Next, it is shown how the model can be implemented numerically and 116 

then analytically. The numerical and analytical models are then validated using a database of 117 

existing and new test results, and finally the accuracy of the approach is compared to other 118 

existing models. Importantly, having shown that an accurate analytical solution to predict shear 119 

capacity can be developed from fundamental mechanics, it is envisaged that further research 120 

can be conducted to further simplify the approach to produce more simplified design rules. 121 

 122 

SHEAR FAILURE MODEL FOR FRC 123 



Consider the simply supported beam subjected to a point load in Fig. 1(a). As the beam is 124 

loaded, discrete flexural-shear cracks form at the bottom face with a spacing of Scr which is 125 

governed by tension stiffening and the tensile strength of the concrete (Balazs 1993; Lee et al. 126 

2013; Sturm et al. 2018b). As the load is increased, these cracks propagate towards the neutral 127 

axis and are inclined as shown because they form perpendicular to the direction of the principal 128 

tensile stress. In reality these cracks are non-linear (Zarrinpour & Chao 2017). However, to 129 

simplify formulation and application of the approach, the non-linear shear crack has been 130 

approximated with a straight diagonal crack in Fig. 1(b). A similar assumption has been applied 131 

previously in a range of models to predict shear strengths; these include that by Zhang (1997), 132 

Hoang & Nielsen (1998) and Zhang et al. (2015,2016b) with which accurate predictions have 133 

been achieved. This assumption of a straight diagonal crack is also implicit in simplified 134 

modified compression field theory, as the crack forms perpendicular to the inclination angle of 135 

the stresses in the element (Bentz et al. 2006). 136 

Sliding forces develop along the planes defined by each of these shear cracks in Fig. 1(a) to 137 

resist the applied shear force (Lucas et al. 2011; Zhang et al. 2015). When and where a sliding 138 

force exceeds the capacity of the compressed concrete above the shear crack to resist sliding, 139 

a crack penetrates the flexural compression region and the pre-sliding shear capacity is reached; 140 

this crack is referred to as the critical diagonal crack and sliding can now occur along the 141 

entirety of the shear crack. Once sliding commences, the shear force that can be resisted may 142 

or may not increase depending on the rate of increase in normal stress that develops along the 143 

sliding plane (σN) relative to the rate at which sliding (Δ) occurs. This can be seen in Fig. 2 144 

where typical shear stress versus slip (τN/Δ) relationships are presented as a function of the 145 

applied normal stress (Chen et al. 2015). In Fig. 2(b), it can be seen that for a constant normal 146 

stress the shear resistance reduces as sliding occurs. However, the shear resistance can increase 147 

if the normal stress increases, for example if sliding causes the forces in the reinforcement to 148 



increase. In this paper, this post-sliding behaviour will be ignored and the shear capacity will 149 

be assumed to be equal to the pre-sliding shear capacity. This approach is taken because the 150 

pre-sliding capacity is either equal to the shear capacity or is a lower bound to it. Further, Zhang 151 

et al. (2015;2016b) showed in a broad validation, to over 1100 experimental test results on 152 

reinforced and prestressed concrete beams and columns with either steel or FRP reinforcement, 153 

that the  pre-sliding capacity provided an accurate prediction of shear capacity. Further, as a 154 

result of ignoring post-sliding behaviour, dowel action can be ignored because as shown by 155 

Millard & Johnson (1984) in experiments specifically designed to investigate dowel action 156 

separately from aggregate interlock, some shear slip is required to generate significant forces 157 

due to dowel action. 158 

Based on the assumption that the pre-sliding capacity is a reasonable approximation to the shear 159 

capacity, the shear capacity can be determined by quantifying the sliding force S along the 160 

shear crack in Fig. 1(b) as a function of the applied shear force V. Shear failure is then taken to 161 

occur when the capacity of the compressed concrete to resist the onset of sliding Scap is reached.  162 

 163 

Sliding force along critical diagonal shear crack 164 

To determine the sliding force along the critical diagonal shear crack in Fig. 1(a), consider the 165 

free body in Fig. 1(b), where, as a simplification, the real crack geometry has been 166 

approximated with a straight line inclined at an angle β. The stress resultants acting on the free 167 

body include: the applied shear force V; bending moment M; the force in the longitudinal 168 

tension reinforcement Frt; the force in the longitudinal compression reinforcement Frc; the 169 

longitudinal force in the ith stirrup Fst-i; the force in the fibres normal to the crack plane Ff; the 170 

compressive force in the concrete Fc; and the sliding force S.  171 

From horizontal and vertical force equilibrium: 172 

0 = 𝐹𝑟𝑡 + 𝐹𝑓 sin(𝛽) − 𝐹𝑟𝑐 − 𝐹𝑐 − 𝑆 cos(𝛽)    (1) 173 



𝑉 = 𝐹𝑓 cos(𝛽) + ∑ 𝐹𝑠𝑡−𝑖𝑖 + 𝑆 sin(𝛽)    (2) 174 

and from moment equilibrium: 175 

𝑀 − 𝑉
𝑆𝑐𝑟

2
= 𝑉𝑎′ = 𝐹𝑟𝑡𝑑𝑟𝑡 + 𝐹𝑓𝑑𝑓 + ∑ 𝐹𝑠𝑡−𝑖𝑖 𝑑𝑠𝑡−𝑖 − 𝐹𝑟𝑐𝑑𝑟𝑐 − 𝐹𝑐𝑑𝑐  (3) 176 

where a’ is the effective shear span, drt is the depth of the longitudinal tension reinforcement, 177 

df  is the distance of the force in the fibres to the intersection of profile A-A with the top fibre, 178 

dst-i is the horizontal distance between the ith stirrup and the section A-A, drc is the depth of the 179 

compression reinforcement and dc is the depth to the compressive force in the concrete.  180 

The forces along the diagonal crack in Fig. 1(b) are a function of the deformations along the 181 

shear crack as the forces in the longitudinal tension reinforcement Frt, in the transverse 182 

reinforcement Fst-i and in the fibres Ff  are functions of the crack width. In contrast, the forces 183 

in the compressed concrete Fc and compression reinforcement Frc are functions of the strain.  184 

To determine these deformations, they are assumed to be the result of a linear rotation θ about 185 

a neutral axis depth dNA. Consequently, the crack opening at a depth of y measured 186 

perpendicular to the crack is given by 187 

𝑤𝑝(𝑦) =
2𝜃(𝑦−𝑑𝑁𝐴)

sin(𝛽)
     (4) 188 

which ignores the tensile strains in the concrete as the elastic deformation of the uncracked 189 

concrete away from the shear crack is negligible when compared to the crack opening. 190 

Resolving the crack width in Eq. 4, the horizontal component of the crack width is  191 

𝑤𝑥(𝑥) =
𝑤𝑝(𝑦)

sin(𝛽)
=

2𝜃(𝑦−𝑑𝑁𝐴)

sin2(𝛽)
     (5) 192 

and vertical components of is 193 

𝑤𝑦(𝑦) =
𝑤𝑝(𝑦)

cos(𝛽)
=

2𝜃(𝑥−
𝑑𝑁𝐴

tan(𝛽)
)

cos2(𝛽)
    (6) 194 

where x is the horizontal distance measured from profile A-A in Fig. 1(b).  195 

From Fig. 1 (b), the longitudinal strains in the compressed concrete at the location of the sliding 196 

plane, as shown in Fig. 1(d), is given by  197 



𝜀𝑥(𝑦) =
𝜃(𝑑𝑁𝐴−𝑦)

𝑆𝑐𝑟
2

sin2(𝛽)+𝑦 sin(𝛽)cos(𝛽)
    (7) 198 

and Eqs. (4-7) can be applied alongside the constitutive relations to solve Eqs. (1-3) for the 199 

sliding force S which can be compared with the sliding capacity of the compressed concrete 200 

Scap. Hence it can be seen that the beneficial effects of fibres in the concrete can be allowed for 201 

directly by including the fibre concrete material properties for shear Scap and for tension Ff. 202 

Significantly, the strain profile in Fig. 1(c) is seen to be non-linear. This is because in the 203 

segmental model, the strain in the compression region is taken as the deformation to cause the 204 

rotation θ divided by the length over which it is accommodated (the segment length) which 205 

varies along the height of the beam due to the inclined sliding plane (Zhang et al. 2014a). 206 

Further, in Fig. 1(c) the concrete strain has only been plotted in the compression region because 207 

below the neutral axis the concrete is cracked and the concrete strain is taken as zero at the 208 

crack face. While the strain in the concrete is taken as zero, the force in the reinforcement is 209 

not zero nor is the force in the fibres crossing the crack because these stresses are a function of 210 

the crack opening in Fig. 1(d). In the formulation of this approach, the forces in the 211 

reinforcement are taken to develop according to partial interaction theory, which describes the 212 

force in reinforcement crossing a crack as a function of the bond stresses developed along the 213 

segment length and the crack opening in Fig. 1(d).  214 

 215 

Capacity to resist sliding Scap 216 

Shear friction theory has typically been applied to predict the stresses that can be transferred 217 

across a cracked sliding plane given the crack opening and the slip between the two surfaces ( 218 

Walraven & Reinhardt 1981). However, it can equally be applied to determine the maximum 219 

shear stress that can be transferred for a given applied normal stress for an initially uncracked 220 

section (Mattock & Hawkins 1971, Haskett et al. 2011). Hence, shear friction theory can be 221 

applied to determine the magnitude of the sliding force that can be resisted along a potential 222 



sliding plane as a function of the magnitude of the compressive force normal to the sliding 223 

plane (Mohamed Ali et al. 2008; Lucas 2011). This is illustrated in Fig. 3(a), where the inclined 224 

shear plane is subjected to the sliding force S and the force in the compressive concrete Fc 225 

which is a function of the stresses in the concrete σc.  226 

The magnitude of the normal stress σN can be found by considering the infinitesimal strip in 227 

Fig. 3(b) which has a cross-sectional area of dA in the vertical plane. The horizontal force 228 

applied to this strip is equal to σcdA, such that the component of this force normal to the sliding 229 

plane is σcsin(β)dA. Since the area of the sliding plane contained inside this infinitesimal strip 230 

is dA/sin(β), dividing the normal component of the force by this area gives the normal stress σN 231 

on the sliding plane as equal to σcsin2(β).  232 

Having determined the applied normal stress from the stress in the compressed concrete, the 233 

shear strength of the material v(σN) can be determined. Integrating this shear strength gives the 234 

shear capacity of the initially uncracked plane as 235 

𝑍𝑐𝑎𝑝 = ∫
𝑣(𝜎𝑁)

sin(𝛽)
𝑑𝐴

𝐴𝑐
    (8) 236 

where Ac indicates that the integral is performed over the portions of the sliding plane which 237 

are in compression. When quantifying the capacity of the sliding plane, it is also important to 238 

consider that there is a component of σc parallel to the sliding plane which is equal to σccos(β)dA 239 

and acts to reduce the sliding capacity. Hence  240 

𝑆𝑐𝑎𝑝 = 𝑍𝑐𝑎𝑝 − 𝐹𝑐 cos(𝛽)     (9) 241 

 242 

NUMERICAL IMPLEMENTATION 243 

The above shear failure model can be applied numerically using the procedure in Fig. 4.  In 244 

this approach, the shear angle β in Fig. 1(b) is varied, starting from the minimum value of βmin 245 

in Eq. 10, that corresponds to the critical diagonal shear crack that initiates at the support shown 246 

as A-B in Fig. 1(a). 247 



𝛽𝑚𝑖𝑛 = arctan (
ℎ

𝑎′
)    (10) 248 

For each value of the shear angle β, the rotation θ is incrementally increased to give the 249 

relationship between the shear-force and rotation (S/), and hence from Eq. (1) 250 

𝑆 =
𝐹𝑟𝑡−𝐹𝑟𝑐−𝐹𝑐

cos(𝛽)
+ 𝐹𝑓 tan(𝛽)    (11) 251 

For analysis, the rotation is incrementally increased until either shear failure occurs when 252 

S=Scap, which then defines the shear capacity of that particular diagonal shear crack Vcap-β, or 253 

until flexural failure occurs. That is, the analysis is terminated when Vcap-β exceeds the moment 254 

capacity Mcap of the beam. 255 

For low values of β, failure occurs due to sliding, however, as the crack becomes more vertical, 256 

flexure will control failure and consequently the analysis is terminated as the flexural capacity 257 

is reached. Repeating the analysis for each crack inclination β yields the shear capacity Vcap 258 

which is given by the minimum value of Vcap obtained from all analyses in which β is varied  259 

(Vcap-β).  260 

It may be worth noting that flexural cracks occur at discrete positions as in Fig. 1(a) such that 261 

the shear cracks occur at discrete positions and at discrete values of β. Hence this model which 262 

considers continuous values of β will give either the actual shear capacity or a lower bound to 263 

the shear capacity which explains some of the inherent scatter.  264 

Applying the numerical solution in Fig. 4 requires the compressive stress-strain relationship 265 

for the concrete, the tensile-stress/crack-width for the fibres and the shear-strength/normal-266 

stress relationship for the concrete all of which can be determined from simple experiments. It 267 

also requires the load-slip relationships for both the longitudinal tension reinforcement and the 268 

stirrups as well as the crack spacing which can be determined from established partial 269 

interaction theory (Visintin et al. 2013; Zhang et al. 2017b; Sturm et al. 2018b) and which rely 270 

on knowledge of the bond stress/slip relationship, which can also be determined from simple 271 

material tests. 272 



This numerical implementation is also independent of the shape of the cross-section as the 273 

force in the concrete, the force in the fibres and the sliding capacity are integrated over the area 274 

of concrete in tension or compression. Hence, I-beams or T-beams can be accommodated 275 

without changing the underlying model. 276 

Crack spacing and load-slip relationship of the reinforcement 277 

In this section, the crack spacing and load-slip relationships of the reinforcement used in the 278 

validation are outlined. The primary assumption of partial interaction modelling is that after 279 

cracking, slip occurs between reinforcement and the surrounding concrete (Balazs 1993; Sturm 280 

et al. 2018b). The interface shear stress then becomes a function of this slip (Balazs 1993; 281 

Sturm et al. 2018b) which is given by the local bond stress/slip relationship. To analyse this 282 

situation a tension chord is extracted from the beam and by considering that the slip strain is 283 

equal to the difference in the reinforcement and concrete strains as well as equilibrium of the 284 

tension chord a governing equation can be developed relating the slip to the position along the 285 

tension chord, as (Balazs 1993; Sturm et al. 2018b) 286 

𝑑2𝛿

𝑑𝑥2 =
𝜏𝐿𝑝𝑒𝑟

𝛿1
𝛼 (

1

𝐸𝑐𝐴𝑐𝑡
+

1

𝐸𝑟𝐴𝑟𝑡
)     (12) 287 

where τ is the interface shear stress, Lper is the bonded perimeter of the reinforcement, Act is the 288 

area of concrete in the tension chord, Art is the area of tension reinforcement in the tension 289 

chord, Ec is the elastic modulus of the concrete, and Er is the elastic modulus of the 290 

reinforcement. By imposing a local bond stress/slip relationship and boundary conditions, Eq. 291 

(12) can be solved for the variation of slip along the tension chord. From this variation of slip, 292 

the variation in interface shear stress along the tension chord can be determined. Hence by 293 

integrating the interface shear stresses, the stress in the concrete can be determined. The crack 294 

spacing is then determined by finding the location where the concrete stress is equal to the 295 

tensile strength. Previously this approach has been implemented numerically and a range of 296 

analytical solutions have been developed. Here the following approach of Sturm et al. (2018b) 297 



is applied because it has been developed for both conventional strength concrete with fibres 298 

and ultra-high performance fibre reinforced concrete  299 

𝑆𝑐𝑟 = [
2𝛼(1+𝛼)

𝜆2(1−𝛼)1+𝛼]

1

1+𝛼
[
𝑓𝑐𝑡−𝑓𝑝𝑐

𝐸𝑐
(

𝐸𝑐𝐴𝑐𝑡

𝐸𝑟𝐴𝑟𝑡
+ 1)]

1−𝛼

1+𝛼
   (13) 300 

in which 301 

𝜆2 =
𝜏𝑚𝑎𝑥𝐿𝑝𝑒𝑟

𝛿1
𝛼 (

1

𝐸𝑐𝐴𝑐𝑡
+

1

𝐸𝑟𝐴𝑟𝑡
)     (14) 302 

and where, as shown in Fig. 5, τmax is the maximum bond stress, α is the non-linearity of the 303 

bond stress-slip relationship, δ1 is the slip when the maximum bond stress is achieved, fct is the 304 

tensile strength of the concrete and fpc is the post-cracking strength. The validity of the 305 

expression was established in Sturm et al. (2018b) when it was used in conjunction with a load-306 

slip relationship to predict the tension stiffening behaviour of 20 FRC specimens. 307 

The load-slip relationship of the reinforcement can also be determined from the variation of 308 

slip along the tension chord yielding the load-slip relationship for the longitudinal tension 309 

reinforcement given by the bilinear load-slip relationship in Fig. 6(a) where the crack opening 310 

stiffness Krt (Sturm et al. 2018b) is given by  311 

𝐾𝑟𝑡 = 𝐸𝑟𝐴𝑟𝑡
𝜆1

tanh(
𝜆1𝑆𝑐𝑟

2
)
    (15) 312 

in which 313 

𝜆1 = √𝑘𝐿𝑝𝑒𝑟 (
1

𝐸𝑟𝐴𝑟𝑡
+

1

𝐸𝑐𝐴𝑐𝑡
)     (16) 314 

and where k is the effective linear bond stiffness taken as τmax/δ1. 315 

The load-slip relationship of the stirrups is given by a bilinear relationship of the same form as 316 

that used for the longitudinal tension reinforcement such that 317 

𝐾𝑠𝑡−𝑖 = 𝐸𝑟𝐴𝑠𝑡−𝑖
2𝜆1−𝑠𝑡

tanh(𝜆1−𝑠𝑡𝐿𝑠𝑡1)+tanh(𝜆1−𝑠𝑡𝐿𝑠𝑡2)
   (17) 318 

as derived in Appendix S1 in the supplementary material 319 



𝜆1−𝑠𝑡 = √𝑘𝐿𝑝𝑒𝑟−𝑠𝑡 (
1

𝐸𝑟𝐴𝑠𝑡−𝑖
+

1

𝐸𝑐𝐴𝑐𝑡−𝑠𝑡
)   (18) 320 

and where Ast-i is the cross-sectional area of the ith stirrup, Lst1 is the embedded length above 321 

the shear crack, Lst2 is the embedded below the crack, Lper-st is the bonded perimeter of the 322 

stirrup and Ac-st is the area of the tension chord surrounding the stirrup. These geometric 323 

properties are illustrated in Fig. 7.  324 

 325 

ANALTYICAL IMPLEMENTATION 326 

The shear failure model can also be implemented analytically, which for design may be more 327 

convenient to implement in a simple spreadsheet. As noted previously, the purpose of this paper 328 

is to develop a fundamental rational approach which captures the underlying mechanism, but 329 

it is envisaged that in future work further simplifications could be made. Here as initial 330 

approximations, the compression reinforcement will be neglected as too will be the action of 331 

the stirrups in the flexural compression region. These approximations are in line with those 332 

previously made by Placas & Regan (1971) and Tompos & Frosch (2002) respectively. The 333 

following analysis will be conducted assuming that the section is rectangular and the 334 

reinforcement is unyielded. However when this is not the case, some of the expressions in the 335 

following section can be replaced with the expressions in Appendix S2 in the supplementary 336 

material for when the section is either an I-beam or T-beam and with the expressions in 337 

Appendix S3 in the supplementary material when the reinforcement has yielded. Note that to 338 

determine whether the reinforcement is yielded or unyielded, it is recommended that the section 339 

is first analysed as unyielded and then this assumption is checked by determining the force in 340 

the reinforcement. Should this force exceed the yield force, then repeat the analysis assuming 341 

that that reinforcement has yielded. A worked example is provided in Appendix S4 in the 342 

supplementary material. 343 

Idealised material and mechanical behaviours  344 



Reinforcement 345 

For the longitudinal tensile reinforcement, a bilinear load-slip relationship is assumed (Sturm 346 

et al. 2018b) 347 

𝐹𝑟𝑡 = 𝐾𝑟𝑡Δ𝑟𝑡 =
𝐾𝑟𝑡𝜃(𝑑𝑟𝑡−𝑑𝑁𝐴)

sin2(𝛽) 
≤ 𝑓𝑦𝐴𝑟𝑡   (19) 348 

where: Krt is the crack opening stiffness and an example of which is given in Appendix S1 in 349 

the supplementary material; Δrt is the slip of the reinforcement which is equal to wx(drt)/2; fy is 350 

the yield stress; and Art is the cross-sectional area of the reinforcement. 351 

For the transverse or vertical stirrups, 352 

𝐹𝑠𝑡−𝑖 = 𝐾𝑠𝑡−𝑖Δ𝑠𝑡−𝑖 =
𝐾𝑠𝑡−𝑖𝜃(𝑑𝑠𝑡−𝑖−

𝑑𝑁𝐴
tan(𝛽)

)

cos2(𝛽) 
≤ 𝑓𝑦−𝑠𝑡𝐴𝑠𝑡−𝑖  (20) 353 

where: Kst-i is the crack opening stiffness, and an example of how to determine this is given in 354 

Appendix S1 in the supplementary material; Δst-i is the slip of the stirrup which is equal to 355 

wy(dst-i)/2; fy-st is the yield stress of the stirrup; and Ast-i is the cross-sectional area of the stirrup.  356 

Fibres 357 

As a simplification, the stress in the fibres is approximated by a constant stress ff which is equal 358 

to the average tensile stress ranging from a crack width of 0 mm to the crack width at the 359 

bottom fibre wD, as shown in Fig. 8. Since wD is unknown before the analysis has been 360 

performed, it is proposed that ff is imposed based on the expected crack width. A possible 361 

approach for estimating the expected crack width would be to determine this from a flexural 362 

analysis with same applied moment M. The crack width could then be estimated directly from 363 

a segmental analysis (Sturm et al. 2020) or alternatively from a sectional analysis by 364 

multiplying the bottom fibre strain by the crack spacing. This is permissible as the pre-sliding 365 

shear capacity is being predicted, hence, significant additional crack opening due to sliding has 366 

not yet occurred. This assumption can then be checked by determining the actual width of the 367 

shear crack and checking that the average fibre stress corresponding to this crack width is 368 



consistent with the value that was assumed. It is consistent if the difference is small and 369 

conservative. As a good rule of thumb, it is suggested that if the difference in stress is less than 370 

10% and underestimated then the error introduced is small and conservative. 371 

For a rectangular section, the force in the fibres is given by 372 

𝐹𝑓 =
𝑓𝑓𝑏(ℎ−𝑑𝑁𝐴)

sin(𝛽)
    (21) 373 

and the lever arm between the force in the fibres and the top fibre is given by 374 

𝑑𝑓 =
ℎ+𝑑𝑁𝐴

2 sin(𝛽)
     (22) 375 

For the case of a T-beam or I-beam Eqs. (21) and (22) are replaced by those in Appendix S2 in 376 

the supplementary material. 377 

Concrete 378 

Shear failure or sliding is assumed to occur before concrete crushing, hence, the concrete is 379 

approximated as linear elastic 380 

𝜎𝑐 = 𝐸𝑐𝜀𝑥     (23) 381 

Above the neutral axis in Fig. 1(c), the strain profile in the concrete is non-linear, because even 382 

though the deformation varies linearly as shown, the longitudinal length of concrete over which 383 

it acts also varies. As a further simplification, this non-linear strain profile is approximated 384 

with the following linear strain profile 385 

𝜀𝑥 =
𝜃(𝑑𝑁𝐴−𝑦)
𝑆𝑐𝑟
2

sin2(𝛽)
     (24) 386 

The reason for this simplification is that if the strain profile in Eq. (7) is used, then the 387 

integration of the stress to obtain the force in the concrete results in a functional form that 388 

prevents an analytical solution from being obtained for the neutral axis depth. Hence as a 389 

simplification, the non-linear strain profile is replaced by a linear strain profile where the strain 390 

at the neutral axis and at the top fibre are the same as for the actual non-linear strain distribution. 391 



This simplification is shown to be acceptable because of the closeness of the numerical and 392 

analytical solutions in the validation. 393 

Hence using the simplified stress-strain relationship, the following force in the concrete is 394 

obtained by integrating the stress in the concrete over the area of concrete in compression 395 

𝐹𝑐 =
1

2
𝑏𝑑𝑁𝐴

2 𝐸𝑐
𝜃

𝑆𝑐𝑟
2

sin2(𝛽)
   (25) 396 

Using the simplified stress-strain relationship, the lever arm between the force in the 397 

compressed concrete and the top fibre is  398 

𝑑𝑐 =
𝑑𝑁𝐴

3
     (26) 399 

For the case of a T-beam or an I-beam, Eqs. (25) and (26) are replaced by the expressions in 400 

Appendix S2 in the supplementary material. 401 

The shear strength of the concrete material along the potential sliding plane is assumed to be 402 

of the form (Regan & Yu 1973)  403 

𝑣 = 𝑚𝜎𝑁 + 𝑐     (27) 404 

where m represents the frictional component of the shear capacity and c represents the 405 

cohesion. 406 

Shear capacity  407 

Substituting Eq. (27) into Eq. (8) and then substituting Eq. (8) into Eq. (9) gives the shear 408 

capacity of the sliding plane as 409 

𝑆𝑐𝑎𝑝 = ∫
𝑚𝜎𝑐 sin2(𝛽)+𝑐

sin(𝛽)
𝑑𝐴

𝐴𝑐 − 𝐹𝑐 cos(𝛽) = 𝐹𝑐[𝑚 sin(𝛽) − cos(𝛽)] +
𝑐𝐴𝑐

sin(𝛽)
  (28) 410 

where Ac is the area of concrete in compression which is equal to bdNA for a rectangular section. 411 

For the case of an I or T beam see Appendix S2 in the supplementary material.  412 

If the sliding force S is equated with the sliding capacity Scap in Eq. (28) and then substituted 413 

into Eqs. (1) and (2), the following is obtained which, as a reminder, ignores the contribution 414 

of the compression reinforcement. 415 



0 = 𝐹𝑟𝑡 + 𝐹𝑓 sin(𝛽) − 𝐹𝑐 sin(𝛽) [𝑚 cos(𝛽) + sin(𝛽)] −
𝑐𝐴𝑐

tan(𝛽)
 (29) 416 

𝑉𝑐𝑎𝑝 = ∑ 𝐹𝑠𝑡−𝑖
𝑁
𝑖=1 + 𝐹𝑓 cos(𝛽) + 𝐹𝑐 sin(𝛽) [𝑚 sin(𝛽) − cos(𝛽)] + 𝑐𝐴𝑐 (30) 417 

In Eq. (30), V has been replaced by the shear capacity Vcap as S=Scap and where N refers to the 418 

number of stirrups crossing the shear crack below the neutral axis. As the neutral axis is not 419 

yet known at this stage of the analysis, as a simplification N can be approximated as the number 420 

of the stirrups crossing the shear crack at a depth between drt and h/2.  421 

In order to determine the neutral axis depth, now consider the forces developed in the concrete 422 

in compression, the fibre reinforcement and the longitudinal tensile reinforcement as a function 423 

of the crack rotation θ. Substituting Eqs. (19), (21) and (25) into Eq. (29) and rearranging gives 424 

the following expression for the rotation 425 

𝜃 =
𝐴0+𝐴1𝑑𝑁𝐴

𝐵0+𝐵1𝑑𝑁𝐴+𝐵2𝑑𝑁𝐴
2     (31) 426 

where 427 

𝐴0 = −𝑓𝑓𝑏ℎ     (32a) 428 

𝐴1 =
𝑐𝑏

tan(𝛽)
+ 𝑓𝑓𝑏    (32b) 429 

𝐵0 =
𝐾𝑟𝑡𝑑𝑟𝑡

sin2(𝛽) 
     (32c) 430 

𝐵1 = −
𝐾𝑟𝑡

sin2(𝛽) 
     (32d) 431 

𝐵2 = −
𝑏

2

𝐸𝑐
𝑆𝑐𝑟
2

[
𝑚

tan(𝛽)
+ 1]   (32e) 432 

If the section is an I or T beam, Eqs. (32) are replaced by the expressions in Appendix S2 in 433 

the supplementary material. If the longitudinal tension reinforcement has yielded, the 434 

expressions in Eq. (32) are replaced by those in Appendix S3 in the supplementary material. 435 

Now considering moment equilibrium, substituting Eq. (30) for Vcap into Eq. (3) gives 436 

0 = 𝐹𝑟𝑡𝑑𝑟𝑡 + 𝐹𝑓[𝑑𝑓 − 𝑎′ cos(𝛽)] + ∑ 𝐹𝑠𝑡−𝑖
𝑁
𝑖=1 (𝑑𝑠𝑡−𝑖 − 𝑎′) − 𝐹𝑐{𝑑𝑐 + 𝑎′ sin(𝛽) [𝑚 sin(𝛽) −437 

cos(𝛽)]} − 𝑎′𝑐𝐴𝑐 (33) 438 



Substituting Eqs. (19), (20), (21), (22), (25) and (26) into Eq. (33) and rearranging gives the 439 

following second equation for the rotation which can then be equated to the first to determine 440 

the neutral axis depth, dNA 441 

𝜃 =
𝐶0+𝐶1𝑑𝑁𝐴+𝐶2𝑑𝑁𝐴

2

𝐵0+𝐵1𝑑𝑁𝐴+𝐵2𝑑𝑁𝐴
2 +𝐵3𝑑𝑁𝐴

3     (34) 442 

where 443 

𝐶0 = −𝑓𝑓𝑏ℎ [
ℎ

2sin2(𝛽)
−

𝑎′

tan(𝛽)
]    (35a) 444 

𝐶1 = 𝑎′𝑐𝑏 − 𝑓𝑓𝑏
𝑎′

tan(𝛽)
     (35b) 445 

𝐶2 = 𝑓𝑓
𝑏

2 sin2(𝛽)
      (35c) 446 

𝐷0 =
𝐾𝑟𝑡𝑑𝑟𝑡

2

sin2(𝛽)
+ ∑

𝐾𝑠𝑡−𝑖𝑑𝑠𝑡−𝑖(𝑑𝑠𝑡−𝑖−𝑎′)

cos2(𝛽)
𝑁
𝑖=1   (35d) 447 

𝐷1 = −
𝐾𝑟𝑡𝑑𝑟𝑡

sin2(𝛽)
− ∑

𝐾𝑠𝑡−𝑖(𝑑𝑠𝑡−𝑖−𝑎′)

sin(𝛽) cos(𝛽)
𝑁
𝑖=1    (35e) 448 

𝐷2 = −
𝐸𝑐
𝑆𝑐𝑟
2

𝑏
𝑎′

2
[𝑚 −

1

tan(𝛽)
]    (35f) 449 

𝐷3 = −
𝐸𝑐
𝑆𝑐𝑟
2

𝑏

6 sin2(𝛽)
     (35g) 450 

If the section is an I or T beam, Eqs. (35) are replaced by the expressions in Appendix S2 in 451 

the supplementary material. If the longitudinal tension reinforcement or stirrups has yielded, 452 

the expressions in Eq. (35) are replaced by those in Appendix S3 in the supplementary material. 453 

Equating Eqs. (24) and (27) and rearranging gives the following polynomial equation  454 

0 = 𝑃0 + 𝑃1𝑑𝑁𝐴 + 𝑃2𝑑𝑁𝐴
2 + 𝑃3𝑑𝑁𝐴

3 + 𝑃4𝑑𝑁𝐴
4    (36) 455 

where 456 

𝑃0 = 𝐴0𝐷0 − 𝐵0𝐶0     (37a) 457 

𝑃1 = 𝐴0𝐷1 + 𝐴1𝐷0 − 𝐵0𝐶1 − 𝐵1𝐶0   (37b) 458 

𝑃2 = 𝐴0𝐷2 + 𝐴1𝐷1 − 𝐵0𝐶2 − 𝐵1𝐶1 − 𝐵2𝐶0  (37c) 459 

𝑃3 = 𝐴0𝐷3 + 𝐴1𝐷2 − 𝐵1𝐶2 − 𝐵2𝐶1   (37d) 460 



𝑃4 = 𝐴1𝐷3 − 𝐵2𝐶2     (37e) 461 

and which can be solved for the neutral axis depth. 462 

The neutral axis depth dNA can now be determined noting that Eq. (37) has four solutions, two 463 

of which are complex, and of the real solutions only one will be positive which is the physical 464 

solution. This can then be substituted into Eq. (31) to give the rotation θ. The rotation and 465 

neutral axis depth can then be substituted into Eqs. (20), (21) and (25) to give the forces in the 466 

stirrups Fst-i, fibres Ff and compressed concrete Fc. These forces can then be substituted into 467 

Eq. (30) to give the shear capacity Vcap. The only unknown is the shear angle β. 468 

Theoretically β can be found by minimising Vcap with respect to β, however, minimising this 469 

analytically does not lead to a simple closed-form solution. It is also impractical for an 470 

analytical solution to evaluate Vcap for a range of shear angles and then take the minimum value 471 

in the same way as is done for the numerical implementation. Instead, as a simplification, it 472 

will be assumed that the fibres do not significantly influence the shear angle β which is 473 

analogous to the assumption of Zhang et al. (2015) where stirrups were assumed to have no 474 

effect on the shear angle. The validity of this assumption is demonstrated by the accuracy of 475 

the validation. Hence, the shear capacity without stirrups or fibres from Zhang et al. (2016b) 476 

can be minimised to give the shear angle β. The shear capacity without stirrups or fibres is 477 

given by (Zhang et al. 2016b) 478 

𝑉𝑐𝑎𝑝−𝑛𝑓 =
𝑏𝑑𝑁𝐴𝑐

1−[𝑚 sin(𝛽)−cos(𝛽)][
𝑎′ sin(𝛽)−𝑑𝑟𝑡 cos(𝛽)

𝑑𝑟𝑡−𝑑𝑐
]
   (38) 479 

Minimising Eq. (38) with respect to β by differentiating and equating with zero yields 480 

𝑑𝑉𝑐𝑎𝑝−𝑛𝑓

𝑑𝛽
= 0 =481 

𝑏𝑑𝑁𝐴𝑐
[𝑚 cos(𝛽)+sin(𝛽)][

𝑎′

𝑑𝑟𝑡−𝑑𝑐
sin(𝛽)−

𝑑𝑟𝑡
𝑑𝑟𝑡−𝑑𝑐

cos(𝛽)]+[𝑚sin(𝛽)−cos(𝛽)][
𝑎′

𝑑𝑟𝑡−𝑑𝑐
cos(𝛽)+

𝑑𝑟𝑡
𝑑𝑟𝑡−𝑑𝑐

sin(𝛽)]

1−[𝑚 sin(𝛽) −cos(𝛽)][
𝑎′

𝑑𝑟𝑡−𝑑𝑐
sin(𝛽)−

𝑑𝑟𝑡
𝑑𝑟𝑡−𝑑𝑐

cos(𝛽)]
2 (39) 482 

Rearranging then gives the following expression for the shear angle 483 



0 = (𝑚
𝑎′

𝑑𝑟𝑡
− 1) 2 sin(𝛽) cos(𝛽) − (

𝑎′

𝑑𝑟𝑡
+ 𝑚) [cos2(𝛽) − sin2(𝛽)] (40) 484 

Next consider that 485 

2 sin(𝛽) cos(𝛽) =
2 tan(𝛽)

1+tan2(𝛽)
    (41) 486 

and 487 

cos2(𝛽) − sin2(𝛽) =
1−tan2(𝛽)

1+tan2(𝛽)
   (42) 488 

Hence substituting Eqs. (41) and (42) into Eq. (40) gives the following quadratic equation in 489 

terms of tan(β) 490 

0 = (𝑚
𝑎′

𝑑𝑟𝑡
− 1) 2 tan(𝛽) − (

𝑎′

𝑑𝑟𝑡
+ 𝑚) [1 − tan2(𝛽)]  (43) 491 

and solving Eq. (43) gives 492 

𝛽 = arctan

[
 
 
 
√1 + (

𝑚
𝑎′

𝑑𝑟𝑡
−1

𝑚+
𝑎′

𝑑𝑟𝑡

)

2

−
𝑚

𝑎′

𝑑𝑟𝑡
−1

𝑚+
𝑎′

𝑑𝑟𝑡
]
 
 
 

≥ 𝛽𝑚𝑖𝑛 (44) 493 

From Eq. (44), it is seen that the shear angle is a function of the ratio between the shear span 494 

and effective depth and the frictional component of the shear strength. The variation of the 495 

shear angle with these parameters is shown in Fig. 9. Note that the inequality comes from the 496 

fact that the shear angle cannot be less than βmin as defined earlier (Eq. 10) which is limited by 497 

the shear crack entering the support. From Fig. 9, it can be seen that as the shear span to depth 498 

ratio reduces β increases. An increase in the frictional component of the shear strength results 499 

in a decrease in shear angle.  500 

The presented analytical solution has assumed a rectangular cross-section and unyielded 501 

reinforcement. However, the model can accommodate other cross-sections, for example, the 502 

expressions for I and T beams are given in Appendix S2 in the supplementary material while 503 

the expressions for yielded reinforcement are given in Appendix S3 in the supplementary 504 

material. To demonstrate the manner in which these different solutions fit together, a flow chart 505 



is given in Fig. 6 which outlines the procedure for determining the shear capacity using the 506 

analytical solutions. A worked example is also given in Appendix S4 in the supplementary 507 

material. 508 

 509 

VALIDATION 510 

The shear capacity models in this paper are compared with 29 experimental tests (Casanova & 511 

Rossi (1997), Noghabai (2000) and Amin & Foster (2016) from the literature, as well as an 512 

additional 2 tests performed by the authors with details in Appendix S5 in the supplementary 513 

material. The tests from the literature were chosen from the data base by Lansoght (2019) where 514 

direct tension tests were also available. The examples cover: concrete strengths from 34 to 125 515 

MPa; fibre volumes from 0.29 to 1.28%; beam depths from 250 to 700 mm; and rectangular 516 

and I shaped sections.  517 

Comparisons were also made to the codified approaches presented by fib Model Code 2010 518 

(fib 2013), AS3600-2018 (Standards Australia 2018) and AFGC UHPFRC recommendations 519 

(AFGC 2013) as well with the approaches of Voo et al. (2006), Choi et al. (2007), Zhang et al. 520 

(2016a), Lee et al. (2017) and Foster and Barros (2018). The results are summarised in Fig. 11 521 

which alongside the plot gives  the means and coefficients of variation (COV). Note that the n 522 

in Fig. 11 refers to the number of tests the approach was applied to in the validation. The reason 523 

that Voo et al. (2006), Choi et al. (2007) and Zhang et al. (2016a) were compared to less than 524 

31 tests is that they did not include a provision for the allowance of stirrups. In Fig.11(k) that 525 

is Foster & Barros, the number of tests for comparison was reduced as the model does not 526 

include the case where there is a mix of two different types of fibre. The fib Model Code #1 527 

refers to the approach in the model code which is based on a modified Eurocode approach and 528 

fib Model Code #2 refers to an approach based on simplified modified compression field 529 

theory. 530 



The results for the numerical approach developed in this paper are shown in Fig. 11(a); these 531 

specimens were with and without stirrups and had both normal and high strength FRC. It can 532 

be seen that the results are closely distributed about the ordinate 1 with a mean of 0.98 and 533 

COV of 0.19 demonstrating the accuracy of the proposed numerical implementation. When 534 

using the analytical formulation, the results in Fig. 1(b) have a similar mean to the numerical 535 

approach of 0.97, however, the COV has increased slightly to 0.24 due to the simplifications 536 

in this approach. 537 

The codified predictions in Figs. 11(c) to (f) are conservative especially for the higher strength 538 

FRCs. The COVs are significantly higher than for the approaches developed in this paper of 539 

0.19 and 0.24 with fib(2013)#1 the most accurate with a COV of 0.37 and AFGC (2013) the 540 

least with a COV of 0.44. The AFCG (2013) standard is also the least conservative with a mean 541 

of 1.33 while Standards Australia (2018) is the most conservative with a mean of 1.74. 542 

Various approaches in the literature are also compared in Figs. 7(g-k). Zhang et al. (2016a), 543 

Lee et al. (2016a) and Foster & Barros (2018) approaches show similar patterns to the codified 544 

approaches of increasing conservativeness as the concrete strength increases. Voo et al. (2006) 545 

shows a different pattern where the approach is accurate for high strength FRC, however, it is 546 

unconservative for lower strength FRC. Choi et al. (2007) demonstrates similar accuracy for 547 

all concrete strengths. This is also reflected in the means, with Voo et al. (2006) being 548 

unconservative with a mean of 0.68 while Choi et al. (2007) is the closest to the experimental 549 

values with a mean of 1.01 and the other approaches are conservative with means between 1.67 550 

and 1.84. Inspecting the COVs shows Voo et al. (2006) as being the most accurate with a COV 551 

of 0.23 while Foster & Barros (2017) is the least accurate with a COV of 0.59. For the other 552 

approaches, the COVs are in the range of the codified approaches. These are all greater than 553 

the COVs for the proposed approaches except for Voo et al. (2006) which has a similar COV 554 



to the analytical solution, however, Voo et al. (2006) tends to overestimates the shear capacity 555 

in most cases. 556 

The following material properties were used in the numerical and analytical implementations 557 

for the approaches presented in this paper. The concrete stress-strain relationship in 558 

compression was obtained from Ou et al. (2011) for FRC with a strength less than 100 MPa or 559 

Sobuz et al. (2016) for FRC with a strength greater than 100 MPa. The tensile-stress/crack- 560 

width relationship was obtained from direct tension tests, although the equivalent material 561 

property obtained from inverse analysis of flexural tensile tests could also be employed. This 562 

was not, however, done here to avoid any increased scatter associated with obtaining the 563 

material properties. The material shear strength was obtained from Zhang et al. (2014b). The 564 

crack spacing, load-slip relationships and crack opening stiffness were determined in 565 

accordance with that presented in Appendix S1 in the supplementary material. Note that these 566 

approaches utilise an empirical bond-stress/slip relationship which was obtained from Harajli 567 

(2009) for compressive strengths less than 100 MPa and from Sturm & Visintin (2018) for 568 

compressive strengths exceeding 100 MPa. 569 

EFFECT OF SIZE, FIBRE STRESS AND CRACK SPACING ON SHEAR CAPACITY 570 

Effect of size on shear capacity 571 

It is a well established phenomenon for both conventional reinforced (Bazant & Kim 1984; 572 

Bazant & Sun 1987) and fibre reinforced concrete beams (Shoaib et al. 2014; Minelli et al. 573 

2014; Chao 2020) that the shear capacity does not scale linearly with the size of the beam. 574 

Hence, to demonstrate that the model in this paper generates a size effect, a series of analyses 575 

were performed using the analytical model. The results are shown in Fig. 12(a) where the shear 576 

capacity, that is normalised with respect to the size of the beam, is plotted against the effective 577 

depth. It can be seen that the normalised strength reduces with increasing depth, that is, there 578 



is a size effect and that this new model does not require an empirically derived factor to allow 579 

for the size effect but allows for it automatically through mechanics.  580 

For the above analyses, the effective depth was varied from 100 mm to 1000 mm, the shear 581 

span-to-effective depth ratio ws 3, the beam width 250 mm, the cover of the longitudinal 582 

reinforcement 50 mm, the reinforcement ratio 0.01 and the concrete strength was 40 MPa. The 583 

fibre stress was assumed to be 50% of the tensile strength which was set to 3.5 MPa. The elastic 584 

modulus of the concrete was 36 GPa. 585 

Effect of fibre stress on shear capacity 586 

In this section the effect of adding fibres on the shear capacity is explored. Because the exact 587 

relationship between the volume of fibres and the stress in the fibres is strongly dependent on 588 

mix design, and is usually assessed experimentally, the effect of adding fibres will be simulated 589 

considering the simple case of the beam with an effective depth of 500 mm and all other 590 

parameters the same as those used to explore the size effect. By varying the fibre stress as a 591 

ratio of the fibre stress to the peak tensile strength the result shown in Fig. 12(b) is obtained, 592 

where a value of zero is indicative of a plain concrete beam. This demonstrates that the addition 593 

of fibres can result in significant improvements in shear capacity. To place these values in 594 

context an addition of 0.3% by volume of fibres resulted in a ff/fct of 0.24 and 0.7% by volume 595 

of fibres resulted in a ff/fct of 0.67 in Amin & Foster (2016) while 1% by volume of fibres 596 

resulted in a ff/fct of 0.97 for the beams in Appendix S5 in the supplementary material as 597 

determined using the analytical solution presented in this paper. It can therefore be seen that 598 

the shear capacity increases in proportion to the stress in the fibres.  599 

Sensitivity of the predicted shear capacity to the crack spacing 600 

This model uses the crack spacing as a parameter in determining the shear capacity. As there 601 

is a significant random component to predicting crack spacings (Sturm et al. 2018c), the 602 

sensitivity analysis in Fig. 12(c) was performed to explore the effect of crack spacing on the 603 



predicted shear capacity. The results indicate that the model is insensitive to the assumed crack 604 

spacing with only minor variation in the shear capacity even when the crack spacing is varied 605 

from 25 mm to 200 mm. The reason for this insensitivity is that as the crack spacing is increased 606 

the rotation increases to maintain similar strains on the section. This can be seen by plotting 607 

the rotation versus crack spacing as well as top strain versus crack spacing, as shown in Fig. 608 

12(d) and 12(e). In this analysis, the effective depth was taken as 500 mm and the other 609 

parameters were the same as those used to investigate the size effect. 610 

 611 

CONCLUSION 612 

An approach has been developed for quantifying the shear capacity of FRC beams. The 613 

approach is based on the mechanics of shear failure along a sliding plane and uses: the 614 

reinforcement partial-interaction bond-slip material property; the concrete partial-interaction 615 

shear-friction property; and the partial-interaction fibre properties across a crack or sliding 616 

plane. A unique component of this approach is that it quantifies the weakest plane of shear 617 

failure and, consequently, automatically allows for the effect of the shear-span/depth and beam 618 

size. Being mechanics based, it can cope with a wide variety of member shapes, such as 619 

rectangular or I sections, member sizes and FRC material properties and does not require 620 

calibration through member testing. 621 

This novel partial-interaction mechanics based approach has been compared with thirty one 622 

member tests and shows very good correlation with the measured strengths and a low COV of 623 

19%, which increases to 24% when simplifications are made to produce an analytical solution. 624 

The means of the proposed solutions are also 0.98 for the numerical and 0.97 for the analytical 625 

implementations. Thus, it has been found to be more accurate than code approaches where the 626 

COV was larger with a range of 37 to 44% while the means were conservative with a range of 627 

1.33 to 1.74 and published prediction approaches where the COV ranged from 23% to 628 



59%.Voo et al. (2006) was unconservative with a mean of 0.68 while the mean of Choi et al. 629 

(2007) was 1.01. The other published prediction approaches were conservative with means of 630 

1.67 to 1.84. 631 

As this new approach is mechanics-based, it only requires knowledge of the partial-interaction 632 

material properties of the FRC concrete for application and as such it does not require 633 

calibration by member testing. The procedure can be used to quantify the shear capacity of 634 

FRC RC sections and thus has the potential to be used to develop simplified rules for design 635 

for any type of FRC member. 636 
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 644 

NOTATION 645 

The following symbols are used in this paper: 646 

A0, A1, B0, B1, B2 = coefficients for Eq. (31); 647 

Ac = area of concrete in compression; 648 

Act = area of concrete in tension chord; 649 

Act-st = area of concrete in tension chord around the stirrup; 650 

Art = area of the longitudinal tension reinforcement; 651 

Ast-i = area of  ith stirrup; 652 



a = shear span; 653 

a’ = effective shear span; 654 

b = width of section; 655 

bf1 = width of top flange; 656 

bf2 = width of bottom flange; 657 

bw = width of web; 658 

C0, C1, C2, D0, D1, D2, D3 = coefficients for Eq. (34); 659 

c = cohesive component of shear capacity; 660 

dc = depth to compressive force in the concrete; 661 

df = distance from the force in the fibres to the top fibre; 662 

dNA = depth to neutral axis; 663 

drc = depth to the compression reinforcement; 664 

drt = depth to the longitudinal tension reinforcement; 665 

dst-i = horizontal distance between stirrup and profile A-A in Fig. 1(a); 666 

Ec = elastic modulus of concrete; 667 

Er = elastic modulus of reinforcement;  668 

Fc = compressive force in the concrete; 669 

Ff = force in fibres bridging shear crack; 670 

Frc = force in the compression reinforcement; 671 

Frt = force in longitudinal tension reinforcement; 672 

Fst-i = force in the ith stirrup; 673 

fct = tensile strength; 674 

ff = average tensile stress in the fibres for a given crack opening displacement; 675 

fpc = post-cracking strength; 676 

fy = yield strength of longitudinal reinforcement; 677 



fy-st = yield strength of stirrups; 678 

h = depth of section; 679 

Krt = stiffness of longitudinal tension reinforcement; 680 

Kst-i = stiffness of the stirrups; 681 

k = effective linear bond stiffness; 682 

Lper = bonded perimeter; 683 

Lper-st = bonded perimeter of the stirrup; 684 

Lst1, Lst2 = distance from crack face to intersection of stirrup and longitudinal reinforcement; 685 

M = bending moment; 686 

Mcap = moment capacity; 687 

m = frictional component of material shear capacity; 688 

N = number of stirrups crossing the shear crack below the neutral axis; 689 

n = number of stirrups that have yielded crossing the shear crack below the neutral axis; 690 

P0, P1, P2, P3, P4 = coefficients for Eq. (30); 691 

S = sliding force along shear crack; 692 

Scap = maximum sliding force; 693 

Scr = crack spacing; 694 

s = stirrup spacing; 695 

tf1 = thickness of top flange; 696 

tf2 = thickness of bottom flange; 697 

V = shear force; 698 

Vcap = shear capacity; 699 

Vcap-β = shear capacity corresponding to shear angle β; 700 

Vcap-nf = shear capacity without fibres; 701 

Vexp = experimental shear capacity; 702 



Vf = fibre volume; 703 

v = material shear strength; 704 

wD = crack width at bottom fibre (measured perpendicular to the crack face); 705 

wp = crack opening perpendicular to the crack face; 706 

wx = horizontal crack opening; 707 

wy = vertical crack opening; 708 

x= distance from profile A-A in Fig. 1(a); 709 

y = depth with respect to the top fibre; 710 

Zcap = shear capacity of uncracked sliding plane; 711 

α = non-linearity of bond-stress/slip relationship; 712 

β = angle of critical diagonal shear crack to the horizontal; 713 

βmin = minimum shear angle; 714 

Δrt = slip of the longitudinal tension reinforcement; 715 

Δst-i = average slip of ith stirrup; 716 

Δst1, Δst2 = slip of the stirrup from each crack face; 717 

δ1 = slip at maximum bond stress; 718 

εx = longitudinal strain; 719 

θ = rotation at critical diagonal shear crack; 720 

λ1 = bond parameter for load-slip relationship of the longitudinal reinforcement; 721 

λ1-st = bond parameter for load-slip relationship of the stirrups; 722 

λ2 = bond parameter for crack spacing; 723 

ρ = reinforcement ratio; 724 

σc = stress in concrete; 725 

σf = stress in fibres; 726 

σN = normal stress; 727 



τmax = maximum bond stress; 728 

τN = shear stress at sliding plane; 729 

 730 

SUPPLEMENTARY MATERIAL 731 

Appendixes S1, S2, S3, S4, S5 and S6 are available online in the ASCE Library 732 

(www.ascelibrary.org) 733 
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